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Abstract: Since energy consumption (EC) is becoming an important issue for sustainable 

development in the world, it has a practical significance to predict EC effectively. However, there 

are two main uncertainty factors affecting the accuracy of a region’s EC prediction. Firstly, with 

the ongoing rapid changes in society, the consumption amounts can be non-smooth or even 

fluctuating during a long time period, which makes it difficult to investigate the sequence’s trend 

in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount 

as a real number, as there are different development levels in the region, which would be more 

suitably described as interval numbers. Most traditional prediction models for energy consumption 

forecasting deal with long-term real numbers. It is seldom found to discover research that focuses 

specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has 

been established by expressing ECs in a region as interval grey numbers combining with the 

optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the 

effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of 

China is selected as an example. The results show that the proposed model reveals the best 

accuracy for the short data sequences (the average fitting error is only 2.19% and the average 

three-step forecasting error is less than 4%) compared with three GM models and four classical 

statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas 

consumption, can also be predicted using this novel model. As the sustained growth in EC of 

China's, it is of great significance to predict EC accurately to manage serious energy security and 

environmental pollution problems, as well as formulating relevant energy policies by the 

government. 
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1 Introduction 

Today, energy remains the main engine of the economy. Energy consumption has been one of 

the hottest issues in energy research over the years. In China, as rapid and diversified society 

developments continue, EC forecasting has become more and more complicated and full of 

uncertainty.  

To be specific, with the economic growth and transformation of industrial structures, per 

capita household EC sequence (1993-2014) in China show a non-smooth rising trend and is 

difficult to fit its curve trend (Data source: National Statistical Yearbook of China, 2016), thus it is 

not suitable for forecasting by using the whole sequence to establish models. In fact, energy data 

capacity is often very limited (15 observations or less) due to changes of energy policy or updates 

within the industrial structure. However, classical prediction models (e.g. exponential smoothing, 

Holt-Winters method, linear method, exponential model, regression, autoregressive integrated 

moving average (ARIMA)) or modern prediction techniques (e.g. genetic algorithm (GA), 

artificial neural networks (ANN), Particle Swarm Optimization (PSO), fuzzy system) often require 

larger sample sizes, based on mathematical statistics principles or machine learning rules and 

computational intelligence (Xia and Wong, 2014). To be specific, for EC forecasting, Yukseltan et 

al. (2017) developed a linear model, as an expansion in Fourier series, supplemented with a 

modulation by seasonal harmonics, to forecast electricity demand for Turkey. Al-mulali et al. 

(2014) conducted panel data (labour, gross fixed capital formation, and total trade) analysis, based 

on statistics to describe their relationships with renewable EC and non-renewable EC. Zahedi et al. 

(2013) predicted the electricity demand of Canada by using a neuro-fuzzy model. Felice et al. 

(2015) presented an assessment of the use of seasonal climate forecasts of temperature for 

medium-term electricity demand prediction, by using both deterministic and probabilistic 

forecasting approaches. The classical models and the modern methods mentioned above are 

applied to cases with sufficient sample data which cannot capture the sensitive latest changes of 

data trends.  

In reality, for energy data samples where the trends show significant changes, their newest or 

most recent information play the most important role in the modeling process rather than the 

amount of data. Owing to these reasons, Grey Model (GM) in GST (Liu et al., 2010) is introduced 

to forecast EC with small amounts of newest data. GM is suitable for small samples which 

emphasizes on new information, and it has been verified by many scholars: according to the 

principle of new information priority, Hamzacebi and Es (2014) used Optimized Grey Modeling 

(1,1) to forecast the annual electricity consumption of Turkey; Xiong et al. (2014) proposed a 

novel GM (1,1) model based on optimizing initial condition and applied in China's energy 

consumption and production forecasting. Moreover, it has been proved that grey prediction 

models can predict short-term data with the most recent information more efficiently compared 

with using long term old data (Wu et al., 2013a). Various papers on energy forecasting, using Grey 

Models or hybrid models with Grey Models, have now been disseminated. Ding (2018) designed a 

self-adapting grey prediction model having a nonlinear optimized initial value by utilizing an ant 

lion optimizer (ALO) algorithm to forecast China's natural-gas demand. Xu et al. (2017) proposed 

a novel grey model with optimal time response, based on particle swarm algorithm to forecast the 

electricity consumption data of China and compared with three alternative grey models. Truong et 

al. (2012) established a modified grey model MGM(1,1) for real-time control of wave energy 
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converters in irregular waves and the traditional grey model and a typical autoregressive (AR) 

model were carried out for comparisons. Ding designed a new multivariable model that considers 

the accumulative effects of the influencing factors, and used this proposed model to accurately 

forecast the future output value of high-tech industries in China. Lee and Tong (2012) combined a 

dynamic grey model with genetic programming to forecast energy in the US and compared with 

ARIMA, GP and other grey models. Erdal et al. (2010) investigated the accuracies of different 

grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier series, 

and the fitting and forecasting results of the modified grey models revealed higher performances. 

Ding et al. (2018) analyzed the properties of a multiple transformation and optimized background 

value in the GM(1,N) model to simulate and predict CO2 emissions. In summary, none of the 

above papers considered regional unbalances in a certain country or region, and the research 

objects of them are all described as single real numbers. For model comparisons, most of the 

papers only took into account grey models, because of the short-term sequences, instead of using 

forecasting models, such as statistical models, which is neither comprehensive nor convincing.  

Due to the regional characteristics of EC, real values are difficult to ascertain when 

deciphering the different levels of per capita annual ECs in one region. The interval numbers are 

introduced to characterize the annual ECs which can cover the full information of this energy data. 

Focusing on the feature of the uncertainty, interval grey numbers have been discussed in many 

other fields, like decision-making, information retrieval, knowledge discovery and so on 

(Yamaguchi et al., 2007). Professor Deng Julong (1982) originally proposed interval grey numbers, 

whereby the interval grey number is a typical form of grey number which refers to uncertain 

values of the numbers in an interval or a general number set. In terms of grey prediction of 

interval grey numbers, researchers have made a series of attempts to transform interval grey 

number sequences into real number sequences, to construct grey prediction models by means of 

using geometric characteristics, formations of operators and establishments of combination 

models etc., and then restore back to the interval grey number sequences. Zeng et al. (2014) 

converted an interval grey number sequence into the kernel and area sequences to establish grey 

forecasting models. This method avoids extreme data errors by generating average value and grey 

degree enlargement scenarios. But the characteristic of non-homogeneous sequences is not taken 

into account. Wu et al. (2013b) converted an interval grey number sequence into a real number 

sequence by calculating the areas of grey number layers and the cognition degree of interval grey 

numbers. In this method, the surface areas are introduced to accurately express the areas of grey 

number layers. The solution of the equations is quite complex in the process of calculation. In 

reality, most information distributions of interval grey numbers are not equal. The above grey 

prediction models, based on interval grey numbers can not reflect this outstanding feature. Thus, 

Zeng Bo et al. (2010) introduced the typical whitenization weight function to establish the grey 

prediction model. In this model, the upper and lower bounds of interval grey numbers and two 

turning points in whitenization weight function are all used without omitting any information of 

the grey number. It is usually difficult to obtain the typical whitenization weight function which 

needs to determine two turning points. And there is no doubt of the high costs taken by 

synthesizing experts’ opinions or experiences as well as collecting and analyzing previous data to 

obtain this function, which also leads to more deviations. To simplify the typical whitenization 

weight function, a central point which represents the maximum possibility of an interval can be 

considered to replace two turning points in the typical whitenization weight function. By these 

means, this paper utilizes the central-point sequence to establish a novel energy consumption 
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forecasting model, which is easier to acquire, in describing uneven distributions of information of 

interval grey numbers.  

To optimize grey model, the initial condition of DGM(1, 1) is reset by minimizing the fitting 

values’ errors in this paper. Instead of using the first data set as an initial condition in the original 

GM (Liu et al., 2010), it ignores the extraction of new information. In terms of other initial 

condition optimizations, Dang et al. (2004) set the last in-sample data’s accumulated generating 

value( )()1( nx ) as the initial condition which put too much emphasis on the latest information and 

became vulnerable to abnormal fluctuations; Liu et al. (2011) discussed three initial conditions: 

the starting-point fixed initial value, the middle-point fixed initial value and the end-point fixed 

initial value, though there was no indication of the suitability of each setting; Wang et al. (2010) 

used the weighted combination of the first and last data set from the 1-AGO sequence as the initial 

condition, but how to determine the weight had not been given; Xiong et al. (2014) expanded 

Wang’s method by weighting all the in-shape’s accumulated generating data as the initial 

condition. The weights were fixed which meant the weights could not adjust according to 

sequences. To this end, this paper optimizes the initial condition of the grey forecasting model by 

setting a parameter which makes the fitting accuracy minimum. 

To sum up, in-sample data sets in this paper are characterized as interval grey numbers to 

establish the novel energy consumption forecasting model to forecast EC. The innovation and 

contribution of this research compared with other references mainly lies in the following three 

aspects: Firstly, the uncertain information of regional energy consumption is expressed by interval 

grey numbers, in which the upper bound and the lower bound are used to characterize the highest 

and the lowest levels of this region. Secondly, short-term most recent energy consumption data are 

used to establish the novel forecasting model, and long-term data are applied as comparisons. 

Thirdly, the accuracy of the novel forecasting model is improved by full information 

transformation of energy consumption data, described by interval grey numbers and the model’s 

initial value optimization. 

The reminder of this paper is structured as follows: in Section 2, information of the interval 

grey numbers with central points is transformed fully to prepare for forecasting. Section 3 

optimizes the DGM(1, 1) of interval grey numbers with central points and the initial condition to 

improve the energy consumption forecasting model’s precision. Section 4 discusses a case of per 

capita annual EC from five cities in Southern Jiangsu to forecast near future trends and verifies the 

practicability of the novel model by comparing with other forecasting methods. Finally, conclusions 

are drawn in Section 5. 

2 The effective information conversion of interval grey numbers with 

central points 

2.1 The basic concepts 

Definition 1 (Liu et al., 2010). Let  ba, , ba  , a , b R , then   is called an 

interval grey number; if ba  ，then   is a real number and a .  
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Definition 2. Let  cba ,,  be an interval grey number, cba  . Among them, a , 

c  are the lower bound and the upper bound of the interval grey number, and b is the maximum 

possibility point of this interval which is called the central point. This kind of interval grey number 

is named as an interval grey number with a central point. The sequence of interval grey numbers 

with central points can be described as 1 2( ) ( , , , )nX       in which  mmmm cba ,, , 

m m ma b c  , 1,2, ,m n .  

Definition 3. Let the sequence of interval grey numbers with central points as

1 2( ) ( , , , )nX      , and map all elements of ( )X   into a two-dimensional Cartesian 

coordinate system. Then, sequentially connect the lower bounds, the upper bounds and the central 

points of adjacent interval grey numbers respectively to constitute the lower-bound line, the 

upper-bound line and the central-point line, which can be seen in Fig. 1. Among them, the sequence 

of the lower-bound line can be denoted as 1 2( ) ( , , , )nX a a a  , the sequence of the 

central-point line can be denoted as 1 2( ) ( , , , )nX b b b  , and the sequence of the upper-bound 

line can be denoted as 1 2( ) ( , , , )nX c c c  .  

Definition 4 (Zeng et al., 2010). The graphics of the lower and upper bounds sequences of 

interval grey numbers are known as grey numbers’ belts; the sections of the adjacent interval grey 

numbers are called grey numbers’ layers. According to positions of grey numbers’ layers in grey 

numbers’ belts, they are marked by 1,2, ,n (See in Fig. 1). 

1a

1b

1 2 3 4 n

2a

2b

3a

3b

4a

4b

na

nb

1c

3c
2c

4c

nc

1

2

3

M

N-1

  
1n

mc 1mc 

1nc 

mb

ma 1ma 
1na 

1mb 

1nb 

1m
m

 

Fig.1. The grey numbers’ belt of the interval grey number  cba ,,  

Definition 5. If the grey numbers’ layers(GL) are marked by 1,2, ,n , each GL can be 

divided into two parts by the central-point sequence. The two parts can be called: the upper grey 

layer and the lower grey layer. 

2.2 Establish the effective information conversion sequences 
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Let the sequence of interval grey numbers with the central point as 

1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c   in which ma  and mc  are the lower and 

upper bound values, mb  is the central point. The effective information conversion sequences can 

be established by the sequences of trapezoid areas made by upper bound values and central-point 

values; trapezoid areas made by lower bound values and central-point values and middle values 

calculated by upper bound values and lower bound values.  

Lemma 1 (Zeng and Liu, 2011). In the grey number layer m (see in Fig. 1), the longitudinal 

coordinate of the middle value calculated by upper bound values and lower bound values ( ma , mc , 

1ma  , 1mc  ) is: 1 1

4

m m m m
m

a c a c
L    

 , 1, 2, , 1m n  . 

According to Lemma 1, the sequence of middle values can be denoted as

1 2 1( ) ( , , , )nX L L L L  . 

Theorem 1 (Trapezoid areas of the lower grey layer). In the grey number layer m (see in Fig. 

1), the trapezoid area of lower bound values ( ma , 1ma  ) and central-point values ( mb , 1mb  ) is: 

1 1( ) ( )

2

m m m m
m

b a b a
S    

 , 1, 2, , 1m n  . 

Proof: The differences of longitudinal coordinates between the lower bounds and the central 

points are 1 1( )m mb a 
, 

( )m mb a
 which represent the trapezoid’s top and bottom. And the 

height of the trapezoid can be obtained by the differences of the adjacent grey number layers, which 

is 
( 1) 1m m  

. By this means, the trapezoid area is 
1 1( ) ( )

2

m m m m
m

b a b a
S    

 . 

Theorem 2 (Trapezoid areas of the upper grey layer). In the grey number layer m (see in Fig. 

1), the trapezoid area of upper bound values ( mc , 1mc  ) and central-point values( mb , 1mb  ) is: 

1 1( ) ( )

2

m m m m

m

c b c b
S    

 , 1, 2, , 1m n  . 

Proof: Similar to Theorem 1. 

According to Theorem 1 and Theorem 2, here are the sequence of trapezoid areas of the lower 

grey layer 
1 2 1( ) ( , , , )nX S S S S  and the sequence of trapezoid areas of the upper grey layer 

1 2 1( ) ( , , , )nX S S S S  . 

In addition, from Lemma 1, Theorem 1 and Theorem 2, we can obtain: 

mmmmm SSLaa  21  

mmmmm SSLbb  21  

mmmmm SSLcc  21 . 

That is to say,  
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1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c  

1 2 1

1 2 1

1 2 1

( ) ( , , , )

( ) ( , , , )

( ) ( , , , )

n

n

n

X L L L L

X S S S S

X S S S S











 

 . 

The information contained in the interval grey numbers’ sequence with central points are 

retained completely by the information conversion which means the conversion preserves the 

characteristics of information equivalence and data integrity. 

 3 The optimized DGM(1, 1) model 

3.1. DGM(1,1) of interval grey numbers with central points 

 In the modeling process of discrete grey models, parameters estimation, simulation and 

prediction are all adopted in the form of discrete equations. The DGM model does not differentiate 

approximate substitution between the discrete equation and the continuous equation compared 

with GM(1, 1) model, in which the method of estimating parameters is the discrete equation and 

the method of simulating and forecasting is the continuous equation, so it has higher fitting 

precision by calculating the average relative percentage error (ARPE) (Xie and Liu, 2009). Let 

(0) (0) (0) (0)( (1), (2),..., ( ))X x x x n
 be the original data sequence, 

     0
0 1,2, ,x k k n  

. Based 

on the traditional DGM(1, 1) model (Xie and Liu, 2009), here are: the recursive function of 

DGM(1,1) (set )1()1( )0()1( xx  ) 

)1,,2,1(,
1

1
)1()1(ˆ 2

1

1)0(
1

)1( 



 nkxkx

k
k 




                   (1) 

and the restored value of the recursive function of DGM(1,1) at (k +1) 

 )1,,2,1(),(ˆ)1(ˆ)1(ˆ)1(ˆ )1()1()1()1()0(  nkkxkxkxkx                 (2)   

Similarly, for the sequence of middle values 1 2 1( ) ( , , , )nX L L L L  , the time response 

sequence of its DGM(1,1) is proposed by Zeng et al. (2010): 

(1) 1
1 1 1 2

1

1ˆ
1

k
k

kL L


 





 


                          (3) 

Note: 1 , 2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 

])1([ˆ
211

1

11   

 LL k

k

                        (4) 

From Formula (4), we can obtain the parameters’ forecasting values of the sequence of middle 

values made up by the upper and lower bounds values. According to Lemma 1, it contains the 

"plus" information of the lower and upper bounds of interval grey numbers. 

From 1 1

4

m m m m
m

a c a c
L    

 , here is:  
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1 1
ˆˆ ˆ ˆ ˆ4 ( )m m m m ma c L a c                          (5) 

When 1m k  , 

1

1 2 1 1
ˆ ˆˆ ˆ 4 4 ( 1) ( )k

k k k ka c L L a c

                      (6) 

According to Formula (4), the first ( 2)k   items in Formula (6) consist of a geometric 

series whose common ratio is 
1

1q    . ˆ ˆ
k ka c , which can be calculated by the summation 

formula of geometric series: 

1

3 1 2

1 1 1 2

2 21

1

4 [ ( 1) ][1 ( ) ]
ˆ ˆ ( 1) ( )

1

k k

k

k k

L
a c a c

   



  



   
    


     

(7) 

For the sequence of trapezoid areas of the lower grey layer 
1 2 1( ) ( , , , )nX S S S S  , the 

time response sequence of its DGM(1,1) is: 

(1) 1
1 1 1 2

1

1ˆ
1

k
k

kS S


 





 


                       (8) 

Note: 
1 , 

2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 

      ])1([ˆ
211

1

11   

 SS k

k                    (9) 

From Formula (9), we can obtain parameters’ forecasting values of the sequence of trapezoid 

areas made by lower bound values and central-point values. 

For the sequence of trapezoid areas of the upper grey layer 
1 2 1( ) ( , , , )nX S S S S  , the 

time response sequence of its DGM(1,1) is: 

(1) 1
1 1 1 2

1

1ˆ

1

k
k

kS S


 





 


                       (10) 

Note: 1 , 2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 

      ])1([
ˆ

211

1

11   

 SS k

k                    (11) 

From Formula (11), we can obtain the parameters’ forecasting values of the sequence of 

trapezoid areas made by upper bound values and central-point values. 

According to Theorem 1 and Theorem 2, they contain the "minus" information of the lower 

and upper bounds of interval grey numbers.  
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Similarly, from 1 1( ) ( )

2

m m m m
m

b a b a
S    

  and 1 1( ) ( )

2

m m m m
m

c b c b
S    

 , 

here are:  

1 1

ˆˆˆ ˆ ˆ ˆ2( ) ( )m m m m m mc a S S c a                     (12) 

When 1m k  , 

           
1

1 1 2 2 1 1

ˆ ˆˆ ˆˆ ˆ 2( ) 2( ) ( 1) ( )k

k k k k k kc a S S S S c a

           
   

(13) 

According to Formula (9) and Formula (11), the first 
( 2)k 

 items in Formula (13) consist 

of two geometric series whose common ratio are 
' 1

1q     and 
'' 1

1q    . ˆ ˆ
k kc a  can be 

calculated by the summation formula of geometric series: 
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2 21 1

1 1

2 [ ( 1) ][1 ( ) ] 2 [ ( 1) ][1 ( ) ]
ˆ ˆ ( 1) ( )
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 

(14) 

Among them， 
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1 1 1 2

2 21

1

2 [ ( 1) ][1 ( ) ]
ˆ ˆ ( 1) ( )

1

k k

k

k k

S
b a b a

   



  



   
    


 

 

(15) 
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Combine with Formula (7), Formula (15) and Formula (16), 
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Among them， 
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1
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1
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L
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1
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S
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1 1 2

1

1

[ ( 1) ]

1
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S
F
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 


 . 

 Note: LF
, SF

, S
F  

are all seen as constant terms due to the confirmation of all the 

parameters.  

Finally, we obtain the grey prediction model of interval grey numbers with central points:  
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1 2] [1 ( ) ] ( 1)k k k k
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F c    



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
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（*） 

In summary, the establishment steps of grey prediction models of interval grey numbers with 

central points are: 

Step1 ： From the sequence of interval grey numbers with central points

1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c  , calculate the sequence of middle values made 

up by the upper and lower bound values 1 2 1( ) ( , , , )nX L L L L  , the sequence of trapezoid 

areas of the lower grey layer 1 2 1( ) ( , , , )nX S S S S 
 and the sequence of trapezoid areas of the 

lower grey layer 1 2 1( ) ( , , , )nX S S S S 
. 

Step2：Establish the DGM(1,1) for the above 3 sequences, and obtain parameters( 1 , 2 , 

1 , 2 , 1 , 2 ). 

Step3：Calculate LF
, SF

, S
F .

 

Step4：Calculate Equation Group (*) to obtain the forecasting values of the lower bounds, the 

upper bounds and central points. 

3.2. Optimization of the initial conditions in the DGM(1,1) 

As it mentioned in Section 3.1, the traditional DGM model reveals higher accuracy because 

there is no approximate substitution of continuous equations (Xie and Liu, 2009). However, the 

traditional DGM model seeks to align the exponential sequences (
kca ) modeling, ignoring many 

non-homogeneous exponential sequences ( bcak  ) in reality. The interval grey number 

sequences mostly present non-homogeneous characteristics for their upper and lower bounds 

sequences, because of the uncertainties of their internal mechanism. To this end, Xie et al. (2013) 

proposed an approximate non homogeneous discrete grey model (NDGM(1,1)).  
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   Based on the least square method, the parameters 321 ,,  can be calculated: 

YBBB TTT 1

321 )(],,[ˆ   , 
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where 
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Moreover, the accuracy of this model is not only determined by the structural parameters ̂ , 

but also the initial condition. For the initial conditions of the traditional DGM, the starting-point 

value, middle-point value and end-point value are all discussed for the iterations respectively, to 

explain the influences for exponential sequence’ fitting. The three forms of initial conditions of the 

traditional DGM are (Liu and Xie, 2011): 

The starting-point fixed DGM(SDGM) is: 








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)1()1()1(ˆ

)(ˆ)1(ˆ

)0()1()1(
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1
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xxx

kxkx 
                        (18) 

The middle-point fixed DGM(MDGM) is: 


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             (19)

 

The end-point fixed DGM(EDGM) is: 


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










n

i
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Fig.2. The effect of different initial conditions 

The choice of the initial value will directly affect the first point and the trend of the values in 
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the model (shown in Fig. 2). If the initial condition of the model can be processed properly, there 

will be a positive effect on the accuracy of the model. For the SDGM and EDGM, the initial 

conditions are fixed (the starting-point value and the end-point value determine the first point) 

which may not be the optimal solution. For the MDGM, the middle-point value is hard to identify 

and the results may not be so accurate. In order to better explore the initial conditions, the 

optimization method of the initial condition should be put forward. In NDGM(1,1) (Xie et al., 

2013), the initial condition is set by the first data instance as a reference and a corrective 

parameter 4  (
(1) (1)

4
ˆ (1) (1)x x  

) which can be optimized by establishing a parameter in an 

overall consideration. 

According to NDGM(1,1)( 32
)1(

1
)1( )(ˆ)1(ˆ   mmxmx ), the recurrence model is obtained: 
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In order to establish a simple and effective optimization method, here the solution to establish 

the initial condition can be expressed as C  to replace the first data and a corrective parameter

4  :  
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where C  is an undetermined parameter. 

To calculate the value of C  by using a similar method like the least square principle, an 

unconstrained optimization model is established to minimize the sum of squares of errors between 

)(ˆ )1( kx  and )()1( kx :  
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We then, bring the obtained parameters 3,2,1   into 
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C  can be solved: 
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The optimized NDGM(1,1) is obtained which can be denoted as CNDGM(1,1): 
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The restored value of the recursive function of CNDGM(1,1) at (k +1) is: 

 ,2,1),(ˆ)1(ˆ)1(ˆ)1(ˆ )1()1()1()1()0(  mmxmxmxmx                 (27) 

The novel DGM (CNDGM(1,1)) with an optimized initial condition under overall 

consideration has been established. 

3.3. CNDGM(1,1) of interval grey number with central points 

For the sequence of middle values 1 2 1( ) ( , , , )nX L L L L  , the time response sequence of 

its CNDGM(1,1) is: 
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Note: 1 , 2 , 3   are parameters of CNDGM(1,1). 

Similarly, the CNDGM(1,1) models of the sequences of 

1 2 1( ) ( , , , )nX S S S S 
 and 1 2 1( ) ( , , , )nX S S S S 

 are: 
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Among them，
(0)ˆ
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mS

 are the forecasting values of the thm
 values of 

( )X L
, 
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( )X S
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Finally, we obtain grey a prediction model of interval grey numbers with central points:  
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The procedures involved for using the CNDGM(1,1) can be summarized as follows. 

Step 1: Similar with Step 1 in the process of DGM(1,1) of interval grey numbers with central 

points. 

Step2：Establish the CNDGM(1, 1) for the above 3 sequences, and obtain parameters( 1 , 

2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 ). 

Step3：Calculate the optimized initial condition C , then the forecasting values (
(0)ˆ
mL

, 
(0)ˆ
mS

, 

(0)ˆ
mS ) are obtained.

 

Step 4: Calculate Equation Group (#) to obtain the forecasting values of the lower bounds, 

the upper bounds and central points. 

Step 5: Models’ error analysis: The relative percentage error (RPE) describes the percentage 

of difference between the real and the fitting or forecasting values to evaluate the precision at a 

certain time instance k . The RPE can be defined as 
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The total precision of a model can be described by calculating the average relative percentage 

error (ARPE): 
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Note: Given  , when ARPE  and )(kRPE , the model can be seen as a 

satisfactory residual model. 

4 Numerical examples analysis 

As the most important basic industrial energy source for economic development, electricity is 

one of the main priorities in the economic development strategy of all countries across the world. 

Specific to China, with the society’s sustained development, electricity consumption (EC) 

continues to show a growth trend in recent years. Focusing on the southern Jiangsu area, it is 

located in the core area of the Yangtze River Delta which is one of the most developed and 

modernized areas in China. Therefore, the predictions of per capita annual ECs of southern 

Jiangsu can be seen as a benchmark for the Yangtze River Delta’s economic trend to provide a 

strong reference for the local government to set future energy policy. In this section, per capita 

annual electricity consumptions of southern Jiangsu are selected as practical examples. Owing to 

the unbalanced development levels of the five cities (Nanjing, Wuxi, Changzhou, Suzhou and 

Zhenjiang), single real numbers are difficult to decipher in expressing the actual situation of 

electricity consumption in this area. The data sets are described as interval grey numbers. Among 

them, the per capita annual electricity consumption is defined as the amount of annual electricity 

consumption divided by the local population. To be specific, the upper and lower bounds of the 

interval grey numbers are characterized by the highest and lowest levels in the region, and the 

central-point values are obtained by the ratio of total amount of annual electricity consumption of 

southern Jiangsu and total population. Due to the revision of statistical standards, the data of per 

capita annual electricity consumption can now be collected from 1993 onwards. Hence, the 

expressions of interval grey numbers for the data can be obtained in Table 1 below, the trend of 

data are shown in Fig. 3.  

To investigate the applicability of the novel model in more depth, three GM models and four 

classical statistical models are introduced. For the three grey models and the novel grey model 

proposed in this paper, the original DGM(1,1) (DGM) is established by using DGM(1,1) to 

forecast the lower bound sequence, the central-point sequence and the upper bound sequence 

respectively, which consider the three sequences independently; DGM(1,1) of interval grey 

numbers with central points (DGMC) is set up in Section 3.1; CNDGM(1,1) of interval grey 

numbers with central points (CNDGM) can be processed as steps set in Section 3.3; 

GA-GM(1,1)(GAGM) uses the Genetic Algorithm to calculate the parameters of GM(1,1) (Xiong 

et al., 2014). On the other hand, the four classical statistical models are as follows: the double 

exponential smoothing method (DES) applies to the double exponential smoothing method instead 

of single exponential smoothing, as it can better predict sequences with a certain linear trend; for 

the linear model (LM), three sequences are modeled as btaty )( (a,b are parameters, )(ty  

is the tht  value of sequences) to fit their linear trends respectively; Similarly, in the exponential 

model (EM), three sequences are modeled as 
tbaty *)(  (a,b are parameters, )(ty  is the tht  

value of sequences) to fit their exponential trends; for the autoregressive moving average (ARMA), 

AR(2) or ARMA (2,1) models are established by adopting autocorrelation and partial correlation 

tests. Considering the features of grey models and classical statistical models, long data sequences 
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(1993-2012) and short data sequences (2001-2012) are applied to establish forecasting models. 

Take the data of 1993-2012 or 2001-2012 as in-sample fitting data, and the data of 2013, 2014 and 

2015 as out-sample comparative data. According to the long data sequences and the short data 

sequences, the fitting errors of each model are shown in Fig.4.  

Table 1  

Per capita annual electricity consumption of southern Jiangsu in 1993-2015                

Unit: kiloWatt-hour (kWh)/person 

 

 

Year 1993 1994 1995 1996 1997 1998 1999 2000 

The lower bound 1164.42 1288.68 1384.50 1433.19 1457.82 1476.95 1577.41 1822.07 

The central point 1467.51 1643.68 1795.24 1940.74 2029.73 2128.57 2348.22 2718.08 

The upper bound 1795.47 2030.82 2244.95 2400.04 2505.86 2522.46 2716.36 3286.99 

Year 2001 2002 2003 2004 2005 2006 2007 2008 

The lower bound 1997.52 2270.43 2653.92 3104.67 3631.40 4112.38 4717.54 4976.98 

The central point 3064.88 3569.16 4408.90 5283.90 6283.43 7295.38 8264.12 8529.37 

The upper bound 3891.62 4685.71 6051.24 7589.04 9320.45 11142.91 12928.09 13472.38 

Year 2009 2010 2011 2012 2013 2014 2015  

The lower bound 5352.03 5908.48 6281.66 6655.81 7194.48 7252.74 7578.51  

The central point 8895.40 10150.63 11034.49 11443.45 12196.43 12115.71 12405.57  

The upper bound 13894.80 16060.33 17617.58 18368.50 19319.86 19182.55 19665.67  
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Fig.3. Interval grey numbers with central points of per capita annual electricity consumptions of southern Jiangsu  

Special attention should be paid to the data trends. Before 2000, the trends of the lower 

bound, the central point and the upper bound sequences of interval grey numbers were all 

moderate. Then, from 2001 to 2005, three data sequences demonstrated steep rises. After 

experiencing a stable period from 2006-2009, the data displays a sharper growth trend which was 

ahead of the stable period of data in China from 2010. From an overall perspective, the data trends 

are complicated, and the valid data for recent information modelling are limited. It is difficult for 

forecasting models to capture the features of the sequences to make accurate predictions.  

 

             (a)                                          (b) 

Fig. 4. (a) The in-sample fitting errors of eight models, based on the data of 1993-2012 

(b)The in-sample fitting errors of eight models, based on the data of 2001-2012 

It can be clearly seen that DES & LM obtain the smallest simulating errors for the long data 

sequences modelling, the ARPEs being 4.32% and 5.9% respectively. On the contrary, the fitting 

results of CNDGM for the long data sequences are less effective with an ARPE of 18.51% which 

is almost the highest ARPE, just lower than ARMA’s 18.53%. For other models’ results, EM also 
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shows high performance in fitting errors and the average relative error is 9.52%; the ARPEs of 

DGM, DGMC and GAGM are all around 13% (12.7%, 13.96% and 13.8% respectively). For the 

upper bound sequence, the fitting errors of DGM, DGMC, GAGM, ARMA and CNDGM are all 

above 18% which means the simulation effects are not effective and unacceptable. Similarly, for 

the central-point sequence, the fitting error of ARMA reaches 19.35%. These fitting outcomes may 

lead to poor forecasting results.   

In the modelling process of the short data sequences, it is obvious that the ARPE of CNDGM 

which is proposed in this paper is the smallest among the other seven models, which is 2.19%. To 

be specific, the simulating errors of the lower bound, the central point and the upper bound 

sequences of interval grey numbers by using CNDGM are all below 3% and all the RPEs are 

smallest compared to each corresponding item from other compared methods. This means 

CNDGM is accurately fitted original data. In terms of other models, the ARPEs of LM, ARMA 

and DES are all below 4% (2.97%, 3.52% and 3.65% respectively) and their fitting effects are just 

outside CNDGM’s. As to EM, the ARPE is 8.03%, and the RPE of the upper bound sequence 

reaches 10.52% which is an unacceptable fitting accuracy. The ARPEs of other three grey models 

are 6.99% for DGM, 8.11% for DGMC and 8.13% for GAGM which are all much higher than the 

optimized grey model in this paper. Similarly, the RPEs of DGM, GAGM and DGMC for the 

upper bound sequence achieve 9.08%, 11.78% and 10.59% which are also not exceptional.   

After analyzing the results of simulating, the CNDGM(1,1) model of interval grey numbers 

with central points proposed in this paper, demonstrates a great fitting performance in the short 

data sequences which surpasses any other fitting models. It verifies that grey models can predict 

short-term more effectively compared with using long term data and further improves the original 

Grey Model of interval grey numbers.  

When it comes to forecasting values, eight models are proposed by using the long data 

sequences and the short data sequences. And the results are shown in Fig.5. 

 

  

             (a)                                          (b) 

Fig. 5. (a) The out-sample forecasting errors of eight models, based on the data of 1993-2012 
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(b) The out-sample forecasting errors of eight models, based on the data of 2001-2012 

From the perspective of the long data sequences, DES and LM should be discussed first 

because of their high fitting accuracy. For DES, the prediction results of 2013-2015 are 

considerably close to the actual values, the forecasting errors being 1.36%, 4.24% and 6.01% for 

2013, 2014 and 2015. As to LM, the forecasting trends of the upper bound sequence, the 

central-point sequence and the lower bound sequence do not match the actual lines, which result in 

high forecasting errors all above 20% and for the year of 2015, the value is 38.69%. In terms of 

other models, the majority of the forecasting errors are over 20% which are not efficacious. 

Moving on to the short data sequences, the novel CNDGM demonstrates extremely 

outstanding consequences of prediction. More concretely, the forecasting error of 2013 is only 

1.01% and shows comparatively high accuracy towards the ARPEs of other models. In addition, 

the LM’s, DES’s and ARMA’s are the second, third and fourth lowest (2.30%, 2.35% and 4.64%). 

The results show high fitting efforts lead to high first step forecasting. As for GAGM and DGM, 

the ARPEs are 8.71% and 10.79%, and the other two models’ (DGMC and EM) are all around 

20% which reveal disappointing forecasting performances. For the ARPEs of forecasting values in 

2014 and 2015, similar consequences are proposed. Specifically, the lowest APEs are still from 

CNDGM which are 4.31% in 2014 and 5.77% in 2015. Followed by the DES’s, LM’s and 

ARMA’s in 2014 and 2015, the ARPEs of DES are 8.49% and 11.61%, the ARPEs of LM are 

8.85% and 11.95%, and the ARPEs of ARMA are 9.26% and 13.19%. As to GAGM, the ARPE of 

2014 and 2015 are 20.34% and 28.94%. For DGMC, the average forecasting error of 2014 is 

15.91% which is lower than the APE in 2013, but goes up to 40.44% in 2015. In terms of DGM, 

the ARPEs are 22.92% and 32.02% in 2014 and 2015. As to EM’s, the forecasting errors reach to 

38.19% in 2014 and 51.85% in 2015. These forecasting errors are up to four times greater than 

CNDGM’s. 

In summarizing, taking all the results of the long and short sequences into account, the 

CNDGM(1,1) model of interval grey numbers with central points proposed in this paper for the 

short data sequences reveals the best accuracy among the other seven models, not only in the 

aspect of fitting errors but also forecasting errors. It shows great performance and effectiveness of 

this model when applied to complicated and short data sequences.  

In regards to the long-term forecasting of electricity consumption, this can be obtained by 

using average values of every three years. By this means, the smoothness of data sequences can be 

enhanced which may facilitate the models’ simulations. Additionally, the average data of every 

three years are applicable for medium-long term forecasting. Following this up, the per capita 

annual electricity consumption in southern Jiangsu area up to 2031 can be obtained using the eight 

models above by extrapolating the in-sample data from 1993-2013. The fitting errors are displayed 

in Table 2. 

Table 2 

The simulation errors of eight models, based on every-three-year average values of the long data sequences 

RPE 

The lower bound 

( a ) 

The central 

point ( b ) 

The upper 

bound( c ) 

ARPE  a  b  c  ARPE 
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DGM 6.88% 11.53% 19.08% 12.50% DES 12.89% 16.07% 21.82% 16.93% 

DGMC 3.90% 8.11% 13.05% 8.35% LM 19.09% 22.33% 32.93% 24.78% 

CNDGM 6.71% 8.90% 12.45% 9.35% EM 7.69% 7.87% 11.20% 8.92% 

GAGM 5.65% 11.34% 20.82% 12.61% ARMA 10.21% 13.46% 31.06% 18.24% 

As seen from Table 2, the fitting errors of average values of every three year period by using 

DGMC, CNDGM and EM, show relatively high fitting precision (all under 10%). To compare the 

development trends by using these three models, the forecasting values are then shown in Table 3 

and the future trends of the per capita annual electricity consumption in southern Jiangsu area are 

displayed in Fig.5. 

Table 3  

Future per capita annual electricity consumption in southern Jiangsu area (2014-2031)   Unit: kWh/person 

Year 
DGMC CNDGM EM 

a b c a b c a b c 

2014-2016 9202.47 16985.07 31354.11 9079.98 15393.69 25505.23 9346.82 17936.57 30775.46 

2017-2019 11953.30 23972.33 48123.93 10640.75 17448.51 29005.66 12632.76 25518.83 46200.78 

2020-2022 15445.66 31949.13 69553.84 13842.37 22551.72 38573.41 17073.91 36306.32 69357.60 

2023-2025 19081.87 43662.56 105065.6

0 

16223.21 25568.21 44060.33 23076.38 51653.95 104121.1

1 
2026-2028 22720.72 57318.13 154644.3

7 

20372.75 31769.31 55928.48 31189.07 73489.44 156308.8

3 
2029-2031 24756.22 75399.64 232548.2

7 

23848.46 36039.51 64080.12 42153.84 104555.3

6 

234654.1

5 

 

 

Fig.6. The forecasting values of the per capita annual electricity consumption in southern Jiangsu area by using 

DGMC (a), CNDGM (b) and EM (c) 
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According to forecasting values, the per capita annual electricity consumption in the southern 

Jiangsu area will keep increasing. The growth rates of DGMC, CNDGM and EM are considerately 

different. Specially, the trends of DGMC and EM (in Fig. 6(a) and (c)) totally exceed that of 

CNDGM, and the growth rates of each sequence by using the former two models are all around 

30%-50%. Furthermore, the magnitude of data will reach 2,000,000 for the upper sequences by 

DGMC and EM which means the per capita annual electricity consumption in the southern 

Jiangsu area will expand 10 times in the next 18 years. On the other hand, the forecasting values 

by CNDGM proposed in this paper will experience a more moderate rise and the growth rates will 

be between 13% and 33% for every three years. Additionally, for the upper bound sequence, by 

2030 the value will reach to 64080.12 kWh/person which is 1.5 times more than 2014-2016’s. It 

shows that the growth rates of the highest levels in southern Jiangsu area will decrease slowly in 

general, although the values of the per capita annual electricity consumption will continue to rise. 

For the central-point sequence, the value of 2029-2031 will be 36039.51 kWh/person - a 1.34 

times’ increase compared with the value of 2014-2016. The growth rates’ trend of the central-point 

sequence during 2014-2031 is similar with the upper bound sequence. For the lower bound 

sequence, by 2030 it will reach to 23848.46 kWh/person, which is more than 1.6 times compared 

to that of 2014-2016. It is notable that the growth rates of the lower bound sequence are slightly 

higher than the other two sequences’.  

Focusing on the recent years (2013-2015) seen in Fig.3, the trends of per capita annual 

electricity consumption in the southern Jiangsu area are tending to stabilize, that is to say, the 

future growth rates of electricity consumption may not be as high as the last few years 

(2001-2012). As China has implemented a series of measures to cut production capacity and adjust 

industrial structure, the low growth rates of per capita annual electricity consumption reveal the 

effects of these energy policies. Accordingly, the forecasting values of CNDGM show the 

probable future trends considering the continuous energy policy on reducing energy consumption 

in China. With respect to the other two models (DGMC and EM), the forecasting values 

demonstrate that the energy consumption will experience high rises along with the increasing 

trend from 2001, which ignore the effects of energy policy in China. In other words, taking into 

account the energy policy of China in recent years, there is no difference for the development 

trend of the per capita annual electricity consumption in southern Jiangsu in the future by using 

DGMC and EM. Such a conclusion seriously underestimates the impact of the relevant energy 

policy. In fact, the impact of these energy policies is clearly visible in Fig. 3: the steep curve 

changes its direction in 2013. The data for this new trend is overwhelmed by the dominant 

historical data for previous years, this is the reason why this trend is ignored by DGMC and EM. 

For CNDGM, its association with the recent data is further enforced by our new method, and it 

captures the new trends ignored by the other two models. In short, CNDGM provides a possible 

way forward for forecast deviations, which reveals the hidden effectiveness of China's measures to 

reduce energy consumption. The forecasting values by 2031 can be obtained by using the values 

from CNDGM as the lower bound, and the values from DGMC and EM as the upper bound. The 

ranges between the upper and the lower bound notify the importance of a series of energy 

optimization policy.  

To sum up, the continuous growth of the per capita annual electricity consumption in the 

southern Jiangsu area will lead to sustained pressure on energy planning and configuration, as well 

as restrict economic development. 
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5 Conclusions 

A novel energy consumption forecasting model is proposed by optimizing the initial 

conditions of DGM (1, 1) model and establishing models of interval grey numbers with central 

points, in which the data sequences are fully transformed as the sequence of middle values, the 

sequence of trapezoid areas of the lower grey layer and the sequence of trapezoid areas of the 

upper grey layer. Based on the empirical analysis of per capita annual electricity consumptions of 

southern Jiangsu, the following conclusions are obtained: 

(1) The fitting and prediction results exhibits higher accuracy in short-term sequence 

modelling (the fitting and forecasting ARPEs are only 2.19% and 3.7%) compared with 

other forecasting models (DGM, DGMC, GAGM, DES, LM, EM, ARMA), regardless if 

the results stem from long-term or short-term sequences. It provides a feasible method 

for the prediction of interval grey numbers with central points for regional data of energy 

consumption and expands the research fields for different types of EC data. 

(2) For the long-term forecasting of electricity consumption (to the year 2031), the 

prediction values have been obtained by establishing three-year average values and the 

outcomes display high fitting precision by the model proposed in this paper compared 

with the other three grey models (DGM, DGMC, GAGM). The future trends of per 

capita annual electricity consumption of southern Jiangsu will continue to rise in the near 

future, but the growth rate will probably slow to more moderate levels due to the effects 

of sustainable energy policy in China. 

Although the high precision results are obtained in the novel model, there are huge 

challenges involved in the forecasting of energy consumption in practice because of its trend 

variability and regional imbalance revealed in this paper. Taking into account the expansion of 

absolute amounts in more advanced cities and the increase in the growth rates in less advanced 

cities, it is still a massive pressure in controlling the electricity consumption in the southern 

Jiangsu area. 

The case in this paper is simply to clarify the process of this novel model and shows the 

effectiveness of this novel model. Actually, this model can be applied in many other aspects of 

energy forecasting. For further research in the future, sufficient data should be collected for the 

models’ verification compared with classic statistical models and intelligent algorithms. While 

most of the forecasting methods need more than 30 data sets for modeling, the data in this paper 

total just 23 data sets (due to the changes in statistical standards in the Statistical Yearbook of 

Jiangsu Province), which is more suitable for grey models. 
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Abstract: Since energy consumption (EC) is becoming an important issue for sustainable 

development in the world, it has a practical significance to predict EC effectively. However, there 

are two main uncertainty factors affecting the accuracy of a region’s EC prediction. Firstly, with 

the ongoing rapid changes in society, the consumption amounts can be non-smooth or even 

fluctuating during a long time period, which makes it difficult to investigate the sequence’s trend 

in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount 

as a real number, as there are different development levels in the region, which would be more 

suitably described as interval numbers. Most traditional prediction models for energy consumption 

forecasting deal with long-term real numbers. It is seldom found to discover research that focuses 

specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has 

been established by expressing ECs in a region as interval grey numbers combining with the 

optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the 

effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of 

China is selected as an example. The results show that the proposed model reveals the best 

accuracy for the short data sequences (the average fitting error is only 2.19% and the average 

three-step forecasting error is less than 4%) compared with three GM models and four classical 

statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas 

consumption, can also be predicted using this novel model. As the sustained growth in EC of 

China's, it is of great significance to predict EC accurately to manage serious energy security and 

environmental pollution problems, as well as formulating relevant energy policies by the 

government. 

Key Words: energy consumption; Grey system theory; interval number; prediction; electricity 
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1 Introduction 

Today, energy remains the main engine of the economy. Energy consumption has been one of 

the hottest issues in energy research over the years. In China, as rapid and diversified society 

developments continue, EC forecasting has become more and more complicated and full of 

uncertainty.  

To be specific, with the economic growth and transformation of industrial structures, per 

capita household EC sequence (1993-2014) in China show a non-smooth rising trend and is 

difficult to fit its curve trend (Data source: National Statistical Yearbook of China, 2016), thus it is 

not suitable for forecasting by using the whole sequence to establish models. In fact, energy data 

capacity is often very limited (15 observations or less) due to changes of energy policy or updates 

within the industrial structure. However, classical prediction models (e.g. exponential smoothing, 

Holt-Winters method, linear method, exponential model, regression, autoregressive integrated 

moving average (ARIMA)) or modern prediction techniques (e.g. genetic algorithm (GA), 

artificial neural networks (ANN), Particle Swarm Optimization (PSO), fuzzy system) often require 

larger sample sizes, based on mathematical statistics principles or machine learning rules and 

computational intelligence (Xia and Wong, 2014). To be specific, for EC forecasting, Yukseltan et 

al. (2017) developed a linear model, as an expansion in Fourier series, supplemented with a 

modulation by seasonal harmonics, to forecast electricity demand for Turkey. Al-mulali et al. 

(2014) conducted panel data (labour, gross fixed capital formation, and total trade) analysis, based 

on statistics to describe their relationships with renewable EC and non-renewable EC. Zahedi et al. 

(2013) predicted the electricity demand of Canada by using a neuro-fuzzy model. Felice et al. 

(2015) presented an assessment of the use of seasonal climate forecasts of temperature for 

medium-term electricity demand prediction, by using both deterministic and probabilistic 

forecasting approaches. The classical models and the modern methods mentioned above are 

applied to cases with sufficient sample data which cannot capture the sensitive latest changes of 

data trends.  

In reality, for energy data samples where the trends show significant changes, their newest or 

most recent information play the most important role in the modeling process rather than the 

amount of data. Owing to these reasons, Grey Model (GM) in GST (Liu et al., 2010) is introduced 

to forecast EC with small amounts of newest data. GM is suitable for small samples which 

emphasizes on new information, and it has been verified by many scholars: according to the 

principle of new information priority, Hamzacebi and Es (2014) used Optimized Grey Modeling 

(1,1) to forecast the annual electricity consumption of Turkey; Xiong et al. (2014) proposed a 

novel GM (1,1) model based on optimizing initial condition and applied in China's energy 

consumption and production forecasting. Moreover, it has been proved that grey prediction 

models can predict short-term data with the most recent information more efficiently compared 

with using long term old data (Wu et al., 2013a). Various papers on energy forecasting, using Grey 

Models or hybrid models with Grey Models, have now been disseminated. Ding (2018) designed a 

self-adapting grey prediction model having a nonlinear optimized initial value by utilizing an ant 

lion optimizer (ALO) algorithm to forecast China's natural-gas demand. Xu et al. (2017) proposed 

a novel grey model with optimal time response, based on particle swarm algorithm to forecast the 

electricity consumption data of China and compared with three alternative grey models. Truong et 

al. (2012) established a modified grey model MGM(1,1) for real-time control of wave energy 



converters in irregular waves and the traditional grey model and a typical autoregressive (AR) 

model were carried out for comparisons. Ding designed a new multivariable model that considers 

the accumulative effects of the influencing factors, and used this proposed model to accurately 

forecast the future output value of high-tech industries in China. Lee and Tong (2012) combined a 

dynamic grey model with genetic programming to forecast energy in the US and compared with 

ARIMA, GP and other grey models. Erdal et al. (2010) investigated the accuracies of different 

grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier series, 

and the fitting and forecasting results of the modified grey models revealed higher performances. 

Ding et al. (2018) analyzed the properties of a multiple transformation and optimized background 

value in the GM(1,N) model to simulate and predict CO2 emissions. In summary, none of the 

above papers considered regional unbalances in a certain country or region, and the research 

objects of them are all described as single real numbers. For model comparisons, most of the 

papers only took into account grey models, because of the short-term sequences, instead of using 

forecasting models, such as statistical models, which is neither comprehensive nor convincing.  

Due to the regional characteristics of EC, real values are difficult to ascertain when 

deciphering the different levels of per capita annual ECs in one region. The interval numbers are 

introduced to characterize the annual ECs which can cover the full information of this energy data. 

Focusing on the feature of the uncertainty, interval grey numbers have been discussed in many 

other fields, like decision-making, information retrieval, knowledge discovery and so on 

(Yamaguchi et al., 2007). Professor Deng Julong (1982) originally proposed interval grey numbers, 

whereby the interval grey number is a typical form of grey number which refers to uncertain 

values of the numbers in an interval or a general number set. In terms of grey prediction of 

interval grey numbers, researchers have made a series of attempts to transform interval grey 

number sequences into real number sequences, to construct grey prediction models by means of 

using geometric characteristics, formations of operators and establishments of combination 

models etc., and then restore back to the interval grey number sequences. Zeng et al. (2014) 

converted an interval grey number sequence into the kernel and area sequences to establish grey 

forecasting models. This method avoids extreme data errors by generating average value and grey 

degree enlargement scenarios. But the characteristic of non-homogeneous sequences is not taken 

into account. Wu et al. (2013b) converted an interval grey number sequence into a real number 

sequence by calculating the areas of grey number layers and the cognition degree of interval grey 

numbers. In this method, the surface areas are introduced to accurately express the areas of grey 

number layers. The solution of the equations is quite complex in the process of calculation. In 

reality, most information distributions of interval grey numbers are not equal. The above grey 

prediction models, based on interval grey numbers can not reflect this outstanding feature. Thus, 

Zeng Bo et al. (2010) introduced the typical whitenization weight function to establish the grey 

prediction model. In this model, the upper and lower bounds of interval grey numbers and two 

turning points in whitenization weight function are all used without omitting any information of 

the grey number. It is usually difficult to obtain the typical whitenization weight function which 

needs to determine two turning points. And there is no doubt of the high costs taken by 

synthesizing experts’ opinions or experiences as well as collecting and analyzing previous data to 

obtain this function, which also leads to more deviations. To simplify the typical whitenization 

weight function, a central point which represents the maximum possibility of an interval can be 

considered to replace two turning points in the typical whitenization weight function. By these 

means, this paper utilizes the central-point sequence to establish a novel energy consumption 



forecasting model, which is easier to acquire, in describing uneven distributions of information of 

interval grey numbers.  

To optimize grey model, the initial condition of DGM(1, 1) is reset by minimizing the fitting 

values’ errors in this paper. Instead of using the first data set as an initial condition in the original 

GM (Liu et al., 2010), it ignores the extraction of new information. In terms of other initial 

condition optimizations, Dang et al. (2004) set the last in-sample data’s accumulated generating 

value( )()1( nx ) as the initial condition which put too much emphasis on the latest information and 

became vulnerable to abnormal fluctuations; Liu et al. (2011) discussed three initial conditions: 

the starting-point fixed initial value, the middle-point fixed initial value and the end-point fixed 

initial value, though there was no indication of the suitability of each setting; Wang et al. (2010) 

used the weighted combination of the first and last data set from the 1-AGO sequence as the initial 

condition, but how to determine the weight had not been given; Xiong et al. (2014) expanded 

Wang’s method by weighting all the in-shape’s accumulated generating data as the initial 

condition. The weights were fixed which meant the weights could not adjust according to 

sequences. To this end, this paper optimizes the initial condition of the grey forecasting model by 

setting a parameter which makes the fitting accuracy minimum. 

To sum up, in-sample data sets in this paper are characterized as interval grey numbers to 

establish the novel energy consumption forecasting model to forecast EC. The innovation and 

contribution of this research compared with other references mainly lies in the following three 

aspects: Firstly, the uncertain information of regional energy consumption is expressed by interval 

grey numbers, in which the upper bound and the lower bound are used to characterize the highest 

and the lowest levels of this region. Secondly, short-term most recent energy consumption data are 

used to establish the novel forecasting model, and long-term data are applied as comparisons. 

Thirdly, the accuracy of the novel forecasting model is improved by full information 

transformation of energy consumption data, described by interval grey numbers and the model’s 

initial value optimization. 

The reminder of this paper is structured as follows: in Section 2, information of the interval 

grey numbers with central points is transformed fully to prepare for forecasting. Section 3 

optimizes the DGM(1, 1) of interval grey numbers with central points and the initial condition to 

improve the energy consumption forecasting model’s precision. Section 4 discusses a case of per 

capita annual EC from five cities in Southern Jiangsu to forecast near future trends and verifies the 

practicability of the novel model by comparing with other forecasting methods. Finally, conclusions 

are drawn in Section 5. 

2 The effective information conversion of interval grey numbers with 

central points 

2.1 The basic concepts 

Definition 1 (Liu et al., 2010). Let  ba, , ba  , a , b R , then   is called an 

interval grey number; if ba  ，then   is a real number and a .  



Definition 2. Let  cba ,,  be an interval grey number, cba  . Among them, a , 

c  are the lower bound and the upper bound of the interval grey number, and b is the maximum 

possibility point of this interval which is called the central point. This kind of interval grey number 

is named as an interval grey number with a central point. The sequence of interval grey numbers 

with central points can be described as 1 2( ) ( , , , )nX       in which  mmmm cba ,, , 

m m ma b c  , 1,2, ,m n .  

Definition 3. Let the sequence of interval grey numbers with central points as

1 2( ) ( , , , )nX      , and map all elements of ( )X   into a two-dimensional Cartesian 

coordinate system. Then, sequentially connect the lower bounds, the upper bounds and the central 

points of adjacent interval grey numbers respectively to constitute the lower-bound line, the 

upper-bound line and the central-point line, which can be seen in Fig. 1. Among them, the sequence 

of the lower-bound line can be denoted as 1 2( ) ( , , , )nX a a a  , the sequence of the 

central-point line can be denoted as 1 2( ) ( , , , )nX b b b  , and the sequence of the upper-bound 

line can be denoted as 1 2( ) ( , , , )nX c c c  .  

Definition 4 (Zeng et al., 2010). The graphics of the lower and upper bounds sequences of 

interval grey numbers are known as grey numbers’ belts; the sections of the adjacent interval grey 

numbers are called grey numbers’ layers. According to positions of grey numbers’ layers in grey 

numbers’ belts, they are marked by 1,2, ,n (See in Fig. 1). 
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Fig.1. The grey numbers’ belt of the interval grey number  cba ,,  

Definition 5. If the grey numbers’ layers(GL) are marked by 1,2, ,n , each GL can be 

divided into two parts by the central-point sequence. The two parts can be called: the upper grey 

layer and the lower grey layer. 

2.2 Establish the effective information conversion sequences 



Let the sequence of interval grey numbers with the central point as 

1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c   in which ma  and mc  are the lower and 

upper bound values, mb  is the central point. The effective information conversion sequences can 

be established by the sequences of trapezoid areas made by upper bound values and central-point 

values; trapezoid areas made by lower bound values and central-point values and middle values 

calculated by upper bound values and lower bound values.  

Lemma 1 (Zeng and Liu, 2011). In the grey number layer m (see in Fig. 1), the longitudinal 

coordinate of the middle value calculated by upper bound values and lower bound values ( ma , mc , 

1ma  , 1mc  ) is: 1 1

4

m m m m
m

a c a c
L    

 , 1, 2, , 1m n  . 

According to Lemma 1, the sequence of middle values can be denoted as

1 2 1( ) ( , , , )nX L L L L  . 

Theorem 1 (Trapezoid areas of the lower grey layer). In the grey number layer m (see in Fig. 

1), the trapezoid area of lower bound values ( ma , 1ma  ) and central-point values ( mb , 1mb  ) is: 

1 1( ) ( )

2

m m m m
m

b a b a
S    

 , 1, 2, , 1m n  . 

Proof: The differences of longitudinal coordinates between the lower bounds and the central 

points are 1 1( )m mb a 
, 

( )m mb a
 which represent the trapezoid’s top and bottom. And the 

height of the trapezoid can be obtained by the differences of the adjacent grey number layers, which 

is 
( 1) 1m m  

. By this means, the trapezoid area is 
1 1( ) ( )

2

m m m m
m

b a b a
S    

 . 

Theorem 2 (Trapezoid areas of the upper grey layer). In the grey number layer m (see in Fig. 

1), the trapezoid area of upper bound values ( mc , 1mc  ) and central-point values( mb , 1mb  ) is: 

1 1( ) ( )

2

m m m m

m

c b c b
S    

 , 1, 2, , 1m n  . 

Proof: Similar to Theorem 1. 

According to Theorem 1 and Theorem 2, here are the sequence of trapezoid areas of the lower 

grey layer 
1 2 1( ) ( , , , )nX S S S S  and the sequence of trapezoid areas of the upper grey layer 

1 2 1( ) ( , , , )nX S S S S  . 

In addition, from Lemma 1, Theorem 1 and Theorem 2, we can obtain: 

mmmmm SSLaa  21  

mmmmm SSLbb  21  

mmmmm SSLcc  21 . 

That is to say,  



1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c  

1 2 1

1 2 1

1 2 1

( ) ( , , , )

( ) ( , , , )

( ) ( , , , )

n

n

n

X L L L L

X S S S S

X S S S S











 

 . 

The information contained in the interval grey numbers’ sequence with central points are 

retained completely by the information conversion which means the conversion preserves the 

characteristics of information equivalence and data integrity. 

 3 The optimized DGM(1, 1) model 

3.1. DGM(1,1) of interval grey numbers with central points 

 In the modeling process of discrete grey models, parameters estimation, simulation and 

prediction are all adopted in the form of discrete equations. The DGM model does not differentiate 

approximate substitution between the discrete equation and the continuous equation compared 

with GM(1, 1) model, in which the method of estimating parameters is the discrete equation and 

the method of simulating and forecasting is the continuous equation, so it has higher fitting 

precision by calculating the average relative percentage error (ARPE) (Xie and Liu, 2009). Let 

(0) (0) (0) (0)( (1), (2),..., ( ))X x x x n
 be the original data sequence, 

     0
0 1,2, ,x k k n  

. Based 

on the traditional DGM(1, 1) model (Xie and Liu, 2009), here are: the recursive function of 

DGM(1,1) (set )1()1( )0()1( xx  ) 

)1,,2,1(,
1

1
)1()1(ˆ 2

1

1)0(
1

)1( 



 nkxkx

k
k 




                   (1) 

and the restored value of the recursive function of DGM(1,1) at (k +1) 

 )1,,2,1(),(ˆ)1(ˆ)1(ˆ)1(ˆ )1()1()1()1()0(  nkkxkxkxkx                 (2)   

Similarly, for the sequence of middle values 1 2 1( ) ( , , , )nX L L L L  , the time response 

sequence of its DGM(1,1) is proposed by Zeng et al. (2010): 

(1) 1
1 1 1 2

1

1ˆ
1

k
k

kL L


 





 


                          (3) 

Note: 1 , 2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 

])1([ˆ
211

1

11   

 LL k

k

                        (4) 

From Formula (4), we can obtain the parameters’ forecasting values of the sequence of middle 

values made up by the upper and lower bounds values. According to Lemma 1, it contains the 

"plus" information of the lower and upper bounds of interval grey numbers. 

From 1 1

4

m m m m
m

a c a c
L    

 , here is:  



1 1
ˆˆ ˆ ˆ ˆ4 ( )m m m m ma c L a c                          (5) 

When 1m k  , 

1

1 2 1 1
ˆ ˆˆ ˆ 4 4 ( 1) ( )k

k k k ka c L L a c

                      (6) 

According to Formula (4), the first ( 2)k   items in Formula (6) consist of a geometric 

series whose common ratio is 
1

1q    . ˆ ˆ
k ka c , which can be calculated by the summation 

formula of geometric series: 
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For the sequence of trapezoid areas of the lower grey layer 
1 2 1( ) ( , , , )nX S S S S  , the 

time response sequence of its DGM(1,1) is: 

(1) 1
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Note: 
1 , 

2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 
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211

1
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 SS k

k                    (9) 

From Formula (9), we can obtain parameters’ forecasting values of the sequence of trapezoid 

areas made by lower bound values and central-point values. 

For the sequence of trapezoid areas of the upper grey layer 
1 2 1( ) ( , , , )nX S S S S  , the 

time response sequence of its DGM(1,1) is: 
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Note: 1 , 2  are parameters of DGM(1,1). 

The restored value of the prediction model is: 
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From Formula (11), we can obtain the parameters’ forecasting values of the sequence of 

trapezoid areas made by upper bound values and central-point values. 

According to Theorem 1 and Theorem 2, they contain the "minus" information of the lower 

and upper bounds of interval grey numbers.  



Similarly, from 1 1( ) ( )
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When 1m k  , 
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According to Formula (9) and Formula (11), the first 
( 2)k 

 items in Formula (13) consist 

of two geometric series whose common ratio are 
' 1

1q     and 
'' 1
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calculated by the summation formula of geometric series: 
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Among them， 
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Combine with Formula (7), Formula (15) and Formula (16), 
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Among them， 
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 Note: LF
, SF

, S
F  

are all seen as constant terms due to the confirmation of all the 

parameters.  

Finally, we obtain the grey prediction model of interval grey numbers with central points:  
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（*） 

In summary, the establishment steps of grey prediction models of interval grey numbers with 

central points are: 

Step1 ： From the sequence of interval grey numbers with central points

1 1 1 2 2 2( ) ([ , , ],[ , , ], ,[ , , ])n n nX a b c a b c a b c  , calculate the sequence of middle values made 

up by the upper and lower bound values 1 2 1( ) ( , , , )nX L L L L  , the sequence of trapezoid 

areas of the lower grey layer 1 2 1( ) ( , , , )nX S S S S 
 and the sequence of trapezoid areas of the 

lower grey layer 1 2 1( ) ( , , , )nX S S S S 
. 

Step2：Establish the DGM(1,1) for the above 3 sequences, and obtain parameters( 1 , 2 , 

1 , 2 , 1 , 2 ). 

Step3：Calculate LF
, SF

, S
F .

 

Step4：Calculate Equation Group (*) to obtain the forecasting values of the lower bounds, the 

upper bounds and central points. 

3.2. Optimization of the initial conditions in the DGM(1,1) 

As it mentioned in Section 3.1, the traditional DGM model reveals higher accuracy because 

there is no approximate substitution of continuous equations (Xie and Liu, 2009). However, the 

traditional DGM model seeks to align the exponential sequences (
kca ) modeling, ignoring many 

non-homogeneous exponential sequences ( bcak  ) in reality. The interval grey number 

sequences mostly present non-homogeneous characteristics for their upper and lower bounds 

sequences, because of the uncertainties of their internal mechanism. To this end, Xie et al. (2013) 

proposed an approximate non homogeneous discrete grey model (NDGM(1,1)).  
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   Based on the least square method, the parameters 321 ,,  can be calculated: 
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Moreover, the accuracy of this model is not only determined by the structural parameters ̂ , 

but also the initial condition. For the initial conditions of the traditional DGM, the starting-point 

value, middle-point value and end-point value are all discussed for the iterations respectively, to 

explain the influences for exponential sequence’ fitting. The three forms of initial conditions of the 

traditional DGM are (Liu and Xie, 2011): 

The starting-point fixed DGM(SDGM) is: 
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The middle-point fixed DGM(MDGM) is: 
















m

i

nmixmxx

kxkx

1

)0()1()1(

2

)1(

1

)1(

1),()()1(ˆ

)(ˆ)1(ˆ 

             (19)

 

The end-point fixed DGM(EDGM) is: 
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Fig.2. The effect of different initial conditions 

The choice of the initial value will directly affect the first point and the trend of the values in 



the model (shown in Fig. 2). If the initial condition of the model can be processed properly, there 

will be a positive effect on the accuracy of the model. For the SDGM and EDGM, the initial 

conditions are fixed (the starting-point value and the end-point value determine the first point) 

which may not be the optimal solution. For the MDGM, the middle-point value is hard to identify 

and the results may not be so accurate. In order to better explore the initial conditions, the 

optimization method of the initial condition should be put forward. In NDGM(1,1) (Xie et al., 

2013), the initial condition is set by the first data instance as a reference and a corrective 

parameter 4  (
(1) (1)

4
ˆ (1) (1)x x  

) which can be optimized by establishing a parameter in an 

overall consideration. 
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In order to establish a simple and effective optimization method, here the solution to establish 

the initial condition can be expressed as C  to replace the first data and a corrective parameter

4  :  
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where C  is an undetermined parameter. 

To calculate the value of C  by using a similar method like the least square principle, an 

unconstrained optimization model is established to minimize the sum of squares of errors between 
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C  can be solved: 
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The optimized NDGM(1,1) is obtained which can be denoted as CNDGM(1,1): 
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The restored value of the recursive function of CNDGM(1,1) at (k +1) is: 

 ,2,1),(ˆ)1(ˆ)1(ˆ)1(ˆ )1()1()1()1()0(  mmxmxmxmx                 (27) 

The novel DGM (CNDGM(1,1)) with an optimized initial condition under overall 

consideration has been established. 

3.3. CNDGM(1,1) of interval grey number with central points 

For the sequence of middle values 1 2 1( ) ( , , , )nX L L L L  , the time response sequence of 

its CNDGM(1,1) is: 
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Note: 1 , 2 , 3   are parameters of CNDGM(1,1). 

Similarly, the CNDGM(1,1) models of the sequences of 
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Among them，
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Combine with Lemma 1, Theorem 1 and Theorem 2, 
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Finally, we obtain grey a prediction model of interval grey numbers with central points:  
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The procedures involved for using the CNDGM(1,1) can be summarized as follows. 

Step 1: Similar with Step 1 in the process of DGM(1,1) of interval grey numbers with central 

points. 

Step2：Establish the CNDGM(1, 1) for the above 3 sequences, and obtain parameters( 1 , 

2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 ). 

Step3：Calculate the optimized initial condition C , then the forecasting values (
(0)ˆ
mL

, 
(0)ˆ
mS

, 

(0)ˆ
mS ) are obtained.

 

Step 4: Calculate Equation Group (#) to obtain the forecasting values of the lower bounds, 

the upper bounds and central points. 

Step 5: Models’ error analysis: The relative percentage error (RPE) describes the percentage 

of difference between the real and the fitting or forecasting values to evaluate the precision at a 

certain time instance k . The RPE can be defined as 
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The total precision of a model can be described by calculating the average relative percentage 

error (ARPE): 
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Note: Given  , when ARPE  and )(kRPE , the model can be seen as a 

satisfactory residual model. 

4 Numerical examples analysis 

As the most important basic industrial energy source for economic development, electricity is 

one of the main priorities in the economic development strategy of all countries across the world. 

Specific to China, with the society’s sustained development, electricity consumption (EC) 

continues to show a growth trend in recent years. Focusing on the southern Jiangsu area, it is 

located in the core area of the Yangtze River Delta which is one of the most developed and 

modernized areas in China. Therefore, the predictions of per capita annual ECs of southern 

Jiangsu can be seen as a benchmark for the Yangtze River Delta’s economic trend to provide a 

strong reference for the local government to set future energy policy. In this section, per capita 

annual electricity consumptions of southern Jiangsu are selected as practical examples. Owing to 

the unbalanced development levels of the five cities (Nanjing, Wuxi, Changzhou, Suzhou and 

Zhenjiang), single real numbers are difficult to decipher in expressing the actual situation of 

electricity consumption in this area. The data sets are described as interval grey numbers. Among 

them, the per capita annual electricity consumption is defined as the amount of annual electricity 

consumption divided by the local population. To be specific, the upper and lower bounds of the 

interval grey numbers are characterized by the highest and lowest levels in the region, and the 

central-point values are obtained by the ratio of total amount of annual electricity consumption of 

southern Jiangsu and total population. Due to the revision of statistical standards, the data of per 

capita annual electricity consumption can now be collected from 1993 onwards. Hence, the 

expressions of interval grey numbers for the data can be obtained in Table 1 below, the trend of 

data are shown in Fig. 3.  

To investigate the applicability of the novel model in more depth, three GM models and four 

classical statistical models are introduced. For the three grey models and the novel grey model 

proposed in this paper, the original DGM(1,1) (DGM) is established by using DGM(1,1) to 

forecast the lower bound sequence, the central-point sequence and the upper bound sequence 

respectively, which consider the three sequences independently; DGM(1,1) of interval grey 

numbers with central points (DGMC) is set up in Section 3.1; CNDGM(1,1) of interval grey 

numbers with central points (CNDGM) can be processed as steps set in Section 3.3; 

GA-GM(1,1)(GAGM) uses the Genetic Algorithm to calculate the parameters of GM(1,1) (Xiong 

et al., 2014). On the other hand, the four classical statistical models are as follows: the double 

exponential smoothing method (DES) applies to the double exponential smoothing method instead 

of single exponential smoothing, as it can better predict sequences with a certain linear trend; for 

the linear model (LM), three sequences are modeled as btaty )( (a,b are parameters, )(ty  

is the tht  value of sequences) to fit their linear trends respectively; Similarly, in the exponential 

model (EM), three sequences are modeled as 
tbaty *)(  (a,b are parameters, )(ty  is the tht  

value of sequences) to fit their exponential trends; for the autoregressive moving average (ARMA), 

AR(2) or ARMA (2,1) models are established by adopting autocorrelation and partial correlation 

tests. Considering the features of grey models and classical statistical models, long data sequences 



(1993-2012) and short data sequences (2001-2012) are applied to establish forecasting models. 

Take the data of 1993-2012 or 2001-2012 as in-sample fitting data, and the data of 2013, 2014 and 

2015 as out-sample comparative data. According to the long data sequences and the short data 

sequences, the fitting errors of each model are shown in Fig.4.  

Table 1  

Per capita annual electricity consumption of southern Jiangsu in 1993-2015                

Unit: kiloWatt-hour (kWh)/person 

 

 

Year 1993 1994 1995 1996 1997 1998 1999 2000 

The lower bound 1164.42 1288.68 1384.50 1433.19 1457.82 1476.95 1577.41 1822.07 

The central point 1467.51 1643.68 1795.24 1940.74 2029.73 2128.57 2348.22 2718.08 

The upper bound 1795.47 2030.82 2244.95 2400.04 2505.86 2522.46 2716.36 3286.99 

Year 2001 2002 2003 2004 2005 2006 2007 2008 

The lower bound 1997.52 2270.43 2653.92 3104.67 3631.40 4112.38 4717.54 4976.98 

The central point 3064.88 3569.16 4408.90 5283.90 6283.43 7295.38 8264.12 8529.37 

The upper bound 3891.62 4685.71 6051.24 7589.04 9320.45 11142.91 12928.09 13472.38 

Year 2009 2010 2011 2012 2013 2014 2015  

The lower bound 5352.03 5908.48 6281.66 6655.81 7194.48 7252.74 7578.51  

The central point 8895.40 10150.63 11034.49 11443.45 12196.43 12115.71 12405.57  

The upper bound 13894.80 16060.33 17617.58 18368.50 19319.86 19182.55 19665.67  



 

Fig.3. Interval grey numbers with central points of per capita annual electricity consumptions of southern Jiangsu  

Special attention should be paid to the data trends. Before 2000, the trends of the lower 

bound, the central point and the upper bound sequences of interval grey numbers were all 

moderate. Then, from 2001 to 2005, three data sequences demonstrated steep rises. After 

experiencing a stable period from 2006-2009, the data displays a sharper growth trend which was 

ahead of the stable period of data in China from 2010. From an overall perspective, the data trends 

are complicated, and the valid data for recent information modelling are limited. It is difficult for 

forecasting models to capture the features of the sequences to make accurate predictions.  

 

             (a)                                          (b) 

Fig. 4. (a) The in-sample fitting errors of eight models, based on the data of 1993-2012 

(b)The in-sample fitting errors of eight models, based on the data of 2001-2012 

It can be clearly seen that DES & LM obtain the smallest simulating errors for the long data 

sequences modelling, the ARPEs being 4.32% and 5.9% respectively. On the contrary, the fitting 

results of CNDGM for the long data sequences are less effective with an ARPE of 18.51% which 

is almost the highest ARPE, just lower than ARMA’s 18.53%. For other models’ results, EM also 
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shows high performance in fitting errors and the average relative error is 9.52%; the ARPEs of 

DGM, DGMC and GAGM are all around 13% (12.7%, 13.96% and 13.8% respectively). For the 

upper bound sequence, the fitting errors of DGM, DGMC, GAGM, ARMA and CNDGM are all 

above 18% which means the simulation effects are not effective and unacceptable. Similarly, for 

the central-point sequence, the fitting error of ARMA reaches 19.35%. These fitting outcomes may 

lead to poor forecasting results.   

In the modelling process of the short data sequences, it is obvious that the ARPE of CNDGM 

which is proposed in this paper is the smallest among the other seven models, which is 2.19%. To 

be specific, the simulating errors of the lower bound, the central point and the upper bound 

sequences of interval grey numbers by using CNDGM are all below 3% and all the RPEs are 

smallest compared to each corresponding item from other compared methods. This means 

CNDGM is accurately fitted original data. In terms of other models, the ARPEs of LM, ARMA 

and DES are all below 4% (2.97%, 3.52% and 3.65% respectively) and their fitting effects are just 

outside CNDGM’s. As to EM, the ARPE is 8.03%, and the RPE of the upper bound sequence 

reaches 10.52% which is an unacceptable fitting accuracy. The ARPEs of other three grey models 

are 6.99% for DGM, 8.11% for DGMC and 8.13% for GAGM which are all much higher than the 

optimized grey model in this paper. Similarly, the RPEs of DGM, GAGM and DGMC for the 

upper bound sequence achieve 9.08%, 11.78% and 10.59% which are also not exceptional.   

After analyzing the results of simulating, the CNDGM(1,1) model of interval grey numbers 

with central points proposed in this paper, demonstrates a great fitting performance in the short 

data sequences which surpasses any other fitting models. It verifies that grey models can predict 

short-term more effectively compared with using long term data and further improves the original 

Grey Model of interval grey numbers.  

When it comes to forecasting values, eight models are proposed by using the long data 

sequences and the short data sequences. And the results are shown in Fig.5. 

 

  

             (a)                                          (b) 

Fig. 5. (a) The out-sample forecasting errors of eight models, based on the data of 1993-2012 



(b) The out-sample forecasting errors of eight models, based on the data of 2001-2012 

From the perspective of the long data sequences, DES and LM should be discussed first 

because of their high fitting accuracy. For DES, the prediction results of 2013-2015 are 

considerably close to the actual values, the forecasting errors being 1.36%, 4.24% and 6.01% for 

2013, 2014 and 2015. As to LM, the forecasting trends of the upper bound sequence, the 

central-point sequence and the lower bound sequence do not match the actual lines, which result in 

high forecasting errors all above 20% and for the year of 2015, the value is 38.69%. In terms of 

other models, the majority of the forecasting errors are over 20% which are not efficacious. 

Moving on to the short data sequences, the novel CNDGM demonstrates extremely 

outstanding consequences of prediction. More concretely, the forecasting error of 2013 is only 

1.01% and shows comparatively high accuracy towards the ARPEs of other models. In addition, 

the LM’s, DES’s and ARMA’s are the second, third and fourth lowest (2.30%, 2.35% and 4.64%). 

The results show high fitting efforts lead to high first step forecasting. As for GAGM and DGM, 

the ARPEs are 8.71% and 10.79%, and the other two models’ (DGMC and EM) are all around 

20% which reveal disappointing forecasting performances. For the ARPEs of forecasting values in 

2014 and 2015, similar consequences are proposed. Specifically, the lowest APEs are still from 

CNDGM which are 4.31% in 2014 and 5.77% in 2015. Followed by the DES’s, LM’s and 

ARMA’s in 2014 and 2015, the ARPEs of DES are 8.49% and 11.61%, the ARPEs of LM are 

8.85% and 11.95%, and the ARPEs of ARMA are 9.26% and 13.19%. As to GAGM, the ARPE of 

2014 and 2015 are 20.34% and 28.94%. For DGMC, the average forecasting error of 2014 is 

15.91% which is lower than the APE in 2013, but goes up to 40.44% in 2015. In terms of DGM, 

the ARPEs are 22.92% and 32.02% in 2014 and 2015. As to EM’s, the forecasting errors reach to 

38.19% in 2014 and 51.85% in 2015. These forecasting errors are up to four times greater than 

CNDGM’s. 

In summarizing, taking all the results of the long and short sequences into account, the 

CNDGM(1,1) model of interval grey numbers with central points proposed in this paper for the 

short data sequences reveals the best accuracy among the other seven models, not only in the 

aspect of fitting errors but also forecasting errors. It shows great performance and effectiveness of 

this model when applied to complicated and short data sequences.  

In regards to the long-term forecasting of electricity consumption, this can be obtained by 

using average values of every three years. By this means, the smoothness of data sequences can be 

enhanced which may facilitate the models’ simulations. Additionally, the average data of every 

three years are applicable for medium-long term forecasting. Following this up, the per capita 

annual electricity consumption in southern Jiangsu area up to 2031 can be obtained using the eight 

models above by extrapolating the in-sample data from 1993-2013. The fitting errors are displayed 

in Table 2. 

Table 2 

The simulation errors of eight models, based on every-three-year average values of the long data sequences 

RPE 

The lower bound 

( a ) 

The central 

point ( b ) 

The upper 

bound( c ) 

ARPE  a  b  c  ARPE 



DGM 6.88% 11.53% 19.08% 12.50% DES 12.89% 16.07% 21.82% 16.93% 

DGMC 3.90% 8.11% 13.05% 8.35% LM 19.09% 22.33% 32.93% 24.78% 

CNDGM 6.71% 8.90% 12.45% 9.35% EM 7.69% 7.87% 11.20% 8.92% 

GAGM 5.65% 11.34% 20.82% 12.61% ARMA 10.21% 13.46% 31.06% 18.24% 

As seen from Table 2, the fitting errors of average values of every three year period by using 

DGMC, CNDGM and EM, show relatively high fitting precision (all under 10%). To compare the 

development trends by using these three models, the forecasting values are then shown in Table 3 

and the future trends of the per capita annual electricity consumption in southern Jiangsu area are 

displayed in Fig.5. 

Table 3  

Future per capita annual electricity consumption in southern Jiangsu area (2014-2031)   Unit: kWh/person 

Year 
DGMC CNDGM EM 

a b c a b c a b c 

2014-2016 9202.47 16985.07 31354.11 9079.98 15393.69 25505.23 9346.82 17936.57 30775.46 

2017-2019 11953.30 23972.33 48123.93 10640.75 17448.51 29005.66 12632.76 25518.83 46200.78 

2020-2022 15445.66 31949.13 69553.84 13842.37 22551.72 38573.41 17073.91 36306.32 69357.60 

2023-2025 19081.87 43662.56 105065.6

0 

16223.21 25568.21 44060.33 23076.38 51653.95 104121.1

1 
2026-2028 22720.72 57318.13 154644.3

7 

20372.75 31769.31 55928.48 31189.07 73489.44 156308.8

3 
2029-2031 24756.22 75399.64 232548.2

7 

23848.46 36039.51 64080.12 42153.84 104555.3

6 

234654.1

5 

 

 

Fig.6. The forecasting values of the per capita annual electricity consumption in southern Jiangsu area by using 

DGMC (a), CNDGM (b) and EM (c) 



According to forecasting values, the per capita annual electricity consumption in the southern 

Jiangsu area will keep increasing. The growth rates of DGMC, CNDGM and EM are considerately 

different. Specially, the trends of DGMC and EM (in Fig. 6(a) and (c)) totally exceed that of 

CNDGM, and the growth rates of each sequence by using the former two models are all around 

30%-50%. Furthermore, the magnitude of data will reach 2,000,000 for the upper sequences by 

DGMC and EM which means the per capita annual electricity consumption in the southern 

Jiangsu area will expand 10 times in the next 18 years. On the other hand, the forecasting values 

by CNDGM proposed in this paper will experience a more moderate rise and the growth rates will 

be between 13% and 33% for every three years. Additionally, for the upper bound sequence, by 

2030 the value will reach to 64080.12 kWh/person which is 1.5 times more than 2014-2016’s. It 

shows that the growth rates of the highest levels in southern Jiangsu area will decrease slowly in 

general, although the values of the per capita annual electricity consumption will continue to rise. 

For the central-point sequence, the value of 2029-2031 will be 36039.51 kWh/person - a 1.34 

times’ increase compared with the value of 2014-2016. The growth rates’ trend of the central-point 

sequence during 2014-2031 is similar with the upper bound sequence. For the lower bound 

sequence, by 2030 it will reach to 23848.46 kWh/person, which is more than 1.6 times compared 

to that of 2014-2016. It is notable that the growth rates of the lower bound sequence are slightly 

higher than the other two sequences’.  

Focusing on the recent years (2013-2015) seen in Fig.3, the trends of per capita annual 

electricity consumption in the southern Jiangsu area are tending to stabilize, that is to say, the 

future growth rates of electricity consumption may not be as high as the last few years 

(2001-2012). As China has implemented a series of measures to cut production capacity and adjust 

industrial structure, the low growth rates of per capita annual electricity consumption reveal the 

effects of these energy policies. Accordingly, the forecasting values of CNDGM show the 

probable future trends considering the continuous energy policy on reducing energy consumption 

in China. With respect to the other two models (DGMC and EM), the forecasting values 

demonstrate that the energy consumption will experience high rises along with the increasing 

trend from 2001, which ignore the effects of energy policy in China. In other words, taking into 

account the energy policy of China in recent years, there is no difference for the development 

trend of the per capita annual electricity consumption in southern Jiangsu in the future by using 

DGMC and EM. Such a conclusion seriously underestimates the impact of the relevant energy 

policy. In fact, the impact of these energy policies is clearly visible in Fig. 3: the steep curve 

changes its direction in 2013. The data for this new trend is overwhelmed by the dominant 

historical data for previous years, this is the reason why this trend is ignored by DGMC and EM. 

For CNDGM, its association with the recent data is further enforced by our new method, and it 

captures the new trends ignored by the other two models. In short, CNDGM provides a possible 

way forward for forecast deviations, which reveals the hidden effectiveness of China's measures to 

reduce energy consumption. The forecasting values by 2031 can be obtained by using the values 

from CNDGM as the lower bound, and the values from DGMC and EM as the upper bound. The 

ranges between the upper and the lower bound notify the importance of a series of energy 

optimization policy.  

To sum up, the continuous growth of the per capita annual electricity consumption in the 

southern Jiangsu area will lead to sustained pressure on energy planning and configuration, as well 

as restrict economic development. 



5 Conclusions 

A novel energy consumption forecasting model is proposed by optimizing the initial 

conditions of DGM (1, 1) model and establishing models of interval grey numbers with central 

points, in which the data sequences are fully transformed as the sequence of middle values, the 

sequence of trapezoid areas of the lower grey layer and the sequence of trapezoid areas of the 

upper grey layer. Based on the empirical analysis of per capita annual electricity consumptions of 

southern Jiangsu, the following conclusions are obtained: 

(1) The fitting and prediction results exhibits higher accuracy in short-term sequence 

modelling (the fitting and forecasting ARPEs are only 2.19% and 3.7%) compared with 

other forecasting models (DGM, DGMC, GAGM, DES, LM, EM, ARMA), regardless if 

the results stem from long-term or short-term sequences. It provides a feasible method 

for the prediction of interval grey numbers with central points for regional data of energy 

consumption and expands the research fields for different types of EC data. 

(2) For the long-term forecasting of electricity consumption (to the year 2031), the 

prediction values have been obtained by establishing three-year average values and the 

outcomes display high fitting precision by the model proposed in this paper compared 

with the other three grey models (DGM, DGMC, GAGM). The future trends of per 

capita annual electricity consumption of southern Jiangsu will continue to rise in the near 

future, but the growth rate will probably slow to more moderate levels due to the effects 

of sustainable energy policy in China. 

Although the high precision results are obtained in the novel model, there are huge 

challenges involved in the forecasting of energy consumption in practice because of its trend 

variability and regional imbalance revealed in this paper. Taking into account the expansion of 

absolute amounts in more advanced cities and the increase in the growth rates in less advanced 

cities, it is still a massive pressure in controlling the electricity consumption in the southern 

Jiangsu area. 

The case in this paper is simply to clarify the process of this novel model and shows the 

effectiveness of this novel model. Actually, this model can be applied in many other aspects of 

energy forecasting. For further research in the future, sufficient data should be collected for the 

models’ verification compared with classic statistical models and intelligent algorithms. While 

most of the forecasting methods need more than 30 data sets for modeling, the data in this paper 

total just 23 data sets (due to the changes in statistical standards in the Statistical Yearbook of 

Jiangsu Province), which is more suitable for grey models. 
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The supplementary information 

 

In Section 4, according to the long data sequences and the short data sequences, the fitting 

errors of each model are listed in Table 1 and Table 2 which has been shown in Fig.4.  

 

Table 1 

The simulation RPE and ARPE of eight models, based on the data of 1993-2012 

RPE 

The lower bound 

( a ) 

The central 

point ( b ) 

The upper 

bound ( c ) 

ARPE  a  b  c  ARPE 

DGM 7.63% 11.31% 19.16% 12.70% DES 3.14% 4.18% 5.65% 4.32% 

DGMC 14.87% 8.31% 18.71% 13.96% LM 9.62% 4.84% 3.25% 5.90% 

CNDGM 13.36% 16.74% 25.43% 18.51% EM 8.25% 8.31% 11.99% 9.52% 

GAGM 7.53% 12.68% 21.21% 13.80% ARMA 13.76% 19.35% 22.49% 18.53% 

 

Table 2  

The simulation RPE and ARPE of eight models based on the data of 2001-2012 

RPE 

The lower bound 

( a ) 

The central 

point ( b ) 

The upper 

bound ( c ) 

ARPE  a  b  c  ARPE 

DGM 5.20% 6.68% 9.08% 6.99% DES 2.22% 3.79% 4.94% 3.65% 

DGMC 5.46% 8.26% 10.59% 8.11% LM 2.00% 2.96% 3.95% 2.97% 

CNDGM 1.95% 1.92% 2.69% 2.19% EM 5.62% 7.94% 10.52% 8.03% 

GAGM 5.86% 6.74% 11.78% 8.13% ARMA 6.09% 2.20% 2.27% 3.52% 
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When it comes to forecasting values, eight models are proposed by using the long data 

sequences and the short data sequences respectively. And the results are shown Table 3 and Table 4 

which has been displayed in Fig.5. 

 

Table 3  

The out-sample results, RPE and ARPE of eight models, based on the data of 1993-2012 

 2013 Values 
RPE 

(%) 

ARPE

(%) 
2014 Values 

RPE 

(%) 

ARPE

(%) 
2015 Values 

RPE 

(%) 

ARPE

(%) 

DGM 

a  7948.50  10.48

% 

20.78 

a  8813.74  21.52

% 

35.92 

a  9773.18  28.96

% 

48.09 b  14681.72  
20.38

% 

b  16437.20  
35.67

% 

b  18402.59  
48.34

% 

c  25403.67  
31.49

% 

c  28880.82  
50.56

% 

c  32833.91  
66.96

% 

DGMC 

a  6252.97  
-

13.09

% 
21.78 

a  7438.92  2.57 

29.81 

a  7370.68  
-

2.74% 

39.82 b  13719.07  
12.48

% 

b  15399.07  
27.10

% 

b  16980.00  
36.87

% 

c  27005.26  
39.78

% 

c  30648.05  
59.77

% 

c  35365.67  
79.83

% 

CNDGM 

a  7659.32  6.46 

9.71 

a  8752.75  
20.68

% 

23.94 

a  9301.71  
22.74

% 

29.74 b  13370.83  9.63 b  14864.08  
22.68

% 

b  16103.46  
29.81

% 

c  21838.50  
13.04

% 

c  24641.47  
28.46

% 

c  26876.47  
36.67

% 

GAGM 

a  7845.97  9.06 

17.00 

a  8697.19  
19.92

% 

14.67 

a  9640.76  
27.21

% 

17.08 b  10857.18  
10.98

% 

b  11999.04  0.96 b  13260.99  6.90% 

c  13340.01  
30.95

% 

c  14742.99  
23.14

% 

c  16293.52  
17.15

% 

DES 

a  7042.70  
-

2.11% 

1.36 

a  7428.14  2.42 

4.24 

a  7813.57  3.10% 

6.01 b  12014.28  
-

1.49% 

b  12572.29  3.77 b  13130.31  5.84% 

c  19413.62  0.49 c  20433.60  6.52 c  21453.59  9.09% 

LM 

a  10955.16  
-

11.44

% 
21.58 

a  11260.72  
-

7.93% 

25.89 

a  11566.28  
-

7.86% 

38.69 b  19625.07  
-

8.59% 

b  20190.19  
-

3.32% 

b  20755.30  
-

1.02% 

c  31738.81  
-

8.83% 

c  32680.48  
-

3.27% 

c  33622.15  
-

0.86% 

EM 

a  7699.89  7.02 

17.22 

a  8519.54  
17.47

% 

32.59 

a  9426.44  
24.38

% 

45.24 b  14538.42  
19.20

% 

b  16386.37  
35.25

% 

b  18469.20  
48.88

% 

c  24233.89  
25.44

% 

c  27825.65  
45.06

% 

c  31949.74  
62.46

% 

ARMA 

a  18597.72  
19.34

% 

29.99 

a  20099.23  
13.53

% 

23.72 

a  21721.96  
10.56

% 

19.55 b  27541.12  34.85

% 

b  29920.47  28.74

% 

b  32505.37  24.40

% 

c  51657.48  35.79

% 

c  56811.31  28.88

% 

c  62479.34  23.70

% 
 



Table 4  

The out-sample results, RPE and ARPE of eight models, based on the data of 2001-2012 

 2013 Values 
RPE 

(%) 

ARPE

(%) 
2014 Values 

RPE 

(%) 

ARPE

(%) 
2015 Values 

RPE 

(%) 

ARPE

(%) 

DGM 

a  7739.98 7.58 

10.79 

a  8521.34 17.49 

22.92 

a  9381.57 23.79 

32.02 b  13447.64 10.26 b  14837.77 22.47 b  16371.61 31.97 

c  22128.93 14.54 c  24709.37 28.81 c  27590.71 40.30 

DGMC 

a  8155.49 13.36 

19.37 

a  8144.77 12.30 

15.91 

a  9767.44 28.88 

40.44 b  14499.67 18.88 b  13926.48 14.95 b  17405.45 40.30 

c  24314.65 25.85 c  23111.60 20.48 c  29916.55 52.13 

CNDGM 

a  7088.06 1.48 

1.01 

a  7418.37 2.28 

4.31 

a  7830.48 3.32 

5.77 b  12038.91 1.29 b  12645.32 4.37 b  13185.17 6.28 

c  19268.31 0.27 c  20387.15 6.28 c  21182.17 7.71 

GAGM 

a  8172.55 13.59  a  9032.07 24.53  a  9981.98 31.71  

b  13679.69 12.16 8.71 b  15118.39 24.78 20.34 b  16708.41 34.68 28.94 

c  19390.10 0.36  c  21429.38 11.71  c  23683.12 20.43  

DES 

a  7125.77 0.96 

2.35 

a  7559.63 4.23 

8.49 

a  7993.48 5.48 

11.61 b  12420.59 1.84 b  13207.52 9.01 b  13994.45 12.81 

c  20143.62 4.26 c  21530.23 12.24 c  22916.83 16.53 

LM 

a  7168.93 0.36 

2.30 

a  7609.50 4.92 

8.85 

a  8050.07 6.22 

11.95 b  12472.57 2.26 b  13260.36 9.45 b  14048.15 13.24 

c  20148.84 4.29 c  21517.60 12.17 c  22886.36 16.38 

EM 

a  8263.44 14.86 

21.76 

a  9235.48 27.34 

38.19 

a  10321.87 36.20 

51.85 b  14721.53 20.70 b  16587.62 36.91 b  18690.26 50.66 

c  25063.98 29.73 c  28836.49 50.33 c  33176.83 68.70 

ARMA 

a  6394.21 11.12 

4.64 

a  6394.20 11.84 

9.26 

a  6394.19 15.63 

13.19 b  12090.95 0.86 b  12866.82 6.20 b  13643.16 9.98 

c  19693.33 1.93 c  21049.37 9.73 c  22413.69 13.97 

 

 




