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Highlights 

 In-Situ optical emission spectroscopy to diagnose the stability of ITO, FTO and AZO thin films. 

 Improvement in the electrical and optical properties of AZO when exposed to Hydrogen plasma.  

 Unexpected growth of silicon nanowires over chemically unstable ITO and FTO coated 

substrates.  

 Extreme stability of AZO  films towards higher temperatures and plasma conditions.  

 AZO as an ideal transparent conductor for the fabrication on silicon nanowire solar cells.  

Abstract 

Effect of plasma treatment on transparent conductive oxides (TCOs) including indium-doped 

tin oxide (ITO), fluorine-doped tin oxide (FTO) and aluminium-doped zinc oxide (AZO) are 

discussed. Stability of electrical and optical properties of TCOs, when exposed to plasma 

species generated from gases such as hydrogen and silane, are studied extensively. ITO and 

FTO thin films are unstable and reduce to their counterparts such as Indium and Tin when 

subjected to plasma. On the other hand, AZO is not only stable but also shows superior 

electrical and optical properties. The stability of AZO makes it suitable for electronic 

applications, such as solar cells and transistors that are fabricated under plasma environment. 

TCOs exposed to plasma with different fabrication parameters are used in the fabrication of 

silicon nanowire solar cells. The performance of solar cells, which is mired by the plasma, 

fabricated on ITO and FTO is discussed with respect to plasma exposure parameters while 

showing the advantages of using chemically stable AZO as an ideal TCO for solar cells.  

Additionally, in-situ diagnostic tool (optical emission spectroscopy) is used to monitor the 

deposition process and damage caused to TCOs.   

Keywords: Transparent conducting metal oxides; optical emission spectroscopy; silicon nanowires; 

solar cells; Stability of TCOs; reactive plasma. 



1. Introduction 

Transparent conductive oxides (TCOs) are widely used as electrodes, hole and/or electron transport or 

blocking layer, sensors and scattering of light in electronic applications [1]-[3]. These electronic 

applications include; solar cells, displays, gas sensors, diodes, transistors, electrochromic smart 

windows and light emitting diodes [1], [4]. TCOs are generally expected to be fully transparent in 

certain characteristic wavelengths for a suitable application while maintaining metal-like conductivity. 

However, there is a trade-off between resistivity and transparency of TCOs, which demands attention 

to achieve properties suitable for appropriate applications. In particular, use of TCOs as electrodes in 

silicon-based thin film and nanowire solar cells often require exposure of TCOs to reactive plasmas, 

especially, hydrogen (H2), silane (SiH4), phosphine and trimethyldiborane. This is performed to both 

deposit doped and un-doped amorphous and polycrystalline silicon or to grow crystalline silicon 

nanowires (SiNWs) by DC and/or RF discharge plasma. A few studies have shown that exposure of 

TCOs to plasma hinders its stability in electrical and optical properties [5], [6]. Plasma containing 

hydrogen radicals results in reducing metal oxides to corresponding elemental metal and metal hydrides 

deteriorating performance of TCO films. However, a stable TCO is required for fabrication of active 

layers using plasma-based deposition techniques.   

The impact of plasma and its chemical reactions to underlying films deposited on the chosen substrates 

(e.g. antireflection coating and TCO thin film) is often neglected but it is vital for understanding the 

performance of electronic devices.  In this report, we discuss the performance of silicon nano-wires 

based solar cells fabricated by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. 

Hydrogen atoms often bind to impurities and defects within a material and alter the electrical activity. 

These atoms modify the electrochemical properties of the host material (structure, electrical 

conductivity and grain boundaries) by occupying at a certain position in the lattice points [7]. 

Sometimes this can be disadvantageous as it can also break bonds between host atoms. Position of 

energy levels introduced by a hydrogen atom alters conductivity due to shift in Fermi level by either 

acting as donor (H+) and/or acceptor (H-).  

This work provides insights about the stability of commonly used TCOs (ITO, FTO, AZO) and 

demonstrates AZO as a most suitable candidate among them due to better chemical stability and 

enhanced properties favourable for electronic applications despite being subjected to hydrogen 

containing plasma (HCP). With the use of optical emission spectroscopy (OEM), better analysis and 

evidence are provided regarding chemical instability and energy associated within the plasma that has 

a direct impact on the damaging of TCOs thin films. Diagnostic tools such as OEM discussed here, 

directly reveal characteristic parameters associated with plasma (density of ions and electrons, plasma 

temperature, composition, energy distribution) that influences the properties of the resulting films or 

nano-structures. Interpretation of data obtained is challenging, as it requires understanding of direct and 

indirect properties associated with emissions obtained from plasma [8]. For example, the measured light 

intensity of a particular emission line within a spectrum might usually be due to transitions from upper 

state to lower electronic state. Therefore, it can be assumed that upper electronic state is populated from 

excitations occurring from the ground state. But this can also be a consequence of de-excitation from 

even higher energy states or dissociation of molecules having similar energy. Hydrogen plasma 

provides an advantage by passivation of grain boundaries in the silicon thin films [9]. Additionally, it 

helps to deactivate impurities within a material and reduce the number of defects.  However, the same 

property that might be advantageous for certain materials to improve their property can also cause 

severe damage if a material is chemically reactive. This study explains these problems in greater depth 

with an aid of several characterisation techniques used in this work. 

2. Experimental details 



Glass substrates coated with ITO and FTO thin films used in this work were purchased from Sigma-

Aldrich and AZO was purchased from Kaivo. All TCOs mentioned above are sequentially cleaned in 

an ultrasonic bath in organic solvents such as Hellmanex, IPA and de-ionised water. Substrates are dried 

with nitrogen gas and baked for 30 minutes in the oven at 110 °C. Then substrates are transferred to a 

capacitively coupled plasma enhanced chemical vapour deposition (PECVD) chamber and evacuated 

to base pressure of 10 mTorr. All TCOs are exposed to hydrogen and/or silane plasma and their 

properties are studied by varying RF-power, pressure deposition time while the deposition temperature  

maintained at 400 °C in all the experiments.  

Time resolved optical emission spectroscopy (OES) technique was used to understand plasma dynamics 

from the emissions. Spectrometer (AVANTES – AvaSpec-2048) was coupled with a PECVD system 

and electromagnetic emissions at 60mm height above substrate holder from the plasma are guided 

through optic fibre connected through a quartz viewport without UV filter. Spectrometer (grating - 600 

lines/mm, 100um slit, UV coating to enhance the response in the lower wavelengths) used in this work 

is equipped with 2048 pixel Sony detector and a cylindrical collimation lens to focus more light onto 

the 56um height of the pixels. Fabrication of SiNW solar cells involved thermal evaporation of Ga for 

10 seconds at the rate of 0.1nm/s at 5e-7 mBar pressure over cleaned ITO, FTO and, AZO coated 

substrates. Deposited Ga is used a catalyst for the growth of SiNWs. Schottky junction SiNWs solar 

cell is fabricated by loading substrates into a PECVD system and pumped down to 10mTorr base 

pressure. The temperature of substrates is raised to 400 °C and exposed to H-plasma (hydrogen gas flow 

at 100 sccm, 550 mTorr chamber pressure and, 33mW/cm2 RF power density) for 3 minutes. This is 

immediately followed by addition of SiH4 gas at 20 sccm into the chamber maintaining all other 

deposition parameters same as H-plasma for 15 minutes. 500nm thick circular (1mm and 2mm 

diameter) silver top contacts are evaporated over SiNWs surface to complete the fabrication of solar 

cells.  

Transmittance of all the substrates is studied with an aid of Thermoscientific UV-Vis- near-IR 

spectrometer (Evolution-300). Resistivity of TCOs is measured from in-house measurement setup 

comprised of programmable Keithley 220 current source, Keithley 195A multimeter and ECOPIA gold 

coated four probes (SPCB- 01C15) system. LEICA –S430 scanning electron microscope is used in this 

work to study morphology of TCOs and nanowires.  

3. Results and discussion 

3.1 Stability study of TCOs 

 3.1.1 Optical Emission Spectroscopy 

The plasma process adopted for the deposition of a material involves optimisation of several parameters 

including pressure, RF-power, temperature, gas flow and many more. Reactions occurring within the 

plasma and its species show direct correlation with the quality of a deposited film and underlying layers. 

This demands controlled technique to study and optimise plasma process compatible for a particular 

application. Simple and effective technique is an optical emission spectroscopy (OES). Such a 

technique is used for measuring density of species/radicals from the intensity of emitted wavelength 

and electron distribution function.  Changes in the intensity of emitted wavelengths are a consequence 

of the concentration of ions, plasma species, electrons and energy associated with them. Additionally, 

this technique has been widely investigated for detection of contamination, vacuum leak, predicting 

crystallinity of the deposited material and, change in the bandgap of the silicon thin films [10], [11]. 

Plasma is comprised of neutral atoms, ions, electrons and molecules. Their population over many 

energy levels are described by means of Boltzmann distribution that refers to the temperature of the 

plasma, which is also termed as excitation temperature. During all the experiments performed in this 

work, emissions for spectral lines corresponding to Balmer series (n ≥ 3 → n =2) of Hydrogen is 

identified in the spectra with a broad peak in UV region. Considering the composition of TCOs used in 



this work expected emissions from the plasma from 200 to 700 nm wavelengths are summarised in 

Table 2. All possible emissions occurring from the plasma species are listed in the Table 2. Few 

prominent peaks corresponding to the emissions from oxygen (dissociated from unstable TCO) in the 

region > 700nm is not shown due to spectrometer used in this work is limited to the detection limit of 

700nm maximum. Hence, the use of spectrometer that can detect emissions corresponding to 

wavelengths up to 1000 nm is most preferable for accurate analyses of excited oxygen (O) atoms.  

3.1.2 RF-power density 

Fig 1. depicts instability of ITO and FTO films due to variation in transmittance of untreated and H-

plasma treated samples. Decrease in transmittance of FTO is a consequence of reduction into metal and 

discontinuity in the film that leads to the increased value of sheet resistance (Rsh) as shown in Fig 1 (b-

e). However, the behaviour of the ITO transparency is different when compared with FTO due to 

increased transmittance. Melting point of Indium is lower (157 °C) compared with Tin (232 °C) that 

leads to increased instability when exposed to H-plasma at temperatures above the melting point of 

metals. Increase in Rsh is ascribed to the increased scattering centres for the carriers in deteriorated thin 

film [5].  

 

H-plasma treated ITO loses its conductivity when subjected to a plasma generated at an RF power 

density greater than 33mW/cm2. In contrast to ITO and FTO, H-plasma treated AZO thin films are 

stable and exhibits increased transmittance and conductivity. This is the key requirement for an ideal 

TCO. H+ ions impinging over the surface of the AZO thin film emerging out from the plasma passivates 

various defects by electron transfer within the material leading to the growth of grain size [20], [21]. 

Along with optical and electrical analyses, instability of FTO and ITO are further understood with an 

aid of OES spectra. 

As a  plasma density increases with increase in RF power from 5 to 55 mW/cm2, intensity of Hα, Hβ and 

Hδ increases proportionally (Fig 1a) indicating an increase in excitation temperature of a plasma. This 

is a clear indication of increased monoatomic hydrogen.  The intensity of the high energy radicals such 

as Hβ and Hδ directly relates to the increase in the damage caused to the TCO. Emissions from excited 

species of Sn, In and, O (fig 1a) from the plasma sheath indicates presence of these ions that are etched 

from the substrate indicating that ITO and FTO are chemically unstable for plasma treatment involving 

RF power density greater than 5mW/cm2. Further evidence is observed from increased Rsh and 

decreased transmittance in ITO and FTO coated substrates. With increase in the RF power, wider 

continuous and increased intensity in the UV region of the spectra is observed in Fig 1a. Such high-

energy photons (UV) and hyperthermal ions pose severe damage to the underlying layers over the 

substrate (e.g. TCO layer used in this work). Light (UV) induced degradation of amorphous silicon is 

often improved by minimising shoulder of UV spectra obtained from in situ OES measurements during 

the deposition process [11]. Recombination at the surface of substrates is high at elevated temperatures 

in the presence of H-plasma. Due to recombination and surface reactions, metal aggregations are 

observed initially and they tend to vaporise with time, this is significant at temperatures higher than 

melting point of metals present in a TCO film.  

3.1.3 Pressure 

An emission intensity corresponding to the Balmer series mentioned in Table 1. indicates influence of 

the pressure on the density of excited species and temperature. Drastic decrease in the intensity of Hα 

and Hβ with increase in pressure from 250 to 900 mTorr is observed. This is due to reduced mean free 

path at high pressures and less energy (increased collisions) associated with electrons that are 

insufficient for excitation of H atoms.  At low pressures, the energy associated with the electrons is high 

for exciting atoms that leads to increased monoatomic H species. During such a process, it is reported 

that the excitation temperature is also increased [11]. At higher pressures, sheath is mainly collisional; 



hence, ions originated at the sheath possess less energy and do not cause detrimental damage to the 

surface of TCO coated substrates as ions arriving at the surface has less energy either to break the bond 

or to passivate defects. At low pressure, collisions occurring due to exchange of charges generate 

enormous hyperthermal hydrogen atoms at the plasma sheath [8], [11] and these can penetrate deep 

inside the material causing damage to the material. These observations are evident from the results 

obtained in this work. Damage caused to an ITO and FTO thin film is detrimental at low pressures that 

reduces transmittance and increases Rsh (Fig 2 b-e). Increase in the intensity of emission peaks (Fig 2a) 

corresponding to the molecular and atomic transitions of In, Sn, O and H at low pressures indicates 

severe damage caused to TCO.  

This paper discusses about H-plasma treatment of TCOs, which is performed at elevated temperatures 

in the presence of ionised atoms and molecules that is a consequence of applied RF-power. Few 

experiments involving heat treatment of TCOs were performed to understand their stability. Heat 

treatments of ITO and FTO above 300 and 350 °C respectively indicate the start of instability with an 

indication of little decrease in the transmittance and the increase in the Rsh. However, this is negligible 

when heated and significant when treated under the H-plasma at the same temperature. TCOs stability 

concerning heat treatment is not discussed in detail here since that is not within the scope of this study. 

XPS studies have shown that during H-plasma treatment chemically unstable films which are deficient 

of oxygen atoms create additional energy levels between the Fermi level and valence band edge [5], 

[22]. In a n-type TCO energy/localised levels increasing closer to valance band edge act as a sink for 

electrons [23] that increases Rsh of a material as seen in Fig 2. In particular, FTO, it is shown that the 

concentration of deuterium within plasma plays significant role in reducing SnO2 into metallic Sn [9].   

Decrease in Rsh of AZO (Fig 2c) thin films is attributed to hydrogen ions (H+) that take part in the 

doping and the reduction in electron traps/defects at the grain boundaries. Increase in carrier 

concentration is due to interstitial Zn atoms generated by loss of oxygen atoms [7], [24]. In this study, 

blue shift in the absorption edge from transmission spectra for AZO thin films is noticed when exposed 

to H-plasma. This suggests an increase in bandgap allowing more light to pass through, and decrease in 

the Rsh is witnessed, which is of a key importance and beneficial when such a TCO film is used in the 

fabrication of a solar cell.  Formation of Zn-H or Zn-OH surface over AZO film during H-plasma might 

lead to a stable and chemically strong passivation surface that inhibits incoming H atoms that 

demonstrates good stability over H-plasma [9], [25].  

3.1.4 Duration of Plasma Exposure 

ITO and FTO films showed changes in the colour (Fig 3f) with increased duration of H-plasma 

exposure. Additionally, decrease in transmittance and increase in Rsh is evident from Fig 3 (b-e). This 

is ascribed to the formation of oxygen-depleted surface that is a consequence of chemical reduction of 

metal oxide into a metal. Auger electron microscopy measurements show changes in stoichiometry of 

the film, which strongly alters Rsh [6].  The sheet resistance of AZO decreases with an increase in the 

duration of H-plasma as shown in the Fig 3(d). A possible reason would be H-passivation and formation 

of Zn-H surface compared to Zn-O surface that increases surface free carriers. Stability of AZO films 

are studied using XPS and EDX; which show no significant change in Zn and O concentrations before 

and after H-plasma exposure [6]. Blue shift in the transmittance spectra of AZO films is ascribed to 

shift in the fermi level closer to conduction band leading to band broadening with increasing 

concentration of the carriers. This is often termed as Burstein-Moss effect [20]. Instability of ITO and 

FTO are discussed earlier with several mechanisms occurring during H-Plasma. It is worth to indicate 

that when the temperature of the electrode during H-plasma treatment is maintained at 400 °C, diffusion 

process is significant at such temperatures. Therefore, thermally activated hydrogen atoms that have 

high energies diffuse deep inside the thin films of a chemically unstable TCO and cause tremendous 

damage.  



Intensity of emission peaks (Fig 3a) corresponding to In, Sn and, O increases until three minutes 

indicating presence of large amounts of etched species from the substrate in the plasma sheath. The 

intensity drops after from 5-minute H-plasma treatment due to decrease in the concentration of etched 

metal atoms/ions that are no more available over the substrate and continuous removal of vaporised 

species within the chamber. Similar observation is evident from transmittance of FTO (Fig. 3c) coated 

substrates that decrease until 5-minute treatment and begin to increase for plasma treatment durations 

exceeding 5 minutes.  

3.2 Constituent metals of TCOs prone to the growth of SiNWs 

Transmission and Rsh values corresponding to AZO discussed earlier corroborates with the stability of 

AZO. H-plasma treated FTO films are inhomogeneous and reduce to tin and tin-oxide particles. 

Unstable metal oxides that are reduced to corresponding metals are often reduced in the form of nano 

and/or micro-sized particles. This is due to essential modification of surface and change in surface 

energy. Often surface reduction within a film is observed due to reaction of hydrogen with oxygen over 

top surface of thin film; such a phenomenon has less impact on the stability of TCOs compared to 

reduction of bulk material into constituent metal particles over the surface. However, this has significant 

impact on the properties of a SiNW solar cell. Reduced metal particles over the surface of a TCO under 

favourable conditions act as a nucleation centres for Si atoms and potentially grow unexpected SiNWs.  

TCOs available today include oxides of zinc, indium, and, tin that are extensively used for several 

applications as mentioned earlier. These metal oxides are doped with metals and non-metals such as 

tin, fluorine, aluminium, indium, and, gallium. Fabrication parameters play significant role in the 

growth of SiNWs without the need of a metal catalyst or precursor from a chosen TCO. Hence, the 

choice of TCO used for the fabrication of a solar cell should show good chemical stability towards 

SiH4-plasma along with the H-plasma as discussed earlier. Most importantly, Eutectic temperature (ET) 

of silicon and metal (metals present in a TCO) alloy with the silicon has to be considered and appropriate 

temperature must be chosen for the growth of SiNWs used in solar cells [26], [27]. If the chosen 

temperature for the growth of SiNWs is higher than ET and glass substrates coated with a TCO is 

chemically unstable; would potentially grow SiNWs that would affect the properties of a TCO.  This is 

evident from Fig 4g and 4h with the growth of SiNWs from In and Sn that are reduced due to chemical 

instability of ITO and FTO respectively. Fig 4d and 4e indicate reduction of ITO and FTO thin films 

into metal and metal-oxide particles. Moreover, AZO demonstrates extreme chemical stability over 

reactive plasmas used in this work. Considering the instability of TCOs discussed here and ET of metals 

with silicon used for the growth of SiNWs, we recommended avoiding TCOs that contain metals such 

as gallium, tin, indium and, bismuth for fabrication temperatures exceeding 300 °C. In contrast, metals 

in AZO, namely aluminium and zinc have ET > 400 °C with silicon and is ideal for fabrication of 

silicon-based thin film/nanowire solar cells at 400 °C.  

3.3 SiNW solar cells 

Owing to the instability of ITO and FTO compared to better stability shown by AZO thin films, SiNWs 

were grown on these substrates with gallium as a catalyst to fabricate solar cells. ITO and FTO films 

damaged due to chemical instability and thereby conductivity and transmittance is reduced that does 

not facilitate fabrication of a good solar cell.  Contrary to ITO and FTO, AZO films are stable in reactive 

plasma comprised of gases that are used for the fabrication of SiNW solar cells and facilitates 

fabrication of a SiNW solar cell.  

Current-voltage (IV) measurements in fig 5c shows clear indication of a successful solar cell fabricated 

on AZO with 0.3V (Voc) and 4.8mA (Isc) under illumination. However, fabrication of solar cells on 

ITO and FTO coated substrates was unsuccessful due to their chemical instability that loses its 

conductivity when exposed to H-plasma and reduced metal particles contributing towards the growth 

of SiNWs.  The small value of current ( in the range of nano Ampere) measured (Fig 5a and 5b) in ITO 



and FTO based solar cells is due to leakage and defects within the material. TCO films are discontinuous 

due to formation of particles (Fig. d- e). Interestingly, solar cells fabricated over FTO coated substrates 

shows double Schottky IV characteristics; this is ascribed to reduced tin and tin oxide establishing 

abrupt junctions or heterojunction with Si and Ag. It is worth to mention that use of H-plasma treated 

AZO as a transparent conductor in solar cells further improves efficiency due to increased transparency 

in the visible region allowing more light to pass and decreased Rsh that minimises parasitic Resistances 

losses. Many interesting properties shown by SiNWs such as reduced reflection, light trapping, 

broadband optical absorption beyond visible spectrum and guided resonance for better absorption of 

light, and short carrier collection lengths has shown potential towards next generation solar cells with 

an aim to achieve higher efficiency and reduction in the fabrications costs thus minimising carbon 

footprints [26]-[28]. Owing to several advantages of SiNWs, solar cells are fabricated by utilisation of 

SiNWs including both radial and axial junction architectures. Different combinations of semiconductor 

and metal junctions including PiN, NiP, PN, NP, and, schottky SiNW solar cell [28]-[31] are 

demonstrated until now. However, research concerning SiNWs solar cells is at exploration stage and 

demonstrates conversion efficiencies below 10% for those fabricated on glass substrates.   

4. Conclusion 

In situ OEM measurements performed during fabrication of a SiNW solar cell provides direct evidence 

of TCOs that are damaged during the fabrication process. This is evident from the emission lines 

obtained from the plasma sheath corresponding to the etched metal atoms from a chemically unstable 

TCO that are ionised. Degradation threshold is summarised as ITO < FTO < AZO when exposed to 

hydrogen containing reactive plasma at 400 °C. Change in the electrical and optical properties of a TCO 

provides additional evidence to understand their stability. Metals within a TCO under favourable 

conditions contribute to the growth of unexpected SiNWs that not only affects the properties of SiNW 

solar cells but also degrades the properties of a TCO. Hence, proper attention is required during the 

selection process of a TCO used in the fabrication of a SiNW solar cell. Here, we report AZO as a good 

candidate for use in the fabrication of SiNW solar cell considering theoretical ET of Al and Zn higher 

than the fabrication temperature (>400 °C) and better chemically stability in hydrogen containing 

plasma. Experimental results not only determines extreme stability of AZO but also indicates 

improvement in AZO properties, such as reduced Rsh and increased transmittance in visible region when 

exposed to H-plasma. This is ideal for further improving electric current within a fabricated SiNW solar 

cell.  
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Fig. 1. Measured optical emission spectra (a) during H-plasma treatment of TCOs by varying applied RF power. 

Transmittance spectra of ITO (b), FTO (c), and AZO (d) coated glass substrates exposed to H-plasma at different 

RF-power. Measured Rsh (e) of above mentioned TCOs. Prominent peaks are labelled in OES spectra (a). Sheet 

resistance at 0mW/cm2 refers to untreated samples. Missing data corresponding to Rsh of ITO is due to high 

resistance comparable to insulators that cannot be measured with available instrument.   
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Fig. 2. Measured optical emission spectra (a) during H-plasma treatment of TCOs by varying pressure in the 

PECVD system. Transmittance spectra of ITO (b), FTO (c), and AZO (d) coated glass substrates exposed to H-

plasma at different pressures. Measured Rsh (e) of above mentioned TCOs. Prominent peaks are labelled in OES 

spectra (a). Sheet resistance at 0mW/cm2 refers to untreated samples. Missing data corresponding to Rsh of ITO 

is due to high resistance comparable to insulators that cannot be measured with available instrument.   
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Fig. 3. Measured optical emission spectra (a) during H-plasma treatment of TCOs by varying plasma exposure 

durations. Transmittance spectra of ITO (b), FTO (c), and AZO (d) coated glass substrates exposed to H-plasma 

at different durations. Measured Rsh (e) of above mentioned TCOs. Optical image of TCOs that are treated with 

temperature and combination of H2 and/or SiH4 plasmas (f).  Prominent peaks are labelled in OES spectra (a). 

Sheet resistance at 0mW/cm2 refers to untreated samples. Missing data corresponding to Rsh of ITO is due to high 

resistance comparable to insulators that cannot be measured with available instruments.   
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Fig 4. The surface morphology of untreated ITO, FTO and AZO thin films on glass substrates (a-c) and treated 

with H-plasma (d-e). ITO and FTO break down to In, Sn, InO and SnO particles when exposed to H-plasma at 

400 °C. However, AZO film is stable up to 400 °C and exposure to plasma. Growth of SiNWs from ITO and FTO 

without the need for additional catalyst when exposed to H diluted SiH4 plasma (g-h). No evidence of SiNW growth 

from AZO coated glass due to its extreme chemical stability towards reactive plasma from H2 and SiH4 gases. 

However, deposition of a-Si:H is observed over AZO coated glass.  Scale bar in SEM images is 500nm.  

 

 

Fig 5. IV characteristics of SiNW solar cells fabricated on ITO (a), FTO (b) and, AZO (c) transparent conductors.  
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Table.1 H-plasma parameters (pressure, H gas flow rate, RF power density, temperature and duration) used in 

the study the stability of TCO thin films.  

H-plasma parameters  Variable  

33mW/cm2, 400 C, 100Sccm, 5min.                                    Pressure:  250, 500, 900 mTorr 
400 C, 500 mtorr, 100Sccm, 5min.                                     RF power:  5, 11, 33,55 mW/cm2 
33mW/cm2, 500 mtorr, 100Sccm,400 C.    Time:  1,3,5,10 minutes. 

 

Table.2 Emissions/wavelengths emerging out from the plasma with possible transitions are summarised by 

obtaining data from the literature [12]-[19].  

Species Transition  λ (nm) 

Hα 3d → 2p 656.2 

Hβ 4d → 2p 486.1 

Hδ 6d → 2p 409.8 

H2 Fulcher 486.1 

Zn 3s1 → 3p0 468.0 

Zn 3s1 → 3p1 472.2 

Zn 3s1 → 3p2 481.0 

Zn 1d2 → 1p1 636.2 

Sn 5p 5d 3d1 → 5s2 5p2 1s0 314.3 

Sn Sn-II ionised 335.3 

Sn Sn-II ionised 556.1 

In 52P1/2 → 52D3/2 303.9 

In 52P3/2 → 62S1/2 451.1 

O+ Atomic ion 375 

O 3p–6s 543.5 

OH Molecular ion 309.0 

 


