
Finding Multi-Density Clusters in Non-Stationary
Data Streams Using an Ant Colony with Adaptive

Parameters
Conor Fahy, Shengxiang Yang and Mario Gongora

Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University
The Gateway, Leicester LE1 9BH, United Kingdom

Email: {conor.fahy@dmu.ac.uk, syang@dmu.ac.uk, mgongora@dmu.ac.uk}

Abstract—Density based methods have been shown to be an
effective approach for clustering non-stationary data streams.
The number of clusters does not need to be known a priori and
density methods are robust to noise and changes in the statistical
properties of the data. However, most density approaches require
sensitive, data dependent parameters. These parameters greatly
affect the clustering performance and in a dynamic stream a good
set of parameters at time t are not necessarily the best at time
t+1. Furthermore, these parameters are global and so restrict the
algorithm to finding clusters of the same density. In this paper,
we propose a density based algorithm with adaptive parameters
which are local to each discovered cluster. The algorithm, denoted
Ant Colony Multi-Density Clustering (ACMDC), uses artificial
ants to form nests in dense areas of the data. As the ants move
between nests, their collective memory is stored in the form of
pheromone trails. Clusters are identified as groups of similar
nests. The proposed algorithm is evaluated across a number
of synthetic data streams containing overlapping and embedded
multi-density clusters. The performance of the algorithm is shown
to be favourable to a leading density based stream-clustering
algorithm despite requiring no tunable parameters.

I. INTRODUCTION

Clustering dynamic data streams has additional constrains
to static batch clustering. Streams can potentially be real time
and infinite, so clustering needs to be performed quickly in
a single pass of the data and the discovered clusters need
to be summarised in a meaningful way. Furthermore, data
streams can be non-stationary so the statistical properties of
the stream can change over time in the form of concept drift
(gradual change), concept shift (sudden change), or concept
evolution where new classes appear in the stream. A stream-
clustering algorithm needs to be able to adapt to these changes.
Density based methods [8] have emerged as a suitable method
of clustering streams. Density based methods identify clusters
as areas of the feature space with high density separated by
areas of low density. They are particularly suitable for streams
because they can detect arbitrary shaped clusters, they are
robust to noise, and the number of clusters does not have to
be specified a priori.

The work by Aggarwal et al. [1] was one of the first to
attempt density-based clustering for dynamic streams. The
authors proposed a two stage approach to clustering: the online

phase summarises the data and the offline phase clusters the
summarised data. The concept of micro-clusters was intro-
duced as a temporal extension to the cluster feature vector
proposed in [15]. Micro-clusters are n-dimensional spheres
that summarise a group of points which are close together
in the feature space. This concept was later extended in
DenStream [6]. Denstream uses a time dampened window
model to assign greater importance to more recent data. A
newly arriving point is assigned to its nearest micro-cluster
in the on-line phase and the micro-clusters are grouped to
form marco-clusters in the off-line phase using a concept
of density reachable [8], which determines if two micro-
clusters are connected. This method has been shown to achieve
good results. However, it is computationally expensive and the
offline phase must be executed frequently in order to discover
changes in the stream. The main components of Denstream
(mico-clusters, time-dampened window and the concept of
density reachable) were extended in FlockStream [10], which
merges both the online and offline steps into a single online
step. Flockstream uses a swarm intelligence technique inspired
by the flocking behaviour of birds [14] to group similar micro-
clusters. A comprehensive review of density based stream
clustering is given in [4] and a common shortcoming among
all of these algorithms is their inability to detect clusters of
varying densities.

This restriction means that the overall performance of the
algorithm will degrade when the data contains multi-density
clusters and it imposes restrictions on the type of clusters the
algorithm can find. For example, embedded or overlapping
clusters will not be discovered. This shortcoming also reduces
the overall utility of the clustering solution. For example,
consider a persistent, previously identified cluster. The density
of the cluster could change, for example, if there were fewer
samples of this concept in a particular window. The density has
changed but the concept remains stationary. If the algorithm
cannot recognise this new density, then the change would be
misdiagnosed as concept drift.

The reason for this inability to detect varying densities is
the use of global parameters for each cluster. For example,
algorithms which employ micro-clusters as the summarisation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228188064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mechanism [1], [6], [10] define the micro-cluster parameters
globally. The ε-neighbourhood parameter defines the maxi-
mum radius for a micro-cluster and the minPoints parameter
defines how many points a micro-cluster should contain for
it to be considered ‘dense’. These parameters hold for every
cluster and so restrict the algorithm to a single level of density.

Various solutions have been proposed for finding multi-
density clusters in stationary batch data. Most are extensions
of the DBSCAN algorithm [8]. These include MSDBSCAN
[9], IS-DBSCAN [7], and DBSCAN-DLP [16]. A hierarchical
algorithm based on the agglomerative k-means was proposed
in [12]. However, these algorithms are not suitable for data
streams because they require more than a single pass of the
data or require prohibitively high computational time.

Recently, MuDi Stream [3] was proposed to overcome
this problem of detecting clusters of varying density in a
stream. MuDi is a density/grid based hybrid approach to
clustering data streams. It uses the two phase online/offline
approach. In the online phase, the stream is summarised
using micro-clusters and these micro-clusters are partitioned
into macro-clusters in the offline phase. A grid-based method
is used to reduce the algorithm’s time complexity, handle
outliers and form new micro-clusters with varying radii. MuDi
was shown to outperform other density based algorithms on
datasets containing varying densities. However, it requires
three sensitive data dependant parameters to be tuned: the
outlier threshold, the density threshold and the grid granularity.
This poses two problems; firstly, these parameters need to
be appropriately tuned in order to generate a good clustering
solution and secondly, in a dynamic stream, an appropriate set
of parameters at time t might not be optimal at time t+ 1.

Motivated by the above analysis, we are proposing a density
based stream clustering algorithm with adaptive parameters for
finding multi-density clusters. Our proposed algorithm, called
Ant Colony Multi-Density Clustering (ACMDC), merges both
the online and offline phases into a single online phase and
requires no tuneable parameters. ACMDC reads the stream
in windows and the clustering process consists of two steps:
initially, artificial ants representing data points collectively
form nests in dense areas of the data. The ants generate
pheromone trails between each nest and these trails form a
similarity matrix between each established nest. In the second
step, similar nests are grouped to form the final clustering
solution.

The rest of the paper is outlined as follows. Our proposed
algorithm is outlined in detail in Section II. An experimental
study is presented in Section III and conclusions are offered
in Section IV.

II. PROPOSED ALGORITHM

Density based clustering identifies clusters as areas of high
density in the feature space separated by areas of low density.
Points which are close (in terms of Euclidean distance) in the
feature space are grouped into micro-clusters, where ‘close’ is
determined by the ε-neighbourhood parameter which defines
the maximum radius of a micro-cluster. The final clustering

solution is the set of connected micro-clusters. A micro-cluster,
containing N points { ~Xi}, i = {1, ..., N}, is described using
three components: N , LS and SS, where N is the number
of data points in the micro-cluster, LS is the linear sum of

the points (i.e.,
N∑
i=1

~Xi), and SS is the squared sum of the

points (i.e.,
N∑
i=1

~X2
i). LS and SS are n-dimensional vectors.

From these three components we can obtain the centre c and
radius r of the micro-cluster [1].

c =
LS

N
(1)

r =

√
SS

N
−
(
LS

N

)2

(2)

Micro-clusters have the properties of additivity and incre-
mentability. A point p can be absorbed into an existing micro-
cluster m:

m.N += 1,

m.LSi = m.LSi + pi,

m.SSi = m.SSi + p2i ,

(3)

where pi is the ith dimension of point p. Two existing micro-
clusters mi and mj can merge into a new micro-cluster mk,
iff radius(mk) ≤ ε

mk = (Ni +Nj , ~LSi + ~LSj , ~SSi + ~SSj) (4)

Two micro-clusters mi and mk are said to be density reachable
if:

dist(cmi
, cmk

) ≤ ε, (5)

where cmi
and cmk

are the centres of mi and mk, respectivey,
and dist(cmi

, cmk
) is the Euclidean distance between cmi

and
cmk

.
ACMDC employs the tumbling window model to read the

stream. A tumbling window is a non-overlapping fixed size
chunk of data. Once a window is read, the algorithm works
in two steps to summarize, cluster and store the summary
statistics off-line. In the first step, individual data points are
treated as ants and the ants self organise and form ‘nests’
representing dense areas of the data. The similarity of each
nest is ‘remembered’ and stored as pheromone trails between
each nest. Nests are summarised as micro-clusters. In the
second step, clusters are iteratively formed with adaptive
parameters. Similar nests are clustered and merged, and the
final solution returned by the algorithm is a set of partitioned
dense areas of the data. The summarised clusters are stored
off-line and a new tumbling window is evaluated.

An overview of the ACMDC framework is given in Algo-
rithm 1. The following sections explain steps one and two in
more detail.

Algorithm 1 ACMDC Overview

1: while <Stream> do
2: Read tumbling window
3: Create nests and pheromone trails (Algorithm 2)
4: Find clusters (Algorithm 4)
5: Store summary statistics off-line

A. Creating Nests

The step begins with WindowSize data points (each point
is treated as an ant) and an initial pre-set threshold initSim.
Ants are iteratively assigned to nests representing dense areas
of the data. The first ant creates the first nest and subsequent
ants can either join an existing nest or form a new one.
Each ant visits each nest in succession and evaluates a nest’s
suitability by comparing itself with nComp randomly selected
ants already in the nest, where nComp is a preset parameter.
An ant a estimates its similarity to nest k that has already nk
ants present in it (i.e., k = {k1, k2, ..., knk

}) as follows:

Sim(a, k) =

nComp∑
j=1

dist(a, kj)

nComp
, (6)

where nComp = nk if nComp > nk. Ant a joins the
most similar nest provided its similarity score is equal to or
below initSim. Otherwise, it creates a new nest. As each ant
evaluates each nest, it ‘remembers’ its similarity with each.
This collective memory is stored as pheromone trails between
each nest in a Pheromone Matrix PM . When an ant joins (or
forms a new) nest the ant updates the pheromone between the
selected nest and all others. The pheromone trail between nest
k and nest m is defined as the average of the similarities of
all ants in nest k to nest m (Eq. (6)), as follows:

ph(k,m) =
1

nk

nk∑
i=1

Sim(ki,m), (7)

where nk is the number of ants in nest k and ki is the i-th
ant in nest k.

Once all ants have been assigned to nests, the contents of
each nest are merged into a single micro-cluster (Eq. (4)). The
pseudo-code for this step is outlined in Algorithm 2. At the
end of this step, we have a set of n nests, each forming a
single micro-cluster, and a pheromone matrix PM containing
the similarity between each pair of nests, where PM [k,m] is
the similarity between nests k and m.

B. Finding Clusters

The previous step summarised WindowSize points as a
much smaller number of nests. However, the number of nests
is still considerably larger than the number of natural clusters.
In this step, clusters are discovered incrementally starting with
the most dense, this allows the discovery of embedded and
overlapping clusters. A new cluster C is seeded with the
densest nest, formally:

seed = max
k∈Nests

(k.N) (8)

Algorithm 2 Create Nests
Input: Tumbling window
Output: n Nests and Pheromone Matrix

1: for <each data point p> do
2: if <nests> then
3: Calculate its similarities to nests (Eq. (6))
4: if <most suitable nest found> then
5: Add p to the most suitable nest
6: Update pheromone trail (Eq. (7))
7: else
8: Create a new nest
9: Add p to the new nest

10: Initialise pheromone trail
11: else
12: Create the first nest
13: Add p to the nest
14:
15: for <each created nest> do
16: create a new micro-cluster m
17: add each point in the nest to m (Eq. (3))
18:
19: return Nests, Pheromone Matrix

Taking this nest as the seed we find its closest neighbour,
i.e., the neighbour with the highest similarity score in the
Pheromone Matrix PM :

neighbour = max(PM [:, seed]) (9)

These two nests are added to cluster C and removed from
the initial list of nests in order to prevent addition to future
clusters. Similar nests are incrementally added to C.

In order to find similar nests, C requires two parameters; the
ε-neighbourhood and a threshold. The ε-neighbourhood de-
termines the minimum distance for two nests to be considered
density reachable (Eq. (5)) and the threshold value determines
if a nest added to a cluster C is a border nest. We define a
border as a nest which is density reachable to C but has a
density (N) of less than β times the density of the initial seed
nest (Eq. (8)):

threshold = seed.N ∗ β (10)

For example, if the seed nest contained 100 points and β =
0.1, a border nest would contain 10 or fewer points.

At each new cluster, the ε-neighbourhood is initially 1.0 and
adapts to the data using the distance between the seed nest and
the seed’s closest neighbour:

λ = PM [neighbour, seed] (11)

Using λ, we update the ε parameter for the ε-neighbourhood
as follows:

ε = ε− λ (12)

The pseudo-code for seeding a new cluster is given in Algo-
rithm 3.

Algorithm 3 Initialise Cluster
Input: Nests, Pheromone Matrix
Output: Cluster C

1: Create new cluster C
2: Find densest nest n in Nests (Eq. (8))
3: Find n’s closest neighbour neighbour (Eq. (9))
4: λ := pheromone between n and neighbour (Eq. (11))
5: ε := ε− λ
6: initialDensity := n.N
7: Threshold := initialDensity ∗ β
8: add n and neighbour to C
9: delete n and neighbour from Nests

10: delete n and neighbour from Pheromone Matrix
11: return C

Once a new cluster C has been seeded, a boolean newSeed
is set to false and similar nests are added to C. Each nest is
tested in succession to see if it is density reachable with a nest
in C (Eq. (5)). If a nest is density reachable it is removed from
the list of nests and added to C. If, at the end of an iteration,
a nest has been added that is not a border point, C can expand
its ε-neighbourhood (Eq. (12)) and perform another iteration
with the increased ε. This continues until no further nests have
been added, or if only border nests have been added. At this
stopping condition, the nests in cluster C attempt to merge
(Eq. (4)), C is added to the final list of clusters and the boolean
newSeed is set to true and the process repeats until all nests
have been assigned to a cluster.

Due to expanding value of ε, outliers and noise points will
be assigned to their own cluster because clusters expand until
all nests are assigned. To overcome this we remove clusters
where the number of nests in the cluster is equal to the number
of data points in the cluster, i.e., every micro-cluster contains
only one point. Micro-clusters containing only a single point
are not similar enough with any other points to merge and can
be considered to lie in low density areas of the feature space.

Pseudo-code for finding clusters is presented in Algorithm 4.

III. EXPERIMENTAL STUDY

To evaluate ACMDC we test its performance across 5
datasets using 2 well-known metrics. The performance of the
algorithm is compared with that of DenStream [6]. DenStream
is a leading density based stream clustering algorithm that also
uses micro-clusters to summarise and cluster data. DenStream
has six parameters and these have been manually tuned for
each dataset to give the best performance. DenStream is
evaluated using the Massive On-line Analysis [5] open source
software.

A. Metrics

Two common metrics are used to evaluate the performance
of the clustering solution; Purity and the Rand Index [13].
We know the labels of the data so the metrics are computed
using the ground truth. Purity measures the frequency of the
most common category occurring in each cluster and how

Algorithm 4 Find Clusters
Input: Nests, Pheromone Matrix
Output: Set of k clusters

1: while <Nests> do
2: if <newSeed = true> then
3: C := Initialise cluster (Algorithm 3)
4: newSeed := false
5: for <Each nest n> do
6: if <n is density reachable to C> then
7: add n to C
8: delete n from Nests
9: delete n from Pheromone Matrix

10: if <n is not a border nest> then
11: expand := true
12: if <expand> then
13: ε := ε− λ
14: else
15: merge micro-clusters in C (Eq. (4))
16: add C to clusters
17: newSeed := true
18:

19: Remove outliers
20: return clusters

homogeneous each cluster is. A score of 1 indicates the cluster
contains only instances of the same class.

The purity of a clustering solution S, with N discovered
clusters, S = {C1, ..., CN} to be evaluated against a set
of categories L = {L1, ..., LK} is calculated by taking the
average of the maximal precision value for each discovered
cluster. The precision of a cluster Ci is defined as follows [2]:

precision(Ci) =
|Ci ∩ Li|
|Ci|

(13)

where Li is the most frequently occurring category in Ci.
The overall purity of the clustering solution is the average

of the precision values of clusters within the solution, which
is measured as follows:

P =
1

N

N∑
i=1

precision(Ci) (14)

The Rand Index is a measure of agreement between two
clustering solutions; the solution provided by the algorithm
and the true clustering solution known from the ground truth.
It measures how many of the clustering decisions are correct,
based on the numbers of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN), as follows:

R =
TP + TN

TP + FP + TN + FN
(15)

B. Datasets

Synthetic data streams were generated in order to test
ACMDC in a streaming environment containing concept drift,
concept evolution and multi-density clusters which can overlap
and embed in other clusters. The points in each synthetic

TABLE I: Description of datasets used in experiments

Name Dim. Clusters Examples Drift

2D 2 3-5 100,000 1,000
4D 4 3-5 100,000 5,000
8D 8 5-10 150,000 7,500
16D 16 10-20 150,000 7,500
32D 32 10-20 200,000 15,000

a) t = 1 b) t = 11

c) t = 30 d) t = 60

Fig. 1: Stream progression over 60 windows, containing 4 non-
stationary clusters of varying densities.

cluster are drawn from a series of Gaussian distributions with
each cluster having a different standard deviation. At regular
intervals concept drift is simulated by changing the mean and
variance of each cluster and concept evolution is simulated
by adding or removing a cluster. Datasets were generated
with dimensions ranging from 2 to 32, the number of natural
clusters ranging from 3 to 20 and a varying number of samples
and drift intervals.

The full details of each dataset are presented in Table I
and sample windows containing 2 dimensional data are pre-
sented in Fig. 1. These illustrative examples were selected to
display multi-density clusters (Fig. 1(a)), overlapping clusters
(Fig. 1(d)), and embedded clusters (Fig. 1(b, c and d)).

C. Results

The clustering solution for the illustrative windows pre-
sented in Fig. 1 can be seen in Fig. 2. Inspecting the clusters
visually, it can be seen that all four clusters are discovered
despite the clusters not being clearly separated and having
varying densities. More formally, the purity and Rand Index
scores are also presented. It can be observed that the algorithm

a) P = 0.99, R = 0.99 b) P = 0.98, R = 0.96

c) P = 0.99, R = 0.98 d) P = 0.97, R = 0.96

Fig. 2: Discovered clusters in 2D windows.

TABLE II: Results using purity (P) and Rand Index (R)

Data ACMDC DenStream

P R P R ε

2D 0.96 0.97 0.94 0.92 (0.025)
4D 0.99 0.99 0.99 0.94 (0.008)
8D 0.98 0.98 0.98 0.82 (0.01)
16D 0.95 0.96 0.95 0.73 (0.15)
32D 0.95 0.90 0.97 0.22 (0.055)
Avg. 0.96 0.96 0.96 0.72

returns high purity clusters which are close to the true structure
of the data.

The performance of the algorithm across each dataset is pre-
sented in Table II. These results are the average performance
of each window over the entire stream. Comparative results
with DenStream are also displayed. There is an extra column
describing the DenStream results; the ε parameter. This is one
of six tunable, data-dependent parameters. Each was tuned to
give the best results, but because the ε-neighbourhood is the
most sensitive it has been displayed. Over the five datasets, the
purity of each algorithm is comparable but ACMDC performs
favourably on the Rand Index metric. This is highlighted in
Fig. 3, which displays the performance of each algorithm over
the entire 32D stream. The stream contains 200,000 samples,
the window size for ACMDC and evaluation frequency for
DenStream are 5,000 giving a total of 40 windows. The purity
on each is comparable but ACMD considerably outperforms
DenStream on the Rand Index.

Figure 4 displays the performance of each algorithm over
the entire 2D dataset. This dataset contains fewer samples

0 5 10 15 20 25 30 35 40
0

0.5

1

Time

P
u
r
it
y

Purity on 32D dataset

DenStream
ACMDC

0 5 10 15 20 25 30 35 40
0

0.5

1

Time

R
a
n
d

I
n
d
e
x

Rand Index on 32D dataset

DenStream
ACMD

Fig. 3: Comparative performance over 32D stream progression

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Time

P
u
ri
ty

Purity on 2D dataset

DenStream
ACMDC

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Time

R
an

d
In

d
ex

Rand Index on 2D dataset

DenStream
ACMDC

Fig. 4: Comparative performance over 2D stream progression

0 10 20 30 40 50 60 70 80 90 100
0

2

4

·105

Time

R
an

d
In

d
ex

Pairwise Comparisons

DenStream
ACMDC

Fig. 5: Number of pairwise calculations performed on 2D stream progression

but shorter windows and more frequent evaluations (1,000)
resulting in 100 windows. Both algorithms are comparable
across both metrics with ACMD performing slightly better
despite requiring no tunable parameters.

Figure 5 gives an indication of the speed requirements
of ACMDC. In order to measure the speed requirement we
count the number of pair-wise Euclidean distance comparisons
performed by each algorithm. We assume that a higher number
of calculations implies a greater time requirement. This will

be especially true in high dimensional data. The results from
DenStream are taken using an ε value of 0.25 and an evaluation
frequency and horizon of 1, 000. ACMDC uses a tumbling
window of size 1, 000. The overall average for each evaluation
comes to roughly 297,000 for DenStream and roughly 397,000
for ACMDC. A speed decrease of roughly 25% on average.

.05 .1 .15 .2 .3 .4 .5 .6
0

50

100

β

P
e
r
fo
r
m
a
n
c
e

Sensitivity of β parameter

Purity
Rand Index

.00005 .0001 .0005 .001 .005 01 .05 .1
0

50

100

initSim

P
e
r
fo
r
m
a
n
c
e

Sensitivity of initSim parameter

Purity
Rand Index

Fig. 6: Sensitivity of program variables on 2D data stream

.05 .1 .15 .2 .3 .4 .5 .6
0

50

100

β

P
e
r
fo
r
m
a
n
c
e

Sensitivity of β parameter

Purity
Rand Index

.00005 .0001 .0005 .001 .005 01 .05 .1
0

50

100

initSim
P
e
r
fo
r
m
a
n
c
e

Sensitivity of initSim parameter

Purity
Rand Index

Fig. 7: Sensitivity of program variables on 32D data stream

D. Sensitivity Analysis

ACMDC requires three program variables. The first,
nComp which is used to determine the number of compar-
isons an ant will make with a nest, is set to WindowSize∗0.1.
This is taken from the results in [11] which uses a similar
sampling method. The remaining two variables are analysed
for sensitivity across two streams; the 2D stream and the
32D stream. Figs. 6 and 7 show the sensitivity of β (which
determine border nests during cluster formation) and initSim
(which defines the minimal nest similarity during nest forma-
tion).

The results on both streams are similar. β returns similar
scores for each value but the performance of the algorithm
begins to degrade at roughly 0.3. initSim is much more
sensitive, it can be seen that too large a value completely
degrades the algorithm’s performance and a very small value
is more appropriate. Based on this analysis, for all experiments
presented in this study, β is set as 0.2 and initSim is set to
0.0001.

IV. CONCLUSION

In this paper we have proposed Ant Colony Multi Density
Clustering (ACMDC), a density based method for clustering
data streams. ACMDC has adaptive parameters, local to each
discovered cluster, which allow it to find clusters of varying
density. The algorithm uses tumbling windows to read the
data and the windows are clustered online. The clustering
process consists of two steps: first, ants representing each
data point form nests with similar ants and second, similar
nests are grouped to form clusters. Discovered clusters are

summarised using micro-clusters and the summary statistics
for each window are stored offline.

ACMDC was evaluated across five synthetic data streams.
The streams ranged from 2 to 32 dimensions describing 3 to 20
clusters of varying densities which can overlap, can be nested
and are not clearly separated. Streams exhibit concept drift,
concept shift and concept evolution. ACMDC was evaluated
on two well-known metrics; purity and Rand Index, and was
compared with DenStream, a leading density based stream
clustering algorithm. It was shown that ACDMC outperforms
DenStream on these datasets based on these two metrics. The
purity levels are comparable but the Rand Index score, which
reflects the true topology of the data, is much higher for
ACDMC. The Rand Index for DenStream decreases as the
number of clusters in the stream increases. This is because
there are a greater number of densities in the data coupled with
the fact that a higher number of clusters make it more probable
that they will embed and overlap. DenStream is restricted to
a single density and is unable to find nested clusters and so
the performance degrades.

ACDMC finds clusters incrementally, starting with the most
dense and finishing with the least dense. This allows for the
discovery of nested and overlapping clusters and, ultimately,
clusters of any density. The drawback of this approach is
that outliers are grouped into their own (very sparse) cluster.
ACMDC deals with outliers by removing any cluster that
only contains micro-clusters which only describe a single
point. Outliers are usually too dissimilar to other points to
be described by a single micro-cluster and micro-clusters
describing outliers are too dissimilar to merge. This approach
fails if, as is realistic, two or more noise points lie in the same

low dense area of the feature space. Future work will aim to
address this and better deal with noise.

The time requirements of ACMDC was compared with that
of DenStream. In order to measure this we count the number of
pair-wise Euclidean distance comparisons performed by each
algorithm. We assume that a higher number of calculations
equates to a greater time requirement, especially with high
dimensional data. Although comparable, ACMDC was shown
to require a greater number of comparisons than DenStream,
roughly 25% extra on average over the 2D stream.These extra
distance calculations are the cost of the adaptive parameters.

ACMD requires no tune-able parameters, except for the
window size, but it requires three hard-coded parameters. The
initSim parameter determines the minimum similarity in the
first step of the algorithm. This has been shown to be sensitive
to higher values (greater than 0.001) but works efficiently with
much smaller values. Intuitively, this seems correct as it is
more desirable for the ε-neighbourhood of a cluster to expand
in smaller increments. The second parameter, β, determines
the density threshold. This has been shown to be less sensitive
than initSim, but, similar to initSim, larger values return a
poorer performance. We define this as 0.2, which means that
nests which are (at most) 20% as dense as the seed nest are
to be considered as border nests when forming clusters.

In the future, we aim to improve the algorithm’s handling
of outliers and evaluate it more rigorously on a larger number
of datasets across a wider range of metrics. We also aim to
improve the utility of the discovered clusters. When dealing
with dynamic data-streams, change is one of the most in-
teresting aspects: detecting and adapting to change, as well
as describing the change. In future work, we aim to better
structure the summary statistics so as to provide a change
detection mechanism based on clusters discovered in previous
windows.

ACKNOWLEDGMENT

This work was funded by the Engineering and Physical
Sciences Research Council (EPSRC) of U.K. under Grant
EP/K001310/1.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” Proc. of the 29th Int. Conf. on Very
Large Data Bases, vol. 29, pp. 81–92, 2003.

[2] E. Amig, J. Gonzalo, J. Artiles, J. and F. Vedejo, “A comparison
of extrinsic clustering evaluation metrics based on formal constraints,”
Information Retrieval, vol. 12, no. 4, pp. 461–486, 2009.

[3] A. Amini, et al. “MuDi-Stream: A multi density clustering algorithm for
evolving data stream,” Journal of Network and Computer Applications,
vol. 59, pp. 370–385, 2016.

[4] A. Amini, et al. “On density-based data streams clustering algorithms:
A survey,” Journal of Computer Science and Technology, vol. 29,no. 1,
pp. 116–141, 2014.

[5] A. Bifet, G. Holmes, R. Kirby, and B. Pfahringer, “MOA: Massive online
analysis,” Journal of Machine Learning Research, vol. 11, pp. 1601–1604,
2010.

[6] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” Proc. of the 2006 SIAM Int. Conf.
on Data Mining, vol. 6, pp. 328–339, 2006.

[7] C. Carmelo, et al. “Enhancing density-based clustering: Parameter reduc-
tion and outlier detection” Information Systems, vol. 38, no. 3, pp. 317–
330, 2013.

[8] M. Ester, H. P. Kriegel, J. Sander, and X. Xu,“A density-based algorithm
for discovering clusters in large spatial databases with noise,” Proc. of the
2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 226–231,
1996.

[9] G. Esfandani, H. Abolhassani. ”MSDBSCAN: multi-density scale-
independent clustering algorithm based on DBSCAN,” Proc. Int. Conf.
on Advanced Data Mining and Applications, 2010.

[10] A. Forestiero, C. Pizzuti, and G. Spezzano, “A single pass algorithm
for clustering evolving data streams based on swarm intelligence,” Data
Mining and Knowledge Discovery, vol. 26, no. 1, pp. 1–26, Nov. 2011.

[11] N. Labroche, N. Monmarche, and G. Venturini, “AntClust: ant clustering
and web usage mining,” Proceedings of the 2003 Genetic and Evolution-
ary Computation Conference, pp. 25–36, 2003.

[12] X. Li et al. “On cluster tree for nested and multi-density data clustering,”
Pattern Recognition, vol. 43, no. 9, pp. 3130–3143, 2010.

[13] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical Association, vol. 66, no. 336,
pp. 846, Dec. 1971.

[14] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34,
Aug. 1987.

[15] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: A new data clustering
algorithm and its applications,” Data Mining and Knowledge Discovery,
vol. 1, no. 2, pp. 141–182, 1997.

[16] Z. Xiong, et al. “Multi-density dbscan algorithm based on density levels
partitioning.” Journal of Information and Computational Science, vol. 9,
no. 10, pp. 2739–2749, 2012.

