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Abstract- A technique based on empirical data and finite element (FE) analysis to predict the 

fracture life of Al-1050 beam with the help of its fundamental mode is presented in this study. 

Experiments were performed on a non-prismatic beam vibrating with a constant value of the 

amplitude at the fixed end until the complete fracture of the specimen was achieved. The beam was 

vibrating on its fundamental mode to achieve fracture in less time.  A power law model was used 

to acquire the possible trends in between the values of natural frequencies and the number of cycles 

recorded during these experiments. These trends were further compared with a numerically 

modeled specimen but with artificial cracks. FE modal analysis was used for this comparison. An 

error of less than 1% was observed in the estimated number of total cycles obtained through power 

law model before fracture as compare to those obtained from the numerical approach.  Using this 

approach, fracture life of different length specimens was also predicted.  
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1. Introduction 

Subsurface damage causes the decay in useful life of a mechanical structure. Any variation in 

this damage alter the modal parameters of the structure during its service lifetime (1). Therefore, it 

is imperative that one can relate the modal parameters with the damage state and predict the 

remaining life of structure. Dynamic testing has been widely used to obtain modal parameters 

(stiffness, natural frequencies, mode shapes and modal damping values) and can be used to monitor 

the damage variations in the structure. The main emphasis of this research is to determine the 

potential of the modal parameters (especially the fundamental mode or first natural frequency) of 

a structure for calculating its useful remaining life i.e. Fracture life.  

Mechanical structures theoretically modify their natural frequencies due to any variation in 

subsurface damage. Therefore, it has been widely used as a diagnostic parameter to monitor the 

structural integrity. For example, when measured natural frequencies are substantially lower than 

expected, then they refer to a loss in stiffness, while frequencies higher than expected indicate 

stiffening of a structure (2). The reduction in natural frequency also depends on the position of the 

defect relative to the mode shape for a particular mode of vibration (3–8). The selection of the 

appropriate modes of the natural frequencies is also found to be crucial for damage diagnostic.  

Results from the experimental (8-9) and the numerical (10) studies have suggested that the vibrations 

close to fundamental modes would probably be the best suited for damage detection. Begg et al. 

(11) have suggested that the higher modes should be used in damage detection to improve the 

identification of a defect. But due to difficulty in obtaining the higher modes in physical 

applications, the first mode of vibration can be used effectively.  

In recent years, the crack detection and its effects on the dynamic structural characteristics gain 

substantial attention among researchers. Several analytical, experimental and computational 
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studies were performed on the beams. If a crack is present at a particular section then the local 

bending stiffness of the beam is reduced at that cross-section. Several authors approximate the 

problem consisting of two beams connected by a torsional spring (which models the section) with 

a stiffness dependent on the depth of the crack (6, 12). The reduced local bending stiffness results in 

lowering the values of the natural frequency in bending. Recently, extensive numerical studies 

were performed to study the characteristic of the vibrating cracked beams from the measurements 

of changes in resonant frequencies. It covers numerical studies on: the changes of structural 

stiffness with respect to the position of defects (12), mode shapes of the cracked rotating tapered 

beam , multiple-crack damage detection and their possible orientation  (13-14) and modal analysis of 

multi-cracked beams with a circular cross section (15). Despite the fact that enormous research has 

been conducted in the area of damage detection by using changes in modal responses (16–18), 

changes in the natural frequencies (16, 19, 20) and changes in mode shapes (21–23), but still  the 

prediction of the operating cycles before catastrophic failure has not yet studied. 

A technique based on empirical data and finite element (FE) analysis to predict the fracture life 

of Al-1050 beam with the help of its fundamental mode is presented in this study. Experiments 

were performed on a non-prismatic beam vibrating with a constant value of amplitude at the fixed 

end until the complete fracture of the specimen was achieved. The beam was vibrating on its 

fundamental mode to achieve fracture in less time. A power law model was used to acquire the 

possible trends in between the values of modal frequencies and the number of cycles recorded 

during these experiments. These trends were further compared with a numerically modeled 

specimen but with artificial cracks. FE modal analysis was used for this comparison. Using this 

approach, fracture life of different length specimens was predicted which determine its 

effectiveness in structural health monitoring. 
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2. Methodology 

Materials and geometry 

Experiments were carried out on an Aluminium-1050 cantilever beam at elevated temperature 

to predict the remaining life of structure based on its natural frequency evolution (24). In this work, 

the previous setup for dynamic testing of the specimens was utilized. A schematic of the geometry 

of a typical test specimen is shown in Figure 1. Experiments were performed on Al-1050 cantilever 

beams with three different lengths i.e. 110 mm, 130 mm and 150 mm. These values are representing 

the length of the 10mm wide cross-section portion of the specimen. For each length, a set of three 

specimens was tested. The thickness (t) and width (w) of these specimens were selected as 0.5 mm 

and 10 mm respectively. The possible crack location was controlled by this geometry as a high 

stress concentration was achieved around the 2.5mm radius portion (24). A wire cut technique was 

used to manufacture the specimens with defect-free edges. However, minor defects may appear on 

the edges which could possibly initiate crack locally in the area other than the radius given in the 

stress concentration region. Young’s modulus, Poisson ratio and density of Al-1050 were 

considered as 70 GPa, 0.35 and 2700 kg/m3, respectively. 

Experimental Setup 

A modal exciter, a frequency controller and a vibration analyzer were involved in the 

experimental setup as shown in Figure 2. One end of the specimen was mounted on the Cussons 

modal exciter (model P1906) which was the primary source for vibrating the specimen at its natural 

frequency. The other end of the beam was set free. This configuration is normally referred to as the 

fixed-free vibrating condition. The natural frequency of each specimen before the start of 

experiment was analytically calculated using the following Timoshenko beam equation (25) for 

lateral vibration with fixed-free end conditions.  
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where ′E′ is the modulus of elasticity, ′I′ is the second moment of inertia, ′ρ′ is the density of 

material, ′A′ is the cross-sectional area of thinner section, ′l′ is the length of specimen and ′β1l′ is 

a factor for end condition.  

The vibration analyzer was attached to the foundation of the modal exciter. It was used to 

measure the dynamic response available at the foundation of the modal exciter in a frequency 

spectrum. As the exciter and the specimen were firmly attached so any measured response can 

provide a cumulative amplitude of the dynamic response of the whole system which was largely 

dominated by the specimen displacement at the free end due to the resonance phenomenon. This 

amplitude was continuously monitored on the analyzer screen with a data sampling frequency of 1 

kHz. A change in the structure displacement at the free end was observed by measuring the change 

in the mentioned amplitude. It is because the exciter had a constant value of the amplitude in all 

times during the test at the fixed end. A sound meter by Standard Instruments (model: ST-8851) 

was also placed near the vibrating specimen with a sampling rate of two readings per second. The 

reason of using the sound meter was to record the time when the possible decrease in the resonance 

amplitude was observed on the frequency spectrum at the analyzer screen. Subsequently, this time 

was used to determine the number of cycles between the two successive drops of the natural 

frequency. 

Experimental Procedure 

At the start of each experiment, newly manufactured specimens without any external damage 

were used. The specimen was then subjected to a dynamic load through a modal exciter that excites 

the specimen with a fixed value of the amplitude on its first natural frequency. Eq. (1) was used for 
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the determination of the fundamental frequency of the fresh specimen in the start. Due to resonance, 

a very high amplitude was observed on the free end of the specimen and assumed as the maximum 

available amplitude on the structure. After certain number of cycles, a decrease in the amplitude 

was observed on the frequency spectrum available at the vibration analyzer. The reason for this 

decrease could be a crack initiation in the subsurface of the specimen. At this instant, the exciter 

was stopped and the specimen was tapped with a very light wooden stick which made it vibrate on 

its all possible modes. A decrease in the first natural frequency value was also recorded on the 

mentioned spectrum. This observation was then used to a set a new load frequency on the modal 

exciter. The time between the two consecutive natural frequencies was recorded in number of 

cycles. On this new frequency, the specimen was again excited on its maximum amplitude at the 

free end until a decrease in this amplitude was observed. The same procedure was repeated to 

achieve the fracture on the specimen. 

3. Results and Discussion 

The experimental data with the reducing fundamental frequency during vibration was obtained 

with the number of cycles. A power law model was developed on the basis of this experimental 

data which can estimate the fracture life of the specimen of any given length but only requires the 

observed natural frequency drop at any given instant of time. 

a. Experimental work and fracture life power law model 

A typical flow of the experimental work is shown in Figure 3. The Figure 3(a) shows the mounting 

of the specimen on the modal exciter. The vibrating specimen at resonance condition is shown in 

Figure 3(b). A typical example of specimen failure is shown in Figure 3(c) showing that the 
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specimens were not broken apart but some portion of the specimen remain intact due to the ductile 

nature of the specimen as shown in Figure 3(d). 

For each configuration of the specimen, three separate tests were performed. Table 1(a)-(c) 

shows the data of the total number of cycles and relevant first natural frequency drop until fracture 

of the specimen for different lengths. Insignificant variations in the values of natural frequencies 

and total number of cycles were observed for the same length specimen. The reason for these 

variations was possibly the dimensional tolerances in manufacturing process of the specimens. 

Table 1(a): Natural frequency and total cycles before fracture for three specimens with L=110mm 

Test-1 Test-2 Test-3 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

31.1 34210 30.5 53375 31 27822.5 

30.7 39583 30.1 55707.75 30.8 49182.3 

30.4 44903 29.5 57389.25 28 49602.3 

30 46103 29 59216.25 27.5 50441.05 

29.4 47720 28.4 59713.25 26.5 51143.3 

28.4 48288 28 61183.25 25.6 51847.3 

28 49198 19.5 61349 18.5 52134.05 

26.8 49680 19 61472.5 17.6 52310.05 

21 49896 18 61553.5 16.9 52380.05 

19 49967 17 61604.5   

17.2 50147 16.5 61628.5   

 

Table 1(b): Natural frequency and total cycles before fracture for three specimens with L=130mm 

Test-1 Test-2 Test-3 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

21.4 432449.4 22 630784 21.5 408430 

20.2 817623 21.5 685318.75 21 558580 
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20 840463 21 773518.75 20.8 729857.6 

19.8 852996.4 20 784268.75 20.5 732676.35 

19 858031.4 19.7 786514.55 20.3 743618.05 

18.3 859092.8 19 787588.05 19.8 754092.25 

18 861387.8 18.2 788416.15 19.4 758602.75 

17.5 862131.55 17 788866.65 19.1 761143.05 

17.2 863051.75 14 789167.65 18.7 762283.75 

17 863578.75   18.4 763737.35 

16.8 863948.35   17.8 764315.85 

16.3 864421.05   17.5 765339.6 

15.5 864909.3   16.5 765636.6 

14 865154.3   16.2 765920.1 

13.3 865234.1   15.3 766233.75 

    14.8 766574.15 

    13.5 766776.65 

 

Table 1(c): Natural frequency and total cycles before fracture for three specimens with L=150mm 

Test-1 Test-2 Test-3 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

Natural 

frequency 

(Hz) 

Total number 

of cycles 

16.9 262550 16.8 210579.6 16.2 176620.5 

16.5 340982.75 16.5 288311.1 16 189660.5 

15.8 341456.75 15.2 290864.7 15.9 207389 

15.6 345036.95 13.1 291008.8 15.7 211510.25 

15.2 346222.55 12.8 291207.2 15.3 219275 

15 348165.05 12.2 291310.9 15.1 222446 

14.5 348810.3 11.1 291416.35 14.9 224882.15 

14 349377.3 10 291466.35 14.8 226125.35 

13 349916.8   14.4 227277.35 

12 350222.8   14 228264.35 

10.4 350336.8   13.7 229011 

    13.5 229395.75 

    13.3 229668.4 

    13 229967.4 
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    12.8 230217 

    12.4 230483.6 

    12 230807.6 

    10 230922.6 

 

The data obtained from the above experimental results was the basis to develop a power law 

model for the fracture life of the specimens with different length values. The fracture life of the 

specimens (Y) of any given length as a function of the first mode of the natural frequency (X) at a 

given instant was estimated. The expression of a power law was used as 

 

𝑌 = 𝑚𝑋𝑏 + 𝑐                                                                                           (2) 

 

The constants m, b and c were calculated from the experimental data at different lengths as shown 

in Table 2. However, according to Eq. (1), the natural frequency depends on specimen geometry, 

its material properties and its boundary or end conditions. If one changes the specimen geometry 

or material, new sets of fatigue tests must be performed to develop a new power law for the 

prediction of fracture life. 

 

Table 2: Power law constant for different lengths. 

 

Length 

Constants 

b m c 

150 12.23 -1.184e-10 2.95e5 

130 11.04 -4.498e-10 8.41e5 

110 9.903 -2e-11 5.578e4 

 

 

An implicit expression for b, m and c as a function of specimen length can be used to predict 

the fracture life for a given length. The equations for constants b, m and c were found as: 

 

𝑏 = 0.0003877 𝐿3.324 + 9.086      (3) 
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𝑚 = 6.179𝑒−11𝐿2 − 1.565𝑒−9 𝐿 + 9.44𝑒−9    (4) 

𝑐 = −1.069𝑒5𝐿2 + 2.722𝑒6𝐿 − 1.646𝑒7    (5) 

 

Three more experiments on different lengths were performed and estimation of total number of 

cycles by using the power law was analyzed. The testing lengths were: 120mm, 140mm and 

145mm. The obtained experimental results and their comparisons with power law is shown in 

Figure 4. In all the estimated values, 43% are predicted with less than 10% of error, 28% are 

predicted with less than 15% of error and 29% are predicted with less than 20% of error. The above 

experiments on new lengths show the stochastic nature of the obtained data. The calculated error 

ranges fairly show the capability of the model estimation on non-calibrated lengths.  However, it 

indicates that the devised power law needs more calibration on new lengths of the selected range 

with a low step of length. 

b. Numerical Modal Analysis 

A finite element (FE) modal analysis was also performed on the numerically modelled test 

specimens with predefined artificial cracks of different depths. A three dimensional analysis along 

with convergence study was used to obtain the proper mesh size. A rectangular artificial crack was 

made and located at 13 mm from fixed end. The width of the crack was taken as1 mm and remained 

constant in all the simulations. In contrast, the depth of the crack was used in a range of 0.025 mm 

to 0.249 mm. 

In FE modeling, one of the possible ways a crack could be propagated was selected until a 

natural frequency drop was achieved which was similar to the experimental result. The geometry 

of the crack was drawn as rectangular which further propagated symmetrically from the top and 

the bottom surfaces of the specimen as shown in Figure 5 (a). Theoretically, this type of crack 

propagation behavior may not exactly represent the actual crack phenomena in the specimen. There 



11 
 

are two fundamental facts which actually makes this assumption of symmetrical crack of both sides 

fairly acceptable. First, the specimen was under constant reverse bending load which could equally 

produce the same stresses on both sides of the specimen. Secondly, uniform damage wrinkles on 

both side of the specimen were also observed during the tests. Damage from the top side is shown 

in Figure 5 (b). 

In this research, the reason of a decrease in natural frequency was assumed as an increase of 

the crack depth in the specimens. Natural frequencies of the cracked specimens were obtained by 

the FE analysis and hence a data of the frequency drops at different values of crack depths was 

determined. Therefore during analysis, those depths were selected which could provide a frequency 

drop comparable to the ones obtained from the experimental data. In this way, a correlation 

between life predictions of the cracked beam vibrating at its corresponding natural frequency state 

was developed. The maximum possible depth of the artificial crack with its value of frequency 

drop was further validated with the total number of cycles before fracture obtained from the power 

law model. After an acceptable error between the experimental and numerical results, the power 

law and the finite element model were used to estimate the fracture life of specimens with arbitrary 

values of lengths. 

 Figure 6(a) shows the comparison of natural frequency and crack depth as obtained from the 

experimental data and the numerical study. The numerical results were in close agreement with the 

specimen experimental fracture natural frequency. An error of maximum 1% error was observed. 

The error was calculated as the ratio of the difference between experimental and numerical fracture 

frequency to the experimental fracture frequency). The normalized frequency verses the 

normalized crack depth ratio for different specimen length is shown in Figure 6(b). Similar trend 
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in drop of normalized fundamental mode of natural frequency was observed with the increasing 

crack depth.  

c. Fracture life estimation on arbitrary values of length of specimen 

 

Four arbitrary lengths of the specimen were selected: 170mm, 180mm, 200mm and 250 mm. 

In the absence of the empirical data, their possible fracture life was estimated by using the 

established power law model and finite element model. Figure 7(a) shows the first mode of natural 

frequency for a given crack depth in each specimen by using the finite element model for each 

selected length values. Using this data, the frequency at a given corresponding crack depth was 

used in Power law (Eq. 3-5) for a specific length of the specimen to predict the number of cycles. 

This prediction of number of cycles at different crack depth is shown in Figure 7(b). Thus, using 

this graph at a given number of cycles, the possible crack size was predicted. It was also observed 

that with the increase of specimen length the natural frequency decreases, but the number of cycles 

for fracture increases. The predicted remaining life cycles were reaching to a very low value just 

before the maximum possible depth of the crack. An error of 5% was observed between the finite 

element analysis and the power law predictions. 

4. CONCLUSION 

 
A methodology is proposed to predict the fracture life of Al 1050 beam with the help of its 

fundamental mode. The fracture life of structure (i.e. beam in the presented case) can be predicted 

on the basis of the possible drop of its first mode of natural frequency. Experimental data of selected 

lengths of specimens with a finite element modal analysis was used to predict fracture life of the 

specimen of any given length. It is observed that the predicted remaining life cycles were reaching 

to a very low value just before the maximum possible depth of the artificial crack and hence it 
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demonstrates the effectiveness of the adopted methodology. The main assumption of the proposed 

method is the shape of the artificial crack and path of crack propagation. However, an extension of 

this work will focus on different shapes of the cracks and their behavior in fracture prediction. 

Further, this procedure can also be used to analyze the crack propagation path and its rates without 

dismantling the structural element from its routine operations. 
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Figures  

 

Figure -1 : Schematic of the geometry of a typical test specimen used in the experiments with thickness (t) = 0.5 mm (all 

dimensions are in mm) 

 

 

Figure 2. Experimental set-up for dynamic testing of specimens using the data acquisition system. Inset: a zoomed-in view of 
the specimen and the modal exciter 

 

 

Figure 3. Experimental process: (a) stationary specimen before the start of the experiment; (b) vibrating specimen showing 
the amplitude at resonant frequency; (c) fractured specimen; and (d) unbroken intact area of the specimen after fracture 
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Figure 4. Comparison of fracture life cycles on non-calibrated lengths: experiments versus power law 

 

 

 

Figure 5. (a) FE model with boundary condition for modal analysis; and (b) enlarged view of the specimen showing crack 
geometry near fillet (a crack with constant width and length but varying depth is considered in simulations) 
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Figure 6. (a) Comparison of numerical and experimental data of the natural frequency evolution and the crack depth obtained 
from different specimen lengths; and (b) corresponding normalised frequency versus normalised crack depth 

 

 

 

Figure 7. (a) Prediction of natural frequency drop with respect to the crack growth using FE modal analysis; and (b) predicted 
number of cycles for failure with respect to the crack growth for different specimen lengths using the power law model 

 

 


