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13 Abstract

14 Highly conductive composites have found applications in thermal management, and the 

15 effective thermal conductivity (ETC) plays a vital role in understanding the thermo-mechanical 

16 behavior of advanced composites. Experimental studies show that when highly conductive 

17 inclusions embedded in a polymeric matrix the particle forms conductive chain that drastically 

18 increase the ETC of two-phase particulate composites. In this study, we introduce a random 

19 network three dimensional (3D) percolation model which closely represent the experimentally 

20 observed scenario of the formation of the conductive chain by spherical particles. The prediction 

21 of the ETC obtained from percolation models is compared with the conventional micromechanical 

22 models of particulate composites having the cubical arrangement, the hexagonal arrangement and 

23 the random distribution of the spheres. In addition to that, the capabilities of predicting the ETC 

24 of a composite by different analytical models, micromechanical models, and, numerical models 

25 are also discussed and compared with the experimental data available in the literature. The results 

26 showed that random network percolation models give reasonable estimates of the ETC of the 

27 highly conductive particulate composites only in some cases. It is found that the developed 

28 percolation models perfectly represent the case of conduction through a composite containing 
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2

1 randomly suspended interacting spheres and yield ETC results close to Jeffery’s model. It is 

2 concluded that a more refined random network percolation model with the directional conductive 

3 chain of spheres should be developed to predict the ETC of advanced composites containing highly 

4 conductive inclusions.

5 Keywords: Effective thermal conductivity, two phase-composites, particulate composites, the 

6 distribution of inclusions, highly conductive composites. 

7 1. Introduction

8 Particulate composites are widely used in thermal storage management, and there is an 

9 increasing demand for efficient and highly conductive particulate composites in electronic 

10 packaging, heat sinks, and other appliances. The heat transfer capability of particulate composites 

11 can be improved by varying spatial distribution of the inclusions and thermal properties of the 

12 constituents ([1],[2]). Recently, experimental studies showed that when highly conductive 

13 inclusions are embedded in a less thermally conductive matrix, the effective thermal conductivity 

14 (ETC) of the composite increases significantly with the increase of volume fraction (Vf) of the 

15 inclusions [3]–[7]. A precise model capable of predicting the ETC of the highly conductive 

16 particulate composites plays a significant role in evaluating the thermal and stress analysis of 

17 advanced composites. 

18 The ETC of two-phase isotropic composites depends on characteristics of the constituents such 

19 as shape, geometry, spatial distribution, thermal conductivities, Vf and matrix-inclusion interfacial 

20 effects [8], [9]. Various bounds of the ETC of composite material have been proposed, such as, 

21 based on the rule of mixture, [10],  variational principle [11] and statistical correlation functions 

22 [12]. These bounds are used to define the thermodynamic limits of the ETC of two-phase 

23 composites [2].
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1 Several analytical models have been proposed to predict the ETC of a composite material based 

2 on simplified microstructures of the composites. Maxwell [13] was one of the first persons to 

3 investigate the conduction of two-phase composites analytically by considering the dilute 

4 suspension of non-interacting spherical particles. An exact expression for the ETC of composites 

5 was obtained by solving the Laplace equation. Maxwell’s approach has been extended by many 

6 researchers, such as Fricke [14], Nielsen [15], Bruggeman [16], Hamilton and Crosser [17], 

7 Benveniste [18] and Hasselman and Johnson [19]. All these modifications extended the 

8 applicability of Maxwell’s approach for a variety of conditions. However, these models are not 

9 applicable to predict the ETC of composites having highly conductive inclusions [3].

10 Many micromechanical models have been proposed to predict the ETC of composites. 

11 Benveniste [20] formulated the ETC for multiphase systems by determining the average flux in 

12 each constituent. The homogenization was performed using the Mori–Tanaka [21] and a 

13 generalized self-consistent model [2]. Verma et al. [22] derived the ETC of two-phase composites 

14 containing spherical particles arranged in a three-dimensional cubic geometry. The arrangement 

15 was divided into multiple unit cells, and resistor model was used to determine the ETC of the unit 

16 cells. All the available micromechanical models in literature offered good predictions of the overall 

17 ETC when the Vf was relatively small or when the conductivity of the particle (Kp) was comparable 

18 to the conductivity of the matrix (Km). 

19 Various experimental, computational and theoretical studies showed that the ETC of a 

20 composite can be significantly altered by the particle shape, size, interfacial thermal resistance 

21 aside from volume fraction and Kp/Km ratio ([2],[23]).  Nan et al. [24] developed a generalized 

22 effective medium approach (EMA) formulation to compute the ETC of arbitrary ellipsoidal 

23 particulate composites with interfacial thermal resistance. The formulation accounted for the effect 
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1 of particle shape, size, orientation distribution, volume fraction and interfacial thermal resistance. 

2 With and without interfacial thermal resistance at a large Kp/Km ratio, the ETC significantly 

3 increases with the anisotropy of the inclusion shape. It was suggested that with large Kp/Km ratio, 

4 the ETC of a composite could be enhanced considerably by reinforcing the matrix with prolate 

5 inclusion (e.g., whiskers); while for small Kp/Km, the spherical particle is suitable to improve 

6 ETC. 

7 In nano-enhanced composites, the nanoparticles tend to agglomerate during the solid-liquid 

8 phase transition. Some studies showed enhancement in ETC with the formation of percolation 

9 networks ([25]); while others showed a reduction in ETC ([26]).  The percolation threshold 

10 depends on the size and the shape of the nanoparticles ([27], [28]). Nan et al.  ([24], Gao et al. [29] 

11 and Xie et al. [30]) studied the influence of the inclusions on ETC below the percolation threshold 

12 while recently Wemhoff [31] developed a percolation threshold model for composite material 

13 containing uniformly distributed and oriented cylindrical or prolate inclusion. Along the same line, 

14 Wemhoff and Webb [32] studied the influence of both spherical clustering and linear percolation 

15 network formation on the ETC of a composite.  The EMA and percolation theories were employed 

16 for percolated and unpercolated areas. It was shown that both spherical clustering and linear 

17 agglomeration tend to reduce the ETC. However, the sensitivity analysis of the model suggested 

18 that linear agglomeration can increase bulk thermal conductivity. It was found that when the ratio 

19 of inclusion–matrix to inclusion-inclusion Kapitza resistance increases then the relative thermal 

20 resistance reduces through the percolation network compared to the unpercolated regions of the 

21 domain, which in turn leads to an increase in the ETC of a composite. Recently, Chatterjee et al. 

22 [33] proposed a computational heat conduction model based on percolation theory for thermal 
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1 conductivity of composites with a high volume fraction of filler in the matrix. They considered 

2 cubical particle percolation effect to compute the ETC of the composite.

3 Several empirical models have been proposed to predict the ETC of highly thermally 

4 conductive composites. Agari and Uno ([3], [4]) and recently by Zhang et al. [34] have shown that 

5 at higher Vf and high ratios of particle to matrix thermal conductivity, i.e., Vf > 15% and Kp/Km 

6 > 100, a particle interaction in the form of a conductive chain mechanism is exist. This mechanism 

7 accelerated the heat conduction process, which was observed due to an increase in the overall ETC 

8 of the composite. It was concluded that the Vf and the geometry of the particle were responsible 

9 for forming the conductive chain mechanism. Zhou et al. [35] showed that at higher particle 

10 concentrations, some particles flocculated to form conductive chains. They introduced the heat 

11 transfer passage which took the effect of local concentration fluctuation into account to evaluate 

12 the ETC of the composites. Although, Agari and Uno [3] and Zhou et al. [35] models are applicable 

13 to predict the ETC of highly conductive composites but the parameters involved in their models 

14 need to be determined from the experiments; therefore,  these models are rarely used.

15 The percolation threshold is usually defined in terms of the volume fraction (Vf) and highly 

16 dependent on the inclusion geometry. According to the percolation theory [36], the value of the 

17 threshold for the cubic particle, Vfc, is 0.3117–0.3333. When Vf < Vfc, the conductive particles are 

18 mainly dispersed, and the effect of the particles’ interaction on ETC is small. When Vf goes beyond 

19 Vfc, the connections of the particles increase and the formations of the conductive chains dominate 

20 the rise of ETC. Yin et al. [37] mentioned that the threshold limit of percolation could go as high 

21 as 0.78. More recently, Liang et al. [28], Gao and Li [38], Wemhoff [31], Wang et al. [27] also 

22 observed the dependence of particle size and shape on the percolation threshold.
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1 The focus of this study is to present three-dimensional FE percolation models with an attention 

2 to find the effect of high conductivity percolation path on the overall ETC of a composite. In this 

3 study, FE percolation models were developed purely on thermal conduction physics and analyzed 

4 the influence of increasing inclusions’ volume fraction on the ETC of the particulate composites 

5 numerically. Moreover, for comparison, we have also investigated the 3D micromechanical 

6 models based on the conventional spatial distribution of the inclusions, namely, cubical 

7 arrangement, hexagonal arrangement, and random distribution. It is emphasized here that there is 

8 no study available that explicitly analyze how these conventional 3D micromechanical models will 

9 behave at higher volume fractions and the higher mismatch between particle and matrix thermal 

10 conductivity. Previously developed micromechanical model and analytical model by the authors 

11 for predicting the ETC of two-phase composite were also considered. The comparisons of the 

12 proposed models with the experimental data were performed and analyzed.

132. Details of the proposed percolation model

14 Agari and Uno [3] demonstrated that with the increase of volume fraction of particles, the chain 

15 of the highly conductive particles, i.e., high conductivity percolation paths are formed that 

16 drastically increase the ETC of the composite. Percolation is a phenomenon in which the highly 

17 conductive particles distributed randomly in the matrix form conductive chains. The inspiration 

18 for the geometry of the proposed models comes from the experimental work of Agari and Uno [3] 

19 and the percolation theory that is widely used in electrical engineering. We believe that it is worth 

20 investigating the role of high conductivity percolation path on the ETC of the particulate 

21 composite. The information on the three-dimensional spatial distributions of inclusion are usually 

22 not known for the experimental data considered in this study, and generally, the actual 

23 microstructure of composite is usually not available in the literature. Therefore, we created 
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1 percolation models to study the conductive chain mechanism in the particulate composites. The 

2 2D Illustration of the typical percolation model considered in this study is shown in Figure 1. The 

3 figure clearly shows that the particles (in red) touching each other participate in percolation and 

4 accelerate the heat conduction while particles (in blue) which do not form a conductive chain do 

5 not participate in percolation.  

6

7 Figure 1: Percolation model showing particles forming a conductive chain and participating in percolation paths, and 
8 randomly distributed particles in low thermal conductivity matrix.
9

10 3. Modeling Approach

11 Three different modeling approaches are considered, namely, finite element homogenization, 

12 micromechanical homogenization, and analytical modeling. 

13 3.1. Finite element homogenization

14 3.1.1. Detailed Micromechanical models

15 The thermal conductivity of the particulate composite depends on the microstructural feature of 

16 the composite such as the shape, size distribution, spatial distribution, and orientation distribution 

17 of the reinforcing inclusions in the matrix [10]. Mostly, real composites possess inclusions with 

18 random distributions. The periodic arrangement of the inclusions is usually considered to simplify 

Page 8 of 36

http://mc.manuscriptcentral.com/jcm

Journal of Composite Materials



8

1 the problem and acquire insight into the effect of microstructure on the effective properties [39]. 

2 For example, a particulate composite with a 3D periodic array of particles, an RVE (unit cell) 

3 shown in Figure 2(a) and (b) is sufficient to conclude the whole composite [40]. These RVEs are 

4 used to study the ETC of particulate composites representing the dilute effects of distribution. 

5 On the other hand, RVE with a random distribution of particles is also studied by several 

6 researchers [29],[41]. However, the recent experimental studies show that effective thermal 

7 properties of the particulate composites increase drastically with highly conductive inclusions in a 

8 matrix due to the formation of the conductive chain of particles. The effect of highly conductive 

9 inclusion has not been investigated in the literature. In this study, four types of the microstructural 

10 arrangements, namely, 3D cubical arrangement, hexagonal arrangement, random distribution, and 

11 random network percolation models are considered to investigate their ETC when the ratio of 

12 thermal conductivity of particle to the matrix is very high. Figure 2 shows the RVE of these 

13 different microstructural arrangements.

14
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1 Figure 2 Examples of particulate composite RVE considering detailed microstructural 
2 arrangements of particles at volume fraction 30%, (a) Cubical arrangement. (b) Hexagonal 
3 arrangement, (c) Random distribution, (d) Random network percolation model. The arrow 
4 represents the heat transfer direction.
5

6 3.1.2. Governing Equation and Constitutive relations

7 For a continuum body with volume,  and surface, , the thermal equilibrium 

V

h   U

8 governing equation for the temperature field can be defined as [42]: 

9  (1), 0i iq 

10 with temperature boundary conditions  on  and/or heat flux  on . Where    i i i ih q n h  h

11  is temperature change,  is the absolute current temperature,  is an absolute 0T T   T 0T

12 reference temperature,  is the normal heat flux,  is the outward vector which is normal to the h

n

13 boundary ;  and  are macroscopic heat flux and temperature on the related h   U h 

14 boundaries. 

15 Microscopic Constitutive Model

16 The matrix and particle are assumed to be locally isotropic and homogeneous. The thermal 

17 constitutive law that governs each material or phase in a RVE is given by the Fourier’s law of heat 

18 conduction

19  , where (2)i ij jq K   j
jx

 




20 Where, ,  and  are the components of the heat flux vector, temperature gradient vectors iq j ijK

21 and the consistent tangent thermal conductivity tensor.

22 Macroscopic Constitutive Model
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1 The macroscopic constitutive relation is obtained by solving the heat conduction problem on 

2 heterogeneous RVE with specified boundary conditions. Based on the imposed boundary 

3 conditions, either the macroscopic heat flux or the macroscopic temperature gradient field is 

4 calculated by averaging or homogenizing the microscopic counterparts. The effective thermal 

5 conductivity is calculated by using the macroscopic constitutive relationships relating the average 

6 heat flux ( ), and average temperature gradient ( ), and is expressed by the Fourier law of heat iq j

7 conduction as:

8  , where (3)
i ij jq K   j

jx
 




9 Where  are the components of the effective thermal conductivity tensor.
ijK

10 3.1.3. Finite Element Models

11 Finite element models for four types of micromechanical arrangements as shown in Figure 2 

12 were generated with a different volume fraction of the particles ranging from 0-50%. The 

13 commercial finite element analysis software ABAQUS was used to carry out the heat transfer 

14 analysis. RVE’s were considered to have highly conductive particles embedded in a low thermal 

15 conductivity matrix. The thermal conductivity of the matrix and particles used in this study are 

16 given in Table 1. Figure 3 (a) shows the example of the random composite having the macroscopic 

17 scale (L) and microscopic scale (l). An example of RVE having a random distribution of particles 

18 at 30% volume fractions is shown in Figure 3(b). Meshed RVE with 10-noded quadratic heat 

19 transfer elements (DC3D10) showing 6 boundary faces with respect to the axes directions is also 

20 shown in Figure 3(c). Each node in the FE model has one degree of freedom of temperature (T).

21 The following assumptions were made in creating the finite element models [43]:
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1  (1) The characteristic size of the heterogeneities is assumed to be much smaller than the dimension 

2 of an RVE, which in turn is supposed to be small compared to the characteristic length of the 

3 macroscopic structure. 

4 (2) Both the matrix and the particle phases are homogeneous and isotropic.

5  (3) Perfect bonding between the particle and matrix with negligible thermal contact resistance.

6  (4) No voids in the matrix and particle.

7

8 Figure 3 (a) Random distribution of particle (b) RVE (c) Meshed RVE with 10-noded quadratic 
9 heat transfer tetrahedron elements (DC3D10) showing 6 boundary faces with respect to the axes 

10 directions. 
11

12 Table 1. Thermal conductivity of materials ([3], [4], [7], [5], [44], [6]).
13

Material Thermal 
Conductivity 
(Wm−1 K−1)

Material Thermal Conductivity 
(Wm−1 K−1)

Polystyrene 0.1549 Silica 1.5
Epoxy 0.195 Alumina 36
High density polyethylene (HDPE) 0.543 Aluminum 204
Polyvinyl chloride 0.1687 Graphite 209.3
CaO (calcium oxide) 15.07 SCAN 220
MgO (magnesium oxide) 54.85

14
15
16 3.1.4. Boundary conditions
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1 The effective thermal properties of the heterogeneous materials can be determined by applying 

2 four types of boundary conditions [45],[46], to the RVE. The four boundary conditions are listed 

3 here as follows:

4 1. Natural Boundary Condition (NBC)

5  (4), , x ,i i i i ih q n q q B   

6 2. Essential Boundary Condition (EBC)

7  (5), , x ,i i i i ix B      

8 3. Periodic Boundary Conditions (PBC)

9  (6)
(x ) (x ) ( ),
(x ) (x ) x ,

i i i i i i

i i i i i i

L x x
h L h B
       

    

10 So that , where  and  are constant vectors.i iq q
iq i

11 4. Mixed Boundary Condition (MBC)

12  (7)( )( ) 0, x ,i i i i ix h q n B     

13 Where,  is the surface boundary of the RVE,  is the outer unit normal vector to ∂B, and L is B in

14 the length of the periodicity. Generally, for the case of PBC and EBC,  is applied; while  is i
iq

15 applied for NBC. In the case of MBC, EBC is applied on one pair of parallel faces, and NBC is 

16 applied on the other pairs. Previous investigations have found that the MBC and PBC are much 

17 more accurate in the micromechanical analysis of composite materials for both periodic materials 

18 and random materials ([47]). Moreover, MBC and PBC yield RVE size independent results while 

19 the results obtained from EBC and NBC converge to those of MBC and PBC as l increases as 

20 shown by [48]. Since cubical and hexagonal arrangements are periodic so PBC can be applied; 
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1 while MBC should be used for random and percolation models. This study is also utilized MBC 

2 to evaluate effective thermal conductivity due to scale-independence.

3 3.1.5. Homogenization Method

4 From the above homogenization procedures, we can see that the flux and temperature on the 

5 boundary of the RVE are sufficient to calculate the effective thermal conductivity of the 

6 composites. The macroscopic heat flux and the macroscopic temperature gradient fields were 

7 computed as the volume averages of the microscopic counterparts, and they were related to each 

8 other by the macroscopic constitutive formulations ([49]).

9  (8)1 1
i i i iV

q q q dV hx d
V V 

    
10

11  (9)1 1
i iV

dV n d
V V

   


     
12
13 Where V is the volume of the RVE. It can be seen from Eq. 8 and 9 that the volume average heat 

14 flux and temperature gradient are related to the flux on the boundary of the RVE.

15 For isotropic case, the ETC tensor can be expressed as . Thus according to macroscopic 
ij ijK k

16 Fourier’s law, the ETC can be calculated as . To eliminate the rate effects and /i ik q 

17 external influence, all RVE heat transfer simulation should be carried out under steady-state heat 

18 conduction.

19 It is worth mentioning that for highly conductive inclusions, increasing the volume fraction of the 

20 inclusion would cause acceleration in the diffusion process, which cannot be captured by a 

21 Fourier’s law of heat conduction presented in Eq. (1) [50]. However, if one neglects size dependent 

22 conduction and assumes steady state conditions, then different diffusion equations will yield the 

23 same effective thermal conductivity for the composite [47].

24 3.2. Micro-thermal homogenization
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1 Khan and Muliana (2010) developed a micromechanical model for the effective thermal properties 

2 of a particle reinforced composite. In this study, we employed the same model for computing the 

3 effective thermal conductivity of the composite containing highly conductive inclusion in a less 

4 thermally conductive matrix and analyze its suitability. For brevity, we have reviewed the basic 

5 equations describing the ETC formulation. Figure 4 illustrates the simplified micromechanical 

6 model (RVE) for the particulate composite. In the model, a microstructure with the cubical 

7 arrangement of cubic particles in a homogeneous matrix was assumed. A representative volume 

8 element (RVE) with a cubic particle embedded in the center of the matrix with cubic domain. A 

9 one-eight unit-cell consisting of four sub-cells was modeled due to symmetry. The first sub-cell 

10 was a particle constituent, while subcells 2, 3, and 4 were representing the matrix constituents. The 

11 micromechanical relations gave equivalent homogeneous thermal responses from the 

12 heterogeneous microstructures and simultaneously recognize thermal constitutive behaviors of the 

13 individual constituents. The micromechanical formulations were designed to be compatible with 

14 commercial finite element analyses software, i.e., ABAQUS [1]. In ABAQUS, the effective 

15 responses from the micromechanical relations were implemented at each material point (Gaussian 

16 integration point) within the finite elements as shown in Figure 4.

17

18 Figure 4 Representative unit-cell model for the particulate composite with cubic particle embedded in a 
19 matrix.
20
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1 The micromechanical model was formulated by considering an RVE with a single inclusion 

2 embedded in a cubic matrix. Periodic boundary conditions were imposed on the selected RVE 

3 model. A volume averaging method based on a spatial variation of the temperature gradient in 

4 each subcell was adopted to determine the effective thermal conductivity of the particle reinforced 

5 composites. The average heat flux and temperature gradient are shown here:

6  (10)
( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i k ii
m mV

q q x dV V q
V V 

  
7

8  (11)
( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i i k i
m mV

x dV V
V V

  
 

  
9

10 Where N is the total number of sub-cells. The average heat flux within an FE scheme was solved 

11 numerically, and an incremental approach was used to obtain the ETC expression. The incremental 

12 average heat flux can be expressed as:

13  (12)- ij ji ddq K 

14

15 The homogenized temperature gradient and heat flux relations are summarized as follows:

16  (13)(1) (1) (2) (2)
( )

(3) (4)1
i i iA i id V d V d d d

V
        

17  (14)( ) ( ) (3) (3) (4) (4)1
i

A A
i i idq d d dV q V q V q

V
   

18  (15)( ) (1) (2)A
i i idq q dqd 

19
20 Where, the total volume of the subcells 1 and 2 in Eqs. (13) and (14) is V (A) =V (1) +V (2). 

21 Let  be the concentration tensor that relates the average temperature gradient of each ( )mM

22 subcell with the overall temperature gradient across the unit cell. The temperature gradient in each 

23 subcell is given by:

24  (16)( )( ) m
jij

m
i dMd  

25
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1 and the incremental form of the heat flux in each subcell is expressed as:

2  (17)( )( ) ( )- k
m

jk
m m

i ij ddq K M 
3

4 Using Eq. (17), the average incremental heat flux in the unit-cell model is approximated as:

5  (18)
4

( ) ( )

1

( )1 - m m
jk ki

m

m
ijd V d

V
q K M 



 
6
7 Comparing the above equation with Eq. (12) gives the tangent effective thermal conductivity 

8 matrix of the composite, which is:

9  (19)
4

( )( )

1

( )1-ik
mm

jk
m

m
ijV

V
K K M


 

10
11 Detail expression of the  matrix can be found elsewhere [1].( )mM
12
13 3.3. Analytical Model

14 Khan et al. [51] proposed an analytical model for ETC of an isotropic two-phase composite 

15 material consists of a highly conductive particle as inclusions embedded in a low thermally 

16 conductive polymeric matrix. An ideal contact between the inclusions and the matrix was assumed 

17 with no porosity in the composite. The ETC expression was derived assuming a unidirectional heat 

18 flow, neglecting thermal convection, radiation, and the contact resistance between the matrix and 

19 the inclusions. The underlying assumption and procedure to obtain the ETC expression is 

20 summarized below.

21 A unit cube (1x1x1) of a two-phase composite material was assumed to have inclusions 

22 dispersed in a matrix with some statistical spatial distribution as shown in Figure 5 (a). Some form 

23 of continuous distribution of inclusions was usually assumed to determine the analytical 

24 expression for the ETC of a composite [52]. The outer surfaces of a cube parallel to xy and xz 

25 planes were perfectly insulated, i.e., the direction of heat transfer is along the x-axis. The two-
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1 phase composite was hypothetically sliced into numerous thin layers parallel to the yz plane as 

2 shown by the vertical lines in Figure 5 (b). It was assumed that the driving potential (temperature 

3 gradient) for heat conduction in x-direction was uniform through each layer. Each composite layer 

4 had the inclusions and the matrix fractions as shown in Figure 5 (c). Without changing the ETC of 

5 each layer, both inclusions and matrix can equivalently be represented by histograms of matrix 

6 and inclusions to compute the effective resistance of each slice which in turn gives the effective 

7 resistance (ETC) of a unit cell. Alternatively, the sequence of the layers can be re-arranged into a 

8 continuous distribution function of the inclusions to compute the effective resistance of the unit 

9 cell Figure 5 (d). The model obtained was geometrically invariant along the z-axis. 

10
11 Figure 5. A cubic unit cell for the study of the ETC of a two-phase composite material (after 
12 [28]). (a) Inclusions randomly distributed in the matrix, (b) hypothetically sliced thin layers, 
13 (c) histogram of the layers and (d) corresponding equivalent continuous distribution of the 
14 histogram.
15
16 The unidirectional effective heat flux ( ) in a unit cube can be expressed as:xq
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1  (20)x e
x

Tq k
x


 



2 Where, is the ETC of a composite and  is the uniform temperature gradient through 

ek

xT x 

3 each layer. For a unit length along the x-axis, the expression for effective resistance ( ) of a unit 

eR

4 cell is given by [52]

5  (21)
1

e
0

1 2 1R ;
( ) y(x) e

m p m m e

dx x k
k k k k R


  

 

6 The  is a function that describes the variation in the collective volume of the inclusions 

y(x)

7 (that may vary differently for different distributions) from one Vf to the other Vf of the inclusions. 

8 The volume under the surface was formed by the curve projection on xy-plane represents the 

9 volume of all inclusions at a particular volume fraction. The ETC ( ) was obtained from Eq. (21) ek

10 by taking the inverse of the equivalent overall resistance of the unit cell ( ) obtained for different eR

11 distributions. These calculations were only possible if one assumed that the driving potential 

12 (temperature gradient) for heat conduction along x-direction was uniform through each layer.

13 Khan et al. [51] assumed that the sequence of the layers shown in Figure 5(c) can be 

14 represented by a linear distribution function of the inclusion material and obtained the following 

15 expression for the ETC of a two-phase composite as a function of Vf and the thermal conductivity 

16 of the constituents:

17  (22)

 

 

11 ln 2 ( ) 2 ( )
( )

1 21 ln 2 ( )
( )

m f p m f p m
p m

e
f

m f p m
p m m

k V k k V k k
k k

k
V

k V k k
k k k


        
    
  

18

19 4.2 Comparison with Other Models 
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1 4.2.1 Analytical Models

2 To check the efficacy of the proposed model, the predictions were also compared with other 

3 models available in the literature. For brevity, we considered classical models relevant to our study. 

4 Maxwell [13] investigated the conduction of two-phase composites analytically by considering the 

5 dilute suspension of non-interacting spherical particles. An exact expression for the ETC of 

6 composites was obtained by solving the Laplace equation. Jeffrey [53] extended the Maxwell 

7 model and considered the interaction between the pairs of spheres to determine the expression of 

8 ETC of composite and also introduced a parameter that accounts for the role of Kp/Km ratio on 

9 the ETC. The results were also found to be dependent on how pairs of spheres are distributed with 

10 respect to each other. The ETC expressions for these models are written as follows:

11 Maxwell [13]:  (23)
 

 
2 2

2
p m f p m

e m
p m f p m

k k V k k
k k

k k V k k

  


  

12

13 Jeffrey [53]:  (24)   1 (2 )
3 1

2 2
m p p m p m

e m m f f
m p m p

k k k k k k
k k k V V

k k k k
    

   
   

14

15  is parameter depending on the thermal conductivity ratio.1

16 4.2.2 Numerical Models

17   Several numerical models are also available to determine the ETC of particulate composites. 

18 For example, ETC of random two-phase composite materials was obtained by considering the 

19 shape, spatial distribution, thermal contact resistance, and particles Vf ([23],[54],[39] and 

20 references therein). Experimental and numerical ETC of polymer matrix filled with metallic 

21 spheres were presented by Karki et al. ([41]). The effects of the filler concentrations, the ratio of 

22 thermal conductivities of filler to the matrix material and the Kapitza resistance of the contact 
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1 inclusion/matrix on the ETC were investigated. For more details and updated review/references 

2 on the numerical modeling of the ETC of particulate composites, please see [41]. To the best 

3 knowledge of the authors, there is only one model available in the literature that considered the 

4 effect of the embedding highly conductive inclusions in a less thermally conductive matrix on the 

5 ETC of particulate composites. Zhang et al. [34] proposed a randomly mixed model to compute 

6 the ETC of particulate composites numerically with respect to the Vf of the particles and the ratio 

7 of the thermal conductivity of the particle to that of the matrix. The cubic shape particles of uniform 

8 size were generated randomly using a computer program. The steady state heat equation was 

9 solved by the finite difference method directly for the composite with appropriate boundary 

10 conditions.

11
12 4. Results and Discussion

13 Results obtained from the proposed finite element homogenization, analytical solutions, and 

14 micromechanical models were compared with already published experimental data and other 

15 models in literature which were developed explicitly for highly conductive particulate composites.

16 We investigated the effect of conductivity mismatch on the ETC of the particulate composites. 

17 The effect of the different distribution of the inclusions were analyzed, and four RVE of proposed 

18 micromechanical models with detailed microstructure were considered. Figure 6 shows how the 

19 ETC of composite increases with respect to the matrix conductivity with the increase of the 

20 conductivity mismatch (Kp/Km ratio). It was found that one particle model showed the lowest 

21 increase in the overall thermal conductivity while the percolation model showed the highest values. 

22 At lower volume fraction there was not a significant difference in the increase of the ETC for all 

23 models. However, as the volume fraction was increased beyond 0.3, then the ETC of the 

24 percolation models was increased with respect to the matrix material conductivity. As per the 
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1 percolation theory [36], after Vfc beyond 0.3, the particles were increased, and the formations of 

2 the conductive chains thus played a dominant role in the increase of ETC.

3

4

5 Figure 6. Conductivity mismatch in a two-phase composite material and its effect on the ETC for various 
6 micromechanical models..
7
8 For completeness, we studied the conductivity mismatch effect on the ETC for all proposed 

9 models. Figure 7 shows the result of conductivity mismatch at different volume fraction for each 

10 model. It was found that among all the models considered the linear model produced the highest 

11 increase in the ETC with respect to the matrix material thermal conductivity. The simplified 

12 micromechanical model showed the lowest increase in the ETC. One particle, two particles, and 
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1 random particle model showed a similar trend in the increase of the ETC with respect to the matrix 

2 material.

3

4

5
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1

2 Figure 7. Conductivity mismatch in a two-phase composite material and its effect on the ETC for various 
3 micromechanical models.
4

5 Figure 8 was used to analyze the percent increase in the ETC that was obtained with respect to the 

6 matrix materials. Again the maximum ETC was predicted using the linear model. As a comparison, 

7 we showed the results at two volume fraction for all models. We observed that at Vf =0.1, almost 

8 all the micromechanical models yielded very low values except the linear model which gave nearly 

9 80% higher ETC values than the matrix conductivity. While at Vf =0.3, the linear model provided 

10 350% higher than the matrix conductivity as compared to the percolation model which yielded 

11 180% higher than the matrix conductivity.     
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1

2 Figure 8. Conductivity mismatch in a two-phase composite material and its effect on the ETC for various 
3 micromechanical models.
4

5 4.1 Comparison with Experimental Data

6 The ETC of epoxy filled with silica (Kp/Km=7.7), alumina (Kp/Km=185) and silica-coated 

7 aluminum nitride (SCAN, Kp/Km=1128) particulates was experimentally studied by Wong and 

8 Bolampally [7]. The average particle size of the fillers used was 12–15 microns. The thermal 

9 conductivities of all materials used in this study are given in Table 1. Figure 9 showed the 

10 comparisons of the experimental and predicted ETC for ratio Kp/Km=7.7. For all Kp/Km, the 

11 models observed with reasonable estimates but linear and Jeffrey models overestimated the ETC.
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1   

2 Figure 9. Conductivity mismatch in a two-phase composite material and its effect on the ETC for various 
3 micromechanical models.
4
5 The comparison of the experimental, the predicted ETC of epoxy filled with alumina 

6 (Kp/Km=185) and silica-coated aluminum nitride (SCAN, Kp/Km=1128) particulates with 

7 different models are shown in Figure 10. For, Kp/Km=185, the percolation model and Jeffrey 

8 model were observed with reasonable estimation. Maxwell model, micromechanical model, one 

9 particle, two particles, and random model were found with reasonable estimates until Vf <20%. 

10 They showed an underestimation of the ETC at higher Vf. The linear model and numerical solution 

11 overestimated the ETC, but after Vf >30% both models showed a similar trend of increase in the 

12 ETC with the increase of Vf. For Kp/Km=1128, all the models deviated from the experimental data 

13 after Vf >20%; while linear distribution gave acceptable estimates. The numerical model was 

14 observed with a reasonable estimate until Vf <30%, and after that, the results have deviated 

15 significantly.

16
17
18
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1
2 Figure 10. Comparison of the experimantal data and predicted ETC for a) Epoxy/Alumina 
3 b) Epoxy/silica coated aluminum nitride composites.
4
5
6 Comparison of the experimental data and the predicted ETC of polystyrene filled with CaO 

7 (Kp/Km=97) and MgO (Kp/Km=354) particulates are presented in Figure 11. The experimental 

8 data were obtained by Sundstrom and Lee [5]. The calcium oxide and magnesium oxide were 

9 powders with particles approximately spherical in shape and particle size in the range of 62-125 

10 microns. For both cases, the Jeffrey model observed with the best estimates of the ETC. Both the 

11 numerical model and percolation model were providing a consistent trend of increase in the ETC 

12 with the increase of Vf. Maxwell model, micromechanical model, one particle, two particles, and 

13 random model were observed with reasonable estimates until Vf <10%; but they were providing 

14 underestimated values of the ETC at higher Vf. In both cases, the linear model overestimated the 

15 ETC as compared to all the other models.  

16
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1  

2 Figure 11. Comparison of the experimantal data and predicted ETC for a) 
3 Polystyrene/CaO b) Polystyrene/MgO composites.
4
5 Kumlutas et al. [44]  and Tavman [6] experimentally studied the ETC of high-density 

6 polyethylene filled with tin (Kp/Km=120) and aluminum (Kp/Km=375) inclusions. The metallic 

7 fillers of tin and aluminum used in the form of fine powder with particles approximately spherical 

8 in shape and particle size in the range of 20-40 and 40–80 microns, respectively. The comparison 

9 of the experimental data and the predicted ETC with different models are shown in Figure 12

10  
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1 Figure 12. For Kp/Km=120, Jeffrey and percolation model were with the best estimates and 

2 provided trends in the increase of ETC. All other models underestimated the predictions except 

3 the linear model. However, for Kp/Km=375, linear distribution was observed with quite reasonable 

4 estimates of the trend in the increase of ETC with the increase of Vf of the inclusions. However, 

5 all other models underestimated the ETC at this ratio.

6

7  

8 Figure 12. Comparison of the experimantal data and predicted ETC for a) 
9 HDPE/Aluminum b) HDPE/Tin composites.

10
11 Agari and Uno ([3], [4]) studied Graphite based composites and observed that at higher Vf the 

12 graphite flakes agglomerated and formed the conductive chain and as a result ETC of the 

13 composite was considered to increases drastically [24]. The average particle size of the fillers used 

14 was 44–149 microns. Figure 13 shows the comparison of the experimental data and the predicted 

15 ETC. The linear distribution provided the best estimates. Jeffrey and percolation models provided 

16 a reasonable estimate and showed the same tendency as the experimental data. All other models 

17 underestimated the ETC. The results covered the commonly used range of the thermal conductivity 

18 ratio of matrix to the inclusions, i.e., Kp/Km=10 – 1240. 
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1  

2 Figure 13. Comparison of the experimantal data and predicted ETC for a) 
3 Polyvinylchloride/Graphite b) Polyethylene/Graphite composites.
4
5 4.2 Discussion

6 It can be realized that for all the available experimental data, the trend shows an increase of 

7 ETC with the increase of Vf of the inclusions. All analytical models show good predictions of the 

8 overall ETC when the Vf is relatively small, but the predictions tend to deviate as the Vf increases. 

9 However, in most of the analyzed cases, linear distribution, Jeffrey and Percolation models 

10 effectively predict the trend in the increase of ETC with the increase of Vf of the inclusions.

11 If we recall the assumption of Maxwell’s equation: there is no interaction among the particles. 

12 Jeffrey [53] extended the Maxwell model and considered the interaction between the pairs of 

13 spheres to determine the expression of ETC of the composite. On the other hand, an analytical 

14 model is based on the linear distribution of the dispersed particles which effectively considered 

15 the interaction between the pairs of spheres to determine the expression for the ETC of a two-

16 phase composite as a function of Vf and the thermal conductivity of the constituents. The 

17 micromechanical model computes the ETC based on the unit cell representing a dilute suspension 
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1 of non-interacting spherical particles. The possibility of the explicit formation of particle chains is 

2 not considered in all these models.

3 Since we used the Digimat software to create the FE percolation models, so we do not have enough 

4 control over the algorithm of particle generation. The software gives us FE models with limited 

5 percolation effects, for example, a maximum of 20-30 percolated chains are usually formed 

6 depending on the volume fraction. After investigating the location of spheres, it was found that the 

7 chain of the highly conductive particles, i.e., high conductivity percolation paths, consists of 

8 maximum 4 spheres touching each other (2D Illustration is shown in Figure 1). This limited chain 

9 length was found insufficient in getting the enhancement of the ETC, and it was the primary reason 

10 for significant differences between estimated and experimental ETC at higher volume fractions 

11 and the higher mismatch between particle and matrix thermal conductivity. However, the 

12 percolation models were found competitive in describing the sphere interaction mechanism and 

13 almost reproduces the results of Jeffrey’s model [53].

14 We observed that the proposed analytical model with linear distribution worked very well for 

15 most of the particulate composites. For such highly conductive composites, we recommended that 

16 experiments should be performed to find the real 3D spatial distribution and connectivity of the 

17 inclusions. We plan to conduct experiments by ourselves to acquire the 3D spatial distribution of 

18 the clusters and conductive chains of particles using micro CT to generate real microstructure of 

19 particulate composites. Nevertheless, we still believed that the percolation modeling approach 

20 could be used to predict the ETC of particulate composites provided several long conductive chains 

21 should connect the opposite faces of the matrix, which is not the case in the proposed model due 

22 to software limitations. To resolve this issue, we also plan to develop our algorithm to generate 
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1 spatially controlled and architected chains of spheres to study their effect on the ETC of the 

2 particulate composites.

3 It should be realized that the discrepancies in predictions in comparison with the experimental 

4 data are due to a number of other reasons: 1- The model does not account for the effect of particle 

5 shape, 2- size, orientation distribution, interfacial thermal resistance and the effect on particle 

6 agglomeration on the enhancement of the ETC of a composite were not considered. For such work, 

7 we refer to the work of Nan et al. [24], Prasher et al. [25], Hong et al. [55] and more recently by 

8 Wemhoff [31] and Wemhoff & Webb [32].

9

10 4. Conclusions

11 Two micromechanical modeling approaches were presented to predict the ETC of two-phase 

12 composites containing inclusions with very high thermal conductivity than the matrix. The first 

13 modeling approached introduced four micromechanical models based on the various spatial 

14 distribution. Finite element homogenization was performed to compute the ETC. In the second 

15 approach, a simplified micromechanical model with one particle embedded in a matrix was 

16 considered. The micromechanical model used four particle and matrix subcells. Micromechanical 

17 relations were formulated in terms of incremental average heat flux and temperature gradient, in 

18 the subcells. The first order homogenization scheme was applied, and ETC was formulated by 

19 imposing heat flux and temperature continuity at the subcells’ interfaces. The predictions obtained 

20 from both modeling approaches were compared with the published experimental data and other 

21 models available in the literature. It was found that the random network percolation models gave 

22 reasonable estimates and showed a rational trend in the increase of ETC for the high Kp/Km ratio 

23 as compared to the ones obtained from the other micromechanical models. 
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1 Moreover, it was found that the analytical solution based on the linear distribution of the 

2 inclusions provided reasonable estimates with the increase of ETC for the high Kp/Km ratio. We 

3 concluded that conductive chain mechanism could be adequately represented by the 

4 micromechanical model based on random network percolation models and Jeffrey model in which 

5 the inclusions were distributed randomly in a matrix but form limited connections and interaction 

6 among inclusions. It was also concluded that with further improvement of the percolation models 

7 such as introducing more conductive particle chains and use of smaller size particles with 

8 clustering effects may improve the prediction of the ETC.

9
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