
EFFICIENT ALGEBRAIC MULTIGRID PRECONDITIONERS

ON CLUSTERS OF GPUS

AMBRA ABDULLAHI HASSAN, VALERIA CARDELLINI

Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy,

ambra.abdullahi@uniroma2.it, cardellini@ing.uniroma2.it

PASQUA D’AMBRA

Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche,

via P. Castellino 111, 80131 Napoli, Italy,

pasqua.dambra@cnr.it

DANIELA DI SERAFINO∗

Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”,

viale A. Lincoln 5, 81100 Caserta, Italy,

daniela.diserafino@unicampania.it

SALVATORE FILIPPONE

Centre for Computational Engineering Sciences, School of Aerospace, Transport and

Manufacturing, Cranfield University, Whittle Bldg. 52, Cranfield MK43 0AL, United Kingdom,

salvatore.filippone@cranfield.ac.uk

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

Abstract

Many scientific applications require the solution of large and sparse linear systems of
equations using Krylov subspace methods; in this case, the choice of an effective precon-
ditioner may be crucial for the convergence of the Krylov solver. Algebraic MultiGrid
(AMG) methods are widely used as preconditioners, because of their optimal computa-
tional cost and their algorithmic scalability. The wide availability of GPUs, now found
in many of the fastest supercomputers, poses the problem of implementing efficiently
these methods on high-throughput processors. In this work we focus on the application
phase of AMG preconditioners, and in particular on the choice and implementation of
smoothers and coarsest-level solvers capable of exploiting the computational power of
clusters of GPUs. We consider block-Jacobi smoothers using sparse approximate inverses
in the solve phase associated with the local blocks. The choice of approximate inverses in-

stead of sparse matrix factorizations is driven by the large amount of parallelism exposed

by the matrix-vector product as compared to the solution of large triangular systems on
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GPUs. The selected smoothers and solvers are implemented within the AMG precondi-
tioning framework provided by the MLD2P4 library, using suitable sparse matrix data
structures from the PSBLAS library. Their behaviour is illustrated in terms of execution
speed and scalability, on a test case concerning groundwater modelling, provided by the
Jülich Supercomputing Center within the Horizon 2020 Project EoCoE.

Keywords: clusters of GPUs – algebraic multigrid – block-Jacobi smoothers – sparse
approximate inverses.

1. Introduction

Many engineering and scientific applications require the solution of linear systems

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (1)

where the matrix A is large and sparse. In our context, large means millions or even

billions of unknowns, whereas sparse means that most coefficients in A are zero and

it is convenient to employ special storage formats.

The most widely used solvers for systems of this type are Krylov subspace meth-

ods [1]. Their time to solution is determined by the number of iterations performed

and by the time per iteration, and hence their efficiency is the result of a tradeoff

between iteration complexity and speed of convergence. A critical feature is the

application of preconditioning, corresponding, e.g., to a transformation of the form

M−1Ax = M−1b, M ∈ R
n×n, (2)

which is aimed at speeding up the convergence of Krylov methods through the

improvement of the “quality” of the system matrix. Note that the product M−1A is

not computed explicitly, but the Krylov solvers are modified so that it is obtained

by performing at each iteration the computation of M−1v, where v is a suitable

vector.

Multigrid methods are among the most efficient numerical preconditioners for

solving large-scale systems of equations. In particular, they are optimal, in the sense

that their computational cost grows linearly with the number of unknowns, when

the linear systems come from the discretization of elliptic partial differential equa-

tions [2]. Here we focus on the Algebraic MultiGrid (AMG) approach, which, unlike

the geometric one, does not make explicit use of information about the problem

which the linear system comes from, but exploits only the linear system, with the

goal of achieving methods that can be applied to wide classes of problems [3, 4].

Furthermore, we consider systems with symmetric positive definite matrices, which

until now have been the main target of the AMG research activity.

The linear complexity of AMG preconditioners generally translates into algorith-

mic scalability, i.e., the number of iterations of AMG-preconditioned Krylov solvers

does not depend on the size of the problem. This allows efficient parallel implemen-

tations on multiple CPUs, for example through a domain decomposition approach,

in which rows of the matrix are assigned to different computing nodes. Because

of their linear complexity and parallelization scalability, AMG preconditioners are

expected to be methods of choice in the emerging exascale scenario [5].
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The diffusion of General Purpose Graphics Processing Units (GPGPUs), cur-

rently found in many of the fastest supercomputers in the Top 500 list (https:

//www.top500.org/lists/), requires the exposition of a high degree of parallelism,

because GPUs are high-throughput many-core processors. Since AMG methods

are obtained by combining different components (smoother, coarsening algorithm,

coarsest-level solver, restriction and prolongation operators), a full exploitation of

GPU capabilities requires each component to be optimized for this type of archi-

tecture.

We focus on the application phase of AMG preconditioners, and in particular on

the choice and implementation of AMG smoothers and coarsest-level solvers capable

of harnessing the computational power offered by a cluster of GPUs. We consider

block-Jacobi smoothers and solvers that use sparse approximate inverses to perform

the local solves required by each block, instead of the usual factorization methods.

The choice of sparse approximate inverses is motivated by the much larger amount

of parallelism exposed by sparse matrix-vector products as compared to the paral-

lelism available in sparse triangular solves. Furthermore, suitable implementations

of sparse approximate inverse preconditioners have already proved their efficiency

on a single GPU (see, e.g., [6, 7]). In our work, the smoothers and local solvers

are used within the AMG framework offered by the MLD2P4 package of precondi-

tioners [8, 9, 10] and exploiting sparse matrix data structures and Krylov solvers

from the PSBLAS library [11]. We conducted weak scalability tests on the JURECA

supercomputer at the Jülich Supercomputing Centre (JSC), obtaining good weak

scalability on up to 128 GPUs and 256 million equations.

Previous research efforts have been devoted to study AMG on GPUs, showing

the acceleration that can be achieved by exploiting these devices (see, e.g., [12, 13,

14, 15, 16, 17, 18]). However, to the best of our knowledge, the AMG smoothers

and local solvers we employ in this work have not been considered in other AMG

preconditioners tailored for GPUs. Furthermore, in most cases, only a single GPU

or small-scale GPU clusters have been considered.

In this work we do not consider the setup phase of the preconditioner, which

will be the subject of future work. Of course, an efficient AMG setup on multiple

GPUs is important for the overall efficiency of the preconditioner. Nevertheless, in

situations where we need to solve multiple linear systems with the same coefficient

matrix or sequences of linear systems with slowly varying matrices that allow reuse

of the preconditioner, it is desirable to obtain the best possible efficiency during

the solution phase even at the expense of a greater setup time, because this will be

amortized over multiple solution steps.

The remainder of this article is organized as follows. In Section 2 we briefly de-

scribe AMG preconditioners, identifying their main sparse-matrix kernels. In Sec-

tion 3 we discuss the main issues concerning the implementation of these kernels

on GPUs. In Section 4 we illustrate the behaviour of the AMG preconditioners

on a cluster of GPUs using linear systems coming from a groundwater modelling
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application. Finally, we provide some concluding remarks in Section 5.

2. AMG Preconditioners

Multigrid methods achieve their efficiency by the recursive application of two com-

plementary processes: relaxation and coarse-grid correction. The relaxation (or

smoothing) consists in the application of an iterative method, e.g., Jacobi or Gauss-

Seidel, to reduce highly oscillatory error components, while the coarse-grid correc-

tion corresponds to the solution of the resulting residual equation in an appropri-

ately chosen coarse space, aimed at reducing the leftover error components. This

procedure is applied recursively, generating a sequence of spaces and corresponding

residual equations of smaller and smaller size.

In the geometric multigrid approach, the coarse spaces and the associated re-

striction and prolongation operators, needed for transferring information from a

space to the next coarser one and vice versa, are defined by the geometry of the

problem. Conversely, AMG methods build the hierarchy of spaces and the corre-

sponding transfer operators by performing an algebraic coarsening process, which

uses only the entries of the system matrix, without assuming explicit knowledge of

the problem which the linear system originates from. We consider an algebraic coars-

ening procedure based on the aggregation technique, where coarse-space unknowns

are aggregates of the original unknowns. In particular, the AMG preconditioners

available in the MLD2P4 library [10] use a decoupled version of the smoothed ag-

gregation algorithm described in [19, 20]. Since the implementation on GPUs of the

setup of the AMG hierarchy is beyond the scope of this work, we refer the reader

to [21] for details on this aggregation algorithm and its current implementation in

MLD2P4.

Here we briefly describe the so-called application phase of the AMG precondi-

tioner, also known as multigrid cycle, which is the objective of our implementation

on clusters of GPUs, using the notation introduced below.

Let

A1 ≡ A,A2, . . . , Anlev (3)

be the hierarchy of matrices resulting from the coarsening procedure, where Ak has

dimension nk, with n1 > n2 > . . . > nlev, and n1 = n, where A and n are defined

in (1). We assume that the matrices have been built by using the Galerkin approach,

i.e., for each level k < nlev,

Ak+1 = PT
k AkPk, (4)

where

Pk ∈ R
nk×nk+1 (5)

is a linear prolongation operator from level k + 1 to level k, and its transpose is a

restriction operator from level k to level k + 1. This is a common choice in AMG
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Algorithm 1 (V-cycle)

1: procedure Vcycle(k,Ak, bk, xk)

2: if (k 6= nlev) then

3: xk = xk + Sk (bk −Akxk)

4: bk+1 = PT
k (bk −Akxk)

5: xk+1 = Vcycle(k + 1, Ak+1, bk+1, 0)

6: xk = xk + Pkxk+1

7: xk = xk + ST
k (bk −Akxk)

8: else

9: xk = A−1

k bk
10: end if

11: return xk

12: end procedure

methods and is used in the MLD2P4 library. Finally, we denote by Sk ∈ R
nk×nk the

relaxation operator at level k, i.e., the pre-smoothing step has the following form:

xk = xk + Sk (bk −Akxk) , (6)

with obvious meaning of xk and bk, and the post-smoothing step has the same

structure as in (6), with ST
k in place of Sk. For the sake of simplicity, in (6) we

describe the application of a single smoothing iteration. Different multigrid cycles

can be obtained by combining the previous operators. The most widely used one is

the so-called V-cycle, described in Algorithm 1.

Several relaxation methods can be chosen, defined by operators Sk with dif-

ferent characteristics. For example, in the Jacobi method Sk = diag(Ak)
−1, where

diag(Ak) is the diagonal matrix with diagonal entries equal to the diagonal entries of

Ak; in this case, the application of Sk corresponds to a highly parallel vector update

operation. More robust iterative methods, such as Gauss-Seidel and block-Jacobi,

are often needed to obtain effective preconditioners; however their application re-

quires a kernel to solve sparse triangular systems, and such a kernel is not well

suited to effective implementation on GPUs (see the next section for more details).

Block-Jacobi iterations also require the factorization of sparse matrices, which can

be done once during the setup of the preconditioner. We also note that the solu-

tion of the coarsest-level system (k = nlev) must be carefully addressed in parallel

settings. Direct solvers usually lead to preconditioners that are more effective in

reducing the iterations of Krylov solvers, but this does not guarantee parallel effi-

ciency. On the other hand, the iterative methods usually applied as smoothers can

be used as coarsest-level solvers too, with the aim of achieving a better tradeoff

between preconditioner quality and parallel performance.
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3. AMG on GPUs

The term GPGPU was first introduced in connection with devices produced by

NVIDIA Co. The NVIDIA GPUs are made up of scalable arrays of multithreaded,

streaming multiprocessors. Each multiprocessor is composed of a fixed number of

scalar processors, one or more instruction fetch units and on-chip fast memory, as

illustrated in Figure 1. The host computer is connected to the GPU device using a

bus, as shown in Figure 2, normally having a much smaller bandwidth than that of

the device global memory. The programming model proposed by NVIDIA is Single

Figure 1. GPU device: SIMT architectural model

MULTIPROCESSOR MULTIPROCESSOR MULTIPROCESSOR

GLOBAL MEMORY

DEVICE

HOST

Figure 2. GPU device to host connection

Instruction Multiple Threads (SIMT), as implemented in the CUDA programming

language; a CUDA program consists of a host program that runs on the CPU
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host, and a kernel program that executes on the GPU device. Each thread has an

identifier, and each vector instruction is executed on a set of threads called a warp.

In the sequel we will present results obtained on a parallel machine where each

node is equipped with a standard (multicore) CPU and one or more GPUs. In our

implementation there is one of the CPU cores acting as the host for each GPU

device.

The overall data parallelization strategy is dictated by the MLD2P4/PSBLAS

programming environment, i.e., a generalized row-block distribution is used [10].

In particular, the parallel matrix-vector products require on each process the avail-

ability of the so-called halo data, i.e., vector entries located on different processes

but whose values are necessary to complete the local computation, as specified by

the sparsity pattern of the matrix. From the description of the multigrid cycle in

Section 2, it is clear that its efficient implementation on clusters of GPUs depends

on the efficient implementation of the following computational kernels:

• vector sum;

• sparse matrix by vector product;

• relaxation and coarsest-level solve.

Note that the sparse matrix by vector product is involved not only in the transfer

of data across the levels of the AMG hierarchy, but also in the usual computation

of residuals in a Krylov method.

The GPU implementation of these kernels is handled through a plugin for the

underlying PSBLAS library [11, 22]. As discussed at length in [22], an efficient

implementation of these computational kernels cannot be achieved unless we restrict

data transfers between the GPU device and the CPU host. Each GPU-enabled data

structure (vector or sparse matrix) is equipped with memory allocated on both the

host (CPU) and the device (GPU); at the start of the computation the contents

of the vector or sparse matrix are usually only available on the host, but, as soon

as a computational kernel is invoked, the data is copied to the device side and is

subsequently kept there. All supported operations are executed purely on the GPU;

vector and matrix data remain on the GPU unless the program explicitly requires

to extract an external copy. Thus, for most of the computation, the only data that

are regularly transferred from GPU to CPU and vice-versa include:

• scalars specified on the CPU and passed to the GPU for the execution of

vector sums of the type y ← αx + βy and matrix-vector products of the

type y ← αAx+ βy;

• portions of vectors to implement the halo data exchange.

The sparse matrix by vector (SpMV) product is a fundamental kernel of the

multigrid cycle. It is well known to be a memory-bound kernel, and its efficient

implementation is the subject of an immense amount of research. For a thorough

discussion of the software design of the SpMV kernel techniques we refer the reader

to [23] and the references therein. In our experiments we use variants of the ELL-
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PACK storage format, in particular the HLL format described in [23, 24] and im-

plemented in the PSBLAS GPU plugin.

The choice and the implementation of the smoother is the most critical issue of

the multigrid cycle on clusters of GPUs. Previous experience on clusters of CPUs

has shown that the use of block-Jacobi iterations, either as smoothers or coarsest-

level solvers, allows to obtain AMG preconditioners that achieve a good balance

between acceleration of Krylov solvers and parallel performance [9, 25, 26, 27, 28].

In this case the relaxation operator is the block-diagonal matrix

Sk = diag(A1
k, A

2
k, . . . , A

p

k)
−1, (7)

where Ai
k is the diagonal block of Ak corresponding to the block of rows assigned to

the compute node i in the data distribution. This requires the inversion of each block

Ai
k, which can be carried out by performing a Cholesky factorization followed by

triangular solves. In the context of preconditioning, a sparse incomplete factorization

is usually computed, obtaining an approximation of Ai
k. As already observed, the

incomplete factorization is carried out only once, during the setup phase of the

preconditioner, while the triangular solves must be performed at each relaxation

and coarsest-level solution.

Unfortunately, the efficient implementation of sparse triangular solves on GPUs

is a difficult task. For example, in [29] it is reported that Krylov solvers precondi-

tioned with the incomplete LU and Cholesky factorizations available in the CUDA

cuSPARSE library achieve on average only a speedup of 2 over the CPU imple-

mentation provided by the Intel MKL library; furthermore, the sparsity pattern of

the matrix strongly affects the performance of the triangular solves. The difficul-

ties associated with sparse triangular solves on GPUs are confirmed by the study

in [30], where it is also shown that the performance of a sparse triangular solver on

a GPU is strongly dependent on the features of the system matrix, while it is almost

independent of the floating-point precision or the GPU architecture employed. The

main problem is that GPUs require a massive amount of data parallelism to be ex-

ploited, and the sparsity of the triangular factors produces strong data dependencies

that limit the amount of available parallelism and yield unbalanced computations.

Moving towards a denser matrix would improve the triangular solve, but would

be undesirable in terms of memory footprint, time to setup and time to apply the

preconditioner.

Since the sparse matrix-vector product is much more amenable to an efficient

implementation on GPUs, it is quite appealing to use sparse approximate inverses

for the local blocks of the block-Jacobi methods,

(Ai
k)

−1 ≈ Zi
kD

i
k(Z

i
k)

T , (8)

with Zi
k upper triangular and Di

k diagonal, since their application requires matrix-

vector products.

The approximate inverses are computed with a plugin for MLD2P4 that has

been described in [6, 31]. In particular, implementations of the following methods
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are available:

• INVK(I,J): the approximate inversion of an ILU factorization based on

pattern-levels; for example, an INVK(0,1) would start with an ILU(0) fac-

torization, and then compute an approximate inverse of its factors with 1

level of fill-in [32];

• INVT(ǫ1, n1, ǫ2, n2): a similar approximate inverse of triangular factors

computed through ILUT(ǫ, n) [32];

• AINV-LLK: the method of biconjugation proposed by Benzi and Tuma [33,

34], modified as described in [6].

The plugin also provides an interface, called AINV, to the biconjugation software

by the authors of [33, 34]. In most of our experiments the INVK method achieves

the best trade-off between convergence properties, setup, and application speed.

The previous kernels have been combined by using the AMG framework provided

by the MLD2P4 library, to get multigrid cycles suitable for clusters of GPUs. This

has been made possible by the modular architecture of MLD2P4, which has allowed

the extension with new data storage formats and new local solvers for block-Jacobi

iterations, as well as the use of the PSBLAS GPU plugin.

We conclude this section by observing that two limiting factors affect the effi-

ciency of multilevel preconditioners on clusters of GPUs. The first issue has to do

with the implementation of the matrix-vector product on a single GPU: as men-

tioned in [23], to run at full speed on a GPU, the matrices must be sufficiently large

to keep all computing units busy, and this becomes increasingly difficult as we go

through the levels of the hierarchy, because the size of the space becomes smaller.

The second issue is related to the efficiency of the communications between the vari-

ous computing nodes; to proceed with the parallel computation of the matrix-vector

product on the different nodes, it is necessary to exchange the data of the halo. For

good data partitions, the amount of data to be exchanged displays a surface-to-

volume effect, and therefore large products can be computed effectively. However,

when moving towards smaller matrices in the preconditioning hierarchy, the com-

munication to computation ratio, and hence the efficiency of the parallelization,

decreases. Note that we most often use smoothed aggregation, which improves the

convergence features, but has the negative side effect of increasing communication.

4. Results

We illustrate the behaviour of the AMG preconditioner described so far on linear

systems arising from a groundwater modelling application developed at the Jülich

Supercomputing Centre (JSC) and made available in the framework of the Horizon

2020 Project EoCoE (Grant Agreement no. 676629). This application is concerned

with the numerical simulation of the filtration of 3D incompressible single-phase

flows through porous media. The linear systems come from the discretization, over

the unit cube, of an elliptic equation modelling the pressure field, which is ob-
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tained by combining the continuity equation with Darcy’s law; a homogeneous per-

meability tensor is considered and no-flow boundary conditions are imposed. The

discretization is performed by a cell-centered finite volume scheme (two-point flux

approximation) on a Cartesian grid and the resulting matrix is symmetric positive

definite, with nonzero entries distributed over seven diagonals [35]. The computa-

tional domain is uniformly partitioned along the three coordinate planes, obtaining

a row-block distribution of the matrices which minimizes the surface-to-volume ra-

tio. We performed weak scalability tests, keeping approximately 2 million equations

per process. The results obtained are representative of the behaviour of the AMG

preconditioner on linear systems coming from more general isotropic elliptic equa-

tions.

The experiments were carried out using the cluster module of the JURECA

supercomputer at JSC, comprising 75 compute nodes with 2 NVIDIA Tesla K80

GPUs with a dual-GPU design, 1872 compute nodes with 2 Intel Xeon E5-2680 v3

Haswell CPUs per node, and a Mellanox EDR Infiniband network. PSBLAS 3.5,

combined with the extended matrix formats and GPU plugins, and MLD2P4 2.1,

combined with the AINV plugin, were installed using the GNU 5.4.0 C and Fortran

compilers, MVAPICH2 2.3 and CUDA 8.0.61. The tests were run using both CPUs

and GPUs, as well as CPUs only, to quantify the gain in efficiency due to the use

GPUs. Up to 128 GPUs were used for our experiments, thus the dimensions of the

linear systems range from 2 million to 256 million.

The linear systems were solved using the GPU implementation of the Conjugate

Gradient (CG) method provided by PSBLAS with the GPU plugin, coupled with

two versions of the V-cycle preconditioner: one using 1 sweep of the block-Jacobi

method as pre-smoother and as post-smoother, with INVK(0,1) as local solver, and

the other using 2 sweeps of the simple Jacobi method in each smoothing phase.

In the following, we refer to the previous smoothers as BJAC(INVK) and JAC2,

respectively. In both versions, 10 sweeps of BJAC(INVK) were applied as coarsest-

level solver. The multilevel hierarchy was built by running (on CPUs) the decoupled

smoothed aggregation algorithm mentioned in Section 2, using its default parame-

ters. The resulting number of levels was 4, except for 128 processing elements (i.e.,

for the largest matrix), where 5 levels were obtained. The zero vector was chosen

as starting guess and the CG iterations were halted as as soon as the ratio between

the 2-norm of the residual and the 2-norm of the right-hand side became smaller

than 10−6. The HLL sparse matrix format was used when running the experiments

on CPUs plus GPUs, while the CSR format was used for tests on CPUs only.

Figure 3 shows the execution times, in seconds, required by the solution of the

linear systems on GPUs and on CPUs, using the two V-cycle versions described

above. We see that on GPUs the use of BJAC(INVK) and JAC2 as smoothers leads

to about the same execution time, while BJAC(INVK) appears more expensive on

CPUs. Furthermore, there is a significant gain in using GPUs vs CPUs: the speedup

over CPUs ranges from 5.9 to 10 when BJAC(INVK) is used as smoother and from

5 to 9.4 when JAC2 is applied. In our opinion, this is a satisfactory result, given the
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Figure 3. Solution of the linear systems using CG with the two versions of V-cycle: weak scaling
on GPUs and CPUs (top) and speedup of GPUs vs CPUs (bottom).

memory-bound nature of the computation and the decreasing size of the matrices

as the AMG hierarchy is traversed, which decreases the amount of computation on

GPUs and increases the percentage of data to be exchanged among the processing

elements.

To better compare the two V-cycles, we report, in Table 1, the number of CG

iterations obtained with the two versions of V-cycle as the number of processing

elements varies. Of course, the number of iterations is the same for the GPU and the

CPU implementations, since the same coarsening strategy is run on CPUs in both

cases. We observe that the number of iterations corresponding to BJAC(INVK)

is smaller than the number of iterations with JAC2. This compensates for the

larger time required by a single smoothing step with BJAC(INVK). We expect that

BJAC(INVK) is more efficient with linear systems requiring more robust smoothers.

We also note that the increase in the number of CG iterations is modest when go-
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Table 1. CG iterations with the two versions of V-cycle.

# procs CG iterations

BJAC(INVK) JAC2

1 14 19

2 15 21

4 18 20

8 20 25

16 24 27

32 29 31

64 34 37

128 29 31

ing from 1 to 64 processing elements; furthermore, there is a slight decrease on 128

processing elements. This confirms that the use of BJAC(INVK) iterations at the

coarsest level does not deteriorate too much the effectiveness of the preconditioner

as compared to the application of a direct solver, while it allows good scalability.

The small reduction of the iteration count on 128 processing elements depends on

the higher density of the diagonal blocks at the fifth level of the AMG hierarchy,

which leads to better approximations by INVK(0,1). We also forced the coarsen-

ing algorithm to generate 4 levels on 128 processing elements, obtaining a larger

coarsest matrix. In this case, BJAC(INVK) was less effective at the coarsest level,

leading to an increase in the number of CG iterations. However, while the time on

CPUs increased, the time on GPUs became slightly smaller, because the diagonal

blocks of the larger coarsest-level matrix expose more parallelism in matrix-vector

products on GPUs.

5. Conclusions

We have presented an implementation of the application phase of AMG precondi-

tioners for clusters of GPUs, obtained by integrating efficient sparse-matrix kernels

for GPUs in the framework of the MLD2P4 package. The main issue has been the

choice of smoothers and coarsest-level solvers able to achieve a good tradeoff be-

tween exploitation of the computational power of GPUs and communication among

the processing elements. The results obtained on linear systems from a groundwater

simulation, made available within the Horizon 2020 EoCoE project, show from 5×

to 10× increase of speed versus CPUs and good scalability up to 128 GPUs and

256 million equations. Future work will be devoted to the implementation of the

AMG setup phase, focusing on the coarsening algorithm and the construction of

the hierarchy of matrices.

It is worth noting that the integration of GPU-tailored sparse-matrix kernels in

the modular architecture of MLD2P4 has led to good results without the need to

restructure the application phase of the AMG preconditioners. Although a complete
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re-coding in CUDA of the AMG preconditioners can in principle lead to higher

efficiency in exploiting GPU capabilities, we believe that our approach is quite

useful, because it allows running on GPU devices with close-to-optimal efficiency

while at the same time making optimal reuse of existing software.
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