
Formal Specification of a Context-aware Whiteboard
System in CCA

Najat Atbaiga
Sirte University

Sirte, Libya
Email: najatatbaiga@gmail.com

François Siewe
Software Technology Research Laboratory

De Montfort University, Leicester LE1 9BH, UK
Email: fsiewe@dmu.ac.uk

Abstract—A context-aware whiteboard system provides a
number of services in a smart classroom including registering
students as they enter the classroom; logging students and
lecturers in to the blackboard virtual learning environment at
the beginning of each lecture and logging them out at the end of
the lecture. This system also notifies students of their absence to
a lecture and maintains a list of attendance automatically. Using
information from the timetable, it is aware of the lectures that are
scheduled to take place in the classroom and the students that are
allowed to attend these lectures. Finally, it allows students and
lecturers to interact with teaching materials such as lecture slides
and videos stored in the blackboard virtual learning environment.
This paper proposes a formal specification of the white board
system in the Calculus of Context-aware Ambients (CCA in
short). This enables the formal analysis of the white board
system using the execution environment of CCA. Some important
properties of a classroom white board system have been validated
as a proof of concept.

Keywords—Calculus of Context-aware Ambients; pervasive sys-
tem; CCA; formal specification; context-aware whiteboard

I. INTRODUCTION

The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until
they are indistinguishable from it. This was Mark Weiser’s
vision for the computers of the 21st century [7]. This vision led
to a new paradigm for distributed systems coined ubiquitous
computing, sometimes known as pervasive computing. In order
to make the user and his tasks the central focus rather than
computing devices and technical issues, appliances should
vanish into the background [1] and sense the user context so as
to provide due assistance to the user any time and anywhere.
Such systems are also known as context aware systems.

Pervasive systems can be utilised in any domain including
education, and can save time, acting as a fast and easy way
for producing services. Interruptions can happen in a university
lecture due to organisational processes of the university such as
registering attendance of students and customising classrooms.

A context-aware whiteboard system provides a number of
services in a smart classroom including registering students as
they enter the classroom; logging students and lecturers in to
the blackboard virtual learning environment at the beginning of
each lecture and logging them out at the end of the lecture. This
system also notifies students of their absence to a lecture and
maintains a list of attendance automatically. Using information
from the timetable, it is aware of the lectures that are scheduled
to take place in the classroom and the students that are

allowed to attend these lectures. Finally, it allows students and
lecturers to interact with teaching materials such as lecture
slides and videos stored in the blackboard virtual learning
environment. This paper proposes a formal specification of the
white board system in the Calculus of Context-aware Ambients
(see Sect. IV). This enables the formal analysis of the white
board system using the execution environment of CCA. Some
important properties of a classroom white board system have
been validated as a proof of concept (see Sect. V).

II. OVERVIEW OF CONTEXT-AWARE WHITEBOARD

A context-aware whiteboard (CaWB) system is able to
register students attendance automatically as they enter the
classroom; it is assumed that students carry ID cards with
them and that CaWB can detect the presence of such ID cards
once the students enter the classroom. The CaWB also detects
the presence of a lecturer in the same way, by sensing the
presence of the lecturer ID card in the classroom. When the
CaWB detects the presence of a student, it checks with the
blackboard (BB) system if that individual is enrolled on the
module scheduled to take place in the classroom at that specific
time. If the student is enrolled on that module, the CaWB logs
in the student to the BB system and adds the student ID to the
attendance list. If the student is not enrolled on that module,
CaWB will send a notification to the student immediately to
let her know she is probably in the wrong classroom.

When a lecturer enters the classroom, the CaWB checks
if she is scheduled to teach in that classroom at that specific
time. If so, the lecturer is automatically logged in to the BB
system, otherwise the CaWB notifies her of being in the wrong
classroom. Once logged in to the BB system, the lecturer can
access the teaching materials such as lecture slides, tutorials,
audio contents and videos. At the end of a class, the lecturer
can check the attendance list and if necessary contact the
students that did not turn up.

This general architecture shows the general components of
the system. The ID card should be carried by the user ”lec-
turers and students”. Sensor hardware senses the data from a
surrounding environment and communicates with middle ware
to transfer the data wirelessly using for example Bluetooth or
IR signal. The middle ware communicates with the context
server using a network based on TCP/IP as an example. The
middle ware in this system would be the white board. The
context server updates and synchronises information across
the system. Fig. 1 depicts the general architecture of CaBW
system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228187883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Architecture of CaWB system

TABLE I. SYNTAX OF CCA

P,Q ::= Process
0 inactivity
P |Q parallel composition
(ν n) P name restriction
!P replication
n[P] ambient
κ?M.P context-guarded prefix
x . (y1, . . . , y`).P process abstraction
if κ1?M1.P1 . . . κ`?M`.P` fi selection

κ ::= Context Expressions
true true
n = m name match
• hole
¬κ negation
κ1 | κ2 parallel composition
κ1 ∧ κ2 conjunction
n[κ] location context
⊕κ spatial next modality
Gκ somewhere modality

M ::= Capabilities
del n delete ambient n
in n move into ambient n
out move out of parent
α x(z1, . . . , z`) process abstraction call
α recv(y1, . . . , y`) input
α send(z1, . . . , z`) output

α ::= Locations
↑ any parent
n ↑ parent n
↓ any child
n↓ child n
:: any sibling
n :: sibling n
ε locally

III. OVERVIEW OF CCA

This section presents the syntax and the informal semantics
of CCA. Table I depicts the syntax of CCA, based on three syn-
tactic categories: processes (denoted by P or Q), capabilities
(denoted by M) and context-expressions (denoted by κ). We
assume a countably-infinite set of names, elements of which
are written in lower-case letters, e.g. n, g, x and y.

Processes: The process 0, aka inactivity process, does
nothing and terminates immediately. The process P |Q denotes
the concurrent execution of the processes P and Q. The
process (ν n) P creates a new name n and the scope of

that name is limited to the process P . The replication !P
denotes a process which can always create a new copy of
P , i.e. !P is equivalent to P |!P . Replication, first introduced
in the π-Calculus can be used to implement both iteration
and recursion. The process n[P] denotes an ambient named
n whose behaviours are described by the process P . The
pair of square brackets ‘[’ and ‘]’ outlines the boundary of
that ambient. An ambient n[P] is represented graphically as
follows:

n

P

A context expression specifies a property upon the state
of the environment. A context-guarded prefix κ?M.P is a
process that waits until the environment satisfies the context
expression κ, then performs the capability M and continues
like the process P . The dot symbol ‘.’ denotes the sequential
composition of processes. We let M.P denote the process
true?M.P , where true is a context expression satisfied by
all context. A process abstraction x . (y1, . . . , y`).P denotes
the linking of the name x to the process P where y1, . . . , y`
are the formal parameters. This linking is local to the ambient
where the process abstraction is defined. So a name x can
be linked to a specific process in one ambient and to a
different process in another ambient. This locality property is
interesting for context-awareness, especially when combined
with ambient mobility. Hence an ambient calling a process
abstraction may behave differently depending on its current
location. A selection process if κ1?M1.P1 . . . κ`?M`.P` fi
waits until at least one of the context-expressions (κi)1≤i≤`
holds; then proceeds non-deterministically like one of the
processes κj?Mj .Pj for which κj holds.

Capabilities: A call to a process abstraction named x is
done by a capability of the form α x(z1, . . . , z`) where α
specifies the location where the process abstraction is defined
and z1, . . . , z` are actual parameters. The location α can be
‘↑ ’ for any parent, ‘n ↑ ’ for a specific parent n, ‘↓’ for any
child, ‘n ↓’ for a specific child n, ‘::’ for any sibling, ‘n ::’
for a specific sibling n, or ε (empty string) for the calling
ambient itself. A process call α x(z1, . . . , z`) behaves like
the process linked to x at location α, in which each actual
parameter zi, i = 1, . . . , ` is substituted for each occurrence
of the corresponding formal parameter. A process call can only
take place if the corresponding process abstraction is defined
at the specified location.

Ambients exchange messages using the output capability
α send(z1, . . . , z`) to send a list of names z1, . . . , z` to a
location α, and the input capability α recv(y1, . . . , y`) to
receive a list of names from a location α. The mobility
capabilities in and out are defined as follows. An ambient that
performs the capability in n moves into the sibling ambient n.
The capability out moves the ambient that performs it out of
that ambient’s parent. The capability del n deletes an ambient
of the form n[0] situated at the same level as that capability,
i.e. the process del n.P | n[0] reduces to P . The capability
del acts as a garbage collector that deletes ambients which
have completed their computations.

P |
n

Q |
m

R | S
P |

n

Q |
m

� | S
(a) System model (b) Context of process R

P |
n

Q | �
(c) Context of ambient m

Fig. 2. Graphical illustration of the context of a process

Example 3.1:

- The process n[inm.out.0] |m[in n.out.0] describes
the behaviours of two sibling ambients n and m
concurrently willing to move in and out of one another.

- The ambient n[(Gat(m))? :: send(msg).0] releases
the message ‘msg’ only when at location m; where
the context expression Gat(m) holds if n is a child
ambient of the ambient m. The formal definition of
the predicate ‘at’ is given in Example 3.2.

Context model: In CCA, a context is modelled as a process
with a hole in it. The hole (denoted by �) in a context
represents the position of the process that context is the context
of. For example, suppose a system is modelled by the process
P | n[Q | m[R | S]]. So, the context of the process R in that
system is P | n[Q | m[� | S]], and that of the ambient named
m is P | n[Q | �] as depicted graphically in Fig. 2. Thus
the contexts of CCA processes are described by the grammar
in Table II. A property of a context can be described by a
formula called a context expression (CE in short).

TABLE II. SYNTAX OF CONTEXTS

C ::= 0 | � | n[C] | ‘C|P ’ | (ν n) C

Context expressions: The CE true always holds. A CE
n = m holds if the names n and m are lexically identical.
The CE • holds solely for the hole context, i.e. the position of
the process evaluating that context expression. Propositional
operators such as negation (¬) and conjunction (∧) expand
their usual semantics to context expressions. A CE κ1|κ2 holds
for a context if that context is a parallel composition of two
contexts such that κ1 holds for one and κ2 holds for the other.
A CE n[κ] holds for a context if that context is an ambient
named n such that κ holds inside that ambient. A CE ⊕κ holds
for a context if that context has a child context for which κ
holds. A CE Gκ holds for a context if there exists somewhere
in that context a sub-context for which κ holds. The operator
G is called somewhere modality, while ⊕ is aka spatial next
modality.

Example 3.2: We now give some examples of predicates
that can be used to specify common context properties such
as the location of the user and whom the user is with. In these
sample predicates we take the view that a process is evaluated
by the immediate ambient λ say that contains it.

- has(n) = ⊕ (• | n[true] | true)

holds if λ is top ambient and contains an ambient
named n

- at(n) = n[⊕(• | true)] | true
holds if λ is located at a top ambient named n

- with(n) = n[true] | ⊕ (• | true)
holds if λ is (co-located) with an ambient named n at
a top ambient.

- at2(n,m) = n[m[true] | true] | true
holds if the ambient m is located in the ambient n.

IV. FORMAL SPECIFICATION OF CAWB SYSTEM

In this section, the CaWB system is formally specified in
CCA. It is assumed that the CaWB system is located in a
classroom which acts as the active zone of the system, i.e. any
ID card within the active zone can be detected by the CaWB,
but ID cards outside the active zone cannot be detected by
the CaWB system. Therefore, students outside the classroom
are not detected by the CaWB, but are detected by the system
once they enter the classroom; same for lecturers. The CaWB
system is modelled in CCA using the following ambients:

• The classroom ambient cRoom, which represents the
active zone of the system

• The blackboard ambient BB, which models the context
server (see Fig. 1) and hosts the users login accounts

• The display system ambient Display, for powerpoint
presentations and tutorials

• The audio-vision system ambients AVS, for playing
audio contents and videos

• The attendance monitoring system aList, that manages
students attendance

• The context-aware whiteboard ambient CaWB, that
controls the whole system

• The lecturer ambient Lect1, representing a lecturer of
ID number Lect1

• The student ambient St1, representing a student of ID
number St1.

The overall model of the system is given in Fig. 3, where
Pi is a process specifying the behaviour of the corresponding
ambient that contains it.

The textual representation of the model in Fig. 3 is given
in Eq. (1).

cRoom[
CaWB [

P1

| BB [P2]
| Display [P3]
| AVS [P4]
| aList [P5]

]
]
| Lect1 [P6] | Lect2 [P6] | St1 [P7] | St2 [P7]


(1)

The classroom ambient cRoom is the active zone of the
CaWB system; this means that any object inside the cRoom

cRoom

CaWB

P1

BB

P2

Display

P3

AVS

P4

aList

P5

Lect1

P6

Lect2

P6

St1

P7

St2

P7

Fig. 3. The model of CaWB system in CCA

can be detected by the CaWB system. Initially, the classroom is
empty; students and lecturers are waiting outside as depicted
in Fig. 3 (graphically) and Eq. 1 (in the textual form). The
behaviours Pi, 1 ≤ i ≤ 7 of the ambients are specified below.

A. The context-aware whiteboard ambient CaWB

This ambient continuously scans its active zone (i.e. the
classroom) to detect the presence of students and lecturers in
the classroom. Once a user is detected, the system automati-
cally attempts to log the user in to the Blackboard (BB). This
behaviour is specified in Eq. (2)

! :: recv(src, req).BB ↓send(src, req).0 (2)

If the login is successful, a notification login allowed is sent
to the user and that user’s ID is added to the attendance list.
If the login is denied, the user is notified and the attendance
list is not updated. In addition to the login request, the CaWB
ambient enables users to display the lecture slides and tutorials;
to play audio and video contents using the AVS system.
This behaviour is specified in Eq. (3). Therefore the whole

!↓recv(dest, req, reply).if
(req = slides ∨ req = tutorials)?Display ↓send(req, reply).0
(req = video ∨ req = audio)?AVS ↓send(req, reply).0
(reply = allowed ∧ Gat2(aList, dest))?dest :: send(req, reply).0
(reply = allowed ∧ ¬Gat2(aList, dest))?aList ↓send(dest).

dest :: send(req, reply).0
fi


(3)

behaviour P1 of the CaWB ambient is the parallel composition
of the process in Eq. (2) and the process in Eq. (3), as depicted
in Eq. (4).

P1 = Eq.(2) | Eq.(3) (4)

B. The blackboard ambient BB

The BB ambient maintains the database of students en-
rolled on a module and the lecturers involved in the teaching
of that module. This database is simply modelled as a process
of the form m1[0] | . . . | m`[0], where mi, 1 ≤ i ≤ `
are distinct user ID numbers. When The CaWB emits a login
request for a user say x, the BB ambient checks if the user

x is enrolled on the module (using the context expression
Ghas(x), as shown in Eq. (5)), in which case the login request
is successful; otherwise the login request is denied. The BB
ambient also handles requests to access the teaching materials
such as lecture slides (.ppt), tutorials (.pdf), audio (.wav) and
video contents (.wmv). Thus, the behaviour P2 of the BB
ambient is given in Eq. (5). Note that for illustration, of the

P2 =



! ↑recv(src, req).if
(req = login ∧ Ghas(src))? ↑send(src, req, allowed).0
(req = login ∧ ¬Ghas(src))? ↑send(src, req, denied).0
(req = slides)? ↑send(src, req, slides ppt).0
(req = tutorials)? ↑send(src, req, tutorial pdf).0
(req = video)? ↑send(src, req,mm01 wmv).0
(req = audio)? ↑send(src, req,mm01 wav).0
fi
| Lect1[0] | St1[0]


(5)

four users waiting outside the classroom in Fig. 3 only Lect1
and St1 are enrolled on the module in the blackboard BB as
shown in Eq. (5).

C. The lecturer ambient Lect

It is assumed that a lecturer carries a smart badge (e.g.
an RFID badge) that can interact wirelessly with the CaWB
system. When a lecturer enters a classroom, the CaWB reads
the ID number of the lecturer and automatically attempts to
log the lecturer in to the blackboard system BB . If the login
is successful, the lecturer is then allowed to request access to
teaching materials such as slides, tutorials, audio and video
contents. If in the contrary the login request is unsuccessful,
the lecturer will be denied access to these resources and
certainly will leave the classroom. The general behaviour P6

of a lecturer is depicted in Eq. (6).

P6 =


in cRoom.CaWB :: send(lecturer, login).
CaWB :: recv(req, reply).if
(reply = allowed)?CaWB :: send(lecturer, slides).

CaWB :: send(lecturer, tutorials).
CaWB :: send(lecturer, audio).out.0

(reply = denied)?out.0
fi

 (6)

D. The student ambient St

Similarly to a lecturer, it is assumed that a student carries a
smart badge (e.g. an RFID badge) that can interact wirelessly
with the CaWB system. When a student enters a classroom, the
CaWB reads the ID number of the student and automatically
attempts to log the student in to the blackboard system BB .
If the login is successful, the student’s ID is added to the
attendance list; otherwise the student is notified accordingly
and eventually leaves the classroom. The general behaviour of
a student is given in Eq. (7).

P7 =


in cRoom.CaWB :: send(lecturer, login).
CaWB :: recv(req, reply).if
(reply = allowed)?send().out.0
(reply = denied)?out.0

fi
| recv().0


(7)

1 ---> {ambient "St1" moves into ambient "cRoom"}
2 ---> {Sibling to sibling: St1 ===(St1,login)===> CaWB}
3 ---> {Parent to child: CaWB ===(St1,login)===> BB}
4 ---> {Child to parent: BB ===(St1,login,allowed)===> CaWB}
5 ---> {Parent to child: CaWB ===(St1)===> aList}
6 ---> {Sibling to sibling: CaWB ===(login,allowed)===> St1}
7 ---> {Local: St1 ===(logout)===> St1}
8 ---> {ambient "St1" moves out of ambient "cRoom"}

Fig. 4. Scenario 1 execution output

E. Other ambients

The Display ambient models the screen of the whiteboard.
It receives documents such as lecture slides and tutorials and
allows to visualising their contents on the screen. Its behaviour
is specified in Eq. (8).

P3 = !CaWB ↑recv(req, reply).0 (8)

The AVS ambient can be modelled in a similar way. It
is assumed that this ambient is able to play audio and video
contents received from the CaWB ambient; its behaviour is
formalised in Eq. (9).

P4 = !CaWB ↑recv(req, reply).0 (9)

The aList ambient maintains the list of attendance. It
receives a user ID from the CaWB ambient and creates a
new child ambient of name that user ID. This behaviour is
modelled in Eq. (10).

P5 = !CaWB ↑recv(n).n[0] (10)

Therefore the list of students attending a lecture is simply
modelled inside the ambient aList as a process of the form
m1[0] | . . . | m`[0], where mi, 1 ≤ i ≤ ` are distinct student
ID numbers.

V. VALIDATION

The CCA model of the context-aware whiteboard system
(see Sect. IV) can now be executed using the CCA simulator
ccaPL. A typical simulation output is depicted in Fig. 4,
where the symbol “-->” represents an execution step; and
the explanation of each execution step is given between a pair
of curly brackets. For example the execution step in line 1 lets
the ambient St1 move in to the ambient cRoom; while the
execution step in line 4 says that a child ambient BB sends
the message (St1,login,allowed) to its parent ambient
CaWB . The remaining execution steps can be explained in a
similar manner. A series of scenarios will be used to validate
the proposed model.

Scenario 1: this scenario is designed to check if any
enrolled student is automatically logged in and added to the
attendance list when the student enters the classroom. Equation
(5) shows that only the lecturer Lect1 and the student St1 are
initially enrolled on the module. Figure 4 depicts the execution
output when the student St1 enters the classroom.

The simulator ccaPL also displays the execution output
graphically in the form of a diagram, which enables the user
to visualise the concurrent behaviours of the system. Two
types of diagrams can be produced: (i) a communication

Fig. 5. Scenario 1 communication graph

diagram depicting message passing between ambients; and (ii)
a behaviour diagram showing both the movements of ambients
and the communications between them.

The diagrams corresponding to the execution output in Fig.
4 are depicted in Fig. 5 for the communication diagram and
Fig. 6 for the behaviour diagram. The top row in both diagrams
lists the names of the ambients involved in the system being
executed. The vertical dashed line represents the timeline for
each ambient (time increases from top to bottom); and a solid
directed line from the timeline of an ambient A say to that of
an ambient B indicates a message passing from the ambient A
to the ambient B at a specific time point, with the content of the
message carried as a label to that line. Moreover, a behaviour
diagram provides additional information about the mobility
of ambients. A box labelled as “X --> Y” on the timeline
of an ambient A indicates that the ambient A has moved
from location X to location Y. Unlike the textual execution
output like in Fig. 4, a behaviour diagram shows clearly the
parallelism among of the involved ambients.

Scenario 2: This scenario shows that a lecturer teaching
on a module can access the teaching materials on blackboard.
The lecturer Lect1 who is enrolled to teach on the module (see
Eq. (5)) enters the classroom and requests access to teaching
materials as per Eq. (6). The execution output is depicted in
Fig. 7.

Fig. 6. Scenario 1 behaviour graph

1--->{ambient "Lect1" moves into ambient "cRoom"}
2--->{Sibling to sibling: Lect1 ==(Lect1,login)==> CaWB}
3--->{Parent to child: CaWB ===(Lect1,login)===> BB}
4--->{Child to parent: BB ==(Lect1,login,allowed)==> CaWB}
5--->{Parent to child: CaWB ==(Lect1)==> aList}
6--->{Sibling to sibling: CaWB ==(login,allowed)==> Lect1}
7--->{Sibling to sibling: Lect1 ==(Lect1,slides)==> CaWB}
8--->{Parent to child: CaWB ==(Lect1,slides)==> BB}
9--->{Child to parent: BB ==(Lect1,slides,slides_ppt)==> CaWB}
10--->{Parent to child: CaWB ==(slides,slides_ppt)==> Display}
11--->{Sibling to sibling: Lect1 ==(Lect1,audio)==> CaWB}
12--->{ambient "Lect1" moves out of ambient "classroom"}
13--->{Parent to child: CaWB ==(Lect1,audio)==> BB}
14--->{Child to parent: BB ==(Lect1,audio,mm01_wav)==> CaWB}
15--->{Parent to child: CaWB ==(audio,mm01_wav)==> AVS}

Fig. 7. Scenario 2 execution output

1--->{ambient "Lect2" moves into ambient "cRoom"}
2--->{ambient "St2" moves into ambient "cRoom"}
3--->{Sibling to sibling: Lect2 ===(Lect2,login)===> CaWB}
4--->{Parent to child: CaWB ===(Lect2,login)===> BB}
5--->{Child to parent: BB ===(Lect2,login,denied)===> CaWB}
6--->{Parent to child: CaWB ===(Lect2)===> aList}
7--->{Sibling to sibling: St2 ===(St2,login)===> CaWB}
8--->{Sibling to sibling: CaWB ===(login,denied)===> Lect2}
9--->{Parent to child: CaWB ===(St2,login)===> BB}
10--->{Child to parent: BB ===(St2,login,denied)===> CaWB}
11--->{ambient "Lect2" moves out of ambient "classroom"}
12--->{Parent to child: CaWB ===(St2)===> aList}
13--->{Sibling to sibling: CaWB ===(login,denied)===> St2}
14--->{ambient "St2" moves out of ambient "cRoom"}

Fig. 8. Scenario 3 execution output

Scenario 3: This scenario is designed to show that
the model cannot allow students or lecturers who are not
enrolled on the module to access the teaching resources of
the module on the blackboard system. The lecturer Lect2 and
the student St2 are not enrolled on the module. Figure 8 shows
the execution output when they enter the classroom.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented the formalisation of
a context-aware whiteboard system in CCA. The system’s
specification was simulated using the execution environment
of CCA called ccaPL on various scenarios. Some important
properties of a classroom whiteboard system were validated as
a proof of concept. future works, we will add more advanced
functions to the system including listing absent students,
recording lectures and uploading files on Blackboard.

REFERENCES

[1] Al-Sammarraie, M, Siewe, F and Zedan, H (2011) Formal Specifica-
tion of an Intelligent Message Notification Service in Infostation-based
mLearning System using CCA. In Proceedings of CCIT’11, Dubai, UAE.

[2] Baldauf, M, Dustdar, S and Rosenberg, F (2007) A survey on context-
aware systems. Int. J. Ad Hoc and Ubiquitous Computing, Vol. 2, No.
4, pp. 263–277.

[3] Bardram, J (2005) The Java Context Awareness Framework (JCAF) –
A service Infrastructure and Programming framework. In Proceedings
of the International Conference on Pervasive Computing, Munchen, pp.
98–115.

[4] Atbaiga, N (2013) The Next Generation of a Classroom White Board.
Unpublished dissertation (MSC), De Montfort University.

[5] Siewe, F (2011) ccaPL: a Programming Language for the Calculus
of Context-aware Ambients. Technical Report, Software Technology
Research Laboratory, De Montfort University, pp. 1–11.

[6] Siewe, F, Zedan, H, Cau, A (2010) The Calculus of Context-aware
Ambients. Journal of Computer and System Sciences, 77(4), pp. 597–
620.

[7] Weiser, M (1991) The Computer for the Twenty-First Century, Scientific
American, 265(3), pp. 94–104.

