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SUMMARY 

The genetic basis of an erectoid leaf phenotype was investigated in distinct tomato 

breeding populations, including one derived from Solanum lycopersicum ‘LT05’ (with 

the erectoid leaf phenotype and uniform ripening, genotype uu) × S. pimpinelifollium

‘TO-937’ (with the wild-type leaf phenotype and green fruit shoulder, genotype UU). The 

erectoid leaf phenotype was inherited as a semi-dominant trait and it co-segregated with 

the u allele of gene SlGLK2 (Solyc10g008160). This genomic location coincides with a 

previously described semi-dominant mutation named as Erectoid leaf (Erl). The genomes 

of ‘LT05’, ‘TO-937’, and three other unrelated accessions (with the wild-type Erl+ allele) 

were resequenced with the aim of identifying candidate genes. Comparative genomic 

analyses, including the reference genome ‘Heinz 1706’ (Erl+ allele), identified an 

Erectoid leaf-specific single nucleotide polymorphism (SNP) in the gene 

Solyc10g009320. This SNP caused a change of a glutamine (CAA) codon (present in all 

the wild-type genomes) to a TAA (= ochre stop-codon) in the Erl allele, resulting in a 

smaller version of the predicted mutant protein (221 versus 279 amino acids). 

Solyc10g009320, previously annotated as an ‘unknown protein’, was identified as a 

TILLER ANGLE CONTROL1 (TAC1)-like gene. Linkage between the Erl and 

Solyc10g009320 was confirmed via Sanger sequencing of the PCR amplicons of the two 

variant alleles. No recombinants were detected in 265 F2 individuals. Contrasting S7 near-

isogenic lines were also homozygous for each of the alternate alleles, reinforcing 

Solyc10g009320 as a strong Erl candidate gene and opening the possibility for fine-tuning 

manipulation of tomato architecture in breeding programs. 

Key words: Solanum lycopersicum; resequencing; comparative genomic analysis; plant 

architecture; breeding. 



INTRODUCTION 

Genetic factors are the major determinants of plant architecture, even though the spatial 

structure of a plant might also be influenced by various environmental stimuli such as 

light, temperature, humidity, mineral and organic nutrition (Wang et al. 2018). For this 

reason, breeding programs have placed great emphasis in exploiting the genetic diversity 

associated with plant architecture as a strategy to develop high-yielding cultivars with 

greater adaptation to wide array of environmental conditions and cropping systems 

(Coyne 1980; Huyghe 1998; Jiao et al. 2010). 

In tomato (Solanum lycopersicum L.), plant growth habit (i.e. determinate, 

semi-determinate, and indeterminate), foliar insertion angle, leaf size and internode 

length are important plant architectural traits for breeding, especially because of their 

impact on the vertical distribution of light through the crop canopy and the consequent 

effects on the efficiency of light interception (Sarlikioti et al. 2011a, 2011b; Silva et al. 

2018). Currently, tomato breeding for indeterminate growth habit is focused on reducing 

the length of internodes to increase the number of trusses per stem length (Zsögön et al. 

2017). However, this can increase self-shading and reduce the efficiency of light 

absorption (Sarlikioti et al. 2011b). At a given light intensity, the leaf insertion angle has 

direct implications on the amount of light received per leaf surface unit (Ehleringer & 

Werk 1986; Ezcurra et al. 1991) whereby a smaller leaf insertion angle (i.e. more erect 

leaves) can lead to more uniform light intensities vertically through the canopy, reducing 

light stress at the upper levels and increasing photosynthesis in the lower levels. More 

erect leaves may also improve the efficacy of contact pesticide applications by improving 

penetration through the crop canopy and reaching more efficiently abaxial leaf surfaces.   

Although the control of lateral growth has been extensively studied at the 

molecular level in some species, the genetic and physiological mechanisms that define 

the insertion angle of distinct organs (including leaves) have not been properly 

characterized in many taxa, including Solanaceae (for general review see Wang and Li 

2008; Teichmann and Muhr 2015; Roychoudhry and Kepinski 2015). So far, all 

physiological models converge to the central role of auxin content and distribution in the 

response to the continuous growth of shoots and roots (Firml et al. 2003; Roychoudhry 

and Kepinski 2015). Polar transport mediated by PIN and AUX/LAX proteins is a major 

mechanism that regulates auxin distribution in plants. These gene products control 

cellular auxin efflux and influx, respectively, through their subcellular localization at the 

plasma membrane (Wiśniewska et al. 2006; Vanneste and Friml 2009).  



In tomato, characterization of genes that control auxin fluxes and directional 

growth of organs is still quite limited. Pattison and Catalá (2012) studied the function of 

the genes in tomato homologous to PIN and AUX/LAX and they verified that SlPIN4 and 

SlPIN3 have specific roles in the regulation of vegetative shoot architecture. Recently, 

Shi et al. (2017) proposed a model to explain how the auxin polar transport mediated by 

PIN1 is critical in tomato leaf polarity formation. In other plant species, a distinct set of 

genes associated with plant architecture has been identified. In monocotyledons, TILLER 

ANGLE CONTROL1 (TAC1) (Yu et al. 2007) and LAZY1, a gravitropism-related gene (Li 

et al. 2007), are the main genetic factors identified as being involved in the regulation of 

shoot angle in rice (Oryza sativa L.). In the case of TAC1, a mutation that reduces gene 

expression is responsible for a lower insertion angle of the lateral shoots (i.e. more erect). 

The LAZY1 gene has sequence motifs similar to TAC1 with the addition of an Ethylene-

responsive element binding factor–associated Amphiphilic Repression (EAR) domain. 

LAZY1 loss-of-function mutants are associated with larger insertion angle of lateral 

shoots. It has been demonstrated that the recessive lazy1 mutant increases the polar 

(apical–basal) auxin transport and decreases lateral transport, generating an abnormal 

auxin flow/distribution. The associated phenotype is due to the loss of gravitropism, 

leading to larger leaf insertion angles (Roychoudhry and Kepinski, 2015). In peach 

[Prunus persicae (L.) Batsch], the semi-dominant allele “broomy” (br – which was later 

designated as “pillar”) is responsible for a more vertical growth of the branches (Scorza 

et al. 1989, 2002). Subsequent genetic/genomic characterization determined that the 

recessive br allele is a non-functional mutation of a homologue of the monocotyledonous 

gene TAC1, which they denominated PpeTAC1 (Dardick et al. 2013). Plants with the 

homozygous br allele showed higher auxin concentration in shoots when compared with 

wild-type plants with a horizontal branch pattern (Tworkoski et al. 2006). The auxin 

content in peach was found to be inversely proportional to the expression of the TAC1

gene (Tworkoski et al. 2015). The silencing of PpeTAC1 orthologue gene in Arabidopsis

thaliana generated a “more erect plant”, suggesting that this class of genes works 

universally in promoting vertical growth. TAC1 and LAZY1 belong to a superfamily of 

genes defined by an IGT (GL(A/T)GT) domain, which is present in a wide array of plant 

genomes and is related to the vertical growth of the shoots through the regulation of auxin 

polar transport as demonstrated in rice, maize, A. thaliana, and peach (Dardick et al 2013, 

Roychoudhry and Kepinski 2015). The understanding of the genetic control of shoot 

architecture could provide breeding tools for selection of cultivars with improved 



utilization of light, more adapted to high planting densities (Testa et al., 2016), and that 

also increases the efficacy of pesticide applications.  

We have observed in some segregating tomato breeding lines a peculiar erect 

leaf phenotype, which apparently affects all aerial organs, especially young shoots. A 

highly endogamic breeding line (named ‘LT05’) was recovered and it showed a 

genetically stable erect leaf phenotype. Two apparently similar phenotypes have already 

been described in tomato: a radiation-induced recessive mutant erecta (er) (Tomato 

Genetics Resource Center: http://tgrc.ucdavis.edu/, last accessed 12 March, 2018), 

present in the accession S. lycopersicum LA600 (derived from the ‘Codine Red’ cultivar) 

and a spontaneous semi-dominant mutation named Erectoid leaf (Erl) (Georgiev and 

Kraptchev 1992; Tomato Genetics Resource Center: http://tgrc.ucdavis.edu/, last 

accessed 12 March, 2018). Additional observations indicated that the Erl mutation co-

segregated with the uniform ripening (u) mutation (Georgiev and Kraptchev 1992). The 

u mutation was identified as a loss-of-function allele of the GOLDEN2-LIKE (GLK2) 

gene located on tomato chromosome 10 (Kinzer et al. 1990; Powell et al. 2012). Here, we 

investigate the genetic basis and chromosomal location of the erect leaf phenotype 

observed in the inbred line ‘LT05’. Based on a further genomic analysis, we report a 

strong candidate gene at the Erl locus containing a loss-of-function mutation. The 

identification of genetic variability associated with leaf angle in tomato opens the 

possibility for fine-tuning manipulation of plant architecture in breeding programs. 

MATERIALS AND METHODS 

Accessions employed as parental lines and development of segregating populations 

The genetic basis of the erectoid leaf mutation was investigated using three distinct 

segregating F2 populations. The first segregating F2 population was generated from a 

cross between the S. lycopersicum inbred line ‘LT05’ (with the erectoid leaf phenotype 

and uniform ripening, genotype uu) and S. lycopersicum ‘LT17’ (an inbred line with the 

wild-type horizontal leaf phenotype). Analyses were conducted with the contrasting 

parental lines (13 plants each) and five crossing generations: F1 (n=13), reciprocal F1’ 

(n=13); backcross (BC) to ‘LT05’ (n=32), BC to ‘LT17’ (n=37), and F2 (n=138). The 

second segregating F2 population (n=274) was obtained from the cross ‘LT05’ × S. 

pimpinelifollium ‘TO-937’ (with green fruit shoulder, genotype UU) (Powell et al. 2012). 

A third F2 population was produced by first generating a pair of near-isogenic lines (NILs) 

and then crossing them. These NILs were created as follows: from the S. lycopersicum



‘LT05’ × S. lycopersicum ‘LT17’ cross, three putative heterozygous F2 plants (with 

intermediate leaf phenotype) were visually selected and selfed to generate three 

segregating F3 families of 20 plants each. Individual F3 plants with intermediate leaf 

phenotype (i.e. putative heterozygous) were then chosen to continue a consecutive 

progeny testing-based process of selection and subsequent selfing. This process was 

repeated until obtaining segregating F5 families. In this step, three individual F5:F6 plants 

with erect leaf phenotype and three with normal leaf phenotype were visually selected 

within the same segregating progeny and then selfed. Single F6 plants able to generate 

progenies with stability for each of the opposing traits (i.e. the erect leaf versus normal 

leaf) were chosen as the contrasting near-isogenic lines and named as ‘IsoL-EL’ (with 

stable erectoid leaf phenotype) and ‘IsoL-WTL’ (with stable wild-type leaf phenotype).

The NILs were then crossed (‘IsoL-EL’ × ‘IsoL-WTL’) and the F1 plants were selfed to 

generate an F2 population (IsolF2) composed by 127 plants (see the representation of the 

process in Online resource 1). The IsolF2 population was, therefore, segregating mainly 

for the erect/normal leaf phenotype, whereas outside this locus the genetic background 

was predominantly a homozygous non-segregating mosaic of the genomes of the two 

parental lines ‘LT05’ and ‘LT17’. The IsolF2 population was also used in candidate gene 

validation analyses (see section below). 

Evaluation of the leaf growth pattern (erectoid versus wild-type) 

All evaluated plants were cultivated under greenhouse conditions in 5L pots filled with a 

mixture of soil and commercial peat. Individual plants were pruned to a single main stem. 

For inheritance studies, the leaf insertion angle (α) between the leaf petiole and the main 

stem (Online Resource 2) was measured in fully developed leaves and employed as a 

phenotypic indicator of each individual plant. In the case of the F2 population derived 

from the cross S. lycopersicum ‘LT05’ × S. lycopersicum ‘LT17’, two measurements were 

made at 80 days after sowing. One measurement was done in the lower leaf (immediately 

below the first floral truss) and other in the first fully developed leaf (counting from the 

apex). For analyses, both measures were averaged to generate a mean α angle value that 

was converted to an ordinal scale according to the following criteria: mean α angle < 100° 

= erectoid leaf, mean α angle between 100-125° = intermediate, mean α angle > 125° = 

wild-type with standard leaf phenotype. For all segregating F2 populations used in trait 

chromosomal location and candidate gene validation studies, the classification of the leaf 

growth trait was done by directly assessing the general aspect of the plants under 



greenhouse conditions. The plants were classified as either erect leaf or non-erect leaf. 

This last category involved intermediate as well as wild-type leaf phenotypes. 

Chromosome mapping of the erectoid leaf trait

The F2 population from the cross S. lycopersicum ‘LT05’ × S. pimpinelifollium ‘TO-937’ 

was employed to verify the linkage of the erectoid leaf phenotype with the uniform 

ripening SlGLK2 gene (u, Solyc10g008160) (Powell et al. 2012). The green fruit shoulder 

phenotype (presence of the U allele) or its absence (due to the homozygous presence of 

the u allele) was used as a phenotypic marker to evaluate co-segregation with the erectoid 

leaf trait observed in our populations. Evaluation was carried out visually employing a 

simple scale of presence/absence for both traits.  

Genetic and statistical analyses 

For leaf insertion angle (α), the standard error and ANOVA were calculated using the 

software InfoStat version 2014 (Di Rienzo et al. 2013). For ANOVA, significant 

differences were claimed for P < 0.01 in a Tukey and Dunn’s post-hoc test. A chi-squared 

test was applied to: (a) verify across the F2 populations the goodness-of-fit of the erectoid 

vs. wild-type segregation ratios to Mendelian segregation models, and (b) to confirm the 

linkage between the erectoid leaf trait and the phenotypic marker green fruit shoulder, 

searching for a statistical difference from a 3:1 segregation ratio (i.e. independence) in a 

sub-group of erectoid and wild-type F2 genotypes. In all cases a probability level (P-

value) is given as the value for the null hypothesis. 

Comparative genomic analyses of the chromosome 10 and variant screening

Resequencing information was obtained using genomic DNA from the erectoid leaf line 

‘LT05’ and from four genetically diverse wild-type leaf accessions: ‘TO-937’ (Powell et 

al. 2012), ‘CNPH498’ (data not shown), ‘Santa Clara’ (Carmo et al., 2017), and 

‘Viradoro’ (Giordano et al. 2000). Genomic DNA was extracted from leaf tissue of these 

accessions using DNeasy PowerPlant Pro Kit (QIAGEN Hilden, Germany). Whole 

genome sequencing of individual samples was sequenced on one lane of a HiSeq 2500 

(Illumina Inc., San Diego, CA), at the Centro de Biotecnologia Animal (ESALQ/USP). 

Sequencing was performed with 100 bp paired-end reads. Quality control was done using 



FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc). Sequencing data 

from each of the five accessions was assembled separately against the tomato reference 

genome (version SL2.50) using SeqMan NGen version 14 software with default 

parameters (Lasergene, DNASTAR, Madison, WI, USA). An in-line Bayesian modeled 

variant detector based on the MAQ caller (Li, 2008) was used to tabulate SNPs and small 

indels relative to the reference genome in each accession. Variant calls from the five 

assemblies were then combined for further analysis in ArrayStar 14 (Lasergene Suite 14). 

Based on the chromosome mapping studies of the erect leaf trait, we carried out a search 

for gene variants only within chromosome 10 using variant calls from the five accessions. 

Since we also found the reference genome, ‘Heinz 1706’ (Tomato Genome Consortium, 

2012), which have a standard, wild-type (non-erect) leaf pattern, we focused on 

identifying non-synonymous variants that were exclusively found in the erect leaf line 

‘LT05’. To do so, the following series of filtering criteria was used in ArrayStar: (1) non-

synonymous variants occurring in ‘LT05’ but none of four non-erect leaf accessions (and 

by definition, not in the reference sequence); (2) variant positions with a minimum depth 

of coverage of 10; (3) SNP% of 100 and (4) Qcall ≥ 7. Summary variant information was 

exported for individual accessions and then imported into Microsoft Excel (Office 2016; 

Microsoft Corp., Redmond, WA) for further filtering and analyses. These final variants 

were manually verified by inspection of the corresponding sequence assemblies to 

eliminate artifacts arising from assembly differences. Finally, the best candidate 

genes were chosen considering: the physical/genetic position respect to SlGLK2, the 

protein annotation (ITAG 2.40; http://solgenomics.net/, last accessed 18 April, 2018), the 

predicted effects of amino acid substitutions on protein function using the PROVEAN 

tool (Choi et al. 2012) (http://provean.jcvi.org/index.php, last accessed 18 April, 2018) 

and the expression pattern according to TomExpress RNAseq database (Zouine et al. 

2017) (http://gbf.toulouse.inra.fr/tomexpress/, last accessed 12 March, 2018).

Multiple alignments of the predicted protein sequences from TAC1-like genes of 

tomato and other plant species

An erectoid leaf locus-specific non-synonymous, single nucleotide polymorphism (SNP) 

was found in the putative tomato TAC1-like gene located on the chromosome 10 

(XP_004248091 = Solyc10g009320). For this reason, multiple alignments of the 

predicted TAC1-like amino acid sequences from the wild-type and erectoid leaf tomato 

lines as well as from different plant species were carried out. TAC1-like amino acid 



sequences of peach (XP_020413395), soybean (KRH06413), A. thaliana (OAP08981.1), 

maize (NP_001170644), and rice (BAF25656.2) were retrieved from GenBank database 

and aligned employing the Muscle algorithm with the default parameters on Geneious 

software v7.1.5. 

Validation of Solyc10g009320 as a candidate gene of the erectoid leaf phenotype

Individuals of two F2 populations were used: the 127 individuals of the IsolF2 and 71 erect 

and 67 non-erect individuals of the (‘LT05’ × ‘TO-937’) F2, comprising a total of 265 F2

individual plants. Genomic DNA was extracted from leaf samples collected at the apex 

of each individual plants according to a modified methodology employing 2X CTAB and 

organic solvents (Boiteux et al. 1999). From the sequence variants of Solyc10g009320, a 

primer pair TAC-Tom (F/R) flanking the identified SNP site was designed using 

PrimerSelect (Lasergene, DNASTAR, Madison, WI, USA). PCR with this primer pair 

amplified a 400 bp DNA fragment encompassing the SNP site detected within allelic 

variants of Solyc10g009320. Primer sequences for TAC-Tom (F/R) were: 5ʹ-GAG-TTC-

AGT-AAG-TGG-TCA-AGA-3ʹ / 5ʹ-AAA-GAA-AGG-ATC-ACT-CTA-GCA-GA-3ʹ. 

PCR reagents were adjusted to a final volume of 12.5 μL using 5.95 μL Milli-Q water, 

1.25 μL of 10X Buffer Taq polymerase (100 mM Tris- HCl, pH 8.3 and 500 mM KCl), 

0.6 μL of MgCl2 (50 mM); 0.5 μL of dNTPs (2.5 mM); 1 μL of each primer, 0.1 U/µl Taq

DNA polymerase (Invitrogen, Gaithersburg, MD, USA), and 2 μL of DNA template (30 

ng μL-1). The amplification conditions were an initial stage of denaturation at 94 °C for 2 

minutes, followed by 30 cycles of: denaturation at 94 °C for 30 seconds, annealing at 60 

°C for 1 minute and extension at 72 ° C for 1.5 minutes; ending with an extension step at 

68 °C for 10 minutes. After purification of PCR products using Wizard kit (Promega, 

Madison, WI, USA), the amplicons were subjected to Sanger sequencing using an ABI 

Prism 3130 sequencer of the Genomic Analysis Laboratory (Embrapa Vegetable Crops, 

Brasília–DF, Brazil) employing the ABI Prism BigDye version 3.1 Kit (Applied 

Biosystems Division, Foster City, CA, USA) and the primer pair TAC-Tom (F/R). 

Sequence quality analysis, the removal of low quality fragments, and the identification of 

consensus sequences were performed using the SeqMan program (Lasergene, Madison, 

WI, USA). Alignment of multiple protein sequences was performed using the Clustal W 

method of the MegAlign software package (Lasergene, Madison, WI, USA).  



RESULTS 

Phenotypic characterization and genetic basis of the erectoid leaf growth trait 

The most remarkable effect of erectoid leaf phenotype present in the inbred line ‘LT05’ 

(our original source of this mutation) consisted of a significantly more vertical growth of 

leaves, leaflets, and lateral shoots when compared to the control wild-type phenotype 

‘LT17’ (Fig. 1). This trait was also easily identifiable by visual analysis in all segregating 

F2 populations. In fact, this mutation expressed its phenotypic effects on all aerial 

structures (i.e. leaflets, leaves, shoots, and trusses) with more striking manifestation in 

young shoots. However, due to a former description in the literature limited to the leaf 

phenotype (Georgiev and Kraptchev 1992; Tomato Genetics Resource Center: 

http://tgrc.ucdavis.edu/), we decided to keep the nomenclature of this mutation as 

“erectoid leaf”. The analysis of the phenotypic results of the cross ‘LT05’ × ‘LT17’ 

population showed a clear contrast between the parental lines (P < 0.0001). The mean 

insertion angle α was 77 ° ± 2 ° for ‘LT05’ (n=13) and 142 ° ± 1 ° for ‘LT17’ (n=13). The 

reciprocal hybrids (obtained using each parent as either male or female) displayed similar 

results. The reciprocal hybrids displayed an intermediate leaf insertion angle between 

both contrasting lines (p < 0.0001). The average insertion angle α was 120 ° ± 1 ° and 119 

° ± 1 ° for F1 (n=13) and F1ʹ (n=13), respectively (Fig. 2 a). These results suggested the 

absence of maternal inheritance effects. For the segregating families the distribution of 

their individuals in three different categories of leaf insertion angle (erectoid, 

intermediate, and wild-type) was analyzed (Fig. 2 b). The backcross family ‘LT05’ × F1

segregated very close to a 1:1 (intermediate : erectoid) ratio. The same was observed with 

the backcross family ‘LT17’ × F1 with a 1:1 (intermediate : wild-type) ratio. The F2

family segregated very closely to the expected 1:2:1 (erectoid : intermediate : wild-type) 

ratio. Finally, the F3 families derived from the self-pollinating of F2 plants with wild-type 

leaf insertion (Fig. 2 c right) displayed 100% individuals with wild-type leaf insertion, 

while in F3 families derived from F2 individuals with erectoid leaf insertion (Fig. 2 c left) 

had 100% of individuals with erectoid leaf insertion. These segregation patterns indicate 

a strong fit for a single gene model with semi-dominant inheritance of the erectoid leaf 

phenotype.  

Chromosome location of the gene controlling the erectoid leaf phenotype 

Each plant of the F2 family derived from the cross between ‘LT05’ and ‘TO-937’ was 

simultaneously evaluated for the erectoid leaf and the uniform fruit ripening phenotype. 



A clear-cut 1:3 segregation (monogenic) was observed for both erectoid leaf growth 

(75:199) and uniform fruit ripening (68:206) (Table 1). Within the subgroup of “erectoid” 

leaf growth (n=75) and the subgroup of “intermediate or wild-type” leaf growth (n=199), 

it was possible to observe a strong deviation of the expected ratio 3:1 for green fruit 

shoulder (dominant) and uniform fruit ripening (recessive), indicating that the two loci 

were not segregating independently, thus confirming their co-location on the tomato 

chromosome 10. A frequency of 12% of recombinants (33/274) indicated a relatively 

close genetic distance between these two loci.  

Comparative analyses of chromosome 10 in the genomes of contrasting (erectoid vs. 

wild-type) lines 

To identify potential polymorphisms associated with the erectoid leaf trait, a strategy 

based upon the comparative genome analyses of the original erectoid leaf source (= S. 

lycopersicum ‘LT05’) with the genomes of genetically unrelated accessions displaying 

standard (wild-type) leaf angle phenotypes (viz. ‘Viradoro’, ‘TO-937’, ‘Santa Clara’, 

‘CNPH498’ and ‘Heinz 1706’) was employed. A total of 27,259 variants were found only 

on chromosome 10. After filtering for variants exclusively present in ‘LT05’, a total of 

1,702 variants were obtained (Fig. 3 a). When filtering those variants for non-

synonymous variants only five SNPs remained (Fig. 3 b, Table 2). One of these variants 

(corresponding to the alkaloid biosynthesis gene Solyc10g086620) was discarded because 

it was located far from the SlGLK2 gene (Solyc10g008160 located at position 2,293,088 

in SL2.50), which was not in agreement with our data of 12% recombination (Table 1). 

The PROVEAN tool predicted that from the four remaining gene variants only one 

(Solyc10g009320) contained an amino acid change capable of inducing deleterious effect: 

an SNP that creates a new stop codon (Fig. 3 c and d). This Erectoid leaf-specific single 

nucleotide polymorphism (SNP) was found in the position 3,394,715 of chromosome 10, 

where a DNA substitution of a cytosine (C) for a thymine (T) (C>T) was observed. This 

SNP resulted in a change in the CAA codon (=coding for a glutamine) of the wild-type 

genomes to a TAA (= ochre stop-codon) in the genome of the line ‘LT05’ (with erectoid 

leaf trait). Solyc10g009320 is about 1.1 Mbp from SlGLK2, in the euchromatin, consistent 

with the observed recombination frequency of 12%. The TomExpress RNASeq database 

reported a similar expression pattern in seeds, meristems, stem, leaves, and fruits for 

Solyc10g009320, but with higher expression in flowers and lower in roots (Online 



Resource 3). Thus, Solyc10g009320 became our single candidate gene for controlling 

the erectoid leaf growth phenotype.

Sequence analysis of Solyc10g009320 and impact on the predicted proteins 

The gene Solyc10g009320 was found to encode a predicted protein of 279 amino acids. 

When translated, the Erl-specific SNP caused a change of a glutamine (CAA) codon 

(present in all the wild-type genomes) to a TAA (= ochre stop-codon) at amino acid 

position 222 in exon 3 (Q222*) in the ‘LT05’ genome (with erectoid leaf trait), resulting 

in a smaller version of the predicted mutant protein (221 amino acids) (Fig. 3 c and d, 

Online Resource 4). BLAST analysis (tBLASTx tool) of the predicted protein encoded 

by Solyc10g009320 gene indicated 36% amino acid identity with the gene PpeTAC1, 

belonging to the gene family IGT, described to have a major role in determining plant 

architecture in peach.  

Multiple alignments of the predicted protein sequences from TAC1-like genes of 

tomato and other plant species

Multiple alignments of TAC1-like proteins from tomato and from a diverse group of plant 

species revealed the presence of the conserved domains described by Dardick et al. 

(2013), and specifically the presence of an IGT (GL(A/T)GT) domain (Fig. 4), which is 

present in a wide array of plant genomes and is related to the vertical growth of the shoots 

(Dardick et al. 2013, Roychoudhry and Kepinski 2015). Due to the similarities between 

TAC1 and Solyc10g009320 we named this tomato ortholog as S. lycopersicum TAC1 

(SlTAC1) gene.

Sanger sequencing validation of the SlTAC1-derived marker 

PCR products obtained with the TAC-Tom (F/R) primers (designed to flank the identified 

SNP causing an early stop codon on Solyc10g009320) were Sanger sequenced in 

individual samples of two F2 populations and the two contrasting near-isogenic lines. A 

total of 265 F2 individuals were sampled from two F2 populations. Sequence analyses of 

these individuals indicated the constant presence of the homozygous C>T substitution in 

all 108 F2 plants with the erectoid leaf growth phenotype, in the parents, ‘LT05’ and in 

the near isogenic line IsoL-EL. On the other hand, the C>T substitution was found to be 

either absent or in heterozygous condition in all 157 F2 with either intermediate or wild-



type growth phenotype, in the parental lines ‘TO-937’ and IsoL-WTL (Online Resource 

5).  

DISCUSSION 

The erectoid leaf phenotype is controlled by a semi-dominant locus on chromosome 

10 

Our results indicated that the erectoid leaf phenotype observed in the line ‘LT05’ is 

controlled by a single semi-dominant gene/locus at the top of chromosome 10. This 

information was experimentally confirmed by the phenotypic analyses across distinct 

segregating populations and by linkage analysis with the uniform fruit ripening-coding 

SlGLK2 gene, which is located on chromosome 10 (Kinzer et al. 1990; Powell et al. 2012). 

Two mutations with similar phenotypes were previously described in tomatoes: the 

Erectoid leaf (Erl) (Georgiev and Kraptchev 1992) and erecta (er) (LA0600). Given the 

similar characteristics in terms of location and pattern of inheritance, we assume that the 

gene that determines the erectoid leaf phenotype in the line ‘LT05’ is either the same gene 

or an allelic variant of the wild-type (Erl+) gene as previously described by Georgiev and 

Kraptchev (1992) (Tomato Genetics Resource Center: http://tgrc.ucdavis.edu/, last 

accessed 12 March, 2018). Our results indicated that the Erl+ allele is associated with the 

wild-type phenotype, whereas the Erl allele is associated with the erectoid leaf trait. 

Heterozygous (Erl+/Erl) plants displayed an intermediate leaf growth phenotype. Genes 

with similar phenotypic expression have been reported in other dicot and monocot plant 

species. In rice, the recessive loss-of-function allele of the OzTAC1 gene (Yu et al. 2007) 

is one of the determinants of erect tiller growth and it has been used, along with other 

allelic variants, in several modern cultivars in order to generate more efficient crops 

(Dong et al., 2016). In peach, the “broomy” (br) allele of PpeTAC1 defines the plant 

architecture by modifying the angle of insertion of the lateral branches and also displays 

a semi-dominant inheritance (Scorza et al. 1989, 2002). In this case, the possibility of 

manipulating the degree of branch inclination with distinct doses of the allele br

(homozygous or heterozygous form) was suggested (Tworkoski and Scorza 2001). 

A TAC1-like gene is the best candidate related to the erectoid leaf phenotype 

Our genomic and genetic analyses allowed us to indicate Solyc10g009320 (previously 

annotated as an ‘unknown protein’) as being the best candidate gene related to erectoid 

leaf growth observed in the ‘LT05’ line (zero recombinants in 265 F2 plants analyzed, 



Online Resource 5). The methodology that allowed to identify Solyc10g009320 as the 

more likely candidate gene was based on the genomic comparison of a line with 

phenotypically stable erectoid leaf phenotype (‘LT05’) with the genomic information 

obtained from the reference genome ‘Heinz 1706’ (Tomato Genome Consortium, 2012) 

and from four accessions with wild-type leaf growth (viz. ‘Viradoro’, ‘TO-937’, ‘Santa 

Clara’, and ‘CNPH498’). The previous confirmation (by mapping) of the chromosomal 

location of the erectoid leaf phenotype was a key information that allowed us to apply 

genomic filters directly to chromosome 10, starting with a total number of 27,259 variants 

and reaching only five candidate genes according to additional genomic and putative gene 

function analyses (Table 2). This filtering allowed a more precise landing on potential 

candidate genes/loci. The estimated location on the chromosome 10 (close to the SlGLK2

gene), and the identification of loss-of-function mutation altogether allowed selection of 

the Solyc10g009320 as the most likely candidate gene associated with the erectoid leaf 

growth phenotype. The validation using Sanger sequencing of the F2 segregating 

population showed a 100% association of the erectoid leaf phenotype and 

Solyc10g009320 mutation. 

Due to the structural similarities of Solyc10g009320 with an array of TAC1-like 

genes (see Fig. 4), we tentatively named this gene as S. lycopersicum TAC1 (SlTAC1).

Our annotation of Solyc10g009320 as an ortholog of TAC1 genes is consistent with a 

recent phylogenetic analysis (Guseman et al. 2017) where this tomato gene was placed 

into a small cluster along with other TAC1 genes (e.g. PpTAC1, OsTAC1, ZmTAC1, and

AtTAC1) within the IGT gene family. This work also identified a second tomato gene 

(Solyc01g096260) within the cluster of TAC1-like genes (Guseman et al. 2017). 

Solyc01g096260 is located on tomato chromosome 1 and displayed ≈ 40% amino acid 

identity with SlTAC1 (Online Resource 6). For this reason, we also examined 

polymorphisms within this gene across our resequenced accessions with contrasting leaf 

architecture. However, no variants were identified in comparative analyses of the proteins 

encoded by Solyc01g096260 in the ‘LT05’ genome (with erectoid leaf growth phenotype) 

and the genomes of the four accessions with wild-type leaf phenotype (Online Resource 

7). These analyses indicated that this evolutionary and functionally-related gene on 

chromosome 1 has no allelic variation in the coding sequence that could explain the 

phenotypic impact on the erectoid leaf growth in the germplasm employed in the present 

study, and indeed the genetic analysis showed that segregation of the locus on 

chromosome 10 was able to fully explain the occurrence of the erectoid leaf phenotype 



without the need to propose the involvement of a second locus. Moreover, the expression 

patterns reported in the TomExpress RNA Seq database (Online Resource 8) show 

differences to Solyc01g096260 when compared with Solyc10g009320, with a notably 

greater increase of expression in flowers and fruits and a low or no expression in 

vegetative parts. Although these data should be confirmed with expression and functional 

tests, it is likely that these genes, even though belonging to the same family, could be 

under control of distinct expression mechanisms across distinct plant organs.

          It is not yet known how the TAC1 genes are involved in determining the direction 

of lateral growth, although some evidence suggests that it would be directly or indirectly 

implicated in a negative regulation of LAZY1 (Dardick et al. 2013) and this interaction, 

which varies depending on the position and aerial organ of the plant, would arise from a 

gravitropic response. In all cases described in the literature, the loss-of-function of TAC1

genes (in both monocots and dicots plants) is associated with narrower insertion angles 

in tillers, leaves, and flowers (i.e. more erect posture) in comparison to the wild-type 

controls (Yu et al. 2007, Ku et al. 2011, Dardick et al. 2013). This fact is associated with 

higher auxin content in the affected organs, apparently resulting from a modification in 

the polar transport of this hormone (Li et al. 2007, Yoshihara and Iino 2007, Yoshihara 

et al. 2013). Since auxin transport/content is regulating a multiplicity of developmental 

processes (Reinhardt et al. 2003) mutants involved in this process might have pleotropic 

effects in several aspects of agronomic interest. 

Auxin also controls many aspects of fruit development, including the sequential 

stages of fruit formation, expansion, ripening, and abscission (Gillaspy et al., 1993; 

Srivastava and Handa, 2005). In tomato, Pattison and Catalá (2012) showed a coordinated 

action of PIN and AUX/LAX proteins in the establishment of auxin gradients during fruit 

development. Artificially increasing the auxin levels in the ovary can bypass fertilization 

and lead to the development of parthenocarpic fruits (Lipari & Paratore 1988; Ficcadenti 

et al. 1999). This would have an interesting effect in extreme/hostile environments where 

fertilization is compromised by pollen viability problems. Additionally, regulation of 

auxin efflux by SlPIN1 prevents flower abscission by maintaining a high auxin transport 

activity in the abscission zone (Shi et al. 2017).

On the other hand, little is known about possible effects of the TAC1-like genes 

at the root system. The pioneering study of Tworkoski and Scorza (2001) in peach 

provided information that mutations in aerial architecture (including tac1) is also 

associated with changes in root growth pattern. In rice, it was also reported that DEEPER 



ROOTING1 (DRO1) controls the depth of the root system via the regulation of the 

insertion angle of lateral roots (Uga et al. 2013). An increase of the expression of this 

factor increases the depth of the root system. The deeper roots determined by DRO1 allow 

a better performance and higher yield of the rice in water deficit conditions (Uga et al. 

2013). Later, Guesan et al. (2017) generated evidence and hypothesize that, since the 

functions of LAZY1 and DRO1 are homologous, in shoots and roots respectively, TAC1

could be a negative controller of both genes, and this may explain why a reduced function 

of TAC1 could influence the vertical growth both of the canopy and of the roots. In this 

context, it would be also of interest to investigate the potential effects of the Erl locus on 

the root system in tomatoes. 

Phenotypic and agronomic effects of the Erectoid leaf (Erl) mutation 

So far, no strategies have been proposed to genetically manipulate the inclination angles 

of lateral shoots in order to obtain tomato ideotypes with adaptation to a wide range of 

environmental conditions (Zsögön et al. 2017). The importance of leaf insertion angle in 

relation to efficiency and distribution of light absorption (and hence the photosynthetic 

crop capacity) has been established in theoretical models using tree/forest species (Pearcy 

and Yang 1998, Sinoquet et al. 2005). Most studies are in agreement that larger leaf 

insertion angles (i.e. more horizontal leaves) intercept a considerable greater amount of 

light when the sun is placed at high angle in relation to the horizon (e.g. midday, summer 

season, low latitude areas) while smaller leaf insertion angles (i.e. erectoid leaf) intercept 

a greater portion of light when the sun is at low angles in respect to the horizon (e.g. 

during early mornings and late afternoons, winter season, and high latitude areas). Falster 

and Westoby (2003) reinforced these observations by performing studies with several 

plant species under high radiation conditions, proposing that the cost of increased light 

interception of horizontal leaves can involve higher leaf temperatures, higher risk of 

sunscalds and photo-inhibition. Thus, under high radiation conditions, a smaller leaf 

insertion angle (i.e. more erect leaves) would allow greater protection against the damages 

caused by the excess of radiation, including the reduction of the heat levels at the leaf 

surface, increasing the efficiency of water use, minimizing leaf burn damage (Werner et 

al. 2001), decreasing photo-inhibition (Ryel et al. 1993, Valladares and Pugnaire 1999, 

Werner et al. 2001) and improving the water use in relation to the daily carbon gain 

(Cowan 1982). Our data also indicate that is possible to manage the dosage of the Erl

allele in tomato hybrids, regulating, to a certain extent, the angle of inclination of leaves 



and leaflets in relation to the horizontal plane, which in turn, could result in plants with 

wider adaptation. Higher levels of environmental adaptation would result not only in the 

increase of the light interception and temperature control, but also by improving the rates 

of ventilation renewal in the plant canopy. Better ventilation in the plant canopy can 

influence the CO2 content as well as the relative humidity of the surrounding air. Another 

positive crop management consequence of the erectoid leaf trait is to facilitate the 

distribution of pesticides, especially those targeting the abaxial leaf surface. This leaf 

surface is the major site of oviposition of important pests such as whiteflies (Silva et al 

2014), being also the place of sporulation of a wide array of fungal pathogens. In fact, the 

erectoid leaf trait may also provide micro environmental conditions that prevent fungal 

spore germination by maintaining lower humidity levels under the canopy, thus 

potentially reducing the frequency of fungicide applications. This possible increase in 

efficiency in pesticide application might reduce both the frequency of sprayings as well 

as the production costs. 

In summary, we found that the genetic factor controlling a peculiar tomato 

erectoid leaf phenotype (that affects all the aerial organs, especially the young leaf shoots) 

is located at chromosome 10. We also found that this semi-dominant allele Erl co-

segregated with a loss-of-function mutation of the gene Solyc10g009320. This gene is a 

strong candidate for the genetic identity of Erl. In fact, the protein coded by 

Solyc10g009320 has structural features of a TAC1-like proteins of the IGT gene family, 

which are distributed across a wide array of plant genomes, having a crucial role in the 

control the vertical growth of the shoots (Dardick et al 2013, Roychoudhry and Kepinski 

2015). TAC1-like genes regulate auxin polar transport and content in shoots of several 

species, although it is not possible to discard that TAC1-like genes also control auxin 

transport/content in fruits and roots. From the breeding standpoint, this characterization 

of the mutant Erl will open the possibility for fine-tuning manipulation of tomato 

architecture and will allow development of more practical co-dominant molecular 

markers for employment in marker-assistance selection systems of this important trait. In 

addition, the genetic characteristics (loss-of-function mutation) of Solyc10g009320 make 

it a potential target for gene editing strategies (Belhaj et al. 2015; Zsögön et al. 2017).
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TABLES AND FIGURES

Table 1 Phenotypic evaluation of an F2 population (n=274) derived from the cross 

between ‘LT05’ (erectoid leaf growth; uniform fruit ripening) and ‘TO-937’ with 

standard (wild-type) leaf growth and green fruit shoulder trait. 

Erectoid leaf 
growth 

No-erectoid leaf 
growth (intermediate 

or standard) 

Uniform ripening 20 186 
Green shoulder 55 13 

Fit for expected 3:1 ratio χ2>20 (P<0.0001) χ2>20 (P<0.0001) 

Table 2 Candidate genes located in the genomic region associated with the erectoid leaf 

growth trait (located at chromosome 10), containing Solanum lycopersicum ‘LT05’-

specific non-synonymous, single nucleotide polymorphisms (SNPs). 

1PROVEAN (Protein Variation Effect Analyzer) is a tool which predicts impact of an amino acid substitution or indel on the biological 
function of a protein. Variants with a score equal to or below –2.6 are considered ‘deleterious’ and variants with a score above –2.6 
are considered ‘neutral’.

Gene identity Nucleotide position 
(SL2.50) 

Protein annotation 
(ITAG 2.40) 

SNP position 
(SL2.50) 

Non-conservative 
amino acid 
substitution 

PROVEAN 
Prediction 
Score1

Solyc10g005230 184314-188942 Unknown protein 184523 V43M Neutral        
(-1.068) 

Solyc10g006890  1323124-1333653 WD-repeat protein 1323966 R183C Neutral       
(-1.514) 

Solyc10g007100 1487998-1492135 Protein detoxification 
18 

1491582 C56S Neutral       
(-0.057) 

Solyc10g009320 3390388-3395779 Unknown protein  3394715 Q222* Deleterious       
(-61.263) 

Solyc10g086620 65405159-65407893 Tropinone reductase 
homolog At5g06060 
isoform X1 

65392038 G170* Deleterious        
(-248.543) 



Fig. 1 Vegetative effects of the contrasting erectoid leaf alleles (Erl+ versus Erl) in distinct developmental 
stages of tomato (Solanum lycopersicum) plants. (a) Plant of the inbred line ‘LT05’, the original 
homozygous (Erl/Erl) source of the erectoid leaf phenotype; (b) Detail of the foliar insertion angle with 
respect to the main stem in the ‘LT05’ line. (c) Detail of an apical section of a main stem of ‘LT05’ line, 
showing the effects of the erectoid leaf mutation on the growth of leaflets, leaves, shoots, and trusses. (d)
Plant of the inbred line ‘LT17’, used as a reference for the standard wild-type phenotype (Erl+/Erl+). (e)
Detail of the foliar insertion angle with respect to the main stem in ‘LT17’ line. (f) Plant of ‘IsoL-EL’ 
isoline (Erl/Erl). (g) Plant of ‘IsoL-WTL’ isoline (Erl+/Erl+). (h) Heterozygous (Erl+/Erl) F1 plant derived 
from the cross of ‘IsoL-EL’ × ‘IsoL-WTL’ with intermediate leaf angle phenotype.  

Fig. 2 Leaf insertion angles in ‘LT05’ × ‘LT17’ in segregating populations. (a) Value of the α angle in 
‘LT05’ (erectoid) and ‘LT17’ (wild-type with standard leaf growth) and the reciprocal hybrids generated 
in both crossing directions F1 (‘LT05’ × ‘LT17’) and F1’ (‘LT17’ × ‘LT05’). Values shown as mean ± 
standard error (n=13). Treatments with different letters in the bars are significantly different (P<0.0001). 
(b) Phenotypic frequency (mean α angle of erectoid < 100°, mean α angle of intermediate between 100-
125° and mean α angle of wild-type >125°) in three segregating families: (‘LT05’ × F1), (‘LT17’ × F1) and 
F2 (F1 × F1). The Chi-squared test for Mendelian segregation models is shown. (c) Left: F3 families derived 
from self-pollinating of F2 plants with erectoid leaf growth phenotype. Right: F3 families derived from self-
pollinating of F2 plants with the standard, wild-type (=non-erectoid) leaf growth phenotype. 

Fig. 3 (a) Variant density plot of the tomato (Solanum lycopersicum L.) chromosome 10. The figure depicts 
synonymous and non-synonymous variants that were exclusive for the genome of ‘LT05’ (an inbred line 
with the erectoid leaf growth) in comparison with the genomes of four accessions with standard (wild-type) 
leaf (viz. ‘Viradoro’, ‘TO-937’, ‘Santa Clara’, and ‘CNPH498’) as well as the reference genome ‘Heinz 
1706’; (b) Positioning of the single nucleotide polymorphisms – SNPs (black circles) that were selected 
after applying a filter for non-synonymous variants. The black arrow indicates the position of the linked 
SlGLK2 gene (controlling uniform fruit ripening) that was used as phenotypic marker to confirm the 
chromosome location of the erectoid leaf growth trait; (c) Structural features of the Solyc10g009320 gene, 
identified as a strong candidate for control of the erectoid growth trait in the tomato line ‘LT05’; (d)
Genomic sequences of the accessions with standard (= wild-type) and with the erectoid leaf growth. The 
asterisk marks the position 3,394,715 of chromosome 10, where the ‘LT05’ genome (with the erectoid leaf 
growth trait) displayed a substitution of a cytosine (C) for a thymine (T) (C>T). This SNP resulted in a 
change in the CAA codon (=coding for a glutamine) of the wild-type leaf growth to a TAA (= ochre stop-
codon) in the ‘LT05’ genome and in F2 individuals carrying the erectoid leaf growth trait. 

Fig. 4 Multiple alignments of the predicted protein sequences from TAC1-like genes of tomato 
(Solyc10g009320), peach (PpTAC1), soybean (KRH06413); Arabidopsis thaliana (AtTAC1), maize 
(ZmTAC1), and rice (OsTAC1). The plant species corresponding to each TAC1 homolog are indicated in 
left column. Highly conserved residues are highlighted in black, including the conserved GL(A/T)GT 
domain (at the position 70), which is characteristic of the IGT gene family. The gene Solyc10g009320 was 
found to encode a predicted protein of 279 amino acids. The black asterisk highlights the position of the 
Q222* on the tomato homolog sequence (corresponding to the position 280 of the consensus alignment) 
where the stop-codon mutation was fond in the Erectoid leaf (Erl) allele.  










