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Abstract—Due to the fact that a nonlinear equation system may
contain multiple optimal solutions, solving nonlinear equation
systems is one of the most important challenges in numerical
computation. When applying evolutionary algorithms to solve
nonlinear equation systems, two issues should be considered: i)
how to transform a nonlinear equation system into a kind of
optimization problem, and ii) how to develop an optimization
algorithm to solve the transformed optimization problem. In this
paper, we tackle the first issue by transforming a nonlinear equa-
tion system into a weighted biobjective optimization problem. By
the above transformation, not only do all the optimal solutions
of an original nonlinear equation system become the Pareto
optimal solutions of the transformed biobjective optimization
problem, but also their images are different points on a linear
Pareto front in the objective space. In addition, we suggest
an adaptive multiobjective differential evolution, the goal of
which is to effectively locate the Pareto optimal solutions of
the transformed biobjective optimization problem. Once these
solutions are found, the optimal solutions of the original nonlinear
equation system can also be obtained correspondingly. By com-
bining the weighted biobjective transformation technique with
the adaptive multiobjective differential evolution, we propose
a generic framework for the simultaneous locating of multiple
optimal solutions of nonlinear equation systems. Comprehensive
experiments on 38 nonlinear equation systems with various
features have demonstrated that our framework provides very
competitive overall performance compared with several state-of-
the-art methods.

Index Terms—Nonlinear equation systems, transformation
technique, evolutionary multiobjective optimization, differential
evolution.
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A nonlinear equation system (NES) can be formulated as

follows: ⎧⎪⎨
⎪⎩

e1(x) = 0
...

em(x) = 0

(1)

where ei(x) = 0 (i ∈ {1, . . . ,m}) is the ith equation, m is

the number of equations, x = (x1, . . . , xn)
T ∈ S is a decision

vector containing n decision variables, S =
∏n

j=1[xj , xj ] is

the decision space, and xj and xj are the lower and upper

bounds of xj , respectively. In general, a NES contains at least

one nonlinear equation. x∗ is called an optimal solution of a

NES if for every i ∈ {1, . . . ,m}, ei(x
∗) = 0.

It is common to face a considerable number of NESs in

the fields of mathematics, science, and engineering [1]. A

NES may frequently contain more than one optimal solution,

especially when the number of decision variables is equal to or

larger than that of the equations. In order to allow the decision

maker to select the most preferred solution, the purpose of

solving NESs is to simultaneously locate multiple optimal

solutions in a single run, which is perhaps one of the most

challenging tasks in numerical computation [2].

During the past two decades, solving NESs by evolutionary

algorithms (EAs) has been gaining increasing attention from

the evolutionary computation research community, mainly be-

cause of the fact that EAs work with a population of candidate

solutions and have good potential to find multiple optimal

solutions of a NES in a single run. In principle, solving NESs

by EAs can be considered as a two-step procedure [3]. In the

first step, it is necessary to design a transformation technique,

with the aim of recasting a NES as a kind of optimization

problem. In the next step, an optimization algorithm should

be developed to solve the transformed optimization problem.

The current popular transformation techniques can be clas-

sified into three categories: i) single-objective optimization-

based transformation techniques [2], [4], [5], [6], [7], [8], [9],

[10], [11]; ii) constrained optimization-based transformation

techniques [12], [13]; and iii) multiobjective optimization-

based transformation techniques [3], [14], [15]. The first kind

of transformation technique usually converts a NES into the

following single-objective optimization problem:

min
∑m

i=1
|ei(x)| (2)

or

min
∑m

i=1
ei

2(x) (3)
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In addition, a constrained optimization problem is always

constructed in the second kind of transformation technique:{
min

∑m
i=1 |ei(x)|

subject to ei(x) ≥ 0, i = 1, . . . ,m
(4)

These two kinds of transformation techniques have a common

feature: only one objective function is involved. Due to this

feature, EAs may merely focus on one of the optimal solutions

in one run when solving Equations (2)-(4). In order to locate

multiple optimal solutions simultaneously, some extra diversity

preservation strategies should be incorporated into EAs, such

as the repulsion strategy [16], [17], [18]. However, such extra

diversity preservation strategies would inevitably introduce

some complicated operators and/or problem-dependent param-

eters, which have a side effect on the generalization. More im-

portantly, if a NES contains infinitely many optimal solutions,

EAs are not capable of maintaining a set of representative

optimal solutions under the single-objective framework.

In contrast, multiobjective optimization-based transforma-

tion techniques redefine a NES as a multiobjective optimiza-

tion problem. Note that multiobjective optimization problems

also include a set of optimal solutions known as the Pareto

optimal solutions. Moreover, the task of solving multiobjec-

tive optimization problems is to find multiple Pareto optimal

solutions in a single run. Obviously, the above similarities

imply that multiobjectivization is quite promising for NESs.

Along this line, several methods have been proposed. In [14],

each equation represents an objective function, and thus, a

NES is converted into an m-objective optimization problem.

In [15], there are (n+1) objective functions in the transformed

optimization problem. It is evident that with regard to these

two methods, the number of objective functions is relevant to

the number of equations or decision variables, respectively. As

a consequence, they may suffer from the curse of dimension-

ality (i.e., many-objective) with the drastic increase of m and

n. Unlike [14] and [15], Song et al. [3] presented a method

named MONES, which transforms a NES into a biobjective

optimization problem. In MONES, the first decision variable

(i.e., x1) is exploited to guarantee the conflict between the two

objective functions. However, if several optimal solutions of

a NES have the same value in the first decision variable, it is

very likely that some of them will be lost during the evolution.

In this paper, we propose a weighted biobjective trans-

formation technique (called WeB) for NESs based on our

previous work (i.e., MONES) in [3]. WeB shares the same

biobjective structure with MONES. Different from MONES,

in WeB all the decision variables, rather than just the first

decision variable, are linearly weighted to construct the two

objective functions. By doing this, WeB is able to remedy the

loss of some optimal solutions with the same value in the first

decision variable. Indeed, WeB is a generalization of MONES.

Systematic experiments on 38 NESs with a wide range of

features have demonstrated that this simple modification to

MONES can produce significantly better results. WeB has the

following advantages over other transformation techniques:

• Compared with other multiobjective optimization-based

transformation techniques, WeB has the potential to map

the optimal solutions of a NES into different points on

the linear Pareto front in the objective space under the

biobjective structure because of the random weights.

• Compared with both single-objective optimization-based

and constrained optimization-based transformation tech-

niques, WeB has the capability to provide a set of

representative optimal solutions for the situation where

a NES contains infinitely many optimal solutions.

Additionally, we suggest an adaptive multiobjective differen-

tial evolution (AMODE) to solve the transformed biobjective

optimization problem effectively. Furthermore, by combining

WeB with AMODE, we propose a generic framework for

simultaneously locating multiple optimal solutions of NESs. It

is empirically shown that the performance of our framework

is highly competitive with a lot of well-established methods

for NESs.

The rest of this paper is organized as follows. Section

II introduces the related work. Section III presents WeB.

Section IV describes AMODE. Meanwhile, Section IV gives

the details of our generic framework for solving NESs. Section

V provides the experimental results. Section VI discusses some

issues in our framework. Section VII concludes this paper and

points out some future research directions.

II. THE RELATED WORK

Utilizing multiobjective optimization-based transformation

techniques to deal with NESs is a novel idea that has arisen

in recent years and is the main focus of this paper. As pointed

out previously, in this kind of transformation technique, a NES

is transformed into a multiobjective optimization problem.

After this transformation, it is generally expected that the

objective functions of the transformed optimization problem

are in conflict with each other. This property plays an im-

portant role, as it can ensure that the optimal solutions of

a NES are the Pareto optimal solutions of the transformed

optimization problem. Otherwise, it is very difficult to identify

the relationship between the original NES and the transformed

optimization problem.

Next, we will briefly introduce five representative approach-

es. Among them, the last two approaches are originally de-

signed for handling multimodal optimization problems [19].

Multimodal optimization problems have the same formulation

as single-objective optimization problems. Note, however, that

they involve multiple optimal solutions. One may be interested

in why the last two approaches can be used for NESs. It

is because if a NES is transformed into Equation (2) or

Equation (3), this NES is also a single-objective optimization

problem with multiple optimal solutions, which means that a

NES with single-objective structure is essentially equivalent to

a multimodal optimization problem. Thus, the multiobjective

optimization-based transformation techniques, which convert

a multimodal optimization problem into a multiobjective op-

timization problem, can be readily extended for coping with

NESs.

A. CA

In 2008, Grosan and Abranham [14] proposed a new ap-

proach for NESs, called CA. By treating each equation as an
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min f1(x) =
x1

n + x2

n−1 + · · ·+ xn−1

2 + xn

1 + C ×R(x)× ln (n+ 2)

min f2(x) =
x1

n + x2

n−1 + · · ·+ xn−1

2 + (1− xn) + C ×R(x)× ln (n+ 1)

min f3(x) =
x1

n + x2

n−1 + · · ·+ xn−2

3 + (1− xn−1) + C ×R(x)× ln (n)
...

min fn(x) =
x1

n + (1− x2) + C ×R(x)× ln (3)
min fn+1(x) = (1− x1) + C ×R(x)× ln (2)

(9)

objective function, CA converts a NES into the following m-

objective optimization problem:⎧⎪⎨
⎪⎩

min f1(x) = |e1(x)|
...

min fm(x) = |em(x)|
(5)

CA provides a simple and straightforward transformation from

a NES to a multiobjective optimization problem. However, the

main drawback of CA is that its performance will significantly

degrade as the number of equations increases [20].

B. MONES

In 2015, Song et al. [3] proposed MONES, which is a

biobjective formulation for NESs. MONES consists of two

parts: the location function and the system function. The

former can be expressed as:{
min α1(x) = x1

min α2(x) = 1− x1

(6)

where x1 is the first decision variable of a NES. It is easily

deduced that the Pareto front of Equation (6) is a line segment

defined by y = 1 − x in the objective space. In addition, the

latter can be formulated as:{
min β1(x) =

∑m
i=1 |ei(x)|

min β2(x) = m× max
i=1,...,m

(|e1(x)|, . . . , |em(x)|) (7)

The transformed biobjective optimization problem can be

obtained by combining these two parts:{
min f1(x) = α1(x) + β1(x)

min f2(x) = α2(x) + β2(x)
(8)

It is interesting to note that for any optimal solution x∗

of a NES, β1(x
∗) = β2(x

∗) = 0, which means that under

this condition Equation (8) degenerates to Equation (6). As a

result, all the optimal solutions of a NES are the Pareto optimal

solutions of Equation (8), and their images in the objective

space are located on the line segment defined by y = 1−x. In

multiobjective optimization, linear Pareto front is the simplest

type and, consequently, it enables the current multiobjective

EAs to find the Pareto optimal solutions more easily compared

with other types of Pareto front, such as nonlinear Pareto

front [3]. However, since only the first decision variable is

chosen to construct the location function, if several optimal

solutions have the same value in the first decision variable,

MONES might lose some of them.

C. The Qin et al’s Method

Inspired by MONES [3], Qin et al. [15] presented a (n+1)-

objective transformation technique in 2015, where n is the

number of decision variables. This transformation technique

is also composed of two parts: the location function and the

system function, which is shown in Equation (9). In Equation

(9), R(x) is the system function which is the mean of the

absolute values of all equations, and C is a parameter to

control the shape of the Pareto front, which increases from

0 to infinity during the evolution.

In [15], all the objective functions in the location function

conflict with each other, and thus, the optimal solutions of

a NES are the Pareto optimal solutions of Equation (9).

Moreover, the location function is able to provide a one-to-

one mapping from the Pareto optimal set to the Pareto front,

thereby overcoming the drawback of MONES to a certain

degree. However, similar to CA, this transformation technique

will also suffer from the curse of dimensionality with the

increase of n.

D. MOMMOP

In 2015, Wang et al. [21] developed a method named

MOMMOP to deal with multimodal optimization problems,

by generalizing the idea of MONES. Recognizing the short-

coming of MONES, MOMMOP makes use of each decision

variable to construct a biobjective optimization problem like

Equation (8) and, therefore, n biobjective optimization prob-

lems appear. Because of the similarity between NESs and

multimodal optimization problems, we revise MOMMOP to

solve NESs as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

BOP1

{
min x1 + β1(x)

min 1− x1 + β2(x)
...

BOPn

{
min xn + β1(x)

min 1− xn + β2(x)

(10)

In MOMMOP, when comparing two individuals (denoted as

xu and xv), we say xu is better than xv if xu Pareto dominates

xv on all the n biobjective optimization problems in Equation

(10):

(xu ≺ xv on BOP1) ∧ · · · ∧ (xu ≺ xv on BOPn) (11)

Compared with MONES, MOMMOP achieves the perfor-

mance improvement at the expense of higher computational

time complexity. Additionally, it is hard to analyze the prop-

erty of the Pareto front theoretically since there exist n two-

dimensional objective spaces in MOMMOP.
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E. MOBiDE

In 2013, Basak et al. [22] designed a biobjective differential

evolution for multimodal optimization problems, abbreviated

as MOBiDE. In MOBiDE, the first objective function aims

to select the individuals of higher quality, and the purpose

of the second objective function is to maintain the diversity

to prevent the population from converging toward a single

optimal solution. These two objective functions can be easily

borrowed to solve NESs. For example, each individual xi

(i ∈ {1, . . . , NP}) in the population is associated with the

following two objective functions for NESs, where NP is the

population size:{
min f1(xi) =

∑m
k=1 |ek(xi)|

min f2(xi) = − Ωi

NP

(12)

where Ωi =
∑NP

j=1 ‖ xi − xj ‖, ‖ xi − xj ‖ denotes the Eu-

clidean distance between xi and xj in the decision space, and

f2(xi) represents the average Euclidean distance from xi to

all other members in the population.

However, the limitation of MOBiDE is that the two objec-

tive functions are not totally in conflict with each other, which

leads to an unclear relationship between the optimal solutions

of a NES and the Pareto optimal solutions of Equation (12).

Remark 1: Apart from MOMMOP [21] and MOBiDE [22],

many other biobjective transformation techniques for multi-

modal optimization problems have been proposed, see for

example [23], [24], and [25]. We can take advantage of these

transformation techniques to solve NESs. Note, however, that

they have a similar disadvantage as MOBiDE. Consequently,

their capabilities for finding multiple optimal solutions of a

NES in a single run are limited. Due to the space limitation,

we omit them in this paper.

III. A WEIGHTED BIOBJECTIVE TRANSFORMATION

TECHNIQUE

A. Motivation

Based on the above introduction, it is clear that multiob-

jective optimization-based transformation techniques, due to

the similarity between NESs and multiobjective optimization

problems, provide a natural advantage over other kinds of

transformation techniques for NESs. As analyzed in Section II,

in order to obtain competitive performance, the following four

properties deserve much attention in this kind of transforma-

tion technique:

1) Biobjective structure, which has the least number of

objective functions in multiobjective optimization prob-

lems, i.e., two.

2) Conflicting objective functions, which enable the opti-

mal solutions of a NES to become the Pareto optimal

solutions of the transformed multiobjective optimization

problem.

3) Linear Pareto front, which is the simplest type of Pareto

front for a multiobjective EA to approximate.

4) One-to-one mapping, which assures that all the optimal

solutions of a NES are mapped into different points on

the Pareto front in the objective space.

Interestingly, MONES possesses the first three properties.

In this paper, we present a simple yet effective weighted

biobjective transformation technique (WeB) that preserves the

essential details of MONES while eliminating the effect of the

fourth property.

B. WeB
In WeB, the location function is defined as:{

min γ1(x) =
∑n

i=1 wi×xi∑n
i=1 wi

min γ2(x) = 1−
∑n

i=1 wi×xi∑n
i=1 wi

(13)

where w = (w1, . . . , wn) is the weight vector, and wi is the

ith weight randomly chosen from 0 and 1. With respect to the

location function, we can give the following comments:

• Equation (13) produces a weighted linear combination on

all the decision variables.

• The two objective functions totally conflict with each

other.

• The Pareto front is a line segment defined by y = 1− x.

• If w1 �= 0 and (w2, . . . , wn) = (0, . . . , 0), the location

function of WeB is equivalent to that of MONES, which

means MONES is just a special case of WeB.

In addition, the system function is the same with Equa-

tion (2) and β1(x) in Equation (7) of MONES. It is because

we would like to make the implementation and formulation as

simple as possible.
The weighted biobjective optimization problem can be ob-

tained by combining the location function with the system

function:{
min f1(x) =

∑n
i=1 wi×xi∑n

i=1 wi
+
∑m

i=1 |ei(x)|
min f2(x) = 1−

∑n
i=1 wi×xi∑n

i=1 wi
+

∑m
i=1 |ei(x)|

(14)

For an optimal solution x∗ of a NES, Equation (14) will

degenerate to Equation (13) since
∑m

i=1 |ei(x∗)| = 0, which

signifies that all the optimal solutions of a NES are the Pareto

optimal solutions of WeB and that the Pareto front of WeB is

linear.
From the previous description, one can conclude that the im-

plementation of WeB is very simple and it does not introduce

any problem-dependent parameters. Moreover, WeB keeps

the main properties of MONES, i.e., biobjective structure,

conflicting objective functions, and linear Pareto front.
The major difference between WeB and its predecessor

MONES is that in WeB, all the decision variables are utilized

to design the location function in a linearly weighted fashion.

As pointed out previously, MONES might fail to achieve a

one-to-one mapping from the optimal set of a NES to the

Pareto front, in the case of some optimal solutions having the

same value in the first decision variable. That is, the optimal

solutions with the same value in the first decision variable will

be mapped into the same point on the Pareto front. However,

regarding WeB, the probability that the optimal solutions with

the same values in certain decision variables or completely

different values in all the decision variables are mapped into

the same point on the Pareto front is very low because of the

random weights. Therefore, WeB also has the fourth property

mentioned in III-A.
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Fig. 1. The images of the eight individuals in the objective spaces defined by five different multiobjective optimization-based transformation techniques for
the example in Table I. (a) CA [14]; (b) MONES [3]; (c) MOBiDE [22]; (d) WeB with w = (0.5, 0.5), and (e) WeB with w = (0.9, 0.1).

TABLE I
EIGHT INDIVIDUALS IN THE EXAMPLE

Solution x1 x2 e1 e2
A 0.1 0.2 0 0

B 0.2 0.4 0 0

C 0.5 0.7 0 0

D 0.5 0.6 0 0

E 0.8 0.8 0 0

F 0.4 0.3 0 0

G 0.6 0.9 0.06 0.06

H 1.0 0.5 -0.05 -0.05

C. Analysis of the Principle

An example with two decision variables is considered to

illustrate the working principles of five different multiobjective

optimization-based transformation techniques, i.e., CA [14],

MONES [3], MOMMOP [21], MOBiDE [22], and WeB. As

introduced in Section II, the Qin et al.’s method [15] is also

a multiobjective optimization-based transformation technique.

However, this method depends on a dynamic control parameter

C, and it is not trivial to analyze its performance.

As shown in Table I, this example involves two equations

(e1 and e2). Suppose that there are eight individuals (denoted

as A, B, C, D, E, F, G, and H) in the population. Among

them, six individuals (i.e., A, B, C, D, E, and F) are the

optimal solutions since all the values of the two equations

are equal to zero, and the remaining two individuals (i.e., G

and H) are not the optimal solutions since the absolute values

of the two equations are greater than zero. Fig. 1 depicts

the images of these eight individuals in the objective spaces

defined by CA, MONES, MOBiDE, and WeB. Note that there

are n biobjective optimization problems in MOMMOP, so we

cannot provide a visualized result for it in the two-dimensional

objective space.

Suppose also that the task is to select six individuals from

the population for the next generation based on nondominated

sorting [26]. Next, we are interested in what happens to

these five multiobjective optimization-based transformation

techniques.

• In CA, all the optimal solutions of a NES are mapped into

the origin (i.e., (0, · · · , 0)) in the objective space since

the objective function values of all the optimal solutions

are equal to zero based on Equation (5). As shown in

Fig. 1(a), the images of the six optimal solutions lie in the

origin. These six optimal solutions are the nondominated

solutions in the population and will survive into the next

generation.

• With respect to MONES, C and D are mapped into the

same point in the objective space, and seven individuals

(six optimal solutions and H) are the nondominated solu-

tions as shown in Fig. 1(b). Among these seven individ-

uals, C and D have the smallest crowding distance [26].

Thus, A, B, C (or D), E, F, and H will be selected into

the next generation. Clearly, one of the optimal solutions

(i.e., C or D) is missed.

• For MOMMOP, after a careful analysis, all the individ-

uals in the population are the nondominated solutions

according to Equation (10). Subsequently, we compute

their crowding distances in the decision space [21], and

find that two of the optimal solutions (C and D) have the

smallest crowding distance and will be removed during

the selection.

• In terms of MOBiDE, all the optimal solutions are
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mapped into different points in the objective space and the

population can be divided into six levels of nondominated

set as shown in Fig. 1(c): {A}, {E, H}, {B, G}, {F},

{C}, and {D}. As a result, A, B, E, F, G, and H are the

individuals with the most potential to be selected and two

optimal solutions (C and D) are lost.

• To implement WeB, all the weights in the weight vector

w are randomly generated from 0 and 1. In order to

analyze the effect of the weight vector w, we vary the

weights with a step-size equal to 0.1 and obtain the

following 11 weight vectors: (0.0, 1.0), (0.1, 0.9), (0.2,

0.8), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4), (0.7,

0.3), (0.8, 0.2), (0.9, 0.1), and (1.0, 0.0). According to

our observation, all the optimal solutions correspond to

different points in the objective space for all the weight

vectors with the exception of w = (1.0, 0.0). It is

because WeB with w = (1.0, 0.0) is roughly equivalent

to MONES, thereby exhibiting the same drawback. In

addition, for all the weight vectors except w = (1.0, 0.0)
and w = (0.9, 0.1), the nondominated solutions are just

the six optimal solutions, which will be chosen for the

next generation. For example, the experimental results of

WeB with w = (0.5, 0.5) are given in Fig. 1(d). However,

WeB with both w = (1.0, 0.0) and w = (0.9, 0.1) tend

to lose one of the optimal solutions (i.e., C or D). This

can be attributed to the fact that in these two cases, the

nondominated solutions consist of seven individuals (the

six optimal solutions and H), and one of C and D will

be eliminated due to their having the smallest crowding

distance. Fig. 1(e) shows the experimental results of WeB

with w = (0.9, 0.1).

We now summarize the above discussions from two aspects:

• MOBiDE can provide a one-to-one mapping from the set

of the optimal solutions to the Pareto front. For 10 out

of the 11 weight vectors, WeB is also able to achieve

that. Unfortunately, it is a fact that CA will map all the

optimal solutions into one point in the objective space and

MONES will map the optimal solutions with the same

value in the first decision variable into one point in the

objective space.

• CA succeeds in selecting the six optimal solutions into the

next generation1. For nine out of the 11 weight vectors,

WeB can also do that. However, MONES, MOBiDE, and

MOMMOP definitely lose some of the optimal solutions.

Overall, WeB seems to be the best choice: it offers a one-

to-one mapping while maintaining the optimal solutions in a

vast majority of cases. It is necessary to emphasize that in the

practical implementation of WeB, all the weights in the weight

vector w are randomly generated. Thus, the probability that

w = (1.0, 0.0) is very low and the performance of WeB will

be further enhanced.

1As mentioned in Section II-A, CA will suffer from the curse of dimen-
sionality with the increase of the number of equations.

IV. AN ADAPTIVE MULTIOBJECTIVE DIFFERENTIAL

EVOLUTION

As pointed out previously, when solving NESs by EAs,

both the transformation technique and the optimization al-

gorithm are vital. After transforming a NES into a biobjec-

tive optimization problem in Section III, the next issue is

how to design an optimization algorithm to effectively solve

the transformed biobjective optimization problem. To address

this issue, we propose an adaptive multiobjective differential

evolution, referred to as AMODE, which is an improved

version of DEMO proposed in [27]. DEMO is mainly based

on NSGA-II – a well-known multiobjective EA [26], whereas

the search engine is replaced with differential evolution (DE) –

a very popular EA paradigm [28]. Due to its simple structure,

ease of implementation, and better performance than NSGA-

II, DEMO2 serves as the baseline optimization algorithm in

AMODE. Moreover, two simple improvements are integrated

within AMODE to make it more suitable for NESs as follows.

A. Parameter Adaptation

The performance of DE is significantly influenced by its

parameter settings, such as the scaling factor F and the

crossover control parameter CR [29], [30]. In this work,

the parameter adaptation of AMODE originates from a very

competitive DE variant, namely SHADE [31], in which a

historical memory of successful parameter settings has been

used to produce future parameter values.

In SHADE, each individual xi (i ∈ {1, . . . , NP}) in the

population has its own F and CR, denoted as Fi and CRi. At

each generation, the successful Fi and CRi are stored into SF

and SCR, respectively. The main characteristic of SHADE is

that it maintains a historical memory with H entries for MF =

{MF,1, . . . ,MF,H} and MCR = {MCR,1, . . . ,MCR,H}. The

contents of MF and MCR are initialized to 0.5 and updated

as follows:

MF,k =

{
meanWL(SF) if SF �= ∅
MF,k otherwise

(15)

MCR,k =

{
meanWA(SCR) if SCR �= ∅
MCR,k otherwise

(16)

where k ∈ {1, . . . , H} determines the position to update,

meanWL(SF) is the weighted Lehmer mean of SF, and

meanWA(SCR) is the weighted arithmetic mean of SCR
3.

During the evolution, the value of k increases generation by

generation. If k > H , then it is reset to be 1. In SHADE,

the contents of MF and MCR are utilized to produce Fi and

CRi for the next generation.

2Note that three versions of DEMO are presented in [27], i.e., “DE-
MO/parent”, “DEMO/closest/dec”, and “DEMO/closest/obj”. In this paper,
“DEMO/closest/dec” is chosen because of its power to maintain high diversity
of the population.

3Note that in Equation (15) the weighted Lehmer mean is used since it can
generate larger scaling factors than the arithmetic mean [32]. In this way, the
diversity of the population can be promoted.
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Algorithm 1: The Procedure of A-WeB
Input: NP : the population size;

H: the entries of the historical memory
Output: The nondominated solutions in the final population

1 Randomly generate a weight vector w = (w1, . . . , wn), where wi

(i ∈ {1, . . . , n}) is randomly chosen from 0 and 1;
2 Generate the initial population P = {x1, . . . ,xNP };
3 Evaluate each individual in P according to the weighted biobjective optimization

problem in Equation (14);
4 Set all values in the historical memory MF = {MF,1, . . . ,MF,H} and MCR

= {MCR,1, . . . ,MCR,H} to 0.5;
5 k = 1;
6 while the termination criterion is not met do
7 Set A = ∅, SF = ∅, and SCR = ∅;
8 for i = 1 to NP do
9 j = randint(1, H);

10 Fi = randc(MF,j , 0.1);
11 CRi = randn(MCR,j , 0.1);

12 for i = 1 to NP do
13 Generate the mutant vector vi for xi by Equation (17);
14 Generate the offspring ui by implementing the binomial crossover of

DE on vi and xi;
15 Evaluate ui according to the weighted biobjective optimization

problem in Equation (14);

16 for i = 1 to NP do
17 Find the nearest individual in P to ui according to the Euclidean

distance in the decision space, denoted as xs;
18 if xs is Pareto dominated by ui then
19 xs = ui;
20 else if xs Pareto dominates ui then
21 ui is discarded;
22 else
23 ui is added into the archive A;

24 if
∑m

j=1 |ej(ui)| ≤
∑m

j=1 |ej(xi)| then
25 SF ← SF ∪ Fi and SCR ← SCR ∪ CRi;

26 if A �= ∅ then
27 P ← NSGA-II(A ∪ P);

28 if SF �= ∅ and SCR �= ∅ then
29 Update MF,k and MCR,k based on Equation (15) and

Equation (16), respectively;
30 k = k + 1 ;
31 if k > H then
32 k = 1;

B. Mutation Operator

Several classical mutation operators are known in the DE

research community. In this paper, we employ the mutation

operator “DE/current/1” to create a mutant vector for each

individual xi (i ∈ {1, . . . , NP}) in the population:

vi = xi + Fi × (xr1 − xr2) (17)

where vi is the mutant vector, the indices r1 and r2 are two

mutually distinct integers randomly selected from {1, NP},

and Fi is a scaling factor between 0 and 1.

“DE/current/1” is similar to a local search since the scaled

difference of two individuals is directly added into the current

individual xi. Thus, the search is carried out around the

neighborhood of each individual, which facilitates the diversity

of the population and provides an advantage to locate multiple

optimal solutions. Note that “DE/current/1” has also attracted

a lot of attention in multiobjective optimization [33], [34].

C. Combining AMODE with WeB for Solving NESs

By combining AMODE with WeB, we propose a generic

framework called A-WeB to simultaneously locate multiple

optimal solutions of NESs, which is shown in Algorithm 1.

In each run of A-WeB, all the elements of the weight vector

w are randomly generated and kept unchanged during the evo-

lution, which means that each run has its own weight vector w.

Additionally, all the individuals are evaluated according to the

weighted biobjective optimization problem in Equation (14).

During the evolution, firstly Fi and CRi are produced for

each individual xi in the population P by lines 8-11, where

randint(1, H) is a randomly integer from 1 to H , randc(·, ·)
is a random number obeying a Cauchy distribution, and

randn(·, ·) is a random number obeying a Gaussian distribu-

tion4. Subsequently, the mutation operator “DE/current/1” and

the binomial crossover of DE are used to yield an offspring ui

for each individual xi in P . Afterward, the nearest individual

xs in P to ui is identified and compared with ui based on

Pareto dominance. If
∑m

j=1 |ej(ui)| ≤
∑m

j=1 |ej(xi)| which

suggests that Fi and CRi are the successful parameter settings,

then they are stored into SF and SCR, respectively. After

the above update, NSGA-II [26] are utilized to choose NP
individuals from P and the archive A. Finally, the contents of

the historical memory MF and MCR are updated based on

Equations (15) and (16), respectively. The above procedure is

repeated until the termination criterion is met.

From the above explanations, it can be seen that the im-

plementation of A-WeB is simple and its computational time

complexity is the same with NSGA-II. In addition, it only

contains two user-defined parameters, i.e., NP and H .

V. EMPIRICAL STUDIES

Thirty-eight test instances with a broad range of character-

istics, denoted as F01-F38, are used for our empirical studies.

These 38 test instances are chosen from [3], [14], [35], [36],

and [37], and can be divided into three classes:

• NESs with known optimal solutions (F01-F21), which

include a number of optimal solutions.

• NESs with unknown optimal solutions (F22-F25), which

include infinitely many optimal solutions.

• Ill-scaled NESs (F26-F38), in which the decision vari-

ables have different search ranges.

Table II summarizes the information of these 38 test in-

stances and the details of them can be found in the supple-

mental file. For 15 test instances (i.e., F04, F07, F09, F12, F14,

F15, F16, F18, F19, F20, F23, F24, F27, F30, and F38), some

optimal solutions contain the same values in certain decision

variables.

A. Performance Metrics

Based on [3] and [38], two performance metrics, i.e., peak

ratio (PR) and success rate (SR), are used to assess the per-

formance of a method for NESs with known optimal solutions

4In this paper, Fi is generated obeying a Cauchy distribution and CRi is
generated obeying a Gaussian distribution. The reasons are twofold. On one
hand, recognizing the outstanding performance of SHADE [31], our parameter
adaptation follows SHADE. On the other hand, the Cauchy distribution is
more helpful to diversify Fi than the Gaussian distribution [32]. Moreover,
the Cauchy distribution coupled with the weighted Lehmer mean is more likely
to produce larger values of Fi. Hence, under this condition the diversity of
the population can be maintained, which is beneficial to find multiple optimal
solutions of NESs simultaneously.
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TABLE II
CHARACTERISTICS OF 38 TEST INSTANCES, WHERE n IS THE NUMBER OF DECISION VARIABLES, S IS THE DECISION SPACE, LI IS THE NUMBER OF

LINEAR EQUATIONS, NE IS THE NUMBER OF NONLINEAR EQUATIONS, NOS IS THE NUMBER OF KNOWN OPTIMAL SOLUTIONS OF A NES,
Max FEs IS THE MAXIMAL NUMBER OF FUNCTION EVALUATIONS, AND “ACTIVE OPTIMAL SOLUTIONS” INDICATES THAT SOME OPTIMAL

SOLUTIONS HAVE THE SAME VALUES IN CERTAIN DECISION VARIABLES.

Instance n S LE NE NOS Max FEs Active Optimal Solutions

F01 2 [−1, 1]n 1 1 2 50,000 no

F02 20 [−1, 1]n 0 2 2 50,000 no

F03 2 [−1, 1]n 1 1 11 50,000 no

F04 2 [−1, 1]n 0 2 15 50,000 yes

F05 2 [−10, 10]n 0 2 13 50,000 no

F06 10 [−2, 2]n 0 10 1 50,000 no

F07 2 [−1, 1]n 1 1 8 50,000 yes

F08 4 [0, 5]n 0 4 1 50,000 no

F09 2 [0, 1]n 0 2 7 50,000 yes

F10 5 [−10, 10]n 4 1 3 100,000 no

F11 6 [−1, 1]n 0 6 1 50,000 no

F12 2 [−2, 2]n 0 2 10 50,000 yes

F13 2 [−5, 5]n 0 2 9 50,000 no

F14 2 [0, 2π]n 0 2 13 50,000 yes

F15 8 [−1, 1]n 0 8 16 100,000 yes

F16 2 [−2, 2]n 0 2 6 50,000 yes

F17 20 [−2, 2]n 19 1 2 200,000 no

F18 3 [−1, 1]n 0 3 7 50,000 yes

F19 2 [−2, 2]n 0 2 4 50,000 yes

F20 2 [−2, 2]n 0 2 6 50,000 yes

F21 3 [0, 1]n 0 3 8 100,000 no

F22 3 [−1, 1]n 1 1 infinite 50,000 no

F23 6 [−1, 1]n 0 6 infinite 50,000 yes

F24 20 [−1, 1]n 1 19 infinite 50,000 yes

F25 10 [−10, 10]n 4 6 infinite 50,000 no

F26 3 [−5, 5], [−1, 3], [−5, 5] 0 3 2 50,000 no

F27 3 [−0.6, 6], [−0.6, 0.6], [−5, 5] 0 3 12 50,000 yes

F28 2 [0, 1], [−10, 0] 0 2 2 50,000 no

F29 2 [0, 2.5], [−4, 6] 0 2 4 50,000 no

F30 2 [−1, 1], [−10, 10] 0 2 4 50,000 yes

F31 2 [0.25, 1], [1.5, 2π] 0 2 2 50,000 no

F32 3 [3, 5], [2, 4], [0.5, 2] 0 3 1 50,000 no

F33 2 [−1,−0.1], [−2, 2] 0 2 2 50,000 no

F34 3 [1, 2.5], [0.2, 2], [0.1, 3] 0 3 1 50,000 no

F35 2 [−5, 1.5], [0, 5] 0 2 3 50,000 no

F36 2 [0, 2], [10, 30] 0 2 2 50,000 no

F37 3 [0, 2], [−10, 10], [−1, 1] 0 3 5 50,000 no

F38 2 [−2, 2], [0, 1.1] 0 2 4 50,000 yes

(F01-F21) and ill-scaled NESs (F26-F38) in this paper. Prior to

introducing these two performance metrics, we need to explain

how to determine the number of the optimal solutions found

in a run. Since the optimal solutions of these NESs are known

a priori, firstly we choose one of the optimal solutions. If the

minimum Euclidean distance between this optimal solution

and all the solutions in the population obtained at the end of a

run is less than a predefined accuracy level ε, then we consider

that an optimal solution is found. Afterward, the same process

will be executed for the remaining optimal solutions one by

one, and finally the number of the optimal solutions found can

be calculated. If all the optimal solutions can be found in a

run, then it is called a successful run. PR denotes the average

percentage of the optimal solutions found over all the runs

and SR denotes the percentage of the successful runs. In this

paper, ε = 0.01 if n ≤ 5, otherwise, ε = 0.1.

For NESs with unknown optimal solutions (F22-F25), these

two performance metrics cannot be directly applied. Under this

condition, the hypervolume metric [39] is used.

Note that for all the three performance metrics (PR, SR,

and hypervolume), the larger the value, the better the perfor-

mance of a method.

B. Methods in Comparison and Experimental Setup

We compare A-WeB with the following nine methods:

• A-MONES, A-MOMMOP, and A-MOBiDE: These three

methods are obtained by combining AMODE with MON-

ES [3], MOMMOP [21], and MOBiDE [22], respectively.

MONES, MOMMOP, and MOBiDE have been intro-

duced in Section II. Note that CA [14] is not chosen

for comparison since its performance is outperformed by

MONES as shown in [3]. In this paper, when implement-

ing MONES, we randomly select a decision variable to

construct the location function in each run.

• NCDE [40], NSDE [40], LIPS [41], and R3PSO [42]:

These are four state-of-the-art niching methods designed

for multimodal optimization problems. We pointed out in

Section II that the methods for multimodal optimization

problems can be easily generalized to handle NESs.

When making use of NCDE, NSDE, LIPS, and R3PSO

to solve NESs, a NES is transformed into the single-

objective optimization problem in Equation (2).

• Rep-SHADE and Rep-CLPSO: The repulsion strategy

presented in [16] is combined with two powerful EAs,

i.e., SHADE [31] and CLPSO [43], to solve NESs. The
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two resultant methods are referred to as Rep-SHADE and

Rep-CLPSO. For Rep-SHADE and Rep-CLPSO, a NES

is transformed into the following repulsion function once

one optimal solution has been found:

min
∑m

i=1
|ei(x)|+ β

∑K

j=1
e−δjχρ(δj) (18)

where

δj =‖ x− x∗
j ‖ (19)

χρ(δj) =

{
1, if δj ≤ ρ

0, otherwise
(20)

K is the number of optimal solutions that have been

found, x∗
j is the jth optimal solution, δj is the Euclidean

distance between x and x∗
j , ρ is a small constant to

adjust the radius of repulsion areas, and β is a large

penalty constant. As suggested in [16], ρ = 0.01 and

β = 1000. From Equation (18), we can see that the

repulsion strategy creates the repulsion areas around the

found optimal solutions and that an individual lies within

one of the repulsion areas will be penalized. By doing

this, the repulsion strategy has the potential to make the

search algorithm find new optimal solutions.

It is evident that to achieve the simultaneous locating

of multiple optimal solutions of a NES, among the afore-

mentioned 10 methods, the first four methods (i.e., A-WeB,

A-MONES, A-MOMMOP, and A-MOBiDE) integrate the

multiobjective optimization-based transformation techniques

with a multiobjective EA (AMODE), while the remaining

six methods integrate the single-objective optimization-based

transformation techniques with either the niching strategy or

the repulsion strategy.

In our experiments, the parameter settings of A-WeB were:

NP = 100 and H = NP . For the other nine methods,

NP was also fixed to 100 and the other parameter settings

were the same as in their original papers. Since AMOD-

E is also considered as the optimization algorithm in A-

MONES, A-MOMMOP, and A-MOBiDE, the parameter H
was fixed to NP for them. The detailed parameter settings

of the 10 compared methods were given in Table S-R-I of

the supplemental file. Fifty independent runs were performed

for each test instance with the maximal number of function

evaluations (Max FEs) as the termination criterion. Note

that Max FEs was set according to the difficulty of a NES

as shown in Table II. To have a fair comparison, all the 10
methods started with the same initial population in each of 50
runs.

C. Comparison on NESs with Known Optimal Solutions (F01-
F21)

The PR and SR values resulting from the 10 compared

methods are summarized in Tables S-R-II and S-R-III of

the supplemental file, respectively. Next, we will discuss the

experimental results from the following four aspects:

• A-WeB performs the best in comparison with the other

nine methods since it obtains both the highest average

PR value (0.8839) and the highest average SR value

TABLE III
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

THE 10 COMPARED METHODS ON F01-F21. R+ MEANS THE SUM OF

RANKS THAT A-WEB PERFORMS BETTER THAN ITS COMPETITOR, AND

R− IS THE SUM OF RANKS FOR THE OPPOSITE.

A-WeB VS
PR SR

R+ R− p-value R+ R− p-value

A-MONES 220.0 11.0 5.25E-05 188.0 43.0 5.22E-03
A-MOMMOP 169.5 61.5 4.41E-02 163.0 68.0 1.03E-01

A-MOBiDE 229.5 1.5 2.38E-06 219.0 12.0 4.77E-06
NCDE 143.0 88.0 ≥ 0.2 138.0 93.0 ≥ 0.2

NSDE 145.0 86.0 ≥ 0.2 143.0 88.0 ≥ 0.2

LIPS 220.5 10.5 1.91E-06 229.5 1.5 2.38E-06
R3PSO 231.0 0.0 9.54E-07 220.5 10.5 1.91E-06

Rep-SHADE 141.0 90.0 ≥ 0.2 149.0 82.0 ≥ 0.2

Rep-CLPSO 192.0 39.0 6.28E-03 172.0 59.0 3.45E-02

TABLE IV
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR THE 10
COMPARED METHODS ON F01-F21. THE LOWER THE RANKING, THE

BETTER THE PERFORMANCE OF A METHOD. THE BEST AND THE SECOND

BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE AND ITALIC,
RESPECTIVELY.

Method Ranking (PR) Ranking (SR)

A-WeB 50.6667 56.0000
A-MONES 98.3810 94.6905

A-MOMMOP 76.4762 81.1905

A-MOBiDE 161.2381 157.0000

NCDE 72.0238 80.2381

NSDE 71.6905 78.4048

LIPS 174.4524 165.8333

R3PSO 189.8095 172.0000

Rep-SHADE 70.4286 76.5000
Rep-CLPSO 89.8333 93.1429

(0.64). In addition, A-WeB provides both the best PR
values and the best SR values on 10 test instances (i.e.,

F01, F03, F05, F06, F08, F10, F11, F14, F18, and F20).

A-WeB also achieves 100% PR and 100% SR on seven

test instances (i.e., F01, F03, F05, F06, F11, F14, and

F20), which means that it succeeds in locating all the

optimal solutions over all 50 runs. Moreover, the PR
and SR values derived from A-WeB are larger than zero

for all the test instances except F15.

• A-MOMMOP, NCDE, NSDE, and Rep-SHADE show

similar and competitive performance in terms of the aver-

age PR and SR. They have the capability to successfully

solve five, five, five, and seven NESs, respectively. Note

that NCDE and Rep-SHADE fail to find any optimal so-

lution on one (F10) and two (F02 and F08) test instances,

respectively.

• Again, A-MONES and Rep-CLPSO present similar over-

all performance. However, they do not perform as well

as the above five methods. They are able to locate all the

optimal solutions of four and six test instances, respec-

tively. Rep-CLPSO cannot find any optimal solution on

three test instances (F02, F08, and F10).

• The performance of A-MOBiDE, LIPS, and R3PSO is

found to decrease remarkably. A-MOBiDE and LIPS can

achieve 100% successful runs on only two (F06 and

F11) and one (F01) test instance, respectively. R3PSO

cannot solve any test instance consistently in all runs

and does not yield good performance in a vast majority

of test instances. As mentioned in Section II, for A-
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TABLE V
THE AVERAGE AND STANDARD DEVIATION OF THE HYPERVOLUME VALUES OF THE SEVEN COMPARED METHODS ON F22-F25.

F22 F23 F24 F25 +/ = /−
A-WeB 0.296675 ± 0.035995 0.686763 ± 0.007750 0.039690 ± 0.001414 4.046544 ± 0.359629 /

A-MONES 0.288931 ± 0.035115 + 0.606079 ± 0.114344 + 0.027886 ± 0.002659 + 3.140386 ± 0.551425 + 4/0/0
A-MOMMOP 0.298077 ± 0.036335 − 0.662113 ± 0.008899 + 0.039333 ± 0.000078 = 3.898406 ± 0.244397 + 2/1/1

NCDE 0.291552 ± 0.033778 + 0.678183 ± 0.006296 + 0.031114 ± 0.001102 + 2.611568 ± 0.240187 + 4/0/0
NSDE 0.291554 ± 0.033673 + 0.680569 ± 0.006895 + 0.031185 ± 0.001429 + 2.676923 ± 0.219315 + 4/0/0

Rep-SHADE 0.296955 ± 0.035146 = 0.683148 ± 0.008029 + 0.034823 ± 0.001041 + 2.531974 ± 0.379190 + 3/1/0
Rep-CLPSO 0.300833 ± 0.036073 − 0.677834 ± 0.008074 + 0.034317 ± 0.001290 + NA ± NA + 3/0/1

ref. point (1,1) (0.6,1.6) (0.1,1.2) (1.5,2.5) /

“+”, “=”, and “−” indicate that A-WeB is better than, similar to, and worse than its competitor according to the Wilcoxon signed-rank test at
α = 0.05, respectively.
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Fig. 2. The images of the obtained nondominated solutions of different methods in the objective space defined by Equation (14) for F22 in a representative
run. The solid line is the theoretical Pareto front with y = 1 − x. (a) A-WeB; (b) A-MONES; (c) A-MOMMOP; (d) NCDE; (e) NSDE; (f) Rep-SHADE;
and (g) Rep-CLPSO.

MOBiDE, the relationship between the optimal solutions

of an original NES and the Pareto optimal solutions of the

transformed biobjective optimization problem cannot be

described explicitly. The poor performance of LIPS and

R3PSO could be explained by the fact that they employ

simple velocity update equation of PSO, and as a result,

their search ability is limited.

We also tested the statistical differences of the 10 compared

methods by making use of the multiple-problem Wilcoxon test

and the Friedman Aligned test [44]. It is noteworthy that the

statistical tests were implemented via the KEEL software [45].

Moreover, we chose the Bonferroni-Dunn method as the post-

-hoc test for the Friedman Aligned test. The statistical test

results are given in Tables III and IV.

As shown in Table III, in terms of the multiple-problem

Wilcoxon test, A-WeB provides higher R+ values than R−

values in all the cases for both the PR and SR metrics.

Especially, A-WeB significantly outperforms A-MONES, A-

MOBiDE, LIPS, R3PSO, and Rep-CLPSO in that all the p-

values are less than 0.05. In addition, it can be seen from

Table IV that with respect to both the PR and SR metrics,

A-WeB has the best ranking, followed by Rep-SHADE.

D. Comparison on NESs with Unknown Optimal Solutions
(F22-F25)

F22-F25 contain infinitely many optimal solutions. The PR
and SR metrics are not suitable for evaluating the performance

of a method on these four test instances. To complete the per-

formance comparison, the hypervolume metric [39] was used.

To make the comparison fair, the nondominated individuals

in the final populations provided by different methods need

to be mapped into the same objective space. In this paper,

with the termination of each run, the nondominated individuals

in the final populations provided by different methods are

mapped into the two-dimensional objective space defined by

Equation (14). Since the Pareto front in this objective space

is a line segment defined by y = 1 − x, we need to

measure how close the nondominated individuals converge

toward the Pareto front and how uniformly the nondominated

individuals distribute along the Pareto front, which are the

two essential goals in multiobjective optimization. Fortunately,

the hypervolume metric is effective in measuring both the

convergence and uniformness.

Table V records the average and standard deviation of the

hypervolume values derived from different methods on F22-

F25. In Table V, “NA” denotes that the experimental results
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Fig. 3. The images of the obtained nondominated solutions of different methods in the objective space defined by Equation (14) for F23 in a representative
run. The solid line is the theoretical Pareto front with y = 1 − x. (a) A-WeB; (b) A-MONES; (c) A-MOMMOP; (d) NCDE; (e) NSDE; (f) Rep-SHADE;
and (g) Rep-CLPSO.
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Fig. 4. The images of the obtained nondominated solutions of different methods in the objective space defined by Equation (14) for F24 in a representative
run. The solid line is the theoretical Pareto front with y = 1 − x. (a) A-WeB; (b) A-MONES; (c) A-MOMMOP; (d) NCDE; (e) NSDE; (f) Rep-SHADE;
and (g) Rep-CLPSO.

of Rep-CLPSO are not available on F25 since Rep-CLPSO

cannot find any optimal solution with the pre-specified accu-

racy level (i.e., 0.01) and the repulsion strategy is not triggered

under this condition. Due to the fact that A-MOBiDE, LIPS,

and R3PSO do not yield good performance in Section V-C,

their experimental results are not included for convenience.

To test the statistical significance between A-WeB and each

competitor, Wilcoxon signed-rank test at a 0.05 significance

level was applied. As shown in Table V, A-WeB performs

significantly better than A-MONES, A-MOMMOP, NCDE,

NSDE, Rep-SHADE, and Rep-CLPSO on four, two, four,

four, three, and three test instances, respectively. However, A-

MOMMOP and Rep-CLPSO have an edge over A-WeB on

only one test instance (F22), and A-MONES, NCDE, NSDE,

and Rep-SHADE cannot surpass A-WeB on any test instance.

The above comparison confirms that, on the whole, A-WeB

presents the best performance among the seven compared

methods on four test instances with infinitely many optimal

solutions.

Next, we further study the performance differences by

observing the nondominated solutions in the final population.

Figs. 2-5 provide the experimental results of the seven com-

pared methods in a representative run. In this work, the run in

which the hypervolume value of the nondominated solutions
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Fig. 5. The images of the obtained nondominated solutions of different methods in the objective space defined by Equation (14) for F25 in a representative
run. The solid line is the theoretical Pareto front with y = 1−x. (a) A-WeB; (b) A-MONES; (c) A-MOMMOP; (d) NCDE; (e) NSDE; and (f) Rep-SHADE.

in the final population ranks 26th (from worst to best) is

termed as a representative run among 50 runs. It is easy

to see that A-WeB is able to consistently produce a set of

representative nondominated solutions with good convergence

and uniformness on F22-F25. Although the performance of A-

MOMMOP is better than that of A-Web on F22, A-MOMMOP

is not as effective as A-WeB for approximating the Pareto front

of F23 and F25. The reason could be that when comparing two

individuals in MOMMOP, the Pareto dominance should be

checked on all the n biobjective optimization problems. If the

Pareto dominance does not hold between them on any of the n
biobjective optimization problems, then they are considered to

be nondominated. Thus, the population of MOMMOP might

contain a lot of nondominated solutions, which leads to low

selection pressure and slow convergence speed. As depicted in

Figs. 3 and 4, A-MONES runs the risk of missing some parts

of the Pareto front of F23 and F24, in which some optimal

solutions have the same values in certain decision variables.

The preformation degradation of A-MONES coincides with

our analysis in Section II. Regarding the four single-objective

optimization-based methods (NCDE, NSDE, Rep-SHADE,

and Rep-CLPSO), they tend to yield decent performance when

the number of decision variables is small (i.e., F22 and F23).

But, as the number of decision variable increases (i.e., F24

and F25), they cannot obtain promising results in terms of the

convergence and uniformness as shown in Figs. 4 and 5.

E. Comparison on Ill-Scaled NESs (F26-F38)

As for the previous test instances, the decision variables

have the same search region. A question which arises naturally

is how the performance of a method is influenced by the ill-

scaled NESs, in which the search ranges of decision variables

are different. To this end, we collect 13 ill-scaled NESs (F26-

F38) in Table II and the performance of different methods is

compared on them. Like Section V-D, the experimental results

TABLE VI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

THE SEVEN COMPARED METHODS ON F26-F38.

A-WeB VS
PR SR

R+ R− p-value R+ R− p-value

A-MONES 73.0 18.0 5.74E-02 66.5 24.5 1.10E-01

A-MOMMOP 65.0 26.0 1.91E-01 72.5 18.5 3.42E-02
NCDE 66.0 25.0 1.68E-01 71.0 20.0 4.74E-02
NSDE 48.5 42.5 ≥ 0.2 50.5 40.5 ≥ 0.2

Rep-SHADE 41.0 50.0 ≥ 0.2 45.5 45.5 ≥ 0.2

Rep-CLPSO 69.5 21.5 1.02E-01 74.0 17.0 2.39E-02

TABLE VII
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR THE SEVEN

COMPARED METHODS ON F26-F38. THE BEST AND THE SECOND BEST

RESULTS ARE HIGHLIGHTED IN BOLDFACE AND ITALIC, RESPECTIVELY.

Method Ranking (PR) Ranking (SR)

A-WeB 39.5000 34.4615
A-MONES 46.5769 43.5385

A-MOMMOP 53.6538 55.8846

NCDE 52.2692 60.8077

NSDE 35.9231 36.1538
Rep-SHADE 41.5000 36.8462

Rep-CLPSO 52.5769 54.3077

of A-MOBiDE, LIPS, and R3PSO are omitted.

Tables S-R-IV and S-R-V in the supplemental file summa-

rize the PR and SR values provided by the seven compared

methods, respectively. From Tables S-R-IV and S-R-V, it can

be observed that A-WeB achieves the second best average

PR value, and the same best average SR value with NSDE.

Additionally, A-WeB provides the best results on nine out of

13 test instances for both the PR and SR metrics. It can

successfully solve nine test instances over all 50 runs.

Tables VI and VII report the statistical test results based on

the multiple-problem Wilcoxon test and the Friedman Aligned

test, respectively. As shown in Table VI, A-WeB provides

higher R+ values than R− values when comparing with all

the competitors except Rep-SHADE. Rep-SHADE provides
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Fig. 6. The box plots of the hypervolume values derived from WeB with different weight vectors for F22-F25. (a) F22; (b) F23; (c) F24; and (d) F25.

higher R− value than R+ value for PR, and the same

R+ and R− value for SR. As far as the multiple-problem

Wilcoxon test at α = 0.05 is concerned, the significant

differences can be observed in three cases (i.e., A-WeB versus

A-MOMMOP, A-WeB versus NCDE, and A-WeB versus Rep-

CLPSO) for SR, which suggests that under this condition A-

WeB is significantly better than A-MOMMOP, NCDE, and

Rep-CLPSO. In addition, Table VII indicates that A-WeB

ranks the second best and the best in terms of the PR and

SR metrics, respectively. Therefore, on the whole, we can

conclude that the performance of A-WeB is highly competitive

on the 13 ill-scaled NESs.

Based on the discussions in the above three subsections, we

can give the following remarks:

• WeB has the capability to alleviate the drawback of

MONES when some optimal solutions have the same

values in certain decision variables, which verifies the

main motivation of this paper. We attribute the superiority

of WeB to the fact that it uses the information of all

the decision variables under the biobjective framework

by random weights.

• The single-objective optimization-based methods with the

niching or repulsion strategy (such as NCDE, NSDE,

Rep-SHADE, and Rep-CLPSO) can find multiple optimal

solutions of a NES in a single run. However, such

strategies always introduce some user-defined parameters,

which need to be set properly to solve different NESs.

More importantly, this kind of method has no specific

diversity maintenance mechanism as in multiobjective

EAs and, consequently, its performance is poor for the

NESs with infinitely many optimal solutions, especially

when the number of decision variables is high, which

makes WeB more attractive.

• WeB is the best multiobjective optimization-based trans-

formation technique compared with MONES, MOM-

MOP, and MOBiDE. A-WeB exhibits the best overall

performance when solving different kinds of NESs.

VI. DISCUSSIONS

The aim of this section is to study the robustness of A-

WeB, the scalability of A-WeB, the effectiveness of some

mechanisms in A-WeB, and the influence of the parameter

settings on the performance of A-WeB.

A. On the Robustness of A-WeB

In A-WeB, the weight vector w = (w1, . . . , wn) in E-

quation (14) is randomly generated at the beginning of each

run and is kept untouched during the evolution. Then, a

straightforward question is how A-WeB performs with a fixed

weight vector rather than a random weight vector over all 50
runs. Subsequently, we carried out experiments to answer this

question. Specifically, we chose 11 weight vectors in which

the first 10 weight vectors were randomly produced and the

last weight vector contained equal elements for all the decision

variables, i.e., w1 = · · · = wn. Fifty independent runs were

implemented for A-WeB associated with each of the 11 weight

vectors and test instances F22-F25 were used to produce the

experimental results.

The box plots of the hypervolume values over 50 runs are

shown in Fig. 6 for F22-F25. It is noteworthy that if w1 =
· · · = wn, then for any optimal solution x∗ = (x∗

1, . . . , x
∗
n) of

a NES, Equation (14) becomes:{
min f1(x) =

1
n ×∑m

i=1 x
∗
i

min f2(x) = 1− 1
n ×∑m

i=1 x
∗
i

(21)

A unique characteristic of F22 and F24 is that the sum of

all the decision variables of an optimal solution is equal to a

constant, and thus, the Pareto front is just one point in the two-

dimensional objective space. Consequently, the experimental

results of A-WeB with the 11th weight vector are not included

in Fig. 6 for F22 and F24. It is necessary to point out that

in the practical implementation of A-WeB, the probability of

w1 = · · · = wn is extremely low due to the randomization.

As shown in Fig. 6, A-WeB performs similarly for the

different fixed weight vectors and the hypervolume values

move in a small range. Therefore, we can conclude that the

performance of A-WeB is robust with regard to the change of

the weight vector.

B. On the Scalability of A-WeB

To better comprehend the performance of A-WeB, its

scalability is analyzed in this subsection. F05 is selected

as a test instance because the number of optimal solutions

(NOS) of F05 is scalable with the search range in each

dimension. For example, if S = [−60, 60]2, NOS = 76; if

S = [−70, 70]2, NOS = 89; if S = [−80, 80]2, NOS =
101; if S = [−90, 90]2, NOS = 113; and if S =
[−100, 100]2, NOS = 127. It can be seen that all the
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TABLE VIII
COMPARISON OF DIFFERENT METHODS ON F05 WITH A LARGE NUMBER OF OPTIMAL SOLUTIONS IN DIFFERENT DECISION SPACES. THE BEST

RESULT FOR EACH CASE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Method
PR SR

[−60, 60]2 [−70, 70]2 [−80, 80]2 [−90, 90]2 [−100, 100]2 [−60, 60]2 [−70, 70]2 [−80, 80]2 [−90, 90]2 [−100, 100]2

A-WeB 0.9921 0.9892 0.9743 0.9122 0.9335 0.62 0.68 0.42 0.44 0.64
A-MONES 0.9853 0.9676 0.9343 0.7754 0.8131 0.50 0.24 0.26 0.16 0.30

A-MOMMOP 0.2821 0.3611 0.4671 0.5427 0.7874 0.00 0.00 0.00 0.00 0.30

NCDE 0.4939 0.4335 0.3762 0.3347 0.2885 0.00 0.00 0.00 0.00 0.00

NSDE 0.3897 0.3204 0.2754 0.2276 0.1957 0.00 0.00 0.00 0.00 0.00

Rep-SHADE 0.6700 0.6638 0.6139 0.6234 0.6170 0.34 0.32 0.22 0.24 0.24

Rep-CLPSO 0.1555 0.1342 0.0988 0.0747 0.0688 0.00 0.00 0.00 0.00 0.00

above cases contain a large number of optimal solution-

s. Similar to Section V-D, A-WeB is compared with A-

MONES, A-MOMMOP, NCDE, NSDE, Rep-SHADE, and

Rep-CLPSO. For these seven compared methods, NP = 200
and Max FEs = 300, 000. All other parameter settings were

kept unchanged.
Table VIII reports the experimental results of different

methods on F05. From Table VIII, it is clear that A-WeB

is able to consistently provide the best PR and SR values,

regardless of the search range in each dimension. Moreover,

the SR values provided by A-WeB are greater than 0 for all

the cases, which means that A-WeB succeeds in finding all

the optimal solutions in some independent runs. In contrast,

NCDE, NSDE, and Rep-CLPSO cannot achieve any successful

run. Therefore, we can conclude that A-WeB has better scala-

bility than other compared methods, and has better potential to

be applied to NESs with a large number of optimal solutions.

TABLE IX
INFLUENCE OF THE NORMALIZATION OF THE DECISION VARIABLES FOR

A-WEB. THE BETTER RESULT FOR EACH TEST INSTANCE BETWEEN THE

COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE. IN THE LAST

ROW, THE RESULTS IN THE FORM OF (R+, R−, p) ARE OBTAINED BY THE

MULTIPLE-PROBLEM WILCOXON TEST.

Instance
PR SR

A-WeB A-WeB-1 A-WeB A-WeB-1

F02 0.6200 0.3800 0.36 0.10

F04 0.9573 0.9413 0.58 0.40

F05 1.0000 0.8369 1.00 0.18

F07 0.9400 0.8875 0.60 0.34

F08 0.4200 0.7000 0.42 0.70
F09 0.8371 0.8371 0.12 0.12

F10 0.8933 0.7867 0.68 0.56

F12 0.8880 0.8580 0.28 0.24

F13 0.9733 0.8867 0.76 0.32

F15 0.6688 0.6450 0.00 0.00

F16 0.9433 0.9800 0.66 0.88
F17 0.6200 0.5400 0.24 0.08

F18 0.9514 0.9714 0.70 0.80
F19 0.9950 1.0000 0.98 1.00
F20 1.0000 0.9967 1.00 0.98

F21 0.8550 0.8550 0.14 0.14

F26 1.0000 0.9900 1.00 0.98

F27 0.0933 0.6633 0.00 0.04
F34 0.8800 0.8600 0.88 0.86

F36 0.9400 0.5900 0.88 0.18

F37 0.9320 0.9880 0.66 0.94
F38 1.0000 0.9950 1.00 0.98

Average 0.8367 0.8268 0.5882 0.4918

Wilcoxon test (170.5, 82.5, 1.61E-01) (168.5, 84.5, 1.52E-01)

C. On the Normalization of the Decision Variables
A-WeB uses a linearly weighted sum of all the decision

variables for its location function as shown in Equation (13).

This subsection studies the effect of normalization of the

decision variables. For this purpose, the location function in

Equation (13) is modified as⎧⎨
⎩min α1(x) =

∑n
i=1 wi×x′

i∑n
i=1 wi

min α2(x) = 1−
∑n

i=1 wi×x′
i∑n

i=1 wi

(22)

where x′
i =

xi−xi

xi−xi
, i = 1, . . . , n. In this way, x′

i is normalized

in [0, 1].
With the modified location function, the resultant A-WeB

variant is referred to as A-WeB-1. Table IX shows the per-

formance of A-WeB and A-WeB-1 on test instances F01-F21

and F26-F38, where the experimental results are omitted when

both of them achieve PR = 1.0 and SR = 1.0 for a NES.

As can be seen, in contrast to A-WeB-1, A-Web loses on six

out of 22 test instances, while gets better results on 14 test

instances with respect to PR. For SR, A-WeB loses on six test

instances, yet wins on 13 test instances. In general, A-WeB

provides better PR and SR values on average, and higher R+

values than R− values for the PR and SR metrics.

From the above analysis, it seems that the performance

of A-WeB cannot be substantially improved by normalizing

the decision variables in the location function. This topic still

needs a thorough study in the future.

TABLE X
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

A-WEB WITH DIFFERENT HISTORICAL MEMORY SIZE H ON F01-F21.

H = 100 VS
PR SR

R+ R− p-value R+ R− p-value

H = 5 181.5 49.5 1.21E-02 169.5 61.5 6.21E-02

H = 10 175.5 55.5 3.68E-02 160.5 70.5 9.73E-02

H = 30 145.5 85.5 ≥ 0.2 135.5 95.5 ≥ 0.2

H = 50 114.5 116.5 ≥ 0.2 125.5 105.5 ≥ 0.2

H = 200 59.5 171.5 ≥ 0.2 73.0 158.0 ≥ 0.2

H = 300 82.0 149.0 ≥ 0.2 89.5 141.5 ≥ 0.2

H = 400 73.5 157.5 ≥ 0.2 77.0 154.0 ≥ 0.2

H = 500 102.0 129.0 ≥ 0.2 98.5 132.5 ≥ 0.2

D. Influence of the Historical Memory Size H

The historical memory size H is one of the parameters

in A-WeB. In the previous experiments, the default setting

H = NP = 100 was adopted as in [31]. In this subsection,

its influence on the performance of A-WeB is investigated

empirically. The detailed experimental results on test instances

F01-F21 are respectively given in Tables S-R-VI and S-R-

VII of the supplemental file for PR and SR. In addition, the
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statistical test results by the multiple-problem Wilcoxon test

are reported in Table X.

From Tables S-R-VI, S-R-VII, and X, A-WeB with H <
100 shows decreased performance against H = 100. On

the other hand, for H > 100, the performance of A-WeB

is improved compared with H = 100. The comparison in

Table X also indicates that there are no significant differences

among A-WeB with the values of H changing from 30 to 500
in that all the p-values are greater than 0.05. Therefore, A-

WeB is insensitive to H and the value of H can be chosen

from a large range, for example from 30 to 500.

TABLE XI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

A-WEB AND ITS FOUR VARIANTS WITH FIXED PARAMETER SETTINGS

ON F01-F21.

A-WeB VS
PR SR

R+ R− p-value R+ R− p-value

A-WeB-2 213.0 18.0 2.41E-04 202.0 29.0 5.34E-04
A-WeB-3 187.5 43.5 2.71E-03 182.5 48.5 1.85E-02
A-WeB-4 191.0 40.0 7.10E-03 183.5 47.5 9.44E-03
A-WeB-5 154.5 76.5 1.54E-01 139.0 92.0 ≥ 0.2

TABLE XII
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR A-WEB

AND ITS FOUR VARIANTS WITH FIXED PARAMETER SETTINGS ON

F01-F21. THE BEST AND THE SECOND BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE AND ITALIC, RESPECTIVELY.

Method Ranking (PR) Ranking (SR)

A-WeB 32.2381 30.5000
A-WeB-2 70.6905 75.5476

A-WeB-3 64.8571 59.5000

A-WeB-4 48.6667 51.6905

A-WeB-5 48.5476 47.7619

E. Influence of F and CR in DE

In A-WeB, the scaling factor F and the crossover control

parameter CR of DE are tuned in an adaptive way. To study

the influence of the parameter settings, A-WeB is compared

with its variants with fixed F and CR. For this purpose,

four commonly used settings are selected, i.e., (F,CR) =
(0.9, 0.1), (0.9, 0.9), (0.5, 0.3), and (0.5, 0.9) [21], [32], [46],

and their corresponding methods are referred to as A-WeB-2,

A-WeB-3, A-WeB-4, and A-WeB-5, respectively. Tables S-

R-VIII and S-R-IX in the supplemental file summarize the

PR and SR values on test instances F01-F21, respectively.

The statistical test results obtained by the multiple-problem

Wilcoxon test and the Friedman Aligned test are given in

Tables XI and XII, respectively.

As shown in Tables S-R-VIII and S-R-IX, A-WeB provides

the best average PR and SR values. From Table XI, A-WeB-2,

A-WeB-3, and A-WeB-4 suffer from significant performance

degradation since all the p-values are less than 0.05 when

comparing with A-WeB in terms of the PR and SR metrics.

It is evident from Table XII that A-WeB ranks the first.

The above comparison indicates that A-WeB exhibits supe-

rior performance against its variants with the fixed parameter

settings, while avoiding a trial-and-error process to choose the

proper parameter values.

TABLE XIII
RANKINGS OF THE METHODS FOR PARAMETER ADAPTATION BY THE

FRIEDMAN ALIGNED TEST ON F01-F21. THE BEST AND THE SECOND

BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE AND ITALIC,
RESPECTIVELY.

Method Ranking (PR) Ranking (SR)

A-WeB 25.3810 26.4524
jDE-WeB 39.6429 40.3333

JADE-WeB 30.9762 29.2143

F. Effectiveness of the Parameter Adaptation

A-WeB adapts the parameters F and CR of DE based

on SHADE [31]. Note that adaptive parameter adaptation

has been actively studied by DE researchers [47]. In this

subsection, the adaptive parameter adaptation of SHADE is

replaced with that of two state-of-the-art DE variants, i.e.,

jDE [48] and JADE [32], and the resultant methods are called

jDE-WeB and JADE-WeB, respectively. We compared the

performance of A-WeB with that of jDE-WeB and JADE-WeB.

The PR and SR values resulting from the three compared

methods are summarized in Tables S-R-X and S-R-XI of the

supplemental file on test instances F01-F21, respectively. In

addition, Table XIII reports the statistical test results obtained

by the Friedman Aligned test.

As shown in Tables S-R-X, S-R-XI, and XIII, A-WeB

provides the best average PR and SR values and ranks the

first. Thus, A-WeB achieves the best overall performance.

However, according to our observation, there are no signif-

icant differences between A-WeB and the two competitors in

terms of the multiple-problem Wilcoxon test in both the PR
and SR metrics. Hence, other adaptive parameter adaptation

mechanisms are also effective for handling NESs under our

framework.

G. Effectiveness of the Mutation Operator

In A-WeB, the mutation operator “DE/current/1” in E-

quation (17) is applied. In this subsection, we compared it

with another classical mutation operator “DE/rand/1”. Note

that there are also a lot of other mutation operators in the

DE literature [49], [50]. We do not conduct comprehensive

comparisons between “DE/current/1” and them because it is

out of the scope of this paper. The experimental results are

provided in Table S-R-XII of the supplemental file for test

instances F01-F21. When the two compared methods are both

capable of achieving PR = 1.0 and SR = 1.0 for a NES,

their results are not reported in Table S-R-XII.

As shown in Table S-R-XII, A-WeB with “DE/current/1”

provides better results than A-WeB with “DE/rand/1” on most

test instances both in terms of the PR and SR metrics. A-

WeB with “DE/current/1” can also obtain better average PR
and SR values. With respect to the multiple-problem Wilcoxon

test, although the differences are not significant at α = 0.05,

A-WeB with “DE/current/1” still gets higher R+ values than

R− values for both the PR and SR metrics. Therefore, A-

WeB gets great benefit from “DE/current/1” to find multiple

optimal solutions of a NES simultaneously in a single run.
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H. Effect of the Distance Comparison Criterion

For multimodal optimization problems, Wang et al. [21]

presented a new distance comparison criterion to avoid a large

attraction basin containing too many similar individuals and

to make the distribution of the population more appropriate.

In this subsection, this distance comparison criterion is also

incorporated into A-WeB for solving NESs. The corresponding

A-WeB variant is called A-WeB-6. In A-WeB-6, an individual

xu is said to be better than another individual xv if
∑m

i=1
|ei(xu)| <

∑m

i=1
|ei(xv)| ∧norm dist(xu,xv) < δ (23)

where norm dist(xu,xv) denotes the normalized Euclidean

distance between xu and xv , and δ is a distance threshold

which is set to 0.01 [21]. The experimental results are given in

Table S-R-XIII of the supplemental file for test instances F01-

F21. Again, the experimental results of those test instances,

for which A-WeB and A-WeB-6 can achieve 100% PR and

100% SR, are omitted.

From Table S-R-XIII, A-WeB-6 is able to obtain better

results on 12 and 11 out of 16 test instances in terms of the

PR and SR metrics, respectively. Compared with A-WeB, A-

WeB-6 also gets better average PR and SR values, and higher

R+ values than R− values for both the PR and SR metrics.

Therefore, this distance comparison criterion is applicable to

further improve the performance of A-WeB.

VII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a weighted biobjective transforma-

tion technique named WeB to formulate a NES as a biobjective

optimization problem, which extends our previous work [3].

WeB attempts to produce a weighted linear combination of

all the decision variables in the two objective functions.

Thanks to random weights, WeB is very likely to achieve

a one-to-one mapping from the optimal solutions of a NES

to different points on the Pareto front of the transformed

biobjective optimization problem. Therefore, it can alleviate

the risk of losing some optimal solutions with the same values

in certain decision variables due to the many-to-one mapping

in [3]. Subsequently, we have also suggested an adaptive

multiobjective differential evolution named AMODE as the

optimization algorithm. By combining WeB with AMODE, a

generic framework referred to as A-WeB, has been proposed

for dealing with NESs. It is worth noting that the Pareto

front of the transformed biobjective optimization problem

is linear. We thus expect that A-Web is able to effectively

locate multiple Pareto optimal solutions in a single run. As a

result, the optimal solutions of a NES can also be obtained

correspondingly.

The performance of A-WeB has been extensively tested on

38 test instances which include 21 NESs with known optimal

solutions, four NESs with infinitely many optimal solutions,

and 13 ill-scaled NESs. Moreover, A-WeB is compared with

three multiobjective optimization-based transformation tech-

niques equipped with AMODE as the optimization algorithm

and six well-established single-objective optimization-based

methods. The empirical studies verify that A-WeB has the

best overall performance across these three kinds of NESs.

Since there is no prior knowledge about the importance of

each decision variable, the weights in A-WeB were randomly

generated. In the future, we plan to design adaptive/self-

adaptive weights by online analysis of the importance of the

decision variables according to the properties of NESs at

hand. Additionally, developing other advanced optimization

algorithms (such as the multioperator-based EAs [46], [51])

for NESs will be another part of our future work.

The C++ source code of A-WeB can be downloaded from

Y. Wang’s homepage: http://ist.csu.edu.cn/YongWang.htm
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S-I. THIRTY-EIGHT TEST INSTANCES

1) F01: {
x21 + x22 − 1 = 0
x1 − x2 = 0

(1)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 2. It has two
optimal solutions: (-0.707107, -0.707107) and (0.707107,
0.707107) [1].

2) F02: { ∑n
i=1 x

2
i − 1 = 0

|x1 − x2|+
∑n
i=3 x

2
i = 0

(2)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 20. It has two
optimal solutions: (-0.707107, -0.707107, 0, · · · , 0) and
(0.707107, 0.707107, 0, · · · , 0) [1].

3) F03: {
x1 − sin (5πx2) = 0
x1 − x2 = 0

(3)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 2. It has 11 optimal
solutions as shown in Table S-I [1].

TABLE S-I
THE OPTIMAL SOLUTIONS OF F03

x1 x2
-0.924840 -0.924840
-0.866760 -0.866760
-0.562010 -0.562010
-0.428168 -0.428168
-0.187960 -0.187960
0.000000 0.000000
0.187960 0.187960
0.428168 0.428168
0.562010 0.562010
0.866760 0.866760
0.924840 0.924840

4) F04: {
x1 − cos (4πx2) = 0
x21 + x22 − 1 = 0

(4)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 2. It has 15 optimal
solutions as shown in Table S-II [1].
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TABLE S-II
THE OPTIMAL SOLUTIONS OF F04

x1 x2
0.416408 -0.909178

-0.561364 -0.827569
-0.724322 -0.689462
0.837812 -0.545959
0.886984 0.461799

-0.962322 -0.271914
-0.972855 -0.231415
1.000000 0.000000

-0.972855 0.231416
-0.962322 0.271914
0.886984 0.461799
0.837812 0.545959

-0.724322 0.689462
-0.561364 0.827569
0.416408 0.909178

5) F05:{
cos (2x1)− cos (2x2)− 0.4 = 0
2(x2 − x1) + sin (2x2)− sin (2x1)− 1.2 = 0

(5)

where xi ∈ [−10, 10], i = 1, · · · , n, and n = 2. It has 13
optimal solutions as shown in Table S-III [2].

TABLE S-III
THE OPTIMAL SOLUTIONS OF F05

x1 x2
-9.268258 -8.931402
-8.744542 -7.164787
-6.126665 -5.789809
-5.602950 -4.023195
-2.985073 -2.648216
-2.461357 -0.881602
0.156520 0.493376
0.680236 2.259991
3.298113 3.634969
3.821828 5.401583
6.439705 6.776562
6.963421 8.543176
9.581298 9.918154

6) F06:

x1 − 0.25428722− 0.18324757x4x3x9 = 0
x2 − 0.37842197− 0.16275449x1x10x6 = 0
x3 − 0.27162577− 0.16955071x1x2x10 = 0
x4 − 0.19807914− 0.15585316x7x1x6 = 0
x5 − 0.44166728− 0.19950920x7x6x3 = 0
x6 − 0.14654113− 0.18922793x8x5x10 = 0
x7 − 0.42937161− 0.21180486x2x5x8 = 0
x8 − 0.07056438− 0.17081208x1x7x6 = 0
x9 − 0.34504906− 0.19612740x10x6x8 = 0
x10 − 0.42651102− 0.21466544x4x8x1 = 0

(6)

where xi ∈ [−2, 2], i = 1, · · · , n, and n = 10. It
has one optimal solution: (0.257833, 0.381097, 0.278745,
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0.200669, 0.445251, 0.149184, 0.432010, 0.073403, 0.345967,
0.427326) [2].

7) F07:{
100(x1 − 0.25) = 0
100(x1 sin (4πx

2
2) + 0.75x1 − 0.25) = 0

(7)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 2. It has eight
optimal solutions as shown in Table S-IV.

TABLE S-IV
THE OPTIMAL SOLUTIONS OF F07

x1 x2
0.250000 -0.854337
0.250000 -0.721185
0.250000 -0.479471
0.250000 -0.141801
0.250000 0.141801
0.250000 0.479471
0.250000 0.721185
0.250000 0.854337

8) F08:
3.0− x1x23 = 0
x3 sin (π/x2)− x3 − x4 = 0
−x2x3 exp (1.0− x1x3) + 0.2707 = 0
2x21x3 − x42x3 − x2 = 0

(8)

where xi ∈ [0, 5], i = 1, · · · , n, and n = 4. It has one optimal
solution: (3, 2, 1, 0) [3].

9) F09:

(1−R)

[(
D

10(1+β1)
− x1

)
·

exp

(
10x1

1+
10x1
γ

)]
− x1 = 0

(1−R)

[ (
D
10 − β1x1 − (1 + β2)x2

)
·

exp

(
10x2

1+
10x2
γ

)]
+ x1 − (1 + β2)x2 = 0

(9)

where xi ∈ [0, 1], i = 1, · · · , n, n = 2, R = 0.96, D = 22,
γ = 1000, and β1 = β2 = 2. It has seven optimal solutions
as shown in Table S-V [3], [4], [5], [6].

TABLE S-V
THE OPTIMAL SOLUTIONS OF F09

x1 x2
0.042100 0.061813
0.042100 0.268723
0.266600 0.178430
0.266600 0.327267
0.266600 0.461111
0.042318 0.686779
0.719074 0.244197

10) F10:
2x1 + x2 + x3 + x4 + x5 − 6.0 = 0
x1 + 2x2 + x3 + x4 + x5 − 6.0 = 0
x1 + x2 + 2x3 + x4 + x5 − 6.0 = 0
x1 + x2 + x3 + 2x4 + x5 − 6.0 = 0
x1x2x3x4x5 − 1.0 = 0

(10)

where xi ∈ [−10, 10], i = 1, · · · , n, and n = 5. It has
three optimal solutions: (1, 1, 1, 1, 1), (0.916355, 0.916355,
0.916355, 0.916355, 1.418227), and (-0.579043, -0.579043,
-0.579043, -0.579043, 8.895215) [7], [8].

11) F11:

x1 + x42x4x6/4 + 0.75 = 0
x2 + 0.405 exp (1 + x1x2)− 1.405 = 0
x3 − x4x6/2 + 1.5 = 0
x4 − 0.605 exp (1− x23)− 0.395 = 0
x5 − x2x6/2 + 1.5 = 0
x6 − x1x5 = 0

(11)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 6. It has one
optimal solution: (-1, 1, -1, 1, -1, 1) [8], [9].

12) F12: {
sin (x31)− 3x1x

2
2 − 1 = 0

cos (3x21x2)− |x32|+ 1 = 0
(12)

where xi ∈ [−2, 2], i = 1, · · · , n, n = 2. It has 10 optimal
solutions as shown in Table S-VI. This function is modified
from [10].

TABLE S-VI
THE OPTIMAL SOLUTIONS OF F12

x1 x2
-1.810885 -0.349092
-1.810885 0.349092
-1.502221 -0.409077
-1.502221 0.409077
-1.791302 0.301926
-1.791302 -0.301926
-0.947268 0.785020
-0.947268 -0.785020
-0.213057 1.256845
-0.213057 -1.256845

13) F13:{
4x31 + 4x1x2 + 2x22 − 42x1 − 14 = 0
4x32 + 2x21 + 4x1x2 − 26x2 − 22 = 0

(13)

where xi ∈ [−5, 5], i = 1, · · · , n, and n = 2. It has nine
optimal solutions as shown in Table S-VII [11], [12].

TABLE S-VII
THE OPTIMAL SOLUTIONS OF F13

x1 x2
-0.127961 -1.953715
-0.270845 -0.923039
0.086678 2.884255
3.385154 0.073852
3.584428 -1.848127
3.000000 2.000000

-3.779310 -3.283186
-3.073026 -0.081353
-2.805118 3.131313

14) F14:{
− sin (x1) cos (x2)− 2 cos (x1) sin (x2) = 0
− cos (x1) sin (x2)− 2 sin (x1) cos (x2) = 0

(14)

where xi ∈ [0, 2π], i = 1, · · · , n, and n = 2. It has 13 optimal
solutions as shown in Table S-VIII [5], [11].
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TABLE S-VIII
THE OPTIMAL SOLUTIONS OF F14

x1 x2
0.000000 0.000000
3.141593 0.000000
1.570796 1.570796
6.283185 0.000000
0.000000 3.141593
4.712389 1.570796
3.141593 3.141593
1.570796 4.712389
6.283185 3.141593
0.000000 6.283185
4.712389 4.712389
3.141593 6.283185
6.283185 6.283185

15) F15:

x21 + x22 − 1.0 = 0

x23 + x24 − 1.0 = 0

x25 + x26 − 1.0 = 0

x27 + x28 − 1.0 = 0

4.731 · 10−3x1x3 − 0.3578x2x3 − 0.1238x1 + x7

−1.637 · 10−3x2 − 0.9338x4 − 0.3571 = 0

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7

−0.07745x2 − 0.6734x4 − 0.6022 = 0

x6x8 + 0.3578x1 + 4.731 · 10−3x2 = 0

−0.7623x1 + 0.2238x2 + 0.3461 = 0

(15)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 8. It has 16 optimal
solutions as shown in Table S-IX [7], [11], [12].

TABLE S-IX
THE OPTIMAL SOLUTIONS OF F15

x1 x2 x3 x4 x5 x6 x7 x8
0.1644 -0.9864 -0.9471 -0.3210 -0.9982 -0.0594 0.4110 0.9116
0.1644 -0.9864 -0.9471 -0.3210 -0.9982 0.0594 0.4110 -0.9116
0.1644 -0.9864 -0.9471 -0.3210 0.9982 -0.0594 0.4110 0.9116
0.1644 -0.9864 -0.9471 -0.3210 0.9982 0.0594 0.4110 -0.9116
0.1644 -0.9864 0.7185 -0.6956 -0.9980 -0.0638 -0.5278 0.8494
0.1644 -0.9864 0.7185 -0.6956 -0.9980 0.0638 -0.5278 -0.8494
0.1644 -0.9864 0.7185 -0.6956 0.9980 -0.0638 -0.5278 0.8494
0.1644 -0.9864 0.7185 -0.6956 0.9980 0.0638 -0.5278 -0.8494
0.6716 0.7410 -0.6516 -0.7586 -0.9625 -0.2711 -0.4376 0.8992
0.6716 0.7410 -0.6516 -0.7586 -0.9625 0.2711 -0.4376 -0.8992
0.6716 0.7410 -0.6516 -0.7586 0.9625 -0.2711 -0.4376 0.8992
0.6716 0.7410 -0.6516 -0.7586 0.9625 0.2711 -0.4376 -0.8992
0.6716 0.7410 0.9519 -0.3064 -0.9638 -0.2666 0.4046 0.9145
0.6716 0.7410 0.9519 -0.3064 -0.9638 0.2666 0.4046 -0.9145
0.6716 0.7410 0.9519 -0.3064 0.9638 0.2666 0.4046 -0.9145
0.6716 0.7410 0.9519 -0.3064 0.9638 -0.2666 0.4046 0.9145

16) F16: {
4x31 − 3x1 − cos (x2) = 0
sin (x21)− |x2| = 0

(16)

where xi ∈ [−2, 2], i = 1, · · · , n, and n = 2. It has six
optimal solutions as shown in Table S-X. This function is
modified from [13].

TABLE S-X
THE OPTIMAL SOLUTIONS OF F16

x1 x2
-0.597167 -0.349098
-0.597167 0.349098
-0.442758 -0.194781
-0.442758 0.194781
0.964499 -0.801774
0.964499 0.801774

17) F17:{
xi +

∑n
j=1 xj − (n+ 1) = 0 i = 1, · · · , n− 1[∏n

j=1 xj

]
− 1 = 0

(17)

where xi ∈ [−2, 2], i = 1, · · · , n, and n = 20. It has two
optimal solutions: (1, · · · , 1) and (0.994922, · · · , 0.994922,
1.101551) [13].

18) F18:

xi − cos

2xi −
n∑
j=1

xj

 = 0 i = 1, · · · , n (18)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 3. It has seven
optimal solutions as shown in Table S-XI [14].

TABLE S-XI
THE OPTIMAL SOLUTIONS OF F18

x1 x2 x3
0.810561 0.810561 -0.625687
0.810561 -0.625687 0.810561

-0.625687 0.810561 0.810561
0.543850 0.995778 0.543850
0.543850 0.543850 0.995778
0.995778 0.543850 0.543850
0.739086 0.739086 0.739086

19) F19: {
x21 + x22 − 2 = 0
x21 + x22/4− 1 = 0

(19)

where xi ∈ [−2, 2], i = 1, · · · , n, and n = 2. It has four
optimal solutions as shown in Table S-XII. This function is
modified from [15].

TABLE S-XII
THE OPTIMAL SOLUTIONS OF F19

x1 x2
-0.816497 -1.154701
0.816497 -1.154701

-0.816497 1.154701
0.816497 1.154701

20) F20:{
exp

(
x21 + x22

)
− 3 = 0

|x2|+ x1 − sin (3(|x2|+ x1)) = 0
(20)

where xi ∈ [−2, 2], i = 1, · · · , n, and n = 2. It has six
optimal solutions as shown in Table S-XIII. This function is
modified from [15].

TABLE S-XIII
THE OPTIMAL SOLUTIONS OF F20

x1 x2
-0.741152 -0.741152
-0.741152 0.741152
-0.256625 1.016246
-0.256625 -1.016246
-1.016246 -0.256625
-1.016246 0.256625

21) F21:  −3.84x
2
1 + 3.84x1 − x2 = 0

−3.84x22 + 3.84x2 − x3 = 0
−3.84x23 + 3.84x3 − x1 = 0

(21)

where xi ∈ [0, 1], i = 1, · · · , n, and n = 3. It has eight
optimal solutions as shown in Table S-XIV [16].
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TABLE S-XIV
THE OPTIMAL SOLUTIONS OF F21

x1 x2 x3
0.000000 0.000000 0.000000
0.488122 0.959435 0.149452
0.540304 0.953754 0.169399
0.959447 0.149373 0.487917
0.149440 0.488092 0.959440
0.953781 0.169343 0.540157
0.169254 0.539937 0.953788
0.739584 0.739584 0.739574

22) F22: {
x1 + x2 + x3 − 1 = 0
x1 − x32 = 0

(22)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 3. It has infinite
optimal solutions [1].

23) F23: 

x21 + x23 − 1 = 0
x22 + x24 − 1 = 0
x5x

3
3 + x6x

3
4 = 0

x5x
3
1 + x6x

3
2 = 0

x5x1x
2
3 + x6x

2
4x2 = 0

x5x
2
1x3 + x6x

2
2x4 = 0

(23)

where xi ∈ [−1, 1], i = 1, · · · , n, and n = 6. It has infinite
optimal solutions [1], [2].

24) F24:{
(xk +

∑n−k−1
i=1 xixi+k)xn − ck = 0 1 ≤ k ≤ n− 1∑n−1

i=1 xi + 1 = 0
(24)

where xi ∈ [−1, 1], i = 1, · · · , n, n = 20, ck = 0, and
k = 1, · · · , n− 1. It has infinite optimal solutions [1], [2].

25) F25:

x2 + 2x6 + x9 + 2x10 − 10−5 = 0
x3 + x8 − 3 · 10−5 = 0
x1 + x3 + 2x5 + 2x8 + x9 + x10 − 5 · 10−5 = 0
x4 + 2x7 − 10−5 = 0
0.5140437 · 10−7x5 − x21 = 0
0.1006932 · 10−6x6 − 2x22 = 0
0.7816278 · 10−15x7 − x24 = 0
0.1496236 · 10−6x8 − x1x3 = 0
0.6194411 · 10−7x9 − x1x2 = 0
0.2089296 · 10−14x10 − x1x22 = 0

(25)

where xi ∈ [−10, 10], i = 1, · · · , n, and n = 10. It has
infinite optimal solutions [2].

26) F26: 3x21 + sin (x1x2)− x23 + 2.0 = 0
2x31 − x22 − x3 + 3.0 = 0
sin (2x1) + cos (x2x3) + x2 − 1.0 = 0

(26)

where x1 ∈ [−5, 5], x2 ∈ [−1, 3], and x3 ∈ [−5, 5]. It has
two optimal solutions: (-0.064417, 2.090440, -1.370473) and
(-0.032759, 1.264629, 1.400644) [17].

27) F27: 5x91 − 6x51x
2
2 + x1x

4
2 + 2x1x3 = 0

−2x61x2 + 2x21x
3
2 + 2x2x3 = 0

x21 + x22 − 0.265625 = 0
(27)

where x1 ∈ [−0.6, 6], x2 ∈ [−0.6, 0.6], and x3 ∈ [−5, 5]. It
has 12 optimal solutions as shown in Table S-XV [13], [11].

TABLE S-XV
THE OPTIMAL SOLUTIONS OF F27

x1 x2 x3
0.279855 0.432789 -0.014189
0.279855 -0.432789 -0.014189

-0.279855 0.432789 -0.014189
-0.279855 -0.432789 -0.014189
0.466980 0.218070 0.000000

-0.466980 0.218070 0.000000
0.466980 -0.218070 0.000000

-0.466980 -0.218070 0.000000
0.000000 0.515388 0.000000
0.000000 -0.515388 0.000000
0.515388 0.000000 -0.012446

-0.515388 0.000000 -0.012446

28) F28: {
x21 − x2 − 2 = 0
x1 + sin

(
π
2x2

)
= 0

(28)

where x1 ∈ [0, 1] and x2 ∈ [−10, 0]. It has two optimal
solutions (0, -2) and (0.707660, -1.5) [3].

29) F29: {
x21 + x22 + x1 + x2 − 8 = 0
x1|x2|+ x1 + |x2| − 5 = 0

(29)

where x1 ∈ [0, 2.5] and x2 ∈ [−4, 6]. It has four optimal
solutions (0.404634, -3.271577), (2.403604, -0.762837), (1,
2), and (2, 1). This problem is modified from [18].

30) F30: {
x21 − |x2|+ 1 + 1

9 |x1 − 1| = 0
x22 + 5x21 − 7 + 1

9 |x2| = 0
(30)

where x1 ∈ [−1, 1] and x2 ∈ [−10, 10]. It has four optimal
solutions (-0.814326, -1.864719), (0.861828, -1.758100),
(-0.814326, 1.864719), and (0.861828, 1.758100). This
problem is modified from [18].

31) F31:{
0.5 sin (x1x2)− 0.25

π x2 − 0.5x1 = 0(
1− 0.25

π

)
[exp (2x1)− e] + e

πx2 − 2ex1 = 0
(31)

where x1 ∈ [0.25, 1] and x2 ∈ [1.5, 2π]. It has two
optimal solutions (0.299465, 2.836948) and (0.499966,
3.141589) [12], [19].

32) F32:  xx2
1 + xx1

2 − 5x1x2x3 − 85 = 0
x31 − x

x3
2 − x

x2
3 − 60 = 0

xx3
1 + xx1

3 − x2 − 2 = 0
(32)

where x1 ∈ [3, 5], x2 ∈ [2, 4], and x3 ∈ [0.5, 2]. It has one
optimal solution (4, 3, 1) [20].
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33) F33: {
x31 − 3x1x

2
2 − 1 = 0

3x21x2 − x32 + 1 = 0
(33)

where x1 ∈ [−1,−0.1] and x2 ∈ [−2, 2]. It has two
optimal solutions (-0.793701, -0.793701) and (-0.290515,
1.084215) [9].

34) F34:
0.1x1 + cos (2x2) + 0.09240 = 0
sin (3x3) + sin ( 10x1

3 ) + log (2x2)− 2.52x3 + 0.08805 = 0
2(x1 − 0.75)2 + sin (16πx2 − π

2 )− 3.26815 = 0
(34)

where x1 ∈ [1, 2.5], x2 ∈ [0.2, 2], and x3 ∈ [0.1, 3]. It has
one optimal solution (1.852100, 0.926050, 0.617370) [21].

35) F35: {
4x31 − 3x1 − x2 = 0
x21 − x2 = 0

(35)

where x1 ∈ [−5, 1.5] and x2 ∈ [0, 5]. It has three optimal
solutions (-0.75, 0.5625), (0, 0), and (1, 1) [13].

36) F36:{
x31 − 3x1x

2
2 + a1(2x

2
1 + x1x2) + b1x

2
2 + c1x1 + a2x2 = 0

3x21x2 − x32 − a1(4x1x2 − x22) + b2x
2
1 + c2 = 0

(36)
where a1 = 25, b1 = 1, c1 = 2, a2 = 3, b2 = 4, c2 = 5,
x1 ∈ [0, 2], and x2 ∈ [10, 30]. It has two optimal solutions
(1.6359718, 13.8476653) and (0.6277425, 22.2444123) [15].

37) F37:  x21 − x1 − x22 − x2 + x23 = 0
sin (x2 − exp (x1)) = 0
x3 − log |x2| = 0

(37)

where x1 ∈ [0, 2], x2 ∈ [−10, 10], and x3 ∈ [−1, 1]. It has
five optimal solutions shown in Table S-XVI. This problem is
modified from [22].

TABLE S-XVI
THE OPTIMAL SOLUTIONS OF F37

x1 x2 x3
0.825297 -0.859034 -0.151946
1.299490 0.525835 -0.642769
1.533662 -1.648068 0.499604
1.981360 -2.172180 0.775731
1.983283 0.983378 -0.016762

38) F38: {
x41 + 4x42 − 6.0 = 0
x21x2 − 0.6787 = 0

(38)

where x1 ∈ [−2, 2] and x2 ∈ [0, 1.1]. It has four opti-
mal solutions (-1.563533, 0.277628), (-0.789706, 1.088295),
(1.563533, 0.277628), and (0.789706, 1.088295). This prob-
lem is modified from [23].
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S-II. PARAMETER SETTINGS

TABLE S-R-I
PARAMETER SETTINGS FOR DIFFERENT METHODS.

Method Parameter settings
A-WeB NP = 100, H = NP

A-MONES NP = 100, H = NP

A-MOMMOP NP = 100, H = NP

A-MOBiDE NP = 100, H = NP

NCDE NP = 100, F = 0.9, CR = 0.1

NSDE NP = 100, F = 0.9, CR = 0.1

LIPS NP = 100, w = 0.729843788

R3PSO NP = 100, w = 0.729843788, c1 = c2 = 2.05

Rep-SHADE NP = 100, H = NP

Rep-CLPSO NP = 100,m = 7, c = 2.0

jDE-WeB NP = 100, τ1 = τ2 = 0.1

JADE-WeB NP = 100, c = 0.1, µCR = 0.5, µF = 0.5
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S-III. SUPPLEMENTAL RESULTS

TABLE S-R-II
COMPARISON OF DIFFERENT METHODS ON TEST INSTANCES F01-F21 WITH RESPECT TO THE PEAK RATIO. THE BEST RESULT FOR EACH TEST INSTANCE

AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-MONES A-MOMMOP A-MOBiDE NCDE NSDE LIPS R3PSO Rep-SHADE Rep-CLPSO
F01 1.0000 1.0000 1.0000 0.7100 1.0000 1.0000 1.0000 0.0700 1.0000 1.0000
F02 0.6200 0.5500 0.0500 0.0000 0.8300 0.3400 0.0000 0.0000 0.0000 0.0000
F03 1.0000 1.0000 1.0000 0.1345 0.9873 0.9600 0.6382 0.1309 0.9873 0.9455
F04 0.9573 0.7387 0.9000 0.1560 0.9773 0.9653 0.4813 0.1213 0.9147 0.9800
F05 1.0000 0.9708 0.5092 0.0985 0.6400 0.8138 0.0923 0.0000 0.7754 0.5015
F06 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
F07 0.9400 0.5625 0.9725 0.2075 0.9350 0.9650 0.1925 0.0200 0.9975 0.9675
F08 0.4200 0.4000 0.1600 0.0200 0.1000 0.0400 0.0000 0.0000 0.0000 0.0000
F09 0.8371 0.6029 0.7429 0.2086 0.9257 0.8943 0.2600 0.1657 0.8514 0.8257
F10 0.8933 0.7333 0.7867 0.0000 0.0000 0.0733 0.0000 0.0000 0.2933 0.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0200 1.0000 1.0000
F12 0.8880 0.7180 0.8840 0.1860 0.6540 0.8680 0.1340 0.0140 0.9240 0.8400
F13 0.9733 0.9956 0.9889 0.2178 0.9800 0.9867 0.0756 0.0000 0.9778 0.8667
F14 1.0000 0.4431 0.9985 0.2800 0.8508 0.8508 0.1246 0.0031 0.8877 0.9277
F15 0.6688 0.1738 0.9138 0.1200 0.7700 0.7388 0.0000 0.0000 0.6925 0.6000
F16 0.9433 0.7567 0.8600 0.3600 1.0000 1.0000 0.2267 0.0100 1.0000 1.0000
F17 0.6200 0.3200 0.9000 0.0000 0.2800 0.2100 0.0000 0.0000 1.0000 0.6100
F18 0.9514 0.5686 0.5829 0.2171 0.8371 0.9457 0.0029 0.0029 0.9286 0.7629
F19 0.9950 0.5100 0.5700 0.4250 1.0000 1.0000 0.2600 0.0100 1.0000 1.0000
F20 1.0000 0.7633 1.0000 0.2967 0.9967 0.9900 0.1767 0.0033 1.0000 1.0000
F21 0.8550 0.6250 0.8250 0.3150 0.9650 0.9600 0.0000 0.0100 0.7450 0.4850

Average 0.8839 0.6873 0.7926 0.2835 0.7966 0.7906 0.1745 0.0277 0.8083 0.7292

TABLE S-R-III
COMPARISON OF DIFFERENT METHODS ON TEST CASES F01-F21 WITH RESPECT TO THE SUCCESS RATE. THE BEST RESULT FOR EACH TEST INSTANCE

AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-MONES A-MOMMOP A-MOBiDE NCDE NSDE LIPS R3PSO Rep-SHADE Rep-CLPSO
F01 1.00 1.00 1.00 0.42 1.00 1.00 1.00 0.02 1.00 1.00
F02 0.36 0.10 0.00 0.00 0.68 0.08 0.00 0.00 0.00 0.00
F03 1.00 1.00 1.00 0.00 0.88 0.66 0.00 0.00 0.86 0.62
F04 0.58 0.36 0.38 0.00 0.72 0.62 0.00 0.00 0.24 0.72
F05 1.00 0.86 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.00
F06 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
F07 0.60 0.50 0.80 0.00 0.52 0.72 0.00 0.00 0.98 0.78
F08 0.42 0.40 0.16 0.02 0.10 0.04 0.00 0.00 0.00 0.00
F09 0.12 0.02 0.00 0.02 0.50 0.32 0.00 0.00 0.06 0.02
F10 0.68 0.50 0.42 0.00 0.00 0.00 0.00 0.00 0.04 0.00
F11 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.02 1.00 1.00
F12 0.28 0.50 0.24 0.00 0.00 0.28 0.00 0.00 0.42 0.22
F13 0.76 0.96 0.90 0.00 0.84 0.88 0.00 0.00 0.80 0.28
F14 1.00 0.00 0.98 0.00 0.04 0.02 0.00 0.00 0.10 0.36
F15 0.00 0.00 0.36 0.00 0.02 0.00 0.00 0.00 0.00 0.00
F16 0.66 0.50 0.48 0.00 1.00 1.00 0.00 0.00 1.00 1.00
F17 0.24 0.12 0.80 0.00 0.00 0.00 0.00 0.00 1.00 0.28
F18 0.70 0.00 0.00 0.00 0.04 0.64 0.00 0.00 0.62 0.12
F19 0.98 0.00 0.14 0.02 1.00 1.00 0.00 0.00 1.00 1.00
F20 1.00 0.50 1.00 0.00 0.98 0.94 0.00 0.00 1.00 1.00
F21 0.14 0.00 0.14 0.00 0.74 0.74 0.00 0.00 0.08 0.00

Average 0.64 0.44 0.51 0.12 0.53 0.52 0.05 0.00 0.54 0.45

TABLE S-R-IV
COMPARISON OF DIFFERENT METHODS ON TEST CASES F26-F38 WITH RESPECT TO THE PEAK RATIO. THE BEST RESULT FOR EACH TEST INSTANCE

AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-MONES A-MOMMOP NCDE NSDE Rep-SHADE Rep-CLPSO
F26 1.0000 0.9700 0.9800 0.9900 0.9900 0.9800 0.8100
F27 0.0933 0.3750 0.0000 0.6467 0.7033 0.2733 0.4533
F28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F30 1.0000 0.7550 1.0000 0.9700 1.0000 1.0000 0.9900
F31 1.0000 0.8600 1.0000 1.0000 1.0000 1.0000 0.9900
F32 1.0000 1.0000 1.0000 0.4000 0.8400 1.0000 1.0000
F33 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000
F34 0.8800 0.9200 0.5200 0.1600 0.6600 0.4200 0.1400
F35 1.0000 0.9467 0.9933 0.9800 1.0000 1.0000 1.0000
F36 0.9400 0.9100 0.9400 1.0000 1.0000 1.0000 0.9200
F37 0.9320 0.9160 0.9000 0.7880 0.9840 0.9480 0.3800
F38 1.0000 0.7600 1.0000 0.9750 1.0000 1.0000 1.0000

Average 0.9112 0.8779 0.8718 0.8392 0.9352 0.8939 0.8218
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TABLE S-R-V
COMPARISON OF DIFFERENT METHODS ON TEST CASES F26-F38 WITH RESPECT TO THE SUCCESS RATE. THE BEST RESULT FOR EACH TEST INSTANCE

AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-MONES A-MOMMOP NCDE NSDE Rep-SHADE Rep-CLPSO
F26 1.00 0.94 0.96 0.98 0.98 0.96 0.62
F27 0.00 0.00 0.00 0.00 0.02 0.00 0.00
F28 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F29 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F30 1.00 0.50 1.00 0.88 1.00 1.00 0.96
F31 1.00 0.74 1.00 1.00 1.00 1.00 0.98
F32 1.00 1.00 1.00 0.40 0.84 1.00 1.00
F33 1.00 1.00 1.00 1.00 0.96 1.00 1.00
F34 0.88 0.96 0.52 0.16 0.66 0.42 0.14
F35 1.00 0.86 0.98 0.96 1.00 1.00 1.00
F36 0.88 0.84 0.88 1.00 1.00 1.00 0.84
F37 0.66 0.58 0.54 0.18 0.92 0.74 0.00
F38 1.00 0.50 1.00 0.90 1.00 1.00 1.00

Average 0.88 0.76 0.84 0.73 0.88 0.86 0.73

TABLE S-R-VI
INFLUENCE OF THE HISTORICAL MEMORY SIZE (H ) ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE PEAK

RATIO. THE BEST RESULT FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance H = 5 H = 10 H = 30 H = 50 H = 100 H = 200 H = 300 H = 400 H = 500

F01 1.0000 1.0000 1.0000 0.9900 1.0000 1.0000 1.0000 0.9900 1.0000
F02 0.0100 0.0200 0.2400 0.4700 0.6200 0.6900 0.6700 0.7000 0.7300
F03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F04 0.9413 0.9427 0.9680 0.9613 0.9573 0.9533 0.9667 0.9600 0.9627
F05 0.9969 0.9969 0.9969 0.9985 1.0000 1.0000 1.0000 1.0000 1.0000
F06 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F07 0.8875 0.8775 0.9250 0.9550 0.9400 0.9800 0.9675 0.9575 0.9450
F08 0.3200 0.4200 0.4000 0.4800 0.4200 0.4600 0.4200 0.5600 0.4800
F09 0.7886 0.7771 0.8257 0.8200 0.8371 0.8429 0.8086 0.8400 0.8171
F10 0.3067 0.4333 0.7533 0.8533 0.8933 0.9467 0.9733 0.9733 0.9533
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F12 0.8220 0.8380 0.8860 0.8700 0.8880 0.8940 0.9040 0.8880 0.8720
F13 0.9933 0.9933 0.9844 0.9756 0.9733 0.9756 0.9600 0.9867 0.9689
F14 1.0000 0.9954 0.9985 0.9985 1.0000 1.0000 1.0000 0.9969 1.0000
F15 0.5838 0.6388 0.6875 0.7075 0.6688 0.6938 0.7088 0.7013 0.7225
F16 0.9567 0.9567 0.9600 0.9733 0.9433 0.9567 0.9667 0.9733 0.9767
F17 0.5900 0.6200 0.5800 0.5800 0.6200 0.5500 0.5200 0.4900 0.4900
F18 0.8886 0.9200 0.9714 0.9543 0.9514 0.9514 0.9343 0.9343 0.9400
F19 1.0000 1.0000 1.0000 1.0000 0.9950 1.0000 1.0000 1.0000 0.9950
F20 0.9933 0.9867 1.0000 1.0000 1.0000 0.9967 1.0000 0.9967 1.0000
F21 0.8650 0.8600 0.8225 0.8650 0.8550 0.8575 0.8600 0.8625 0.8400

Average 0.8068 0.8227 0.8571 0.8787 0.8839 0.8928 0.8886 0.8957 0.8902

TABLE S-R-VII
INFLUENCE OF THE HISTORICAL MEMORY SIZE (H ) ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE SUCCESS

RATE. THE BEST RESULT FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance H = 5 H = 10 H = 30 H = 50 H = 100 H = 200 H = 300 H = 400 H = 500

F01 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00
F02 0.00 0.00 0.12 0.22 0.36 0.44 0.40 0.44 0.50
F03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F04 0.44 0.40 0.60 0.52 0.58 0.52 0.60 0.56 0.68
F05 0.96 0.96 0.96 0.98 1.00 1.00 1.00 1.00 1.00
F06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F07 0.44 0.38 0.48 0.68 0.60 0.84 0.74 0.68 0.60
F08 0.32 0.42 0.40 0.48 0.42 0.46 0.42 0.56 0.48
F09 0.02 0.00 0.10 0.06 0.12 0.08 0.02 0.12 0.04
F10 0.02 0.10 0.28 0.58 0.68 0.84 0.92 0.92 0.86
F11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F12 0.12 0.14 0.24 0.26 0.28 0.36 0.40 0.36 0.26
F13 0.94 0.94 0.86 0.78 0.76 0.78 0.66 0.88 0.72
F14 1.00 0.94 0.98 0.98 1.00 1.00 1.00 0.96 1.00
F15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F16 0.74 0.74 0.76 0.84 0.66 0.74 0.80 0.84 0.86
F17 0.18 0.24 0.16 0.16 0.24 0.10 0.08 0.08 0.08
F18 0.38 0.52 0.80 0.72 0.70 0.70 0.60 0.62 0.62
F19 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98
F20 0.96 0.92 1.00 1.00 1.00 0.98 1.00 0.98 1.00
F21 0.28 0.32 0.20 0.22 0.14 0.22 0.20 0.36 0.24

Average 0.56 0.57 0.62 0.64 0.64 0.67 0.66 0.68 0.66
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TABLE S-R-VIII
INFLUENCE OF F AND CR ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE PEAK RATIO. THE BEST RESULT

FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-WeB-2 A-WeB-3 A-WeB-4 A-WeB-5
F01 1.0000 1.0000 1.0000 1.0000 1.0000
F02 0.6200 0.1700 0.0000 0.5000 0.0300
F03 1.0000 0.9964 1.0000 1.0000 1.0000
F04 0.9573 0.9013 0.9720 0.9280 0.9880
F05 1.0000 0.5708 0.9846 1.0000 1.0000
F06 1.0000 1.0000 0.0000 1.0000 1.0000
F07 0.9400 0.8650 0.6750 0.8250 0.8225
F08 0.4200 0.1000 0.0200 0.4200 0.9600
F09 0.8371 0.8229 0.8343 0.8286 0.8229
F10 0.8933 0.0333 0.8267 0.8600 0.9000
F11 1.0000 1.0000 1.0000 1.0000 1.0000
F12 0.8880 0.8220 0.9260 0.8720 0.9080
F13 0.9733 0.7489 0.7000 0.9489 0.8756
F14 1.0000 1.0000 1.0000 1.0000 1.0000
F15 0.6688 0.5575 0.0350 0.6838 0.5513
F16 0.9433 0.9567 0.9200 0.9500 0.9233
F17 0.6200 0.0000 0.0000 0.0200 0.0400
F18 0.9514 0.7829 0.8886 0.8371 0.8857
F19 0.9950 1.0000 1.0000 0.9950 1.0000
F20 1.0000 0.9833 1.0000 0.9900 1.0000
F21 0.8550 0.7150 0.7475 0.8425 0.7325

Average 0.8839 0.7155 0.6919 0.8334 0.8305

TABLE S-R-IX
INFLUENCE OF F AND CR ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE SUCCESS RATE. THE BEST RESULT

FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB A-WeB-2 A-WeB-3 A-WeB-4 A-WeB-5
F01 1.00 1.00 1.00 1.00 1.00
F02 0.36 0.06 0.00 0.12 0.00
F03 1.00 0.96 1.00 1.00 1.00
F04 0.58 0.26 0.68 0.30 0.82
F05 1.00 0.00 0.86 1.00 1.00
F06 1.00 1.00 0.00 1.00 1.00
F07 0.60 0.00 0.26 0.20 0.18
F08 0.42 0.10 0.02 0.42 0.96
F09 0.12 0.06 0.14 0.08 0.12
F10 0.68 0.00 0.52 0.62 0.70
F11 1.00 1.00 1.00 1.00 1.00
F12 0.28 0.08 0.44 0.22 0.32
F13 0.76 0.04 0.02 0.60 0.16
F14 1.00 1.00 1.00 1.00 1.00
F15 0.00 0.00 0.00 0.00 0.00
F16 0.66 0.76 0.52 0.70 0.58
F17 0.24 0.00 0.00 0.00 0.00
F18 0.70 0.10 0.22 0.12 0.30
F19 0.98 1.00 1.00 0.98 1.00
F20 1.00 0.90 1.00 0.94 1.00
F21 0.14 0.00 0.04 0.18 0.06

Average 0.64 0.40 0.46 0.55 0.58
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TABLE S-R-X
INFLUENCE OF THE PARAMETER ADAPTATION ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE PEAK RATIO.

THE BEST RESULT FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB jDE-WeB JADE-WeB
F01 1.0000 1.0000 1.0000
F02 0.6200 0.3600 0.7000
F03 1.0000 1.0000 1.0000
F04 0.9573 0.9467 0.9653
F05 1.0000 0.9969 1.0000
F06 1.0000 1.0000 1.0000
F07 0.9400 0.8700 0.9725
F08 0.4200 0.7200 0.1800
F09 0.8371 0.8086 0.8514
F10 0.8933 0.9467 0.2467
F11 1.0000 1.0000 1.0000
F12 0.8880 0.8240 0.9080
F13 0.9733 0.9667 0.9444
F14 1.0000 1.0000 1.0000
F15 0.6688 0.4938 0.7363
F16 0.9433 0.9467 0.9600
F17 0.6200 0.5900 0.2900
F18 0.9514 0.8600 0.8629
F19 0.9950 0.9950 1.0000
F20 1.0000 1.0000 1.0000
F21 0.8550 0.7650 0.8575

Average 0.8839 0.8614 0.8321

TABLE S-R-XI
INFLUENCE OF THE PARAMETER ADAPTATION ON THE PERFORMANCE OF A-WEB FOR TEST INSTANCES F01-F21 WITH RESPECT TO THE SUCCESS RATE.

THE BEST RESULT FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE.

Instance A-WeB jDE-WeB JADE-WeB
F01 1.00 1.00 1.00
F02 0.36 0.10 0.46
F03 1.00 1.00 1.00
F04 0.58 0.48 0.60
F05 1.00 0.96 1.00
F06 1.00 1.00 1.00
F07 0.60 0.28 0.86
F08 0.42 0.72 0.18
F09 0.12 0.04 0.12
F10 0.68 0.84 0.06
F11 1.00 1.00 1.00
F12 0.28 0.14 0.42
F13 0.76 0.74 0.52
F14 1.00 1.00 1.00
F15 0.00 0.00 0.02
F16 0.66 0.68 0.76
F17 0.24 0.04 0.04
F18 0.70 0.22 0.24
F19 0.98 0.98 1.00
F20 1.00 1.00 1.00
F21 0.14 0.04 0.24

Average 0.64 0.58 0.60

TABLE S-R-XII
COMPARISON BETWEEN “DE/CURRENT/1” AND “DE/RAND/1” IN A-WEB. THE BETTER RESULT FOR EACH TEST INSTANCE BETWEEN THE COMPARED
METHODS IS HIGHLIGHTED IN BOLDFACE. IN THE LAST ROW, THE RESULTS IN THE FORM OF (R+, R−, p) ARE OBTAINED BY THE MULTIPLE-PROBLEM

WILCOXON TEST.

Instance PR SR
DE/current/1 DE/rand/1 DE/current/1 DE/rand/1

F02 0.6200 0.9100 0.36 0.82
F04 0.9573 0.9760 0.58 0.70
F05 1.0000 0.9662 1.00 0.66
F07 0.9400 0.9075 0.60 0.52
F08 0.4200 0.2400 0.42 0.24
F09 0.8371 0.8114 0.12 0.08
F10 0.8933 0.7133 0.68 0.14
F12 0.8880 0.9060 0.28 0.34
F13 0.9733 0.7333 0.76 0.04
F15 0.6688 0.6438 0.00 0.00
F16 0.9433 0.8433 0.66 0.30
F17 0.6200 0.6800 0.24 0.36
F18 0.9514 0.9171 0.70 0.48
F19 0.9950 1.0000 0.98 1.00
F21 0.8550 0.6375 0.14 0.04

Average 0.8375 0.7924 0.50 0.38
Wilcoxon test (90.0, 30.0, 9.46E-02) (83.5, 36.5, 1.53E-01)
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TABLE S-R-XIII
INFLUENCE OF THE DISTANCE COMPARISON CRITERION FOR A-WEB. THE BETTER RESULT FOR EACH TEST INSTANCE BETWEEN THE COMPARED

METHODS IS HIGHLIGHTED IN BOLDFACE. IN THE LAST ROW, THE RESULTS IN THE FORM OF (R+, R−, p) ARE OBTAINED BY THE MULTIPLE-PROBLEM
WILCOXON TEST.

Instance PR SR
A-WeB A-WeB-6 A-WeB A-WeB-6

F02 0.6200 0.6300 0.36 0.46
F04 0.9573 0.9680 0.58 0.66
F05 1.0000 0.7354 1.00 0.10
F07 0.9400 0.9925 0.60 0.94
F08 0.4200 0.2800 0.42 0.28
F09 0.8371 0.8743 0.12 0.18
F10 0.8933 0.9800 0.68 0.94
F12 0.8880 0.9300 0.28 0.56
F13 0.9733 0.9711 0.76 0.74
F14 1.0000 0.9985 1.00 0.98
F15 0.6688 0.7713 0.00 0.00
F16 0.9433 0.9867 0.66 0.92
F17 0.6200 0.7000 0.24 0.40
F18 0.9514 0.9771 0.70 0.84
F19 0.9950 1.0000 0.98 1.00
F21 0.8550 0.9800 0.14 0.86

Average 0.8477 0.8609 0.53 0.62
Wilcoxon test (34.0, 102.0, ≥ 0.2) (34.0, 102.0, ≥ 0.2)


