AN INVESTIGATION INTO FACTORS AFFECTING THE
ADOPTION AND DIFFUSION OF
SOFTWARE PATTERNS IN INDUSTRY

Mary Lynn Manns MBA, MIS, PhD

Submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

SOFTWARE TECHNOLOGY RESEARCH LABORATORY
DE MONTFORT UNIVERSITY
LEICESTER
UNITED KINGDOM

May 2002

ABSTRACT
MARY LYNN MANNS 2002

AN INVESTIGATION INTO FACTORS AFFECTING THE ADOPTION AND
DIFFUSION OF SOFTWARE PATTERNS IN INDUSTRY

This study examines the adoption and dissemination of software patterns amongst individuals
and into organizations. Patterns and pattern languages are a new contribution to the area of
software reuse and are becoming the tool of a growing community that is attempting to
capture best practices in the software development industry. This study traces the roots of the
patterns philosophy from the work of C. Alexander in the architectural built environment to
the present, conflicting views of patterns in the software industry. It then presents a critical
assessment of patterns in terms of a structure for documenting knowledge, a process for using
that knowledge, and a community that is involved in the effort.

The research is prompted by the scarcity of resources for individuals who wish to
introduce patterns into their organizations, and the almost complete lack of theory concerning
patterns use. It is therefore an exploratory study for the purpose of building theory in this
relatively unexplored area. The study borrows from diffusion of innovation (DOI) theory to
build a theoretical framework proposing fifteen factors that are likely to influence individual
use of patterns, and then utilizes three research operations, providing both quantitative and
qualitative data, to examine and explain these factors. Findings show that ten of the fifteen
proposed factors appear to have a direct influence on use, while four more are added as an
indirect influence. Analysis of the findings offers guidelines for industry practitioners who

wish to encourage pattern use in organizations and for researchers who wish to use this study
as a foundation for ongoing research.

Table of contents

Chapter 1: INIroductiOncccecceecssecssscccsesancassscsssscssesearescosssssssssssssssssssossssscsessenasce 9
1.1 OVETVIEW coireeereierennneeecessssssssescassssecssesssssessssssssessssssasessssssssssssssansssnassansasesss 9
1.2 Reuse of successful practiCeccceerreemeercrrecrsesssreeninntsanessessesssssssssssscssessessesaes 11
1.3 Roadmap of the theslSccciriueeicrcriinenceniiininmmnecccrinnnnmnssiiecrnsessiccsecseraeassenns 14
Chapter 2: PatterNS ...cccccecceccecccccsssssrssesssssesssansssssssssssossssssssensassssssssssssssssssessossesssss 16
2.1 INITOAUCLION ciiiveereirrrerercssnenenereessosasssssossnnannarssesesanssssssssesstrasessssssssssssannansasses 16
2.2 The foundation fOr PAttEINScovvvrrrrrrrcrrcrenneeeiteeeeeesesecssssennansssssscessesecssesssnens 19
2.3 The relevance of Alexander’s philosophy to SOfWareccereerecerasnesennasseses 25
2.4 Patterns @S SITUCIUTE .uueveevceieerrrenraernnecrserensreesecsseesssssssssssssssssssssssasssnssasssssssses 27
2.5 PatteInNS @S PrOCESS .eeeevevercreeirrereesersserrerssrsssssssssssesssssrsnssnasessssasssssansssasnossessns 29
2.6 Patterns as COMMUNILY ...ccceceeeirersessssnnssconecsscornsansssessssssastsssssssssssssosssssosaasanass 31
2.7 Popular view of software patternscccovvveeeecccccrsnaneiessecnnnsscsssssssassnscsasns . 33
2.8 Pattern acceptance in OrganiZAtiONS coveccessssssrcsrtereecssssssssrssssssensssescssosennes 35
Chapter 3: Theoretical FOUNAAtiONc.ccccceveeeeenceceesssecesssosccsssesssassssesssssssssssssasssssse 39
3.1 INtrOdUCHION .ccicceiiiirereerecsenneereseressssssnesessssenanssssessssnstssssssannsassssssnassssenes 39
3.2 Patterns as a software process INNOVALION ccccceeensesscncecssssnnnessccssnnsnessnnasens 40
3.3 Guiding motivation for StUAYcccccevrrivirrneeecririinnansieeiesssnsnsesssesssessessssssnannes 42
3.4 Theresearch modelccovvvvereeiieeriinernninneeereieessestanesessssrnsssessssssssassassssonnes 43
3.5 Innovation adoption r€SEATCHcccivcviieeeriirneecrsrenrerssrannscssansessonsssssssssessssanasens 46
3.6 Construct groups and fACIOIS ..cccveeeeiirrerresissssssssrsrssssssaressasseresessseessssssssssssssnns 49
3.6.1 Dependent variablecooeeeernreeinninereessenencssesssssssassassassansssssssssesssenes 50
3.6.2 Independent variables and proposSiionscccceececcssnnserieescssssnnnecsasenss 50
3.6.2.1 Potential adopters’ perceptions of patterns attributes ol
3.6.2.1.1 Relative advantagecccccenrvmnnnrciscnssisnnnnnnessnnns 51
3.6.2.1.2 Compatibilityccivvrieinnenisinneisinnenscsnnenessasisnnnes 52
3.6.2.1.3 Ease 0f USE ...cccovrrrmenerieerccsnnnnensnsssnnntnneeseinnnsenes 52
3.6.2.1.4 Trialabilityccccvrrivecrnniecisnnisssnncssnnnesssnerisnaesnnes 53
3.6.2.1.5 Visibility and result demonstrabilitycccceeeeeeee. 54
3.6.2.1.6 IMAGE ..orenreeericriiinnnnnnniecissnnnstesessssesssnsassessenns 54
3.6.2.1.7 Voluntaringsscccceereersersssessrsesescnsansnssrssasssces 35
3.6.2.2 Innovativeness of the potential adopters ...cccveveriiscnnicccnnenes 93
3.6.2.2.1 INNOVAIVENESS ...eeeeveeemreerercsorsnnnsnresensesssssonnnsanes .35
3.6.2.3 Potential adopters’ perceptions of the social system 56
3.6.2.3.1 Social influencescccceeeervrniirnncncsnnecssnsessencns 57
3.6.2.3.1.1 Championccceercvnvnneicsssensrecssasesssnans 57
3.6.2.3.1.2 Opinion leadercccvrnieerreerccsinanenees 58
3.6.2.3.1.3 Change agentccccurnrersiscsccnnneccssnnanes 59
3.6.2.3.2 Situational Influencesccccceerrercccrsrenennisccssenss 59
3.6.2.3.2.1 TraInING ...cccccrerreecrsssssrnnssesnrnnnssssosases 60
3.6.2.3.2.2 Patterns repository ...cceeceersereeccsercssseens 61
3.6.2.3.2.3 Installed process ...ccccvvcericscescnnonccsennacs 62
3.7 ChapLer SUMMMATYcoccceerereeersreersssaseressessesssssssnnesssssssssssessssessssssssssessssasasnsassss 63
Chapter 4: Research Methodology sevecesssseserene ceseessessnsens vesesseeesssssane vrsessesee veeee 04
G.1 INFOUCHION cevieieeeieeicrneenteerersneesssnnesssesssssessassssessssassnssssesssassssassssassnsesnseses 64
4.2 Research design MOdElooeeeverceerienisnensenienesssesssssssessassssesssssssssssasesassasesnasses 64
4.3 FIEIAd StUAY ...oorrericrecinerseseseeseessesssesesssssessssssessostessensessessessassassensesasnss 65
4.4 ReSearch OPEration ONEceccveereerecresseisessnesnesessaessssasssssaessesassassassnessessorsassonaes 66
B8] SUIVEY ceocurerrerrricreesssesseecsssssaresssossssssssssesssessssssssosssssesssssssasssaosssssassns 66
4.4.1.]1 SUIVEY MEASUTES eeeeveerrrreerecrsreeeessssseneesssenesssnasesesssnasssnsanns 69
4.4.1.2 SAMPING .vveererrrreerriirrnnesssneessssanassssssssssnsesssansassssassssnassosss 71
4.5 ReESEArCh OPETALION tWO ..eeverreerereeeeeeseessnessessseesessasssssssssssssssssesansssassasssasassss 72
4.5.1 The pattern JANZUALZE ..veeeersrereeceseeerssneessassesssssessssssssnsecssssssssssssssasaes 713

4.5.2 ROIEPIAY eeerriciriiirennieeteerenetiesseeerecssseesssseseesessessnsssssrsssssssnssssssesssens 75

4.6 Research operation threeccoiiiiiiienrenrerieeeeeeecsscrsseeesereressesessassesnssssesssssssssens 73
4.6.1 Member CheCKINgGeeeeeireiiiinniiiinrnnrcissnccreiesecssesssssesecsssesssssssssesssssssne 76
4.7 Chapter SUMMATIY .icicveeernereercerecrosrsersesccserssnessssoncossssosssssssssasassssnessssssossanssssssses 76
Chapter S: ReSUIS .icveereeeccecserenseccscsssssnsescasesssserscsssasssssscsssssssasessassssssssssssssesssssessese 78
5.1 INITOQUCHION ceeicriiieeeireniireiicrnccreeteenetesecessessesssssssssressrsssasnssssssassesssasensoosssssnessaes 78
5.2 Research operation one: SUrVEY reSUILS ...cccceeeeeenceercccsecreccenrssssrenssessssosscsssssessans 78
5.2.1 DesCrIPIVE StAtISTICS ceecerierrrrrsrerenenereeneneresnreeneseerseesessesssssssssssssssssanans 80
5.2.2 Multiple regression reSUILS ...ciieeecereeererrsrersnneeeeerneerresessssssssssssssnesnsans 82
5.2.3 Correlation analysisScceeeeerrrresssrssssssssenseeseneesseseeenseressssssssssses eeeseees 87
5.3 Revised propositions and research modelccccovrvrrrrreneneeereecerereccnesssssrccnnesenss 01
5.4 Research operation two: pattern language and role play resultscooeevvnnreinenes 94
5.4.1 Factors appearing in PraCtiCeScccceeeereereeecssscsssssssesssssserossssssssasesse 04
5.4.2 Factors appearing In Plansceeeeeeeirrececccsernnnessensnsnsrnenessssssssasssssssnes 96
5.5 Comparison of results to other fIndingsccovvvrneiiinccnicnnnnniieesnnneesesieeea 98
5.6 ChapIer SUIMMATY .ceeeeeriiiiiiiciiiiiiereenrssssssessssssssessressesssesessssssssssssssssssesassssssnasanes 99
Chapter 6: Analysis Of RESUIS ...ccoeeeeceernsasnseneenccsccrsscscsessosssesssssessecssesassesssssassssssse 101
0.1 INIPOQUCHION ..crnrreeiiiiiiiiicieereresennneeeeeesssesesessssssassaeesssssassasassssnnasansssssernnsassses 101
6.2 Comparison of factors that influence pattern USecccceerericrsrscrnnnesnesesssssscnnnans 102
6.3 Comparison with other SPI StUdIES ...ocevrveveereririiinrnnneeesesssssssseereeessssanssnsessssssnes 105
6.4 Evaluating the Individual variableSccoocevvememeeeeieeeeeenressirsrssssssssnsenssssssssesssssne 107
0.4.]1 PatlerN USEcccciiirrrrrnrnereierierissseneaneeseeseccssernssnsasasssssssssansasssssssssssans 107
6.4.2 Relative advantage and result demonstrabilityccoccveccvvnencsincecnnens 109
0.4.3 ComPatIDIlILY .covieeerieerieiiiniciiiiiseeeeerensssensessesssesssssssasssasessasssssssssasses . 110
6.4.4 Trialability ...ccciviiirneiieiiiiineiiininnerereeesesrnsarseesesssensasssessssssansnsessses 110
0.4.5 EaSCOfUSE .ccoviieiiiiiicntiicrirneeeensrrnnenetecccssnsssccsssssentsssssssssansssssossasses 111
6.4.6 VISIDIILY ..ciiiiririrrrrrrenneteeeeneeneneeeeneennsenseeesessesssssessssassosssssssssssssssnss 112
0.4.7 VOIUNLATINGSS ...cveeerrerecrirrnneerirississsnseneeeeresscsssssssssssessssessssssssssassossses . 112
0.4.8 IMAZE oueeeeererrreereriiecieiinnrnnsinesrnestesnnsnassssesssssssssssssssssessessernssersnnasnas 113
6.4.9 INNOVALIVENESS cceerreereereecersrsrrrrrnrerenseesssesaneesessscesassnsssssssssssoressessannes 114
6.4.10 OpINION ICAACT .eeeeeiiiiiiiiirrenneteeccnrissrnnaneteececssensansenssssssssssanasantasssssses . 114
6.4.11 Championcccocccreieriiicinrenneeiieencscsrnrenneeeesessssssanesnssessssssrnssassesessns 115
0.4.12 Change agentcccccrceeeriercrcnnenneeccssssssseseseesssenssasesssssssnsnsnsesssssesaases 116
0.4.13 Patterns rePOSItOTY cicccvcveecersseecsssssenesessssnseesssnnsasessssnsssssssrassasssssnssese 116
0.4.14 Installed ProCESS .iccivrrersnncrcnnssseersnecsnnessnnessnesssnessansssensassansossassssase 117
6.4.15 TTAINING ...ouveeerircnrrecrcreneeesirenecssssneeressisnsessssanssssssnnasesssasassssssssnasssss 118
6.5 Operational GUIAEHINEScccceerrrrrneriirnrreirneecssssnesessssseessssssessssssanessensassssssasasssens 119
6.6 Implementation of operational guidelinesccocceerreerrnecrsnrcrsnnersnnssnssosnnessnnese 123
0.7 Chapter SUMMATYcccceveersereescencssssnessnsesaneesssnsssssassssassssnessssassssanssssasssssnasssanss 124
Chapter 7: Summary and RefleCtiOn a...cccccccseecccsneecsassesessossssssssssesssasessesssssesasssssss 126
7.1 INITOQUCLION ...oiiieruiecsssnessssensssranesssssnsssanesssseesssnsessssossssanssssnassssnasssssasssssnnsssanaens 126
7.2 Immediate answers to the 1eSearch QUESLION ...c..cceeeevereveernnserssenssesssesssesssessoranes 126
7.3 RElated 1€SCATChicviiveiereereesseensenssesseessnessnessessssessesssessesssssssnsssessaassassssassnenss 128
7.4 Contributions t0 KNOWIEAZE cecveevveereiserseenecsnessressesssnssressacssesessessesssssnsessasssnssans 129
1.5 FUINET TESEATCRveovrvirireeeieresreesssecssenceesssenesssessosesssesssassssasssssorssssssssssssasssaans 132
BIDHHOZIAPRY ..civvveieieirreisersssesssnesseessersanssssessencssssssnsossasssssesssessaseossnsossassessassasessasesss 135
ADPDPENAICES cevuvireerrereeerireseessissassessesssessesssasssssseesssessosssssessssssessessasessossasssessrossossosss 151

List of Tables

Table 1: Alexander’s Books Describing a New Attitude to Architecture

aNd BUIlAING civiiiiiiiiiriecieeierieeniennnmnereesseeeseeseeserrsnssssssssssssorsssrsssssssssassonsersraransesses 20
Table 2: Events in the Evolution of the Patterns Communitycccocvvecvvvrnenneneees 32
Table 3: Dominant Factors that Influence Adoption of Innovationc.ceeeeeeeereeeenes 44
Table 4: Survey MEASUIES ...ccciccrirrcreerieriersnnnnecesssssrenneeesesssssanseseesssssssssnsassnsassosens 67
Table 5: Cronbach’s Alpha Reliability Coefficientscccovevrvrvivnnenneeeseeeeeneeenenees 79
Table 6: Descriptive Statistics of Respondents SUrveyedccccceecrneeerreereccnsesccnnsans 81
Table 7: Factor Level Multiple REZIESSIONScccceeercreerrneessnnessennesssnesessnsessanesensans . 82
Table 8: Construct Group Level Multiple Regressioncc.ceereeveerneneesseecsneesensens 86
Table 9: Correlation MatriXccccccevevreeneinenneenirsninennsssessseessssnsessssesnessessasssnsans 88
Table 10: Summary of Factor to Pattern Matchingo.ccecvevirnecninencrnnecseneseeecssenens 94
Table 11: Summary of Factors Considered in Role Playccoccvveeerruveeiiencnreerernenes 97
Table 12: Comparison of Results to other FINAINGS coovveeiirvneeesisrnnressssnneressaneessssnennes 98
Table 13: Implementation of Operational Guidelines with Patternsc.ccceveeeesneenn, . 123

List of Figures

Figure 1: Stream of Research that Guides this Studycceccvverrereereenrecreeseesseene

Figure 2: Research Model: Factors Proposed to Influence Pattern Useccoeeerneenes

List of Appendices

AppendiX A: The SUIVEY ..cvvvviiircisinrnnniiiniinninseecssssssssssssesssssssnsessssaneassssssssnesssssssanns 150
Appendix B: Pilot Study ...cceveeiieiniiiiiiiiiiinininininneenissniisessisisessisssisisssesessssssessssasese 156
Appendix C: The Pattern Language ..cccvvcccveeeiiiiiiininiiiiinesesessstiiscscesssssssssasssssens 159
Appendix D: Matching of Factors to Patternsc.cccvvvvvveerereecssnensnnnnsneicsnesnnecnneee 248
Appendix E: Patterns Used by Groups in Role Playsc.ccccecinniiiniirisnnennsnsnierincnees 254
Appendix F: Memo Used in University Role Play ..ccccociiiiiinniniininininininiieeenen. 255
AppendixX G: GUIdEIINES ..cceiiiceeiiiiiiiicinnnneencininntniessisssnsteesssessneesssssanssssssssnaassssess 256

Acknowledgements

Appreciation is due to my First Supervisor, Mr. Alan O’Callaghan, for his brilliance and
unwavering guidance during this research ...

. and to my Second Supervisor, Professor Paul Luker, for his continued support and words
of wisdom ...

. and to my Third Supervisor, Professor Steve Patch, for his valuable help with the
statistical analyses ...

. and to my Examiners, Professor Hussein Zedan, Professor Joe Bergin, and Mr. Ray
Farmer for making my viva challenging and enjoyable ...

... and to my daughter, Alison, who constantly inspires me with her perseverance and positive
attitude towards life.

CHAPTER 1:

INTRODUCTION

1.1 Overview

Patterns and pattern languages are a new contribution to the area of software reuse. They
have become the tool of a growing community that is attempting to capture best practices in
the software development industry (Hillside, 2002). Unlike other approaches for doing this,
patterns offer a template for documenting knowledge, a process for using that knowledge, and
are found in a community that is involved in the effort (Coplien, 1996a; Rising, 1998¢). In
recent years, there has been a promising body of empirical and anecdotal evidence to suggest
their value. Despite the benefits, adoption has been primarily among individuals (Hillside,
2002). Even though organizations would seem to have much to gain from a reuse approach to
software development (Reife, 1997), there is little evidence that many are utilizing patterns to
achieve it. If patterns are to continue to show promise for effectively capturing industry-wide
best practice, one can argue that it is important to widen pattern adoption from individuals to
organizations. However, there is anecdotal evidence suggesting that introducing patterns into
an organization is a difficult and time-consuming task (Rising, 1998; Letourneau, 1999;
Cockburn, 1999; BrownK, 1999). Despite this, the diffusion of patterns is a relatively
unexplored area of research. To date the results of very few efforts are in the public domain
(e.g. DeLano+, 1997; Seent+, 2000). Although this scarcity offers few resources for
individuals who wish to lead an effort to introduce patterns into their organizations, it also

provides a prime opportunity for new research.

This thesis is an exploratory theory-building study that examines the phenomenon of
introducing patterns amongst individuals and into organizations. It is motivated by the need
to inform researchers and practitioners about how they may position patterns in organizations

to encourage a faster and more efficient adoption.

There are two goals in this research, one primary and one as a secondary point of interest.
The first goal is to identify the factors that influence individual pattern use. The purpose is to

cultivate an understanding of pattern use by individuals in organizations. The following
question guides this primary goal:

What factors influence the use of patterns among individuals in organizations?

The secondary goal of this research is to examine the factors that are being emphasized by

those introducing patterns into their organizations. The purpose is to prompt an

understanding of what individuals are doing to influence the use of patterns. The following

research question guides this secondary goal:

What factors are being emphasized by individuals introducing patterns into
organizations?
The reasoning behind the inclusion of these two goals is that while one provides the view of

those that use patterns, the other provides the view of those that are attempting to encourage

pattern use. This approach supplies two perspectives for this theory-building study.

To meet the two research goals, the following objectives will be accomplished:

- To present an initial model and corresponding propositions that, grounded in

mnovation diffusion research, proposes to identify some of the factors that impact

upon individual use of patterns in organizations.

- To refine the model through empirical investigation in a field study of individuals

who use patterns and individuals who are attempting to introduce patterns into

organizations.

- To generate insights into the phenomenon of individual pattern use by suggesting

some explanations for the findings and some recommendations for further inquiry.

The initial model is framed in the patterns philosophy of C. Alexander and diffusion of
innovation research grounded by E.M. Rogers and enhanced by others. The model, and its

corresponding propositions, puts forward the personal and environmental factors that have the

potential to influence individual use of patterns in an organizational context. The purpose is

to build theory by refining this model and providing responses to the study’s research
questions.

The model is examined with multiple sources of data in three research operations. The first

surveys individuals who use patterns in organizations to identify the correlations between
pattern use and the fifteen proposed factors. The second explores the factors that appear in

the practices of those who are introducing patterns or are planning to introduce patterns into

organizations. Then, to provide explanatory insight for the quantitative results in the first two

10

operations, a third seeks feedback on the findings from those who supplied the data in the first

two. This qualitative data will afford further strength for the data analysis and, in turn, the
final model.

The next section presents the conditions that prompt the overriding motivation for the use of

software patterns, the need for a more efficient and effective means of capturing and reusing

successful practices in the software development industry.

1.2 Reuse of successful practice

There Is ever-increasing pressure to deliver quality software (TaylorD, 1995). The once
common notion that programmers and end-users will settle for software of poor quality is
eroding (Gibbs, 1994). At the same time, mounting competition in the industry has made it
critical to deliver products as quickly as possible (Gibbs, 1994; Sprott+, 1998). Developers

and managers are further challenged by the fact that they must meet these demands as the

systems continue to grow in size and complexity (Corfman, 1998; Coplien, 1994).

Despite the pressures, it does not appear that the software industry has found consistently

effective ways to build its products. In 1968, the NATO Science Committee defined software
engineering as “the application of a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software” (Gibbs, 1994). Almost 30 years later,
In 1994, the industry was criticized because, “the vast majority of computer code is still
handcrafted from raw programming languages by artisans using techniques they neither
measure nor are able to repeat consistently” (Gibbs, 1994). In 1995, Taylor reported that the
18-month project backlog had increased to three years in most organizations, while the time
to complete new applications ranged from two to five years (TaylorD, 1995). The situation
did not appear to improve in the following years as a five year survey by the CHAOS project,

from 1995 through 1999, reported that only 26% of software projects achieved a successful
completion (Standish, 2001).

The industry responded to what many termed the “software crisis” (e.g. Gibbs, 1994; Brooks,
1995a) by creating tools that supported the process of developing applications (Green, 1999).
These included such things as fourth-generation languages, CASE tools, and object-oriented
technology (TaylorD, 1995; Kishore, 1999). However, as late as 1998, the situation did not
appear to be much different. Sprout and Wilkes wrote, “Software development has remained

a ‘craft’ industry, beset with problems of delayed and cancelled projects, inadequate quality,
long cycle-times and high costs” (Sprott+, 1998).

11

These conditions in an industry with complex and ever-changing problems has prompted
many to examine the gains that can be made in building systems with less handcrafting from

scratch and more reuse of previously built components (e.g. Wappler+, 1995; Poulint, 1993;
Yourdin, 1992; Woodfield+, 1987). Expected benefits include the production of more

reliable and consistent systems in an efficient and timely manner with less maintenance costs

(NIST, 1999; Goldberg+, 1995a; Tracz, 1995). However, the realization of these benefits has
been mixed among organizations. Sampat (1999) reports that some claim to achieve rather

impressive results, while others report frustrations and failures. In most cases, the
experiences center primarily on the reuse of code artifacts such as procedures, data
definitions, components and frameworks (O’Callaghan1998a). Gamma (1995) notes that the
attempts to document industry-wide software knowledge prior to the mid-1990s, had focused
on coding algorithms (e.g. Knuth, 1973; Glass, 1990; Arvo, 1991; Kirk, 1992). Yet, Rising
(2002) points out that the widely applied code libraries do not even begin to tackle the
problem of continually reinventing the wheel in software development. This emphasis on

code reuse was also found in case studies by Fichman (1997) and has been explained by

Tracz:

Most programmers tend to view reusability from the perspective of simply reusing
code, whereas reusing other programming artifacts (e.g. designs, specifications, and
tests) leads to more productivity (Tracz, 1995).

The industry has only recently attempted to increase productivity by expanding its view of

reuse beyond code to other artifacts from the system development process (Kogut, 199)5).

The importance of doing this was identified by Brooks as early as 1986 (Brooks, 1995a). He

notes that advancements associated with programming have historically had only a small

impact on reducing the complexity of building systems. His often-cited series of articles
makes a strong argument that the industry should look for solutions in the “essential tasks”,

those that form the abstract software entities, rather than in the labor of representing these
entities in code (Brooks, 1995a; Brooks, 1995b).

Kazman (1999) and Kogut (1995) stress that the industry needs reusable artifacts to support

the design task because much of what sofiware engineers do when designing solutions is
innovative, rather than routine as in other engineering disciplines. Jackson (2001) points out
that other engineering disciplines have long since specialized according to the types of
problems that they solve and have an accumulated knowledge base that allows 90% upwards
of their problem-solving to be routine. He argues that this is in contrast to software

engineering, which has problems that are much too complicated because the discipline has not
developed a similar knowledge base.

12

The lack of routine is likely due in some part to the fact that, unlike some other engineering
disciplines, software engineering has not documented its practices in a reusable form. Kogut
(1995) points out that the industry’s documentation is incomplete, scattered across many

sources, and has not been authored with a high level of industry participation. Coplien
(1999D) takes this a step further by suggesting that the lack of common literature is an
indication of the lack of common culture in software development. Therefore, many are
suggesting that, after 30 years as a developing discipline, it is now time for software

engineering to document its successful practices in a reusable form (e.g. Kazma, 1999; Kogut,
19935; Gibbs, 1994; Rising, 1998b).

The industry has made some attempts to do this. Tools have been developed and marketed as
the answer, in this case to support the process of capturing, storing and sharing knowledge
(Dordick, 1998). In the 1980s, expert system software offered a way to capture what experts
do (Krovvidy, 1999). In the 1990s, groupware and knowledge management software was
developed, by companies such as Lotus Development Corporation, in an effort to facilitate

communication of knowledge from one person to another. Despite these efforts to provide

the technical means to communicate knowledge and to document algorithmic structures, the
industry has not achieved systematic reuse (Fichman+, 1997). While tools provided the
technical means to store and share information, the process for using the tools to effectively
capture and reuse the knowledge has not been adequately addressed (May+, 2002). In
addition, there has been little emphasis on the non-technical issues such as building a culture

that supports a knowledge sharing approach to system development (Fichman+, 1997; Griss,
1993).

Experiences support the importance of considering both the process and the cultural issues.
Those that have studied or have been involved in reuse efforts report that reuse does not
happen by simply providing artifacts and a particular technology to store and retrieve them.
Rather, it 1s a process that involves a change in the system development culture to be
successful (Griss, 1993; Griss, 1995). Many stress that the challenging non-technical matters,
such as process, infrastructure and management, are vital to realizing a successful reuse effort
(e.g. Boehm (1999); Fichman (1997); Lied (1997); Goldberg (1995b); Lenzi (1995); Joos
(1994); Griss (1993)). In addition, Coplien (1999c¢) argues that the industry’s focus on low-
level details such as objects has caused it to lose the system perspective, and the
preoccupation with planned design method has caused engineers to lose the human

perspective. Therefore, it would appear to be in the industry’s interest to consider not only

13

the technical matters, but the non-technical concerns of process and human involvement in

this process as well.

In summary, the software development industry has attempted to get some relief from the

“software crisis” by promoting software reuse. Rather than starting from scratch each time a
new system is built, reuse of previously-built components is claimed to provide more
consistency from one project to the next, more reliability in the final product, faster
development time, and decreased maintenance. However, efforts have centered primarily on
code reuse and technical solutions, resulting in limited and scattered success with reuse in
organizations. Even when attempts have been made to store and communicate other forms of

best practice, little consideration has been given to the process and the human perspective that
supports a reuse effort.

The next chapter describes a rather new approach to developing and packaging reusable
artifacts from various kinds of tasks in software development. Unlike previous attempts, this

one, known as patterns, shows signs of addressing the important process and cultural issues.

[t therefore warrants some examination.

1.3 Roadmap of thesis

The organization of the remaining chapters in this thesis is as follows:

Chapter 2 (Patterns) presents the distinctive characteristics of patterns, the innovation under

consideration in this research. This includes a discussion of the roots of the patterns

movement in the work of C. Alexander, the application of Alexander’s philosophy to

software, the three qualities of patterns (structure, process, community), the tension within the

patterns community over the most applicable view of patterns, and the difficulty of

introducing software patterns into organizations.

Chapter 3 (Theoretical Foundation) builds the theoretical framework that guides the conduct
of this study and the construction of the initial model. Diffusion of innovation research is

explored to propose fifteen factors that are examined for their usefulness in building theory

about how to influence the use of patterns among individuals in organizations.

Chapter 4 (Research Methodology) describes the three research operations that will be used to

examine the factors and build the theory. The primary operation utilizes a survey to offer a
response to the study’s first research question. The second operation examines a candidate

pattern language and role play exercises with that language to offer a response to the second

14

question. Finally, the third operation uses member checking to provide further insight for

analyzing the results from operations one and two.

Chapter 5 (Results) summarizes the data and presents the quantitative results from research
operations one and two. These findings propose responses to the study’s two research

questions and an empirical-based model of the factors that influence the use of patterns

among individuals in organizations.

Chapter 6 (Analysis of Results) discusses the research model and suggests some explanations
for the findings that underpin it. It explores the commonalities and differences in this study’s
findings for the types of pattern usage, as well as between the results in this research with
those of other software process innovations. In addition, the comments from respondents in

operation three are incorporated into the analysis to provide further support and explanation

for the findings.

Chapter 7 (Summary and Reflection) summarizes the responses to the study’s two research
questions and the primary findings. It presents the value of this research by comparing the

work to other studies in the use of patterns and by summarizing its nine novel contributions to

knowledge. Finally, in the frame of this theory-building research, suggestions for further

work in this area are put forward.

15

CHAPTER 2

PATTERNS

2.1 Introduction

The previous section presented the need for the software development industry to address the
1ssues of the software crisis through increased reuse. Earlier attempts to do this with
predominantly technical means have not as yet achieved widespread reuse throughout the
industry. It has been suggested that the lack of artifacts other than code and the lack of

attention to the non-technical issues, such as process and culture, have contributed to this.

Patterns are considered within this perspective.

Simply stated, a pattern describes a recurring, general problem and the solution to the problem
In a particular context (Berczuk+, 2000a; Coplien, 1998a; Rising, 1998b). The solution must
be a well-tested one because the primary purpose is to capture successful experience and
transmit it to others (Rising, 2001a). In software engineering, patterns were initially used to
document successful experiences in object-oriented development, primarily in program design
and the construction of frameworks (Gamma+, 1995; Buschmann+, 1996). They were most

often represented in object-oriented development by commonly recurring relationships

between classes.

The use of the term ‘pattern’ in software engineering was first introduced by Beck and

Cunningham who presented, at the 1987 Object Oriented Programming Systems Languages
and Applications (OOPSLA) conference, a ‘language’ of five patterns that captured design
decisions for creating human computer interfaces in SmallTalk. This coincided with a
realization in the object oriented (OO) community that the single class was not the natural
unit of reuse. Previously, the notion of the class as a reusable module had been promoted by
Cox’s notion of the software IC (Cox, 1990) and Meyer’s advocacy of the open-closed

principle (Meyer, 1989). The ‘open-closed principle’ states that a class should be open to

extension, via inheritance, but closed to modification, thus providing convenient capsules of
reusable functionality.

The need for a level of design reuse, higher than that of individual classes, was addressed by
Booch (1991) in what he referred to as mechanisms, structures providing high-level behavior

that satisfies some requirement of a problem. Referring to these as the “soul of the design”,

16

Booch stated that they represent strategic design decisions regarding the collaborative activity
of many kinds of objects. For example, the drawing mechanism, commonly used in graphical
user interfaces, specifies what kinds of objects must collaborate, such as a window and a

view, but recognizes that the implementation details would vary depending on the context

such as the language and the coding style.

Recognition of the need for a higher-level of design and reuse explains, at least in part, why
the OO community was receptive to the idea of patterns. The patterns movement took root

during the 1991and 1992 “Towards an Architecture Handbook” workshops organized by
Anderson at the OOPSLA conferences. It was at these events that Gamma, Helms, Johnson,

and Vlissides met for the first time and deliberated the work that resulted in the very
influential Design Patterns book. Published in 1995, this book contains a collection of 23
“design patterns” that “describe simple and elegant solutions to specific problems in object-
oriented design.” The authors wrote that patterns allowed them to capture, “in succinct and

easily applied form”, software design solutions that “have developed and evolved over time”
(Gamma+, 1995).

The publication of this book brought high visibility to patterns, creating the biggest
impression to date on the sofiware industry. It describes a pattern as having four essential

elements: the pattern name, the problem, the solution, and the consequences. These general

features are delivered, with other features, in a specific form, a pattern ‘template’. Most
pattern templates utilize these same key elements and add others. For example, the Pattern-
Oriented Software Architecture (POSA) pattern template caters to the capture of software
architecture constructs by including such sections as structure, dynamics, implementation, and
variants (Buschmann+, 1996). The AG Communication Systems (AGCS) pattern template,

used for patterns such as system testing and customer interaction, specifies elements such as

context, forces, rationale, and related patterns (DeLano+, 1998b; Rising,' 1998a).

In the years following 1995, a large number of books, articles, and web sites have appeared
with a variety of patterns addressing recurring problems in building, managing, and

organizing software systems (e.g. Buschmann+, 1996; Martin, 1998; Hillside, 2002). Patterns

have been continually discussed and debated on electronic mailing lists and are a significant
part of conference programs such as the ACM Object Oriented Programming Systems
Languages and Applications (OOPSLA) and the OT conferences. It was during one of these
conferences, the previously-mentioned OOPSLA’91, that the core of the non-profit Hillside
Group was formed to support patterns activities such as the Pattern Languages of

Programming (PLoP) conferences. Held annually in the United States, Germany, Australia,

17

Japan, and South America, these conferences are dedicated to the creation and review of

pattern literature including four volumes of the Pattern Languages of Program Design books.
These activities have allowed the number of patterns to grow rather rapidly. The editor of the
recently published book, The Patterns Almanac 2000 (Rising, 2000), estimated, in the year

2000, the number of published patterns to be over a thousand in approximately sixty-five

domain categories. In addition, countless other unpublished ones can be found on an
assortment of web pages (Hillside, 2002).

The number and variety of patterns is the outgrowth of the realization that the form may be
appropriate beyond the coding level. Since recurring problems and successful solutions have
been observed at all levels of software development, the industry is currently using patterns to
document many different types of best practice experiences (Hillside, 2002; Rising, 2000;
Buschmann+, 1996). This is facilitating the sharing of expertise in many different system
development tasks, such as analysis (Fowler, 1997) design (Gamma+, 1995; Buschmann+,

1996), testing (DeLano+, 1998b), project management (Cockburn, 1998), and training
(Manns+, 1998¢).

The number of published and unpublished patterns, conferences, and web sites are among the

signs of a growing, international patterns movement, an effort to bring the patterns vision to

the wider software development industry. This phenomenon has been observed by Olson:

The incredible success of the Pattern Languages of Programming (PLoP)
conferences, the need for members of the community to downplay the hysteria and
fight the hype, the huge numbers of patterns and pattern literature being published on
the World Wide Web, in software journals, and in books, all point to a wave swelling
and soon to break over all of us in software development (Olson, 1998).
One vehicle which confirms the wider acceptance of patterns and, at the same time, helps
promote awareness is that of standards. The Unified Process (UP) for software development
1s an evolving standard for a process framework in software development. It includes patterns
as part of its framework, defining them as “template collaborations” (Jacobson+, 1999). (This
term should not be confused with the term pattern template’ used earlier.) The design
notation utilized by the Unified Process is UML (Unified Modeling Language). In UML
terms, a template means any parameterized element (Jacobsont, 1999). Thus, in the UP, the
notion of a pattern is essentially that of a mechanism, as described earlier, which is made
generic through parameterization. Essentially the same idea has appeared in the Object
Management Group’s (OMG) Model Driven Architecture (MDA) which provides a standard

meta-model for middleware environments. Patterns are described in OMG documentation as

standard ways, or mechanisms, of mapping between elements in various types of MDA

18

models (Siegel, 2001). Some CASE tools and programming environments, for example

Together] (TogetherSoft, 2002), take the next logical step with this definition of patterns by

supplying patterns automatically as parameterized components.

Although Gamma (1995) explains, “Point of view affects one’s interpretation of what is and
1sn’t a pattern. One person’s pattern can be another person’s primitive building block” the UP
and MDA viewpoint appears to be somewhat reductionist. In a speech to the 1996 OOPSLA
conference, Christopher Alexander warned the software development community that
although 1t was using patterns as a “nice and useful format” that allows the documentation of
“good 1deas about software design in a way that can be discussed, shared, modified, and so

forth”, 1t was in danger of missing the point. The significance of this is that Alexander, an

architect in the built environment, is the historical originator of patterns.

2.2 The foundation for patterns

Patterns in software engineering draw their inspiration from Christopher Alexander who is
recognized as one of the most important building and urban planning architects of the

twentieth century (Salingaros, 2000). Alexander used patterns to document successful design

practices in the architecture profession. His focus on proven solutions rather than new and
unique ones was motivated by his observation that modern day buildings and towns do not
approach the beauty of the historical past. He notes that the vast majority of architecture
since the end of World War II has been dehumanizing, of poor quality and lacking all sense of
beauty and human feeling (O’Callaghan, 2001). This created his distaste for simply
fashionable architecture and a preoccupation with the search for a design approach that
generates beautiful structures (Garbow, 1983). His life mission to make architecture as
emotionally rich as the people who live in it has been guided by his belief that this kind of
design must be born of ordinary experience (Brown, 2000). His patterns describe “the
obvious” which, he observes, is usually ignored because people are so often caught up in

fashion and trends. In architecture, new and unique work is often rewarded even though it is

not comfortable to reside in. Therefore, he argues for the “one timeless way of building”

(Alexander, 1979). It is worth summarizing Alexander’s philosophy of construction in order

to better evaluate its significance for software development.

Alexander graduated from Cambridge University where he studied mathematics and
architecture, and later received a Ph.D. in architecture from Harvard University. His more

than one hundred books, papers, and monographs includes eleven books (table 1), three of

which are well known in the software patterns community, The Timeless Way of Building, A

Pattern Language, and The Oregon Experiment.

19

| Volume Book

L B e T

i [The Timeless Way of Building (1679) "
T2 [APattern Language 1970)
’ 3 “The Oregon Experiment (1975) .
E . The Linz Café (1981) E
E,_....____g_.._ '""""'i'" The Production of Houses (1982)
6 - A New Theory of Urban Design (1987)

7 . A Foreshadowing of 21% Century Art (1993) - i
8 " The Mary Rose Museum (1995) l
, 9 ~ The Nature of Order (yet unpublished) o

rmm ey

- r="" __F "

10 - Sketches of a New Architecture (yet unpublished)

Lot L o s e s]

A P S Sl Sl il WY g A i ey L el - s ey e gl e i g P = et 4 ek TS A My A - A SR VS WY S VST e i dnlm

11 " Battle: The Story of a Historic Clash Between World System A
. and World System B (yet unpubllshed)

PP 1 el i Y. bl i S i el Valalb i el Sl . ol el il Bt il . Nmra Wl s i A - oy W W, S e 53 1 A v e P i [sl ey g, s e iy g b = gl h s Syl Bagh e Tl g slgirin i S VTS S S -y ok T, p N S e T o W

Table 1: Alexander’s Books Describing a New Attitude to Architecture and Building

The roots of Alexander’s patterns philosophy can be found in an earlier publication, Notes on

the Synthesis of Form (Alexander, 1964). It presents a critique of modern design, contrasting

what he regarded as the failure of the professional, rational “self-conscious” design process
with an approach which he calls an “unselfconscious” design process. Modern design is
distinguished from traditional craftsmanship by its “self-conscious” separation of design from
the final product and its construction and its reliance on rules and formal models to produce
abstract designs. In the face of modern conditions of increased complexity and accelerating
change, society has specialized and spun off design into a separate profession. Alexander
argues that placing the responsibility of dealing with all of the multiplicity and changeability
of forces impacting a project on the shoulders of a single individual (‘designer’ or ‘architect’)

rather than embedding it in a more general social process has been counterproductive. The

cognitive burden of highly complex design is just too great.

In contrast to an approach that relies on rules, formal models, and a knowledge base rooted in
abstract design, Alexander points to the historical success of the unselfconscious design
process. This process is one that can be recognized in conditions where change rates were
slow and design failures are experienced as one-offs. The knowledge of how to build, and
therefore to design, is embedded in culture and tradition. This surrounding culture is slow
moving and highly resistant to change, in other words, highly conservative. Alexander gives
modern examples of the huts built by the Mousgoum tribe in Cameroon and the igloos of
Eskimos. Traditions and cultures dictate how each of these kinds of structures is built. Those
who live in these kinds of houses are the experts in building them. When a design failure is

caused, for example by a river flooding a Mousgoum village, or when changing temperatures

20

require igloos to be ventilated or blocked up, the same design culture which dictated how the
structure should be built also determines how they can be repaired. There are no specialist
architects in these societies. There is no separate theory of design. Instead, there is praxis,
the result of perhaps hundreds of years of accumulated experience, of building structures that

has infused the design culture. In the unselfconscious design process, therefore, because the
design failures which require changes to be made tend themselves to happen one at a time,
and are typically familiar, adaptation is relatively easy. Also, because no professional

specialist is involved, the feedback loop is immediate. The dweller makes the repair.

In contrast, in modern society, design failures are often caused by multiple forces and are

often experienced as catastrophe. Repair is highly complex and requires the design profession

to be called in. Therefore, adaptation becomes difficult and potentially risky. Inthe
unselfconscious design process, the adaptation is easily accommodated into the design culture
because of the culture’s slow rate of change. Equilibrium between form and context is
dynamically established and reestablished continually. In the modern selfconscious process,
the rapidity and accumulation of changes, especially perhaps technological changes, has
eradicated traditional design culture without replacing it. Change is experienced as crisis.
Therefore, Alexander claims that successfully designed products or systems need to be
homeostatic, that is self-adjusting. This is the quality that he found in buildings created using
the unselfconscious design process and is, he argues, most wholly absent from modern
structures. An individual tree may be considered an example of an homeostatic system. It
presents a form that is optimally fitted to its environmental context. For example, its height is
partly determined by its need to compete for sunlight with other trees in the canopy. The
number of leaves and branches it presents is determined by the amount of moisture it requires
in its specific situation. And even its shape is fashioned by prevailing wind conditions. Of
course a tree has no designer. Its genetic code allows it to take account of and adapt its
specific environment. Alexander’s philosophy is concerned with finding the modern
equivalent of a ‘genetic code’ for building which had been embedded in traditional design

approaches but was lost along with them. We shall see below that, for Alexander, pattern

languages supply that genetic code.

In the history of architectural theory, Notes on the Synthesis of Form is considered a post-
modern classic (Lawson,1997). Drawing on the unselfconscious process, Alexander attempts
to show the underlying correspondence between the pattern of a problem and the process of
designing a form that answers that problem. Although his later works abandoned the
algorithmic nature of the process he introduced in that book, the underlying design philosophy

remained intact in the three books that have recently become familiar to many in the software

21

industry, The Timeless Way of Building, A Pattern Language, and The Oregon Experiment.
In addition, the rough sketches that were a minor part of the original process grew significant

and became the beginnings of the patterns he documented in the years that followed
(Alexander, 1971).

Alexander does not seek to return to primitive methods of building, but rather proposes a new
approach that captures some of the qualities of unselfconscious design. It is one that creates

well-fitting form through adaptation and through the creation of a new design culture captured

in the patterns. The idea is that the patterns can be the genetic code embedded in homeostatic

design products.

The patterns work took shape in The Timeless Way of Building (Alexander, 1979) and 4
Pattern Language (Alexander, 1977). The former describes the philosophy and rationale for
design that makes use of traditions, captured in patterns, in a piecemeal approach to creating

well-fitting form. The latter presents the concrete details in a collection of related patterns

that Alexander terms ‘a pattern language’.

The Timeless Way of Building explains that every society which is alive and whole will have
its own unique and distinct pattern language for building (Alexander, 1977). It is through the
documentation and use of this language that this same society can obtain quality in structural
forms. Pattern languages are designed to replace what has been lost from the traditional,
unselfconscious approach to design (Blum, 1996). Their purpose is to capture the practices
that will rebuild the quality once found in traditional architecture, but lost in modern

structures, and to create a genuine culture of design.

Alexander claims that the ‘languages’ people have for building their dwellings and cities are
so fragmented that well-fitting, quality form can no longer be obtained. To return to the

capability of building such structures, 4 Pattern Language contains 253 patterns that form a

collection of related practices for creating architectural form (Alexander, 1977). Each
encapsulates a solution to a problem in urban architecture and design at a variety of levels of
scale, from the construction of floors and walls, the placement of windows, and the details of
gardens, to the design of city buildings, streets and surroundings. The patterns evolve from
the community’s culture and are designed to be used collaboratively by the builders and the
community inhabitants. This practical method of architecture, which combines the
responsibilities of all those involved in creating the entities in the community and the

community as a whole, is the result of Alexander’s strong belief that the inhabitants of the

22

community, rather than specialist architects or designers, are the ones who know most about

what is needed to create quality.

Individual patterns are applied during the construction process when a problem in a given

context creates the need for one. The problems result from conflicting conditions, or
“misfits”, in the system. The application of a pattern to correct a misfit results in a change in
the system’s state, thus creating a new context, with a new problem, to which a new pattern
can then be applied. Alexander explains that, each of these acts is “done to repair and

magnify the product of previous acts”, which slowly generates “a larger and more complex

whole than any single act can generate” (Alexander, 1979).

This gradual introduction of differentiations is what Alexander refers to as structure
preserving transformation (Alexander, 1996). He relates it to the emergence of organic life
which is generated, not through a plan that dictates where cells should be placed, but rather
through a subtle organized cooperation of parts. Therefore, a living order is formed purely by
the interaction of cells guided by the genetic code. He compares patterns in a language to
seeds in a genetic system which, through millions of small acts, have the power to create form
(Alexander, 1979). He argues that, as in biology, the structure of a town can and should be
woven from the interaction of individual acts of building. This piecemeal approach should be
guided by the culture’s traditions rigidly maintained in a common language. The language, a

collection of related patterns, is what governs the construction of the parts and, in turn, the
orderly emergence of the whole (Alexander, 1979).

The essential fact, Alexander claims, is that as in organic structures, pattern form and the form
of final whole structures, are not generated suddenly or through the use of some type of
dictated plan, such as the abstract master plans commonly used in modern architectural design
practices. Rather, patterns come into being as the result of a long sequence of tiny acts and
transformations which, if they are repeated often enough, have the power to create a pattern
and eventually a language of patterns (Alexander, 1979). Similarly, structures are shaped

piecemeal, from applying patterns one at a time, causing transformations that preserve the

whole at each step towards the creation of the final form.

This approach to design and building that allows the details to be fitted to the overall,

evolving structure is best explained in Alexander’s own words as follows:

The fundamental philosophy behind the use of pattern languages is that buildings
should be uniquely adapted to individual needs and sites; and that the plans of

buildings should be rather loose and fluid, in order to accommodate these subtleties

23

... Recognize that you are not assembling a building from components like an erector
set, but that you are instead weaving a structure which starts out globally complete,

but flimsy; then gradually making it stiffer but still rather flimsy; and only finally
making it complete stiff and strong. (Alexander, 1977).

To envision this philosophy, Alexander compares the construction process of the novice to

that of a master carpenter. While the novice’s inexperience and fear prompts his desire and
need‘ for a blueprint, the master carpenter has the ability to make decisions about details and
correct misfits with small, incremental steps while the construction is being done (Alexander,
1977). This is because, unlike the novice, the master has a pattern language for building in
his mind and has the ability to combine these patterns to form a structure. Therefore, his
actions are guided, not by a master plan, but “according to the processes given by the pattern
language in his mind”. Alexander points out that the master’s approach allows the production
of well-fitting form through a continuous analysis and repair of failures and continuous

commitment to detail, variety, experimentation and wholeness (Alexander, 1979).

This method of construction, based on the piecemeal correction of misfits, is markedly
different from modern architecture practice. Therefore, in the third of the patterns trilogy
books, The Oregon Experiment (Alexander, 1975), Alexander describes by way of example at
the University of Oregon, practical details for how his ideas for an entirely new attitude in
architecture and planning may be implemented. This includes the creation of organic order,
the role of community participation, the process for piecemeal growth, the use of patterns, and
the importance of coordination and regular diagnosis in the planning process (Alexander,
1975). Coplien (2000) claims that it is a good source for the kind of culture and context that

supports the writing and incorporation of shared, written patterns, something that computer

science has yet to document.

In summary, the piecemeal approach governed by interdependencies between patterns is the

cornerstone of Alexander’s philosophy of building. It avoids the totalitarian order of a strict
master plan that hinges on a view of an environment that is static and discontinuous. Instead,
It recognizes an environment that is dynamic and continuous and therefore promotes moving

forward in small steps. Ultimately, this permits organic order to arise, defined by Alexander

as the perfect balance between the needs of the individual parts and the needs of the whole.
The cultural needs are captured in a community’s pattern language of general building
principles. Because these principles are created by the community, they form a basis for
shared agreement. The patterns can then be used by all stakeholders in building projects to,

through small acts of building, create communities that meet the basic requirements, have the

24

quality the inhabitants desire, are usable and adaptable, and ultimately provide the basic

necessity that design and engineering improve the human condition.

2.3 The relevance of Alexander’s philosophy to software

The patterns effort in the software industry has begun to consider Alexander’s patterns
trilogy, described above, as a means to explore how his philosophy of a pattern and the
underlying design and construction process that stems from it can be useful in developing
software. It is not the building architecture knowledge that may be important to the software

development, but rather what Alexander teaches about design. It is not simply patterns

thought, but a broad approach to design that embraces the creation and use of patterns. This

section presents some justification for the link between software design and Alexander’s

principles of design.

The sofiware patterns movement was prompted by similar observations that prompted
Alexander’s life work. Alexander observed poor quality in architecture that he argues exists
because of the lack of documentation for timeless, successful traditions in building and urban
architecture. He also saw the need for a system-based process that supports the use of this
literature, one that is able to build quality despite the need to handle the complex architecture
demands. Similarly, as explained in chapter one, quality in software has suffered, to some
degree, from the lack of a consistent use of its successful practices, and this has created a
renewed interest in reusing proven practice throughout the industry. In addition, there is the

nagging need to handle the growing complexity and decreasing quality in present day

software products with a development process that can cope with this reality.

As explained, Alexander’s philosophy resists a linear, master plan, development process and

raises concerns about artificial models that separate the designer and the user. Instead,
pattern-based design supports a piecemeal, participatory approach that weaves activities and
the effects of those activities and integrates rather than separates the various roles. Rather
than a master plan, the stakeholders in a project adopt a process that proceeds in an order
governed by pattern interdependencies. Similar to the approach of the master carpenter, each
step in the construction process involves an analysis of the current problems presented within
the structure and the misfits with its environment. This is followed by an application of a
pattern that corrects the problem and repairs the misfits. In this way, the final form of the

structure 1s transformed, strengthened and brought to a closer equilibrium with its
environment (Lea, 1993).

25

This piecemeal construction based on the stepwise application of patterns, is an alternative to
the formal modeling, master plan approach often seen in software engineering. Piecemeal
construction recognizes continual analysis, design and adaptation as an inevitable part of
construction, a characteristic some have argued is central to handling the complexity of
present system development projects. It 1s supported by Blum (1996) and Lawson (1997)
who are among those calling for a design process that is able to manage change instead of one
that requires knowledge of the complete product at the beginning. They point to the reality
that information is never complete, and changes to resolve one problem often affect the
choice of solutions to other problems. Therefore, Blum (1996) states that design is always “a
contingent process” and must provide for “perpetual discovery”. Henry Petroski, a well-
known industrial author and speaker on success and failure in design, would agree with this
need for perpetual discovery. Similar to Alexander’s approach to building form through
stepwise correction of misfits, Petroski explained, in a keynote to the 2001 OOPSLA
conference, that the continual observation of failures and the effect of their correction on the
complete system is a fundamental underlying principle that all designers follow (Petroski,
2001). In software, Gabriel points out that, in practice, software development work is rarely

done with a thorough abstract design, but instead is accomplished through piecemeal growth
(Gabriel, 1996).

In this piecemeal growth process, Alexander emphasizes the role of the community
surrounding the project. Participation is encouraged from all levels during the creation of the
patterns, the building of the structures from the patterns, and the decision-making about future
growth. Collective development is made possible by a common pattern language of practices
that all stakeholders in a project can use to create quality form (Lea, 1998). This resource
discourages design models created by one group for the purpose of meeting the needs of
another group. Instead, a common language allows all stakeholders to integrate, rather than
separate, their roles. This is important in software development because, as Coplien (1996a)
asserts, “human communication is the bottleneck in software development”. Therefore, the
potential of patterns to facilitate better communication between software developers and their

clients, customers, and with each other “fills a crucial need of contemporary software
development” (Coplien, 1996a).

In his OOPSLA’96 keynote, Alexander pointed to the “abundant connections” that can be
drawn between his field and software development (Alexander, 1996). He asserted that his
lessons are something that can and should be adopted by software engineers, proposing that
the idea of a piecemeal design process forms the core of the computer science field and can

become the natural process because software design methods are perfectly designed for it. He

26

stressed that, similar to living architectural structures, computer science has the means to view

their software as a natural, genetic infrastructure in a living world. This, he claims, could

“turn the world around, and make living structure the norm once again, throughout society,

and make the world worth living again” (Alexander, 1996).

Three years later, when the presentation was published in IEEE Software, the foreword
reported that the patterns discipline has become one of the most widely applied and important

ideas of the past decade in software engineering (Coplien, 1999¢). It has even been suggested

that Alexander has perhaps had an even greater impact on computer science than on
architecture (Salingaros, 2000). As Coplien (1999c¢) writes:

The curious parallels between Alexander’s world of building and our world of

software construction helped the ideas to take root and thrive in grassroots
programming communities worldwide.

Although Alexander’s vision is not a complete theory, it does provide an evolution of thought
in which the concept of patterns and a pattern language has remained a continuous element.
Some in the software industry are attempting to promote this vision primarily because
patterns provide a structure for documenting reusable artifacts. While this is the most visible
benefit to many software developers, a patterns approach to software design also offers a
piecemeal development process that preserves the integrity of pattern-based design and an

industry-wide community that is dedicated to creating patterns and promoting their use. The

following sections explain that patterns can be viewed as structure, as process, and as

community.,

2.4 Patterns as structure

Chapter one presented the software industry’s need to find a better method for capturing and
supporting the reuse of its common practices. The first part of this chapter explained that the
software patterns movement is attempting to do this is with a collection of patterns and
pattern languages. The structure of this new literature has its roots in the design philosophy
of Christopher Alexander who used patterns to capture successful traditions in building from
which quality structures can be created. His definition of a pattern is widely cited throughout

the software discipline (e.g. Saunders, 1998; Buschmann, 1996; Coplien, 1996a; Gamma+,
1995):

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without doing it the same way
twice (Alexander, 1977).

27

The problem and solution are the essential content in a pattern template. In addition, a pattern
provides additional information such as the conflicting forces that create the problem, the

context in which the pattern is applicable, and the rationale for and consequences of using the
solution. A number of approaches for writing this information can be found in the literature.

Some advocate the use of clearly marked sections to make it easy for the reader to find key
elements of the pattern (Meszaros+, 1998) while others make use of a more free-form format
that is closer to the original one used by Alexander (e.g. Olson+, 2002; Harrison, 1999).
Various pattern template formats have evolved in recent years. However, Gamma (1995)
writes that it is more important to explore the space of design patterns than to define a formal
representation for them. The use of a variety of formats for software patterns has been
encouraged 1n order to explore the one that may become the most effective (Coplien, 1995a).

In the midst of this exploration, patterns have offered a structure for capturing abstractions
that are not easily captured otherwise (Gabriel, 1996).

While an individual pattern documents a successful solution to one recurring problem,
building relationships between them into what is known as a *pattern language’ provides the
resource to handle truly complex problems (Coplien, 1996a; O’Callaghan, 1999a). A pattern

language is a collection of patterns that are related, and thus are able to work together as a

system 1n various sequences to build a variety of whole forms.

Alexander compares this to the English language, a system that allows the creation of “an
infinite variety of one-dimensional combinations of words, called sentences”. Just as the
English language provides the words and the grammatical rules for arranging the words to
generate various legitimate sentences, a pattern language provides the patterns and the
structural connections that specify how the patterns can be used to generate various types of
forms. Alexander’s architectural language gives users the power to create an “infinite
variety” of buildings, gardens, towns (Alexander, 1979). As an example, Alexander lists a
sequence of ten patterns from A Pattern Language that were used to create a farmhouse in the

Bernese Oberland and a sequence of eight patterns that were used to create stone houses in the
South of Italy (Alexander, 1979).

Therefore, while single, unrelated patterns are used in isolation to solve isolated problems,
building relationships between them into a ‘language’ allows patterns to work together to
solve complex problems. To make this possible, an individual pattern, as part of its structure,
documents its relationship to and its dependence on other patterns in the language. The
relationships can manifest themselves in a variety of ways, showing complements such as

specializes, generalizes, parallels, uses or completes, follows or proceeds (Meszaros+, 1998).

28

The resulting structure of the language reveals the meaningful order in which the patterns can

be used in a variety of sequences, building on each other to create a variety of whole forms.

The process of how this is done is further explained in the next section.

2.5 Patterns as process

In The Timeless Way of Building, Alexander describes how the life and beauty of great
cathedrals arise from pattern languages:

... the rules which formed the great cathedrals were, to some extent, common rules of
thumb, which defined the general form of “a” cathedral. ... And it is not only the
obvious large scale organization which was composed of common patterns. Ata
smaller scale, there were patterns too. ... Indeed the most beautiful details were

patterns too. ... There were hundreds of people, making each part within the whole,
working, often for generations. ...each person in the whole had, in his mind, the same
overall language. Each person executed each detail in the same general way, but
with minor differences. ... the builders themselves knew enough of the shared pattern
language to make the details correctly, with their own individual flair. But still the
power and beauty of the great cathedrals came mainly from the language which the
master builder and his builders shared. ... The building grew slowly, magnificently,

from the impact of the common pattern language from which it was made, guiding its
individual parts, and the acts which created them, just as the genes inside the flower’s
seed guide and then generate the flower. All the great buildings in history have been

built like this, by language (Alexander, 1979).
This excerpt refers to the shared language, the collection of related patterns, that guides the

process of building. The most basic fact of this process, Alexander explains, “is that it
enables the community to draw its order, not from a fixed map of the future, but from a

communal pattern language”. It is possible to replace the master plan with patterns because

the tools and theory are worked out in the language (Alexander, 1975).

The process stems from the structural relationships between the patterns. These relationships
define the use of the individual patterns in various sequences for building various forms. A
sequence is driven by the application of a pattern that solves a problem, which then creates a
new condition with new conflicts that must be addressed with the application of another

pattern (Alexander, 1979). Coplien describes it in this way:

Patterns rarely stand alone. Each pattern works on a context, and transforms the
System in that context to produce a new system in a new context. New problems arise

in the new system and context, and the next “layer” of patterns can be applied
(Coplien, 1998a).

A pattern language builds a system that is continually transformed by the use of one or more
patterns (Coplien, 1996a). Alexander believes that quality cannot be built with an isolated

pattern, but rather with an entire system of patterns that are interdependent at many levels

29

(Alexander, 1979). In Alexander’s language, the structural relationships between the patterns
prompt sequences that move from larger to smaller patterns, such as those that create regions
(e-g. Identifiable Neighborhood (14), Activity Nodes (30)) and the buildings in those regions
(e-g. House For A Couple (77), Individually Owned Shops (87)), to those that are concerned

with various levels of details that embellish the structures (e.g. Alcoves (179), Final Column
Distribution (213)).

Therefore, it is the structural relationships that define the possible sequences in which the
patterns can be applied in a stepwise manner towards the creation of a larger and more
complex whole form (Alexander, 1979). Within any sequence, the application of a pattern
solves one problem, but it is recognized that this action changes the state of an existing
system, which then causes a new problem to arise and a new pattern to be applied to address

that problem. Therefore, patterns related in a pattern language provide a dynamic process for

~ the orderly resolution of the problems (Appleton, 1998; Beedle, 1998).

Despite the capacity for pattern languages to define a process, there are no examples of
software projects created in the way Alexander describes how cathedrals are built. This is
likely due to the scarcity of complete pattern languages in the software domain. Presently,
software pattern writers are creating languages to help build parts of systems and to address
various individual issues in this process of building. Pattern languages appear at more of a
component level than a system level — they do not yet define the complete development
process (Rising, 2000). While there is some concern that the focus has been primarily on
individual patterns rather than the connections between them and the creation of languages
(Rising, 2001b), others question whether it is possible to develop a pattern language for
generating an infinite variety of software systems (Corfman, 1998; Johnson, 2000).

Despite a current scarcity of pattern languages that define complete processes for building
complete products, an element of process can also be found in each individual pattern.
Alexander explains that a pattern is both a thing and a process for creating that thing. It
describes what you have to do to generate the entity which it defines (Alexander, 1979). A
popular view recognizes that a sofiware pattern focuses on the structure it creates and the
process for building that structure (Winn, 2002). Therefore, the selection of a pattern
prompts the use of a process. As Shaw explains, patterns are used in practice by developers
who adopt one of more of them to help shape the design of their application (Shaw, 1995). It
can be argued that this act of looking up a pattern to find a solution for a development
problem is a very different process than inventing from scratch. And, as explained earlier,

patterns are also viewed as part of a process in the UP and part of a standard metamodel in the

30

MDA. Therefore, even individual patterns have an element of process, both internal to the

pattern and in the way they are used in a larger process.

The next section presents the community aspect of patterns. As stated in chapter 1, reuse

efforts have suffered from the absence of a culture that supports reuse. Therefore, the patterns

community, which is attempting to build a ‘patterns culture’ that supports the creation and use

of patterns, is considered.

2.6 Patterns as community

Alexander stresses that community participation is an essential feature in the patterns
philosophy. In order for the language to be used in the building process, all stakeholders, not

just the architects, must take part in creating it. It is only then that it can become a communal

language. He explains it in this way:

[A pattern] forms the basis for a shared agreement in a community. Each one is,

therefore, a statement of some general planning principle so formulated that its
correctness, or incorrectness, can be supported by empirical evidence, discussed in
public, and then, according to the outcome of these discussions, adopted, or not, by a
planning board which speaks for the whole community (Alexander, 1975).

This shared agreement is important because, as explained earlier, order is drawn, not from a
fixed map of the future but from a pattern language that belongs to the community in which it

1s used. It supports an approach in which projects move forward through local acts performed
by members of the community (Alexander, 1975).

Alexander explains that this level of participation is important because it is those who will
inhabit the structure that know most about what is needed. Secondly, it allows all individuals
to become involved in their community, giving them a sense of ownership and some degree of
control. He also addresses the criticism that this can result in chaos by pointing to the

framework of shared patterns that assures “a rich and various order” (Alexander, 1975).

Therefore, it is the community that builds the language and constantly evaluates and improves
it. As Alexander further explains:

... We must first learn how to discover patterns which are deep, and capable of

generating life. We may then gradually improve these patterns which we share, by
testing them against experience: we can determine, very simply, whether these
patterns make our surroundings live ... (Alexander, 1979).

In the software industry, the patterns community was formed around the goal of identifying

the successful practices that occur in software development and documenting them in pattern

31

form (Corfman, 1998). This fostered one of the fastest-growing communities in contemporary
software design (Coplien, 1996a). It was prompted by the actions of only a few individuals
who realized that the advance of the software discipline is being limited by a lack of literature

providing solutions to common problems (Johnson+, 1995). A timeline summarizing the

evolution of this community appears in table 2.

L il -l S mm—m“wmwmmmm §

OOPSLA’S? . Beck & Cunningham present their human computer mterface ‘pattems

,-iul.ll-' iy i S e pppalrt, Mgl e A ek o e el Sl ol e Syl e syl oy e e S ol e

Il S Pl Bl PPl el el JF "L Sy L gl el S e P Sl e sl i il bal i e Eal TS P S o

. 1991 " Gamma & Helms begin to write “design patterns” |
f"("")'o“P"STX‘“éT * “Towards an Architecture Handbook” workshop — the authors of Design Patterns
meet
"OOPSLA’92 ~ Second “Towards an Architecture Handbook” workshop o
1993 " Beginning of what was to become the Hillside group — met twice — wrote S
- patterns — planned first PLoP conference
T*iﬂ99‘r“ o "Fl}gfﬂf’“be conference helcm'iﬂss—w“mm S
FT9*9_5“ - Des@“ﬁaﬁ;ﬁ?ﬂﬁgn@ﬁﬁf RMect-Onenred Sofnvmhed)
* - (Gamma+, 1995)
1995 . Pattern Languages of Program Design I publlshed (Coplient+, 19952)
1995 : Second PLoP conference (in lllinaisy
1996 Mﬁzﬂﬁeﬁnﬂ%"'g-;z;ée}?ﬁafmm Design 2 published (Vlissides+, 1998) MT
1996 . First European PLoP conference — EuroPLoP (in Germany)
- OOPSLA’96 . Alexander’s keynote address (in San Jose)
"T9"'§"sm " First ChiliPLoP conference (in Arizona) -

1
R R S W W P Pk Ml Mk B . Sl il A3 44 i -1 i P AN 4 Sl i e A S Sy g = el B ok PRI ol YL iy Pt et s S Y B ARyl 7 - 4 4 g [P s w0 a0 S puls e § P, gt A o e s e e VS i s P oo T il ol - v o AL B

1998, 2000 Pattem Languages of Program Design 3 and 4 published (Martin+,1998,
' . Hamson+ 2000)

F_ﬁﬂﬂ_ﬂ——-_u_—_—“

2000 . First KoalaPLoP conference
2000 " The Patterns Almanac 2000 published (Rising, 2000)

; l997-present PLoP conferences continue

gt SRR § S ppadel A P R o e i Wil

alninie-t Dbk Nl PR, dafylek S il sl g Sl iy gl e g e B0 e = el il B iy il i oal WPl il el e el ' ~JEPPY =ik e S e S il Nl gl == S epslyprlalie i S el i i il i S W il Ml Ayl el i k.

Table 2: Events in the Evolution of the Patterns Community

Within the last seven years, the evolving patterns community has taken on the task of creating
a body of patterns literature to support software development (Appleton, 1998). It was
established with the formation of the patterns administrative board, the Hillside Group. In the
years that followed, much of the activity has centered around the previously mentioned
Pattern Languages of Programming conferences. Within the framework of these conferences,
the patterns community has defined a process for writing and reviewing patterns. It includes
“shepherding”, a phase in which a pattern author is assigned to another author in order to
receive feedback for improving his or her pattern (Harrison, 1999). This is followed by a

“writers workshop”, a technique borrowed from the writing community that gathers a

32

collection of authors together at PLoP conferences to discuss ideas for further developing
their patterns (Rising, 1998c; Johnson+, 1995).

In a discipline that stresses technical matters, it may be curious to note that the emphasis of
the pattern community’s effort is on building a culture that promotes sound design through
patterns, rather than through the technology that supports it. Unlike technical-based methods
for reuse, the patterns approach recognizes the importance of building a community which

appears to be getting stronger as it encourages the capture of various kinds of best practice in

software development while addressing the human and cultural issues that have been ignored

in the past (Coplien, 1999¢). Yet, despite this growing community in the industry, efforts to
build patterns communities within organizations have not been as successful. This reality has

prompted the work in this thesis and will be discussed in subsequent sections.

In summary, the previous sections have presented patterns as a potential answer to some of
the limitations in software engineering’s attempts to capture its best practices in a reusable

and effective form. A software pattern has been described as a thing and a process for
building that thing. It offers a structure for documenting knowledge and two other features
that have been weak in past reuse efforts — process and community. The following section

presents how these characteristics are presently regarded in the popular view of patterns.

2.7 Popular view of software patterns

As previously mentioned, Alexander has expressed his observation that patterns are being
used by the software industry primarily as a “neat format”, a tool for communicating good
ideas about software design (Alexander, 1996). Even though he encouraged the industry to
think about patterns as much more, there is no visible evidence that the pervasive view of
patterns 1s anything more than what he has observed. As explained, the popular software
development process, UP, regards patterns as entities within the process, rather than as

defining their process in any way. In addition, the consistently reported benefits of patterns
highlight them primarily as an effective way to capture expertise and pass it along to others in
the form of a standardized vocabulary. This, in turn, improves communication, allows

problems to be solved more quickly and has the potential to improve the quality and the

maintainability of the final product (May, 2002; Coplien, 1996a; Gabriel, 1996).

While this notion of using individual patterns as a means to communicate successful practice

is part of Alexander’s philosophy, he takes it further. The popular view misses the important
dimension of the process offered by the pattern languages.

33

The existence of those who recognize this vision in the midst of a majority who see patterns
primarily as structure has spawned some disagreement in the patterns community. Some
believe that because the pattern structure allows the industry to work towards capturing and

reusing its best practices, it is enough, at least for now. Others see that it is vital to follow

Alexander’s philosophy of patterns in order to address some of the critical issues in designing

and building complex software (Coplien, 1996a; Gabriel, 1996).

Some who believe the latter have criticized the view of patterns popularized by Gamma
(1995). Despite the impressive sales of this book, there has been continuing debate about
whether these artifacts should indeed be referred to as patterns (Coplien, 1996a). While the
authors claim that Alexander’s work inspired them, they also point out that their work does
not have all the qualities of his patterns. In contrast to Alexander, the Gamma patterns do not
contain the following: long-term, well tested, knowledge (such as that found in building and
city architecture), an emphasis on the problem, rather than the solution, description, an order
in which they should be used, and the ability to create complete structures (in this case, the
structure of programs) (Gamma+, 1995). Jackson, in his book Problem Frames, also makes
note of the Gamma patterns’ emphasis on the solution, rather than the problem as Alexander
originally intended (Jackson, 2001). The last two missing characteristics, a specified order
and the ability to create complete structure, reveal that the Gamma patterns are related only

loosely, are not part of a language and therefore do not have the structure that defines a
process for using them (Gamma+, 1995).

However, the popularity and claimed usefulness of this book causes it to be the foundation for
many developers’ notion of what a pattern is. For them, the concept of a pattern is derived
from Gamma and has little to do with anything called an Alexanderian pattern. In general,

such people are either not familiar with the work of Alexander or don't view his work as
relevant to software (Gabriel, 1999).

Concern over this attitude was discussed as recently as October 2000 at an OOPSLA
conference panel titled “Sequel to the Trial of the Gang of Four”. One of the authors of
Design Patterns, John Vlissides, stressed that the purpose of the book was to “plant a stake in
the ground”, arguing that it is better to take incremental steps rather than attempt to wait until

you can get it completely right the first time. Frank Buschmann appeared to agree when he
reminded the audience of a “do it, reflect, start over again” approach. However, Coplien

argued that if the authors began with a system perspective, we’d be better off today. He
explained that, instead of creating individual techniques, they should have looked at how each

structure could be part of a larger whole that contributes to the quality of life. He reminded

34

attendees Alexander emphasized, in his keynote at OOPSLA’96, that software developers
have a social responsibility to do this because, unlike building architects, they touch

everything. Dan Unger challenged the assumption that software can apply building

metaphors to their discipline because the constraints are so different. However, Coplien
insisted that the underlying theory, such as the process of creating organic structure, does map
into software construction. He explained the need for a paradigm shift, claiming that
Alexander’s keynote in 1996 gave the software industry the wake-up call that they were 1n
bad shape and had a reason to reflect. Just as Alexander noticed that the quality in
architecture has virtually disappeared due to a lack of system perspective that puts the
production of the environment in the hands of the people who use it, problems in software are

system problems. Although Coplien admitted that the work in Design Patterns is useful, he
underscored that only patterns that are part of a pattern language can work together and give

developers the ability to build software with a system perspective.

Even though the panel ended with Unger’s suggestion that it is now time to take this system
perspective, the available evidence suggests that the popular view is still missing the
important dimension of the process offered by the pattern languages. However, as explained
in section 2.5, even an individual pattern introduces a process for using it. Intuitively, this
popular view of using patterns as individual structures in a larger software development

process must be driven, at least in part, by their potential to improve that process. Patterns as

a software process improvement will be explored further in chapter three.

In the final section of this chapter, the challenge of introducing patterns into organizations is
constdered.

2.8 Pattern acceptance in organizations

It has been shown that patterns are gaining emerging attention in the software industry. Many
individuals attend patterns conferences each year to present their pattern drafts and to discuss
the issues surrounding the use of patterns as a literary form for documenting the industry’s
best practices. However, the authorship and use of patterns, and the corresponding growth of
the community, is primarily through the efforts of individual contributors (Harrison+, 2000;
Martin+, 1998). Despite the involvement of many individuals in the growing industry-wide

patterns community, attempts to introduce and build communities within organizations have
not been as successful.

A few organizations have tried to go beyond the use of patterns as an individual resource. AG

Communication Systems, Geco-Prakla, Lucent Technologies, Bell Laboratories, British

35

Telecom, and Siemens are among those in this grass roots effort who have seen value 1n
capturing and sharing expertise. They have mined patterns in various domains such as system

architectural design, load building, marketing, legacy system transition, process improvement,

leadership and mentoring. The patterns work at AG Communication Systems prompted

Charlie Schultz, former Chief Technical Officer, to summarize the potential of patterns in this

way:

Patterns can be a very effective collaboration tool. To become the company we want
to be and to meet the needs of our customers on a timely cost effective basis, we have
to be able to share solutions to the common challenges we face and then use these

common understandings to build new products and capabilities. The reuse of
successful patterns will result in shorter development and implementation cycles by

causing us to focus on solving the problems for which we don’t yet have a pattern
(Schultz, 1996).

The experiences of organizations that have attempted a patterns approach to reuse report that
verbal and written communication was improved among and between various system
development efforts (Rising, 1998a; Corfman, 1998; Saunders, 1998; Beck, 1998). This
suggests that more benefits can be realized when they are used throughout an organization
rather than simply by a few scattered individuals in the organization. Alexander further
stresses this when he explains that the successful use of patterns depends on community

involvement and common ownership of the patterns by those who are building the products
(Alexander, 1975).

While this argues for the need to encourage organizational, rather than just individual,
acceptance of patterns, the reality of pressures in developing complex systems in a highly
competitive software market does not often leave a great amount of time for organizations to
learn about patterns and become interested in writing and using them. The successful
practices must be identified, formatted into patterns, quality controlled, continually updated,
and incorporated into the process. The challenge of doing this is reflected in comments by

those who have tried to lead their organizations towards a patterns approach. For example, at
AG Communication Systems (AGCS), Rising writes:

In today's business environment, letting this process happen requires extraordinary
management insight. The process requires introspection, which means time, a scare

commodity when the rallying cry is “turn that around fast and move onto the next
product” (Rising, 1998a).

These demands are further complicated by the fact that the benefits in any reuse effort are in

the long term and only after much effort, time, and resources to create the artifacts
(McGregort, 1992; Fayad+, 1996). In addition, it is difficult to quantify the impact of
patterns (May, 2002). John Letourneau of Lucent Technologies explains that the urgent need

36

for bottom line results does not promote the simple incorporation of patterns into the system

development process:

It’s tough. We're dealing with product development cycles as short as a couple of
months so there is no time to introduce something new. ... We’'re into instant

gratification. We're not as willing to study things, internalize things, and make them
part of the culture in order to get a big payback in the long term (Letourneau, 1999).

The challenges suggest the need for understanding the problems that are likely to occur when
individuals attempt to introduce organizations to patterns. This was first recognized in 1996
by DeLano and Rising who led an effort to document the recurring problems and
corresponding solutions in a collection of patterns titled Introducing Patterns into the

Workplace. The twenty-three loosely related patterns recorded the experiences of seven

individuals who had introduced patterns into six different organizations. DeLano and Rising

do not claim that it is a complete language. Instead, they refer to their collection as “the

beginning of a pattern language”, signifying that it is the first step in understanding the task of

introducing patterns into an organization (DeLano+, 1997).

Therefore, although there is anecdotal evidence to suggest that the introduction of patterns
Into an organization comes with influential challenges, it has been a relatively unexplored
area of research. This scarcity offers few resources for those who wish to introduce patterns,

but it also provides a prime opportunity for research. It is the objective of this thesis to build
theory for this unexplored area. It will do this by developing a theoretical foundation from
innovation diffusion research, suggesting propositions based on this foundation, qualitatively
and quantitatively exploring the relevance of these propositions, and then putting forward a
model that proposes theory for the factors that have an influence the use of patterns among

individuals in organizations. The theoretical foundation and research design will be described
in the subsequent two chapters.

In summary, software reuse has been a challenge for Computer Science and software
engineering since the “sofiware crisis” was first recognized in the late 1960°s. Despite
considerable research in academia and industry, and some gains at the level of reusing code
artifacts, no quantitative breakthrough has been achieved in the intervening thirty years.
Experience of reuse research and practice suggests that more attention needs to be paid to the
non-technical aspects of software development if a real leap forward is to be made. Sparked
by the work of C. Alexander and the recognition of the need for a higher level of design and
reuse, software patterns have become an emerging phenomenon in software development.
They offer a structure for documenting successful solutions to recurring problems, a process

for using that structure, and a community that supports their creation and use.

37

However, even though patterns and pattern languages are built to capture the successful

practices of a community to then be used by the community, there is little to indicate
widespread adoption of patterns within organizations. This may be due, at least in part, to the
experiences supporting the notion that introducing patterns into a software organization is
difficult. This suggests that there is value in understanding what can influence individuals in

an organization to adopt patterns. It is the objective of this research to initiate this

understanding.

38

A SEAEE A il o ol © o A Al L

Eq ' .
~ -M“m_u‘*_m“.‘ e
]

o g
r ﬁzmmmmﬂﬁhﬂﬂﬁmiu .

‘!I‘JJ#

FUEF F pEEreegce O §F o meenee e Ew s o o
[}

F LU L

CHAPTER 3

THEORETICAL FOUNDATION

3.1 Introduction

The distinctive characteristics of patterns and the challenge of introducing them into

organizations have been discussed in the previous chapter. In this chapter, the theoretical

foundation that guides the conduct of this study and the research model that is derived from

this theory 1s presented.

Figure 1 illustrates the stream of research from which the foundation for this research is built.
As shown, this investigation of patterns adoption will consider software process innovation

(SPI) use, which is encompassed in the larger area of information technology (IT) use. Also
as shown, studies in the use of various SPIs in particular and ITs in general have drawn their
foundation from diffusion of innovation (DOI) research. This study will do the same,

building upon this accumulated research knowledge.

In order to utilize existing theory, an argument is made to classify patterns as a SPI and to

consider the larger research area of IT adoption. It is also argued that the process of
introducing patterns into an organization may be understood by taking the lead of others who
have used DOI research to gain insight into the factors that influence use of other types of

innovations. Within this context, this chapter presents the research model and the factors that
are derived from this framework.

DOI
theory

pattern
— “

Figure 1: Stream of Research that Guides this Study

39

3.2 Patterns as a software process innovation

Chapter 1 summarized the software industry’s attempt to cope with the “software crisis” over
the past three decades with an array of technological and methodological innovations. When
the purpose of such types of innovations is to add fundamental changes to the development
process in order to improve it in significant ways, they are termed software process
innovations (SPI) (Zmud, 1982;.Fichman+, 1994; Kishore, 1999). Some well-known
examples of SPIs include: relational database management systems (RDBMS), fourth-
generation languages (4GLs), rapid application development (RAD), prototyping, joint
application development (JAD), computer-aided software engineering (CASE), software
reuse, graphical user interfaces (GUIs), object orientation (OO), and Personal Software

Process (PSP). As will be shown here, patterns possess many of the qualities the literature

defines as inherent to a software process innovation.

The term innovation is commonly defined as an idea, practice, or material artifact perceived
to be new by the relevant unit of adoption (Rogers, 1995; Dewar+, 1986). This clearly
suggests that an innovation can be anything — idea, practice, or object — that is perceived as
new by the adopting unit (Kishore, 1999). The attribute of perception is worth noting — what

may be considered new to some people may be a traditional to others. Rather than defining a
definitive timeframe of newness, it is how the idea is perceived by the individual that matters

most (Green, 1999). Therefore, the model set forth in this research is applicable for

organizations introducing patterns for the first time even though patterns may be a well-

established practice in other organizations.

The second word in the term, ‘software process innovation’ identifies this category as a
process innovation. As explained in chapter two, patterns related in a pattern language
define a process for their use. In addition, each individual pattern is a structure that contains a
process for its use. And, it can also be argued that the use of a pattern to solve a problem

introduces a different process than developing the solution from scratch. In other words, any

use of patterns involves some kind of process innovation.

This examination of both the terms innovation and process supports the argument for placing

patterns in the category of software process innovation. This is the same approach taken by
(Kishore, 1999) in a study of software reuse adoption, a point worth noting because patterns

have been presented, in the previous chapters, as an innovation that facilitates reuse.

40

To study patterns as software process innovations, the characteristics of SPIs that have been
proposed by previous research are presented. Fichman (1994) has shown, and others have

supported the idea (Kishore, 1999), that SPIs are distinguished by two characteristics:
substantial knowledge barners and strong adopter interdependencies.

The first of these, knowledge barriers, is said to be a characteristic of SPIs because by their
very nature they tend to be quite complex (Kishore, 1999). Unlike simple innovations, SPIs
are not “packaged” as “black boxes” that can be easily adopted and used with a relatively low
amount of leaming (Attewell, 1992). Process innovations usually involve aggregates of tools,
machines, people, and social systems (Tomatzky+, 1990). This, in tum, imposes a substantial
burden on potential adopters to gain various kinds of knowledge (Eveland+, 1990; Kishore,
1999). Therefore, an individual must acquire broad tacit and procedural knowledge in order
to use the innovation effectively, placing what Attewell calls “knowledge barriers” between

SPIs and their potential adopters (Attewell, 1992; Kishore, 1999; Fichman+, 1994).

Secondly, SPIs have been shown to exhibit characteristics of adopter interdependencies
(Fichman+, 1993). This means that SPI adoption by an individual depends in part on the
adoption by other individuals in the community (Kishore, 1999). This is supported by the
principle of “increasing returns to adoption”, which states that the value of some innovations,
such as process innovations, will increase as more individuals adopt it (Arthur, 1988). By
definition, an SPI is a process innovation. Therefore, it has been argued that the value of a
SPI to any individual involved in a process will increase as others in that process use it
(Fichman+, 1992). Fichman (1994) also notes that adopter interdependencies infers critical
mass dynamics be considered in understanding the overall rate of adoption. The formation of

a critical mass of adopters in the early phases of introducing a new idea into an organization is

vital, for if this is not established, successful adoption may not occur at the organizational
level (Markus, 1987; Rogers, 1995).

Knowledge barriers and adopter interdependencies have important implications for the study
of SPI adoption, and therefore pattern adoption. While adopter interdependencies support the
importance of obtaining a critical mass, the existence of knowledge barriers can make this
difficult. At the same time, slow or failed assimilation among early adopters will delay the

leamning that can serve to overcome a stalled adoption effort (Fichman+, 1994). Therefore,

knowledge barriers and adopter interdependencies serve to reinforce the challenges of

introducing patterns into organizations.

41

These characteristics raise a lesson about the vital considerations in the early time period of
introducing patterns. While the interdependencies between potential adopters can make it

difficult to reach a critical mass, the reliance they have upon each other highlights the need

for positive communication between those who have adopted and those who have not. In
addition, the existence of knowledge barriers emphasizes the need for training and mentoring.
These two requirements call for a model that puts communication at the forefront of the
diffusion efforts. As explained in subsequent sections, Rogers’ (1995) classical diffusion of
innovation (DOI) theory offers this focus. It centers on the notion that innovation adoption is
a process of uncertainty reduction through various types of communication. Therefore, it will

provide the foundation for this research and will be explored for its relevance to the diffusion

of patterns. This will be described in more detail in upcoming sections.

This section has presented patterns as a software process innovation. SPIs are claimed to

possess the potential of improving the systems development process in significant ways
(Kishore, 1999; Fichman+, 1994). However, there is still a need for research in the area of
SPI adoption (Kishore, 1999). Research to date tends to concentrate on the adoption of
product innovations that are simple and have low adopter dependencies (Kishore, 1999).

After reviewing these studies, Kishore (1999) calls for research that accounts for the unique

nature of process innovations and the influences the organizational context has on the

individual’s decision to adopt. This research focuses on the adoption of patterns, a complex,

process innovation, by individuals in organizations.

The next section reviews the primary goal of this research, followed by a description of how

studies in the diffusion of software process innovations, information technology and

innovation diffusion are integrated to form the comprehensive initial model in this study.

3.3 Guiding motivation for study

The motivation, primary and secondary goals, research questions, and objectives were posed
in chapter one. This study is motivated by the need to inform researchers and practitioners

about how they may position patterns in an organization to encourage a faster and more

efficient adoption. It is a theory-building investigation to explore the factors that are likely to

influence the use of patterns among individuals in an organizational context.

This type of research study has been conducted for many other types of innovations. Rogers

(1995) was among the first to document factors that affect the adoption of innovation. Many
others have used his classical diffusion of innovation (DOI) theory as a basis for their

Investigation of factors that impact upon the use of many types of product innovations

42

including spreadsheets (Brancheau+, 1990), word processing (Hightower, 1991), workstations
(MooreGC+, 1991) and process innovations such as software reuse (Kishore, 1999), CASE

tools (Iivari, 1996), and Personal Software Process (Green, 1999). In each of these cases, and

others, various levels of support have been found for classical DOI and, as explained in a

subsequent section, for the research work of those who have enhanced it.

However, there is no known study that has empirically investigated the factors that impact

upon the use patterns. Seen (2000) proposed the characteristics in DOI as a way to assess the

potential for design pattern adoption, but offered only opinion on the applicability and
stopped short of suggesting any testable model. Based on the previously described infancy of

patterns and the narrow attention that has been paid in the literature to the adoption of
software process innovations in general, this study is designed to be exploratory. It is one in
which theory will be built rather than tested. It does this by: 1) proposing a model that,
grounded in innovation diffusion theory, attempts to identify the factors that impact upon

pattern use, 2) empirically investigating this model, and then, 3) suggesting a refined model

with explanations and implications for the findings. The next section presents this initial
model.

3.4 The research model

To create the research model, this study has been founded on the current state of research in

the area of individual acceptance of innovation. A case has been made for categorizing
patterns as a software process innovation. As such, this study can follow the lead of others
who have considered SPI acceptance in the larger category of the adoption of information
technology (IT) innovations (Kishore, 1999; Iivari, 1996; Green, 1999). (See figure 1.)
Within this realm, the scope of IT has traditionally included hardware, system software, and
telecommunications components (Green, 1999) but has recently been expanded to include
information systems, products, and technologies (Fowler, 1994), and the area of software
development processes, techniques, and methods (Green, 1999; Kishore, 1999). Software
process innovations, and thus patterns, fit into this last area. Therefore, just as other SPI

adoption investigations have done, this study will look for insights in studies that have
examined the adoption of an IT.

Individual acceptance of an IT has been researched from multiple theoretical perspectives

using a wide range of constructs and definitions. The key dependent variable examined in
this stream of research is individual use (Agarwal, 2000). A broad synthesis of some of the

dominant factors that have been considered by other researchers to influence this use is
presented in table 3.

43

fﬁm

—
i Construct 1[”
| Construct Groups . Subgroups | Variables
. Potential Adopters’ . (None) - relative advantage
. Perceptions of Innovation |
; Attributes | f
| g - compatibility
- ease of use
 trialability
result demonstrability
visibility
 image
. voluntariness
mlﬂnnﬂevatwe“nﬂe‘ss ofthe (N one) ' innovativeness
- Potential Adopters
|
E i 1
._-—-—-___-_________.._______.___,.______:___.____ e .
. Potential Adopters’ - Social ' opinion leader
s . Perceptions of the Social : ;
. System % i
| ; + change agent
| " champion

~ Situational | training

; h . patterns repository

. installed process

Table 3: Dominant Factors that Influence Adoption of Innovation

A4

|
i Guiding Studies

. Rogers, 1995 (relative
% advantage)

Rogers, 19935
(compatlblllty)

1 Rogers 1995 (complexity)

- MooreGC+, 1991 (ease of
- use)

- Rogers, 1995 (trialability)

-— o e m ety P A

- Rogers, 1995 (observability) .

- MooreGC+, 1991 (result
. demonstrability)

: Rogers, 1995 (observability)

MooreGC+, 1991]
- (vistbility)

- MooreGC+, 1991 (image)

. MooreGC+, 1991
. (voluntariness)

. Rogers, 1995 (adopter
'~ categories of

. Innovativeness)

- Agarwal+, 1997

i (Innovativeness)

Rogers 1995 (opinion

Ry . Soryyregh e

. Rogers, 1995 (champion)
- Beath, 1991 (champion)

i
i

i Attewell 1992 (training)

Klshore 1999 (installed
base of reusable objects)

‘ Kishore, 1999 (installed
~ process for reuse)

Ml T g g iy T

p em Pl AR T

o A EE aar W et —n - -

- - ar Tga wr— o A ek Srm oy Sl - e - A - -

The table summarizes the basts for the research model shown in figure 2. In the sections that

follow, a case 1s made for the examination of fifteen factors that are proposed, in this study, to
have the potential to influence an individual’s use of patterns. These are categorized into the
following three construct groups: the potential adopters’ perceptions of patterns’ attributes,

the innovativeness of the potential adopters, and the potential adopters’ perceptions of the

social system into which the patterns are being introduced.

Potential Adopters’

Perceptions of Patterns’
Attributes

Relative Advantage (+)
Compatibility (+)
Ease Of Use (+)
Trialability (+)
Result Demonstrability (+)
Visibility (+)
Image (+)
Voluntariness (-)

Potential Adopters’

Perceptions of Social
System

Pattern Use
Use

Use only in own work
Use 1n groups
Use by writing

Social influences
Champion (+)
Opinion Leader (+)
Change Agent (+)

Situational influences
Training (+)
Patterns Repository (+)

Installed Process (+)

Innovativeness of the
Potential Adopter

Innovativeness (+)

Figure 2: Research Model: Factors Proposed to Influence Pattern Use

The research model in figure 2 proposes that fifteen factors impact upon the individual’s use

of patterns. Although there are other factors that have been considered in other studies, such

as expectation realism (Wynekoop, 1992; livari, 1996), developer involvement (Green, 2000),

45

and the infrastructure of the social system (Levine+, 1995), this study limits its investigation
to the commonly examined eight individual perception factors, six social system factors, and

one factor for individual innovativeness. The examination of other factors is left for possible
future research.

The following section explains the basis that forms the overall framework for the model and
the propositions that will be addressed in this study. It begins with an overview of classical,
and frequently cited, diffusion of innovation (DOI) research. This social-communication

perspective on innovation adoption, and the work of those who have enhanced it, will provide

the theoretical foundation for this research in the use of patterns.

3.5 Innovation adoption research

Diverse streams of research have attempted to explain and predict individual acceptance of
various innovations (Agarwal+, 1997). In recent yeﬁrs, information systems researchers have
relied on diffusion theory for studying adoption of various innovations (MooreGC+, 1995).
Kishore (1999) reports that most empirical studies in the IT adoption literature have based
their research on either the diffusion of innovation model (DOI) (Rogers, 1995) or the
technology acceptance model (TAM) (Davis+, 1989). This study makes the case to follow
the lead of the considerable body of innovation adoption research that has drawn on the robust
DOI theory of E.M. Rogers. As will be explained, it is widely used, offers a wide range of
explanatory factors, and provides the social communication focus that takes into account the

knowledge barriers and adopter dependencies characteristics of software process innovations.

Commonly known as the classical innovation model, DOI provides a framework for
predicting the amount of time it will take an innovation to be adopted by individuals in a
social system, such as an organization (Rogers, 1995). The usefulness of this type of research
1s based on the assumption that generalizations on individual adoption behavior in past
research can be used to predict the adoption of future innovations. Such forward-looking
Investigations are sometimes referred to as acceptability research because their purpose is to

1dentify a basis for positioning an innovation so that it will be have a more rapid acceptance
throughout a social system (Rogers, 1995).

The synthesized DOI model is based upon a review of nearly 3,900 innovation adoption

studies conducted in a variety of disciplines for over fifty years (Kishore, 1991). Its long and
varied history is in contrast to the Technology Acceptance Model, which was proposed in

1989 specifically for the domain of IT (Davis+, 1989). Both the DOI and TAM models place

46

an emphasis on the connection between individuals® perceptions of an innovation and their

use of it.

The influence of perception on use has considerable support in the literature (Agarwal, 2000).
In classical DOI, an individual’s perception of five innovation attributes has been shown to be

predictors for the individual’s acceptance of that innovation. These are the individual’s
perception of the relative advantage, compatibility, complexity, observability, and tnalability
of an innovation. Rogers asserts that from 49 to 87 percent of the variance in the rate of
adoption of an innovation can be explained by these attributes (Rogers, 1995). In 1991,
Moore and Benbasat expanded DOI, increasing the perceived attributes to eight. Keeping

relative advantage, compatibility and trialability from Rogers model, they expanded
observability into result demonstrability and visibility, replaced complexity with ease of use
and added image and voluntariness (MooreGC+, 1991). Known as the Perceived
Characteristics of Innovating (PCI) antecedents, the resulting eight have been referred to as

the “most comprehensive set of user perceptions included in recent work™ (Agarwal+, 1997).

In contrast, the Technology Acceptance Model has been criticized for its reliance on only two
constructs as predictors: perceived ease of use and perceived usefulness. The conscious
choice to include only two explanatory variables was based on the desire for “a belief set that
... readily generalizes to different computer systems and user populations” (Davis+, 1989).
However, Mathieson (1991) raises concerns about TAM’s assumption that beliefs about
usefulness and ease of use are the primary determinants of acceptance decisions. He points
out that ease of use and usefulness are “internal control factors”, defined by Ajzen (19835) as
characteristics of the individual. TAM does not consider any “external control factors” that
are dependent on the situation such as time, opportunity, and cooperation of others. These
include the various social influences such as the pressure one can feel from an individual’s

supervisor and the reputation one can acquire from coworkers. In addition, Agarwal (1999)

has criticized the model for not taking into account other individual differences that

characterize potential adopters.

The extended model of DOI, the Perceived Characteristics of Innovating, does consider social
vanables. As will be explained in a subsequent section, such issues as pressure to use an

innovation has been captured in the “voluntariness® factor and the view of coworkers captured

in the ‘image’ factor. Classical DOI also takes into account external control factors such as
opportunity to try out an innovation (trialability) and the influence of others such as change

agents and opinion leaders. In addition to the characteristics of the innovation and the social

47

system, classical DOI describes how individual characteristics, such as innovativeness, affect

innovation adoption behavior.

Some have argued that the two constructs in TAM are included in the constructs proposed in
the DOI model. TAM’s ease of use has been equated to DOI’s complexity factor and

usefulness has been equated to relative advantage (MooreGC+, 1991). While Davis (1989)
found that TAM’s two variables account for approximately 47% of the variance in IT usage,
Taylor’s comparison of TAM with two other models found this value to be only 34%
(TaylorS+, 1995). This led Taylor to call for a broader explanation of factors. In a more
recent comparison by Plouffe (2001), the significant performance of PCI over TAM

constructs provided further evidence that PCI offers more detailed information regarding the

factors driving innovation adoption.

This wide range of explanatory factors is one of the reasons DO, in its extended version as

PCI, 1s used 1n this study. The second reason is its social communication focus which takes

into account the knowledge barriers and adopter dependencies characteristics of SPIs.

Classical DOI defines innovation diffusion as, “the process by which an innovation is
communicated through certain channels over time among the members of a social system”.
As such, it 1s a kind of social change in which new ideas are invented, diffused, and accepted
or rejected (Rogers, 1995). The unit of acceptance can be conceptualized at multiple levels of
analysis from the complete organization to the more micro level of the individuals in the
organization. However, the theory is most highly developed at the latter level in which the

unit of acceptance is an individual and the social system is the individual’s organization
(Brancheau+t, 1990).

The definition of diffusion implies that adoption is not an instantaneous act. Diffusion
scholars have long recognized that an individual’s decision about an innovation is the result
of a process that occurs over time, consisting of a series of actions and decisions (Rogers,
1995). Rogers (1995) has shown that an individual generally passes through a five-stage
process at varying rates — this is known as the innovation-decision process. During the first

three stages, knowledge, persuasion, and decision, individuals gather information and form

their attitudes about the innovation. During the last two stages, implementation and

confirmation, those who have made a decision to adopt put the innovation to use in their work

while welcoming confirmation that their decision was the correct one (Rogers, 1995;

Brancheaut, 1990). This view is consistent with the stage model of information technology

43

implementation as proposed and empirically validated by Cooper (1990) and the innovation

acceptance theory summarized by Mackie (1988).

DOI has been characterized as “a rich and complex information-centric view of innovation
acceptance” (Agarwal, 2000). Various researchers refer to it as the social-communication
perspective on innovation adoption and diffusion (Kishore, 1999; Attewell, 1992; BrownL,
1981; Sharma, 1996). This reference reflects the model’s reliance on the communication flow

in and around a social system. The theory asserts that adoption is a process of uncertainty

reduction as individuals assimilate information about an innovation. During the stages in the
innovation-decision process, individuals’ perceptions of the attributes of an innovation and
the communication sources in and outside the diffusion environment often interact to speed
up or to slow down the rate of adoption in a social system such as an organization (Rogers,
1995). The central theme in DOI is that the communication sources have the power to alter
individual perceptions. As Mackie (1988) explains, this communication is important because
the advent of any innovation is likely to result in some level of disruption. This can lead to
early resistance without accurate and reasonably comprehensive information to positively
affect individual perceptions. Arguably, the presence of knowledge barriers makes it
particularly challenging to deal with this resistance while the presence of adopter

interdependencies makes the role of communicating appropriate information particularly
critical.

In summary, Rogers’ classical DOI provides a social-communication perspective on
innovation adoption and diffusion. As the oldest and most widely used perspective in the
body of innovation adoption and diffusion literature, its wide use, diverse collection of

constructs, and ability to lend insight into the adopter interdependencies and knowledge

barriers characteristics of SPIs are among the reasons it is used as a foundation in this

research. Eight of the fifteen factors proposed to impact upon the adoption of pattems in this

research are based on the extension to DOI. The one dependent and fifteen independent

variables are explained in the following section.

3.6 Construct groups and factors

Diverse streams of research have attempted to explain and predict user acceptance of new
information technologies. A common theme underlying these various research streams is the
inclusion of the perceived characteristics of an innovation as a key independent variable
(Agarwal+, 1997). In this study, the focus is also on the individual’s perception of each
factor. The reason is that there have been inconsistent findings in many of the studies that

consider the primary attributes, those that are inherently intrinsic to an innovation. The

49

F" T b ks /o ';-rlrwm N . Co PR '
,Fr,r'l' .f !‘w ,.-'I,.-" ’”:r;f - : - j -lll :{ s iy ..- ’ .I'"I."F -' ‘e ' R
F ¢ |I'|' A k . .] - . ap [
\ | d 1 r J r I/ '
r .
[] L L ! ! W fu‘ b Wl B ' *
e b b v b * :
[T L .
-] loagp b . .

%
§
&
i
H
;

B Bty P F N
.

attempted measurement of primary attributes creates inconsistency because the behavior of

individuals 1s determined by how they perceive those attributes (Downs+, 1976). When
different individuals perceive characteristics in different ways, their behavior is likely to
differ (MooreGC+, 1991). As Rogers explains, “The [individuals’] perceptions of the
attributes of innovations, not the attributes as classified by experts or change agents, affect its
rate of adoption” (Rogers, 1995). Therefore, this study follows the lead of others (e.g.
Kishore, 1999; livari, 1996; Green, 1999; Brancheau+, 1990) who, when investigating the
influences on innovation use, consider individuals® perceptions of the variables under

investigation, rather than the attributes of the vanables as potentially defined by others.

3.6.1 Dependent variable

A key measure of successful diffusion of an innovation in an organization is its use (Rogers,
1995; Fowler+, 1993; Green, 1999). In a review of information systems research in the area
of information systems success, DeLone (1992) found that use is the most frequently reported
measure of IT implementation success. In contrast, the dependent variable in the TAM model
is intended use, based on the supposition that intention to use is a predictor of future usage

behavior. However, one can argue that this adds a level of uncertainty to the model.

Among those who have chosen use as an indicator of adoption are livari (1996) for CASE,
Green (1999) for Personal Software Process, Kishore (1999) for software reuse, and Moore
(1995) for workstations. In DOI, use of an innovation corresponds to the fourth stage in the
innovation-decision process, implementation. Up to this stage, the process is strictly a mental
exercise. Implementation involves overt behavior change as the innovation is put into use.
This may represent the termination of the process for most individuals, while others can have
some degree of uncertainty and may therefore seek confirmation of their decision (Rogers,
1995). In order to define a feasible scope for this study, the research question and model does

not consider any actions beyond the fourth stage in the innovation-decision process, the

individual’s decision to use pattemns.

Four types of use are considered in this study: general use, individual use, use in groups and,
as a related point of interest, writing patterns. The influence that each of the fifteen

independent variables has on each of these four types of use will be explored and reported.

3.6.2 Independent variables and propositions

Different researchers propose a variety of explanatory factors for the decision to use an

innovation. The key conceptualizations can be grouped into three construct groups: (1)

potential adopters’ perceptions of the innovation’s attributes, (2) the innovativeness of the

30

potential adopters, and (3) potential adopters’ perceptions of the social system originating

from sources including the overall social system and the individuals within 1t (Kishore, 1999).

These three construct groups, as well as the factors that appear in each group, are explained

below.

3.6.2.1 Potential adopters’ perceptions of patterns attributes

There 1s considerable support in the literature for the connection between an individual’s
perception of an innovation and his or her acceptance of 1t (Agarwal, 2000; Mackie+, 1988).
As explained, classical DOI proposes five factors which was expanded to eight by MooreGC
(1991). Known as the Perceived Characteristics of Innovating (PCI), they are: relative

advantage, compatibility, ease of use, trialability, result demonstrability, visibility, image, and

voluntariness.

Researchers have considered the ability of all or part of these factors to predict the adoption

of various types of innovations. For example, Kishore (1999) included the impact of all eight
on the adoption of software reuse as Agarwal (1997) did on the use of the World Wide Web,
while Iivari (1996) included only four on the use of CASE.

The first construct group in this research, potential adopters’ perceptions of innovation

attributes, includes all eight attributes. Each is examined for its impact upon the use of

patterns.

3.6.2.1.1 Relative advantage

Relative advantage captures the extent to which an innovation is perceived as offering an
advantage over the idea it supersedes (Rogers, 1995; Agarwal, 2000; Levine+, 1995).
MooreGC (1991) point out that this is an important consideration because “...innovations are

typically developed with certain purposes in mind, and they must be perceived to fulfill their

intended purposes better than their precursors if they are to be adopted.” A meta-analysis of
105 studies showed that relative advantage is one of only three perceptions consistently
related to innovation adoption (Tornatzky, 1982). (The other two are ‘compatibility® and
‘ease of use,” described below.) Diffusion scholars have found it to be one of the best

predictors of an innovation’s rate of adoption (Rogers, 1995). Studies that have found this
variable to be positively related to the adoption of software process innovations include

CASE tools (livari, 1996) and software reuse (Kishore, 1999). This study examines whether

the perception of relative advantage impacts upon the use of patterns with the following
proposition:

o1

Pl: Perception of the relative advantage of patterns is positively related to the use of
patterns.

3.6.2.1.2 Compatibility
A second attribute identified by Rogers is compatibility. 1t is defined as “the degree to which
an innovation is perceived as consistent with existing values, past experiences, and needs of

the adopters” (Rogers, 1995). Rogers has shown that its positive influence on adoption is due

to the fact that compatible innovations fit more closely to the individual’s life situation and
therefore come with more certainty and comfort (Rogers, 1995). However, compatibility is
an ambiguous term that may be interpreted in a number of ways (Hightower, 1991; Kishore,
1999). Although Tornatzky’s (1982) meta-analysis identified it as a second vanable to
consistently correlate with adoption behavior, they explain that some of the studies consider
value compatibility, some consider practical compatibility, and some a combination of the
two. The former refers to compatibility with the values or norms implying a compatibility
with what an individual feels or thinks about the innovation, while the latter represents
congruence with existing practices implying a compatibility with what an individual does
(Tornatzky, 1982). In studies of adoption within organizations, some make the argument that
it is more appropriate to consider practical compatibility, how an innovation fits with an
individual’s work or work style (MooreGC+, 1991; Kishore, 1999; Hightower, 1991).

Therefore, this is what will be considered in this study, in the form of fit with an individual’s
work or work style.

In addition to the type of compatibility, the type of innovation may also affect how an
individual perceives this attribute (Kishore, 1999). Many studies that find compatibility to be
correlated with adoption appear to focus on innovations that are primarily for personal use

rather then for organizational use. For example, MooreGC (1995) found compatibility to be a

significant predictor of the uptake of personal workstation and Agarwal (1997) found the

same for World Wide Web usage. In the case of software process innovations, compatibility

did not surface as a predictor for CASE tools (Iivari, 1996) and found to be a weak predictor
for software reuse (Kishore, 1999). A previous section has presented patterns as a tool for

both personal and organizational use. This could contribute to an interesting analysis of the
following proposition:

P2: Perception of the compatibility of patterns is positively related to the use of patterns.

3.6.2.1.3 Ease of Use

52

While complexity was the third construct identified by Tornatzky (1982) as consistently
relating to innovation adoption, ease of use appears in this study. Complexity is defined by
Rogers as the degree to which an innovation is perceived as relatively difficult to understand
and use (Rogers, 1995). Ease of use has been presented as an inverse to the complexity
construct (Agarwal+, 1997). Defined as the degree to which an individual believes that using
a particular innovation would be free of physical and mental effort (Davis+, 1989), ease of
use offers the opportunity for a positive measurement. In addition, validated scales with high
reliability (in excess of 0.90) are available for this construct (MooreGC+, 1991). In software
reuse adoption, ease of use was found to be only marginally significant for individual aspects
of reuse practice (Kishore, 1999). Iivan’s (1996) study of CASE considered only complexity.
It was not found to be a significant predictor, a result that surprised the author. However,
ease of use has appeared as a significant predictor of acceptance in other IT research (Davis+,

1989; Mathieson, 1991; MooreGC+, 1991). The effect of the perception that patterns are easy

to use 1s considered in this study with the following proposition:

P3: Perception of the ease of use of patterns is positively related to the use of patterns.

3.6.2.1.4 Trialability

Trialability is defined as the degree to which an innovation may be experimented with prior to
a commitment to adopt it (Rogers, 1995). Rogers (1995) has shown that ideas that can be
tried on a limited basis are generally adopted more rapidly than those that cannot. This
reduces uncertainty and risk because it is possible for individuals to test how it works under
their own conditions. Rogers asserts that this personal trial is more important to early

adopters because, unlike later adopters, they have no precedent to follow (Roger1995).

Others have found this construct to be a weak predictor of software process innovation
adoption (Kishore, 1999; MooreGC+, 1991). This led MooreGC (1991) to suggest that
trialability may be less significant to individuals in an organizational context, especially in
those organizations that make the innovation available at no risk to the individual adopter.
However, Attewell (1992) asserts that innovations imposing knowledge barriers, such as has

been previously explained with patterns, will be difficult to trial test in a quick but meaningful

way and to anticipate the exact outcomes of its use.

Whether trialability has an impact on the use of patterns will be examined with the following
proposition:

P4: Perception of the trialabilty of patterns is positively related to the use of patterns.

53

3.6.2.1.5 Visibility and result demonstrability
Rogers originally defined observability as “the degree to which the results of an innovation
are visible and communicable to others”. He indicated that software dominant innovations

have “less observability and usually have slower rates of adoption” than hardware innovations

(Rogers, 1983). While some studies of software process innovations have considered

observability, they have also made the argument that the original construct 1s too complex
(Levinet+, 1995; MooreGC+, 1991). Therefore, they separate the two parts of the definition,

visible and communicable to others, into visibility and result demonstrability, defining
visibility as the extent to which potential adopters see the innovations as being noticeable in
the adoption environment (Agarwall+, 1997) and result demonstrability as the “tangibility of
the results of using the innovation” (MooreGC+, 1991). They point out that their findings
agree with Zaltman (1973) who indicate that the more “amenable to demonstration the
innovation is, [and] the more visible the advantages are ... the more likely it is to be adopted™.
While Iivan (1996) did not consider any three of these constructs in his examination of
CASE, Kishore (1999) found no significance correlation between reuse frequencies and result
demonstrability and found significant correlation with visibility. Both visibility and result

demonstrability are examined in this study with the following propositions:

P5: Perception of the visibility of patterns is positively related to the use of patterns.

P6: Perception of the result demonstrability of patterns is positively related to the use of
patterns.

3.6.2.1.6 Tmage

The image construct was previously considered as part of relative advantage by Rogers
(1995). However, MooreGC (1991) revealed that in some instances it was a motivating factor
on its own and defined it as capturing the perception that using an innovation will contribute
to enhancing an individual’s image or status in the social system (Agarwal, 2000; MooreGC+,
1995). While livari (1996) did not consider this variable, Kishore (1999) did not find that it
correlated with reuse frequency. Other results concerning this construct’s relationship to the
adoption of product innovations vary (MooreGC, 1995; Agarwal+, 1997; Karahanna+, 1999).
Kishore (1999) suggests that the lack of consistent findings may be due to the fact that this
construct 1s not well understood, with validated instruments giving little consideration to
whether it is a behavioral or normative belief. However, he also argues that, despite the need
for more research to understand the nature and impact of thig construct, it is important to
consider image in an organizational context because individuals can be expected to continue

using an innovation in an effective manner only when their social status in the organization is

54

at least maintained, if not enhanced by using the innovation (Kishore, 1999).. This study

considers whether image impacts the use of patterns with the following proposition:

P7: Perception of a positive image as a result of using patterns is positively related to the use
of patterns.

3.6.2.1.7 Voluntariness
Another variable that has recently been considered in IT adoption research 1s voluntariness
(Tivari, 1997; Kishore, 1999; Green, 2000). Described as “the degree to which an innovation

is perceived as being voluntary, or of free will,” it captures whether individuals have freedom

to make personal adoption or rejection decisions (MooreGC+, 1991). MooreGC (1991)
emphasize the importance of this variable in an organizational context because when the
organization mandates or discourages the use of an innovation, the choice to use is taken
away from potential adopters. Rogers also wrote of the influence of this concept when he
discussed types of innovation decisions as being optional, collective, or authonty (Rogers,
1995). Studies that have considered whether this factor is a predictor of SPI adoption have
found a strong negative association — use increases with low voluntariness (e.g livari, 1996;
Kishore, 1999; Green, 2000; Agarwal+, 1997). This has caused researchers to suggest that
mandating an innovation directly through organizational policy (Iivarn, 1996; Leonard-
Bartont, 1988; MooreGC+, 1991; Kishore, 1999) or encouraging it indirectly through
rewards and incentives (Leonard-Barton, 1987; Leonard-Barton+, 1988) can result in an
increased use of the innovation. The following proposition reflects what innovation

acceptance studies have found in their examination of the relationship between voluntariness

and the use of an innovation.

P8: Perception of voluntariness in using patterns is negatively related to the use of patterns.

3.6.2.2 Innovativeness of the potential adopters
In conjunction with the perceived attributes of the innovation, Rogers has shown that an
individual’s innovativeness also influences the decision to adopt (Rogers, 1995). Therefore,

the second construct group considered in this study is the innovativeness of the potential

adopter. One factor is considered in this group — innovativeness.

3.6.2.2.1 Innovativeness

Rogers (1995) observed that individuals do not pass through the innovation-decision process

at the same rate, and used the term innovativeness to refer to “... the degree to which an
individual or other unit of adoption is relatively earlier in adopting new ideas than other

members of a system”. He noted that this dimension is a relative one in that any individual

33

has more or less of it than others in a social system. The earliest adopters often adopt

innovations on account of their venturesome nature, while later adopters need more

information and possibly persuasion from others, and the last to adopt will usually do so when
there is pressure to conform to the social norms. Innovativeness indicates overt behavioral

outcome, a bottom-line type of behavioral change, the ultimate goal of most diffusion

programs. (Rogers, 1995). Therefore, Rogers concept of innovativeness is widely examined

and cited in studies of IT adoption (e.g. Brancheau+, 1990; Kishore, 1999).

Midgley (1978) supports Rogers with the findings that in any given population, some people
are more willing than others to adopt an innovation. Others have also found innovativeness to
be an important determinant of innovation success (e.g. Lucas, 1981; Pierce+, 1977; Zmud,
1984). Kishore (1999) points out that proposing the impact of innovativeness on SPI adoption
1s well grounded. He argues that when considering the adoption of a complex innovation, an
innovative attitude will encourage an individual to move forward when challenged by the

need to learn a multitude of new features and functionality. This research examines the

impact of individual innovativeness on the use of patterns with the following proposition:

P9: Individual innovativeness is positively related to the individual’s use of patterns.

3.6.2.3 Potential adopters’ perceptions of the social system
Many aspects of innovation adoption cannot be explained simply by individual behavior
(Rogers, 1995). Diffusion researchers claim that the social system, originating from sources

including the overall social system and the individuals within it, also has an effect on the

decision to adopt. Therefore, this is the third construct group in this research.

Rogers notes the importance of the social system in diffusion research because similar
innovations have different rates of adoption in different social systems (Rogers, 1995).
Communication scholar Katz (1961) remarks, “It is as unthinkable to study diffusion without
some knowledge of the social structures in which potential adopters are located as it is to
study blood circulation without adequate knowledge of the veins and the arteries”. However,
Agarwal (2000) found that considerably less attention has been paid to the distinctive
combination of person and situation influences. Rogers (1995) suggests that is likely due to
the fact that it is difficult to separate the influences of the structure and/or the composition of
the system from the effects of the characteristics of the individuals that compose the system.
Despite the difficulties, the phenomenon of individual innovation adoption within an
organizational context is important. Because organizational adoption can be successful only

when all, or a large number, of the members for whom the innovation is intended for use,

56

successfully adopt it (Kishore, 1999), the organization is likely to provide various ways to

encourage (or discourage) adoption and these cannot be dismissed.

IT diffusion research has suggested numerous individual, organizational and environmental
characteristics of the social system that impact upon the actions of users to adopt or not adopt
an innovation (Davis+, 1989; Orlikowski, 1993; Iivari, 1996; Green, 1999). In this study, the
social system construct group is further divided into two subgroups: social influences and
structural influences. While social influences capture the human influences in an
organization, structural influences captures the resources and opportunities available to a
person that have the potential to influence the targeted behavior (Ajzen, 1991). These two
categories are closely related. Green (1999) combines the two into a category called IT
diffusion environment, while Agarwal (2000) separates them into two categories, social and
situational influences. This study follows Agarwal (2000) because his model is a product of a

recent overview of existing literature in individual acceptance of IT. These two construct

subgroups, as well as the factors in each one, are explained below.

3.6.2.3.1 Social influences

DOI research has shown that members of an organization develop perceptions of an
innovation through social interactions that communicate attitudes and beliefs in complex and
highly influential social systems (Rogers, 1995; Kraut+, 1998). Agarwal (2000) points out
that these interactions, in the form of overt communication or more subtle form of suggestion,

are instrumental in “generating shared meaning and mutual understanding in an organization

and thereby provide an important basis for subsequent patterns of behavior”.

Social influences have been found to originate from a variety of sources (Agarwal, 2000;
Levine+, 1995). The influence that social influences have on the decision to use patterns will

be examined in this study with the following factors: champion, opinion leader, and change
agent,

3.6.2.3.1.1 Champion

The organizational innovation literature has strongly linked the success of IT innovations to
the presence of a champion (e.g. Beatty, 1992; Ettlie+, 1984; Kanter, 1983; Maidique, 1984;
Pennings+, 1987; Van de Ven, 1986; Prescott+, 1995). Rogers (1983) has identified the

importance of champions to implementation success and IT research indicates management

commitment is key to the success of an information system (Ginzberg, 1981).

S7

The often-cited work of Beath (1991) defines an IT champion as a “manager who actively and
vigorously promotes their personal vision for using IT, pushing [a] project over or around
approval and implementation hurdles”. Many empirical studies define champions as taking
the form of management support for the innovation (Hoffe+, 1992; Wynekoop+, 1992; Rai+,
1994; Fayad+, 1996; Chau, 1996; livari, 1996). Management support is consistently reported
to facilitate IT use (livari, 1996). It has been suggested that this is due to the fact that
management controls the needed resources (Lucas, 1981), provides messages about the
behaviors that the organization is trying to encourage (Lucas, 1981), is in position to develop
a work culture that is open to experimentation and learning (Scott+, 1994) and to make

structure changes that provide close interaction between innovation providers and users
(Agarwal, 2000).

Studies have empirically demonstrated a significant relationship between management
support and SPI acceptance such as CASE (livari, 1996) and structured software methods
(Leonard-Barton, 1987). This factor is likely to be particularly important in SPI adoption
because, as complex technologies, the long process of learning and implementation comes
with rather high risk and discontinuance of use (Beatty+, 1988; Fleischer+, 1990; Lucas,
1981; Leonard-Barton+, 1988; Tornatzky+, 1982). Kishore, (1999) argues that a champion is
needed to provide users and potential users with support and reinforcement during the time

when the infrastructure for the SPI 1s being built. Therefore, this study considers the

influence on the decision to use patterns with the following proposition:

P10: Perception of the existence of a champion for patterns is positively related to the use of
patterns.

3.6.2.3.1.2 Opinion leader

An opinion leader is an individual who leads in influencing the decisions of their peers in
their social system (Kishore, 2000). Rogers (1995) defines opinion leadership as ... the
degree to which an individual is able informally to influence other individuals’ attitudes or
overt behavior in a desired way with relative frequency”. Because opinion leaders have the
quality of being highly respected individuals within their social systems, they therefore have
the potential to exert influence over their peers in both an informational and normative form

(Rogers, 1995; Kishore, 1999). This type of interpersonal communication drives the diffusion

process towards the creation of a critical mass of adopters (Rogers, 1995), a characteristic

that, as previously explained, is particularly important in innovations affected by adopter
Interdependencies.

38

There are not many studies in the IT literature that have focused on opinion leadership

(Kishore, 2000). None of the SPI studies cited thus far report the impact of opinion leaders
(e.g. Green, 2000; Iivari, 1996; Kishore, 1999). In a study of the adoption of expert systems,

Leonard-Barton (1988) found acquaintance with users to significantly correlate with use. In

e-mail adoption, co-worker behavior was found to be more influential than supervisor
behavior in determining use, suggesting that the closer the source of influence is to the
potential adopter, the more influential it is (Schmitz+, 1991). In this study, the influence of

an opinion leader on the decision to use patterns is considered with the following proposition:

P11: Perception of the existence of an opinion leader for patterns is positively related to the
use of patterns.

3.6.2.3.1.3 Change agent

A change agent is an individual who influences decisions to adopt or not adopt an innovation
in the direction deemed desirable by the change agency. They may be brought in from
outside the social system and, unlike opinion leaders, their role is more formal. Rogers
(19935) asserts that change agent success in securing the adoption of innovations is positively
related to the extent of the change agent’s efforts in contacting individuals. The agent 1s
responsible for such tasks as assessing and developing the need for change, creating intents to
change, and translating the intents into decisions to adopt. Kishore (1999) reports that few

studies in the IS literature focus on the role of the change agent. This research examines

whether, when present, a change agent is a factor that affects individual use of patterns with

the following proposition:

P12: Perception of the existence of a change agent for patterns is positively related to the
use of patterns.

3.6.2.3.2 Situational influences

The second subgroup in the social system construct group is the situational influences. Ajzen
(1991) is among those who have found that resources and opportunities available to the
person must to some extent dictate behavior. Davis (1989) refers to these “externally
controllable factors” and includes such things as development methodologies and training.
Numerous factors have been considered in previous research (Green, 1999). This research
considers three that are particularly important to the diffusion of SPI: training, installed

process, patterns repository. The choice of these three for this study is based on rather recent

Interest in the concept of whole product.

59

To become a whole product, innovations usually need to be accompanied by a range of
adjunct products and services that are necessary for popularization, including such things as
training, standards and procedures, and tool support (Levinet, 1995; MooreGA, 1999). One
popular example of a model of whole product is by MooreGA (1999) who argues that an
innovation must often be augmented by a variety of services and ancillary products before it
can obtain a majority acceptance. This is based on marketing experiences that have shown a

gap between the marketing promise made to the user and the ability of the innovation to fulfill

that promise.

Levine (1995) asserts that “whole products are the embodiment of the maturation process”
and propose that a majority adopter population (Rogers, 1995) is less likely to succeed with
immature innovations because of potential adopters’ intolerances for missing aspects of the
whole product. Support was found for their proposition in their case study of rate monotonic
analysis (RMA), a technique that helps software engineers design, build and maintain real-
time systems (Levine+, 1995). They found that the existence of a whole product was so
important to the adopters that they compensated for missing aspects in RMA by building an
“in-house” version of the whole product. This, in turn, led the organization to become an
early adopter of RMA (Levine+, 1995). There is further support from Finlay (1994) who
found “stability” of CASE to be an extremely important factor in its use. In addition,
Fichman (1997) suggests that the availability of tools and the existence of a defined process

provide a safe way for novices to learn object orientation which can then encourage adoption.

Kishore (1999) explains that the problem of an unstable product, lack of “initial stability”,
becomes more acute in the process technologies because, by definition, these types of
Innovations are intermingled with tools, techniques, procedures, or methodologies in order to

accomplish their intended purposes. Lack of existence or instability in any of these can be

unsettling for individuals and discourage their decision to adopt (Kishore, 1999).

Following the lead of recent researchers, this study considers three components of a whole
product: training, tool support, and procedures and standards (in the form of an installed

process). Each of these is present in MooreGA’s (1999) model and in the adaptation of that
model by Levine (1995).

3.6.2.3.2.1 Training

The availability of training is a crucial factor in the successful diffusion of software process

innovations (Green, 2000). It has been presented that one of characteristics of SPIs, and thus

patterns, 1s the knowledge barriers that exist because SPIs are complex process innovations.

60

Unlike most simple innovations, they require users to acquire a broad range of tacit and
procedural knowledge. In highly complex technologies, the challenge of training individuals
in an organization can be the primary barrier to successful adoption (Attewel, 1992;

Fichman+, 1994). When knowledge barriers are high, the ability to innovate becomes at least
as important as the desire or opportunity to do so (Fichman+, 1997).

To reduce knowledge barriers, availability of various kinds of training was found to be a
factor in successful diffusion by those who have studied such software process innovations as
CASE (Kemer, 1992), structural development methods (Leonard-Barton, 1987), software
reuse (Kishore, 1999), PSP (Green, 2000) and OO (Fayad+, 1996). In this study, the impact

of the perception of available training on the use of patterns is considered with the following

proposition:

P13: Perception of the availability of training in patterns is positively related to the use of
patterns.

3.6.2.3.2.2 Patterns repository

The availability of tool support is another characteristic that is important to the diffusion of
software development techniques (Green, 1999). This includes such things as software and
hardware tools that the user would need to fully utilize the innovation. Both MooreGC
(1991) and Levine (1995) include these components in their whole product models. Tool
support is worth considering because when it is not present, potential adopters may become
insecure about the success of the innovation (Fayad+, 1996). It can be argued that this
insecurity can affect their adoption of it. Studies of the relationship between tool support and
SPI acceptance include formal software development methods and OO software development
methods. Findings in the former suggest that the unavailability and inadequacy of tool
support represent serious barriers to widespread use of formal methods (Holloway+, 1996).
In the latter, four case studies showed that cost of adoption, including learning-related costs,
were magnified considerably by the absence or immaturity of tools to support OO
development (Fichman+, 1997). In this study of pattemns, only software tool support is

considered, operationalizing it as patterns repository.

Kishore (1999) makes the argument that reusable components are a key element of software
reuse because the higher the number available for potential reuse, the higher the utility of
software reuse to the individual software developer. An installed base of reusable objects was

found to have a highly significant positive influence on the infusion of software reuse

61

(Kishore, 1999). Following the lead of this finding, this study will examine the impact of an

installed base of reusable patterns with the following proposition:

P14: Perception of the existence of a patterns repository is positively related to the use of
patterns.

3.6.2.3.2.3 Installed process
A third category in the whole product models of MooreGA (1999) and Levine (1995) 1s

procedures and standards. To gain insight into this rarely examined factor, this research looks

for guidance in studies in Personal Software Process, OO, and reuse. It operationalizes

procedures and standards as installed process.

Green (2000) found that software developers® perceptions of the control they have of the
process in which an innovation is used affects their satisfaction with that innovation. Her
study of Personal Software Process (PSP) showed that the more personal control developers
have over how they used PSP, the less satisfied they were in using it. She suggests that the
more the organization emphasizes standards and structure in its use of PSP, the more the
individuals will be satisfied with this use (Green, 2000). She explains this may be due to the
fact that software development tasks are complex. The existence of process and standards for
using an innovation within software development can create the structure that reduces the

overall task complexity, thereby increasing satisfaction among those who use the innovation
(Green, 2000).

There 1s further argument for the existence of a defined process in achieving adoption of
another innovation, reuse. This is considered here because patterns are a technique for
capturing best practices for the purpose of reusing them. Research scholars have long
supported that achieving reuse requires a host of process changes (Griss, 1995; Griss, 1993;
Fichman+, 1997). To utilize reuse effectively in software development projects, an
organization needs more than just reusable entities; it also needs processes and standards to
etfectively control how the new tasks, roles, and techniques will be incorporated into the
organization (Fichman+, 1997; Kishore, 1999). It can be argued that these changes should
not be added without any structure. In fact, Fichman (1997) found that the lack of mature
process was a primary barrier to reuse. If changes are not made in the process, reuse tasks

cannot be effectively performed because they are neither specified or supported (Kishore,

1999). Therefore, Kishore (1999) hypothesized that the degree of fit between an
organization’s process will impact upon the extent to which reuse can be effectively practiced

by software developers. Support for this hypothesis was found -- an individual’s perception

62

that reuse fits in an organization’s process had a positive impact on the adoption of reuse.
Similarly, this research examines the relationship between an installed process and the use of

patterns with the following proposition:

P15: Perception of the existence of an installed process for patterns is positively related to
the use of patterns.

3.7 Chapter summary

This chapter described the theoretical underpinnings of this research study. The research

framework was derived by classifying patterns as a software process innovation and then
considering the wider area of IT innovation. The purpose was to establish the factors that will
be examined in this study. As other SPI and IT adoption studies have done, this study utilizes
research 1n diffusion of innovation as its foundation because of its wide use, its focus on

communication, and its choice of factors that have been studied and enhanced by others.

This study will render diffusion of innovation research more relevant to the specifics of
pattern diffusion. It will examine the relevance of the model proposed in this chapter (figure
2), and the corresponding propositions (section 3.6.2) in order to provide a response to the

first research question. It will also examine which of the factors proposed in the model are

being emphasized by individuals introducing patterns into their organizations.

The next chapter presents the research design for this work.

63

CHAPTER 4

RESEARCH METHODOLOGY

4.1 Introduction

Chapter one presented the motivation, objectives and the primary and secondary research

questions that guide this study. Chapters two and three respectively described the twin

theoretical sources, patterns and diffusion of innovation research, which provide the
foundation for the initial research model. This chapter describes the methodology that will be

used to examine this model and build the theory that suggests responses to the research

questions.

4.2 Research design model

The research design is illustrated in figure 3. As shown, there are two research threads, or

operations, that converge on the goal of identifying factors. Both have their foundation in

diffusion of innovation research and lead to building and explaining a revised model of

pattern use and offering guidelines for organizations that wish to encourage this use.

revised
initial model model

: =

propositions
member
checking
guidelines
i e GO
expenences @ role play

Figure 3: Research Design

Support for the initial model and propositions are explored in operation one. This is done
with a survey that examines the support for each proposition by identifying the relationships
between the dependent variable, individual pattern use, and fifteen different factors that are

proposed to have an impact upon this use. The factors identified in this operation will respond

to the first research question, as posed earlier:

What factors influence the use of patterns among individuals in organizations?

The second operation explores what individuals are doing to influence the use of patterns. It
does this by first matching the fifteen proposed factors to forty-six patterns that capture
successful practices in introducing patterns. It then examines the support for the factors

through role play exercises that make use of the patterns. The factors identified in operation

two will respond to the second research question, as posed earlier:

What factors are being emphasized by individuals introducing patterns into
organizations?
As also shown in figure 3, the findings from the survey and role play methods will be
evaluated with member checking, a method that requests feedback from the subjects who
provided the original data (Seaman, 1999). Finally, a revised model is presented with
discussion and guidelines that can inform researchers and practitioners about how they may
position patterns in organizations to encourage a faster and more efficient adoption. The

following sections provide more details on the three sources of data in this study.

4.3 Field study

This research uses a field study approach to data collection. In contrast to an experimental
approach, a field study is carried out with the natural environment in which subjects reside in

mind. As such, correlations between the variables are examined without the researcher

manipulating any of the variables or interfering with any natural events in the subjects’

environments (Sekaran, 1992).

In a similar study of the factors that impact upon the use of the Personal Software Process
approach, Green (1999) argues that the use of a field study is appropriate. If an experimental
design were used, the manipulation of a large amount of independent variables, such as in this
study, would be difficult and expensive. A field study that gathers data from individuals in
multiple organizations has the additional benefit of increasing the external validity of the
results of the study. These results can then be more confidently applied across a wider
population, an important aspect of applied research (Green, 1999). Use of a field study is also
supported by McGrath (1979). His “theory of method” for research has as its central thesis a
five-stage model that aligns different data collection methods with the state of knowledge in

the area of interest and the research purpose. In this model, research progresses through

stages as more information is accrued about the phenomenon. In stage 1, when little is known

about the phenomenon, he argues that exploratory research needs to be conducted using field

studies to formulate theoretical models. It has been pointed out in a previous section that the

phenomenon of introducing patterns into an organization has not yet been considered by any

65

significant research. Therefore, it is appropriate to examine the field rather than make

assumptions about the field and then test them experimentally. Among the other works in the
IS literature that agree with the thinking of McGrath (1979) are those who have studied the

factors affecting the adoption of software process innovations such as software reuse
(Kishore, 1999) and CASE (livan, 1996; Orlikowski+, 1991).

The two methods of data collection in this field study are surveys and role play exercises. A
third method, member checking, is used to confirm the findings. This “triangulation of data”™
allows multiple sources of data, a practice that is particularly important in exploratory, theory
building research (Bryman, 1989). While the survey and the role play supply quantitative
data, the member ch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>