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Abstract—Classical multi-objective evolutionary algorithms
(MOEAs) have been proven to be inefficient for solving multi-
objective optimizations problems when the number of objectives
increases due to the lack of sufficient selection pressure towards
the Pareto front (PF). This poses a great challenge to the
design of MOEAs. To cope with this problem, researchers
have developed reference-point based methods, where some well-
distributed points are produced to assist in maintaining good
diversity in the optimization process. However, the convergence
speed of the population may be severely affected during the
searching procedure. This paper proposes a proportion-based
selection scheme (denoted as PSS) to strengthen the convergence
to the PF as well as maintain a good diversity of the population.
Computational experiments have demonstrated that PSS is sig-
nificantly better than three peer MOEAs on most test problems
in terms of diversity and convergence.

I. INTRODUCTION

Many real world application problems are multi-objective
optimization problems (MOPs), which include multiple con-
flicting objectives that must be optimized simultaneously. In
the evolutionary multi-objective optimization (EMO) com-
munity, multi-objective optimization evolutionary algorithms
(MOEAs) have benn demonstrated to be effective in solving
these problems [1]-[4]. So far, many different EMO algorithms
have been developed, such as Pareto-based methods, e.g.,
NSGA-II [5], SPEA2 [6], decomposition-based approaches,
e.g., MOEA/D [7], and indicator-based approaches [8, 9],
e.g., HypE [10], SMS-EMOA [11]. However, Pareto-based
algorithms more or less lose selection pressure to the PF in the
optimization process when solving problems having more than
three objectives, i.e., many-objective optimization problems
(MaOPs). As a result, the whole performance of MOEAs can
be affected by the decrease of convergence.

Pareto-based approaches compare solutions according to
their dominance relation and density. The nondominated in-
dividuals are considered as primarily selected solutions. How-
ever, the Pareto-based dominance relationship has encountered
great difficulties in MaOPs when the number of obectives in-
creases [12, 13, 14]. Therefore, some researchers have focused
on modifying the dominance relation to provide sufficient
selection pressure towards the PF. Many improved methods
have been proposed, such as SPEA2+SDE [15], ε-dominance
[16, 17], and fuzzy Pareto dominance [18-24].

Indicator-based approaches use a single performance indi-
cator to guide the search during the evolutionary process. The
indicator-based EA (IBEA) [25] is a pioneer in this group.
Recently, the hypervolume [26], Two Arch2 [27] and S metric
selection evolutionary algorithm [28] have been proposed.
Indicator-based approaches have been demonstrated to be
effective in balancing convergence and diversity due to their
good theoretical properties. Nevertheless, the computational
cost of the used metrics, e.g., hypervolume, grows exponen-
tially with an increase in the number of objectives [29].

Decomposition-based methods decompose a problem with
multiple objectives into a set of single-objective subproblems,
which are then optimized simultaneously using evolutionary
algorithms. The diversity of population is maintained by a
set of pre-defined well-distributed reference points. The per-
pendicular distance between the individual and the reference
line is usually used in reference vector-based decomposition
methods. Reference lines are obtained by connecting reference
points and the origin. Consequently, the convergence speed is
affected by the perpendicular distance-based method to some
degree, although these methods can balance convergence and
diversity.
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To handle these problems, the perpendicular distance must
be replaced with the Euclidean distance to strengthen the
selection pressure. In this paper, we propose a proportion-
based selection scheme (PSS) for multi-objective optimization,
where those solutions having the most approximate proportion
can be obtained, thereby maintaining the diversity of the
population. The center point (CR) of the reference set is
calculated using the average value of all reference points
on each objective. The distance from the reference point to
the center point is also uniformly-distributed. Therefore, we
can use the proportion to find uniformly-distributed Pareto
optimal solutions. The proportion-based method is different
from Pareto-based approaches and indicator-based approaches,
but it is similar to reference point-based MOEAs.

The remainder of this paper is organized as follows. Section
II presents the background information on reference point-
based algorithms. The proposed PSS is described in detail in
Section III. Experimental studies on well-known test problems
are carried out in Section IV. Finally, conclusions are drawn
in Section V.

II. PRELIMARIES

In this section, basic definitions in this paper are first given.
Then, we briefly introduce the original MOEA/D and NSGA-
III.

A. Basic Definitions

Perpendicular distance, euclidean distance, direction vector
and proportion are defined as follows:

Definition 1: The distance between an individual and the
centroid line is called the perpendicular distance, where a
centroid line is defined by joining the centroid point with the
origin.

Definition 2: The distance from an individual to the centroid
is called the euclidean distance.

Definition 3: ~AP is the direction vector of individual P ,
where A is the projective point of individual P on the centroid
line.

Definition 4: The perpendicular distance of each individual
is calculated, denoted by D. The proportion P of each
individual is described as follows:

Pj =
Dj

max(D1, D2, . . . , Dn)
, (1)

where j is the j th individual of the population.

B. MOEA/D and NSGA-III

The key idea of MOEA/D is to use a predefined set of well-
distributed weight vectors to maintain the diversity of the new
population. Each subproblem can find the best solution by
using the aggregate function in the population. The collection
of the solution on each well-distributed weight vector can be
viewed as an approximation of the true PF. Generally, there
are three aggregation functions: the weighted sum, Chebyshev,
and penalty-based boundary intersection (PBI) function in
MOEA/D. Let us take the PBI as an example. We suppose

Algorithm 1 Framework of PSS
1: Λ ← GenerateReferencePoints()
2: P0 ← InitializePopulation()
3: RP ← ComputeProportion(Λ)
4: RV ← ObtainVector(Λ)
5: t ← 0
6: while the termination criterion is not met do
7: Qt ← MakeOffspringPopulation(Pt)
8: St ← Pt ∪Qt

9: SP ← ComputeProportion(St)
10: SV ← ObtainVector(St)
11: κ ← Associate(St,Λ, RP,RV, SP, SV )
12: Pt+1 ← Niching(κ)
13: end while

Algorithm 2 GetCentriod(Population St)

Require: Population St

Ensure: C(The centroid of reference set or population set)
1: for i = 1 to m do
2: Ci ← 0
3: for j = 1 to n do
4: Ci ← Ci + St[j][i]
5: end for
6: Ci = Ci/n

7: end for

w1, w2, . . . , wn is a set of evenly spread weight vectors, then
each subproblem is optimized respectively by:

PBI (x,wj) = d1 + θd2

where j = 1, 2, . . . , N , wj = (wj1, wj2, . . . , wjm)
T , d1 is

the distance from the individual to the origin, d2 is the per-
pendicular distance between the individual in the population
and each of the reference lines wj , and θ is the penalized
parameter. Each individual x∗ of the population can find a
reference vector according to the PBI value. MOEA/D can
work well for the curve shape friendly of the Pareto-optimal
front.

The NSGA-III framework is similar to the original NSGA-
II except in its selection mechanism, and the diversity of a
population is maintained by a set of well-distributed reference
vector. Further details of NSGA-III can be found in references
[30, 31].

III. PROPOSED PSS ALGORITHM

The framework of the proposed PSS algorithm is described
in Algorithm 1. In line 1, we use Das and Denis’s systematic
approach [32] to generate a set of N reference points, denoted
as Λ = {λ1, λ2, . . . , λN}. λj (j = 1, 2, . . . , N ) is an m-
dimensional vector for an m-objective problem. Line 2 denotes
that the initial population P0 with N members is randomly
produced. The proportion of the reference point (RP ) is
initialized in line 3. The centroid point of the reference set is
calculated in Algorithm 2. The perpendicular distance of each
reference point from the centroid line is calculated. Then, the
proportion is the value of perpendicular distance to maximum
value of perpendicular distance. In line 4, the perpendicular
direction (RV ) from the projection point of reference point
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Fig. 1. The centroid points.

to reference point is initialized. Lines 6-13 are iterated until
the termination criterion is satisfied. The offspring population
Qt, having N members, was created from Pt by using the
recombination operator and mutation operator in line 7. Then,
the new population St is the combination of population P and
Q in line 8. Lines 9-10 denote that each individual’s proportion
and direction vector can be obtained in the same way as Lines
3-4. In line 11, the function associate is used to split the
members in St into a set of N niche, κ = {κ1, κ2, . . . , κN}.
In addition, each reference point is allocated to a niche. In
Line 12, the new population, Pt+1, is filled with individuals
produced by the niche operator. In this paper, proportion is
the key concept in PSS.

In the following sections, the important procedures of PSS
are described in detail.

A. The Centroid of Reference Set and Population Set

In Fig. 1 (a), CR is the centroid of the reference set and
Nr is the size of the reference set. Then, each objective value

Dr
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Fig. 2. The proportion of the reference point.

of CR is calculated by the following formula:

CR(i) =
1

Nr

Nr∑
j=1

Rji, (2)

where i = (1, 2, . . . ,m), and m is the number of objectives,
j = (1, 2, . . . , Nr), and Rji is the value of the j-th reference
point in the i-th objective.

Similarly, in Fig. 1 (b), CS is the centroid of the population
set, and Ns is the size of the population set. Then, each
objective value of CS is obtained by the following formula:

CS (i) =
1

Ns

Ns∑
j=1

Sji, (3)

where Sji is the value of j-th individual of the population in
the i-th objective. The procedure of calculating the centroid
of the population or reference set is presented in Algorithm 2.

B. The Proportion of Reference Set and Population Set

We define a centroid line corresponding to the centroid point
by joining the centroid point with the origin. The perpendicular
distance (denoted as Dr) of each reference point is calculated.
Finally, the proportion of each reference point in the reference
set is computed by the following formula:

Prj =
Drj

max(Dr1, Dr2, . . . , Drn)
, (4)

where Prj is the proportion of the j-th reference point to
the centroid point. Drj is the perpendicular distance from the
reference point to the centroid point of the reference set. This
is illustrated in Fig. 2.

Similarly, in Fig. 3, the proportion of each individual in the
solution set (Ps) is computed by the following formula:

Psj =
Dsj

max(Ds1, Ds2, . . . , Dsn)
, (5)

where Dsj is the perpendicular distance from the j-th indi-
vidual to the centroid point of the solution Set. The procedure
is presented in Algorithm 3.
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Fig. 3. The proportion of solutions in the population.

Algorithm 3 ComputeProportion(Population St)
Require: The Population St

Ensure: Proportion set(P )
1: C ← GetCentriod(St)
2: for i = 1 to N do
3: Di= Perpendicular distance between the reference point (or

individual) and C)
4: end for
5: for i = 1 to N do
6: Pi = Di/max(D1, D2, . . . , Dn)

7: end for
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Fig. 4. The direction of the reference point and population set.

C. The Direction of Reference point and Solution point

In Fig. 4, suppose solution A, B is similar to reference point
r in that they have similar proportions. A is a best solution for
the reference point r, but B is a bad one. Therefore, we use the
cosine similarity to select the individual in the population, the
bigger the value of cosine similarity, the greater the selected
chance that the individual is chosen. we define the direction
vector of each reference point ( ~Dr) by joining the reference
point with the centroid line of the reference set. the direction
vector of each individual in the population ( ~Ds) by joining

1

1

R

CS

ƒ1 

ƒ2 

A

B
C

CR

Fig. 5. Association of population members with reference points is illustrated.

Algorithm 4 Associate(R,St,RP ,RV ,SP ,SV )
Require: R (Reference Set), St (Population Set), RP (Proportion of

Reference point), RV (Direction Vector of Reference point), SP
(Proportion of Individual), SV (Direction Vector of Individual),
Nr (Size of the Reference Set), Ns (Size of the population set)

Ensure: κ
1: for i = 1 to Nr do
2: κi ← 0
3: for j = 1 to Ns do
4: κi select the individual that make RPi − SPj minimum

and cosine maximum, simultaneously
5: end for
6: end for

the individual with the centroid line of the population. The
value of cosine is computed by two direction vectors:

cosα =
~Dr ~Ds

| ~Dr|| ~Ds|
(6)

D. Association Operation

After the proportion was computed based on the centroid
point, next we need to associate each population member with
a reference point. The reference point whose proportion and
cosine is equal to a population member in the objective space
is considered associated with the population member. This is
illustrated in Fig. 5. For a reference point R, individuals A,
B and C are selected because they have the approximation
of proportion and cosine according to the proportion and
cosine of R. The procedure is presented in Algorithm 4. Each
member of the reference point will associate with one or more
individuals in the population.

E. Selection Mechanism

Each reference point could be associated with one or multi-
ple solutions in the population according to the proportion
and cosine values of the reference point. Thus, we select
an individual with the shortest Euclidean distance between
the reference point and associated individual. The results are
presented in Fig. 6. For a reference point R, the individual B
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Algorithm 5 Niching(R,κ)
Require: R(Reference Set), κ, Nr is the number of reference set,

Ns is the number of population set
Ensure: Pt+1

1: k = 0
2: for i = 1 to Nr do
3: if size(κi) == 1 then
4: Pt+1 = Pt+1 ∪ s (s ∈ κi)
5: end if
6: if size(κi) >= 1 then
7: Pt+1 = Pt+1 ∪ s (s ∈ κi && s have the shortest Euclidean

distance)
8: end if
9: k + +

10: end for
11: while k < Ns do
12: Pt+1 = Pt+1 ∪ s (s ∈ κRandom() ) && s have the shortest

Euclidean distance)
13: end while

is selected because it has the shortest Euclidean distance from
R, but individuals A and B are discarded. The procedure is
presented in Algorithm 5.

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

The five test instances DTLZ1-5 [33] are used as test
functions. In each instance, there were 3, 5, 6, 8, 10, and 15
objectives. These test problems have a variety of characteris-
tics and different PFs. In order to evaluate the performance
of algorithms, we used the generational distance (GD) [34],
inverted generational distance (IGD) [35] metrics to evaluate
the proposed method. We obtained the final points in the
objective space and called them set A; P* is a set of uniformly
distributed points along the PF. The metrics GD and IGD are
defined as follows:

GD(A,P ∗) =
1

|A|

√√√√ |A|∑
j=1

d2i (7)

TABLE I
THE POPULATION SIZE

objective(m) dividsion(H) MOEA/D(N) PSS(N)
3 91 91 91
5 210 210 210
8 156 156 156

10 275 275 275
15 135 135 135

IGD(A,P ∗) =
1

|P ∗|

√√√√|p∗|∑
j=1

d̃2i , (8)

where di(d̃i) is the Euclidean distance between the i-th
member in the set A(P∗) and its nearest member in the Set
P∗(A). GD can measure the convergence of the obtained
solutions. IGD is a comprehensive indicator, which evaluates
the convergence and diversity of solutions.

We compared three other original algorithms MOEAs,
SPEA2+SDE, IBEA and MOEA/D to PSS. The population
size N in each algorithm is listed in Table I, where N =
Cm

H+m−1 − 1 and H is the number of divisions considered
along each objective axis. The population size of the original
SPEA2+SDE is 100. The Wilcoxon ranksum test [36] was
carried out to indicate the significance between different results
at the 0.05 significance level.

B. Comparison Results

In this subsection, the comparison results among PSS,
SPEA2+SDE, IBEA and MOEA/D are presented. The mean
GD and IGD values of each compared algorithm for DTLZ1-5
problems are provided in Table II, where the best performance
is shown in bold.

From Table II, PSS is better than SPEA2+SDE, IBEA
and MOEA/D-PBI on most DTLZ1 except 8- and 10-
objective instances. Additionally, for DTLZ2, PSS outper-
forms SPEA2+SDE, IBEA and MOEA/D on all instances.
For DTLZ3, PSS is a little worse than SPEA2+SDE and
IBEA. PSS is better than SPEA2+SDE, IBEA on DTLZ4,
DTLZ5. However, PSS is little worse than MOEA/D-PBI on
DTLZ5. The GD metric purely presents the convergence of
an algorithm, it indicates that PSS has the best convergence
performance among the four algorithms.

PSS performed better than SPEA2+SDE, IBEA and
MOEA/D on most tested problems in terms of the IGD metric.
It outperformed SPEA2+SDE, IBEA and MOEA/D on DTLZ4
except for problems with 15 objectives. As for DTLZ1, only
PSS was worse than SPEA2+SDE and IBEA on 5-objective
and 8-objective instances. In addition, PSS had the smaller
IGD value than SPEA2+SDE, IBEA and MOEA/D in DTLZ2,
DTLZ3, DTLZ4, DTLZ5 on most objective instances. Since
the IGD metric can reflect the comprehensive performance of
algorithms in terms of convergence and diversity, it can be
concluded that PSS shows the best convergence and diversity
on most problems.



TABLE II
RESULTS OF THE GD AND IGD VALUES FOR FOUR ALGORITHMS WITH VARYING NUMBER OF OBJECTIVES m, WHERE THE AVERAGE OVER 30

INDEPENDENT RUNS IS SHOWN

Problems m GD IGD
PSS SPEA2+SDE IBEA MOEA/D-PBI PSS SPEA2+SDE IBEA MOEA/D-PBI

DTLZ1

3 2.097425E-4 2.498871E-4‡ 2.151756E-4† 2.132740E-4‡ 1.870439E-2 2.091488E-2‡ 2.404065E-2‡ 1.871996E-2‡
5 1.825690E-3 2.140118E-3‡ 1.795267E-3 1.852401E-3‡ 6.180973E-2 6.015305E-2 6.474986E-2‡ 6.194315E-2‡
8 3.822195E-3 4.745083E-3‡ 4047640E-3‡ 3.804577E-3 1.091299E-1 9.712204E-2‡ 9.699570E-2 1.089212E-1‡

10 4.749049E-3 6.023592E-3‡ 5.200348E-3‡ 4.741181E-3 9.958144E-2 1.152702E-1‡ 1.116092E-1‡ 9.647347E-2
15 4.327403E-3 7.654410E-3‡ 6.822330E-3‡ 5.078567E-3‡ 1.620598E-1 1.427370E-1‡ 1.296625E-1 1.401267E-1‡

DTLZ2

3 2.446136E-6 2.379738E-4‡ 6.349680E-5‡ 3.647608E-5‡ 5.009597E-2 7.222258E-2‡ 8.333383E-2‡ 5.015115E-2‡
5 2.193702E-5 4.342490E-4‡ 2.824714E-4‡ 2.501673E-4‡ 1.569619E-1 1.838502E-1‡ 1.854146E-1‡ 1.582530E-1‡
8 3.375279E-5 4.147951E-4‡ 5.951524E-4‡ 3.777484E-4‡ 4.466976E-1 4.663982E-1‡ 4.710770E-1‡ 4.512431E-1‡

10 1.268159E-4 3.344294E-4‡ 6.844971E-4‡ 9.913873E-4‡ 4.285472E-1 5.608170E-1‡ 5.562808E-1‡ 4.221368E-1
15 1.117240E-4 3.555315E-4‡ 7.645812E-4‡ 5.017912E-4‡ 6.495836E-1 6.816699E-1‡ 6.689002E-1‡ 6.764107E-1‡

DTLZ3

3 1.296890E-2 2.408237E-4 5.313469E1‡ 4.374955E-4‡ 1.325862E-1 7.077331E-2‡ 2.221019E2‡ 5.066953E-2
5 4.506600E-3 5.619237E-4‡ 4.078149E-4 6.126329E-4† 1.753776E-1 1.872975E-1‡ 1.828076E-1‡ 1.592967E-1
8 1.892800E-3 6.235349E-4† 8.203467E-4† 3.264915E-4 4.503561E-1 4.821155E-1‡ 4.889935E-1‡ 7.273809E-1‡

10 5.189649E-3 7.992748E-4 2.027073E-2† 1.536804E-3‡ 4.261625E-1 5.929791E-1‡ 5.838285E-1‡ 6.810744E-1‡
15 1.789564E-3 8.062062E-4† 9.103727E-3‡ 2.550453E-4 6.564342E-1 7.207506E-1‡ 7.124582E-1‡ 1.004235‡

DTLZ4

3 1.659870E-6 1.488738E-4‡ 1.512529E-3† 8.394296E-5‡ 5.012796E-2 2.671447E-1‡ 5.966096E-1‡ 5.029633E-2‡
5 2.522474E-5 4.152005E-4‡ 1.143932E-3‡ 1.373303E-4† 1.576663E-1 3.316153E-1‡ 2.539851E-1‡ 5.090315E-1‡
8 3.385892E-5 5.664861E-4‡ 5.563174E-4‡ 8.892509E-5† 4.558352E-1 4.813135E-1† 4.720429E-1‡ 7.129017E-1‡

10 1.897215E-4 5.300003E-4‡ 4.659565E-4‡ 1.320534E-4 4.434634E-1 5.645314E-1‡ 5.543840E-1† 7.292015E-1†
15 3.206397E-5 5.389029E-4‡ 1.302247E-3† 1.167799E-4‡ 6.566471E-1 6.823312E-1† 6.772528E-1† 9.082683E-1†

DTLZ5

3 6.461373E-4 3.649849E-5‡ 1.263669E-6 5.184335E-2‡ 2.666319E-2 8.122719E-3 1.144353E-2‡ 3.198290E-2‡
5 1.315031E-2 5.415597E-2‡ 6.448064E-2‡ 1.383002E-2† 3.005594E-2 5.979775E-2‡ 2.867739E-2 2.924760E-2‡
8 1.663207E-2 5.910784E-2‡ 7.500306E-2‡ 1.495193E-3 6.453904E-2 1.256837E-1‡ 5.042064E-2 6.724457E-2‡

10 1.095402E-2 6.590729E-2‡ 8.104358E-2‡ 1.070695E-3 4.451275E-2 1.457291E-1‡ 6.667566E-2‡ 5.018808E-2‡
15 6.629625E-3 7.129200E-2‡ 8.113172E-2‡ 6.811994E-9 1.528460E-1 1.536967E-1† 6.292434E-2 1.537017E-1‡

‡ and † indicate PSS performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Fig. 7. The convergence regarding the GD metric of algorithms for DTLZ2 with 3-objective and 10-objective instances.

To verify the selection pressure toward PF, the polyline
charts were drawn using the GD metric on 3-objective and
10-objective DTLZ2 instances. The four average GD val-
ues were obtained by evaluating the former 100 generations
of population, respectively. The four polyline, asterisk sign,
plus sign, dot sign and rectangular sign, represent the PSS,
SPEA2+SDE, MOEA/D and IBEA, respectively. In Fig. 7,
for the DTLZ2 problem with 3 objectives, the convergence of
PSS is better than SPEA2+SDE, IBEA and MOEA/D after

about 15-th generation, which shows that PSS has a faster
convergence speed on some problems. In addition, for the 10-
objective DTLZ2 problem, PSS also has better convergence
performance than MOEA/D, IBEA and SPEA2+SDE.

The PSS had better performance than MOEA/D, IBEA,
SPEA2+SDE on most problems. One of the important reasons
for the PSS is due to their selection criterion that can improve
the convergence of the algorithm. The selection mechanism in
PSS uses the shortest Euclidean distance between the individ-
ual of the solution and reference point to produce selection



pressure toward PF. In addition, the proportion method was
used to maintain the diversity of the population.

V. CONCLUSION

This paper has proposed the PSS algorithm for multi-
objective optimization. PSS aims to improve the selection
pressure to maintain the convergence of the population in the
selection mechanism. To attain this goal, the proportion-based
selection mechanism is introduced into the proposed methods.
From comparison results, PSS had the best performance com-
pared to MOEA/D, IBEA and SPEA2+SDE on most instances.
In the future, we will apply PSS to more practical problems.
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