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Abstract 

 

 

Two direct consolidation methods usually used for advanced ceramics have been 

combined in this project in order to develop a novel fabrication route for traditional 

ceramics. Specifically the method used is based on the Additive Manufacturing 

extrusion process using direct writing of high solid loading ceramic pastes and then 

freeze-casting to solidify the deposited material. This novel fabrication method, for 

which a patent has been granted, has been christened “Direct Writing Freeze-

Casting” (DWFC).  

 

Although the DWFC process is the subject of investigation by other researchers for a 

range of different applications, including the production of medical implants with 

alumina, the research presented in this thesis focuses on its use in the manufacture 

of white wares, giftware, and applied arts and crafts in general. This new system will 

provide designers, potters, artists, craft makers and manufacturers with a flexible 

and automated way of manufacturing porcelain objects.  

 

One of the major challenges to be overcome to exploit the DWFC process is the 

development of suitable slurry material formulations.  Initial trials demonstrated that 

it is not possible to use conventional clay based porcelain materials with a platelet 

shaped microstructure which inhibits freeze casting. In this thesis the development 

and characterisation of non plastic porcelain slurry, based on substitution of kaolin 

(clay) with a calcined clay material (molochite), which can be processed using this 

new method is presented. The new non plastic porcelain formulation, which has a 

high solid load of 75.47% wt., has been subjected to detailed analysis to assess its 

suitability at each stage of the process; extrusion, freeze-casting (solidification) and 

firing. 

 

The next stage of the trials was to characterise the performance of the new slurry 

formulation in every stage of the DWFC process. The initial formulation was adapted 

to optimise its performance in the extrusion process.  

 

Extrusions trials were performed using a range of nozzle tip diameters and extrusions 

rates and it was found that it was not possible to successfully extrude using the 

smallest nozzle and highest extrusion rate. In addition other important extrusion 

parameters were examined, such as the stand-off distance between the substrate 

and the nozzle tip, extrusion rate and the velocity of the deposition head. It was 

found that when the stand-off distance is too small or too big flattening or curling of 



 

ii 

 

the deposited bead respectively occurs. A polynomial equation was used to 

determine the optimum stand-off distance for a particular nozzle diameter.   

 

The material was then subjected to two different (slow and fast) freeze casting 

regimes and fired at different temperatures. The water absorption, bulk density, 

apparent porosity and linear shrinkage were measured and the structure of the 

porosity assessed using both optical and Electron Scanning microscopy. Both raw 

powders and fired samples were characterized by means of X-ray diffraction (XRD).   

Interconnected porosity, with a dendritic shape is formed, which is a characteristic of 

freeze casting. Moreover, although the apparent porosity remains the same, the size 

of the pores reduces as the freezing rate increases.   

 

Rheological testing was performed on the optimised slurry material using a range of 

methods, including cone & disc and concentric cylinder tests. In addition, a test rig 

was devised and manufactured which enabled rudimentary rheological testing of the 

slurry during actual extrusion to be undertaken.  The trials showed that the material 

has a pseudoplastic, thixotropic behaviour. In addition it was found that there is a 

clear increase in the viscosity of the material as the plunger is displaced in the 

extrusion trials. This phenomenon is likely to be the result of “locking” of the angular 

particles in the slurry as pressure is applied to it.  This was not observed in the other 

rheological trials highlighting the importance of testing materials in the mode of 

actual use.   

 

In this research it proved possible to develop a non plastic porcelain material which 

can be successfully processed using the DWFC process. Unfortunately, the level of 

porosity in the final samples produced was higher than the 0.5% porosity level 

usually associated with conventional porcelain. However, it was possible to match 

the level of porosity encountered with other whiteware pastes, such as stone ware, 

or any other whiteware with talc as a component within the formulation. 
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1. INTRODUCTION 

1.1 THESIS OUTLINE 

 

Chapter One presents an overview of the thesis, followed by a brief introduction to 

the project, its context, aims and the methodology adopted.  

 

Chapter Two addresses the literature review. This chapter presents the relevant 

background information for the research in the following order: i) a brief 

introduction to the concept of Additive Manufacturing  (AM) of ceramics, ii) a 

detailed classification of the AM technology available in the ceramics field and its 

applications, iii) previous work done based on AM extrusion methods. This chapter 

contains discussion regarding the merits and limitations of these methods.  

 

Chapter Three presents the methodology adopted, which is divided into three major 

phases: i) development and preparation of the ceramic material, ii) freeze-casting 

trials iii) and finally extrusion trials. A full description of materials and methods are 

also discussed in this chapter.  

 

Chapter Four concentrates on the first phase of the experimental work, which 

involves the development of the material. The factors that make the characteristics 

of the powder desirable for the process are discussed in terms of particle size, 
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particle distribution, particle shape and degree of agglomeration. The chemical 

composition of the powder, its preparation and the additives involved are 

mentioned. Nozzle size and the critical nozzle height (distance between nozzle tip 

and previous layer) are established. This chapter also covers the extrusion properties 

of 2-dimensional and 3-dimensional parts. 

 

Chapter Five addresses the second phase of the experimental work, which is the 

freeze-casting of the developed material. Issues such as the preparation of the slurry, 

sol composition and additives are examined. Relevant subjects such as 

agglomeration, solid load content, packing of particles, shrinkage, density and 

porosity are also discussed in this chapter.  

 

Chapter Six presents the last phase of the experimental work, the extrusion trials of 

the slurries. Additionally the significance of the extrusion parameters are set out in 

this chapter as follows: i) physical properties of the fluid, such as density and 

viscosity, ii) nozzle travel speed (mm/s) (pressure, velocity and flow rate 

measurements). 

 

Chapter Seven presents the results and final discussions; the final material 

formulation, freeze-casting and extrusion parameters are reviewed and the 

mechanical and chemical properties of the final body formed by the new process are 

described. The advantages and limitations of the use of conventional porcelain-type 

material on the new process are set out and an assessment of the progress made 
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towards achieving the original objectives defined at the beginning of the project. It 

also lists a brief summary of the project and the possibilities for further work based 

on the outcomes of this research.  

1.2 RESEARCH BACKGROUND 

 

In a world of constant change and innovation for consumer products, the need to 

provide products that meet the personal requirements of the user has become a 

challenge to design and manufacturing techniques. This suits the vital criteria of 

quality, high performance and competitive cost. Looking forward in time towards the 

possibilities of producing customised products for consumers on a major scale, the 

new goal for product developers is to bridge the gap between consumers, designers 

and manufacturers.  

 

The simple idea that products can be totally adjusted to the customers’ needs opens 

the gateway to exclusive and personalised design, giving the potential for much 

greater consumer satisfaction. AM techniques can be used for the manufacture of 

end-use products as well as prototypes and this provides the opportunity to change 

the paradigm from mass production to mass customisation; this last term refers to 

the manufacturing of customised products or components on a limited, yet cost-

effective, scale 
[1]

 . These methods are unique in the way they perform, as they add 

and bond materials in layers to form objects without the application of traditional 

forming tools such as dies or moulds. This layer-wise deposition of material only 
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where it is required provides significant flexibility for the production of small, 

complex-shaped parts with unique structural features that are not achievable with 

other forming methods.  

 

AM technology was not originally devised for the manufacturing of end-user 

products, and some problems remain such as geometry capture, poor surface finish, 

low-speed manufacturing speed and the use of a limited range of materials. 

Significant research is being conducted at present in order to overcome these 

limitations. However, much of this research has focused on plastic and metal 

products whereas ceramics have been relatively poorly studied. However, AM 

methods have developed sufficiently to suggest their applicability for the forming of 

ceramics parts.  

 

Most recently, Additive Manufacturing of ceramics has benefited from techniques 

based on extrusion combined with conventional ceramic-forming methods: the “so 

called” direct casting processes 
[2]

, (sol-gel techniques, gel casting, starch 

consolidation, freeze-casting etc.). In these processes, the ceramic slurry is 

transformed into a solid state without the removal of its water content. This allows 

the use of a non-porous mould, which has considerable economic advantages as well 

as an improvement in the homogeneity of the green body. This approach gives 

improved dimensional control of the fired component and the potential to produce 

parts with complex geometry. One very successful approach is to extrude layers of 
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ceramic slurry with a fluid binder system that can be gelled by selective addition of a 

chemical agent to form the desired pattern for each layer. Whilst this route has been 

demonstrated only with alginate binders (Gel Casting Process), it should be possible 

to use other gelling systems, possibly including sols.
[3]

 

 

It is in this scenario that the freeze-casting technique becomes a potential AM 

method. Different author
[4]

 have described the possibility where a suspension 

deposited by a computer-controlled nozzle could be frozen layer-by-layer to form the 

desired shape and the green body can be obtained after freeze-drying. Unlike gel 

casting, in freeze-casting the solidification mechanism results from rapid cooling of 

the slurry, (typically a silica-based sol together with another ceramic material, such 

as alumina), which causes the concentration and the interaction of the particles of 

the sol at the boundaries of the ice crystals to produce irreversible bonding. Other 

particles in the mixture become locked in this solid framework and when the slurry 

returns to room temperature, it remains a brittle solid.  

 

At first sight, the combination of freeze-casting with extrusion offers the following 

advantages: the elimination of capillary drying stress, (which could cause hard 

agglomerates or cracks and usually occurs due to drying and shrinkage), and the ease 

of debinding due to the small amount of organic additives used in the process. 
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1.3 PROJECT AIM AND OBJECTIVES 

 

Aim: The aim of this PhD study is to develop a material (based on a triaxial 

whiteware formulation) which can be successfully processed using the new AM 

approach of combining direct writing and freeze casting to enable customised 

ceramic products to be formed. 

 

 Objectives: 

 

 Investigate the suitability of conventional triaxial whiteware ceramic 

formulations for the DWFC process. 

 Develop and fine tune a material that can be successfully extruded, freeze 

cast and fired. 

 Investigate the properties of the new material formulation and compare with 

conventional porcelain materials.  

 Develop improved processing conditions for the new material.  

 

This project aims to explore the possibility of a new process that will combine freeze-

casting and the basic principles of AM based on extrusion methods, to produce a 

route for the manufacture of high-integrity, ceramic end-products utilising so-called 

conventional, ceramic, porcelain materials (clay-based systems). This new method 

will be capable of producing new ceramic products without the cost and restrictions 
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associated with a conventional manufacturing porcelain process that requires 

tooling. 

 

It is expected that this new AM method will give designers the opportunity to 

develop high-quality customized ceramics and allow unrivalled freedom of creation. 

It may open previously unimagined possibilities, as manufacturers will realise that 

they can reproduce any structure created using CAD. The limitations that this new 

system might possibly present will be monitored, discussed and compared with the 

available AM techniques which have been used for ceramics. 

 

Conventional porcelain or similar ceramic materials were chosen as a starting 

material for fabrication in the new system due to their potential for high visual 

design impact, including high-quality surface finish, translucent properties and a 

large range of possible different commercial applications of the material itself. The 

biggest challenge in this research was the optimisation of non-technical porcelain 

paste in order to formulate a freeze-castable material whilst having the necessary 

qualities to be extruded through a fine nozzle. 
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1.4 OVERALL PROJECT 

 

The primary phase of the project started with a review of the literature, which 

provides the essential foundation for the subsequent programme of this research. 

The literature review key topics are; 

i) Study of state-of-the-art of AM for the production of ceramic objects.  

ii) Ceramic materials and processes based on AM using extrusion methods and 

their characteristics (particle size, sintering temperatures etc).  

iii) Investigation of previous work on freeze-casting and AM for the processing of 

ceramics, including descriptions of the process characteristics and 

parameters.  

The next phase of the project was the experimental work where the information 

gathered in the literature review is used to devise an experimental plan for 

conducting the appropriate scoping trials to determine the system parameters to be 

used as a starting point for the subsequent, more detailed, tests.  A test programme 

for the main experimental work, to explore the effects of the machine parameters, 

material composition factors, extrusion behaviour and quality of the ceramic parts 

produced was devised and conducted.  

 

The final stage of the project involved the analysis and discussion of the results. 

Conclusions from the work were drawn and suggestions for further work laid out in 

the thesis.  
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2. THEORETICAL BACKGROUND 

2.1 ADDITIVE LAYER MANUFACTURING   

 

2.1.1 Introduction 

 

Compared with other materials, ceramics offer a wide range of properties in terms of 

mechanical strength, thermal stability, hardness, thermal conductivity, chemical 

stability, oxidation resistance and good aesthetic appearance. Ceramics are 

inorganic, non-metallic materials that normally achieve their desirable properties 

when submitted to high temperatures during the fabrication process. 
[5]

 

 

In the last 20 years, a range of Rapid Prototyping (RP) processes, which build parts by 

the precise addition of material in layers, has been introduced into ceramic 

technology. All these RP approaches use processing technologies that allow the 

production of parts with the required geometrical complexities directly from a 

computer aided design (CAD) file without the use of traditional tools, such as moulds 

or dies 
[6]

.
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Most recently, RP methods are being adopted for the production or end-user parts 

and, to reflect this important change, the term Additive Manufacturing (AM) has 

been formally adopted
[7]

.  

 

The majority of AM processes to produce polymeric objects have been extended for 

the production of metal and ceramic parts. Hitherto, the more mature techniques 

which have been used to process ceramics are: Stereolithography (SLA), Laminated 

Object Manufacturing (LOM), Fused Deposition Modelling (FDM), Selective Laser 

Sintering (SLS) and other techniques based on inkjet printing. 

 

Initially, significant interest was focused on the development of ceramic powders for 

use in 3D printing and SLS, 
[8]

however, recent interest has moved towards the 

processing of ceramic materials in aqueous or resin suspensions e.g. the direct 

writing extrusion approach, 
[9]

stereolithography 
[10]

 etc.  

 

Although there is a wide range of AM methods for processing ceramics, most of 

them follow the same basic process chain as shown in Figure. 2.1. 
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Figure 2.1:  Basic Principle of Layer Manufacturing of Ceramics 

 

The first step involves the creation a 3D CAD model of the desired object. This CAD 

data is then converted into a suitable format for processing (in the vast majority of 

processes this is an STL -standard triangulation language- file). This is a simplified 

representation of surfaces of the part by means of triangular facets. This data is then 

sliced to represent the layers which will be generated sequentially in the AM process. 

 

Once the STL file is ready, the next step is the preparation of the ceramic material. 

AM of ceramics generally uses common starting materials in the form of powders, 

either to be used directly (e.g. SLS, 3D printing) or formed into suspensions of 

CAD FILE 

STL 

 PART BUILD 
            AM PROCESS 

 DEBINDING 

 SINTERING 
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different concentrations which can range from low viscosity liquids (for deposition by 

inkjet printing), through higher viscosity liquids (filled resin systems for SLA), viscous 

slurries for extrusion and, finally, semisolid paste materials (LOM).  

 

In the vast majority of AM processes, a green part is produced which must then 

undergo a debinding operation before being fired at high temperature to achieve the 

required properties. Many of the processing issues (e.g. particle packing, polymeric 

additives, colloidal interactions, rheological behaviour, drying and binder removal 

etc.) used for common forming methods, such as slip casting, tape casting, extrusion 

or injection of ceramics, are applicable to these methods
[6]

. For example, a binder 

removal phase is required for most of the AM ceramic methods, which involves 

conveying ceramic particles in an organic medium such an oligomer or polymer that 

has to be removed before sintering. This follows the same procedure as with other 

common ceramic forming methods such as injection moulding of ceramics, gel 

casting etc.  

 

Since the aim of the AM of ceramics is to produce high quality near net-shaped 

structural and/or functional ceramic parts, the main quality issues to consider are 

dimensional control, geometry of vertical walls, surface finish, microstructure and 

integrity (e.g. Porosity).  

 

A brief recompilation and description of the most important AM techniques used for 

ceramics is presented in the next section. In addition to direct forming of parts using 
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AM methods, there is a wide range of indirect methods which employ a pattern or 

tool made by AM to form the ceramic objects. These techniques will only be 

mentioned briefly in this thesis. 

2.2 AM OF CERAMICS METHODS: AN OVERVIEW 

 

The numerous AM systems implemented in the market can be classified and 

described in various ways, but the most suitable way to categorize these systems is 

by their forming methods. 

 

Therefore, in the present research study, these technologies are divided into four 

fundamental approaches: 1) polymerisation, 2) sintering or bonding of powders, 3) 

lamination and 4) extrusion or printing of ceramic loads. Table 2.1 shows the most 

representative technologies according to this classification.  

Commercial processes for the Additive Manufacturing of Ceramics 

Mechanism Method 

Polymerisation Stereolithography of ceramic-filled resin 
Paste Polymerisation 
Direct Photo Shaping (DPS) 
Indirect Stereolithography 

Sintered or bonding  
of powders 

Laser Sintering (LS) 
Laser Engineering Net Shaping (LENS) 
Bonding 
3-Dimensional Printing 
Direct Ceramic Ink-jet Printing (DCIJP) 

Lamination Laminated Object Manufacturing (LOM) 
Computer-Aided Manufacturing of Laminated Engineering (CAM-LEM) 

Extrusion or printed of 
slurries. 
 

Fused Deposition Modelling of Ceramics 
Robocasting 
Contour Crafting (CC) 
Multiphase Jet Solidification (MJS) 

 

Table 2.1: Additive Manufacturing Technologies of ceramics 
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2.2.1   Polymerization  

2.2.1.1 Stereolithography of ceramic-filled resin 
 

Stereolithography (SLA), invented by Chuck Hull [11]
, is one of the first AM 

technologies. In this method, a vat of liquid, UV-curable, photopolymer resin is 

selectively cured by a UV laser to form a multitude of solid layers which form the 

final part. For each layer, the laser beam traces a part cross-section pattern on the 

surface of the resin, which cures to a solid and bonds to the layer below. Figure 2.2 

shows the basic principles of this process. 

 

 Figure 2.2:  Stereolithography Process
 [12]

 

 

To form ceramics using this approach, the ceramic particles are mixed with the UV-

curable photopolymer.  The amount of the filler material is limited due to the 
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defined optical penetration depth which is required in the process
[13]

, too much 

filler prevents a layer of the required thickness from being formed. Some UV-curable 

solutions used in the Stereolithography of ceramics are similar to gel casting 

solutions but with the thermal initiators replaced by photoinitiators.  

 

Once the object has been created in layers in the Stereolithography process, it 

undergoes post-treatment to produce the final ceramic part.  This post-treatment 

consists of debinding (removal of resin) by subjecting the part to around 160oC for 

several hours to guarantee complete resin polymerization followed by pyrolisis at 

500oC to eliminate the organic component (resin) from the green ceramic. This is 

followed by a sintering phase, which leads to full densification by increasing the 

temperature from 500 to 1550oC
[14]

. There is 15 to 25% shrinkage from the green 

part to the final component.  

 

Preparation of the suspensions 

 

The ceramic powder is dispersed in the photopolymer with the help of various 

additives. The additives act as dispersants, preventing the agglomeration and settling 

of the ceramic particles, and they also play the role of a thickening agent
[15]

. 

Obtaining effective dispersion for sub-micrometer powders requires careful design of 

the colloidal dispersant system. 
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A ceramic Stereolithography suspension must satisfy several, often conflicting, 

requirements. To obtain a dense green body, which is subject to lower shrinkage and 

has higher strength, a high-solid loading should be used. However, this creates two 

important problems, firstly the solid loading interferes with the curing of the resin 

and secondly, the high viscosity of this suspension makes it very difficult to process 

on conventional Stereolithography machines. Ideally, the ceramic suspension should 

have a viscosity less than 3Pa.s to enable effective recoating (deposition and levelling 

of resin layers)
[10]

. 

 

In recent years, a number of Stereolithography ceramics and glasses-filled resins [16] 

(Protool resin family) DSM SOMOS, Protocomposites, Envisiotec Nanocure RC 25 

(87% ceramic filler) have been developed to produce improved properties, such as 

higher temperature resistance 
[13]

. These materials, however, have a low volume 

fraction of filler material and are not subjected to secondary debinding and firing. 

Current applications include automotive components, light reflectors, pump 

impellers, injection moulds etc. Figure 2.3 shows a printed example of nanocure 

resin.  
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Figure 2.3: Automotive component, SOMOS Nanoform15120. 

Courtesy: Alphaform 
[17]

 

2.2.1.2 Paste Polymerization  
 

Unlike conventional Stereolithography equipment where a fluid monomer is 

required, an approach using a high-viscosity paste was first introduced by the French 

company Optoform
[18]

. In the Optoform process, the ceramic/photopolymer paste is 

introduced into a piston, which delivers a controlled quantity of the paste onto the 

working area. This enables homogeneous layers to be deposited. The layers have a 

smooth surface and can be selectively cured with a UV laser. Figure 2.4 shows the 

basic principles of this process for the fabrication of ceramic materials. Figure 2.5 

shows the printing of the ceramic paste, and the laser solidification respectively.  
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Figure 2.4:  Paste Polymerization for the fabrication of ceramics
[19]

 

 

 

   Figure 2.5:  Laser printing of ceramic paste 

Courtesy: Cerampilot
 [19]

 

 

 

After photo-polymerisation, debinding and sintering of the green state part takes 

place. Trials have demonstrated that the parts produced have similar properties to 

ceramic objects produced by conventional processes. This opens up the possibility of 

using the process for direct manufacturing of end-use parts rather than 

prototypes
[20]

. A clear example of a non-sintered ceramic part can be seen in Figure. 

2.6. A step forward for this technology into direct manufacturing involves the 
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company Cerampilot and the Fast Ceramic Production Process (FCP), not only in 

rapid manufacturing of industrial, electronics and biomedical applications but very 

recently in the fabrication of luxury products like jewellery or translucid lamps, 

Materials used by this company include Alumina, Zirconia, Hydroxyapatite, 

Aluminium Nitrate, Mullite and Cordierite. An example of their applications is shown 

in Figure. 2.7 and 2.8.  

 

 

Figure 2.6:  Non-sintered ceramic part obtained using the Optoform process Courtesy: Sirris 

 

 

 

Figure 2.7:  AM of Jewellery, Zirconia Courtesy: Cerampilot France 

After post-processing polishing in different colours.
 [21]
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Figure 2.8:  Honeycomb (left) and solid structure in Alumina (right). 

Courtesy: Cerampilot France
[21]  

 

 

2.2.1.3 Direct Photo Shaping (DPS) 
 

 

This process builds 3D objects from liquid photosensitive resin, as in 

Stereolithography, but in this case, the material is selectively hardened by a DLP 

(Digital Light Processing) projector unit. The DLP projector uses a series of micro 

mirrors which can be individually manipulated to project an image - the light section 

of which corresponds to the desired slice with the rest of the area remaining dark - 

which can cure an entire layer of resin simultaneously
[22]

. This process has been 

utilized for the production of ceramic parts by curing ceramic/photopolymer 

suspensions 
[23]

. Figures 2.9 and 2.10 show the basic principles of the process.  
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Figure 2.9:  Direct Photo Shaping (DPS) 
[24]

 

 

 

 

Figure 2.10:  Image projection DPS process 

Courtesy: ASERM (Rapid Manufacturing Spanish Association) 
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2.2.1.4 Indirect Stereolithography 

 

There are two principal routes for the fabrication of ceramics by AM methods: 

indirect and direct. Indirect routes rely on an additional moulding step after 

fabricating the master pattern using AM. One example of the indirect AM method is 

the use of a sacrificial epoxy resin mould made by SLA process which is then filled 

with a thermally-curable HA-acrylate and cured at 85oC. The cured part is then placed 

in a furnace at high temperature to burn away the mould and the acrylate binder 

within the suspension
[25]

 .  

2.2.2 Sintering or Bonding of Ceramic Powders 
 

2.2.2.1 Laser Sintering  
 

 

Laser Sintering (LS) was developed at the University of Texas by Deckard and 

Beaman
[26]. In LS, the components are built layer-by-layer by scanning a laser beam 

over a thin layer of powdered material. The LS is quite a flexible technique as 

compared to other AM methods when it comes to processing a wide range of 

materials. The major benefit of the LS technique is that additional support structures 

are not usually necessary to provide supports for overhanging sections as infused 

powder fulfils this function. A graphic describing the process is shown in Figure. 2.11. 
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Figure 2.11:  Schematic of the LS process
[12]

 

 

LS can be used for both direct and indirect processing of ceramics. In the indirect 

route a polymer coated ceramic material is employed.  The laser beam actually melts 

the polymer binder, which bonds the particles together (bonding-forming phase)
[27]

. 

The rest of the layer remains as a loose powder, the layer is lowered and a further 

powder layer is applied.  The laser then bonds the next layer to the previous one.  

The procedure is repeated until a green ceramic part is completed. The polymer 

binder is then thermally removed before the part is sintered at a higher temperature 

to become fully consolidated. 
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On other hand, if a higher power laser system is employed, it is possible to dispense 

with the resin binder and fuse the ceramic powder directly in the laser sintering 

machine (direct process)
[28]

. The fusion of the ceramic particles together and 

bonding with the previous layer is the result of temperatures of 900°C (their melting 

point). Although ceramic objects created through this route still require thermal post 

processing (sintering) to produce the fully dense part, the debinding process is not 

required. The production of ceramic parts in this way can achieve savings in cost and 

time. It also allows the manufacturing of end-user parts see Figure 1.12. 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.12:  Manufacture of an end-use part in Alumina. 

PM100T, PM250. Courtesy: Phoenix System, France
[29]
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2.2.2.2  Laser Engineering Net Shaping (LENS) 
 

 

Created in 1997 by Sandia National Laboratories and commercialized by Optomec 

Design Co., the Laser Engineering Net Shaping (LENS) process is based on laser 

cladding and has the potential to create complete, dense, ceramic or metal 

components by fusing powdered substances within the focal zone of a laser beam. 

The high-powered laser beam is focused on the substrate into which, with the aid of 

a computer guidance system, the powder is injected. Once this layer is formed, the 

next step is to raise the deposition head in order to prepare the process for the 

subsequent layer. 

 

The deposited material cools and solidifies rapidly as the focus point of the laser 

beam moves on and changes position. Generally speaking the process is conducted 

within an inert atmosphere to prevent oxidation of the material being deposited. 

Greater ductility and better part strength is achieved due to the rapid solidification 

process. Moreover, the powder that is not used in the layer (overspray) can be 

reused. A graphic describing the process is shown in Figure. 2.13 and 2.14. 
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Figure 2.13:  LENS process (courtesy of Optomec Design Co)
 [30]

 

 

The LENS process proves quite beneficial as is enables the creation of completely 

dense parts constructed entirely out of a powder containing just one material. As 

compared to other Additive Manufacturing processes, the LENS process is unique in 

requiring no further heat treatment for the production of ceramics. 

 

Parts with multi-materials, cermets and gradient materials can also be produced with 

this process as it facilitates the use of various mixtures of powders, such as ceramic 

particles mixed with metal particles. Thus, for the production of parts with specific 

requirements and applications, such as die cast tooling, this process proves to be 

quite flexible as components with different materials and properties can be easily 

created
[31]

.
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Figure 2.14: LENS process close up (courtesy of Optomec Design Co)
[32]

  

 

 

2.2.3 Ink Jet Printing based methods   
 

Basically, there are two methods of using inkjet techniques for AM of ceramics: 

Three-dimensional printing (3DP) and Direct Ceramic Jet Printing (DCJP). These 

methods differ from each other in that the first one uses an inkjet-print head to 

apply a binder to the ceramic powder whilst the second one uses an inkjet-printing 

nozzle to deposit a ceramic suspension directly. 

 

2.2.3.1   3-Dimensional Printing of Ceramics 
 

In 3D printing, parts with complex shapes are formed by depositing a thin layer of 

ceramic powder onto a build platform, one layer after another, much like the laser 

sintering method. However, a binder solution is printed onto the powder surface 

using an inkjet print head to selectively define the geometry of the part 
[33, 34]. 
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The binder can be a refractory material, such as colloidal silica, or a temporary 

polymer binder. A thin layer of the powder can be formed by roll compaction, but 

more homogeneous particle packing and a higher packing density are obtained by 

deposition from a well-dispersed suspension (e.g. through a nozzle 100 to 200μm in 

diameter) followed by drying. After application of the binder solution to fix the 

powder, the layer is heated to remove excess liquid (water). Once a single layer is 

complete, a piston lowers the part, the next layer is spread and the binder is printed 

again.  The slurry and binder deposition processes are repeated until the part is 

completed and it is then removed from the unbound powder. Figure 2.15 shows the 

basic principles of the 3D printing process for ceramics.  

 

 

 

 

 

 

 

 

 

 

 

Figure.2.15:  3D Printing Process for Ceramics
[33] 

 

When removed, the part has a relatively low density, typically 50% of the theoretical, 

and the density is increased either by isostatic pressing and sintering or by 
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infiltration. There are two main considerations for processing ceramics using 3DP 

printing: 

 

The colloidal properties of the suspension and the drying of the deposited layer, 

control the structure of the deposited powder layer. The interaction of the binder 

solution with the powder layer must be optimized to control the shape uniformity of 

the printed part
[33]

.  

 

Several companies have been established which offer systems and services for the 

3D printing of ceramics. The range of applications extends from the production of 

casting moulds and cores to structural ceramics components (industrial applications), 

but recently a special interest in the 3D printing of ceramic art-crafts and traditional 

ceramics applications has been observed. Most of these projects, in the above-

mentioned field are still however under research. The following figures show 

different examples of the application of this process; Figures 2.16 to 2.20 refer to 

industrial applications. Figures 2.21 to 2.27 refer to art and design applications that 

have recently presented considerable opportunities for direct manufacturing. 

Although some technical issues still need to be solved, e.g. ceramic shrinkage, 

surface finish, and porosity of the material, these methods present a very 

satisfactory ceramic end piece with possible post- processing by infiltration or 

glazing. Moreover, the exploration of these technologies has extended to other 

ceramic materials, such as marmol  (Figures 2.28, 2.29).  Another ceramic material 
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being explored, for the production of components and sculptures respectively, is 

cement (Figures 2.30 to 2.31). 

 

     

 
Figure 2.16: Cast metal part (left) produced from a z cast sand mould (right) Courtesy:  Z corp 

U.S.A.
[35]

 

 

 

 

 

 

 

 
 
 

 
 
 
 
Figure 2.17:  Ceramic shell with integral core 
for slip casting  

Courtesy: Soligen
[36]
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Figure 2.18:  Complex 3D printing by sand 
casting of mould and cores produced by 3D 
printing. 

 Courtesy: ProMetal
[37]

 

 

 

 

 

 

 

 

 
 

Figure 2.19: Structural Alumina part 
produced by 3D printing, before and after 
sintering.  

Courtesy: MIT
[38]

 
 

 

 

 

 

 

 

 

 

 
Figure 2.20: Ceramic filters produced by 
Specific Surfaces Inc using 3D printing. 

Courtesy: MIT
[39]
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Figure 2.21: Alumina ceramic tiles produced 
by Specific Surfaces Inc using 3D printing. 
 

 

 

 

 

 

 

 

 
 

 

Figure 2.22: 3D printing and infiltration, Eco 
ceramic coating Process. 
Courtesy: Mike Eden, Royal College of 

Art
[40]

 

 

 

 

 

 

 

 

 
 

 
Figure 2.23:  3D printing of traditional ceramics powder, Bowling Green State University Ohio, USA.  

John Balistreri,  Courtesy: Johnbalistreri.artist
[41] 
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Figure 2.24:  Printing Object on ceramic powder, Courtesy: University of the West of England. David 

Huson.
[42]

 

       

Figure 2.25:  Printing Object on ceramic powder. Courtesy: the Solheim Rapid Manufacturing Laboratory. 

Mechanical Engineering Department at the University of Washington. Seattle
[43] 

 

 

 

Figure 2.26:  Printing Object on translucid porcelain powder, Courtesy: University of California at 
Berkeley 
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                                                                                                       Figure 2.27:  Additive manufacturing glaze part 

Courtesy: University of the West of England.  

David Huson
[44]

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28:  Hygea Head printed using 
marble powder. Process ProMetal 
Courtesy: IFAM Bremen Institute 

 



Chapter Two_______________________________________Theoretical Background 
 

35 

 

 

 

Figure 2.29: Mega scale 3D printing of sandstone. 

Courtesy: D-Shape 
[45]

 

 

 

 

 
Figure 2.30: 3D printing of cement composites. 

Process: 3D printing of cement 

Courtesy: WMG’s Rapid Prototyping and tooling 

Group, University of Warwick 
[46]
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Figure 2.31: 3D printing of cement composites. 
Process 3D printing of cement 

Courtesy: [Rael San Fratelo , Architects]
[47] 

 

 

2.2.3.2  Direct Ceramic Ink-jet Printing (DCIJP) 
 

Rather than printing a binder onto a powder bed, it is also possible to print an entire 

ceramic object through a print head using an “ink” which is a suspension containing 

ceramic particles 
[48, 49]

. 

 

Typically, the nozzle diameter is around 60µm and leads to droplets with an average 

diameter of 100µm. Smaller droplets lead to rich details of the part, but require an 

increased mechanical effort and finer nozzles, which bear a greater risk of wear
[13]

.   

 

An appropriate ceramic ink, which is basically a well-mixed suspension of fine 

ceramic powder, maintaining 10 to 15 vol% particles, 5 vol% organic additives 

(dispersant and binder), and 80 to 85% liquid  (90) is required to be developed. This 

suspension should have an adequate quantity of particles to allow the part 
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construction and at the same time, it should also maintain the proper viscosity and 

surface tension for constant droplet development.  

 

The ink is prepared by breaking down the agglomerates with the help of a twin-roll 

mill, ultrasound or high-energy bead-milling or a combination of these techniques. 

The suspension is stabilized by using the dispersant by absorption on the powdered 

surface, also the second stage might require the addition of other additives such as 

the binder or plasticizer which are mixed by ultrasonic agitation where the dispersion 

phenomena is produced by waves which cause cavitations and deaglomeration of 

the flocs
[50]

.
 
 

 

In addition, these inks should posses a high drying rate to enhance the printing speed 

and to enable rapid drying of the finished part to develop enough green strength for 

subsequent handling (removal of unbonded support powder). All these properties 

depend on the particle characteristics, the kind and amount of the solvent and 

organic additives and adequate processing procedures.  

  

The high liquid content in the ink is one of the chief restrictions with the DJCP as the 

liquid content reduces the forming rate due to the extended drying time required 

before printing of the next layer can begin. 
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This process offers a very versatile potential for use in Additive Manufacturing. 

Components made by this technology exhibit a dense microstructure, well-defined 

porosity and high shape accuracy
[51]

.   

 

 

 

 

Figure 2.32: Ceramic printed part, Process Direct Ceramic Ink jet Printing. Courtesy: RWTHaachen 

University left. Electronic Board. Process M3D deposition Mesocalse 1-100 microns, Right. 

 

2.2.4 Laser Cutting of Ceramic Sheets 
 

2.2.4.1 Laminated Object Manufacturing (LOM) 

 

The commercial version of the LOM process was introduced by Helisys Corporation, 

Torrance, CA to produce models for metal casting patterns.  

 

The patterns are built from adhesive bonding paper, with each layer of the model 

consisting of a single sheet of paper fed from a roll. Laminated Object Manufacture 

(LOM) cuts the component slices from thin layers of material using a CO2 (carbon 
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dioxide) laser mounted on a 2D plotter; this laser quickly cuts the outline of each 

layer of the object. Then a heated roller, which activates the adhesive, laminates the 

sheet to the previous layer.  

 

The outside of the sheet is cut into small blocks by the laser to become the support 

structure. The process repeats until it generates a solid object enclosed within a 

support formed by blocks of the excess material. The object can then be removed 

from the supports (de-cubed). The materials used in LOM include coated paper, 

tapes of metal, polymer and ceramics
[52]

. Fig.2.33 shows the basic principles of the 

LOM process .  

 

Creating ceramic objects by LOM is a relatively easy concept since the paper can be 

replaced with ceramic green tape. Although it differs in detail, most of this concept is 

based on the well-known ceramic tape cast process, also sometimes referred to as 

the doctor-blade process 
[48]

.  

 

The mixing of ceramic powder with an appropriate binder creates a ceramic tape, 

which is used to assemble a physical 3D model of the actual CAD data after the 

sheets have been stacked together; afterwards, the material has to be removed 

manually. 
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Figure 2.33: Basic principles of the LOM process 
[12]

 

 

2.2.4.2 Computer-Aided Manufacturing of Laminated Engineering (CAM-LEM) 
 

A modified form of the LOM process, referred to as computer-aided manufacturing 

of laminated engineering (CAM-LEM), has been developed to produce complex 

shapes directly from the tape-cast ceramics
[53]

. In CAM-LEM, individual slices are cut 

from the tape-cast sheet using a laser and assembled to fabricate the computer-

aided design. Following lamination of the slices and binder removal, the body is 

sintered to produce a ceramic component. Computer Aided Manufacturing of 

Laminated Engineering Materials (CAM-LEM) differs from LOM by using a "cut and 
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stack" approach rather than the "stack and cut" procedure used in the LOM ceramic 

process.  

 

 

 

 

 

 

 

 

Figure 2.34:  Decubing Ceramic Part.CERLAM™ Process Modified LOM process.   

Courtesy: Javelin
[54]

 

 

 

2.2.5 Extrusion or Printing of slurries 
 

A special section in this chapter is dedicated to the extrusion methods since the 

direct writing approach adopted in this research is based on the extrusion method; 

the overall process includes feedstock preparation, deposition through nozzle 

solidification and post processing. The post-processing phase will be debinding, if 

required, followed by sintering. Most of the techniques based in this process are still 

under research, and they have been derived from the well-known FDM method, 

explained in the followed section.  
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2.2.5.1. Fused Deposition Modelling (FDM) 

 

This method was developed by Stratasys
[55]

. These systems extrude a thin bead of 

thermoplastic, one layer at a time; the build and support materials are extruded from 

a fine tipped nozzle directed by an x-y positioning device. The material is supplied on 

spools as a firm filament about 1.8mm thick 
[56]

. The filament is fed from a storage 

spool into a moving “liquefier head”, where it is melted and laid down as “roads” of 

material with the desired width and thickness. Precise temperature control is needed 

(±0.5°C) and dimensional accuracy rests on the use of shrinkage compensation 

factors and deposition strategies
[57, 58]

.  

 

A spindle located at the rear or side of the machine carries the spools whilst a flexible 

tube, which is generally attached on the back of the extrusion head, is used to feed 

the filaments. 

 

The extrusion head plays a crucial role in this system; it is split into two different 

drive blocks which are the located on the backside of the extrusion head, and these 

are the main raw material feeding mechanisms. The entire system is computer 

controlled which enables it to load and unload the filaments in a precise manner. 

This system consists of two parallel wheels connected to small-sized electronic motor 

gears. 
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The heating chamber, which is normally a 90o curved elbow wrapped in a heating 

element, is the next component in the system. It generally serves two main 

functions. The first is the ability to change directions of the filament flow from a 

horizontal axis to a vertical axis, and the second, and most crucial, is to provide a 

melting area for the material. The system is equipped with feedback thermocouples 

to maintain a stable temperature. The filament passing from the exit of the chamber 

is usually in a semi-molten state as the heating elements are held at temperatures 

slightly above the melting point of the material. The extrusion nozzle is located at the 

end of the heating chamber, which is about four inches long. The extrusion nozzle 

tips are directly connected to the heating chamber exit.  

 

The extrusion head velocity and the extrusion rate must be coordinated in order to 

lay down a constant-sized bead. The acceleration of the motion system is not infinite 

and would lead to excess extrudate at turns within a layer unless the extrusion rate 

can be slowed down. Cutting of the extrudate bead when a layer is finished or 

moving to a differing portion of a layer involves simultaneously lowering the piston 

and stopping the extrusion
[59]

 .  

 

The rheology of the thermoplastic must cause the bead to snap back and prevent the 

formation of a thread of excess material. Apart from thermoplastics, other materials 

than have been used by this method are glass and  liquid crystal reinforced polymers, 

wax and new elastomer materials 
[60] [61]

.  
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This method has been extended to accommodate more than one material, and has 

been called Fused Deposition of Multi-materials (FDMM) 
[62]

. Figures 2.35 and 2.36 

show the schematic FDM process.  

 

Figure 2.35: Basic principle of the FDM Process  

 

Figure 2.36: Extrusion head FDM process 
[63]

 

2.2.5.2 Fused Deposition of Ceramics (FDC)  

 

The same approach, applied to ceramic suspensions in a polymer or wax vehicle, is 

known as Fused Deposition of Ceramics (FDC)
[64]

. In this process, ceramic 

components are fabricated using a commercially-available FDM modeller retrofitted 
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with a modified extrusion head suitable for extruding ceramic suspensions. This 

technique uses suspended ceramic particle systems similar to injection moulding. 

The mixed powder-binder feedstock is extruded into filaments, which are then 

deposited. Solidification occurs on cooling of the molten material, see Figure 2.37. 

 

Figure 2.37: FDC process 
[65]

 

 

Numerous monolithic ceramic materials like silicon nitride, alumina and zirconia can 

be applied using this process. Until now, this process has been basically used to 

create structural ceramics and piezoelectric ceramics, an intention to use this process 

for traditional ceramics has been mentioned, but is still under research
[66]

.  

 

The material used in FDC is a ceramic-polymer mixture (50 to 60 vol% particles). This 

is first extruded to form filaments with a diameter of 0.2 mm, after the spool 

filaments have been fed into an extrusion head at temperatures of 100 to 150oC. 

Extrusion of the plastic mixture through a nozzle (diameter 0.25 to 0.64mm) 

Ceramic (particles) filled filament 
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according to a computer-controlled pattern is used to form the object layer-by-layer. 

The green body is then subjected to debinding and sintering steps to produce a 

dense object. Figure 2.38 shows an example of unfired ceramic parts.  

 

The process rapidly creates a green prototype but, because the volume content of 

the binder is significantly different in comparison to powder injection moulded parts, 

the burn out may take several days 
[67]

.  

 

As in the FDC process, the ceramic-polymer filaments must also have enough 

flexibility to allow winding and unwinding of the molten material through the fine 

nozzles. There must be good adhesion between each layer. Removal of the large 

amount of polymeric binder material as cleanly as possible must be considered. As in 

any manufacture process, there are a number of variables that determine the 

success and quality of the fabricated parts e.g. an inadequate processing of the 

ceramic-polymer feed material and limitations of the deposition process can lead to 

internal and surface flaws that degrade the strength of the final sintered object. 

Figure 2.38 shows an example of unfired ceramic parts fabricated by FDC.  
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Figure 2.38:  FDC green ceramic parts
[68]

 

 

2.2.5.3 Multiphase Jet Solidification (MJS) 
 

This process developed by Fraunhofer-IFAM 
[69]

 uses a thermoplastic powder mix, 

which is similar to conventional injection moulding material. The process can be used 

with any injection-mouldable ceramic or metal system. As with most of the Advanced 

Manufacturing Technologies that are applied to ceramics, the MJS process consists of 

a robotically-controlled nozzle, which builds parts from small beads of extrudate, 

followed by binder removal and sintering. 

 

The working principle of the MJS process is shown in Figure 2.39. The material is 

supplied as a powder-binder mixture (feedstock) and then heated to achieve suitable 

viscosity, squeezed out of a nozzle by a pumping system and deposited layer-by-

layer. The molten binder solidifies when it comes into contact with the platform or 

previous layer due to the cooler temperature, pressure decrease and heat transfer to 

the part and the environment. On contact, the liquefied binder material causes a 
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partial re-melting of the previous layer, resulting in a strong bonding of layers. The 

extrusion jet is mounted on an x-y-z table that is controlled by a computer system. 

After one cross-section has been produced in the x-y plane, the extrusion head 

moves in the z direction and the next layer is manufactured. The part is created 

layer-by-layer until its full extent is reached
[70]

.  

 

Figure 2.39: Multiphase jet Solidification MJS Process 
[70].

 

 

2.2.5.4 Robocasting  
 

Developed at the Sandia Laboratory, Albuquerque, NM
[71], Robocasting is a novel 

technique for the fabrication of dense ceramics. This FDC system uses a computer 

controlled, layer-by-layer deposition by extrusion of ceramic suspensions with high 

solid loads through a fine nozzle. (Figure 2.40) The nozzle diameter may vary. The 

material formulation contains 50 to 65 vol% particles, 35 to 50 vol% solvent 

(commonly water) and 1 to 5 vol% organic additives. In the process, the layers are 
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sequentially deposited one after the other and every individual layer has had 

sufficient time to dry. In some ways, Robocasting is similar to slip casting or gel 

casting but without the use of moulds. Proper control of slurry rheology, build 

parameters and drying conditions are the key to the structural integrity of the 

component. 

 

 

Figure 2.40: Robocasting process [72] 

 

 

The key to successful robocasting is a thorough understanding of the fluid 

characteristics of the colloidal ceramic system. The slurry must be sufficiently 

pseudoplastic to flow through a narrow orifice and yet must transform to a solid-like 

mass after deposition. If drying is too slow, slumping may occur because the 

accumulated mass of several layers provides a stress greater than the yield stress of 

the pseudoplastic layer. On the other hand, too rapid drying may lead to cracking, 

warping and deformation. To overcome limitations on the shape uniformity of the 
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deposited material and to reduce macroscopic defects, robocasting of gel casting 

suspensions has been investigated
[73]

.  

Lately Robocasting has demonstrated a wide variety of ceramic materials for 

different applications, such as aluminium oxide, barium titanate, feldspar, 

hydroxyapatite, kaolin, mullite, silicon nitride, zirconium oxide etc. Applications 

include filtration, custom shapes, labware, thermal analysis, catalyst etc. Figure 2.41 

below shows alumina ceramic parts produced by robocasting process.  

 

 

 

 

Figure 2.41:  Lattice filtration ceramic part (Robocasting)
[74]
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2.2.5.5 Extrusion Free-Form Fabrication (EFF) 
 

 

This process is similar to MJS in that it produces parts from a suspension of ceramics 

or metals using a wax or polymer vehicle which is extruded onto the building 

platform by a high-pressure extrusion head. The material used in these approaches is 

a suitable ceramic feedstock, which needs many of the qualities commonly desired in 

raw materials for ceramic injection moulding
[75]

. These formulations consist of 

around 55 vol% ceramic powder dispersed in an organic binder.  

 

The binder is commonly a mixture of polymer, wax and plasticizer and serves as a 

vehicle for the free-form ceramic powder. The EFF feedstock should also possess a 

reproducible rheology with a low melt viscosity (extrudable at low pressures) as well 

as the ability to undergo rapid solidification upon deposition (enabling more rapid, 

part-build rates). The binder should be easily removable from the free-formed green 

body under controlled conditions, leaving minimal pyrolysis residue. Finally, it should 

be possible to sinter the resulting ceramic body into dense ceramic components.  
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2.2.5.6 Freeze Form Extrusion Fabrication (FEFF) 
 

 

This process developed at the University of Missouri–Rolla, Rolla, Missouri 
[76]

  works 

with the extrusion of an aqueous ceramic paste. The paste is extruded layer-by-layer 

into a build chamber which is held below room temperature to cause freezing of the 

paste. As only water is used as the binding media it is quite an environmentally 

friendly approach. Solid loading as high as 60 vol % has been achieved with this 

method using aluminium oxide (Al203). Figure 2.42 shows the schematic FEFF 

process.  

 

 

 

 

Figure 2.42: Freeze Form Extrusion Fabrication process. 
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2.2.5.7 Contour Crafting (CC) 
 

Another extrusion method is The Contour Crafting Process (CC)
[77] developed by 

Behrokh Khoshnevis of the University of Southern California. This method is an 

additive fabrication technology which uses the computer-controlled extrusion of 

ceramic material to construct large structures with internal features; this system 

incorporates a blade that flattens the freshly-deposited extruded ceramic material to 

create a smooth external surface. 

 

The overall process is a combination of an extrusion process for forming the part 

surfaces and a filling process (pouring or injection) to build the object core. The 

Figure 2.43 shows a schematic representation of the CC process. 

 

 

 

Figure 2.43: CC process 

The advantage of this process is the ability to rapidly produce large-scale parts using 

relatively coarse beads (large nozzle diameters) and yet generate a smooth external 

surface. This process holds a major potential in the construction sector as large 
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components with complex geometry can be easily produced with various materials at 

a rapid speed. 

 

 

 

Figure 2.44: CC Ceramic parts
[78]

 

 

This method uses the material that will be used in the final application, direct 

manufacturing. Materials explored for this method include various materials for 

outside surfaces and as fillers between surfaces (clay-based materials and concrete). 

In addition, multiple materials that react with one another may be fed through the 

CC nozzle system and mixed in the nozzle barrel immediately before deposition. 

 

2.2.5.8 Slip-jet Printing 
 

This process, developed at DePauw University, USA by David Herrold 
[79]

 , produces 

ceramic objects using a mechanical mechanism which works with a pump to extrude 

a heavy clay slip ribbon, layer-by-layer through a nozzle, to build the object following 

the additive manufacturing principles. The slip jet printer works chiefly on rotational 
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motion as in a potter’s wheel. Additionally the system is computer controlled which 

enables it to create geometric shapes by blending various functions such the twist, 

offset, extrude and lathe techniques of the potter’s wheel. Figures 2.45 shows the 

Slip Jet process.  

 

 

 

 

Figure 2.45: Slip Jet Process
[79]

 

The paste solidifies by drying, which must be accomplished quickly in order to avoid 

distortion as the material is in a semi-fluid form (low viscosity) in order to achieve 

bonding of the layers. In particular, the lower layers should have a fast solidification 

in order to support the weight of the upper layers while maintaining the structural 

form. Initially, a solution developed for this function involved a semi-circular-shaped 

manifold which surrounded the rim of the object being constructed to feed air across 
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the deposited material and promote drying. Figure 2.46 shows a clear example of the 

process possibilities.  

 

 

 

 

Figure 2.46:  Figurative water towers by David Herrold, Slip-jet Process 

 

2.2.5.9  Ceramic Rep-Rap Process 

 

More recently, a Belgian company, Unfold, in partnership with Bits from Bites, is 

working on a new project called “L’Artisan Electronique”
[80]. The project uses a 

modified extrusion system base on the low cost, Rap Man 
 [81] 

technology project 

initiated by the University of Bath UK, for the extrusion of plastics materials. Figures 

2.47 and 2.48 show the printing system and an example of a printed part.  
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L’Artisan Electronique uses the same extrusion method but with dispenser operated 

by air pressure and a modified syringe nozzle. The system uses drying as the 

solidification method. The pressure on the reservoir produces a constant flow of clay 

paste that can be shifted via an electronic valve. This way, the shape is formed layer-

by-layer.  

 

 

 

Figure 2.47:  Unfold's L’Artisan Electronique / REPRAP Process
[80]

 

 

 

Figure 2.48:  Finishing ceramic part Unfold’s L’Artisan Electronique. 



Chapter Two_______________________________________Theoretical Background 
 

58 

 

 

Table 2.2 shows the most important AM of ceramics that are based on extrusion 

methods and a brief description of each process. 

Additive Manufacturing of Ceramics base on Extrusion Process. 
 

 
Method  

 
Description 

Deposition 
Method 

 
Solidification 

Fused deposition of ceramics Ceramic suspensions 
in a polymer or wax 
vehicle  

High 
temperature 
extrusion 

Cooling of molten 
material 

Robocasting Extrusion of high solid 
loads ceramic 
suspension 

Positive 
dispensing 
extrusion 

Gel casting 
Drying 

Multiphase Jet Solidification Thermoplastic powder 
mix  

High 
temperature 
extrusion 

Cooling of molten 
material 

Extrusion Freeform Fabrication Thermoplastic powder 
mix 

High 
temperature 
extrusion 

Cooling of molten 
material 

Freeze Form Extrusion 
Fabrication 

Aqueous base slurry Positive 
dispensing 
extrusion 

Freezing of binding 
media 

Contour Crafting Ceramic slip 
Concrete 

Screw dispensing 
system 

Drying 
Quick set 

Slip Jet 3D printer Ceramic slip Air pressure 
dispensing 

Drying system 

REPRAP Process Ceramic slip Air pressure 
dispensing 

Drying system 

 

Table 2.2: Additive Manufacturing Technologies of Ceramics based on an Extrusion Process 

 

 

 

 

 

 

 



Chapter Two_______________________________________Theoretical Background 
 

59 

 

2.3 DESCRIPTION OF THE METHOD 

2.3.1 Direct Writing- Freeze-casting (DWFC) system  
 

 

 
 

 
Figure 2.49:  DWFC SYSTEM 

 

The DWFC extrusion system is composed of five major components (see Figure 2.49): 

1) the actuation system (Isel Multi-K CNC router), the mounting point for the build 

platform which can be moved in the X-Y direction and a mounting head for the pump 

which can be moved in the Z direction. 2) Syringe pump (PVM syringe pump), which 

extrudes the material using a positive displacement mechanism. 3) Syringe; plunger, 

barrel (5ml capacity), and needle (0.9mm diameter orifice). 4) The build platform, 

which acts as the substrate for deposition of the extrudate and subsequent freezing. 

5) A computer which runs the software to control the motion of the actuation unit 

and the syringe pump operation based on data from the required object to be built. 

The CNC program was written as a text and translated in ISO standard, G&M codes. 
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The ceramic powder material was prepared as suitable slurry and then extruded via 

the syringe using a positive displacement system in which the plunger was moved at 

a constant speed, rather than based on a set pressure. Once the required object was 

formed, the slurry was rapidly cooled to below -40°C. The layer thickness was 

typically in the range 0.8mm to 1.2mm.                  

 

2.3.2 Freeze-casting Route 
 

Bulk freeze-casting has been known for about 60 years as a complex shape-forming 

technique mostly for refractory materials. This process is usually employed for the 

fabrication of technical ceramic parts; such as crucibles and kiln furniture, pouring 

cups, nozzles, orifice rings and many other components used in the high temperature 

processing of metal, glass and ceramics. Figure 2.50 shows the bulk freeze casting 

process, freezing occurs by placing the freeze-casting mould unit in a chilling 

apparatus with liquid nitrogen or an upright walk freezer temperature controlled 

bellow -30°C. 

 

Figure 2.50:  Bulk freeze-casting system (Adapted from Roche et al.) 

Release agent  
Silicon or wax 

Casting 
receptacle 

Mould  

Insulated material 
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At first, the freeze-casting technique was used to fabricate dense ceramic parts, 

instead of porous ceramics parts, by eliminating porosity through the use of high 

solid load ceramic suspensions 
[82]

. Thus, the unwanted porosity generated by this 

method was studied intensely and was found to yield unique microstructures, which 

are not possible to achieve through other routes. This raises the potential for the use 

of the freeze-casting method for the fabrication of porous objects. Subsequently, the 

addition of cryoprotectants* was proposed in order to achieve a high-density green 

part and better packing of the particles in the freezing stage. 

 

In the bulk Freeze-casting technique, ceramic powders of selected particle size are 

mixed with a freeze-sensitive sol (a stable suspension of nanoparticles in a liquid 

medium). The resulting slurries are poured into a nonporous mould, which is frozen, 

typically at temperatures around -40°C, followed by demoulding and liquid phase 

removal by sublimation. Figure 2.51 shows the main steps of the process. 

 

The rapid cooling of the slurry causes the solidification mechanism by an irreversible 

transformation that is based on the physical and chemical reactions at the fluid-solid 

phase transition of the slurry upon freezing. The demoulded green part has enough 

strength to be handled for a further firing or sintered stage in order to develop the 

necessary mechanical properties for the final product. 

 

*Note: A cryoprotectant is a substance that is used to protect biological tissue from freezing (due to ice formation) e.g. 

Glycerol, PVA and PE. 
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Figure 2.51:  Flow chart of the freeze-casting system 

 

a) Slurry preparation, b) Slurry poured into a non porous mould, c) Solidification, the 

slurry is submitted to lower temperatures (i.e. -40°C), the ceramic particles are 

entrapped between the ice crystals grow, d) demoulding and drying, sublimation of 

the ice crystals leading to porosity and e) sintering. 

 

The particles not only interlock irreversibly to form a rigid framework due to the 

increasing volume of the aqueous solvent during freezing (physical reaction), in 

addition, in the separation phase between the liquid and the solid particles during 

freezing, sol nanoparticles and ceramic particles are excluded from the liquid when 

ice crystals start forming (see Figure 2.52). This enables strong bonds to be produced 

between the sol nanoparticles (Siloxane bonds), including those adsorbed on the 

surface of the larger ceramic particles. It is the liquid carrier molecules that separate 

the sol nanoparticles from each other and stabilize the sol. Once the liquid barrier is 

removed, the nanoparticles become close enough to enable close attraction through 

van der Waals forces. An internal uniform pressure is induced and draws all particles 

together around the ice crystals, as if external pressure had been applied. The 

   a                          b                                    c                                  d                                e 
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variation of the materials suggest that the mechanism of freeze-casting depends not 

on the type of material but on the physical interaction rather than the chemical 

interaction
[83]. 

 

 

Figure 2.52: Phase separation of water and solid particles during freezing (Adopted 

from Andresen et al.) 

 

Finally, the frozen ice sublimes from the solid phase to the gas phase resulting in a 

3D porous network; which is representative of the entwined, dendritic, ice crystals. 

Thus, the porous structure is primarily defined by the morphology of the growing 

solvent crystals
[84]

. Figure 2.53 shows the particle changes throughout the freeze 

casting process.  
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Figure 2.53: The ceramic particle changes throughout the freeze-casting process chain. 

 

 2.3.2.1 Control parameters in the freeze-casting method 
 

Four main control parameters have been considered for the freeze-casting method: 

i) Solid content in the suspension, ii) the temperature and  freezing rate, iii) the 

additives, and iv) the freezing device [85]
. The following section presents a brief 

explanation of these parameters.  

 

i) The solid content in the suspension 

 

The solid content in the suspension is the key parameter in determining the total 

pore volume and percent porosity in the final ceramic part. The lower the 
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concentration of the filler particles, the more water by volume is contained in the 

suspension leading to higher levels of porosity in the final part. On the other hand, a 

high level of solid particles makes the formation of ice crystal difficult, resulting in a 

smaller crystal size which in turn leads to smaller pore size when sublimation occurs. 

The particle size of the filler powder is also an important factor; the porous structure 

is primarily defined by the morphology of the growing solvent crystals and, 

secondarily, by the ability of the particles to pack between the crystals, as finer 

particles will provide a better replica of the solvent crystals. 

 

ii) Temperature and freezing rate 

 

The temperature and freezing rate has a significant influence on the ice-growing 

stage and the sol nanoparticles separation during the freeze phase, and so on the 

microstructure formed. A very rapid freezing rate will lead to small ice crystals 

whereas a slow freezing rate will lead to bigger ice crystals. Nevertheless, the 

percentage of the total porosity is not affected, as the liquid content is the same
[86, 

87]
 .

 
 

iii) Additives 

 

Dispersant: In the preparation of the freeze-casting slurry, clusters of particles 

known as ‘soft agglomerates’ are formed due to the presence of van der Waals 

forces as the ceramic powder aggregates when it is added to any suspending 
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medium, such as water. This results in a suspension with higher viscosity, which 

makes processing more difficult. In addition, the suspension creates high-stress 

areas, reducing the mechanical properties of the component. Therefore, the 

prevention of agglomerates formation or their elimination from the suspension 

before the actual fabrication of the green body becomes crucial. Electrostatic, steric 

and electrosteric dispersion are the three main ways to achieve this, with the later 

being the most effective. This method involves the adsorption of either uncharged 

polymers onto an electrostatically-charged surface or the adsorption of charged 

polymers, referred to as a polyelectrolyte. 

 

Cryoprotectant: The addition of a cryoprotectant has been proposed in order to 

control the ice formation and then the microstructure of the final part
[88]

, the 

cryoprotectant affects the freezing kinetics of solidification morphologies, it binds to 

the liquid molecules, disrupts the complete crystallization of ice and results in an 

amorphous structure which has a smaller crystal size. Almost any water-soluble 

substance is likely to affect the freezing behaviour and crystal morphology. The 

desired properties of cryoprotectants for freeze-casting ceramics are: low toxicity, 

solubility in water, low freezing-point depression and cost effectiveness
[89]

. Several 

possible cryoprotectants have already been tested, such as ethylene glycol, 

propylene glycol, glycerol, methanol, ethanol and polyvinyl alcohol (PVA)
[90]

. 
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Overall, the most commonly use is glycerol, especially for the preparation of a 

homogenous paste, the glycerol usually decreases the freezing point of glycerol-

water mixtures by -1.6°C when 10%, -4.8°C when 20% and -9.5°C when 30%. 

Furthermore, glycerol reduces the volumetric expansion of water from 9% to 5% by 

volume at 20wt% glycerol in water
[89, 91]

, thus a more dense green part can be 

obtained, furthermore, since the overall the defects are reduced, the final density 

also increases.  

 

iv) Freezing Device 

 

The freezing device gives the total porosity distribution in the final part. In this way, if 

the sample is subjected to bulk freezing, for example in a close rubber mould, this 

will lead to a homogeneous microstructure. However, if the suspension is cooled 

from one direction, the porosity distribution can be aligned to a particular 

orientation. The freezing device can be configured to produce complex 

microstructures. 
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2.3.2.2 Combination of freeze-casting with different ceramic methods  

 

 

Freeze-casting has been combined with other ceramic processing methods (injection 

moulding, sol -gel and tape casting) in order to utilise the advantages of each 

technique. This new hybrid approach is described as follows:  

 Injection moulding 
 

QuicksetTM is a commercial process based on a combination of freeze-casting and 

injection moulding
[92, 93]

. This process represents the most viable technique for the 

fabrication of complex ceramics shapes. In this process, a powder is mixed with a 

binder liquid, mostly water, with a specific freezing point. It should be noted that 

conventional organic binders are not used; the mould is filled and rapidly cooled to 

freeze the binder fluid. The solid phase is compressed into interdendritic regions to 

produce a solid body. This is then dried and sintered as required. The advantage of 

this process is a shorter debinding and drying time. 

 Freeze- Gel-casting 
 

 

Gel casting is widely used in manufacturing advanced ceramics, because high-

strength green bodies can be obtained. Freeze-casting has been use in conjunction 

with gel casting with different gelation routes, such as agar, alginates and finally 

chemical gelation. In all cases, the freezing phase has taken place after the gelation 

has occurred
[94, 95]. 
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 Freeze-tape-casting 

  

The freeze tape-casting method results from a combination of the freeze-casting and 

tape casting processes
[96]

. This method is used to prepare gradient pore structure 

materials. As with the conventional tape casting process, aqueous ceramic slurry is 

cast onto a carrier and a doctor blade is used to control the thickness of the slurry. 

The ceramic slurry is then unidirectionally solidified and freeze dried in a high 

vacuum. This method has been applied to zirconium ceramic suspensions. 

 

2.3.2.3 Freeze-casting Materials 
 

Due to its applications and its advantages (fabrication of porous materials and 

controled porosity), the freeze-casting route has been extensively studied for the 

production of ceramic materials, mostly advanced ceramics and biomaterials such as 

alumina
[89]

, hydroxyapatite
[97]

, tricalcium phosphate, zirconia, titanium dioxide
[98]

, 

silicon nitride, mullite
[99]

, glass
[87]

, silica and silicon carbide. Freeze-casting of 

traditional ceramics, though studied,  has been research on a limited scale.  Ceramics  

such as lamponite clay, are used as additives in the freeze -casting process as a 

rheology modifier or film former due to its colloidal properties and also the use as a 

filler has been investigated
[100]

 . Furthermore, there has been a lack of investigation 

of ceramic materials composed of three or more components, as in the case of 

triaxial porcelain or other similar pastes. Moreover, the potential to exploit this 

method for porous materials applications opens up interesting research into non-
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ceramic materials. The following section describes briefly the state-of-the-art for this 

process and it uses. 

 

2.3.2.4. Freeze-casting of ceramic suspensions 

 

 Dense ceramic parts 

 

The first trials in freeze-casting were aimed at the production of dense ceramic parts 

[82]
. These trials were undertaken using ceramic powders such as mullite and show 

that the freeze-casting process is able to yield structures that are more homogenous, 

have increased mechanical properties and can be sintered at a lower temperature 

than for conventional ceramic manufacturing processes. 

 

Trials undertaken by Dogan et al.
[88]

resulted in highly-dense, sintered alumina, 

ceramics with a uniform microstructure because of the increased solid load (up to 60 

vol%). The high solid content in the formulation causes the restriction of ice crystals 

during the solidification of water, which is essential for successful freeze casting. The 

solid-load content in the suspension and the effect of glycerol (an additive used to 

obtain a higher density in the final ceramic part) has been also studied 
[89]

 . 
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 Porous ceramic parts 

 

The fabrication of porous ceramic parts by freeze-casting has been particularly 

studied using alumina and zirconia materials. Trials undertaken by Fukasawa et al. 

[101]
 resulted in porous alumina ceramics, with aligned macroscopic open pores. The 

pore structure was substantially affected by the starting slurry concentration and 

sintering temperature. Similar structures were also obtained by Mortiz et al.
 [102]

 for 

hollow ceramic components produced by the freeze-casting technique using ice as a 

mould material. Moreover, the production of porous ceramics by freeze-casting has 

been suggested as a route for the fabrication of metal-impregnated, ceramic-metal 

composites, as described by Roy and Wanner 
[103, 104]

.   

 

Other composite materials which have also been explored include aluminosilicates, 

such as kyanite and SiO2/mullite. Different morphologies were obtained depending 

on the freezing rate
[105]

; a slower rate results in the evolution of the porous 

structure from irregular to unidirectional columns and dendrites. In addition the 

suspension concentration determines the apparent macro-porous structure for high 

concentration levels
[106]

. 

 

Recently, a particular interest has arisen in the freeze-casting of nanoparticle 

systems
[107]

. To do this, an understanding of the freeze-casting behaviour of 
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nanoparticle suspensions is required, especially the interaction between the glycerol 

and the dispersant chains, such as poly(acrylic acid) (PAA), in order to obtain a 

properly-dispersed and stable suspension. 

 

The use of nanoparticles of zirconium also has been explored by the freeze-casting 

route for the fabrication of dental parts, in which the open porosity can be infiltrated 

with dental materials and the ice-mould technique can be used with a steel core
[108]

. 

Porous ytria-stabilized zirconium (YSZ) ceramics were fabricated by freeze-casting 

using aqueous ceramic slurries. Polyvinyl alcohol (PVA) was added to the slurry with 

the aim of controlling the microstructures and properties of the porous YSZ 

ceramics
[109]

. The same material, yttria-stabilized zirconium oxide (YSZ), was 

selected as the preliminary material for use in a Freeze–Tape-Casting Process for the 

production of catalyst supports, biological membranes and fuel cell applications
[96]

. 

The structures obtained by this method can also be infiltrated with other materials, 

for example Gold
[110]

 .  
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2.3.2.5. Freeze-casting of non-ceramic suspensions 

 

Another use of the freeze-casting technique will be the fabrication of cellular 

implants with control of pore structure and size in freeze-dried collagen 

sponges
[111]

. Freeze-casting has also been use in the development of porous, solid, 

drug-delivery systems by freezing a mixture of 93 (w/w%) potato starch and 7 

(w/w%) theophylline active ingredient to -20oC
[112]

. 

 

Another application which has been explored is the use of the freeze-casting method 

to create titanium foams with aligned elongated pores
[113]

 and the preparation of 

NiO-YSZ tubular scaffolds with radially-aligned pore channels. 

  

      2.4 WHITEWARE CERAMIC MATERIALS 

The most common ceramics are composed of oxides, carbides, nitrides, silicides, 

borides, phosphides, tellurides and selenides. Ceramic processing generally involves 

high temperatures and the resulting materials are heat resistant or refractory
[114]

. 

Traditional ceramics refers to materials composed of unrefined clay and 

combinations of refined clay and powdered or granulated non-plastic minerals. They 

are commonly used as building materials or within the home and industry. Although 

there is a tendency to equate traditional ceramics produced by manual processes 
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with poor repeatability and production efficiency, in reality, advanced manufacturing 

technologies are often used in this industry. 

Ceramic whiteware is defined as “fired ware consisting of glazed or unglazed ceramic 

bodies that is commonly white translucent and of fine texture, designating such 

product classification as tile, china, porcelain, semi-vitreous ware and 

earthenware”
[115]

. 

 

These compositions include hard porcelain, for art ware, tableware, vitreous sanitary 

ware, electrical porcelain, semi-vitreous tableware, hotel china, dental porcelain and 

others.  

 

A typical composition could be considered as equal parts of clay, feldspar and flint. 

This composition is called hard porcelain. One of the main advantages of quartz-clay-

feldspar bodies is the fact that they are not sensitive to minor changes in 

composition, fabrication techniques and firing temperature.  This adaptability results 

from the interaction of the phases present to increase continuously the viscosity of 

the fluid phase as more of it is formed at higher temperatures 
[116]

. A wide range of 

traditional ceramic compositions are mixtures of clay, feldspar and flint.  
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Among many classifications, whiteware can be further classified into four categories:  

a) Earthenware; is defined as glazed, non-vitreous (medium porosity), clay-

based ceramic ware. Applications for earthenware include art ware, 

kitchenware, ovenware, tableware and tiles. Colours may be red, for bodies 

with a high iron oxide content, to white, for the talc and triaxial formulas. The 

body is fired at a comparatively low temperature, producing an opaque 

product that is not as strong as stoneware or china. The product may be 

glazed or unglazed. 

b) Stoneware; is a vitreous or semi-vitreous ceramic ware of fine texture, made 

primarily from non-refractory fire clay or some combination of clays, fluxes 

and silica that when fired, has properties similar to stoneware made from fire 

clay. Applications include art ware, chemical ware, cookware, drainpipes, 

kitchenware, tableware and tiles. 

c) Chinaware; is a vitreous ceramic ware of zero or low absorption after firing 

that is used for non-technical applications such as art ware, ovenware, 

sanitary ware and tableware. 

d) Porcelain; is defined as glazed or unglazed vitreous ceramic ware. 

Applications for porcelain include art ware, tableware and chemical, 

mechanical, structural, or thermal applications e.g. ball mill balls, ball mill 

liners, chemical ware and insulators. Porcelain represents the foundation of 

the ceramics discipline and one of the most complex ceramic materials. 

Composed primarily of clay, feldspar and quartz, porcelains are heat-treated 

to form a mixture of glass and crystalline phases.  Porcelain is further divided 
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into high-fired porcelain (hard porcelain) and low-fired porcelain (soft 

porcelain). 

 

Porcelains typically are a triaxial composition of about 50% clay, 25% flux 25% filler, 

and fired parts containing these three constituents. Because of its glassy content (~ 

70%) and close porosity, hard porcelain has to be fired to very high temperatures, its 

silica-rich hard glaze is both chemically durable and abrasion resistant, fine 

translucent china basically consists of kaolin (30–40 wt.%), feldspar (25–40 wt.%) and 

quartz (30–50 wt.%). The body has low clay content but more feldspar and quartz, 

which improve the translucency. Fine translucent china is essentially soft porcelain, 

being biscuit fired at about 1230°C and gloss fired at 1150 °C. Fine translucent china 

is expected to have lower values of strength and fracture toughness than bone china 

since it contains more of the glassy phase and it also has an easily scratched glaze 

similar to bone china.  The glaze is then applied and fired on at 1050–1100°C under a 

different heating cycle. Bone china is a highly crystalline (~70% crystalline) material 

with the properties of being resistant to edge-chipping. Bone china is also the whitest 

pottery among the others and prized for its unique appearance. However, it is not 

very suitable in severe service conditions such as hotels and restaurants because its 

alkaline-rich glaze is easily scratched. Furthermore, it softens during firing and 

becomes pyroplastic so that it cannot retain its shape unless it is supported by 

refractory furniture 
[7,8].                                  .                   
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3. METHODOLOGY 

3.1 INTRODUCTION 

 

This chapter summarizes the methodology adopted for the experimental approach 

used in this research project. In addition to providing the overarching structure for 

the research, the materials and methods utilised at each stage of the project are also 

described.  

 

3.2 REVIEW OF PREVIOUS WORK  

 

As can be seen from the literature review, in recent years there has been significant 

interest in developing an AM method for ceramics, to enable complex ceramic 

shapes to be formed without the use of mould tools. In particular, extrusion is one of 

the approaches investigated, where ceramic powder is formed into a viscous, 

aqueous suspension (slurry). Unfortunately, akin to many conventional ceramic-

processing methods, parts produced by extrusion (direct writing) generally suffer 

from high levels of drying shrinkage (>5%).  

 

More recently, the AM method for ceramics has benefited from techniques based on 

extrusion combined with conventional ceramic-forming methods. In these so called 
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direct casting processes
[2], (sol-gel techniques, gel casting, starch consolidation, 

freeze casting etc.), the ceramic slurry is transformed into a solid state without the 

removal of water. This allows the use of a non-porous mould, which has considerable 

economic advantages, as well as an improvement in the homogeneity of the green 

body.  

 

Aim: The aim of this PhD study is to develop a material (based on a triaxial 

whiteware formulation) which can be successfully processed using the new AM 

approach of combining direct writing and freeze casting to enable customised 

ceramic products to be formed. 

 

Objectives of the experimental work; 

 

 Investigate the suitability of conventional triaxial whiteware ceramic 

formulations for the DWFC process. 

 Develop and fine tune a material that can be successfully extruded, freeze 

cast and fired. 

 Investigate the properties of the new material formulation and compare with 

conventional materials.  

 Develop improved processing conditions.  
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3.3 EXPERIMENTAL APPROACH 

 

The following methodology was used to investigate and develop suitable triaxial 

porcelain materials for the DWFC process. The trials were divided into three main 

stages;  

(1) Initial scoping trials based on standard porcelain triaxial system (clay based) to 

determine the suitability for the freeze casting process and development of a 

modified system based on non plastic porcelain (NPP-1). 

(2) Testing and further development of the material in extrusion, freeze casting and 

firing took place, which led to the developed of a refined formulation (NPP-2).  

(3) Fine tuning of the formula took place based on extrusion performance and this 

led to a development of the final formula (NPP-3 ).  

 

3.3.1 Freeze-Casting Trials  
 

 

As the Freeze Casting route is the proposed method for the solidification of the 

DWFC system, the first step of the experimental work was to understand the 

mechanism involved in freeze casting for the production of whiteware bodies, the 

experimental work sequences in four main freeze casting tests, as shown in the 

Figures 3.1, 3.2, 3.3.  
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Figure 3.1: Preliminary freeze-casting trials 

 

3.3.2 Extrusion Trials 
 

 

The Direct Writing trials in this experimental work involve the micro-extrusion of the 

developed material through fine nozzles, using a positive displacement mechanism. 

The overall experimental work comprises three main steps 

1. Test performance in extrusion. 
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2. Refine material to improve extrusion (particle size reduction, reduction in 

water content, addition of additives). 

3. Test performance for extrusion parameters, different velocities and different 

nozzle size.  

These stages are shown in more details in Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Preliminary extrusion tests. 

Reduction of the PS of each 
individual powder 

Test extrusion of the individual 
powders 

Particle size (PS) and particle size 
distribution (PSD) analysis 
of each individual powder 

Test trials 1: selection of water 
content (%) 

Test trials 2: selection of quantity 
of additives (%) 

Selection of milling rate 

Test extrusion of the final formula 

Optimization of the designated formula for 
fine nozzle-extrusion proposes 



Chapter Three_______________________________________________Methodology 
 

82 

 

3.3.3 Optimisation of process parameters  
 

After the selection of the final formula, an optimisation of the FC and extrusion 

parameters was proposed as a set of trials. This procedure is shown in the flow chart 

below (Figure 3.3): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                       Figure 3.3: Optimisation of the process parameters 
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3.4 MATERIALS AND METHODS 

3.4.1 Materials 
 

Materials are divided into solvent (liquid medium) and fillers (the powders).  

3.4.1.1 Solvent 
 

The solvent is comprised mainly of the colloidal silica sol dissolved in water with a 

small volume of additives (dispersant and cryoprotectant). The quantity of silica sol 

and additives within the formulation was initially based on the specification given in 

the literature (freeze cast patent)
[117] . 

 

Silica Sol: A sol is a colloidal suspension of solid particles in a liquid. The silica sol is a 

stable dispersion of submicron size SiO2 particles in water. The silica sol used in this 

experimental project was a commercial colloidal silica sol (Morisol AS 2040 from 

Morrisons, Liverpool, United Kingdom). In this silica sol, the liquid carrier consists 

essentially of water, stabilised with ammonia with a pH value of 9.0, such a sol 

usually has a SiO2 content of 20% to 50%. The main advantages of the use of water as 

the liquid carrier include the specific morphology of the ice crystals leading to unique 

porosity characteristics and its compatibility with many functional additives. 

 

Additives (dispersant): The dispersant utilized in this research was Dispex A40 (Ciba 

Speciality Chemicals Inc.). According to the manufacturer’s literature, this is a 

solution of an ammonium salt of an acrylic polymer in water (ammonium 
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polyacrylate: NHPA) with 40% active content, a density of 1.16g cm3, a pH of 8.0 and 

an average molecular weight of 4000. The structure of NHPA and its dissociation in 

water separates the particles in the suspension by electrosteric repulsive forces 

producing negatively-charged poly ions and ammonium counter ions 
[118]   

 

Additives (Cryoprotectant): The cryoprotectant used in this investigation was 

glycerol (reagent plus >99.0% grade from Sigma-Aldrich). As mentioned in the 

literature review, glycerol is well known for its antifreeze (freezing point depressant) 

properties in other applications. In this research project, glycerol was used to disrupt 

the morphology of the solidification process and thus produce a more dense 

structure
[89]

.  

3.4.1.2 Filler  

 

Several traditional ceramic powders (fillers) were used in the experimental work. The 

initial trials focused on the components of conventional triaxial porcelain (quartz, 

feldspar and clay). In later trials calcined clay substitutes were also used (fired 

porcelain and Molochite). In the freeze casting process the properties of the starting 

powders can have a major effect on the characteristics of the final material
[119]

, the 

interaction between particles is a critical part of the process and a number of 

parameters can modify these interactions, including the size of the particles, particle 

size distribution, particle shape, surface roughness and surface tension. 
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Filler type Supplier Product 
Code 

Particle size* 

Quartz Pottery Crafts P03337-05 <75µ 

Feldspar Pottery Crafts P03296-01 <75µ 

Clay (Kaolin) Pottery Crafts P3309-05 <75µ 

Molochite 
(Calcinated Kaolin) 

Pottery Crafts P3311-01 <17µ 

*According to the manufacturer information. 

Table 3.1: Filler powders used in the trials 

3.4.2 Methods 
 

Several test methods were performed for each stages of the project; overall they can 

be divided into three main steps, i) selection, characterisation and preparation of the 

powders, ii) forming the DWFC process and iii) testing the mechanical and physical 

properties of the final parts.  An experimental matrix is shown in Table 3.2 and each 

method used is explained in detail in the subsequent sections. 
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Table 3.2: Experimental Matrix DWFC for Triaxial Porcelain. 

 

Experimental Matrix/ DWFC of Triaxial Porcelain 
Preparation of the powders, forming and measure of properties 
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3.4.2.1 Characterization and Preparation of the powders 
 

 Ball Milling / reduction of the particle size 

 

The first step in the preparation of the powders for extrusion is crushing or milling 

the raw materials to achieve the required particle size. This was accomplished by dry 

ball milling the initial powder feedstock using a planetary ball mill (RETSCH PM 100, 

capable of reducing feed stock of up to 10 mm in diameter down to 1µm). The milling 

media was zirconia (ZrO2) balls with a diameter of 10 mm and a density of 6.0 g/cm3. 

The ball mill jar was also constructed from zirconia. With dry ball milling, the use of 

the additives (in this case Polyethylene glycol -PEG-400- due to its compatibly with 

water) to reduce agglomeration was recommended. Each powder was ball milled 

separately. 100g of powder and 0.05g of additive (PEG) was the composition of each 

mix. 300g of spherical alumina milling media (4-10mm) was added.  The 

compositions were milled at 180 rpm. The milling time varied for each powder 

depending on the particle size and density
[120] , long ball milling times were required 

to achieve the desired particle size, 30 hours for quartz, 24 hours for feldspar, and 22 

hours for molochite. The equipment was set up with an interval of stand by 1 minute 

every 10 minutes to avoid heating.  
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 Mixing 

 

After individually ball milling the powders to reduce the particle size, the final 

formula (three powders together) was ball milled (mixed) to generate a 

homogeneous mixture. In total 100g. of powder mix, with a composition of 50% 

molochite, 25% quartz and 25% feldspar, the ball milling time was 10 hours, with an 

interval of 1 minute every 10 minutes to avoid heating.  

 

  

 

 

Figure 3.4: Milling Media, top, Ball Milling Machine bellow. 
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 Sieving 

 

In early trials, dry sieving was used to characterise the starting powders to be used in 

subsequent tests and determine the appropriate particle size distribution for 

successful extrusion. An analytical sieve shaker (AS 200 control RETSCH) using sieve 

sizes 20, 35, 50 and 100µm was used to separate the particles into fractions with 

various size ranges.  

 

The powders were deposited individually in a stack of four sieves arranged in a 

progression of sizes (largest mesh size uppermost). The stack is then vibrated for a 

fixed time and the residual mass of powder on each sieve was measured. Initially 

sieving takes place for 20-30 minutes, this gives an idea of the PSD of the powders 

but problems can occur due to agglomeration of the powders and clogging of the 

screens during sieving.  To separate the powder into true volume fractions of 

different particle sizes requires a relatively long sieving time. For this reason an 

accurate PS and PSD of the final formula were determined by laser diffraction 

techniques and SEM. 
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Figure 3.5: 20,30,50 micron mesh size sieves. 

 

 Laser Diffraction Technique 

 

The Particle Size (PS) and Particle Size Distribution (PSD) of the individual powders 

used in the final formula were analysed separately (before and after ball milling) 

using the laser diffraction method (Mastersizer 2000 particle size analyser from 

Malvern Instruments). The technique of laser diffraction is based on the principle 

that particles passing through a laser beam will diffract light at an angle that is 

directly related to their size: large particles scatter at low angles, whereas small 

particles scatter at high angles. Powders samples of each material were dispersed in 

water and isopropanol (concentration of 1 wt %), (0.40 g of powder in 4 ml of liquid).  
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Figure 3.6: Mastersizer/E, International Manufacturing Centre 

University of Warwick. 

 

 X-ray Diffraction (XRD) analysis, X-ray Fluorescence (XRF) analysis 

 

XRD was used to analyse the crystalline phases in the suggested formula. In the XRD 

trial, the triaxial formulation was mixed for 1 hour in a ball mill before being placed in 

a sample holder and the diffraction patterns were recorded. This analysis was 

performed taking the powders of each material into a diffractometer D8 Advance 

(Bruker AXS Ltd, UK), using the copper Kα radiation, K 0.9 and  λ1.54Å, a range of 

2 of and a scan rate of 2o per minute. Phase identification was determined 

by comparing the diffraction patterns with the JCPDS standard powder diffraction 

files. XRD was also used to analyse the phase changes that the samples underwent 

during sintering. 
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Figure 3.7: X-ray diffraction system/Geology department, University of Leicester. 

 

X-ray Fluorescence (XRF) analysis was used to determine the elemental composition 

of the powders in the final formula. The test was performed using a simultaneous X-

ray spectrometer (Panalytical AXIOS Advanced). The body mix contained 50% china 

clay, 25% quartz and 25% feldspar. The raw materials were mixed and ground in a 

ball mill for 10 hours prior to characterization. The fitting limits were 3.994 64.000 

and the number of steps 200, R/R0: 5.04, RWP: 14.6, major elements were 

determinate on fused glass beads prepared from ignited powders, sample ratio 1:5, 

(80% Lithium Metaborate: 20% Li tetraborate flux). 
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Figure 3.8: X-ray Fluorescence (XRF), Geology department, University of Leicester. 

 

3.4.2.2 Freeze-Casting Method 
 

 Freezing Medium and Device 

 

Two freezing media were used in this project: liquid Nitrogen (-196oC) and a freezing 

bath with a mixture of ethanol and dry ice (-75oC). K-Type thermocouples (PTFE 

insulated) were connected to a Pico data logger TC180 and used to monitor both the 

temperature of the cooling bath and the specimen. 

 

The samples were generated in a non-porous mould (RTV silicone rubber), which was 

completely immersed in the freezing bath, resulting in omni-directional freezing (see 
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literature review) thus producing an isotropic, ice-crystal formation. Figure 3.9 shows 

the freezing device used in this project. 

 

 

Figure 3.9: Freezing device apparatus. 

 

 Drying and Sintering 

 

Drying: Freeze casting results in drying of the material by sublimation. However, 

contrary to conventional ceramic processing, where drying is a critical stage because 

of the tendency for parts to warp or crack, in the freeze casting process, the 

shrinkage of the green part is relatively small (<1%).  In bulk freeze casting once 

solidification of the parts is achieved the samples are maintained at low temperature 

to “freeze dry” the sample. However, in this experimental work, the vapour pressure 

was high enough to allow sublimation at room temperature, so that this step was not 
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required.  The samples were dried under ambient conditions for 24 hours at room 

temperature until the sample weight was stable.  

 

Sintering: Once the solvent had been totally removed, the resulting green body could 

be sintered in a kiln (ST314, Stafford instruments).  A different level of shrinkage 

occurred during sintering depending on the firing temperature used and the 

corresponding level of vitrification accomplished. As with any other ceramic process, 

the sintering stage can be optimised to control the porosity / density of the final 

piece
[101]

 . In this project, three different temperatures were utilised in order to 

select the most appropriate sintering regime depending of the microstructure and 

properties of the ceramic specimens (this is explained in the next chapter).  

 

 

Figure 3.10: Kiln / Ceramic Workshop, De Monfort University. 
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 3.4.2.3 Properties of the freeze-cast specimens 

 

The properties of the freeze-cast samples were established by three different 

techniques, described as follows;  

 Phase changes in the fired samples: XRD analysis was conducted on the 

freeze cast and fired sample to analyse the phase change that the samples 

underwent during sintering. The solid samples, fired at different 

temperatures, were ground to form fine particle by ball milling for 2 hours. 

The resulting powders were analysed and the effect of firing temperature on 

the sintering of the freeze-cast specimens was measured. To analyse porosity 

evolution during firing, the microstructure of the fired specimens was 

examined by Scanning Electron Microscopy (SEM). 

 

 Scanning Electron Microscope and Energy-dispersive Spectroscopy (SEM/ 

EDS):  A scanning electron microscope (SEM) Sigma advance analytical 

scanner with simultaneous EDS (Carl Zeis NTS GmbH Germany) was utilized to 

analyse the powders (particle shape, level of agglomeration) and also the 

microstructure evolution of the fired samples. The EDS analysis was 

undertaken simultaneously with the microstructure observations, which 

supports identification of the phases. EDS quantifies the elemental 

composition of a sample by measuring the wavelength and intensity of X-rays 

generated within a Scanning Electron Microscope. The X-rays are generated 

as a result of interaction of the electron beam with the electronic orbitals of 
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the atoms. Each element emits a characteristic set of X-rays under electron 

bombardment, and these are detected to identify the elements in the 

sample. The final samples were fired to different temperatures and the 

Microstructure evolution was investigated by scanning electron microscopy, 

energy-dispersive spectroscopy and x-ray diffraction analysis. At 

temperatures in the 850-1150°C range. 

 

 

Figure 3.11: SEM/ EDS, Scanning Electron Microscope with an integrating EDS system. Warwick 

Manufacturing Group, University of Warwick. 

 

 

The preparation of green bodies for microstructural analysis is more difficult 

than for dense fired samples, since they are weaker and tend to break up 

during grinding and polishing.  For this reason, the green ceramic specimens 

were manually broken and a flat ceramic surface was prepared for analysis by 

manual grinding in order to reduce the amount of crumbling of the surface 

layers. The samples were then cleaned with an air jet, attached to an 
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aluminium disc and PVD coated with gold to ensure that their surface was 

electrically conductive. 

 

The fired ceramic specimens were cut by grinding and mounted in Epo-Set 

clear epoxy mounting compound (Met Prep Ltd). They were then ground 

using 340 and 600 grit silicon carbide (25lbs force, 175rpm, contra-rotating, 

three minutes) and polished for four minutes using one and nine micron 

polycrystalline diamond (Met Prep). Then they were silver ‘dagged’ 

completely covering the top surface (except for the sample) and carbon 

coated. Unfortunately, this was found to be insufficient to prevent charging 

so a 30nm gold layer was sputtered on to the samples (this was sufficient to 

stop charging). All SEM images were taken at 10kV and all EDS results were 

taken at 20kV.  

 

 Physical & Mechanical Properties: The physical and mechanical properties of 

the samples were tested, following the standard approach commonly utilised 

in the ceramic industry (for example, porosity, shrinkage, density etc). These 

test methods were based on the ASTM (American Standard Testing Methods) 

glass and ceramic whitewares section (ASTM C373 – 88) and are described in 

detail in the following chapters.  

The flexural properties of the samples were measured using the three-point 

bend technique. Prior to conducting the experiment, the depth and thickness 
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of the samples were measured. The sample was placed centrally in the testing 

rig, with the surface which had been exposed to the coolant during the 

solidification process uppermost. A universal tensile test machine (Instron 

4301) was used to perform the trials, fitted with a bespoke 3-point bend test 

set up. The maximum load and deflection was recorded and used to calculate 

the peak stress and strain values (see equation 5.7, Chapter 5).  The total 

number of samples was 15 divided in 3 repetitions of five samples.  

 

3.4.2.4. Extrusion Tests 
 

 Viscosity: Basic rheological characterisation of the suspension was performed 

using a rheometer (Brookfield RS Soft Solids Tester) fitted with 14mm 

diameter concentric cylinder system operated at a constant temperature of 

21 °C +/- 0.2°C . 

 Measurement of Extrusion Parameters:  A test rig was developed to 

determine the flow of the slurry during extrusion based on an adapted 

constant rate of extension (CRE) testing machine (Instron 4301). This machine 

incorporated a highly sensitive electronic weighing system with load cells (25 

and 250N) that use strain gauges for detecting and recording tensile loads. 

The crosshead is moved by two vertical drive screws driven by stepper 

motors controlled through a PC interface. The magnitude of and load on the 

crosshead is continually recorded during testing.   
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Figure 3.12: Instron 4301 Materials Tensile Strength Machine, extrusion device. 

 

 

 

 

Figure 3.13: Instron 4301 Materials Tensile Strength Machine. 
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Figures 3.12 and 3.13, shows the test rig designed by the author to enable the 

axial load on the plunger to be measured over its entire stroke. It involves 

mounting the syringe used in the DWFC process directly on to a universal 

tensile testing machine thus enabling the plunger to be moved at a precise 

speed whilst simultaneously recording the load required to move it.  It 

consists of four main parts, 1) a barrel of 14.5mm internal diameter by 36.88 

mm length. 2) a rigid support housing that allows access to the extruded 

liquid (NPP-3 ), 3) a series of interchangeable nozzle attachments and 4) a 

plunger with a diameter of  14.33 mm by 60 mm length fitted with a 

replaceable PTFE ring. This PTFE material ring is clamped in place with a disc 

screwed to the end of the plunger. The use of this type of ring helps to stop 

friction at the barrel surface and avoids the possibility of any paste leakage 

moving upwards within the apparatus.  

Within the setup is a “cup and ball” type bearing that fixes the plunger to the 

universal test machine and transfers the force from the plunger to the load 

cell. This setup ensures that the plunger moves smoothly within the barrel.  

The load cell is typically placed under a maximum force of up to 250 N. 

 

The prepared material paste is placed within the barrel and the plunger 

mounted in the top of the barrel and the assembly mounted into the 

supporting housing on the base of the tester. The plunger was then driven 

down at the pre selected speed. The force generated was then recorded on 
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the load cell as a function of ram position and the plunger was then placed in 

contact with the Porcelain paste. The front of the paste surface was then 

pushed into and along the nozzle.  The resulting force data was recorded via 

software on the attached computer and latter collated. 
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4. MATERIAL DEVELOPMENT 

4.1 INTRODUCTION 

 

Based on the findings of the literature review, this chapter describes the 

experimental methods used for the preliminary trials and sets the parameters for 

further studies. This chapter comprises three major aspects: i) development of the 

material, ii) preliminary freeze casting trials and iii) preliminary extrusion trials. At 

this stage of the research, these three aspects were studied simultaneously, as the 

results are directly related. Throughout the development of the material 3 different 

formulations were developed, NPP-1, NPP-2, and NPP-3 , the first formulation was  

developed to enable freeze casting to take place and then this formulation was 

refined to improve extrusion behaviour to formulate NPP-2 and finally NPP-3 . 

4.2 EXPERIMENTAL WORK: PRELIMINARY FREEZE CASTING TRIALS 

4.2.1 Material Selection 
 

Due to it’s already known performance in whiteware applications, a standard 

porcelain triaxial formulation was used as the logical starting point for the research. 

Triaxial porcelain formulations are generally fabricated using quartz, feldspar and 

clay minerals such as kaolin. Kaolin, also known as 'china clay' is the purest form of 

clay, being a hydrated, crystalline, aluminium silicate mineral (it’s structural formula 
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is Al2O3·2SiO2·2H2O.) which acts as a plastic raw material 
[121]

. Plastic raw materials 

are normally required in triaxial formulations because they not only provide 

plasticity, but also transform into glass and crystalline phases during firing. 

Unfortunately, initial trials using conventional porcelain slurry formulations showed 

that the solid load content used in traditional ceramic processing methods was too 

low, leading to insufficient viscosity for controlled extrusion.  

 

Further trials were performed to reduce the water content of the slurry and although 

this addressed the problem of extrusion, no solidification occurred during the freeze 

casting process. It was deduced that this was due to the high level of water within 

the clay component of the slurry and its particle shape (clay’s sheet-like 

crystallography) that is present in a plastic, water-clay system. Kaolin is a complex 

platelet particle (Figure 4.1, 4.3) with a negative surface charge and a positive edge 

charge. Unlike other colloidal systems where there is only one type of surface charge 

at a given condition, fluidity depends on arrangement of the particles and their 

orientation. A loosely packed card-house structure (Figure 4.2) is typical for aqueous 

kaolin suspensions
[122, 123]

 Poor results with freeze casting of kaolin, where no 

solidification occurs, has been mentioned in previous literature 
[119].  

 

To explain the high level of water within the clay (clay water system),  it must be 

highlighted that the most important characteristic of clay is its capacity to change 

volume by absorbing water molecules (swelling behaviour), plastic clay minerals have 
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the properties of water absorption common to all fine grained materials as the clay’s 

mineral grains are below 2µm. In clay systems, the surface charges found on the 

mineral structure attract and absorb water in layers. Although these layers are 

arranged in a loose fashion, the water cannot be easily extracted and hence 

lithostatic pressure is necessary to desorbs water from within the clay
[124, 125]

. All 

clays attract water to their surfaces (adsorption), but some of them incorporate it 

into their structure (absorption). Absorption is the incorporation of molecules into 

the crystal grain, whereas adsorption is the addition of molecules onto the surface of 

grains
[126]

. In the freeze casting route, the liquid content in the formulation must be 

frozen and the growth of the ice crystals will interlock the solid particles. The layers 

caused by adsorption of the micro-particles and the swelling of the particles 

(absorption) do not allow the ice crystals to grow freely. Interlocking of the clay 

particles does not occur and the material will become liquid again at ambient 

temperature.  

 

In conclusion, it can be stated that a new approach must be investigated for the 

freeze casting of triaxial formulations. In this new approach, the clay mineral may be 

substituted by other ceramic materials that give the same properties when sintered 

but enable the growth of ice crystals when the liquid component in the formulation 

is frozen.  
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Figure 4.1:  Schematic illustration of particle platelet, Kaolin Clay. 

 
Figure 4.2:  Schematic illustration of the clay particles in water; surface charges on individual particle 

(left) and aggregated particle network formed by the attraction of oppositely charged faces and edges 

also called house of cards(right)
[6]. 

 

 

 

 

Figure 4.3:  SEM micrographs of Clay Kaolin shape like Particles in water. 

1µ 
0.5µ 
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4.2.2 Substitution of the clay material  
 

 

To provide a formulation which has more appropriate properties for the DWFC 

process, it was decided to replace the clay material, which is the primary source of 

alumino-silicates and the colloidal constituent in the slurry formulation, with pre-

fired bodies (already calcined) (molochite, that is calcined  kaolin  and fired 

porcelain).  The difference between these “processed” materials and raw materials is 

that they have been submitted to a heating process, which although below the 

melting point of the material itself, changes its characteristics and the ability to 

absorb water. The use of calcined materials as a substitute for the plastic body in the 

triaxial porcelain formulation for the preparation of non-plastic porcelain has been 

investigated by different authors
[127-129]

.  

 

The constituent materials used in subsequent trials were Feldspar and Quartz 

powders, molochite (calcined clay-kaolin) and high-fired (HFP) and low-fired (LFP) 

porcelain prepared by milling unglazed porcelain in a Retsch PM 100 planetary ball 

mill (formulation and ball milling process are described in more detail in Chapter 3 

Methodology). Polyethylene glycol, (PEG-400) was added as a plasticiser, not only in 

the ball-milling stage but also in the extrusion phase, to off-set the adverse effects of 

removing the clay (i.e. to provide “plastic” properties). A colloidal silica sol, Morisol™ 

2040 AS, was used as the sol component in the slurry, glycerol was added as 

cryoprotectant to reduce the formation of large elongated ice crystals during the 

freezing process
[89]

 and Dispex A40 was used as a dispersant in order to achieve 
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uniform mixing and avoid agglomeration of the particles or setting of the suspension. 

The chemical composition and firing temperature of the powders are shown in Table 

4.1 

 

Material Temperature of 

fired 

Composition 

Molochite 1550ºC 55% (Al2O32SiO2) 

45% (SiO2). 

HFP 1280ºC K2O-AL2O3-SiO2 

LFP 1100ºC K2O-AL2O3-SiO2 

 

Table 4.1 Composition and fired temperature of the calcined powders 

 

Six different slurry formulations were prepared (their composition is shown in Table 

4.2). F-1 to F-3, were based on the formulation mentioned above: triaxial porcelain, 

which varies the composition due to the substitution of the clay component. F4 to F6 

are simply the raw materials molochite, low and high fired porcelain. 

 

Composition Feldspar 

w% 

Quartz 

w% 

Molochite 

w% 

HFP 

w% 

LFP 

w% 

F-1 25 25 50 - - 

F-2 25 25 - 50 - 

F-3 25 25 - - 50 

F-4 - - 100 - - 

F-5 - - - 100 - 

F-6 - - - - 100 

 

Table 4.2 Material compositions with progressive replacement of clay material (w %) 
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4.2.3 Sample Preparation 

 

The powders for each formulation were mixed together for 10 hours, along with the 

PEG-400, utilizing a planetary ball mill with 20mm diameter zirconium media at 180 

rpm. The suspension was prepared with 75.6 wt % powder and 24.31 wt % solvent, 

(silica sol, Dispex and glycerol in percentages of 93.80 wt%, 5.62 wt% and 0.56 wt% 

respectively) no additional water was added to the formulation. The solvent 

composition characteristics are described as follows; silica sol suspension (Morrisol 

AS 2040, Liverpool United Kingdom), based on water containing 40% silica 

nanoparticles, the particle size of the silica is 20µm and the solution was stabilized 

with ammonia
[117]

, Dispex, ammonium polyacrylate (NHPA) (CIBA chemicals United 

Kingdom)
[130]. Finally, the cryoprotectant glycerol was added within the formulation 

to act as a freezing point depressant, improving the mechanical properties of the 

sintered part and achieving dense bodies with uniform microstructure but also 

increases the viscosity of the slurry
[91]

. All the components and percentage in the 

formulation were according to the patent for freeze cast process example six
[117]

.  

 

The solvent was added to the powder in small amounts while stirring. After 

homogenous slurry was obtained, bubbles were removed from the slurry using a 

vibrating table (50-100Hz) for two minutes, being careful to avoid segregation. 

------- 
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4.2.4 Freeze Casting Trials 

 

Following the steps in the bulk freeze casting process (see literature review, section 

2.3), the slurry was poured into a non-porous rectangular mould, (80mm long x 

20mm wide x 5mm deep) and immersed in a dry ice and isopropanol (IPA) bath at -

70oC (constant freezing rate) for two hours to completely freeze the mixture and 

allow the growth of the ice crystals between the particles. 

 

The samples were then removed from the mould and dried at room temperature and 

the weight was regularly checked until stable. The dried samples were then sintered 

at 1280°C, the minimum temperature required for high fired porcelain
[131]. The 

selection of the minimum temperature was chosen because the substitution of the 

clay for a pre-fired material may lower the firing temperature of the ceramic body 

and over-fired parts will lead to a pyroplastic deformation (distortion of the sample 

compared to the shape of the mould as a function of the vitrification of the ceramic 

body during its firing)
[129]. This kind of deformation is related to an excess of liquid 

phases formed during firing and the reduction of the viscosity of these phases
[132]

. 

 

The samples were then assessed by measuring the linear-firing shrinkage and water 

absorption. These tests are commonly performed within the Traditional Porcelain  

(TP) Industry and give an insight to the characteristics of the fired body. Absorption 

and linear-firing shrinkage are related to other important factors such as density, 
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vitrification and porosity. In addition to absorption and linear-firing shrinkage, a 

visual assessment of each sample was undertaken to give an indication of  

deformation, surface finish and colour. Deformation was assesses by simply measure 

the deflection arrow of the ceramic specimen, value of d, which is the measure of the 

slump on the ceramic bar, after firing, see Figure 4.4 A. to determinate d a metal bar 

was placed against the ceramic bar on the concave side so that its ends were 

equidistant from those of the ceramic bar, and d was measured with a calliper. Then 

3 different values were given; low, medium and high according to the deformation 

level. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Deformation assessment of pyroplastically deformed bars. 
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The linear-firing shrinkage was assessed by measuring the distance between two 

reference lines, marked on the surface of the sample, after drying and after firing (as 

specified in ASTM C326 
[133]

– see Appendix 1 for full details). The water absorption 

was measured using the industry standard method (ASTM C373-88
[134]

). The fired 

sample was immersed in boiling water for five hours and allowed to cool for 24 hours 

before removing and weighing the sample. The weight of the sample before and 

after the absorption test was measured and used to calculate the mass of water 

absorbed as a percentage of the weight of the fired sample.  

 

Once the samples were assessed the substitute clay material was selected. The 

chosen final formula was referred to as NPP-1 (non plastic porcelain formula 1), and 

was subjected to further analysis to characterise the raw powders used.  X-ray 

Diffraction analysis (XRD) of the clay material substitute (molochite) was undertaken 

to identify its mineralogical composition. In addition, a further XRD and X-Ray 

Fluorescence (XRF) analysis of the formula with the three components combined 

mixed by ball milling (as described in Section 3.5 on methodology, Chapter Three) 

was performed to establish the chemical and mineralogical composition of the 

overall formula. Finally, the particle size, particle size distribution and particle shape 

of the individual powders was determined by a dynamic light-scattering analyser 

(Malvern Instruments Inc.) and scanning electron microscopy.  
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4.2.5 Results and Discussions 
 

 

4.2.5.1 Linear-firing Shrinkage and Water Absorption 

 
 

The linear-firing shrinkage and water absorption values of the different slurry 

formulations are shown in Table 3. Formula F-1 not only gave the lowest linear-firing 

shrinkage in the freezing and firing stage of the process but also less deformation, a 

good quality surface finish and an off-white colour. Ideally, the material should be 

white and glossy in appearance to match the current performance of conventional 

porcelain materials (see literature review Section 2.4).  The F-4 formula (only 

molochite), although suitable for freeze casting, gave relatively low firing shrinkage 

levels with no deformation. Its mechanical and visual characteristics did not, 

however, compare favourably with traditional porcelain (TP) in terms of 

transparency, surface finish or strength. It gave a “chalky” material texture without 

any visual signs of vitrification. This was because molochite is a refractory material 

and it does not go through a vitrification phase (there is no chemical transformation 

during firing).  
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 Linear-firing 

shrinkage (%) 

Absorption 

(%) 

Deformation Surface finish Colour 

F-1  1.81 19.50  None  Matte/glossy  Cream/pink  

F-2  5.26 13.31  None  Glossy  Grey/pink  

F-3  7.27 8.58  Medium  Glossy  White  

F-4  1.90  19.27  None  Matte/rough  Cream  

F-5  7.27  11.40  None  Glossy  Brown  

F-6  12.72        2.03  Medium Silk White/grey 

 

Table 4.3 Comparison of the characteristics for samples F-1 to F-6 

 

In a porcelain body, as the firing temperature is increased, a point is reached where 

major vitrification occurs after this point a series of defects can occur (bloating, 

deformation, cracks etc.). Porosity in the body is reduced but this leads to higher 

levels of linear-firing shrinkage. The choice of firing temperature is thus critical, as 

firing shrinkage can lead to cracks or deformation in the final body and is an 

important factor in AM if accurate, high-integrity parts are required. The relationship 

between the linear shrinkage and porosity (as indicated by water absorption) is 

clearly shown in Figure 4.5. 



Chapter Four ________________________________________Material Development 
 

115 

 

 

 
Figure 4.5: Relationship between linear-firing shrinkage and water absorption. 

 
 

The linear-firing shrinkage of a fully vitrified TP body (fired above 1200°C) processed 

traditionally by slip casting process, is usually between 13 to 15%, depending on the 

formula and manufacturer (maximum temperature of firing). It can be seen from 

Table 4.3 that the levels of linear shrinkage for samples processed by freeze casting 

are significantly lower. However, the material looses one of the main characteristics 

of high-fired porcelain, which is ~0.5 water absorption
[121]

, due to total vitrification 

of the body. Nevertheless, it should be possible to reduce the porosity of the 

material by changing the firing temperatures and freezing rate.  
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Finally, based on the previous experimental results; the sample F1 was selected. This 

formulation will be referred NPP-1 hereafter, and further analyses will be performed 

for its optimization.  

  

4.2.6 Criteria for Successful Freeze Casting   
 

 

One of the critical criteria to assess is the ability of the material to undergo successful 

freeze casting. Although there is evidence that the clay-based material does not 

undergo freeze casting and the NPP-1 material does freeze cast, it is important to 

provide clear criteria for judging when freeze casting has occurred. Unfortunately, 

there is no clearly defined single method of assessing the suitability of a material for 

freeze casting.  Assessing if freeze casting has occurred is based on the interpretation 

of micrographs of samples, together with a physical assessment of the material. For 

example, it would be easy to confuse freeze casting with samples processed by 

freeze gellation (in the latter, samples are dried by the freezing process but an 

irreversible chemical reaction does not occur)
[135]

. With this in mind, the ceramic 

specimens produced in the previous experimental work (section 4.2.2) were assessed 

to find evidence of successful freeze casting. The main points considered as criteria 

for successful freeze casting were: solidification, dry shrinkage, cracking and pore 

structure
[119]

 (as discussed in Chapter Two). The characteristics of the new material 

are listed as follows:  
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1) Irreversible Solidification - after thawing, all the specimens have sufficient 

strength to be removed from the mould without breaking up. Although 

removal from the mould is not required for the DWFC process, the parts have 

sufficient green strength to enable handling and post processing.   

2) Dry Shrinkage (shrinkage of the unfired part) - the average of the dry 

shrinkage of the new material specimen is around 1% (must not exceed ~5% 

which is the maximum shrinkage for unfired freeze cast parts – above this 

level, parts have not been correctly freeze cast). 
[85, 119]

 

3) Cracking- there is no visible cracks after drying. 

4) Pore Structure - finally, the three-dimensional, interconnected, pore network 

structure replicates the pattern of the ice formed when freezing occurs.  In 

the freeze casting route, the pore structure is a replica of the morphology of 

the ice crystal growth pattern during the solidification of the solvent 
[13]

. 

Extensive work has been carried out in order to understand the nature of the 

pore morphology formed in a freeze cast ceramic specimen
[136, 137].  When 

the main component is water, pores are expected to exhibit the shape of 

water ice crystal growth structure. The interconnected dendritic structure 

formed in the newly developed material (see Figure 4.6 left) is indicative of 

water’s common structures when freezing under special conditions. The 

morphology of super cooled water changes with the growth time, from a 

circular disk to a perturbed disk and finally to a developed dendrite with 

hexagonal symmetry
[138]. As the main component in the solvent is water, the 
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dendritic pore structure found in the freeze casting samples produced in the 

trials is clear evidence of the ability of the new material to be freeze cast. 

Figure 4.6 shows an SEM image of the three-dimensional, interconnected, 

pore network for; (a) ice that show the dendritic structure due to a slow 

freezing rate and (b) freeze casting slurry material (unfired) which shows a 

similar structure. 

 

 

a)                                                                             b) 

 

Figure 4.6:  Entwined, dendritic, ice crystal structure of water (a), three dimensional interconnected 
pore network image taken by scanning electron microscope (SEM) of an unfired specimen of the 

freeze cast new material; this structure is representative of the entwined, dendritic, ice crystals and 
proves the reaction of the material during the freeze casting process (b). 
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4.2.7 Raw material characterization NPP-1 
 

 

4.2.7.1 Characterization of substitute material 

 
 

Further characterization of the raw powders was needed, in order to understand the 

properties of the newly developed material. As a starting point, a chemical 

characterization of the selected substitute material was performed. The substitute 

material, molochite, is a ceramic material commonly used in the traditional ceramic 

industry as grog (see glossary of terms, Appendix- 2) and can be found commercially 

as a powder ranging from fine to coarse graded. Molochite is a hard, abrasion 

resistant, alumino silicate produced by the calcination of a specific type of Kaolin to a 

peak temperature above 1500°C. In its production, the selected kaolin powder 

undergoes several processing stages, as follows: preparation of the raw powder, 

calcination, crushing, ball-milling and, finally, screening. Commercially available 

molochite can be found with particle sizes ranging from 17 (fine molochite) to 72µm 

(grog kind molochite). Figure 4.7 shows the SEM picture of the powder used in these 

experiments. This is molochite (fine) powder with particles below 17µm. It can be 

seen in the figure that the finer particle size is ~1µm and higher particle size is 

~17.62µm. 



Chapter Four ________________________________________Material Development 
 

120 

 

. 

Figure 4.7: Scanning Electron Microscope (SEM) picture of molochite Powder. 

 

At this stage of the research, a chemical characterization of molochite was 

performed. Figure 4.8 shows the mineralogical composition analysis by XRD. The 

study shows mullite as the main material, as molochite is fired china clay, fired to a 

temperature of 1500°C. Basically the calcination process converts the kaolin into a 

mixture of mullite crystals and amorphous material (amorphous silica glass). It can be 

noted from the analysis that the process of calcination completely avoids the 

production of crystalline silica, such as cristobilate or quartz. Instead, amorphous 

silica glass was produced because the molochite used in this project was produced 

from a particular kaolin component which is low in iron and alkalis and high in 

alumina, Al2O3 (alumina) 30.68 w% and Fe2O3 (Iron Oxide) 0.59 w%.  See the chemical 

composition (Table 4.6 page 131).  
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Figure 4.8: XRD analysis of molochite, the red peaks identifies the main component as mullite. The 
noise in the background, represented by a black line, is the amorphous material (silica).  

 

 

In the transformation of the kaolin to mullite, the material undergoes three main 

chemical phases as the firing temperature increases. These three steps are described 

in Table 4.4 below. 

 Phase 1                          Phase2 Phase3 

6Al2Si2O5(OH)4      6Al2Si2O7   3Al4Si3O12 2Al6Si2O13 

kaolinite                               metakaolinite   silicon spinel               primary mullite 

 500°C                     925°C                >1100° C 

 

Table 4.4 Transformation of the Kaolin clay to mullite, chemical phases
[131]

 

 

 

In Phase 1, at 500°C, the material kaolin, 6Al2Si2O5(OH)4, undergoes dehydroxylation 

where the water between particles and bound into the mineral lattice is removed. 

This separation is represented as (12H2O + 6Al2Si2O7) and transforms the material to 

metakaolinite. In Phase 2, at 925°C, the material undergoes further reaction where 
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the parent crystal is rearranged and silica is rejected in the form of glass, (3SiO2 + 

3Al4Si3O12) and spinels form.  In Phase 3, over 1100°C, primary mullite forms, to leave 

primary mullite and amorphous silica.  

 

Identifying the main material as mullite, provides a good opportunity to understand 

what will happen to the material in subsequent stages of the firing process. Basically, 

in the freeze-casting route, two main chemical transformations are expected to 

occur, both of them due to the chemical reaction of the material caused by the 

temperature change. The first one is freezing, where the solvent transforms from a 

liquid to solid and when the material returns to room temperature the solvent 

sublimes from a solid to a gas.  The second stage is the vitrification of the ceramic 

green specimen during firing at an elevated temperature. 

 

In a conventional triaxial porcelain formula, the reaction between the three powders 

during the firing phase is significant. Table 4.5 shows the different reactions of the 

material due to the increase in temperature which results in a grain-bonded 

microstructure consisting of coarse particles (filler) held together by a glassy matrix 

that contains mullite and dispersed or partially-dissolved quartz particles
[139, 140]

. 

Mullite (3Al2O3 .2SiO2) plays an important role in this transformation.  Mullite forms 

in vitreous ceramic formulas from the pure clay and its interaction with the other 

components. The amount of mullite produced is directly related to the amount of 

alumina in the raw powders and the sintering temperature. Generally, two kinds of 
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mullite are present in fired porcelain bodies; primary mullite, formed from the 

decomposition of pure clay, and secondary mullite, formed from the reaction of the 

three materials together, feldspar and clay, and feldspars, clay and quartz
[121]

.  

Phase Temperature °C Reactions 

1 Up to 100 Loss of moisture.  

2 100-200 Removal of absorbed water. 

3 450 Dehydroxylation. 

4 500 Oxidation of organic matter. 

5 573 Quartz inversion to high form, little overall volume 
damage. 

6 925 Spinel forms from clay, start of shrinkage.  

7 <1100 Primary mullite forms. 

8 1050-1100 Glass forms from feldspar in a glassy phase, 
secondary mullite forms, shrinkage continues. 

9 <1200 More glass, mullite grows and pores close some 
quartz dissolution. 

 

Table 4.5: Processing history for a conventional triaxial body 
[131]

 

 

 

As can be seen in Table 4.5, until Phase 7 - the formation of primary mullite - the clay 

material undergoes the same transformation as in the production of molochite. After 

this point, the material reacts with the other components to form secondary mullite.  

 

Feldspar is transformed into a viscous glassy liquid and as the temperature increases 

further, the solid feldspar particles discompose to form more liquid. When Phase 9 is 

reached, it is found that quartz will partially discompose at these very high 

temperatures. This phase will be followed by a soaking period at the maximum firing 

temperature (to enable temperature gradients to even out). The next phase is 

cooling where the liquid solidifies to a glass which binds together the unmelted 

particles and crystals (silica quartz particles and mullite). In the new non-plastic 
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formulation (NPP-1), the material replacing the clay is already a pre-fired body, 

where kaolin has been converted to primary mullite but the reaction with the other 

components is expected to continue until the glassy phase is reached. Further 

analysis needs to be performed on the fired specimens in order to determine the 

exact temperature at which vitrification occurs. Full vitrification is reached when a 

degree of melting or firing confers a high (>40%) glass content to the fired porcelain 

bodies. Over-firing will lead to an excess of liquid in the glassy phase and thus to a 

pyroplastic deformation.  

 

 

4.2.7.2. Characterization of the formula for the triaxial, non-plastic porcelain NNP-1 
 

 

As a second stage of the material characterisation, a further examination of the raw 

powder was performed. In this case, the study was undertaken on the triaxial 

porcelain formulation NNP-1, with the three powders together. It was expected that 

understanding the mineralogical composition of the formula would help explain the 

physical and chemical changes occurring during firing. The chemical composition of 

the unfired powder was determined by XRF. Table 4.6 shows the components in the 

formula, where it can be seen that silica (SiO2) and alumina (Al2O3) are the dominant 

oxides (63.59 and 30.68 wt% respectively), the raw materials used were molochite, 

potash feldspar and quartz. The crystalline phases of the formulation were identified 

by XRD and are shown in Figure 4.9.  
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Material % 

SiO2 63.59 
TiO2 0.051 
Al2O3 30.68 
Fe2O3 0.59 
MnO 0.009 
MgO 0.10 
CaO 0.17 
Na2O 0.79 
K2O 3.66 
P2O5 0.078 
SO3 <0.002 
LOI 0.88 

Total 100.61 
 

Table 4.6: Chemical analysis of the NNP-1 non-plastic porcelain material (XRF analysis) 
 

 

 

Figure 4.9: Results of XRD analysis NNP-1 non-plastic porcelain formula 
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The crystalline phases identified in the triaxial composition were quartz (SiO2) and 

mullite (3Al2O3 .2SiO2), being major crystalline phases, and corundum (Al2O3), albite 

(NaAlSi3O8) and microcline (KAlSi3O8) as minor crystalline phases. Some amorphous 

material (amorphous silica) can also be seen in the background of the analysis (black 

line on graph – Figure 4.9). In Figure 4.9 the quartz corresponds to the quartz itself, 

mullite corresponds to the molochite and corundum, albite and microcline to the 

potash feldspar. The overall materials were identified as 36.0% Quartz Low, 25.7% 

Mullite, 16.6% Microcline, 5.7% Corundum and 16.0% Albite. 

 

4.2.8. Final remarks developed of the NPP-1 

 

The new approach to preparing highly concentrated solid load slurries (75.6 wt% 

solids) of triaxial porcelain composition suitable for freeze casting (NPP-1) has 

overcome the significant difficulties relating to the freeze casting of kaolin clay by the 

substitution of clay with pre-fired materials. However, trials must be performed to 

check if the selected substitute material, molochite, changes the parameters of the 

sintering process, such as the temperature of firing. Once the solid content in the 

formulation has been established, the mechanical behaviour of the novel porcelain 

could be influenced by two other main parameters: freezing rate and temperature of 

firing, which dictate the level of porosity in the sintered part.  The freezing rate will 

dictate the morphology and size of pores and the temperature of firing will dictate 

the reduction of porosity due to the quantity of glass formed in the vitrification 

phase. A deeper understanding of the mineralogy of the materials will lead to a 
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better comprehension of the physical and chemical changes during processing (after 

the freeze casting stage) and thus determine the composition and microstructure of 

the final part. Further work needed to be carried out in order to establish the critical 

parameters of the process, including the freezing and firing rates (these will be 

addressed later in this chapter).  

 

In addition to the DWFC method, the NPP-1, material developed could be applied to 

other processes that involve freeze casting, such as freeze casting-injection 

moulding, freeze casting-tape casting and freeze casting-gel casting. The advantages 

of the bulk freeze casting route as a method for traditional ceramic materials have 

been discussed before
[141]

. The process allows the use of non-porous, flexible 

moulds (for example, silicone rubber moulds) for the fabrication of complex parts.  

 

This facilitates the removal from the mould phase, thus allowing the formation of 

intricate parts, complex surface patterns and the reproduction of extremely fine 

details. This offers the potential to form ceramic shapes that cannot be formed by 

plaster moulds and are usually achieved by techniques such as hand carving or hand 

modelling, severely restricting the rate of production.  One example could be the use 

of flexible moulds that facilitate the fabrication of a complex object in a one-piece 

mould, as is the case of a cup, thus eliminating the need for a post-process to join the 

handle with the main body. Thus, freeze casting, as a route for traditional ceramics, 

also offers less distortion and less cracking or warping.   
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Having demonstrated that the NPP-1 material can be successfully freeze cast, the 

next step was to optimise the formulation for the extrusion process. It was expected 

that a reduction in particle size, a wider particle size distribution and the use of 

additives would help to reduce the viscosity to facilitate extrusion through fine 

nozzles, as will be required in the new DWFC process. Preliminary extrusion trials 

were performed to optimise the formula based firstly on the selection of particle size 

and particle size distribution and then on the solid content and additives used. 

 

4.3 DIRECT WRITING FREEZE CASTING PROCESS 

 

4.3.1 Process Stages 
 

The selected formula NPP-1 from freeze casting trials was then extruded using the 

DWFC system to provide an indication of its suitability for extrusion. The preparation 

of the raw powders and the formulation was the same as that described in the 

previous bulk freeze casting trials but this time the material was loaded into a syringe 

and deposition was achieved by the positive displacement method. After this step 

the extrudate was subjected to low temperatures (lower than -40°C) layer-by-layer. 

Further steps include drying by sublimation of the ice crystals and firing.  Each of 

these steps will be explained in more detail later in this section. 
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      Figure 4.10: Flow chart of the DWFC process. 

 

As can been seen in Figure 4.10, the DWFC process was divided into three basic 

stages that had been carefully controlled throughout the experimental test; 1) paste 

preparation (dry mixing -raw particles-, wet mixing and degassing), 2) forming 

(DWFC) and 3) finishing (drying and firing). These stages are explained in detail in the 

section below: 

Paste Preparation:  

 Dry Mixing – after the selection and weighting of the powders, dry mixing 

was used to uniformly mix all solid components in the formulation. The 

powder components were mixed together to give a 100g sample, where 50g 
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correspond to Molochite, 25g feldspar and 25g quartz, mixing was 

undertaken by ball-milling these powders in a dry state for a period of 6 hours 

at a slow milling rate (100rpm). Careful mixing of powders was a critical step 

to provide a homogenous formula in triaxial compositions. 

 

 Wet mixing and high-shear mixing – In this stage of the preparation of the 

paste the solvent was incorporated into the powder in a uniform way to help 

promote uniform particle packing and ensure stable extrusion properties.  

The particles used in the extrusion process can be locked together in the form 

of agglomerates.  For extrusion to be most effective and to avoid 

perturbations during extrusion, it was necessary to break down any 

agglomerates to single particles and to ensure that these are fully covered 

with the liquid phase. The agglomerates found in the formula were soft 

agglomerates, which are easy to break down and mix with the solvent using 

high-shear mixing.  

 

 Degassing – This stage aimed to reduce the entrapped gas inside the paste. 

Entrained gas, present in the paste due to mixing, could lead to bubbles and 

thus to defects in the final part. Gas removal was promoted by increasing the 

surface area of the paste, for example by shredding. Usually, the application 

of vacuum conditions is desirable as this can cause the gas to nucleate and 

form bubbles, which rupture and leave the paste. Unfortunately, in this case, 

the application of a vacuum could result in significant water loss through 
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evaporation. The approach employed in these trials was the use of a vibration 

table; once when initially mixing (1 minute) and again when filling the syringe 

(1 minute). This allows the bubbles to rise to the surface of the slurry. As the 

material is loaded into the syringe, vibration was applied to assist with the 

removal of any entrapped air.  

 

Forming:  

 

 Extrusion – In the DWFC system, extrusion is used to deposit the material 

using positive (constant) displacement dispensing method, where the linear 

movement of a stepper motor-driven plunger was employed to push out the 

paste from a syringe. This enables a precise volume of paste material to be 

dispensed, which cannot be guaranteed with a constant pressure approach, 

Details of this method will be discussed later in this chapter. In positive 

displacement extrusion unless the material is compressible the flow rate of 

material remains constant for a particular plunger speed, irrespective of all 

other factors.  A schematic drawing of the system is shown in chapter 2 

section 2.3.1. 

 

In the DWFC system; the positive displacement mechanism includes, a 

stepper motor and a syringe. The syringe includes a metal barrel and a 

plunger which is mechanically connected through a series of gears and a belt 

to the stepper motor. The plunger forms a tight seal with the barrel. The 
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stepper motor causes the plunger to move up and down by a discrete number 

of steps. Depending on the selected mode of operation the stepper motor 

can make 3,000 or 12,000 discrete steps per plunger full stroke. The syringe 

barrel has a useable capacity of 5ml that the plunger can displace in one full 

stroke. The plunger travel is 30 mm and its velocity can be varied from 1.5 – 

12mm/min.  

 

 Freeze casting - After the deposition of the extrudate (all layers), the material 

was subjected to an extremely low temperature (below -70°C). At this 

temperature, the solvent solidifies causing an irreversible reaction 

(hardening) of the extrudate. This step determines the porosity, 

microstructure and the mechanical properties of the material. After freeze 

casting, the material is dried by sublimation of the ice crystals and then fired.  

The microstructure of the freeze cast material reduces the level of  drying and 

firing shrinkage

 

Finishing:  

 

 Drying -The freeze cast part was stored at ambient temperature (20°C) for 24 

hours where sublimation of the ice crystals occurs. At this stage, based on the 

results of previous freeze casting experiments, drying shrinkage of around 1% 

occurs. This avoids the deformation of the part associated with normal 
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whiteware material, which typically exceeds 6%.  The final shrinkage will be 

during the firing stage.  

 

 Firing - The firing stage was the final stage of the overall process in which the 

final part is vitrified and the major shrinkage occurs. This stage can be 

controlled through varying different parameters, such as the temperature of 

firing, which leads to different levels of vitrification, porosity and physical and 

mechanical properties. A further study of these stages will be discussed in the 

next chapter. Table 4.7 shows the difficulties that can be presented in each 

stage of the process.  

 

 

Table 4.7: Process stages and difficulties 
 

 

 

Process stages 
 

Difficulties 

Dry Mixing Poorly mixed particles (adhesion to the sides of 
the ball mill jar) 

Wet Mixing and high-
shear mixing 

Air entrapped 
Breaking down agglomerates 

Degassing Failure to remove entrapped gas 

Extrusion Uneven extrusion 
Excessive pressure drop 
Surface defects 
Deformation 
Blocked nozzle 

Freeze casting Microstructure control 

Drying Drying cracks 
Extrudate handle 
Initial dry shrinkage 

Firing Shrinkage-deformation 
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4.3.2  Optimization of the formula NPP-1 

 

Having selected the paste formula NPP-1 extrusion trials were performed using the 

DWFC system. It was found that the slurry readily extruded; ideally, the material 

should shear-thicken and not flow after deposition. It was concluded that the 

combination of the reduction of the particle size by ball-milling the powder during 

the dry mixing of the three components and the presence of the additives improved 

the flow characteristics of the material. Further work would be conducted to 

optimize the formulation to enable controlled extrusion to take place.  Moreover, 

this may enable the water content in the formulation to be reduced, thus increasing 

the density of the objects formed. As a quick test to evaluate the extrusion behaviour 

of the material, the formula was prepared to form a paste and hypodermic syringes 

with different nozzle sizes were then utilized. Although the positive displacement 

system (utilised in the DWFC system) is slightly different to the hypodermic syringe 

used for these initial trials (material of construction and size) it was concluded that a 

reduction of particle size and a wider particle size distribution would help the 

extrusion behaviour of a high solid-load paste.  

 

4.3.3. Reduction of the particle size in the formulation for extrusion proposes  
 

As mentioned in the previous section, preliminary extrusion trials in the DWFC 

systems indicated that a further reduction of the particle size could facilitate the 

deposition of the material through a fine nozzle. The characteristics of the powders 

in the NPP-1 formula (as received) were examined. The powders were classified 
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according to their different particle sizes using a dry sieving method; a sample of 

each powder was individually placed into several sieves and classified into different 

particles sizes: below 20, 50 and 100µm. Subsequently, the resulting powder for each 

particle size was then mixed with the solvent (75.6 wt% solids content) and 

submitted to a further extrusion test (mixing, degassing, extruding and freeze 

casting). The resulting mixture with the finest powder of the mesh below 20µm was 

selected.   

 

The powders were subjected individually to a further reduction in particle size by 

ball-milling for several hours, followed by a particle size distribution analysis by the 

light-scattering method, (see methodology chapter for details of this test method). 

Finally, the three powders were dry-mixed together, according to the required 

composition, in order to get a homogenous mixture.  

 

4.3.4 Results and Discussion  

 

As mentioned in the previous section, for each raw powder, the particle size and 

particle size distribution was determined using a dynamic, light-scattering analyzer 

(Malvern Instruments Inc), before and after ball-milling of each individual powder, 

Figure 4.11 shows the particle size and particle size distribution of the powders, 

individually, before and after ball-milling.  
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Figure 4.11: Particle size distributions of the powders before and after ball-milling 
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As can been seen in Figure 4.11, before ball-milling the received powders had a peak 

at 25µm for the quartz and feldspar and 1.5 and 6µm for the Molochite received as a 

fine powder. After ball-milling, all particles were below 33µm peaking between 6 to 

8µm, for the feldspar particles and between 1.5 to 0.5µm for the quartz and 

molochite particles. The reduction in the particle size changed some of the basic 

parameters of the process (e.g. the shrinkage), demonstrating the strong influence of 

the characteristics of the constituent powders on the processing characteristics and 

microstructure of the object formed.  The new formulation based on reduced particle 

size will be referred to as NPP-2 hereafter. 

 

Figure 4.12 shows the final particle size distribution of the NPP-2 formula; these 

were the three powders mixed together after the final ball-milling (dry mixing). The 

reduction of the particle size in the formulation was extremely important, not only 

for extrusion purposes, but also in the final stages of the freeze casting process 

(drying and firing). Particle size directly affected the reactions that took place during 

firing, since particles that were not in contact cannot react. Local arrangements, 

particle-to particle contacts and compositions were control factors of the firing 

behaviour in a ceramic body. Thus, packing density, surface area and reactivity of the 

materials were also affected by particle size distribution and in turn, affected the 

firing behaviour. These factors will be studied in detail later in this thesis. Additive 

chemistry and solid content were usually adjusted after the particle size distribution 

has been selected. In order to obtain desirable suspension properties, the solvent, 
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solid content and additives must be properly attuned. A set of experiments to adjust 

the solid content and the additives will be presented later in this chapter. 

 

 

 

Figure 4.12: Particle size distributions (PSD) of NPP-2 (three ball-milled powders together) 

 

The particle size of the three powders (50% Molochite, 25% Quartz and 50% 

Feldspar) after ball-milling was calculated from the particle size of the individual 

powders (Figure 4.13). The particle size of the powders was below 44.3µm and 

peaked between 0.9 and 1.5µm. The powder mix showed a broad particle-size 

distribution, as there was an insignificant difference in the volume percentage of 

material between 10.9 and 0.7µm in size.  

 

It must be considered that in both formulations, the one with the coarser particles 

and the one with finer particles have the same solid content. Thus, the main variable 



Chapter Four ________________________________________Material Development 
 

139 

 

in both formulas was particle size and the number of particles (as a coarser powder 

will have a lower number of ceramic particles). In wet mixing, when the solvent is 

added to the powder, the pores between particles must be filled by the carrier fluid 

(the solvent). When the voids are completely filled, the remaining fluid separates the 

particles and imparts fluidity to the mix.  

 

In the case of the NPP-2 formula, because of the high solid content of the 

formulation, the carrier fluid was limited and can be considered to be insufficient for 

the coarser particles (that for the smaller particles). In freeze casting, the carrier fluid 

forms the ice crystals, which will be reflected in the porosity and pore size 

distribution. Furthermore, the particle size also influences the fluidity of the material. 

Broad particle size distributions generally give higher packing efficiency, as smaller 

particles can sit between the large particles and a minimal amount of carrier fluid is 

required to fill interparticular voids
[142]

. 

 

Another important factor observed to be affected by the particle size reduction of 

the powders was the state of agglomeration. As the particle size was reduced, the 

level of soft agglomerates was increased. Agglomerated particles behave like coarser 

particles, changing the behaviour of the slurry. Thus, the coarser powder formulation 

was considered more stable and to had a lower dependency on the mixing stage.  
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In order to understand the effect of the particle size reduction and the change of 

particle size distribution of the final formula in the freeze casting process, two sets of 

five ceramic specimens were freeze cast in the same conditions and then fired to 

1200°C with the two different particle sizes (coarse powder, as received, and fine 

powder after ball-milling). As in the previous experiments, the linear-firing shrinkage 

was assessed; following the ASTM standards (see Appendix 1). The results are shown 

in Figure 4.13 and Table 4.8. 

 

Sample Particle Size Linear-firing 
shrinkage 

(%) 
A Coarse 1.52 

B Fine 6.38 

 
Table 4.8: Affect of particle size on linear-firing shrinkage 

 

 

 

 

Figure 4.13: Coarse and fine powder samples fired at 1200
o
C 

 

This experiment confirms that the linear-firing shrinkage is affected by the reduction 

in the particle size. It was deduced that the finer particle size material undergoes a 
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higher level of vitrification than the coarse material and this leads to the higher level 

of shrinkage.
 [142-144]

 

 

Ball-milling the material to reduce the particle size also inevitably influenced the 

particle size distribution (as shown in Figure 4.11). The particle size will also influence 

the linear-firing shrinkage in ceramic specimens as, generally speaking, a broader 

particle size gives higher packing density, lower porosity and lower firing shrinkage 

(Figure 4.13) 
[143]

.  

 

In whiteware, vitrification is the driving force of maturation and to some extent, 

determines the final properties of the body itself (such as strength, density size and 

colour). Maturation can be defined by a minimum level of porosity along with 

maximum shrinkage and density, without pyroplastic deformation. Thus, vitrification 

is required to accomplish the desired level of densification and part strength. 

 

4.4 ADJUSTMENT OF SOLID CONTENT AND ADDITIVE CHEMISTRY (DISPEX) 

 

The NPP-2  formulation was subjected to extrusion trials in the DWFC system. A 

simple 2D-lattice pattern was deposited (-45°, +45°, 0°and 90°) as shown in Figure 

4.14. It was found that the slurry extruded was quite fluid (slightly too low viscosity), 

due to the particle size reduction that change the flow characteristics of the material. 



Chapter Four ________________________________________Material Development 
 

142 

 

It can also be noted from Figure. 4.14 that further work needed to be carried out to 

optimize the formulation (solvent content and amount of dispersant) for extrusion, 

as the lines, which should have an identical width, were relatively inconsistent.   

 

Three different parameters were found to have an influence in the deposition of the 

material, i) viscosity, ii) velocity of the pump and iii) nozzle diameter. In the following 

extrusion experiments, constant nozzle diameter and pump velocities (deposition 

rate) were used to establish the appropriate liquid content to be used in the 

formulation. The amount of Dispex and the solvent content were varied (as 

mentioned in the literature review, the liquid content inside the formulation is also 

an important parameter for the freeze-casting process). 

 

In the deposition of the material, the velocity of the plunger (stepped motor speed) 

and the movement of the head in “y” and “x” must be matched in order to deposit 

the right amount of material. Where too much material is being extruded relative to 

the velocity of the head this will result in additional material built up. On the other 

hand if the extrusion rate is too low bead material becomes “stretched” and this may 

result in breaks in the beam resulting in gaps and missing points in the final shape. 

 



Chapter Four ________________________________________Material Development 
 

143 

 

 

 

Figure 4.14: 2D-lattice pattern deposited (-45°, +45°, 0° and 90°), relatively too low viscosity 

 

 

 

4.4.1 Experimental procedure 

 

Different compositions were prepared where the solid load in the formulation was 

changed by varying the quantity of solvent and keeping the same amount of powder.  

The liquid content in the slurry and the amount of dispersant was adjusted (as shown 

in Table 4.9) to give 20 discrete formulations. Every formulation was extruded using 

the DWFC system through a medium nozzle (0.7mm internal diameter); at a velocity 

of 3.65mm/min. The samples were frozen immediately after extrusion by direct 

immersion in a bath of liquid nitrogen. The extrudate was deposited on to a ceramic 

plate (black colour-high fired porcelain). The ceramic plate facilitated the 

measurement of the extrudate and its handling during subsequent stages (freezing 

and firing). Ten lines were printed (L-1 to L-10) and their cross section measured in 

microscope to establish the stability of the formulation. The Table 4.9 shows the 

combination of the four formulations with different amounts of liquid (sol and 
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glycerol) and Dispex. This was combined with 8g. of powder by high-shear mixing (as 

described in Section 4.3.1 dry mixing).  

 
Liquid (g) 

Quantity of Dispex (g) 

0.4 0.3 0.2 0.15 

2.67 F1-1 F2-1 F3-1 F4-1 

2.62 F1-2 F2-2 F3-2 F4-2 

2.57 F1-3 F2-3 F3-3 F4-3 

2.52 F1-4 F2-4 F3-4 F4-4 

2.47 F1-5 F2-5 F3-5 F4-5 

 
Table 4.9: Formulations F1-1 to F4-5 based on different quantities of liquid and Dispex   

 

 

Four solvent formulations were prepared varying the amount of Dispex. Table 4.10 

shows the content of Dispex within each solvent formulation.  

 

Composition Silica sol 
w% 

glycerol 
w% 

Dispex 
w% 

F1 93.6 5.61 0.7 

F2 93.8 5.62 0.56 

F3 93.98 5.63 0.37 

F4 94.0 5.64 0.28 

 

Table 4.10: Formulations F1 to F4 based on different quantities Dispex (solvent) 

 

Formulations F1 to F4 were prepare individually, each with different amounts of solid 

content by weight.  
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4.4.2 Results and Discussions 
 
 

Extrusion deposition allows some control over the cross sectional shape of the 

extrudate. The shape of the cross sectional section of the extrudate is not cylindrical 

as can be seen in the Figure 4.15. The contact angle between the extrudate and the 

substrate (table) is determined by the wetting behaviour of the paste with the 

substrate and the viscosity of the material. Good wetting lowers the contact angle 

and maintains the shape of the extrudate. Depending on the type of surface and 

liquid content the droplet may take a variety of shapes as illustrated in Figure 4.16 

The ideal shape will be the one when the optimum contact angle comes close to 90o, 

above this level excessive slump occurs and below this level the contact length 

between beads (built one of top of another) is reduced thus compromising the 

strength of the part and also the surface finish of the object
[145]

. A contact angle of 

near to 90° indicates the most stable formula, as there is less slump of the material. 

 

After the printing and freeze casting of lines L1- L10, it was possible to determine the 

contact angle of the cross section of the ceramic specimen. This contact angle was 

measured by a digital optical microscope (Nikon, AZ100 Multizoom, England) with 

the use of a back light to capture the profile of the extrudate on the solid substrate. 

The image was also captured by the microscope via an internal camera and software 

was used to analyse the final contact angle. The lines that were measured from L1 to 

L10 showed no significant difference between the other lines within the sample and 

proved that the same line quality was possible and could be created during 
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replication via extrusion. Seen illustrated in Figure 4.17 a drop starts at point L1 

demonstrating the start of the material flow and L10 shows a change in the volume 

as the material stops flowing.  

 

 

 

 

 

 
Figure 4.15: Schematic image of cross section through extrudate on substrate (left) and measurement 

of internal contact angle (right).
[146] 

 

 

Figure 4.16: Cross section through extruded bead nearest 90° angle. 

 

 



Chapter Four ________________________________________Material Development 
 

147 

 

 

Formulations with 2.67g of liquid (F1-1, F2-1, F3-1 and F4-1) were found to flow too 

easily giving an unacceptable level of slump. Formulations with 2.62g of liquid (F1-2, 

F2-2, F3-2 and F4-2) and 2.57g of liquid (F1-3, F2-3, F3-3 and F4-3) gave more stable 

formulations with formulas F3-2 and F3-3 (0.2 g of Dispex) being the most stable. 

However, formulations based on 2.52g of liquid (F1-4, F2-4, F3-4 and F4-4) and 2.47g 

of liquid (F1-5, F2-5, F3-5 and F4-5) were difficult to extrude, resulting in inconsistent 

line widths. Formulations F4-4 and F4-5 were too viscous to extrude.  

 

 

 

 Figure 4.17: Example of printed lines  

 

 

The printing of a 3D triangular pyramid (sides 30mm long x 10 layers high) was 

performed for each of the formulas. The amount of solvent influences the ability of 

the material to form a layer or bead and the amount of Dispex affects the plasticity. 

Even if the layer was formed the ability of the material to support itself depends on 

the amount of Dispex. The formulation with a lower Dispex level gave a rough 
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surface finish and incomplete features. Materials with a high content of Dispex, gave 

a constant bead but the shape deforms after deposition of the next layer. 

 

 

Figure 4.18: Example printing of 3 dimensional shapes 

 

 

 

Figure 4.19: Printed layers Formula F3-2 printed layer by layer 

 
 

 

Figure 4.20: Printed layers Formula F4-1 left, Formula F1-5 Right. 
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4.5 THE EFFECT OF STAND-OFF DISTANT 

 

Having selected an appropriate formula based on the results of the previous trials, 

further extrusion trials with a medium nozzle (0.9mm internal diameter) were 

performed. This time, a square-based, 3D pyramid was printed with a self supported 

geometry.  The formulations used were F3-2 and F3-3 and a new formulation based 

on 2.60g. of liquid was also included, as a middle point for completeness. The 

selected formula will be called NPP-3 hereafter and will be the formula utilized for 

the remainder of the experimental work.  

 

Unfortunately, although material formulations that could be extruded had now been 

generated, a new problem was identified during the trials. It was found that the 

stand-off distance between the nozzle tip and the surface of the build platform or 

previous layer is critical to the success of layer extrusion, Figure 4.21 shows the stand 

off distance between nozzle tip and plate. If this distance is too small, distortion of 

the deposited layer (and in extreme circumstances the previously deposited layer) 

occurs.  If the distance is too large, the deposited lines may not be straight (curling 

occurs). In Figure 4.22, two extruded square pyramids are shown in the left hand 

image in which the stand-off distance is too small and this results in a flattening of 

the deposited track (so that the height is smaller than its diameter). In the right hand 

image the stand-off is too great, resulting in curling of the deposited track.  
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Figure 4.21: Distance between nozzle tip and plate 

 

 

                  

 

  Figure 4.22 Flattening of layers due to insufficient stand-off (left) and curling of the bead due to 

excessive stand-off (right). 

 

To establish an optimum stand-off distance (or at least an acceptable range of 

values), a series of tests were conducted with varying stand-off distances from 

1.8mm (twice the nozzle diameter) to 2.5mm (2.77 times the nozzle diameter) – see 

Table 4.11 

 

Distance 
between nozzle 
tip and plate 
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Test 
condition 

Stand-off distance  
(mm) 

1 1.8 

2 1.9 

3 2.0 

4 2.1 

5 2.2 

6 2.3 

7 2.4 

8 2.5 
 

Table 4.11 Test matrix to assess the effect of stand-off distance 
 
 

 

 

A set of lines with different distances was extruded using the same nozzle diameter 

and pump velocity as previous trials.  The optimum nozzle stand-off was found to be 

1.9mm (2.11x the nozzle diameter). Above this level curling occurred and below this 

level there was a risk of bead flattening (see Figures 4.23 and 4.24).        

 

 

 

Figure 4.23: A single extrusion line showing different stand-off distances (Test conditions 1-8). 

. 

 

 

 

1 2 3 4 5 6 7 8 
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a)  Distance 1.8mm (Test condition 1) 

b)  Distance 1.9mm (Test condition 2) 

  

c)  Distance 2.0 mm (Test condition 3) 

 

 

Figure 4.24: Effect of the stand-off distance on the extruded bead 

 

To determine the most suitable distance between the nozzle and the substrate, three 

main factors should be taken into consideration: extrusion rate, nozzle diameter and 

nozzle moving speed. The following formula (based on Wang’s previous work
[147]

) 

illustrates the calculation of the distance between the nozzle tip and the plate; 

                           

 

 

Where hc, is the critical nozzle height, that is the necessary distance to extrude a 

straight line without squeezing it from the top, Vd is the extrusion rate (volume of 

(4.1) 
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slurry extruded per unit time cm3/s), Vn is the nozzle moving speed with respect of 

the extrudate (mm/s), and Dn is the nozzle diameter. When the value of height is 

below the critical nozzle height, (H<hc) the material will be squeezed (test condition 

1) and when the value of height is above the critical nozzle height (H>hc) the 

deposition shows undulation behaviour (test condition 3). This undulation behaviour 

increases as the stand off distance increases, see Figure 4.25 and 4.26.  

 

 

 

 

 
 

Figure 4.25: Effect of stand-off distance on extrudate, H<hc (left) and optimum stand-off distance 

H>hc(right). 
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Figure 4.26: Effect of the stand-off distance when the distance is higher than hc 

different directions. 

 

 
 
 

Figure 4.27: Effect of the stand-off distance on the behaviour of the extrudate line 

H=hc (left) and  H > hc  (right) 
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From these experiments it was concluded that it is possible to generate beads which 

are free from distortion (flattening or curling) with the appropriate selection of 

stand-off distance (See Figure 4.27).   

 

4.6 FINAL REMARKS FOR FORMULATION NPP2 AND NPP3 

 
 
 
A suitable ceramic paste for the DWFC process was developed and demonstrated. A 

highly-concentrated solid load paste (75.47 wt % solids) of triaxial porcelain 

composition was found to be suitable for freeze-casting and extrusion processes. This 

formulation, NPP-2, is a modification of the NPP-1 material.  The raw powders and 

the overall formula were analysed and the particle size was reduced for extrusion 

purposes. A set of preliminary trials to determine the final particle size were carried 

out, these preliminary tests consist of two main phases which consist of a simple 

extrusion with a hypodermic syringe with the intended nozzle size (0.7mm internal 

diameter)  and a freeze casting test with a constant temperature of freezing. In this 

final test the effect of the reduction of the particle size was measured in terms of 

linear shrinkage and absorption. The temperature of firing for the NPP2 formula was 

reduced based on the particle size reduction. It was found that the shrinkage of the 

samples produced in this final experiment was directly affected by a combination of 

the firing temperature and particle size. In addition, the particle size distribution also 

plays a critical role; a broad particle size distribution allows better packing of 

particles, and thus results in lower shrinkage.  Furthermore, the first extrusion trials 
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were carried out after the selection of the particle size. Within these trials the 

additive chemistry and the solid content were selected by experimentation and it 

was found that 0.2g was the optimum amount of Dispex to be used (in 8g of powder 

and 2.60 g of solvent). This formulation was called NPP-3, and is the final formulation 

used for the remained experiments. For NPP-3, the wetting method and the 

measurement of the contact angle were selected as a method to select the right 

amount of solid content and Dispex. Further trials needed to be carried out to 

determine the optimal freezing rate and firing temperature of the specimens.  

 

The aim of the trials described in the next Chapter was to assess the influence of the 

freeze casting parameters and firing conditions on the properties of the ceramic 

samples produced. 

 

In addition, in this chapter the critical extrusion parameters were identified (nozzle 

moving speed, extrusion rate and nozzle diameter). It was found that the stand-off 

distance between the nozzle tip and substrate is critical, too small and flattening of 

the bead occurs, too large and curling occurs.  An optimum stand-odd distance can 

be calculated from the equations developed, depending on the size of the nozzle, 

extrusion rate and the speed of the extrusion head with respect to the substrate.  

Further analysis of the extrusion parameters was undertaken and is presented in 

Chapter 6.   
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5. FREEZE CASTING: DETERMINATION OF 

PARAMETERS AND MATERIAL PROPERTIES 

5.1 INTRODUCTION 

 

The work presented in this chapter represents a more extensive investigation into 

the freeze casting of the NPP-3 material developed in this study. There were two 

main objectives behind this work. The first was to establish the effect of the freezing 

temperature on the microstructure (pore structure, pore size and distribution) of the 

ceramic specimen and its effect on the physical and mechanical properties. The 

second objective was to study the effect of substituting the clay material with the 

calcined component (molochite) in terms of both microstructure evolution during 

firing and the physical and mechanical properties of the final specimens fired at 

different temperatures.  

 

From a practical perspective the author decided not to combine the freeze casting 

step within the direct write process. By separating these two steps it enabled a much 

simpler test rig to be used (see section 2.3.1 Chapter 2 DWFC system) several 

research groups have commented about the difficulty in combining DW and FC in a 

single unit 
[148]

  Moreover, it enabled each trial to be focused specifically on either 
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direct writing or freeze casting thus helping to achieve robust conclusions from the 

trials.  

 

It should be noted that trials undertaken within the Technology Strategy Board 

funded project – Direct Writing and Freeze casting of Bioceramics implants have 

demonstrated the difficulty in sequentially depositing and freeze casting layers. The 

results show that depositing material onto a layer of material which has already been 

freeze cast results in very poor bond strength. In this thesis this problem has been 

overcome by bulk freeze casting of samples once direct writing has been completed.  

 

Since in the previous trials, a slurry formulation was developed which could be 

extruded, freeze cast and fired. This work provided the foundation for the 

subsequent experimental trials (presented in this chapter and also in Chapter 6) in 

which the formulation was fine-tuned and also the optimum processing conditions 

will be established. The aim of these trials was to determine the appropriate freeze-

casting and firing conditions for the NPP-3 material developed in this project. The 

samples produced for freeze-casting trials were subsequently fired and the results 

used to establish the influence of firing conditions.  Three factors were assessed in 

the trials: 1) apparent porosity, 2) linear-firing shrinkage and 3) mechanical 

properties.  Porosity and shrinkage are key factors for ceramic materials and were 

also measured in the initial trials. However, the mechanical properties of samples 

were also assessed, as this is another parameter which can be used to determine the 

effectiveness of the new material.  
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5.2 INVESTIGATION OF FREEZING PARAMETERS    

 

Based on the findings in the literature review, there were two primary parameters 

which must be considered in the freeze casting stage of the process: 1) the freezing 

temperature to which the slurry is exposed and 2) the rate of cooling. Varying these 

parameters may result in a different microstructure being formed and thus changes 

to the final properties of the material
[83]

. In this work, the effect of the freezing 

temperature on the characteristics of the final material was investigated. In addition, 

another important parameter, temperature of firing, which may have a significant 

effect on the microstructure for triaxial formulations, was assessed. Because of the 

complex interactions between the raw materials, the kinetics of the firing process 

were expected to be more complicated than for many other ceramic systems
[121]

. 

 

5.2.1 Freezing temperature 
 

Although there is evidence, albeit anecdotal
[117]

, that freeze casting is initiated (i.e. 

crystal growth commences) once -5oC is reached and that the process is completed 

at a temperature of -40oC, these findings are not robustly supported by rigorous 

experimental data and moreover, the specific freeze-casting performance will 

depend on the precise formulation of the slurry.  
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5.2.2 Speed of cooling  
 

The literature review highlighted that one of the key parameters for the freeze 

casting process is the rate of cooling as this can determine the pore size and pore size 

distribution, which, in turn, affects the shrinkage and properties of the final object.  

 

5.2.3 Freezing Temperature trials 

 

A total of 30 ceramic samples were prepared from a combination of the three 

powders (75.47 w %) and the solvent (24.52 w %) that make up the NPP-3 formula 

(see Table 5.1). The constituent components were mixed vigorously together by hand 

and by using a pestle and mortar for 2 minutes. This broke up the soft agglomerates 

and then air bubbles were eliminated using a vibratory table. The prepared slurry 

was then poured into flexible silicone rubber moulds (RTV 664, General Electric 

Company) to produce test bars (80.5 mm long x 20mm wide x 3.14mm thick see 

Figure 5.1).  

 
NPP-3  Powders Feldspar w% Quartz w% Molochite w% 

25 25 50 
NPP-3  Solvent Silica sol w% Glycerol w% Dispex w% 

93.98 5.63 0.37 

 

Table 5.1 Material composition 
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Figure 5.1: Freeze casting test specimen bars before firing (green state) 

 

The specimens were freeze cast at different temperatures using two different 

methods: 1) immersion in liquid nitrogen and 2) immersion in a mixture of 

isopropanol (IPA) and dry ice (approximately 50:50 by volume) to give temperatures 

of approximately -196oC and -72oC respectively. The RTV silicone moulds filled with 

ceramic slurry were placed in an aluminium tray containing the cooling medium. The 

tray (freezing bath) was enclosed in an insulating polystyrene box. A non-directional 

approach to freezing was chosen, (see literature review section 2.3.2 for the freeze-

casting parameters), here freeze casting is not initiated from one surface, instead the 

specimen is bulk cast into a non-porous mould
[89, 149]

. The test parts were held at 

the temperature of the freezing bath for two hours. This was carefully monitored 

using a K-Type thermocouple connected to a data-logging device (Pico Technology 

limited TC-08, 8-channels). Two channels of the thermocouple were utilized during 
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the experiment, one within the ceramic material and the other one inside the 

freezing device (freezing bath), in order to obtain a better understanding of the 

actual conditions within the sample. 

 

Three sets of five samples were produced for each freeze-casting condition. After 

completing the freezing process, the samples were removed from the cooling device 

and exposed to normal room temperature (18-21°C) for 24 hours. Samples were then 

subjected to different sintering regimes (as described in Section 5.3 below).  The 

properties of the fired samples were then measured following the relevant ASTM 

standards (see Appendix 1).   

 

5.2.4 Results and conclusions 

 

Figures 5.2 and 5.3 show the temperature of the freezing bath (liquid nitrogen and 

dry ice/IPA respectively) and the ceramic specimens during the freeze casting 

process. For the liquid nitrogen bath, the minimum temperature reached was -175°C; 

however, the temperature of the bath increased to -122°C after the specimen was 

introduced.  The temperature continued to rise until it reached -93°C after ninety 

minutes. In a similar way, the ceramic specimen also reached a minimum 

temperature of -175°C but rapidly increased in temperature until a temperature of -

100°C was achieved after twenty minutes. 
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On the other hand, the dry ice/IPA bath reached a minimum temperature of -79°C 

and the ceramic specimen only reached a minimum temperature of -74°C after 5 

minutes. It can be seen from Figure 5.3 that the temperature remained constant for 

the entire two hour period for the dry ice/IPA bath sample. The cooling rate of the 

two systems (Liquid nitrogen and dry ice/IPA) was compared for the first (critical) 3 

minutes when the sample temperature drops below -40oC and freeze casting is 

initiated (Figure 5.4). It can be seen from Table 5.2 that the cooling rate for the liquid 

nitrogen is 3.51 times higher than for dry ice/IPA. 

 

Sample Cooling media Temperature 
after 3 minutes (°C) 

Initial cooling rate * 
(°C/min) 

A  Liquid nitrogen (LN) -175 43 

B Dry ice/IPA (IDI) -49 12 

 

*Based on an ambient temperature of 20°C 

Table 5.2 Initial cooling rates for both liquid freezing media 
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Figure 5.2: Temperature of freezing bath and ceramic sample for liquid nitrogen 

 

` 

 

 

Figure 5.3: Temperature of freezing bath and ceramic sample for dry ice/IPA 
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Figure 5.4: Temperature of ceramic specimen processed using liquid nitrogen and dry ice/IPA during 

the first 30 minutes of freezing  

 

After the samples were removed from the freezing device and dried (24 hours at 

room temperature), a SEM was used to analyse the microstructure of the dry 

specimen. Figure 5.5 shows the microstructures of the samples cooled at the two 

different rates.  

                

 

Figure 5.5: SEM images of the porous NPP-3 specimens processed with liquid nitrogen (A)  

and dry ice/IPA (B) 

A B 
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           5.2.4.1 Analysis of the microstructure 
 

SEM images of the fired samples show an even, homogenous macrostructure and 

porosity. This is to be expected as the freeze-casting method employed was 

omnidirectional and no clear direction of ice crystal growth can be seen.  The method 

of freezing used had a clear influence on the size of the pores within the fired 

sample. The rapid cooling from the liquid nitrogen bath resulted in a finer dendritic 

structure and smaller pores compared to the samples processed using the dry 

ice/IPA (see Figure 5.5 and Table 5.3).   

 

 

Table 5.3 Initial cooling rates for both liquid freezing media 

 

Nevertheless, regardless of the difference in microstructure, because the same 

amount of liquid is present in the two samples, A and B, the densities of the parts 

formed were expected to be the same. The effect of this porosity on the physical and 

mechanical properties of the fired samples will be described in the following section 

where a full analysis of the mechanical and physical characteristics with the two 

temperatures of freezing will be presented. 

 

Sample Cooling media Initial cooling rate * 
(°C/min) 

Pore Size 
(µm) 

A Liquid nitrogen 43 0.5 

B Dry ice /IPA 12 1 
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5.3 INVESTIGATION OF FIRING REGIME  

 

As mentioned in the literature review, triaxial porcelain is a vitreous ceramic material 

which transforms when subjected to different temperatures. Vitrification means a 

high degree of melting occurs during firing and the formation of glass which leads to 

enhanced densification of the ceramic body
[140]

. In a traditional triaxial porcelain 

formula, the three components in the formulation undergo different reactions 

according to the firing regime: when the specimen reaches 100°C, drying is 

completed; from 300 to 700°C, the organic material additives are burnt off; between 

450°C and 500°C, the materials start to decompose and react with each other and at 

900°C vitrification occurs (the flux material, in this case feldspar, reacts with the 

other particles to form a liquid, molten glass). The amount of liquid increases with 

temperature, the body contracts (shrinks) and it can be seen that the porosity 

reduces
[131]

.  At this point, new materials may crystallise from the liquid. If the 

material is over-fired, too much liquid is formed and the ceramic body may suffer 

from pyroplastic deformation.  

 

After reaching the desired temperature, the firing process is followed by a soaking 

period at the top most temperature in order to allow the entire object to reach the 

maximum firing temperature and remove any thermal gradients which may be 

present. The final stage of the firing regime is cooling, allowing the liquid to solidify 
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into a glass. This fuses together the unmelted particles and crystals form during 

heating.  

 

According to information found within the literature review and previous 

experimental work, the determination of the firing temperature may depend on two 

primary factors: material composition and particle size.  

 

1) Material composition - as there is no clay within the formulation, the reaction 

of the materials may occur at a slightly lower temperature
[129, 140, 150]

.  

2) Particle size – a reduction in the particle size should result in a drop in the 

firing temperature
[151-154]

. 

 

Although replacing clay with molochite enables a slurry which can be successfully 

freeze cast to be formulated, this significant change introduces concerns regarding 

the ability to fire and generate fully-vitrified porcelain at the end of the process. 

There has been limited work on the firing of non-plastic porcelain  materials
[127, 155, 

156]. The firing cycle used in the initial trials was based on standard porcelain 

materials. The ideal firing conditions for the NPP-3 material used in this project must 

be determined during the study.  It was hoped that it may be possible to use a lower 

firing temperature for the clay replacement (molochite) as no reaction will take place 

during the sintering process, which will reduce the level of shrinkage. Based on the 
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results of previous work
[153, 156]

, the use of smaller diameter particles of Molochite 

along with quartz fillers should facilitate fusing and vitrification at lower 

temperatures.  

 

5.3.1 Firing Regime trials – Experimental Procedure 

 

5.3.1.1 Selection of temperatures of firing for the experimental work 

 

The ceramic specimens produced for the freeze-casting parameter trials (described 

in the previous section) were dried at room temperature (~24 hours until their weight 

was stable) and then sintered in a laboratory kiln (ST314, Stafford instruments, 

Germany). In the preliminary trials (described in Chapter 4), all of the specimens 

were fired to a maximum temperature of 1280oC. However, for this second set of 

trials, given that the particle size had been reduced for extrusion optimisation, it 

should be possible to use a lower firing regime. It was predicted, based on 

information from previous literature, that the firing temperature should be above 

1000oC 
[157] 

but, to provide a comparison, a lower temperature was also included. 

For this reason three different firing temperatures of: 900°C, 1100°C and 1200°C, 

were used 
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5.3.1.2 Measurement of the temperature of firing 

 

In the traditional ceramic industry, high-temperature kilns can usually lose some heat 

via the lid covering and a few areas around the walls. This loss, together with natural 

convection effects, results in a variation in temperature depending on the location 

within the kiln. To gain a better understanding of the real temperature regime to 

which the material is exposed, the Buller’s rings method was used (see Figure 5.6 and 

Figure 5.7). This is a traditional approach used in the ceramic industry where the 

shrinkage of circular ceramic rings is used to estimate the actual temperature regime 

within the kiln. This is important in this experiment because a small variation of the 

temperature could potentially lead to significant differences in the level of 

vitrification. 

 

Figure 5.6: Buller’s rings method 

 

Figure 5.7: Freeze casting specimen bars after being fired at different temperatures 
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A series of five A and B samples for each freezing rate (liquid nitrogen and dry 

ice/IPA) were submitted to the three different temperatures of firing, the resulting 

samples were used for the evaluation of the physical and mechanical properties of 

the fired samples by the following test: 

 

i. Water absorption was determined using the Archimedes liquid displacement 

method (described in Chapter 3) based on ASTM. C326-09 (see Appendix 1) 

ii. Linear-firing shrinkage was calculated by comparing the specimen length 

before and after firing.  ASTM C373 – 88 (see chapter 3 and Appendix 1). 

iii. Modulus of rupture, of the fired test pieces, was determined using a three-

point bending test. ASTM C674-88 (see Appendix 1). 

 

The sintered samples were also characterized by X-ray diffraction (XRD) and the 

microstructure presented on the fired samples was studied on fracture surfaces 

using a scanning electron microscope (SEM). The apparent porosity, bulk density and 

volume, open and total porosity was determined using the following approaches: 

 

Apparent porosity (AP) was calculated as the product of bulk density and water 

absorption. The relationship to determine the parameters mentioned before are 

expressed below:  
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The linear-firing shrinkage (%), of the fired samples has been determined by means 

of the following equation:  

x100
L

LLS
LFS

s

c
 

                                          

LS and LC are the length measurements of the green and fired test parts, respectively. 

The linear shrinkage values obtained were averaged for each firing temperature.  

 

Water absorption, WA (%), expresses the relationship between the mass of water 

absorbed into the sample and the mass of the dry specimen as follows: 

 

 

X100
D

DM
WA  

 

 

Where D is the dry mass of the sample before the impregnation, S is the mass of the 

specimen while suspended in water and M represents the saturated mass after 

impregnation.  

 

 

 

 

 

(5.1) 

(5.2) 
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 The bulk density, ρ (g/cm3), was calculated as follows:  

 

V

D
ρ  

 

 

Where V (cm3) is the exterior volume including pores (V = M - S).   

The open porosity, εo (%), expresses the relationship of the volume of open pores to 

the exterior volume of the specimen, the formula used to assess this matter is 

represented as follows: 

X100
V

DMε  

 

The volume of open pores was expressed by the following relationship:  

 

DMVOP  

 

                

Module of rupture formulation is dictated by the following equation: 

 

2bd
3PLσ  

 

 

 

(5.3) 

(5.4) 

(5.5) 

(5.7) 
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Where, σ is modulus of rupture, Psi (or MPa); P is the load at rupture, lbf (or N); L 

distance between supports, in. (or mm); b width of specimen, in. (or mm); and d 

thickness of specimen, in. (or mm). 

5.3.2 Result and conclusions 
 

The Buller ring test results for the three different oven (set) temperatures 900°C, 

1100°C and 1200°C are shown in Table 5.4. The specimens fired at the highest 

temperature show some pyroplastic deformation. However, samples fired at the 

medium temperature did not show any deformation. Figures 5.8 and 5.9 present the 

ceramic specimens fired at the two different temperatures.  

Temperature Oven Set 
temperature (°C) 

Minimum 
Temperature* 

(°C) 

Maximum 
Temperature* 

(°C) 

Average 
temperature (°C) 

Low 900 850 900 875 

Medium 1100 1050 1100 1075 

High 1200 1100 1200 1150 

*indicated by Buller's ring 

Table 5.4 Rectification of temperature of firing 
 

 

Figure 5.8: Pyroplastic deformation of the freeze-cast ceramic specimen fired at 1150°C 
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Figure 5.9: Freeze-cast ceramic specimen fired at 1075°C 

The results for the three different firing temperatures (average of two runs) were 

compared with the properties of the triaxial porcelain. Table 5.5 shows the resulting 

values for the water absorption, linear-firing shrinkage, module of rupture, apparent 

porosity and bulk density, for the specimens freezing at the faster freezing rate 

(Liquid nitrogen) whilst Table 5.6 shows the results for the specimens frozen to the 

slow freezing rate (dry ice/IPA).  

Liquid Nitrogen 

°C Water 
Absorption 
(%) 

Linear-firing 
shrinkage (%) 

Module of 
rupture  
(MPa) 

Bulk density 
g/cm

3
 

 

Apparent 
porosity  
(%) 

 
1150 5.19 6.78 

 
24.8 2.26 11.75 

1075 
12.73 3.92 

19.56 
1.95 24.89 

875 
17.84 0.58 

17.34 
1.73 30.94 

 
Table 5.5 Comparison of properties of the fired ceramics bodies as a function of sintering 

temperature, with liquid nitrogen as the freezing medium. 

 
Dry ice/IPA 

°C Water 
Absorption (%) 

Linear-firing 
shrinkage (%) 

Module of 
rupture  
(MPa) 

Bulk density 
g/cm

3
 

 

Apparent 
porosity  
(% ) 

1150 6.68 7.04 23.3 2.18 14.60 

1075 12.47 3.64 19.69 1.99 24.40 

875 17.51 0.54 17.85 1.81 31.75 

 
Table 5.6 Comparison of properties of the fired ceramics bodies as a function of sintering 

temperature, with the dry ice/IPA bath as the freezing medium. 



Chapter Five _____________________________________Freeze Casting Parameters 
 

176 

 

 

 

Water absorption is generally dependent upon the apparent porosity, which in turn 

is controlled by the temperature of firing. As expected (based on the information 

from previous literature sources found
[158]

 the lowest water absorption values were 

observed for the specimens fired at the highest temperature. Comparing the water 

absorption for the three firing temperatures, the results are broadly linear (see 

Figure 5.10), with a decrease from 17.85 to 5.19 as the temperature increases from 

875 to 1150 °C. The water absorption for the specimens freeze cast using liquid 

nitrogen and dry ice/IPA is very similar apart from the specimens fired at the highest 

temperature where the value of water absorption for samples processed using liquid 

nitrogen is lower than that for dry ice/IPA.  This could be expected from the 

microstructure (see Figure 5.5), which shows that the more rapidly cooled samples 

have finer pores, which are more likely to close up during firing. 
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Figure 5.10: Water absorption of liquid nitrogen and dry ice/IPA freeze-cast specimens fired at 

different temperatures (Tables 5.5 and 5.6). 

 
 

 

Figure 5.11: Linear-firing shrinkage of liquid nitrogen and dry ice/IPA freeze-cast specimens fired at 

different temperatures (Tables 5.5 and 5.6). 
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Figure 5.12: Bulk density of liquid nitrogen and dry ice/IPA freeze-cast specimens fired at different 

temperatures (Tables 5.5 and 5.6). 

 

 

 

Figure 5.13: Apparent Porosity (%) of liquid nitrogen and dry ice/IPA freeze cast specimens fired at 

different temperatures (Tables 5.5 and 5.6). 
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Figures 5.11 and 5.12 show the linear-firing shrinkage and apparent density of the 

fired bodies respectively. The linear shrinkage values lie within the range of 0.58 to 

6.78 % (Liquid nitrogen) and 0.54 to 7.04 % (dry ice/IPA) and the density values range 

from 1.73 to 2.26 g/cm3 (Liquid nitrogen) and 1.81 to 2.18 g/cm3 (dry ice/IPA). In 

general, shrinkage and density both increase up to the maximum temperature. 

Dense bodies are expected to have higher mechanical strength than porous bodies. 

These results are supported by microscopic investigation, which show that as the 

pores close, the linear shrinkage increases. Figure 5.13 shows the apparent porosity 

of the ceramic specimens. It can be appreciated that there is not significant variation 

between the two different freezing rates. 

 

Samples prepared by freeze casting show lower physical (density, porosity etc) and 

mechanical (flexural, modulus of rupture etc.) properties compared to fired bodies 

produced using TP compositions
[159]

.This is despite the replacement of the clay 

material with molochite (mullite), which in theory should yield improved properties.  

This is also indicated by the decrease in shrinkage values for the freeze-cast material, 

which indicates lower densification and thus greater porosity.  Micro-structural 

analysis of the specimens reveals that the pores are relatively large and many are 

interconnected. Nevertheless, this new material is still considered as a whiteware 

material, due to the level of porosity, density and shrinkages. 
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5.3.2.1 Microstructure of the fired specimens 
 

The microstructure phases developed in the final fired freeze cast NPP-3 were study 

extensively using XRD, SEM and EDS techniques. In SEM images (see Figure 5.14), 

partially dissolved quartz grains can be observed surrounded by a solution of almost 

pure silica glass in a finer matrix system. The quartz grains are angular in nature but 

at the highest firing temperature, extensive dissolution of quartz is evident, as the 

quartz grains become round in shape. Dissolution of quartz generally depends on the 

size of particles (coarser quartz grains dissolve at a much slower rate than fine 

grains).  

     

Figure 5.14: SEM photomicrograph, bonding seen as a result of the glassy phase and showing 

remaining unmelted components, showing micropores ~400nm right. 

 

 

Additionally the XRD analysis indicates as main components; quartz, corundum, 

albite and microcline (see glossary of terms), the major phase is quartz, as shown by 

the Figure 5.15. The quartz phase decreases substantially as the firing temperature 

increases, giving an amorphous silica phase as indicated by an increase in the 

background noise levels.  At the higher firing temperature the feldspar (albite) was 

completely dissolved into the glass phase (Figure 5.16).  
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Figure 5.15: Comparison XRD Analysis of NPP-3 fired at different temperatures. 

 

 

Figure 5.16: Un-normalised XRD data for NPP-3 fired at different temperatures – close up of Quartz 

and feldspar peaks. 

Q 

Q 

Q 

F 

F 

F 
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Figures 5.17 to 5.19 show the normalised XRD data for each temperature of firing, it 

can be seen the increment of the amorphous silica represented as a black line on the 

background on each graph, apart of the high dissolution of the albite and microline 

(feldspar), and the quartz (in less proportion).  

 

 

Figure 5.17: XRD Analysis of NPP-3 fired at 875°C. 
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Figure 5.18: XRD Analysis of NPP-3 fired at 1075°C. 

 
 

 
 
 
 

 
Figure 5.19: XRD Analysis of NPP-3 fired at 1150°C. 
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Moreover the SEM analysis of the microstructure shows the evolution of the fired 

specimens to different temperature (875°C, 1075°C, and 1150°C). A Liquid Nitrogen, 

B IPA/Dry Ice (Figure 5.20) during the firing stage. It can be seen there are a 

significant change according with the vitrification of the material at different 

temperature.  

 

The difference between A and B relay on the porous size (see Figure 5.5). From this 

study it can also be appreciated that B comprises a more homogenous 

microstructure in comparison with A each temperature of firing, in B the material 

dissolve faster due to the temperature of firing, in A- 1150°C cracks can also be 

appreciated. From the figures below it can be deducted that very low temperature of 

freezing (fast freezing rate), some how represents a more aggressive method of 

freezing, leaving option B as a most appropriate option for this project.  

 

The EDS analysis in Figure 5.21 to 5.23, ceramic specimen’s frozed with IPA/Dry Ice 

(B) at different temperatures, confirms the formation anorthite –feldespar- (marker 

as f) and mullite crystal from the addition of the pre-fired material molochite, the 

presence of Fe confirms that the material is molochite (marked as m). It can be seen 

from Figure 5.23 the amount of K-feldespar is melting and a glassy phase is also 

appearing.  
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A                                                                     B 

 
875°C 

 

 
1075°C 

 

 
1150°C 

 

Figure 5.20: SEM micrograph of microstructure, showing the evolution of the microstructure of the 
fired specimens to different temperature (875°C, 1075°C, and 1150°C). A Liquid Nitrogen, B IPA/Dry 

Ice. 
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a)  

b)  

Figure 5.21: SEM micrographs of a ceramic specimen sintered at 875 ◦C showing (a) anorthite 
(feldespar) and (b) mullite(molochite) labelled as f and m respectively (left). EDS spectra obtained 

from (C) anorthite and (D) mullite crystals(right). 

 

a)  

b)  

Figure 5.22:  SEM micrographs of a ceramic specimen sintered at 1075 ◦C showing (a) anorthite 
(feldespar), (b) mullite(molochite) labelled as f and m respectively and g as a glassy phase (left)  

EDS spectra obtained from (C) anorthite and (D) mullite crystals(right).  
 

 

a)  

 

b)  
Figure 5.23:SEM micrographs of a ceramic specimen sintered at 1150 ◦C showing (a) anorthite 

(feldespar), (b) mullite(molochite) labelled as f and m respectively and g as a glassy phase (left). 
EDS spectra obtained from (C) anorthite and (D) mullite crystals(right). 

f 

m 

m 

f 

g 

m 
f 

g 
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5.4 SUMMARY OF FINDING FOR CHAPTER 5  

 

The final formula NPP-3 was tested to assess its behaviour with different freezing 

rates and different firing temperatures.  The samples produced were tested 

according to the ASTM standards and the results generated were analysed. The 

linear shrinkage of the NNP-3 increased from 1.8 % (linear shrinkage of the NPP-1) to 

6.78 % and 5.4% for the liquid nitrogen and dry ice/IPA respectively. As the linear 

shrinkage increases, the water absorption and thus the apparent porosity decreases.  

 

It was found that the sublimination of the ice crystal created an open macroporosity 

with a dendrintic structure. It was found that the faster freezing rate given by liquid 

nitrogen leads to the formation of smaller pores (1-2µm) whereas the dry ice/IPA 

resulted in larger pores (0.5-1 µm). The freezing regime made a negligible difference 

to the apparent porosity, and density of the ceramic specimens.  

 

The effect of the sintering temperature on the porous macrostructure of the ceramic 

specimens was clearly indicated by the results of the trials. As the firing temperature 

was increased the apparent porosity of the samples dropped (for both liquid nitrogen 

and dry ice/IPA processed samples. The mechanisms involved in the formation of 

porosity during the firing process were presented in Chapter 4 (loss of remaining 

moisture through the glassy phase of the flux material that bonds together the 

remaining components). During the sintering process, any microporosity was 
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removed from the ceramic specimens; however, the macroporosity resulting from 

the solvent (sol in this study) remained.  

 

As can be seen in XRD test data, the test shows the main reaction of the components 

to different temperatures on firing ceramic specimens. Basically, the partial or full 

desolution of the components are observed as a reaction to the temperature change. 

Among the three components within the formulation, quartz and feldspar had the 

most notable changes observed, which can be seen clearly in the Figure 5.16: the 

quartz dissolves partially while the feldspar reaches the fully liquid phase at the 

highest temperature, causing a pyroplastic deformation. 
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6. RHEOLOGY & EXTRUSION TRIALS 

In this chapter the basic extrusion parameters of the new developed material; NPP-3, 

(pressure, velocity flow rate measure etc) and rheological properties are presented 

and discussed. 

6.1 RHEOLOGY TRIALS  

 

To help understand the rheological behaviour of the material, trials were conducted 

to see if the material developed in the project conformed to any of the common 

“models” of rheological behaviour (as shown in Figure 6.1).  

 

Figure 6.1: Rheogram of ideal shear flow  
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Viscosity is one of the most important rheology parameters. The viscosity of the 

suspension is typically obtained by measuring the shear stress at different shear 

rates. The ratio of these two values (shear stress and shear rate) is defined as 

viscosity (for Newtonian fluids), when the measurement is applied to non-Newtonian 

fluids it is described as apparent viscosity. For the direct write process the material 

must not be too viscous otherwise it will be impossible to extrude, whilst a very low 

viscosity could make it impossible for the extruded bead to support the next layer of 

material. 

 

6.1.1 Cone & Plate Trials 
 

 

In order to understand the rheological properties of the material it was decided to 

perform a series of experimental trials based on conventional rheological test 

methods.  The first method investigated was the “cone and plate” method. Samples 

of slurry were placed in a Bolin CVO120 cone & plate rheological unit (see Figure 6.2). 

This equipment is widely used for the characterization of viscous inks but proved to 

be entirely unsuitable for the slurry material (influence of relatively coarse particles, 

very high viscosity and also drying of the slurry occurred). 
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Figure 6.2: Bohlin CV0120 cone & plate rheometer 

 

6.1.2 Concentric Cylinder Trials  
 

 

In a second series of trials basic rheological characterisation of the suspension was 

performed (by Rhealto Ltd) using a rheometer (Brookfield RS) fitted with 14mm 

diameter concentric cylinder system operated at constant temperature of 21 °C +/- 

0.2°C (see Figure 6.3).  This apparatus allows the measurement in a control rate 

mode, (CR mode) that measures the shear stress () imposed on the suspension 

when the velocity gradient or shear rate () changes. The ratio between both 

parameters defines the viscosity ().   
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Figure 6.3: Schematic diagram of a Brookfield-type viscometer
[160]

. 

 

 

The material was subjected to increasing shear rates (5 to 500s-1) and the viscosity 

was recorded after 600s of shearing at each shear rate.  The results of this trial are 

shown in Table 6.1 and also plotted as graphs in Figure 6.4 and 6.5. 

Shear rate 
(1/s) 

() 

Shear Stress 
(Pa) 

() 

Viscosity 
(Pa.s) 

() 

5 53.23 10.645 

10 34.00 3.4 

20 52.24 2.612 

50 117.10 2.342 

100 192.50 1.925 

200 404.40 2.022 

500 1156.00 2.312 

 
Table 6.1 Results of concentric cylinder rheological test on NPP-3  

 
 
Note: figures highlighted in yellow are in the shear rate range used in the extrusion trials  
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It can be seen in Table 6.1 that the sample shows a complex combination of shear-

thinning and thixotropic behaviour as well as some shear-thickening behaviour in the 

final stages of the trials.   There is significant evidence from the literature
 [161, 162]

 

that viscous slurry materials exhibit shear thinning behaviour, as observed in these 

trials.  There was some slight evidence of shear thickening towards the end of the 

trial, although this was rather insignificant compared to the shear thinning through 

the majority of the trial. 

 

 
Figure 6.4:Shear rate Vs Shear stress for NPP-3   
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Figure 6.5: Viscosity v.s. shear rate. 

 

 

From Figure 6.5 it is clear that the material exhibits a non-Newtonian shear flow, 

complying with the general Herschel–Bulkley fluid model (Figure 6.4), where the 

shear stress experienced by the fluid is related to the strain in a complex, non-linear 

way.  

 

Utilising the information from the viscosity test, the following rheology parameters 

were studied; viscosity, power law index “n”, yield stress, and constant number ‘K’ 

(also known as the Consistency Index).  Each of these parameters is described in the 

following section.  

 

In general, when ceramic slurry materials have been considered rheologically, they 

have been found to be shear thinning or pseudoplastic fluids.  That is also the case of 
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this research project, the main characteristic of the pseudoplastic fluid is that the 

viscosity decreases when the shear rate increases.  

 

A fluid described as a pseudoplastic fluid or a fluid whose viscosity decreases as shear 

rate increases can fit the power-law mathematical equation. Power-law fluids can be 

described mathematically as follows: 

 

τ=K (γ) n        

Where τ is shear stress, γ is shear rate, n is exponent (flow behaviour index) and K is 

a constant (consistency index). To calculate the power low index n and the constant 

K, the log shear rate and log shear stress was calculated with the data given before; 

when “n” is represented as the slope and “K” and the intercept using a linear 

regression method. Table 6.3 shows the value of “n” and the value of the constant 

“K”. 

Log shear rate 
(1/s) 

() 

Log shear 
stress 
(Pa) 

() 

Viscosity 
(Pa.s) 

() 

0.699 1.726 6.909 

1 1.531 4.922 

1.301 1.718 3.507 

1.699 2.069 2.239 

2 2.284 1.596 

2.301 2.607 1.137 

2.699 3.063 0.726 

 
Table 6.2 Shear rate, log shear rate, log shear stress and viscosity for NPP-3  

 

 

(6.1) 
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Slope n 0.895 

Intercept log K 0.571 

K 3.725 
  

 
 

Table 6.3  n and K values for NPP-3  

 
 

The n value (0.895) being below unity indicates that the material is non-newtonian 

and the K value of 3.725 indicates that the material is fundamentally pseudoplastic in 

nature.  

6.1.2.1 Time Dependency  

 

To establish if there was any evidence of time dependency the following trial was 

performed using the 14mm diameter concentric cylinders fitted to a Brookfield RS 

rheometer. The material (NPP-3 ) was subjected to constant shearing at 100s-1 for 

10 minutes, taking readings of viscosity every 30s and this enabled a 

viscosity/shearing time profile to be generated (see Figure 6.6 ).  
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Figure 6.6: Viscosity/Time profile for NPP-3   

 

It is clear that over the course of the trial the viscosity drops with time. This confirms 

that the material exhibits a time dependant viscosity, thixotropic behaviour. 

However, we are particularly interested in the increase in viscosity after the material 

has been extruded, in order that the deposited bead retains its required shape.  

 

Thixotropic behaviour means the reduction in structural strength during the shear 

load phase and the more or less rapid but complete structural regeneration during 

the subsequent rest phase
[161]

.  
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Figure 6.7:  Viscosity curve for a thixotropic material (1) time-dependent structural decomposition 

under constant shear and (2) time-dependent structural regeneration when at rest
[161]

.  

 

Perhaps a more effective test approach, on reflection, would be to allow the material 

to rest after shearing to establish if the material recovers its original viscosity and 

over what time period (see Figure 6.6).  Ideally a rapid “recovery time” is desirable to 

maximise the deposition rate of the DWFC system. However, based on Figure 6.7 it 

can be deduced that the material will recovers 75% of its original viscosity value 

within 2 seconds of extrusion. This is discussed in more detail in the Further Work 

Section of this thesis (see Chapter 7).  
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6.1.3 Findings – Rheology Trials 
 

 

Although these trials have shed light onto the rheological properties of the slurry 

material the behaviour of the material during extrusion may differ significantly due 

to the fundamental differences between the way in which the material is “worked” 

in the concentric cylinder and extrusion trials (in the former, for example, all of the 

material under test is subjected to relatively high levels of shear stress whereas in 

the later the bulk of the material is subjected to low levels of shear until it passes 

close to and through the nozzle).  

6.2 EXTRUSION TRIALS  

 

The DWFC system built at De Montfort University to undertaken the extrusion trials, 

is a micro extrusion machine that works with a positive dispensive (displacement) 

system to extrude the slurry material through a fine nozzle, in this system the linear 

motion of a motor-driven plunger is employed to force the fluid out of the needle.  

Given that the slurry has a solid content of 75.47 w % it is more of a paste than a 

slurry. To provide a fine extrudate of crowded particles requires an accurate 

extruder, precise control of the head velocity and extrusion ram velocity, as well as 

an optimal preparation of the feed material.  

 

The driving mechanism utilised by for AM ceramics extrusion systems (see literature 

review section 1.1.5); air pressure dispensing (RepRap, Slip jet printer),  rotary screw 
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(FFEF, contour crafting) and  positive-displacement (extrusion freeform fabrication 

robocasting) see Figure 6.8 for descriptions of these mechanisms.   

 

 

 

Figure 6.8: Alternative dispensing mechanisms for AM of ceramics 

 

Positive displacement offers clear advantages being a true volumetric dispenser, 

where the deposition of the extrudate depends only on the linear movement of the 

plunger and not the properties of the dispensed fluid. However, this is not entirely 

valid for small volume of fluid 
[163]

, this is considered one of the major problems 

occurring in the positive-displacement dispensing process. Thus different authors 

states 6 parameters which influence the deposition of the material. 

1. Pressure in the syringe. 

2. Flow Rate of fluid dispensed. 

3. Dispensing time. 

4. Fluid level in syringe. 

5. Fluid flow behaviour. 

6. Fluid compressibility. 
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6.2.1 DWFC Test Rig 
 

 

 

 

 

 

 

 

Figure 6.9: DWFC test rig with close up of DC stepper motor driven syringe pump inset. 

 

 

The extrusion head consists of a DC Stepper motor-driven syringe pump (see Figure 

6.9) fastened to 14mm diameter plunger (PTFE head) sitting inside a 14.5mm 

diameter stainless steel syringe.  Nozzles of different sizes can be attached to the end 

of the syringe.  The extrusion head is mounted onto an actuation unit enabling it to 

be moved in X,Y and Z. The extruded pattern is defined by the X,Y movement of the 

head which is moved in Z to enable additional layers to be deposited, to create a 3D 

structure. 
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Figure 6.10: Schematic Extrusion Device 

 

6.2.2 Extrusion Parameters  
 

 

 

As the plunger is depressed by the syringe pump, pressure is applied to the slurry 

and a fine bead is extruded which touches the build platform and is subsequently 

solidified by freeze casting. The speed of the syringe pump determines the rate at 

which the slurry is extruded, as defined in the Table 6.4. 

 

 
Table 6.4   Deposition rate for different stepper motor speeds  

Plunger Speed Deposition Rate 
(mm3/s) 

 
mm/min mm/s 

1.5  0.025 4.1853 

1.98 0.033 5.5247 

2.46  0.041  6.8640 

3.00 0.050 8.3707 

3.48 0.058 9.7101 
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The nozzles used in the trials were standard syringe tips, connected to the syringe 

using a Luer™ fitting, which were adapted by shortening the length. The three 

nozzles used in the trials were measured using a digital calliper (0.01mm resolution) 

and a travelling microscope. Each length and internal diameter was measured 5 

times and the results are shown in the appendix. The measured internal diameters 

were compared with the values quoted by the manufacturers and found to closely 

correlate. The mean values are shown in Table 6.5. 

 

 Small  Medium  Large  

Internal diameter 
(mm) 

   0.7 0.9 1.2 

Length (mm) 
 

6.54 
 

8.09 5.89 

 
Table 6.5 Nozzle size (internal diameter) and length (mm) 

 
These trials were all conducted using the same material formulation and preparation 

method (as defined in Chapter 4) 

 
 

6.2.3 Shear Rate Calculation 
 

 

 

For a Newtonian fluid the shear stress and shear rate can be calculated as follows; 

 

 

                                             

(6.2) 
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Where σ is the shear stress at the barrel wall; ΔP is the pressure drop across the 

barrel; L is the length of the barrel; and R is the radius of the capillary. The apparent 

shear rate will be calculated with the following formula;  

 

  

      

Where a is apparent shear rate; Q is the volumetric flow rate; R is the radius of the 

capillary. Most ceramic materials are considered non Newtonian fluids, where 

viscosity is dependent to a greater or lesser extent on the shear rate.  

 

The flow rate (Q), apparent shear rate (a) were calculated for each nozzles size and 

plunger velocity and are shown in Table 6.6. 

 

 

Plunger 
velocity v 
(mm/s) 

Q 
(mm3/s) 

a 

(1/s) 
Small 

a 

(1/s) 
Medium 

a 

(1/s) 
Large 

0.025 4.1853 124.2887 58.47876 24.6920 

0.033 5.5247 164.0641 77.19342 32.5941 

0.041 6.8640 203.8366 95.90668 40.4955 

0.050 8.3707 248.5803 116.9589 49.3846 

0.058 9.7101 288.3558 135.6736 57.2867 

 
Table 6.6 plunger velocity and apparent shear rate 

 
 
 

 

(6.3) 
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6.2.4 Extrusion characteristics of the proposed material   
 

 

The extrusion parameters were determined based on the results of a series of 

extrusion trials. These trials were not performed on the DWFC test rig, instead the 

syringe was mounted into a universal testing machine (see methodology chapter for 

details of the machine) using a specially designed fixture (see Figure 6.11).  Using this 

approach it was possible to measure and record the load on the plunger as it is 

displaced. The same formulation (NPP-3) was used throughout these trials but 

different plunger speeds (1.5, 2, 2.5, 3, 3.5mm/min) and nozzle diameters 

(small=0.7mm, medium=0.9mm and large=1.2mm) were used.  

 

The equipment set-up consists of four main components; 

1. Syringe Barrel, 14.52 mm internal diameter and 30 mm in length.  

2. Rigid support housing to allow free access to the extrudate and also easy 

removal of the syringe. 

3. Interchangeable nozzles with different diameters (1.5-3.5mm). 

4. Plunger 14.52mm in diameter fitted with a PTFE head to maintain low friction 

with the internal bore of the syringe. 

5. Universal tensile test machine fitted with a 250N load cell. 
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Figure 6.11: Extrusion rheology test rig 

 
 
The material was prepared with the same formulation and procedure as described in 

Chapter 5. The prepared paste was placed inside the barrel, the plunger was fitted 

and the assembly then was positioned in to the support housing which was already 

mounted onto the tensile testing machine. The plunger was displaced into the 

syringe at the required velocity and the force on the plunger (N) was recorded over 

the 30mm of travel.  To characterise the slurry, five speeds, corresponding to the 

range of extrusion rates used on the DWFC test rig, and three different nozzles 

diameters were used (see Table 6.8 for the test matrix for the trials). Each trial was 

repeated three times.  In order to correct for friction between the plunger and 

sidewall of the syringe and the load required to extrude the slurry material through 

the aperture of the syringe and “dead space” prior to the actual nozzle, a series of 

trials were performed without the nozzle in place. As with the main extrusion trials 
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five plunger velocities were used and the same formulation and method of 

preparation was used.  

 

mm/min Nozzle 
diameter 

Nozzle 
diameter 

Nozzle 
diameter 

1.5 Small 
(S-trial  1,2,3) 

Medium 
(M-trial  
1,2,3) 

Large 
(L-trial  1,2,3) 

2.0 Small 
(S-trial  1,2,3) 

Medium 
(M-trial  
1,2,3) 

Large 
(L-trial  1,2,3) 

2.5  Small 
(S-trial 1,2,3) 

Medium 
(M-trial  
1,2,3) 

Large 
(L-trial  1,2,3) 

3.0 Small 
(S-trial 1,2,3) 

Medium 
(M-trial  
1,2,3) 

Large 
(L-trial  1,2,3) 

3.5 Small 
(S-trial 1,2,3) 

Medium 
(M-trial  
1,2,3) 

Large 
(L-trial  1,2,3) 

 
Table 6.7 Experimental matrix 

 
The total distance of travel for the plunger was 30mm but the first 5mm of travel was 

disregarded to avoid variation due to “heaping” of the slurry in the syringe. 

Moreover, the last 5mm of travel was also disregarded as the plunger is very close to 

the base of the syringe.  Therefore all data is shown for 20mm of plunger travel.  

 

A total of 45 experiments were conducted, using five extrusion velocities with three 

different nozzle size (S,M,L) the results are shown in the Table 6.8.  For the small 

nozzle at the two higher velocities it was not possible to successfully extrude the 

material. It was found that the material as the extrusion force exceeded the safe 

working load of the syringe pump causing the motor to stall. 
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Nozzle size Plunger Speed (mm/min) 

1.5 2 2.5 3 3.5 

Small  Y Y Y N N 

Medium Y Y Y Y Y 

Large  Y Y Y Y Y 

Y= successful extrusion  
N= extrusion not possible  
 

Table 6.8 Result of extrusion experiments different nozzle size at different speed 

 

 

The force (N) on the plunger was recorded over its entire travel. An example of the 

original data plotted from the machine is show in Figures 6.12. 

 

Figure 6.12: Plunger force vs plunger displacement (deflection) for NPP-3  using 0.9mm nozzle at 

2.5mm/min plunger velocity.   

 

 

All of the data collected shows characteristic features to a greater or lesser extent. 

Firstly, there is evidence of upward spikes (rapid rise and fall) in the pressure, 

probably due to temporary blockage of the nozzle due to agglomerates (A on Figure 

6.12). There are also downward spikes (rapid fall and rise) in the pressure probably 

due to air bubbles passing through the nozzle (B on Figure 6.12). There was also a 

A 

B
 A  
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general periodic rise and fall in the pressure, typically over 5-6mm distance (see 

points A and B in Figure 6.12) which have been due to the formation of slip planes 

within the material
[142, 162]

.   Finally, there was an overall increase in the force as 

the plunger moves inside the syringe – this was shown for all tests. These results are 

discussed in more detail below.  

 

 Transient Pressure Rise: These pressure spikes are probably due to temporary 

blockage of the nozzle by soft agglomerates.  Soft agglomerates form in the barrel of 

the syringe and these block the nozzle but are then broken up as the pressure 

increases and the material passes through the nozzle
[164]

. The force breakdown 

caused by soft agglomerates cannot be predicted as the formation and size of 

agglomerate is unpredictable size and also their break down occurs in a random 

fashion.  

 

Transient Pressure Drops: Based on information from the literature the presence of 

air bubbles is the most likely cause of transient falls in pressure. Although every care 

was taken to reduce the risk of air inclusions during the mixing of the material and its 

subsequent transfer to the syringe it is virtually impossible to remove all air bubbles.  

The use of vibration during the mixing process encourages air bubbles to rise to the 

surface of the mixture and thus be removed. However, it is much more difficult to 

avoid “folding” air into the mixture during transfer to the syringe and the application 

of vibration is far less efficient at removing air under these circumstances. Based on 
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the literature the air bubbles can congregate and combine as they approach the 

entrance to the nozzle resulting in a sudden pressure drop 
[164]

.  

 

The transient pressure spikes were removed from the original data before taking the 

mean of the three successive runs at each condition.  The results are shown in 

Figures 6.13, 6.14 and 6.15. 

 
 

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

Ex
tr

u
si

o
n

 F
o

rc
e

, 
F 

(N
)

Plunger Displacement (mm)

Extrusion Force vs Plunger Displacement

(Small Nozzle 0.7mm)

2.5 mm/s

2.0 mm/s

1.5 mm/s

 
 

Figure 6.13: Extrusion force Vs Plunger displacement for small nozzle (S-Trials 1,2,3) 
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Figure 6.14: Extrusion force Vs Plunger displacement for medium nozzle (M-Trials 1,2,3)     
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Figure 6.15: Extrusion force Vs Plunger displacement for large nozzle (L-Trials 1,2,3) 

 

 
 

Perturbations are more clearly seen in the results for the large nozzle where the 

overall pressure is low in comparison to the medium and small nozzles thus making 

the effect more significant in relative terms.  
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Having obtained the results for the syringe fitted with the different nozzles the trials 

were repeated with the nozzles removed to provide the extrusion force for the 

syringe alone. The influence of speed proved to be relatively small and so for 

simplicity the mean of the force across the different plunger speeds was calculated 

for each plunger displacement. Using this data the correction factor (load) at each 

displacement was calculated by linear regression, to remove the influence of 

perturbations in the system.  The correction factor varied between 2 and 5N (see 

Table 6.9) 

Plunger Displacement 
(mm) 

Correction factor 
(N) 

1 2.03 

2 2.18 

3 2.33 

4 2.47 

5 2.62 

6 2.77 

7 2.92 

8 3.07 

9 3.21 

10 3.36 

11 3.51 

12 3.66 

13 3.81 

14 3.95 

15 4.10 

16 4.25 

17 4.40 

18 4.55 

19 4.84 

20 4.99 

 
Table 6.9 Correction factor for different plunger displacements 

 

The correction factor was subtracted from the data collected for each nozzle to give 

the graphs shown in Figures 6.16, 6.17, 6.18.  It reduced the offset and slope of the 
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lines slightly and only makes a significant effect for the large nozzle and slow plunger 

velocities.  

 

 

Figure 6.16: Corrected extrusion force Vs Plunger displacement for small nozzle (S-Trials 1,2,3) 

 

 
 

Figure 6.17: Corrected extrusion force Vs Plunger displacement for medium nozzle (M-Trials 

1,2,3) 
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Figure 6.18:  Extrusion force Vs Plunger displacement for large nozzle (L-Trials 1,2,3) 

 
The extrusion force was then converted to extrusion pressure and plotted against 
plunger displacement (as shown in Figures 6.19 to 6.23) 
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Figure 6.19: Extrusion pressure vs. plunger displacement for small, medium and large nozzles 

at 1.5mm/min plunger velocity   
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Figure 6.20: Extrusion pressure vs. plunger displacement for small, medium and large nozzles 

at 2.0mm/min plunger velocity   
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Figure 6.21: Extrusion pressure vs. plunger displacement for small medium and large nozzles 

at 2.5mm/min plunger velocity   
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Figure 6.22: Extrusion pressure vs. plunger displacement for small medium and large nozzles 

at 3.0 mm/min plunger velocity   

 
 
Figure 6.23: Extrusion pressure vs plunger displacement for small medium and large nozzles at 

3.5mm/min plunger velocity   
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As expected from the fundamental equations as the plunger speed increases there is 

a clear increase in the extrusion pressure. As the size of the nozzle increases there is 

a corresponding drop in extrusion pressure. 

 

Perhaps the most significant and interesting result, however, is the extrusion 

pressure increases as the plunger is displaced further into the syringe. This effect is 

shown across all nozzle sizes and plunger speeds but the magnitude is greatest for 

the smaller nozzles and the higher plunger speeds. For the majority of the test 

conditions, there appears to be a linear relationship between plunger displacement 

and extrusion pressure. There are several potential reasons for this increase; 

 

1. Layer of slurry accumulates inside of the nozzle which reduces its effective 

diameter – there is some evidence of a layer of material being accumulated 

inside the nozzles but the high shear stress within the nozzle should result in 

a limit to the thickness of this layer being reached. Indeed the periodic rise 

and fall in extrusion force pressure show in Figure 6.13 indicates the 

formation of slip planes within the material.  

 

2. Water is forced out of the slurry during the early displacement of the syringe 

thus changing the water content of the remaining slurry – there is some 

evidence (experimental observation) of water loss at the start of the 

extrusion process for the small nozzle in particular but this appears to cease 
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after 1-2 seconds and thus could not account for the gradual increase in 

pressure for the remainder of the plunger travel
[165]

.   

 

3. Fine particles of ceramic are extruded more readily leaving an increasing 

quantity of coarse particles which are more difficult to extrude thus 

increasing the pressure required – As with 2) there is some evidence of fine 

material being extruded at the start of the extrusion process (along with 

some water) but given the very viscous, “paste like” nature of the material it 

seems highly unlikely that the fine particles can exploit their potential to 

travel faster and be extruded preferentially from the syringe.  

 

4. The material is thixotropic and since vigorous mixing is used to prepare the 

slurry is  has relatively low viscosity (due to shear thinning) when it is loaded 

into the syringe but then the viscosity increases due to the relatively low 

shear rates experienced by the bulk of the material during the extrusion 

process – although this appears to be an attractive and convincing reason in 

principle the slower extrusion rates should show a much higher increase in 

pressure however comparing the results for 1.5mm and 3.5mm for the 

medium nozzles for example (see Figure 6.19) there is no evidence to support 

this theory.   
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5. Pressure on the materials results in locking of the particles and thus an 

increase in apparent viscosity, which in turn increases the pressure required 

to extrude and leads to a further increase in apparent viscosity – there is 

evidence from the literature that highly loaded material suffer from this 

effect (lit).  This appears to be the most likely cause of the gradually 

increasing pressure. Although, in principle, the viscosity should rapidly 

increase due to the positive “gain” in the system (pressure=>locking=>more 

pressure=>more locking). However an exponential increase in pressure is 

avoided due to natural damping in the system.  

 

To try to understand the behaviour of the slurry the shear stress was calculated and 

plotted against shear rate at five points (0, 5, 10, 15,20mm displacement).  

             The graphs of shear stress against shear rate for the five plunger position show an 

approximately linear relationship. This indicates that the material is close to 

Newtonian behaviour and thus a single viscosity value can be derived at each plunger 

displacement position.  This information can then be used to calculate the effect of 

plunger displacement of apparent viscosity as shown in Figure 2.24.  
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Figure 6.24: Relationship between Viscosity and Plunger displacement 

 

Figure 6.24 shows that the apparent viscosity increases in direct proportion to the 

plunger displacement (R2 = 0.9959) and enables the viscosity to be readily calculated 

at any point in the extrusion process.  The intercept of the line with the Y axis is at 

0.0004 MPa, which indicates the initial viscosity of the material after mixing.    

 

Using the information gathered in the trials it is possible plot the relationship 

between pressure and apparent viscosity. This is shown for the medium and large 

nozzles in Figures 2.25 and 2.26 (it was not possible to derive a complete set of 

results for the small nozzle as the material did not extrude for the 3 and 3.5mm/min 

plunger velocities).  
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Figure 6.25: Pressure dependence of viscosity, Small nozzle. 
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Figure 6.26: Pressure dependence of viscosity, Medium nozzle. 
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Figure 6.27: Pressure dependence of viscosity, Large nozzle. 
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Figure 6.28: Pressure Coeficient vs Shear Rate 
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These results for both medium and large nozzles show very clearly that the apparent 

viscosity is dependent on the pressure for a particular plunger velocity (i.e. shear 

rate).   

 

Interestingly, the increase in apparent viscosity with pressure is greater for the lower 

plunger speeds. This result indicates that the material is subject to at least two 

factors; a pressure induced locking of the particles (as described in point 5 above) 

and a thixotropic behaviour (linking shear thinning and time dependency). This is an 

important finding demonstrating the complex nature of the material behaviour 

under   actual extrusion conditions.  

 

Ceramic pastes for extrusion behave in a different way from molten polymers, 

because the mechanics depend fundamentally on the properties and the interaction 

of both solid and liquid components which act as the filler and carrier system, in 

traditional ceramic formulations, pastes and slips are extremely complex systems 

due to the number and diversity of the elements. In this kind of mix when solid and 

liquid elements are combined the particles immersed in the liquid medium interact 

with each other and the liquid molecules. The interaction energy depends on two 

main factors, the amount of liquid and characteristics of the powder (particle size, 

particle shape, etc, and the nature of the powers), this determines the characteristics 

of the electrical double layer developed around the particles surface
[143]

. The fluid 
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behaviour showed in the suspensions is the result of particle-particle and particle-

solvent interaction, as the solid content in the suspension increase particles are 

forced to be closer to each other
[166]

, in the graphs above the fluid travel at different 

velocities, as the velocities increase, the fluid velocity and the interaction between 

the particles and with the flow system itself will also increase, thus the force applied 

in the plunger also will increase. 

 

Figure 4.12 (PSD of the proposed ceramic formula) show a multimodal particle size 

distribution; this can easily lead a best packing behaviour between the particles, in 

case of a high solid suspension, small particles will tend to flow with the fluid, coarser 

particles will behave independently and flow at different velocity than the fluid. As 

more independent are the particles with each other having no tendency to unite into 

clusters which produce thixotropic behaviour. This should depend upon the 

effectiveness of chemical dispersion. 

 

A further trial was conducted with a paste material (toothpaste – Colgate). The 

material was extruded through a medium nozzle at 1.5mm/min. The plot of extrusion 

force against plunger displacement is shown in Figure 6.29. 
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Figure 6.29: Plot extrusion force vs plunger displacement. 

 

There is a clear increase in the extrusion force required as the plunger is 

displaced, indicating that the behaviour of the NPP-3 material is far from unique. 
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7. CHAPTER SEVEN – CONCLUSIONS 

RECOMMENDATIONS AND FURTHER WORK 

 

In this project a non plastic porcelain slurry was proposed for it use in the DWFC 

process. The material was modified and fine-tune proving been successfully 

extruded, freeze cast and fired. Furthermore the mechanical and physical properties 

of the new material were investigated and compare with conventional materials 

realising its potential for the fabrication of final ceramics products.  The main 

unexpected process difficulties encountered during the project were finally 

overcome (described in detail below) such as freeze castability and extrusion of very 

high solid pastes.  

 

During the first stage of the project it was found that it was not possible to freeze 

cast (absence of solidification) the conventional clay based triaxial porcelain 

formulation used in this study. Initials trials also indicated that the structure (plate 

like morphology) of Kaolin clay prevents effective freeze-casting from occurring when 

incorporation into a slurry formulation. The replacement of clay (plastic material) by 

calcined components resulted in a non plastic porcelain formulation which can be 

successfully freeze cast. The lost of the plasticity in the formulation was overcome 

with the use of additives. (PEG, Glycerol and Dispex). Thus, it was establish that it is 
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possible to generate porcelain slurries with a very high solid loading (75.47% by wt.) 

which can be successfully extruded and freeze cast based on non plastic porcelain, 

through the addition of additives.  

 

 In addition, it was found that compared with TP pastes, the final ceramic specimens 

generated show higher level of porosity and lower bulk density. However, by 

changing the temperature of freezing and firing it was possible to achieve a level of 

porosity and bulk density akin to some whiteware pastes, such as stone ware, or 

whiteware with talc within the formulation[167]. Moreover, the material was found to 

be suitable for glassing, or impregnation, thus improving the properties and 

extending the range of potential applications. Further work will required to adapt the 

material and processing parameters to enable applications that require higher level 

of porosity, such as porcelain filters or insulators, to be constructed.  

 

The use of prefired material reduces the temperature of firing compared to 

conventional Kaolin clay based triaxial porcelains due to the omission of calcination 

phases that occur when firing clay material. The optimum firing temperature for 

NPP-3 was found to be 1075oC.  Above this temperature, vitrification results in a 

dramatic fall in the physical properties leading to excessive deformation. Below this 

temperature the XRD analysis shows that the material has not yet reached the 

required (maturation) level of vitrification.  
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Parallel with the initial findings of the literature review freeze-cast samples, show 

clear evidence of interconnected microporosity with a dendritic morphology. In 

addition the microstructure study of the freeze cast specimens shows that the pore 

structure of fired ceramic specimen was related to the freeze casting conditions 

used; rapid freezing rates (43oC/min) generate smaller pores (~0.5µm). However, it 

was established that the freezing rate had a negligible influence on apparent porosity 

and the bulk density.  

 

Five main parameters were found to have an influence in the deposition of the 

material; viscosity, extrusion rate, nozzle diameter, deposition head speed and 

stand-off distance. 

 

The stand-off distance is a critical factor in determining bead quality; if too small the 

bead is flattened and if too large curling occurs. It is possible to calculate the 

optimum stand-off distance based on three main variables; extrusion rate, nozzle 

diameter and deposition head speed across the substrate. The direction and 

amplitude of the curling which occurs when excessive stand-off distance is used.  

 

From the rheological and extrusion trials it was found that testing of highly viscous 

slurries which are prone to rapid drying is not feasible using a cone and plate 

rheometer. Trials undertaken using a concentric cylinder (Brookfield type) rheometer 

indicate that the material has a complex behaviour which is a combination of shear-

thinning and thixotropic and some shear-thickening (during the final stages of the 
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trials).  The material (NPP-3) complies with the general Herchel-Bulkley model for a 

non-Newtonian fluid. However, there are significant concerns with respect to the 

validity of the trials.The behaviour of the material in extrusion differs from that 

indicated by the concentric cylinder rheometer. During extrusion transient pressure 

was measured, it was found that pressure rises (due to agglomeration) and rapid falls 

(due to air bubbles) occur.  Periodic rises and falls in pressure occur (typical 

wavelength of 5-6mm), indicating the presence of slip planes in the material. 

 

For the NPP-3 it is not possible to extrude using the small (0.7mm internal diameter) 

nozzle using the 3 and 3.5mm/min plunger velocity. The extrusion force (and thus 

pressure) increases with the shear rate (i.e. smaller nozzles and /or higher plunger 

speeds). The extrusion pressure increases as the plunger is displaced further into the 

syringe. This effect is shown across all nozzle sizes and plunger speeds but the 

magnitude is greatest for the smaller nozzles and the higher plunger speeds. The 

viscosity of the material (NPP-3) during extrusion is directly proportional to the 

plunger displacement and also the applied pressure.  

7.1 TIMELINESS AND SIGNIFICANCE OF THE PROJECT 

 

It is expected that this new AM method will give designers the opportunity to 

develop high-quality customised ceramics and allow freedom of creation. It may 

open up previously unimagined possibilities, since manufacturers will realise that 

they can reproduce any structure created on CAD.  
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Conventional porcelain or a similar whiteware ceramic material formulation was 

chosen as the starting material for fabrication using the new system due to its 

potential for high-impact visual design, including high-quality surface finish, 

translucent properties and a large range of possible different commercial 

applications of the material itself. The biggest challenge in this research lay in the 

optimisation of non-technical porcelain paste in order to formulate not only a freeze-

castable material but also one with the qualities necessary for its extrusion through a 

fine nozzle. 

7.2 NOVELTY  

 

Wang 
[147]

 has conducted a limited number of trials to extrude dental porcelain 

materials, however, the material was solidified by a conventional drying approach, 

and the extrusion behaviour was controlled through control of the pH value of the 

formulation.   

Ceramic materials have been freeze cast using a bulk processing route. Moreover, 

this work is limited to technical ceramic materials such as alumina, zirconium etc (see 

literature review section freeze casting of materials). Despite freeze casting of 

traditional ceramics having been proposed with a number of benefits, there is no 

evidence that this method has been utilized for the fabrication of bulk, traditional, 

ceramic formulas.  
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Moreover, although the potential benefits of a combined direct write and freeze-

casting approach has been recognised by researchers to date, there has been no 

research in this field. 

 

Although research in to the DWFC process has been conducted in the Technology 

Strategy Board funded project (TP/4/AMD/6/I/223000) this work focused on the use 

of bioceramic materials, initially hydroxyapatite
[168]

. This initial research was 

followed up by work on alumina for technical ceramic parts. Unfortunately, these 

trials demonstrated problems with the biocompatibility of the HA slurry due to the 

addition of the silica sol.  The work on alumina is still ongoing as part of a PhD project 

which is running in parallel with the study presented in this thesis.  The research 

presented in this thesis is linked to but distinctly different from other research 

conducted.  In this study, triaxial porcelain will be processed by direct writing and 

freeze-casting for the first time. Furthermore, to achieve this overall goal a number 

of key developments will be required in terms of process and materials development. 

7.3 RECOMMENDATIONS AND FURTHER WORK 

 

Adaptation of the formulation to achieve the desired level of porosity  

A white, high filler content, non plastic porcelain was developed. The plasticity in the 

formulation was achieved by the inclusion of additives. The particle size was reduced 

to improve extrusion, resulting in a broad particle size distribution, which lowered 
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the firing regime and improving the packing density. However, as freeze casting is a 

method commonly use for the fabrication of highly porous objects, the resulting 

material does not meet the (0.5%) porosity level usually found in conventional 

porcelain (although it was possible to match the level of porosity encountered with 

whiteware pastes, such as stone ware, or whiteware with talc within the formulation 

Further work need to be conducted to establish the minimum level of porosity which 

can be achieved using the freeze-casting route. In addition, further work is required 

to adapt the material and processing parameters to enable applications that require 

higher level of porosity, such as porcelain filters or insulators, to be constructed.  

 

Improvement in the method of measuring the extrusion pressure  

The trials undertaken to establish the rheological characteristics of the slurry in 

extrusion were undertaken using a syringe fitted inside an adapted tensile testing 

machine. This enabled the load on the plunger to be measured during the extrusion 

process and thus the pressure in the syringe to be calculated. However, although this 

approach generated some useful results, a more effective and scientifically precise 

method of undertaking the trials is to measure the pressure directly within the barrel 

of the syringe using a suitable pressure transducer.  Unfortunately, there was 

insufficient time and resources available to pursue this approach during this study 

but this method should be investigated in further work.  
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Production of more complex parts  

The material (NPP-3) developed in this project should be used to produce more 

complex parts. However, to do this will require the development of a suitable 

support material – potential candidate materials include a waxy polymer which can 

be removed during the firing of the part by melting or a material (for example 

polystyrene) which can be removed through immersion in a suitable solvent.    
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APPENDIX 2 

Glossary 

Agglomerate. - A jumbled mass o collection of two or more particles or aggregates or a combination 

of thereof, held together by relatively weak cohesive forces caused by weak chemical bonding or an 

electrostatic surface charge generated by handling or processing. 

 

Albite.- A colourless, milky-white, yellow, pink, green, or black mineral of the feldspar group and 

plagioclase series, found in igneous sedimentary and metamorphic rocks. It is used in the manufacture 

of glass and ceramics. Composition: sodium aluminium silicate. Formula: NaALSi 3 O 8 .  

 

Anorthite.- A white to greyish-white or reddish-white mineral of the feldspar group and plagioclase 

series, found chiefly in igneous rocks and more rarely in metamorphic rocks. It is used in the 

manufacture of glass and ceramics. Composition: calcium aluminium silicate. Formula: CaAl2Si2O8. 

 

Corundum. - A naturally occurring form of aluminium oxide that sometimes contains small amounts of 

iron and silicon oxide. 

 

Crystallization. - The process of forming crystals.  When a substance cools from the gaseous or liquid 

state to the solid state, crystallization occurs. Crystals will also form from a solution saturated with a 

solute.  

 

Deagglomeration .- The process of breaking down, usually by physical means, the masses of particles 

that are held together by relatively weak cohesive forces resulting in a final system of aggregates or 

primary particles, or both. 

 

Deairing .- The process of removing entrapping air, or absorbed air from a mass or slurry. 

 

Deformation .- Movement of parts or particles of a material body relative to one another such that 

the continuity of the body is not destroyed, resulting in a change of shape or volume or both. 

 

Dilatant. - A property often associated with suspensions of irregularly shaped particles, in which the 

liquid exhibits an increase in volume while being sheared. The term is also used in common practice to 

mean shear-thickening, the increasing resistance to shear with increasing shear rate. It is possible for 

either of these two effects to exist in the absence of the other. 

 

Drying. - Removal by evaporation, of uncombined water or other volatile substance from a ceramic 

raw material or product, usually expedited by low-temperature heating.  

 

Feldespar. - A mineral aggregate consisting mainly of microcline, albite or anorthite or combination 

thereof. 
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Firing. -  The controlled heat treatment of ceramic ware in a kiln or furnace, during the process of 

manufacture, to develop desired properties.  

 

Firing curve.-  A diagram or table showing the time temperature planned or experienced by ware 

going the a firing operation.  

 

Firing cycle. - The time required for one complete operation (cold-to-cold). 

 

Firing range. - The range of firing temperature within ceramic composition develops properties which 

renew commercially useful. 

 

Flocculate. - A grouping of primary particles, aggregates, or agglomerates having weaker bonding than 

either the aggregate or agglomerate structures. 

 

Flow.-  Continuously increasing deformation of a material body under the action of finite forces. 

When the force is removed, if the strain does not eventually return to zero, then flow has occurred. 

 

Flow curve. - A graphical representation of the behaviour of flowing materials in which shear stress is 

related to shear rate. 

 

Forming. -  The shaping or moulding of the ceramic shape. 

 

Free moisture. - That water, which is not chemically bound, and that is loosely bound to a material, 

but which can be removed by drying  

 

Friction. - The resistance developed between the physical contacting,  but otherwise unconstrained, 

surfaces of two bodies when there is movement or tendency for movement of one body relative to 

the other parallel to the plane of contact. 

 

Grog.- Fired clay ground to various mesh sizes. 

 

Mullite whiteware.- Any ceramic whiteware in which mullite (3Al2O32SiO2)is the essential crystalline 

phase 

 

Newtonian Flow.-  Model of fluids in which a linear relationship exists between shear stress and shear 

rate, where the coefficient of viscosity is the constant of proportionality. 

 

Non-Newtonian.-  Any laminar flow that is not characterized by a linear relationship between shear 

stress and shear rate . 

 

Nonplastic ceramics.- No clay ceramic materials that when mixed with water do not exhibit the 

rheological property plasticity. 

 

Microcline.- A white, creamy yellow, red, or green mineral of the feldspar group, found in igneous, 

sedimentary, and metamorphic rocks: used in the manufacture of glass and ceramics. Composition: 

potassium aluminium silicate. Formula: KAlSi3O8. 
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Quartz.- A natural crystalline form of silica (Si02) 

 

Rheology.-  The science of the deformation and flow of matter. 

 

Rheopexy An effect by which a material recovers some of its pre-sheared viscosity at a faster rate 

when it is gently sheared compared to when it is allowed to stand. 

 

Semi-porcelain.- A trade term designating semi vitreous dinner ware.  

 

Semi vitreous (semivitrified).- that degree of vitrification endenced by a moderate or intermediate 

water absorption. *in porcelain the term semivitreos generally signifies 0.5 to 12.0  

 

Shear.-  The relative movement of parallel adjacent layers. 

 

Shear rate [rate of shear strain], The rate of change of shear strain with time for liquids, the shear 

rate, rather than strain, is generally used in describing flow. 

 

Shear stress.-   The component of stress that causes successive parallel layers of a material body to 

move, in their own planes (i.e., the plane of shear), relative to each other. 

 

Shear-thickening.-  An increase in viscosity with increasing shear rate during steady shear flow. The 

term dilatant is commonly used in practice to indicate shear thickening, although this usage is strictly 

incorrect. 

 

Shear-thinning.- [pseudoplastic] A decrease in viscosity with increasing shear rate during steady shear 

flow. 

 

Sublimination. - The conversion of a solid into vapour without the solid first melting. For instance (at 

standard pressure) iodine, solid carbon dioxide, and ammonium chloride sublime. At certain 

conditions of external pressure and temperature and temperature equilibrium can be establish 

between the solid phase and the vapour phase.  

 

Thixotropy.- A reversible time-dependent decrease in viscosity at a particular shear rate. Shearing 

causes a gradual breakdown in structure over time. 
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