View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by De Montfort U

COMPOSITIONAL VERIFICATION
AND SPECIFICATION OF
REFINEMENT FOR REACTIVE
SYSTEMS IN A DENSE TIME
TEMPORAL LOGIC

Dissertation
zur Erlangung des Doktorgrades
der Technischen Fakultat
der Christian-Albrechts-Universitat
zu Kiel

vorgelegt von
Antonio Cau

Kiel,
im August 1995

https://core.ac.uk/display/228187559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Berichterstatter: Prof. Dr. Willem-Paul de Roever

Tag der miindlichen Priifung : 14 Dezember 1995 i,
Zum Druck genehmigt: Kiel, den 14 Dezember 1995o,

Abstract

This thesis introduces a compositional dense time temporal logic for the
composition and refinement of reactive systems. A reactive system is
specified by a pair consisting of a machine and a condition on the com-
putations of this machine. In order to compose reactive systems, each
step in a computation has additionally composition information such as
“this is a system step”, or “this is an environment step” or “this is a com-
munication step”. By defining a merge operator that merges two steps
into one step compositionality is achieved. Because a dense time tempo-
ral logic is used refinement can be expressed easily in this logic. Existing
proof rules for refinement are reformulated in our formalism. The no-
tion of relative refinement is introduced to handle refinement of systems
that only under certain conditions are considered to be correct refine-
ments. The proof rules for “normal” refinement are extended to handle
relative refinement of systems. Relative refinement is used to formalize
Dijkstra’s development strategy for the solution of the readers/writers
problem and to formalize a development strategy for certain fault tol-
erant systems. This development strategy is applied to the development
of a fault tolerant storage system.

iii

Acknowledgements

I would like to thank my advisor Willem-Paul de Roever for his guid-
ance and his scientific support especially during the first two years
of writing this thesis. Without his support this thesis would be just
“spaghetti code”. Special thanks go to Pierre Collette, the collaboration
with whom was very agreeable and fruitful and led to many insights. I
would like to thank all my colleagues of the group “Software Technol-
ogy” at the Christian-Albrecht-University for their support, especially
Yassine Lakhneche, who made many invaluable comments during the
last stage of the thesis, Kai Engelhardt, who acted as a “finite variabil-
ity condition” with respect to the changes | wanted to make in my thesis,
and Qiwen Xu with whom I started to collaborate after he left the group.
Also members of the other groups at the Christian Albrechts University
are thanked for their comments, especially Thomas Wilke. I also want
to thank Ruurd Kuiper for his help and comments during the first and
last stage of the thesis. Finally I would like to thank the Personalrat
and the Technical Faculty of the Christian Albrechts University in the
persons of Reimer Hansen and Frank Paul for their efforts in extending
my contract for 4 months, thus enabling me to finish this thesis. Last
but not least T want to thank Anne Strafner for her (moral) support
during the last stage of the thesis.

Contents

Abstract il
Acknowledgements v
1 Introduction 1
2 A Dense Model Formalism 3
2.1 Introduction L e 3
2.2 Specification of Reactive Systems L oo o 6
2.2.1 Semantic Specification of Reactive Systems 6

2.2.2 DTL Specification of Reactive Systems 16

2.3 Refinement and Composition of Reactive System Specifications 29
2.3.1 Semantic Refinement and Composition of Specifications 29

2.3.2 Refinement and Composition of DTL Specifications 31

2.4 Proving Refinement of Reactive System Specifications 37
2.4.1 Proving Semantic Refinement of Specifications 37

2.4.2 Proving Refinement of DTL Specifications 38

2.5 Relative Refinement and Composition of Reactive System Specifications 43
2.5.1 Semantic Relative Refinement and Composition of Specifications 43

2.5.2 Relative Refinement and Composition of DTL Specifications 44

2.5.3 Proving Semantic Relative Refinement of Specifications 45

2.5.4 Proving Relative Refinement of DTL Specifications 46

3 Readers/Writers Example 47
3.1 Introduction oL L e 47
3.2 The abstract specification Lo L 48
3.2.1 Specification S0o oL 48

3.2.2 Specification Swlo 49

3.2.3 Requirement W(J) 51

3.3 The first development step Lo 51
3.3.1 Specification S,1 52

3.3.2 Specification Sujl 53

3.3.3 Requirement Wi 56

3.3.4 8y relatively refines Sg 56

3.4 The second development stepo Lo 59
3.4.1 Specification S,z 60

3.4.2 Specification Swl;z 62

vii

3.4.3 Requirement Wy oL 65

3.4.4 Sy relatively refines Sy L. L L 66

3.5 The third development step L 71
3.5.1 Specification S5 72
3.5.2 Specification Swls 74
3.5.3 Requirement W; 78
3.5.4 Ssrelatively refines Sy L L 78

3.6 The fourth development step L L 83
3.6.1 Specification S,a 84
3.6.2 Specification Swl4 87
3.6.3 8, relatively reﬁjnes S o e e 90

4 Stable Storage Example 95
4.1 The General Methodology oo 95
4.2 Application: Introductiono Lo 96
4.3 First Step: Stable Storage oL oL 97
4.3.1 Introduction oL 97
4.3.2 Specificationo 97

4.4 Second Step: Physical Disk oL oo 99
4.4.1 Introduction oL 99
4.4.2 Specificationo Lo e 99
443 Requirement Wp L L L e e e e 101
4.4.4 Sprelatively refines & oL oL 101

4.5 Third Step: Fail-Stop Detection Layer 104
4.5.1 Introduction oL 104
4.5.2 Specificationo oL L 104
4.5.3 Requirement Wp, o e e e e e e 109
454 Sps || Sp relatively refines Sp oL 109

4.6 Fourth Step: Error Recovery Layer o oo 114
4.6.1 Introduction oL L 114
4.6.2 Specification of the Recovery Layer 115
4.6.3 Specification of the Detection Layer 119
4.6.4 Requirement Wr oL e e e e 123
4.6.5 ||¥, (Sp: || Spi) || Sr relatively refines Sps || Sp + « v v v o o 124
Bibliography 134
A Proofs of Dense Model Theorems 139
Al Proofof Theorem 1. o o 139
A2 Proofof Lemma 1 o e 140
A3 Proofof Theorem 2. o 140
A4 Proofof Lemma 2 e 149
AL Proofof Lemma 3 L 166
A6 Proofof Lemma 4 e 166
AT Proofof Lemma b 167
A.8 Proofof Theorem 3. e 168
A9 Proofof Lemma 6 e 169
A.10 Proof of Theorem 4 o o0 169

A.11 Proof of Theorem 5. o 0 e e e e 170

A.12 Proof of Theorem 6. e 171
A.13 Proof of Lemma 7 e e e 171
A.14 Proof of Lemma 8 e e 171
A.15 Proof of Theorem 7. e e 172
A.16 Proof of Lemma 9 173
A.17Proof of Lemma 10 e e 174
A18 Proof of Lemma 11 e e 175
A.19 Proof of Theorem 8 e 175
A.20 Proof of Theorem 9. e 176
A21 Proof of Lemma 12 e e e 176
A22Proof of Lemma 13 e e 177

ix

List of Tables

2.1 Syntax of DTL 00 oo e
2.2 Used abbreviations e e e

x1

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Computation of a machine. o 0o 4
Concrete computation. L L L o e e e 5
Collapsed history. o o e e 11
Abstract machine e 34
Concrete machine 1. 35
Concrete machine 2. 36
Transitions of Seq||Sez - -+« o Lo 40
Transitions of reader?. 49
Transitions of Writer?. 50
Transitions of reader}. 54
Transitions of Writer}. 55
Transitions of reader?. 63
Transitions of Writer?. 65
Transitions of reader?. 75
Transitions of Writer;’. 77
Transitions of reader?. L 86
Transitions of Writer?. 89
Transitions of stable storage. L L 98
Transitions of the physical disk. 101
Transitions of the fail-stop detection layer. 108
Transitions of the relative composed system. 111
Transitions of the error recovery layer. 120
Transitions of the detection layer. 124
Transitions of the final implementation of stable storage. 129

xiii

xiv

Chapter 1

Introduction

e urrent formal methods are far from solving the problems in software development.
5"%’;)‘);,), The simplest view of the formal paradigm is that one starts with a formal speci-
SN fication and subsequently decomposes this specification in subspecifications which
composed together form a correct refinement. These subspecifications are decomposed into
“finer” subspecifications. This refinement process is continued until one gets subspecifi-
cations for which an implementation can easily be given. This view is too idealistic in

a number of respects. First of all, most specifications of software are wrong (certainly

most informal ones, unless they have been formally analyzed) and contain inconsisten-
cies [PWTI0]. Secondly, even if a formal specification is produced, this is only after a
number of approximation steps because writing a correct specification is an even more
difficult process than producing a correct implementation, and should therefore be struc-
tured, resulting in a number of increasingly less abstract layers with specifications which
tend to increase in detail (and therefore become less readable [LGAR79]). Thirdly, even
an incorrect refinement step may be useful in the sense that from this incorrect refinement
step one can sometimes easier derive the correct refinement step. This is especially the
case with intricate algorithms such as those concerning specific strategies for solving the
mutual exclusion problem. An interesting illustration of this third view is provided by
E.W. Dijkstra’s “Tutorial on the split binary semaphore” [Dij79] in which he solves the
readers/writers problem by subsequently improving incorrect refinement steps till they are
correct. If this master of style prefers to approximate and finally arrive at his correct solu-
tion using formally “incorrect” intermediate stages, one certainly expects that a formally
correct development process for that paradigm is difficult to find! The strategy described
in [Dij79] is necessarily informal, reflecting the state of the art in 1979.

In Chapter 2 a dense time formalism is introduced for the specification and verifi-
cation of refinement of systems based on [BKP86, DK90, KMP93, Sta84, Sta85, Sta88].
This formalism will be used to describe above strategy of incorrect intermediate stages.
A dense time formalism is used because it allows one to deal with the stutter-problem
(explained in section 2.1) and it enables one to express hiding of “internal” variables
by existential quantification. Instead of using the assumption/commitment approach of
[AL93a, AL93b, Jon83, MC81, PJ91, Pnu85, Sti88, Ste91, WD88, ZdBdR84, ZdRvEBS&4]

, unified in [XCC94, CCY4], in order to achieve compositionality an event variable is used

1

Introduction

that stores “compositionality information” like “this is a system step” or “this is an en-
vironement step” or “this is a communication step”. A merging operator, first version
defined in [Acz83], based on the one defined in [CC94] is introduced to merge this “com-
positionality information” of the components into “compositionality information” of the
composed system. The use of event variables has as second advantage that existing proof
rules for refinement like those in [Lam91, KMP93] can easily be extended to our frame-
work. The notion of relative refinement is introduced to handle “incorrect” development
steps. The system specification is therefore extended by a requirement that extracts the
“good” computations of the system. The refinement proof rules are extended to handle
relative refinement so that the correct part of incorrect development steps can be proven
correct.

In Chapter 3 we present Dijkstra’s development strategy of the readers/writers prob-
lem [Dij79] in our formalism. A preliminary version of this formalization, without proofs,
appeared in [CKdR92] using the original formalism of [Sta84]. Our formalism preserves
the flavour of the informal strategy in that it formalises Dijkstra’s argumentation in terms
of incorrect approximations to a correct program and provides a formal criterion for recog-
nising when a formally correct end product, the correct program, has finally been reached.

In Chapter 4 we present a formal development strategy for the development of certain
fault tolerant systems using our notion of relative refinement. A preliminary version of
this strategy appeared in [CdR93b, CdR93a] using the original formalism of [Sta84]. The
formal strategy is as follows: one starts with an implementation for a specified fault tolerant
system. This implementation contains some faults, i.e., the refinement step is incorrect
because of these faults. It is however relative correct because when these faults don’t
occur it is a correct implementation. In the next step we try to detect these faults,
i.e., we construct a detection layer upon the previous implementation that stops that
implementation when it detects an error caused by these faults. This is called a fail-stop
implementation [LA90] and represents an improvement over the previous implementation
because now at least the implementation stops on the occurrence of such a fault. The
second implementation is also relatively correct because no occurrence of faults and the
detection layer doesn’t detect any error due to a fault then the second implementation is
correct. In the third approximation we recover these errors, i.e., we don’t stop anymore
upon the detection of an error but merely recover the error by executing some special
program that neutralizes that error. This third approximated refinement step is correct
under the assumption that certain conditions are fulfilled, which exclude the occurrence
of faults different from those whose errors are neutralized, i.e., it is again relative correct.
This strategy is used for the development of a fault tolerant storage system, a so called
stable storage.

Chapter 2

A Dense Model Formalism

2.1 Introduction

n this chapter we present a refinement method for reactive systems. A system

© is called reactive if it maintains some ongoing interaction with its environment,
il

S for example an operating system. This contrasts with transformational systems
where from some input without further interaction output is produced. Because of this
characteristic reactive systems should be described as sets of behaviours (histories). The
underlying model for these behaviours is dense. The method which we present is based
on the work of E.W. Stark [Sta84, Sta85, Sta88]. Here we present a framework which
can model both CSP based and shared variable based concurrency, using the work of

[BKPS6, DK90, KMP93].

In section 2.2 reactive systems are specified by sets of histories together with a basis. A
history is pair consisting of an event and a state function. The domains of these functions
are the non-negative real numbers (the underlying dense model). The event function
maps each non-negative real number to an event (an action occurring during the operation
of the system and its environment) and the state function maps each real number to
a state of the system and its environment. The intuition is that an occurrence of an
action causes (potentially) a state change as illustrated in Figure 2.1. The basis is a pair
consisting of an action basis and a process basis, where the action basis specifies the input
and output channels over which the system communicates with its environment and the
process basis specifies the local (only accessible by the system) and shared (accessible by
both system and its environment) variables. Due to this basis composition of reactive
systems corresponds to conjunction. Note that in for instance Lamport’s work on TLA
[Lam91, Lam94, Lam] this is not always the case: x := 1|l := 1 must be modeled as
disjunction because conjunction leads to a “one process” specification x := 1. In our model
however, it can be modeled as conjunction because the specification of one component
also contains environmental information, especially about the other component. With a
“conjoining” operator the histories of both components are merged into a history of the
composite one. This conjoining operator based on [CC94] corresponds in our model almost
to conjunction and is actually an extended version of Aczel’s one [Acz83] because it also
can handle CSP based concurrency whereas Aczel’s one can only handle shared variable

3

A Dense Model Formalism

based concurrency.
States: (s,X)

(272) 4 O« °
0,1) T Oo«—e : . a state function
(1,2) T o—e
(0,0) ¢—
R20
Events: ¢
1T) . : ¢ : an event function
al T .
e T ®
Y o o o o
| | | |
I I I I
0 t 15 ts 14 R0

Figure 2.1: This picture illustrates the notion of state and event function, which together characterize
the notion of computation of a machine. Tt illustrates the following computation: initially (s,x) = (0, 0),
the event a? changes x into 1, i.e., s doesn’t change. In the interval [0,7;) there are only A events. The
event i at point ¢ changes (s,x) into (1,2), at point t3 the event e changes s into 2 and at point ¢4 the
event 1 doesn’t change s or x.

A notion of a machine is introduced for generating these histories, i.e., a history is a
computation generated by a machine. With this machine notion only safety properties, i.e.,
sets of histories generated by a machine, of a system can be specified, so an extra condition
on the computations of this machine is introduced for specifying liveness properties of the
system.

The use of real numbers as domain for the event and state function handles the stutter
problem. This problem, first observed by Lamport [Lam83, Lamg89], is as follows. Given
two behaviours of a system, let the first behaviour contain only consecutive snap-shots of
the system that differ from each other whereas the second behaviour contains the same
snap-shots but also some consecutive ones that are identical. This is called stuttering.
From the viewpoint of an observer these behaviours are considered as equal. Consequently,
any formalism that allows to distinguish between these behaviours is not abstract enough
and has a power of discrimination which is too strong. An example of such a formalism
is linear temporal logic with a next operator O. In the present formalism this excessive
expressive power is avoided as follows: state changes caused by events happen only now
and then, so that in between each two consecutive changes there are uncountably many
instants of time at which nothing happens. Consequently, it is impossible to count, or
express, stutter steps. Furthermore the use of real numbers for defining the event and
state function enables us to express hiding of variables as existential quantification and
consider refinement as implication, even if there are more “states” on the abstract level
than on the concrete level: let the history illustrated in Figure 2.1 be a history at the

4

2.1 Introduction

abstract level where x is the variable that should be hidden and let the history illustrated
in Figure 2.2 be a history at the concrete level. The history of Figure 2.2 is a refinement
of the history of Figure 2.1.

States: s
2 —_ O«
: concrete state function
-T- O+———o
0 ——o—o
R0
Events: ¢
1T) J : : concrete event function
al T .
e T []
Y o o o
I I I
0 ky ko ks R0

Figure 2.2: This picture illustrates the following concrete computation: initially s = (0), the event a?
doesn’t change s, the event i changes s into 1, and the event e changes s into 2.

A dense time temporal logic DTL based on histories is introduced in section 2.2.2. This
logic is based on [Sta84, Sta85, BKP86, DK90, KMP93]. A salient feature of the dense time
temporal logic is the “immediately after” operator ’, in a version which Lamport [Lam83]
approves of, i.e., it is stutter insensitive. In this logic the notion of a machine and the
condition on the computations of that machine will be expressed. It is also possible to
express in this logic whether a system refines another system, i.e, the set of histories of the
first system is a subset of the histories of the second one and the “observable” part of the
abstract basis (i.e., observable from outside of the component) is equal to the “observable”
part of the concrete basis. In our model initial stuttering is incorporated by default (cf.
[DK90]) and refinement can be expressed using implication and existential quantification.

In section 2.3 the notions of composition and refinement of systems are defined. Firstly
in terms of histories (semantically) and secondly in the dense time temporal logic DTL
(syntactically). It is also investigated how composition relates to refinement, i.e., the
notion of compositional refinement [ZCdR92] is given. Compositional refinement means
intuitively that if the components of an abstract composed system are refined by the
components of a concrete composed system then the abstract composed system is refined
by the concrete composed system, i.e., refinement is preserved under composition.

Section 2.4 gives proof rules for refinement based on those given in [Lam91, KMP93].
These proof rules split the proof of refinement of systems into (1) a proof of refinement
of the safety parts of the systems and (2) a proof of refinement of the liveness part of the
systems.

A Dense Model Formalism

Section 2.5 explains how the formalism can be used to describe relative (incorrect) re-
finement steps as discussed in Chapter 1. Also the notion of relative composition is intro-
duced which intuitively means that only restricted parts of the components are composed
together. The notion of compositional refinement of section 2.3 is extended to composi-
tional relative refinement. The proof rules for refinement of section 2.4 are extended to
handle relative refinement. These proof rules are used extensively in the readers/writers
example of Chapter 3 and the stable storage example of Chapter 4.

2.2 Specification of Reactive Systems

This section explains how reactive systems can be specified. Firstly they will be specified
at the semantical level, i.e., by sets of histories. A history intuitively specifies which event
occurs at a particular point and in what state the system is at that particular point.
Secondly reactive systems are specified using the dense time temporal logic DTL.

2.2.1 Semantic Specification of Reactive Systems

In [Sta84] a method for specifying reactive systems is introduced. Such systems are char-
acterized by sets of histories. A history is a pair consisting of an event function and a
state function. An event function records at each point (i.e., element of the positive reals,
including zero) which event occurs. An event is an instantaneous occurrence of an action
during the operation of a system, that can be generated by that system or its environ-
ment and that is of interest at the given level of abstraction. Four kinds of actions are
distinguished:

1. communication actions a?, b!, i.e., actions that transmit information over a channel.
A channel is a connection between the system and its environment.

2. system actions 1, i.e., non-communication actions of the system.
3. environment actions e, i.e., non-communication actions of the environment.
4. silent actions A, i.e., actions that don’t influence the status of the system.

Fuvent states are introduced in order to record which event occurs during the operation of
the system. An event state is like the usual notion of state with the exception that instead
of normal program variables event variables are used. An event state is defined formally
in the following definition.

Definition 1 (Event variable and event state)

Let Chan denote the set of all channels. Let & denote the set of event variables with typical
elements ¢, €g, €1,. ... Fvent variable ¢ will record which action occurs during the operation
of the system, and the event variables cg, €1, ... are auxiliary event variables recording which

6

2.2 Specification of Reactive Systems

actions occur in components of the system. Let 2 denote the set of actions, with typical el-
ements 1 (denoting system actions), e (denoting environment actions), a?, b!' ... denoting
respectively an input communication action over channel a and an output communication
action over channel b, and X denoting the silent action. An event stale is a mapping ¢
from & to A. Let A denote the set of all event states.

An state function records at each point (a non-negative real number) the process state,
i.e. the usual notion of state of a system and its environment. In order to distinguish
the normal variables from the event variables the normal variables are called here process
variables. Three kind of process variables are distinguished:

1. shared process variables which are “shared” between a system and its environment,
and

2. local process variables which are only accessible by a system.

3. rigid variables which are not changed by the system and its environment, i.e., which
are used for specification purposes.

The process state is defined formally in the following definition.

Definition 2 (Process variable and process state)

A process state is a mapping from variables to values. Let B denote the set of shared
variables with typical elements s, ..., and X the set of local variables (BN X = () with
typical elements x, ..., and R the set of rigid variables with typical elements n,.... A state
is @ mapping o from LU XUR to the set of values Val. Let X denote the set of all process
states.

As already said above, event and state functions are mappings from the non-negative reals
to, respectively event and process states. Because of this some requirements are needed
in order to specify “reasonable” histories. Here reasonable is used in the sense that in a
bounded interval only a finite number of non-silent actions and process state changes can
occur. This requirement is called the finite variability condition [BKP86]. Next several
notions for functions from ®2° (the positive reals including 0) to some domain D are
introduced in order to define this requirement and to formally define the event and state
functions.

Definition 3 (Left and right constant, limit)

Given function f:R2° — D.

f is called left constant at ¢t € R2°, if there exvists a real number ty, 0 < tq < t, such
that f(t1) = d for all t; € (to,t). d is called the left limit of f at t, and is denoted by

11—t
f is called right constant at t € R2°, if there exists a real number ty, to > t, such that
ft1) = d for all t1 € (t,t0). d is called the right-limit of f at t, and is denoted by

111

Tn this chapter we omit the value part of the communication, i.e., which value is transmitted, in order
to ease the formalism a little bit. In the example of the stable storage we will use this value part although
it 1s not formally introduce in this chapter

A Dense Model Formalism

Definition 4 (Left and right continuous, discontinuous)

Given function f:R2° — D.

[is called left continuous, if f(t) = thr% f(t1) for every t > 0.
1—

f is called right continuous, if f(t) = tlgl f(t1) for every t > 0.
[is called discontinuous at t, if f(t) # }12: f(t1) or f(t) # tlgl f(t).
f is called strongly discontinuous at ¢, if f(t) # thg f(t1) and f(t) # tlgl f(t).

Definition 5 (Finite variability)

Given function f:R2° — D.

f has the finite variability property iff f has only finitely many points of discontinuity
in any interval [a,b], 0 < a < b, a,b € R2°.

Now event and state functions can be defined. [DK90] states that initial stuttering is
needed in order to express refinement in a logic with the help of existential quantification
and implication. We must first define what stuttering, in the sense of [DK90], is in our
setting. In our setting a stutter step is a step in which a non-communication action doesn’t
change the state. So here this initial stuttering can included by requiring that in the first
interval the event function has the constant value A and the state function remains constant
there. Furthermore a state should remain constant for an interval of points in order to
be observable. Also non-A events are considered to be single points. Another possibility
would be for the events to remain constant during an interval of points. The intuitive
meaning of a history is that the points of non-A event occurrence mark the state changes.
For the non-X events the question to be answered is: at which point of the interval should
the state change take place? Answer: at the last point of the interval of the event. So for
events only the last point of the interval is interesting because it marks the state change.
So why consider an interval if only its last point is interesting? This is the explanation of
the choice made here that the non-A events occur only at single points. This is captured
by the following definitions.

Definition 6 (restriction)

Forg: Ay — Ay, Ay C Ay define glly, : Ao = Az as gy, (x) = g(x) for x € Ag. If Ay is a
set containing only one element x then we will write g|! instead of g|}l,}.

Forg: Ay = (A - Ag), Ay C Ay define gl = Ay = (Ao = As) as gl (1)) = g(1)(x)
for x € Ag. Again if Ay is a sel containing only one element x then we will write g|?
instead 0fg|%x}

Definition 7 (Event function)

An event function ¢ is a function from RZ° to A, such that ¥|* has the finite variability
condition, (0)(e) = A (i.e. initial stuttering) and for all points t, ¢ is strongly discontin-
wous at t iff Y(t)(e) # A (i.e. an event function is almost constant X). Let U denote the
set of all event functions.

Figure 2.1 illustrates the notion of event function. At point ¢; event a? occurs, at point ¢,
event 1 occurs, at point ¢3 event e occurs, and at all other points event A occurs. Points
t1, t3 and t3 are here the strongly discontinuous points.

8

2.2 Specification of Reactive Systems

Definition 8 (State function)

A state function 0 is a left continuous function from RZ° to ¥ such that for all n € R
and t € B2°, 0(t)(n) = 0(0)(n) (i.e., the rigid variables don’t change at all), and for all
v € BUX, 02 satisfies the finite variability property and 8|2(0)(z) = 011:1;11 012(t1)(x) (i.e.

inttial stuttering). Let © denote the set of all state functions.

Figure 2.1 illustrates the notion of state function. In interval [0,7;] the system is in state
(s,x) = (0,0), in interval (¢1,%2] in state (s,x) = (0,1), in interval (¢s,?3] in state (s,x) =
(1,2) and in interval (¢2, 00] in state (s,x) = (2,2). The event i at ¢4 is an illustration of a
non-A stutter step.

The following definition combines the notions of state function and event function into
the notion of history. Two requirements are imposed on the combination of event and state
function in order to be a history. The first requirement is that silent actions don’t give
rise to process state changes. The second requirement is that communication actions don’t
change the shared variables; this requirement is imposed in order to model CSP [Hoa84]
like processes.

Definition 9 (History)
A history h is a pair (1, 0), where 1 is an event function and 6 is a state function s.t. a
X action doesn’t change the values of variables from T U X, i.e.:

Vi:p(t)e) =X — (1) = tlgl O(t1)

and a communication action doesn’t change the values of shared variables, i.e.:
V(1)) = a? = 00, = lim ()],
V1 (0)(0) = al = 0(1) [} = im 0(01)}

Let ‘H denote the set of all histories.

The following definition defines when a history is stutter equivalent to another history.
A history collapse function is introduced that takes a history and collapses it in such
a way that the non-stutter steps only occur at discrete points (elements of I) and at
all remaining points stutter steps occur. Also a restricted version of the history stutter
equivalence relation is defined, namely, restricted to the process state information. The
last one will be used to define a “process state history stutter insensitive” logic DTL. This
logic will be restricted to a special kind of formulae in order to obtain the “history stutter
insensitive” logic.

Definition 10 (History collapse, stutter equivalent)

Given history h € H, the history collapse denoted 4,(h) is a function from H to H
defined as fiy(h) = hodi(h) where di(h) is the discretization bijection for h from RZ° to
B2 and is defined as follows:

Let tt(h, k) be the function from H x N to RZ° that gives the point in R2° of the k-th change
in h, formally:

th(h k) 2 min(t: t> tt(hk— 1) A () (c) & {Miel Vo) £ Lim 0(t)))

tt(h,k—1)#

A Dense Model Formalism

Let nn(h) denote the number of non-stutter points of h. Then the discretization bijection
di(h) for h is defined as follows:

((1) =
t6(h k) + (t— k) (t6(h, k + 1) — tt(h, k) nn(h) < 0o A0 < k < nn(h)

Ne<t<k4+1
tt(h, k) + (t — k) nn(h) <ocoANk=nn(h)Nk <t
tt(h, k) + (t — k) = (tt(h,k+ 1) — tt(h,k)) nn(h) =cc A0 <EANE<t<Ek+1

The inverse discretization of h is denoted di™'(h).
Given histories hg,hy € H, ho is history stutter equivalent to h, denoted hg ~, hy iff

nn(he) = nn(hy), and
ehh(ho) = ehh(h1)7 and
77Z)hh(h0)(k) = 77Z)hh(h1)(k)7 k < nn(ho)

i.e., the number of non-stutter steps should be equal, the state information should be equal
in both collapsed histories and the event information should be equal in the points of non-
stuttering. A restricted version of the history stutter equivalence relation is the one that
considers only the process state information, i.e., hy is history process state stutter
equivalent to hy denoted hg ~g, hy iff

nn(he) = nn(hy), and
ehh(ho) = ehh(h1)7

Application of above definition to the history of Figure 2.1 results in: tt(h,0) = 0, tt(h, 1) =
t1, t6(h,2) = ta, tt(h,3) = t3, and tt(h, k) = oo for k > 3 and nn(h) = 3. The discretization

function di(h)t is as follows:

t*1l 0<t<1
b+t —1D*(ty—t) 1<t<2
ta+(t—2)%(t3—ty) 2<t<3
ts + (t — 3) 3<t

The collapsed history f,(ho) is illustrated in Figure 2.3.

The following theorem relates histories to a special kind of infinite sequences of pairs of
event and process states, in which sequences start with an A action, followed by possibly
stuttering actions, then followed by exactly one non-stuttering action etc. Furthermore
should every non-X event be surrounded by A-events. These kind of sequences are inspired
by those defined in [KMP93]. For these kind of sequences a sequence collapse is defined
that removes all finite stuttering; with the help of this collapse operator the sequence
stutter equivalence operator is defined.

Definition 11 (Infinite sequences)
Define a sequence element as a pair (8, 0) of an event and a process state. Let sel; (i > 0) be

10

2.2 Specification of Reactive Systems

States: (s,X)

(27 2) - O .
0,1) T o+—e : : collapsed state function
(1,2) T o—e
(0,0) ¢— : i
R20

Events: €

1T : . : ¢ : collapsed event function

arT o

e T []

A O O O O

I I I I
0 1 2 3 34 (ts —t3) Rr2°

Figure 2.3: This picture illustrates the collapsed history of Figure 2.1

the pair (&;,0;) then the sequence seq is a infinite sequence of the form seqoselpseqisely . . .
where sel; = (8;,0;) is such that

di€) # A,

(52(6) =a?V 52(6) = a’) — 0'Z|é] = O'i-|—1|é]

52(6) - {i,e} — O; 7£ Tit1
and seq; is a sequence of the form (8;1,0:)" (82, 0:) (81, 00)F) where n; > 0, k; > 0 and
[; >0, and §;1(€) = X and d;5(¢) € {i,e}.
Let SEQ) denote the set of all such sequences. Let seq be a sequence of the above form
then fs(seq) = (sell)i>o is the stutter free sequence obtained from seq by deleting all finite
stuttering from seq. Formally: Let ns(seq) denote the number of non-stutter steps in seq,
if ns(seq) = oo:

sely, g =sel; 0<q

sely, . = (0i1,04) 0<1
if ns(seq) < oo:

sell, ;g = sel; 0 <1< ns(seq)
sely ;o1 = (Op1,01) Kk =ns(seq) Nk <
sell,. = (i1, 04) 0 <i < ns(seq)

sell,. = (0k1,0%) kE=ns(seq) Nk <i

2%1

Let seqq and seqy be sequences then seqqg is stutter equivalent to seq; denoted seqy ~4 seqq
iff: let ho(seqo) = (Sel?)izo and fs(seq) = (Sel})izo,

ns(seqo) = ns(seq) and
o? = o} and

8(c) = 31(c)

11

A Dense Model Formalism

The relationship between the sequences and histories is that there exists a function from
the stutter equivalence classes of histories to the stutter equivalence classes of sequences
and a function from the stutter equivalence classes of sequences to the stutter equivalence
classes of histories.

Theorem 1 (Relationship between histories and infinite sequences)

Let h € H/ =, then (sel;)i>0 € SEQ/ ~ where sel; is as follows:

if nn(h) < co:
selyuirr = h(1) 0<i<nn
seloy; = lim h(ty) 0<i<nn
seloyizs = hm h(ty) k= nn(h)
selyy; = hm h(1) k= nn(h)

feety
if nn(h) = co:
56[2*24_1 == h(l) 0 S 7
sely = lim h(ty) 0 <1

141

Let seq = (sel;)iso € SEQ/[=~ then h € H[~j, where h is as follows:
if ns(seq) < oo:

h(0) = sely

h(t) = selyu—1 t ENAD <t < ns(seq)

h(t) = selyu tENAL> ns(seq)

h(t) = sely r<t<i+1
if ns(seq) = oo:

h(0) = sely

h(t) = Selg*t_l t €N

h(t) = sely r<t<i+1
The following sequence corresponds to the history of figure 2.3:

seq = (3, 0:)i>0,

dol€e) = A oo(s) =0 oo(x)=0
di(e) = a7 o1(s) =0 o1(x)=0
da(e) = A oa(8) =0 oz(x)=1
ds(e) =1 o3(8) =0 o3(x)=1
da(e) = A os(8) =1 o4(x)=2
ds(e) = e os(s) =1 o5(x)=2
di(e) = A oi(s)=2 oi(x)=2 1>5

The basis is a pair consisting of a process basts, specifying the local and shared variables
of the system, and a action basis which specifies the input and output communication
channels of a system. The following definition introduces basis and history sets that
constrain a specific process basis, i.e., specific sets of shared variables and local variables
are constrained to change in specific ways, the variables outside this process basis can
change without restriction, with exception of the rigid variables which do not change at

all.

12

2.2 Specification of Reactive Systems

Definition 12 (Basis, history set constraining a basis)

A basis (denoted by B) is a pair (B4, BY), where BA (called action basis) is a pair
(In, Out) where In is a set of input communication channels and Out is a set of output
communication channels, and where BT (called process basis) is a tuple (V,X) where V
a finite set of shared variables and X a finite set of local variables.

Given a history h € H and process basis BY then the process basis restriction of h
denoted h|3p is defined as (¥, 03 x).

Given a set of histories H and process basis BY then H is constrained by BY iffVhq, hy €
H:hilge = holge — (hy € H <> hy € H).

The following definition introduces the notion of history specification which is a pair con-
sisting of a basis and a set of histories constraining the process basis.

Definition 13 (History specification of a system)

A history specification of a system (denoted S) is a pair (B, H) where B is a basis and
H is a set of histories constraining process basis BY such that an environment action e
doesn’t change the local variables of the system:

Vi ()6 = e = (1) [k = Jim 011 &

The following definition introduces several notions from topology ([Wri87]) needed for the
definition of safety and liveness sets of histories. These definitions of safety and liveness
are based on those of [AS85]. Informally a safety set of histories consists of histories where
nothing “bad” happens and a liveness set of histories consists of histories where something
“good” eventually happens.

Definition 14 (Safety and liveness set)
Let H be a set of histories and h € H.

o The prefix of h of length t denoted h |y is defined as

(t0),0(t0)) 0 <to <t
t

Pl Wé{i B(0), 0(1)) to > ¢
Thus for ty > t only stulter actions occur in |, .
o The distance function d from H x H — R2° is defined as:
0 if hy = ho
d(hy,hy) £ ¢ 1 if h1(0) # h2(0)

9 sup{t€R2 Ml =hale } o1h erpise

(H,d) is a metric space.

o H is called d-open iff

VheH:3e>0:Vhy:dhh)<e—h €l

13

A Dense Model Formalism

The topology with {H C H | H is d-open } as ils basis is called the d induced
topology of (H,d) denoted 4.

H is called a T4~environment of h iff
EIHler:hEHl/\ngH
e The interior of H denoted in(H) is defined as

{h € H| H is a 74 environment of h}

The closure of H denoted cl(H) is defined as H\ (in(H \ H)).
o H is a safety set iff c[(H) = H.
e H is aliveness set iff c/(H)="H.

Note: the only set that is both a safety and a liveness set is H [AS85].

A specification method for systems that uses only sets of histories is not attractive.
Therefore the notion of machine is introduced. A machine consists of a set of states and
a state-transition relation. The intention is that the set of computations (i.e. histories)
of a machine associated to a system should correspond to the history specification of this
system. A machine however can only generate safety sets of histories [AS87]. Therefore, a
liveness set is specified as a condition on the set of computations (histories) of a machine.
Next the formal definition of a machine is given.

Definition 15 (Machine)
The machine specification M of a system is a triple (B, I,T) where:

e B: the basis of M; a tuple ((In,Out),(V,X)). Note: the shared variables will be
printed in bold faced style in order to distinguish them from the local variables.

o [: a non-empty subset of X2, the set of initial states, such that

— Voo,01 € ¥ : (oolbux = o1lbux) = (00 € [< 0y € 1), i.e., it constrains the
variables from V U X only.

o T : the state-transition relation (finite), T C A x X2, such that
— Voo,01 € 8,0 € A:{(8,00,01) €T — 09|y, = a1, t-€., the rigid variables don’t
change at all.

- \V/O-070-170-270-3 S 275 €A (O-OR/UX = O-QR/UX/\O-lR/UX = U3|{/UX) — (<57 0-070-1> S
T < (8,09,03) €T), i.e. T constrains BT only.
— Vog,01 € 8,0 € A: ((6,00,01) € T A(6(c) = a? Vi(e) =al)) = oy = a1y,

i.e., a communication action doesn’t change the values of shared variables, and

— Vog,01 € 2,6 € A : ((§,00,01) € T Ad(e) = €) = aolx = oolk, i€, an
environment action doesn’t change the values of local variables of the system.

14

2.2 Specification of Reactive Systems

— Vog,01 € ¥,0 € A: (,00,01) €T — (d(¢) € {\,i,e} Voo # o1), i.e., no

stutter transitions are specified.
The following example is an illustration of the notion of machine.

Example 1
M = (B,I,T) where:

1. Basis: B = ((In,Out), (V,X)) where

In £ {al
Out =

Vv = {v}
X £ {u}

2. Initial States:
[:{oceX¥|o(u)=0 and o(v) =0}

3. Transitions:
T:
{<57 0-070-1> € A X 22 |

(a) (0(€) =a? and oo(u) =0 and o1(u) =1 and o1(v) = oo(v)) or
(b) (6(¢) =1 and op(u) =1 and oo(v) =1 and o1(u) = 2 and o1(v) =0) or
(¢) (6(¢) = e and o1(u) = op(u) and o1(v) = oo(v) + 1)}

The concepts of event and state functions are related by the notion of computation of a
machine M. A computation of M intuitively expresses that an event function and a state
function fit together in that at any point ¢ any triple consisting of (1) the event occurring
at ¢, (2) the state just before and including ¢, and (3) the state just after ¢, belongs to
the state transition relation of M (see fig. 2.1). Because a state-transition relations don’t
contain stutter steps but histories do, a set of stutter transitions should be defined in order
to relate machine computations to histories.

Definition 16 (Computation)
Let h = (1,0) € H and t € R2°, then define the step occurring al t in h by:

Stepi(t) = (1), 0(1), lim0(t1)).
Define the set of stutter steps denoted STU as {(d,00,01) | 6(€) € {\1,e} Aoy =o01}.
A computation of a machine M = (B, [,T) is a history h = (1, 0) € H such that:

6(0) € I and
Vit : Stepy(t) € TV Stepy(t) € STU.

Let the set of all computations of M be defined as:
Comp(M) = {h € H | h is a computation of M}.

15

A Dense Model Formalism

Lemma 1 (Machine is safety)
Gliven machine M = (B, I,T) then

Comp(M) is a safety set.

A proof of this lemma is given in [AL91] (it is also repeated in the appendix). The
machine specification of a system now consists of a machine M and a set of histories L
constraining the basis of this machine such that the closure of the intersection of Comp(M)
and L equals Comp(M). This is the machine closedness property of a system specification
introduced in [AFKS88, AL91]. Let A — B denote AJB. By a result of [AS85] every
set of histories can be written as the intersection of a safety set and a liveness set namely
cd(Comp(M) N LYNcl(Comp(M)N L) — (Comp(M) N L). By the machine closedness
property this can be written as Comp(M) (N Comp(M) — L. This means that Comp(M)
specifies the safety properties and Comp(M) — L the liveness properties of the system.

Definition 17 (Machine specification of a system)

A machine specification S of a system is a pair (B, Comp(M)NL) where M is a machine
with basis B and L a set of histories constraining only BT such that cl(Comp(M)N L) =
Comp(M). The set of computations of S, denoted Comp(S), is defined as Comp(M)N L.

2.2.2 DTL Specification of Reactive Systems

As mentioned above, the local properties are described by a machine and the liveness
properties are described as a set of histories. The dense time temporal logic DTL is
introduced to describe both kind of properties. The one used here is a mixture of dense

time temporal logics defined in [Sta84, Sta85, BKP86, DIK90, KMP93].

Definition 18 (Syntax of DTL)
The syntax of DTL is defined in Table 2.1 where value p € Val, rigid variable n € R,
observable variable v € B, local variable x € X, event variable € € & and channel a € Chan.

Table 2.1: Syntax of DTL
Rigid Frpressions

rexp = p|n|n'|[n|rexp +rexpy | ...
Erpressions
exp = rexp|v |V |V |x|xX|x|exp +exps| ...

FEvent Frpressions
everp:= al|allile|A|c|€ |

Temporal formulae
p = true | expy = cxps | expy < expy | evexpy = evexpy | —p | p1 V pe
prUpy|pr Spe|Ixp|Tep|Inp

The informal semantics of the most interesting constructs are as follows:
e X denotes the previous value of x,

16

2.2 Specification of Reactive Systems

e x denotes the current value of x,

e x' denotes the next value of x,

o ¢ denotes the current action value of ¢,
e ¢ denotes the previous action valueof ¢,
o ¢’ denotes the next action value of e,

e pi U p, denotes strict (present not included in the future) until operator from tem-
poral logic,

o S p2 denotes strict (present not included in the past) since operator from temporal
logic,

e Jx.p denotes existential quantification over local variable x of p, i.e., hiding,
o Jde.p denotes existential quantification over event variable € of p, i.e., hiding.

A state expression is an expression without any primed variables. A state formula is a
formula build from state expressions without U and S operators.
Table 2.2 lists some frequently used abbreviations: The following example 2 gives some

DTL formulae

Example 2 (Some DTL formulae)

(e —agAx=0AX = 1) (a state-transition),
Ux > 0 (a safety property),

and O(x =0 — Ox > 0) (a liveness property).

Before we give the semantics of DTL formulae we define for a variable & (local process or
event) the a-variant of a history.

Definition 19 (x-variant, ¢-variant and n-variant of a history)

Let h, hl € H

Let x € X then hy is a x-variant of h if ¢y =¥ and ‘91|(mu%usv)\{x} = (9| A\ {x}-
Let X C X then hy is a X-variant of h if ¢y = ¢ and ‘91|(mu%usv)\x = 0|(mu3€um)\X'
Let € € & then hy is a e-variant of h if ;/)1|@\{E} = ;/)|@\{E} and 6; = 0.

Let n € R then hy is a n-variant of h if 1 =¥ and ‘91|(2muasum)\{n} = (9| BUEUT\ {n}-

In the following definition the semantics of DTL is given without using valuation functions
for expressions, i.e., this valuation function is implicitly defined by . By convention,
boolean values are not explicitly denoted, i.e., we shall write (h,t) |= true rather than
(h,1) = true = 1.

Definition 20 (Semantics of DTL)
LetheH,teRr2° neR veY, xEX, and c € €.

o (ht)ep £ g,

17

A Dense Model Formalism

Table 2.2: Used abbreviations

false = —true
P11 — P2 = —p1 V p2 p1 implies py
prApy = =(-p1Vops) p1 and py
pL e pr= (p1 = p2) A (p1 ¢ p2) | p1 equivalent po
Vx.p = =3x.p for all x p
IXp = Ixe..... Ix,.p hiding over X = {xg,...,X,}
<A>p L true U I strict eventually p,
Up = =Q-p strict always p,
Op L p U true is for some time going to be uninterruptedly p,
Op £ pv <A>p non-strict eventually,
Up = p A Up non-strict always,
mUps = paV (p1 A(pr U pa)) | non-strict until,
<f>p £ true gp strict once p,
Ep £ -O-p strict has-always-been p,
Op £ p S true has for some time been uninterruptedly p,
Op = —~O-p has arbitrarily recently been p,
first £ Ofalse first position in a history,
@p £ pV @p non-strict once,
Elp £ pABEp non-strict has-always-been,
P1Sp2 = p2 VvV (p1 A (p1 3 pz)) non-strict since,
pL=pa= U(pr — p2) p1 entails p,
p1 <= P2 = |:|(p1 < pa) p1 18 congruent py
o () £ 00)(n)
o (hi)En & 0(0)n),
o () En 2 0(0)(n),
o (hi)Ex £ 0)x),
o (i) Ev & 01)),
o (h,0)Ex = Q(O)A(X)‘
t>0: (ht)Ex = tlllg%f@(tl)(x)
o (h,0)EVv = G(O)A(V)-
t>0: (ht)Ev = }fge(tl)(v)
o (D)X 2 mb() ()

18

2.2 Specification of Reactive Systems

o (ht)EV 2 Limb(t)(v)

111

o (hyt) | cap +eapy £ (ht) = capy + (ht) E eaps,

o (ht) = exp —exps & (ht) = expr — (hyt) = exps,
o (ht)=a? £ a?,
o (hit)=al £ al,
o (ht)=1 & i

o (hit)Fe £ e

e (h,t) = true,

o (h1) b= capy = exps iff (ht) = expr = (h,1) |= cxps,

o (h,1)|= eveap = everps iff (h,1) |= evexpy = (h,1) = everps,
o (h1) b= capy < exps iff (hot) = expr < (h,1) |= cxps,

o (h,t) = —p iff (h1) = p,

o (h,t) = piVpz iff (hit) = pyoor (h,t) = pa,

o (h,t) = U py iff there exists a to > t, (h,to) E p2 and for all t; € (t,10), (h,t1) E
P1;

o (h,t) = S py iff there exists a to < 1, (h,to) E p2 and for all ty € (to,1), (h,t1) E
p1-

o (h,t) = 3Ix.p iff (h1,t) E p, for some hy, a x-variant of h.
o (h,t) |=dep iff (he,t) = p, for some hy, a e-variant of h.
o (h,t) = dn.p iff (he,t) E p, for some hq, a n-variant of h.

19

A Dense Model Formalism

Definition 21 (Satisfiability, validity)

For a DTL formula p and a history h € H, h satisfies p denoted h |=p iff (h,0) = p

A DTL formula p is satisfiable iff h |= p for some history h € H.

A DTL formula p is valid, denoted |= p, iff h |= p for all histories h € H.

Given a system S with basis B and set of computations Comp(S) then a DTL formula is
S-valid, denoted S |= p iff h |= p for all histories h € Comp(S).

Gliven a temporal formula p then the set of histories satisfying p denoted Huist(p) is defined

as {h | b | p}.

The following theorem states that the logic DTL is history process state stutter insensitive.
Later on a restricted version of DTL is considered in order to make it history stutter
insensitive.

Theorem 2 (DTL is history process state stutter insensitive)
Let rexp be a rigid expression, exp be an exrpression, evexp an event expression and p a
temporal formula then

a Yty ho,hy:ho ~g, h1 — (
b Yt ho,hy:ho g, h1—(
¢ Yty ho, hy:ho g, h1— (
d Yt ho,hy:ho g, hi — ((ho,?

() = rexp = (hy,di(hy) o di™' (ho)(t)
(ho,t) = exp = (hy, di(h1) o di™" (ho)(t))
(ho,t) |= evexp = (hy,di(hy) o di™" (ho)(t
(ho,t) = p iff (ha, di(hy) o di™'(ho)(1))

The following definitions introduce substitution.

) |— rexp)

= exp)
)

|— everp)
P)

Definition 22 (Non-rigid process variable substitution in expressions)
Define substitution of w € B U X by state expression exp in expression expy denoted
expg [exp/w] as follows, using = for syntactic equality:

o rexplexp/w] = rexp

exp ifv=w

V[e:z;p/w]z{ v ifv £ w

exp’ ifv=w

/ pun
o Vierplul = P AV
where exp’ denotes the operation of “priming after” all occurrences of variables in

exp (note: exp is a state expression so all variables in exp are unprimed).

. _Jexp Yv=w
. V[e:z;p/w]_{\v ifv £ w

where ‘exp denotes the operation of “priming before” all occurrences of variables in
exp.

o xlern/w] =4 €tP ifx =w
| m1_{x A

ifx =w

o X'[exp/w] = exp’
canpul = { 5V UX 2

20

2.2 Specification of Reactive Systems

exp ifx=w

o\x[exp/w]z{\x if x % w

o (caps + expa) [eap/w] = cap [exp/w] + caps [eap/u]

Definition 23 (Rigid variable substitution in expressions)
Define substitution of n € R by state rigid expression rexp in expression expy denoted
expg [rexp/n] as follows, using = for syntactic equality:

o (i[rexp/n] = p,

rexp ifn =mng

o ng[rexp/n] E{ 2o if n % n

rexp’ if n =ng
ng ifn#mng

o ng[rexp/n] =

rexp ifn =mng

® ng[rexp/n] = { g ifn#no

e wlrexp/n] =w, w € VUX,

o W [rexp/nl=w, weVUX

o wlrexp/n] =w, w e BUX

o (expy + expy) [rexp/n] = expy [rexp/n] + expy [rexp/n],

Definition 24 (Event variable substitution in event expressions)
Define substitution of € € ¢ by state event expression everp in evexpy denoted
evexpg [evexp/e] as follows, using = for syntactic equality:

o \everp/d = A
o a?[everp/d = a?,
o al[everp/d = al,
o ileverp/d =1,
o e[cverp/d = e,

evexp if ¢g=c¢

€0 if € £ €

o colevexp/e] =

/ . —
| oevexp’ ifeg=c¢
o ¢ [evexp/e] = { , if 62 £ ¢

21

A Dense Model Formalism

everp if g = ¢

o ¢y levexp/e] = { ‘o if €0 # ¢

Definition 25 (Process and event variable substitution in temporal formulae)
Define substitution for a non-rigid process variable w € LU X by state expression exp in
temporal formula p, denoted plexp/w], as follows:

o true[ezp/w] = true

o (exp) = expy) [exp/w] = exp; [exp/w] = exp; [exp/w]
o (everp = everp,) [ezpjw] = (evezp = everp,)

o (exp < expy)[exp/w] = exp; [exp/w] < exp; [exp/w]
o (—p)[exp/w] = —(p[exp/w])

o (p1V p2)lexp/w] = pi[exp/w] V py [exp/w]

(
(
(
(
(
(
(
(
(
(

p1 U pa)expfw] = (pr [exp/w]) U (ps [exp/w])

o (p1 S ps) [exp/w] = (pr [exp/w]) S (p2 [exp/w])

Ix.p) [exp/w] = Ix.(p[exp/w]) if x & var(exp) U {w}).
de.p) [exp/w] = Te.(p [eap/w]),

o (In.p)[exp/w] = In.(plexp/w])

Define substitution of rigid process variable n € R by state rigid expression rexp in temporal
formula p denoted p[rexp/n] as follows:

o true[rexp/n] = true

o (exp; = expy)[rexp/n] = expy [rexp/n] = exps [rexp/n]
o (everp; = everpsy) [rexp/n] = (evexp; = evexps)

o (exp; < expy)[rexp/n] = expy [rexp/n] < exps [rexp/n]
o (=plreep/n]) = ~(plrezp/n))

o (p1V p2)[rexp/n] = py[rexp/n] V py[rexp/n]

(
(
(
(
(
(
(
(
(
(

1 U p2) [rexp/n] = (p1 [rexp/n]) U (p2 [rexp/n])

o (p S p2) [rexp/n] = (p1 [rexp/n]) S (p2 [rexp/n])

Ix.p) [rexp/n] = Ix.(p[rexp/n]),

de.p) [rexp/n] = e.(p[rexp/n]),
e (dng.p)[rexp/n] = Ing.(p[rexp/n]), if no & var(rexp)U{n}).

22

2.2 Specification of Reactive Systems

Define substitution of event variable ¢ € & by state event expression evexrp in temporal
formula p denoted plevexp/e| as follows:

o true[cvexp/e] = true
o (exp; = expy)|evexp/e] = (exp; = exps)
o (everp; = everpy) [everp/e] = (evexp [everp/e|] = evexps [evexp/e])
exp; < expy)[evexp/e] = (exp; < exps)

~p) [evexp/c] = =(p[evexp/c])

1 U p2) [evexp/e] = (p1 [evexp/e]) U (p2 [evexp/e])

1 S p2) [evexp/e] = (p1 [evexp/e]) S (p2 [evexp/e])
Ix.p) [evexp/e] = Ix.(pevexp/e])

o (Jdeo.p) [evexp/e] = Fep.(p[evexp/e]) where o & evar(evexp)U {e}.

(
(
(
(
(p1V p2) [evexp/e] = (p1 [evexp/e]) V (p: [evexp/e])
(
(
(

The following introduces the history variant of a history.

Definition 26 (History variant)

The history variant of a history with respect to non-rigid process variable w € B U X,
and a state expression exp, denoted by (h : w ~» exp), is defined for wy € BUX as follows:
Let p € Val and o € X then

oo 2 {0 A
then
(h:w~> exp)(to) = (Yn(to), (On(to) : w > (h o) [= exp))

The history variant of a history with respect to rigid process variable n € R, and a state
rigid expression rexp, denoted by (h : n ~ rexp), is defined for ny € R as follows: Let
w € Val and o € X then

)A{/J ifni =n

(0:n = p)(m) = o(ny) ifni#n

then
(h :n~> rexp)(to) = (Vn(to), (On(to) : n — (h,to) = rexp))

The history variant of a history with respect to event variable ¢ € &, and a state event
expression evexp, denoted by (h : € ~ evexp), is defined for ¢, € & as follows: Let a € A
and 6 € A then

a ifeg =€

(6:e—a)(q) = { 6(er) iferFe

23

A Dense Model Formalism

then

(h: e~ eveap)(t) 2 ((nlto) : ¢ (hoto) = eveap), du(to))
The following substitution lemma holds.

Lemma 2 (Substitution lemma)

Let expg be an expression, exp be a state expression, w € VU X, rexp be a state rigid
expression, n € R, everpy an event expression, evexp a state event expression, ¢ € €, and
p a temporal formula. Then the following holds:

(h,t) b= eapo eapfe] = ((h s w~> eap),t) [= cxpg
expo [rexp/n] = ((h :n~ rexp),t) | expo
everpy [evexp/e] = ((h : € ~ evexp),t) |E evexpg
pleapfu] iff (h: w0~ cap),t) = p

plreap/n] iff (h : n~> reap),t) E p
pleveap/e] iff ((h: e~ evewp),) = p

Y

Y

(h,t
(h,t
(h,t
(h,t
(h,t

Y

) =
)
)
)
)
)

—_— QL0

Y

The following proof system for DTL is inspired on [Bur82, Bur84, BKP86, MP89]. An
erroneous variant of it appeared in [BKP86] where these authors state that it is “an almost
verbatim copy of [Bur84]” indeed “almost” their axiom F5 was not copied well. Further-
more a link with the proof system of [KMP93] is established via axioms AX7b-AXTf,
i.e., these axioms are needed for deriving their proof system. Note: because the models of
[Bur82, Bur84] need not to satisfy the finite variability condition, and the persistency con-
dition (once in an interval “going back or forward” doesn’t bring you outside that interval,
and the induction axiom. This is the crucial differrence between the model of [KMP93] and
ours and the one in [Bur82, Bur84]. The differrence between the model of [KMP93] and
our model is that we have additional compositionality information as reflected in axioms
AX0, AX5 and AXE6.

The proof system is for the pure logic, i.e., it is not meant for a specific reactive
system. Axioms AX0-AX9 characterize our notion of histories; they should follow from
the definition of history (Def. 9), and, because a history is a pair consisting of a event and a
state function, also from Definition 7 and 8. Ax10 and Ax11 are the axioms for substitution
and quantification. Axioms F1-F7 are the axioms of the future part of DTL and P1-P7
the past part. As rules we take standard ones, i.e., the modus ponus, generalization,
specialization, instantiation and universal generalization.

Definition 27 (Proof system for DTL)
LetneR, veD, wePUX, x € X and e € €.

Axioms All the axioms for state formulae.
AX0: (e=a?’Ve=alVe=iVe=e)= (¢ =ANe=)})
Non-\ actions are points surrounded by A actions conform Definition 7.

AX1: first 2 e=MIAV =vAxX =x

24

2.2 Specification of Reactive Systems

The initially stuttering requirement conform Definition 7 and 8.
AX2: O(x=xAv=yv)

The process variables are left continuous variables conform Definition 8.
AX3: OX =xAV =v)A (X £xVV #v)= O =X AV =V))

The value of process variables are maintained during an interval, conform Defini-
tion 8.

AX4: On=n"An="n)

The rigid variables don’t change at all conform Definition 8.
AX5: (e=alVe=al)=v =v

Communication actions don’t change the shared variables conform Definition 9.
AX6: e=2= (V =vAX =x)

A X action causes no state change.

AXTa : <A>p = <A><A>p

AXTb: -Op= O-p

AXT7¢c: —-Op= O-p)

AXTd: OOGp= Op

AXT7e: OO0Op = Op

AXT7f: (pAp=0OpAO@p=p)— Up

The underlying structure is dense (a), and satisfies the finite variability condition (b
& ¢), and is persistent (d & e). Axiom (f) is the induction axiom. For an explanation
of d—f see [KMP93].

AXS: |:|<A>true
There is no last element, i.e., the future is unbounded.

AX9 : D@g}@false

There exists a first element.

AX10: (expr = exps) = (plexpr/w] < plexpy/w])
A (rexp = rexpy) = (p[rexpi/n] < prexpy/n])
N (evexp, = evexpy) = (plevexp /€] <> pleverps/e])

25

A Dense Model Formalism

where p is a state formula and none of the variables appearing in respectively expy,
expy, rexpr, rexpy, evexrpy and evexpy is quantified in p.
Replacement of equal expressions.

AX11 : (Vx.p) = plexp/x]
A (Vn.p) = plrexp/n]
N (Vep) = plevexp/e]
where none of the variables appearing in exp, rexp and evexp is quantified in p.
Quantifier instantiation.

e~ o~ o~

Fl: Op—=qg=0rUp—rlUyq)

gt

is monotonic in its second argument.

e~ o~ o~

F2: Op—=qg)=(pUr—qlr)
U is monotonic in ils first arqgument.
F3: (pArU q)= (rU (gAr S p))

The relation of reflection holding between past and future.

~ ~ ~

Fi: (qUpA=(rU p))=ql (gN-r)

o~

F5: qUp=(gAqUp)Up

~

F6: qU (ghqUp)=qUp

o~ o~

FT: (qUpAsUr)=(qAs)U (pAT)V (gAs)U (pAs)V(gAhs)U (gAT)

The underlying structure is linear.

o~ o~ o~

Pl: Hp—=qg)=0rSp—=>rSyq)

~

S is monotonic in its second argument.

o~ o~ o~

P2: Hp—=qg)=(pSr—=qSr)

~

S is monotonic in its first argument.

P3: (p/\rgq):>(r§(q/\rb7p))

26

2.2 Specification of Reactive Systems

The relation of reflection holding between past and future.

~ ~ ~

Pi: (¢gSpA—-(rSp)=qS(gN-r)
P5: qSp=(qnhqSp)Sp

P6: qS (qhqgSp)=qSp

~ ~

PT: (qSpAsSr)=(qghs)S(pArVI(gAs)S (pAs)V(gAhs)S (gAr)
The underlying structure is linear.
Rules

P, p—4q
q

The Modus Ponus.

P for state formula p in which all occurrences of
Op parameterized sentence symbols in p are rigid

Gleneralization.

for state formula p

Specialization.

p

where py doesn’t contain variables which are bound in p
p [p1/po]

Instantiation.

=
&for X not free in po
Po = VX.py

Po = P1 .
———for n not free in pg
Po = Vn.p

=
&for € not free in po
po = Ve.p

Universal Generalization.

27

A Dense Model Formalism

The following definition characterizes a machine M in DTL. This kind of DTL formulae is

history stutter insensitive.

Definition 28 (Machine in DTL)

Given basis B = ((In, Out), (V,X)). Let In? be defined as {a? | a € In} and let Out! be
defined as {a! | a € Out}. Let 1 be a DTL formula over VU X without the S , U and 3
operators. Let T be a finite set of DTL formulae T of the form (event, A trans;) where
event, is of the form ¢ = a, where a, € {1,e} UIn? U Out!, and lrans; a DTL formula
over VUX and V'UX' (variables primed with ') without the S U and 3 operators such
that (e = € = Ayex X' = X), t.€., an environment action doesn’t change the local variables
of the system. Define the Stutter step, denoted by stut, as e = AV (e = 1A (V,X) =
(V.X))V(e=eAN(V,X) =(V,X)). Let T be the DTL formula stutV \V ¢y 7. A machine
in DTL s defined as (B, 1A LT).

Lemma 3
Given a machine in DTL (B, 1ANUT) then there exists a semantic machine M = (B, I,T)
such that Comp(M) = Hist(IAOT).

The following example is an illustration of a machine in DTL.

Example 3
Machine M in example 1 as DTL-formula:

1. Basis: B = ((In,Out), (V,X)) where

WL {a)
Out = 0,
Vo= {vh
X = {4

2. Initial States:

I £ (v,u)=(0,0)

3. Transitions:

The machine specification of a system in DTL is as follows.

Definition 29 (Machine specification of a system in DTL)

Given a machine (B,IANUT) in DTL. Let WF C T be the set of weak fair transitions and
SE C T be the set of strong fair transitions. For T € T define the enabledness condition
for T denoted En(7) as 3vo.7 [09/0] where T [vg/v] denotes the substitution of vy (a list of
variables not in VUX) for o' (the list of primed variables in 7). Let L be the DTL formula
Nrewr(QOEn(7) = OOT) A Aresp(OEn(7) — OOT). The machine specification of
a system in DTL is then a tuple (B,IANUOT A L).

28

2.3 Refinement and Composition of Reactive System Specifications

Note: in above definition L is such that cl(Hist(I A UOT) N Hist(L)) = Hist(I A OT),
i.e., it satisfies the machine closedness property. With this the following lemma is straight
forward.

Lemma 4
Given DTL machine specification (B,1AUT A L) of a system, there exists a semantic
machine specification S = (B, Comp(M)N L) such that Comp(M)NL = Hist(INOTAL).

2.3 Refinement and Composition of Reactive System
Specifications

In this section the notion of refinement and composition of reactive systems is introduced.
Intuitively refinement means that the set of histories of a concrete system is a subset
of the set of histories of an abstract system. Composition means that the histories of
the component systems are “merged” into composite histories, i.e., the histories of the
composed system. Our merge operator is based on the merge operator of Aczel [Acz83].
Both are first defined at the semantic level and then for the DTL specifications.

2.3.1 Semantic Refinement and Composition of Specifications

In this section refinement and composition of reactive systems is defined at the semantical
level. Refinement means that the set of histories of a concrete system is a subset of the
set of histories of an abstract system. Because histories also contains local information
the subset relation doesn’t correspond directly with refinement. The local information
should first be projected away. The following definition captures this projection of local
information.

Definition 30 (Observable system specification)

Gliven system specification S = (B, H) where B = ((In,Out),(V,X)). The observable
system specification is defined as (9(B),Ox(H)) where O(B) denotes the observable
basis and is defined as O(B) = ((In,Out),V,0) and Ox(H) denotes the set of observable

histories corresponding to H and is defined as
{h € H|3hy € H:h is an X-variant of hy}

Definition 31 (Refinement of systems)
Given concrete system S, = (B., H.) and abstract system S, = (Ba, Hy).
S. refines S, denoted by S. ref S, iff O(B.) = 9(B,) and Ox, (H.) C Ox,(H,).

A more general definition of refinement would be one wherein both the abstract and con-
crete system are composed of subsystems. Therefore the notion of composition is intro-
duced. Intuitively the composition of two systems is that matching histories are merged
into one history. A history of one system matches a history of the other system if for all
time points ¢

(1) the state information of the two histories at time ¢ are same and

29

A Dense Model Formalism

(2a) in both histories the A-action occurs at time ¢ or
(2b) in both histories the environment action e occurs at time ¢ or

(2¢) in one history at time ¢ a process action i occurs and in the other one an environment
action e occurs at time ¢ or

(2d) in both histories at time ¢ a communication action a occurs which is an input action
in one of them and an output action in the other one

(2e) in one history at time ¢ a communication action occurs which is not an communication
action in the other one and in the other history an environment action e occurs.

So if the two components each perform an i1 action this prohibited because we want to
model interleaving where only communication actions can possible occur simultaneously.
Two matching histories are then merged into one history by (1) “copying” the state-
information of the two histories; and in case (2a) the resulting event becomes A, and in
case (2b) the resulting event becomes e, and in case (2¢) the resulting event becomes i, and
in case (2d) the resulting event becomes i, and in case (2e) the resulting event becomes

the communication action.

Definition 32 (Composition of two systems)

Given systems S; = (By, H;) with B; = ((In;, Out;), (V,, X;)) (i = 1,2) such that InyNIny =
0, Outy N Outy = @ and X; N Xy = 0. The composed system S = S || Sz is defined as
(B, H) with B = ((Ing \ Outy U Ing \ Outy, Outy \ Iny U Outy \ Ing), (V1 U Vo, X5 U Xy))
and H = H, ® Hy. The ® is the merge operator which merges the histories hy € Hy and
hy € Hy into one history h and which is defined as follows:

HiQH, = {h€H |3 € Hy,hy € Hy. @ (h,hy, hs)}

where f07“ h = <77Z)70> and h] = <77Z)j70j> (.] = 172);
@(hy by, o) iff

- (9 - 01 A (9 - 02

— Vit
V(0 = A A B0 = A A dt)(6) = A
V() = e A (D)) = e A daD)(c) = e
VU000 = EA (000 = va(0 = o
V) = 1A () = e A gul0)(E) =
Vo Ja e IngNOuty: p(t)(e) =1 A1(t)(€) =a? As(t)(e) = a!
Vo JaeIngNOuty s p(t)(e) =1 AY1(t)(e) = al Ahy(t)(e) = a?
Vo Ja € Ing \ Outy: (t)(e) = al Ay(t)(e) = al Aa(t)(e) = e
Vo Ja€e Outy \Ing: () (e) = al Api(t)(e) = al Aha(t)(e) = e
Vo Ja € Ing \ Outy : (t)(e) = a? Api(t)(e) = e A a(t)(e) = a?
V. Ja € Outy \ Ing s 0(¢)(e) = al Api(t)(e) = e Aa(t)(€) = al

The following Lemma expresses that the “making observable”-operation and the merge
operator are monotonic and that the “making observable”-operation on the composed
system is equal to the “making observable”-operation on the components.

30

2.3 Refinement and Composition of Reactive System Specifications

Lemma 5 (Properties of O and Q)
Given systems (By, Hy), (By, Hy), (B2, Hy) and (B, Hs) then

(Cl) HO g H1 Zmphes H0®H2 g H1 ®H2
(b) Ox,,(Hy ® Hy) = Ox, (Hy) ® Ox, (H,)
(¢) Ho C Hy implies Ox,(Hy) C Ox,(Hy)
(d) (Ho N Hy)Q(Hy N Hs) C (Ho® Hy) N (Hy @ Hs)

The following theorem of compositional refinement can be inferred from the above lemma.

Theorem 3 (Compositional refinement)

Gliven concrete systems S; = (B;, H;) (1 = 1,2) and abstract systems S; = (B;, H;) (j =
3,4) such that O(By) = 9(Bs) and O(By) = 9(By) then S; ref S; and Sy ref Sy implies
S1 || S ref S5 || Sa.

It is very common that a shared variable is only used by the subcomponents of a system
and not by the environment of the system. This variable acts then as a local variable for
the system. The following definition introduces encapsulation which makes certain shared
variables local to the system.

Definition 33 (Encapsulation)

Given system S = (B,H) where B = ((In,Out),(V,X)) then encapsulation of V,
in & with Vi C V is denoted by S | Vi and defined by (By, Ency,(H)) where By =
((In, Out), (V\ Vi, XUren(Vy))) where ren is a mapping from the shared variables to the
local variables and intuitively “renames” the shared vartables of Vi to fresh local variables
(not already in X). The encapsulation operator Ency,(H) is defined as

{heH|heHAVEi:p(t)(e)=e—0(t)y, = lim 0(t1)|y, }

As ren mapping in above definition we usually take the identity mapping (almost it trans-
forms bold variables names to non-bold variables names) because those shared variables
that we want to make local are not yet in the set of local variables. In the following when
ren is not given this identity mapping should be assumed.

2.3.2 Refinement and Composition of DTL Specifications

In this section the refinement and composition notion of the previous section are translated
into DTL by defining it for machine specifications (Def. 29). This means that first the
observable machine specification should be defined in DTL.

Definition 34 (Observable machine specification in DTL)
Given machine specification (B, INUTAL) in DTL and then the corresponding observable
machine specification is defined as (O(B), (IX . (IALT A L))).

The following lemma expresses that existential quantification relates to the semantic notion
of observable histories.

31

A Dense Model Formalism

Lemma 6
Given DTL machine specification S = (B,1 ANUT A L) then Ox(Hist(IAUT A L)) =
Hist(IX.(IAOT A L)))

Theorem 4 (Refinement of machine specifications)

Given concrete machine specification S, = (B., I. AOT,. A L.) where B. = (BA,(V.,X.))
and abstract machine specification S, = (Ba, I, AOT, A L,) where B, = (B2, (Va, X,)).
Then S. refines S, denoted S. ref S, iff

O(B.) = 9(B,) and
(3IX.. (1. AOT. A L)) — (3X,. (I, AOT, A L))

Composition of DTL machine specifications can be defined in the same way as in the
previous section.

Definition 35 (Composition of two DTL machine specifications)
Given DTL machine system specifications S; = (B, I; AOT; AL;) where B; = (B, BY),
Jori=1.,2. Let gaGpa (€, €1, €2) be defined as

C(
Vi oe=ANeg=ANe=2A
V e=eANeg=eNe=e
V e=1Aeg =1ANeg=e
V e=iANg=eNe=i
v vaeIanut26:i/\€1 =al Ae = al
Vv vaeIHQOOutlﬁzi/\Q =alAe =a?
N VaeInl\OthGZa?/\ﬁl =alANe =e
Vv \/aEOutl\Inze:a!/\el :a!/\62 =€
v \/aGIH2\OUt16:a?/\61 =eA ¢ =a’
Vv Vaeout2\1n16:a!/\61 =eAe = al

)

Then the composed machine system specification S is defined as (B,H) where

H
B

361, 62.B{4®Bé4 (6, €1, 62) A (Il A DTl A Ll) [61/6] A (12 A DT2 A L2) [62/6]
((Iﬂl \ Out2 U IH2 \ Outl, Out1 \ IH2 U Out2 \ Iﬂl), (V1 U VQ,Xl U Xg))

A
A

This definition can be easily extended for n DTL specifications. One has then to define a
predicate ©pa(e, €) corresponding to the operation of merging n components.

Theorem 5 (Semantic merge is almost conjunction)

Given machine system specifications (B;, 1; \UT; A L;) where B; = ((In;, Out;), (Vi, X;)),
for i = 1,2 and composed machine system specification as in definition 35, i.e., (B,H)
where H £ 361,62.3{4 ©pa (e,er,2) A (I AOTE A Ly)[er/e] A (I AQTy A Ly) [e2/€] and

B é ((Iﬂl \ Out2 U IH2 \ Outl, Out1 \ IH2 U Out2 \ Iﬂl), (V1 U VQ,Xl U Xg)) then

32

2.3 Refinement and Composition of Reactive System Specifications

Encapsulation of shared variables for DTL specifications is defined as follows.

Definition 36 (Encapsulation)
Given machine specification S = (B,H) then encapsulation of V, in S with V; C V
denoted by S | Vi is defined as (By, HA\(e = e = V| = Vy)) where By = (E, VAV, XUVy).

The following theorem states that above definition indeed captures encapsulation.

Theorem 6
Given machine specification S = (B,H) and given set of shared variables Vi C V then

Eney, (Hist(H)) = Hist(HA (e =e = V| = Vy))

Example 4

Abstract machine specification S, = (B,1 A OT A L) is refined by the composition of

concrele machines specifications S., = (B, 1 A\OTy ALy) and S, = (B, 12 AT, ALy).
The abstract machine specification S, is defined as follows:

1. Basis B = ((In, Out), (V, X))

W L (b},
Out = {a},
Vo= s}
X = {x

2. Initial States
I (s,x) = (0,0)

3. Transitions

V(e=alAx=0A(s,%) = (s1))

V (e=b?Ax=1A(s,%) = (s2))

V (e=inA(s.x)=(1,2) A(s,x) = (0,x))
V (e=en(s,x) =(1x)

V stut,

These transitions are illustrated in figure 2.4. Note: the stutter transitions are not
drawn in all subsequent figures in order to minimize the number of edges.

4. Liveness

L £ true

33

A Dense Model Formalism

Figure 2.4: Abstract machine
The definition of S., is as follows:

1. Basis By = ((Iny, Outy), (Vy,Xy))

IH1 = {C}v
Out; = {a},
vl = {S}v
Xy o= {t

2. Initial States
Il é (Svt) = (070)

3. Transitions

These transitions are illustrated in figure 2.5

4. Liveness
A
L; = true

The definition of S., is as follows:

34

2.3 Refinement and Composition of Reactive System Specifications

Figure 2.5: Concrete machine 1

1. Basis B; = ((Ing, Outy), (V2, X2))

In, £ (b},
Out, = {c},
Vo = {s},
X, = {u}

2. Initial States
I2 é (Svu) = (070)

3. Transitions

T, &
V (e=elAu=0A(su) =(s1))
V (e=b?Au=1A(s,u) = (s,2))
V (e=in(s;u)=(1,2) A(s,u) = (0,u))
V (e=en(s,u) =(1u))
V stut,

These transitions are illustrated in figure 2.6

4. Liveness
A
Ly, = true

According to definition 35 the composition of S., and S., is as follows:

(((Iﬂl \ Out2 U IH2 \ Outl, Out1 \ IH2 U Out2 \ Iﬂl), (V1 U VQ,Xl U Xz)) 5
361, 62‘(Bf4®B§4 (6, €1, 62) A (Il A DTl A Ll) [61/6] A (12 A DT2 A L2) [62/6]))

35

A Dense Model Formalism

Figure 2.6: Concrete machine 2

where

Iﬂl \ Out2 U IH2 \ Out1 = {a}

Outy \ Inp U Outy \ Iny = {b}

V1UVQ = {S}

X1 UX, = {t,u}

L [er/€] A Lo [e2/€] = (s,t,u)=(0,0,0)

Ty [er/e] ATy lez/€] = [v(a=alAt=0A(st) =(s1))
V(61:C7At—1A(s t) = (5,2))
\/(cl—e/\ s, t) 1,)
\/(cl—e/\ s, t) 0,)
Vstut; [¢1/¢]]
A
{\/(ezzc!/\u:()/\(s,u)’:(s,l))
V{ee=b?Au=1A(s,u) =(s,2))
V{ez=1A(s,u) = (1,2) A (s,u) = (0,u))
V{e=en(su) =(1u))
Vstut, [z /¢]]

Ly [e1/€] A Lz [e2/¢] = true

Let Hc é 361,62.(B{4 @B{x (6, 61,62) A (Il A DTl A Ll) [61/6] A (12 A DT2 A L2) [62/6]) and
H, = IAOT AL, then the composition of S., and S., refines S, iff

(1) 9(B:) = 9(B)
(2) F (3t,u.(H.)) — (3x.(1L,))

The following section will show that both conditions hold. Hence we have refinement.

36

2.4 Proving Refinement of Reactive System Specifications

2.4 Proving Refinement of Reactive System Specifi-
cations

This section explains how refinement of reactive systems can be proved. The standard
technique of Abadi & Lamport [AL91] is used, i.e., refinement is proven by providing a
refinement mapping from the concrete system to the abstract system. Firstly we give its
definition at the semantic level and then for DTL specifications.

2.4.1 Proving Semantic Refinement of Specifications

Refinement of reactive systems is proved by means of a refinement mapping from the con-
crete system to the abstract system. A refinement mapping maps a history at the concrete
level to a history at the abstract level, more specifically, it maps the states appearing in
the concrete history to states appearing in the abstract history.

Definition 37 (Refinement mapping between systems)

Given concrete system S, = (B., H.) and abstract system S, £ (Ba, Hy) s.t. 9(B.) =
O(B,). A refinement mapping from S. to S, is a mapping f from states appearing
in histories of H. to states appearing in histories of H,, i.e., [is mapping from with

f:Y¥ =X st

o The values of observable variables are not changed, i.e., for allo € X: oly;. = f(o)

1

V.-

o For all h. € H, there exists a h, € H, s.t. for all t € R2Y, (1) = u(t) and
0.(t) = f(0.(1)).

Lemma 7
Given concrete system S, = (B., H.) and abstract system S, = (Ba, Hy) s.t. 9(B.) =
O(B,). If there exists a refinement mapping from S. to S,, then S, ref S,.

The concept of refinement mappings can also be applied to machine specifications. A
machine specification is of the form (B,Comp(M) N L). Refinement means then that
f(Comp(M.)N L.) C Comp(M,)N L, for refinement mapping f. This can be split into (1)
f(Comp(M.)NL.) C Comp(M,) and (2) f(Comp(M.)NL.) C L,. From f(Comp(M.)) C
Comp(M,) follows (1) because f(Comp(M.) N L.) C f(Comp(M.)). So the verification
condition can be split into a condition on machines and a condition involving machines
together with supplementary conditions. This leads to the following definition.

Definition 38 (Refinement mapping between machine specifications)

Given concrete machine specification S; = (B., Comp(M.)N L), where M. = (B., I.,T.),
and abstract machine specification S, = (Ba, Comp(M,) N L,), where M, £ (Bay 10, Th).
A refinement mapping from machine specification S. to machine specification S, is a
mapping f: 3 — X s.t.

o ForalloeX, off,, = f(o)

1
Ve
e — Forallo. €1, there exist o, € 1, s.t. 0, = f(0.).

37

A Dense Model Formalism

— For all (d,0:1,00) € 1., (d, f(0a1), f(02)) € Ty or (f(oa) = floz) Ad(e) €
{Ad e}
— For all h. € Comp(M.) N L. there exist a hy € L, s.t. for all 1 € RZ° (1) =
Yo (t) and f(0.(1)) = 0,(1).
The following lemma expresses that refinement mappings are indeed sound for proving
refinement of machine specifications.

Lemma 8

Given concrete machine specification S. = (B.,Comp(M.) N L.) and abstract machine
specification S, = (B, Comp(M,) N L,) s.t. 9(B.) = O(B,). If there exists a refinement
mapping from S. to S, then S, ref §,.

2.4.2 Proving Refinement of DTL Specifications

Proving refinement of machine specifications in DTL means according to Theorem 4 that
the observable bases are equal and that a formula with two existential quantifications is
valid. More specifically:

Given concrete machine specification S, £ (B.,I. AOT. A L.) and abstract machine
specification S, = (B., I, AOT, A L,). Then S. refines S, is denoted S. ref S, and
defined by

O(B.) = 9(B,) and
(3IX.. (1. AOT. A L)) — (3X,. (I, AOT, A L))

So we must have a rule to prove the following:
EIXo.pO — EIXl.pl
The following rule does the job:

po — pilexp/x1] for Xg not free in py
Ixo.po — Ixy.py none of the variables appearing in exp is quantified in p,

as the following derivation shows:

po — p1 [exp/x4]

— % Generalization, prop.cale.
Po = p1 [exp/xi]
— % contraposition
—p1 [exp/x1] = —po
— % Axll:Vxy.2p; = —pp [exp/x1] where none of the variables

appearing in exp is quantified in —p;, Modus Ponus
Vxi.mp1 = o
— % Rule (o = ¢1) = qo = Vxo0.q1, for x¢ not free in o
\V/Xl._'pl = \V/Xo._'po
— % [p — p, Modus Ponus
\V/Xl._‘pl — \V/Xo._‘po
= % contraposition
EIXo.pO — EIXl.pl

38

2.4 Proving Refinement of Reactive System Specifications

From the previous section it should be clear that this exp is exactly the refinement mapping
f, and that the proof can be split in a safety part and a liveness part (i.e., the proof of
po — p1 [exp/x1] of above rule is split into a safety and a liveness part). This culminates
in the following proof rule for refinement based on similar ones in [Lam91, KMP93].

Rule 1 (Proof rule for refinement)

GGiven concrete machine specification S. £ (B, I. A\UT. A L.) and abstract machine spec-
ification S, = (B, I, AOT, A Ly) s.t. 9(B.) = O(B,). Let f be a refinement mapping
from S, to S, then

S. |: L. =1, [f/Xa]

S. |: T.— T, [f/Xa]

SC |: La [f/Xa]

E(3X.. (1. ANOT. A L)) = (3X, . (I, AOT, A L))

When L, is of the form

/\ (OO En(r) — OOT) A /\ (OO En(r) — OOT)

TEWF, TESF,

(see Def. 29), the last premise of above rule can be split into

Se | Avewr, (OO En(7) = 0O7) [f/X,]
Se E Aresr (O En(r) = LOT) [f/Xa].

This is equal to

Se | Avewr, (En(7) = O(En(r) = 7)) [f/Xa]
Se E Nrese (HOEn(7) = O7) [f/Xa]

using some temporal logic calculus. So one gets the following proof rule, similar rules

appearing in [Lam91, KMP93].

Rule 2 (Proof rule for refinement)

Given concrete machine specification S, £ (B., 1. A\OT. A L) where L. is of the form
Nrewr, (QUER(7) = OOT) AN esp (O En(r) — OOT). Furthermore given abstract ma-
chine specification S, = (Bo, 1, AOT, AL,) where L, is of the form A\ cwr, (O ER(7) —
OO7) A Avesp, (OO ER(7) — OOT). Let O(B.) = 9(B,). Let [be a refinement mapping
from S, to S, then

S. |: L. =1, [f/Xa]

S. |: T.— T, [f/Xa]

Se = Nrewr, En(7)[f/Xa] = O(En(7) [f/Xa] = 7 [f/Xa])
Se E Nrese, DO En(7) [f/Xa] = O7[f/X4]

E(3X.. (1. ANOT. A L)) = (3X, . (I, AOT, A L))

Rule 1 is used in the following example for proving refinement of example 4.

39

A Dense Model Formalism

Example 5

From example | we have:

Let Hc é 361,62.(B{4 @B{x (6, 61,62) A (Il A DTl A Ll) [61/6] A (12 A DT2 A L2) [62/6]) and
H, £ IAOT AL then the composition of S., and S., refines S, iff

(1) 9(B:) = 9(B)
(2) (3t u. (He)) = (3x. (Ha))

Because the observable bases are equal (1) holds. (2) is proven with rule 1. This means
one has to find a refinement mapping f. In order to find such a mapping the picture of
the S.1||Se2 is given. (Note only the reachable states are drawn):

N N N N
(s,t,u) (s,t,u) (s,t,u) (s,t,u)
% p— ’ p— - p— b? p—

(0,0,0) | * | (0,1,0) | * |(0,2,1) (0,2,2)

_ _ _ J

- R A .

(S7t7u) al (S7t7u) i (S7t7u) b? (S7t7u)
(1,0,0) (1,1,0) (1,2,1) (1,2,2)

Figure 2.7: Transitions of S.1||Se2
Relating the above figure with figure 2.4 one sees that f is as defined follows:

of

t=0Au=0 then f(s,t,u)="1
t=1Au=0 then f(s,t,u)="1
t=2Au=1 then f(s,t,u)=t—u
t=2Au=2 then f(s,t,u)=nu

fu
The following premises should be valid in order to apply the rule:

i Se | (s, t,u) = (0,0,0) — ((s,x) = (0,0)) [f/x]

Substitution means replacing x by t because t = 0 Au = 0. This results in:
(s,t,u) =(0,0,0) — (s,t) = (0,0)

This is valid.

o SE(e=alAt=0A(s,t,u) =(s1,u))
_>

(e=alAx=0A(s,x) =(s,1))[f/x]

40

2.4 Proving Refinement of Reactive System Specifications

Substitution means replacing x by t because t = 0, and replacing x' by t' because
t' = 1. This results in:

S. E (cza!/\t =0A(s,t,u) = (s,l,u))
_>
(e=alAt=0A(st)=(s1))

This is valid.

o S.E(e=b?Au=1A(stu) =(st,2))
—
(e=b?Ax=1A(s,%) = (s,2)) [f/x]

Substitution means replacing x by t —u because u = 1, and replacing x' by u’ because
u' = 2. This results in:

Sek(e=b?Au=1A(s.t,u) = (s,1,2))

1

(e=b?At—u=0A(s,u) = (s2))

This is valid because from figure 2.7 one sees that u =1 =t = 2 holds.

o S.k(e=en(s,t,u) =(1Ltu))
_>

(e =eA(s,x) = (LX)) [f/x]

Substitution means replacing x by f, and replacing x" by {'. This results in:

This is valid because (t,u) = (t,u) = f' = f.

o S.k(e=iA(tu)=(1,0)A(s,t,u) =(s,2,1))
—
stut, [f/x]

A
Because stut, =

41

A Dense Model Formalism

it suffices to prove:

Sek (e=in(t,u) = (1,0) A(s,t,u) = (5,2,1))
o

(e=in(s.x) =(s.%)) [f/x]

Substitution means replacing x by t because t = 1 Au =0, and replacing x" by t' — o’
because t' =2 Au’ = 1. This results in:

Sek (e=in(t,u) = (1,0) A(s,t,u) = (5,2,1))
o

(e=in(s,t—u)=(s1))
This is valid.

o S.k(e=iA(su)=(12)A(s.t,u) = (0,t,1))
%
(e=iA(s,%)=(1,2) A(s,x) = (0,%)) [f/x]
Substitution means replacing x by u because u = 2 ANt = 2, and replacing X by u
because u' = 2 ANt = 2. This results in:

/

Sek(e=1n(s,u) = (1,2) A (s, t,u) = (0,t,u))
o
(e=iA(s,u)=(1,2)A(s,u) = (s,u))

This is valid.

o S. [stut. — stut, [f/x]

Definition of stut, and stut, results in

S.E e=2A
V{e=iA(st,u) =(s,t,u))
V(e=en(s,t,u) = (s,t,u))
o
€= A

Y, Ee =iA(s,%) = (5,%)) [f/x]
V(e=en(s,x) =(s.x)) [f/x]

This is valid.

o S.Etruelf/x]
This is valid.

S0 S.1/|Sez ref S,.

42

2.5 Relative Refinement and Composition of Reactive System Specifications

2.5 Relative Refinement and Composition of Reactive
System Specifications

In this section the concept of relative refinement and composition in the development of
systems is explained. Ordinary refinement stipulates that the set of histories generated by
the concrete system is included in the set of histories generated by the abstract system.
Relative refinement means that this inclusion almost holds, i.e., if one leaves some of the
histories generated at the concrete level out of account this inclusion holds. Histories
generated by the abstract system can also be left out because a concrete system could
be an abstract system in a next refinement step. Ordinary composition means that the
histories of two components are merged into the histories of the composed system. Relative
composition means that one leaves certain histories out of this merge, i.e., the merge is
performed on smaller sets of histories generated by the components. In the first two
subsections we consider the sets that extract the good computations as arbitrary, i.e., it
can be a safety set, liveness set or neither of them. In the third subsection a condition
similar to machine closedness is imposed on a relative system, i.e., the relative system can
then be split into a safety part and a liveness part. Using this fact a proof rule for relative
refinement is constructed in the last subsection based on rule given in Section 2.4. Again
we formulate these concepts first in terms of sets of histories and then in DTL.

2.5.1 Semantic Relative Refinement and Composition of Speci-
fications

Definition 39 (Relative refinement of systems)

Given concrete system S, £ (B, H.) and aset W, of allowed histories for S. (W, C H
constraining B.) and abstract system S, = (B,, H,) together with a set W, of allowed
histories for S, (W, C H constraining B,). Let G, L H.NW. and G, £ H, 0N W,.
Then S. relatively refines S, with respect to (W.,W,), denoted by S. w,ref "= S,, iff
D(Bc) = D(Ba) and OXC(Gc) - Oxa(Ga).

Relativizing can also be used for composition, i.e., if during composition one gets unwanted
histories these are removed, using a set that characterizes the allowed histories.

Definition 40 (Relative composition of two systems)

Given systems S; = (B;, H;) where B; = ((In;, Out,), (V;,X;)) and (i = 1,2) such that
Xy N Xy =0 and given sets W; C H constraining B;. Let W denote (W1, Ws). Then the
relative composed system S with respect to W, denoted Sy |W| Ss, is defined as (B, H)
with B = ((Inq \ Outy U Iny \ Outy, Outy \ Ing U Outy \ Iny), (V1 U Vo, Xy U Xy)), and
H = H@H, = (H N W1) Q(Hy N Wa).

The following is a compositional relative refinement theorem.

Theorem 7 (Compositional relative refinement)
Gliven concrete systems S; = (B, H;) (1 = 1,2) and given set W. constraining Bz (the

43

A Dense Model Formalism

basis of Sy || S2). And given abstract systems S; = (B, H;) (j = 3,4) and given set W,
constraining Bsy (the basis of Ss || S4). Then the following holds:
(HHQH)N(Wa @ W) C(HI NWea)Q(H, N W)
Wc g Wcl ® Wc2
Wiz ® Wa%/vg W, We; constraining B; (i=1,2)
Sy w, ref " Sy W, constraining B; (j=3,4)
Sy wref Vet S,
81 H 82 WCI'Ef Wa 83 H 84

If the extra requirements W don’t constrain the e-variables then the following lemma can

be used to prove the first premise of above theorem.

Lemma 9
Given systems S; = (B;, H;) and sets W; constraining B; (i = 1,2) with no restrictions on
the event variables. Then the following holds:

(Hy 0 W) Q(Hy N W) = Hy R Hy Wy R W,

In case the abstract requirement W, can’t be decomposed into component requirements
the following rule can be used.

Lemma 10

Gliven concrete systems S; = (B, H;) (i = 1,2) and given set W, constraining By2. And
given abstract systems S; = (Bj, H;) (7 = 3,4) and given set W, constraining Bss without
restricting the ¢ variables. Then the following holds:

HH,NWa Q@ W, C(HINWa)Q(H, N W)

Wc g Wcl ® Wc2

St w, ref Wa Sy We; constraining B; (i=1,2)
Sy w,ref e S,

81 H 82 WCI'Ef Wa 83 H 84

The following lemma is useful for proving the second premise of the theorem.

Lemma 11
Given sets W; (1 = 1,2) not restricting the € variables then

W1®W2 :W1QW2.

2.5.2 Relative Refinement and Composition of DTL Specifica-
tions

Theorem 8 (Relative refinement of DTL machine specifications)

Given concrete machine specification S, = (B.,I. ANOT. A L.) and DTL formula W,
over B. and abstract machine specification S, £ (B., 1. A\UT, A L,) and DTL formula
W, over B,. Let G. = I.AOT. AL AW, and G, = 1, AOT, AL, A W,. Then
Se mistw,yref Hist(Wa) g, ioff

O(B.) = 9(B,) and
= (3Xe (Ge)) = (FXa - (Ga))

44

2.5 Relative Refinement and Composition of Reactive System Specifications

Definition 41 (Relative composition of two DTL machine specifications)

Given machine system specifications (B;, 1; \UT; A L;) where B; = ((In;, Out;), (Vi, X;)),
and given DTL formulae W; over B; fori1=1,2. Then the relative composed machine
specification S w.r.t. W is defined as (B,H) where B = ((In; \ Outy U Iny \ Outy, Outy \
Iny UOutz \ Iny), (V1 UV, X; UXy)) and H £ Je, 62.(]3{4@354 (e,) ATy AOTL ATy A
Wi)la/e] A (I AUTy ALy A Wa) [e2/€]).

Theorem 9 (Relative composition corresponds to semantic merge)

Given machine system specifications (B;, 1; \UT; A L;) where B; £ ((In;, Out;), (Vi, X;)),
and given DTL formulae W; over B; fori = 1,2 and let W = (Hist(W.), Hist(W,)) and
given the relative composed system as in Def. 41, i.e., (B,H) where B = ((In; \ Outy U
Iny \ Outy, Outy \ Ing U Outy \ Ing), (V1 UV, X3 UX3)) and H £ Jey, 62.(]3{4@354 (€, €1, €) A
(I AOTy ATy AWy [e/e] A (TIo AT A Ly A W) [e2/€]) then

2.5.3 Proving Semantic Relative Refinement of Specifications

The above sections explain the purpose of the restricting set W. In order to prove relative
refinement we must know how this set W looks like. Is it a safety set, a liveness set or
neither of them? A result of [AS85] states that every set of histories can be represented as
the intersection of a safety and a liveness set. Now lemma 1 expresses that for a machine
My, Comp(My) is a safety set. So we will represent W as a machine M; and an external set
Ly s.t. W is machine closed, i.e., c[(Comp(My) N Ly) = Comp(My). We also require that
(B,Comp(M)N Comp(My) N LN L) is machine closed, i.e., c[(Comp(M) N Comp(M;y) N
LN L) = Comp(M) N Comp(My), because this is the system that is used in the relative
refinement relation. We want to use the refinement mappings of Def. 38 to prove relative
refinement of systems. This means that Comp(M) N Comp(M;) should be represented
as a machine My such that Comp(My) = Comp(M) N Comp(My). The following lemma
expresses that this My can be constructed from M and M;.

Lemma 12
Given machines M = (B, 1,T) and My, = (B, I,,Ty). Define machine My as (B, Iy, Ty)

where I, and Ty are as follows:
o [, = INiy, and
o I, =TNT.
Then Comp(My) = Comp(M) N Comp(My).

Now the technique of refinement mappings from Section 2.4 can be applied to prove relative
refinement of systems. This is expressed in the following definition.

Definition 42 (Relative refinement mapping between machine specifications)
Given concrete machine specification S, = (Be, Comp(M.)NL.) and set W. = Comp(M_)
NLe , and given abstract machine specification S, = (Ba, Comp(M,) N L,) and set W, =
Comp(My1) N Lyy. A relative refinement mapping from machine specification S. to
machine specification S, is a mapping f: X — ¥ s.t.

45

A Dense Model Formalism

o forallo e, UR/CZJC(U){/

o — forallo.€l.N 14, exist o, € [, N 1y s.t. o, = f(00).

— Forall(d,0.1,0:) € T.NT., (d, f(0a), f(0:2)) € TaNTay or (f(oa) = fo2)A
d(e) € {\,i,e}.
— For all h. € Comp(M.) N Comp(M. N L. there exist a hy € L, N Ly s.t. for

(
all t € 20 (1), 0.(1)) = (o (1), 0(1).) and f(0.(1)) = 0.(1).

The following lemma expresses that relative refinement mappings are indeed sufficient for
proving relative refinement of machine specifications.

Lemma 13

Given concrete machine specification S. = (B, Comp()NL:) and set W, = Comp(M.,)
NL., and given abstract machine specification S, = (By, Comp(M,) N L,) and set W, =
Comp(My1) N Lyy s.t. O(B.) = O(B,). If there exists a relative refinement mapping from
S. to S, then S, w.ref " S,.

2.5.4 Proving Relative Refinement of DTL Specifications

Using the results of the previous section and Section 2.4 it is not surprising that following
rule can be applied to prove relative refinement of systems.

Rule 3 (Proof rule for relative refinement)

Given concrete machine specification S. = (B, I. AOT.AL.) and W, £ 1, A0OT ALy
and abstract machine specification S, = (B., I, AUT, ALy) and W, L 1 A0OT0 ALy
s.t. O(B.) = 9(B,). Let f be a relative refinement mapping from S, to S, then

S. N Hist(W.) = (LA Ly) — (Lo A L) [f/X0]
S. N Hist(W.) = (To A To) — (To A Tr) [f/Xa]
S. N Hist(W.) |= (Lo N Lat) [f/Xa]

(

EEX,. (L. AOT. AL AW,)) = (3X,. (I, AQOT, AL, AW,))

46

Chapter 3

Readers/Writers Example

3.1 Introduction

he relative refinement technique will now be used to formalize Dijkstra’s devel-

Cred
Y N
2 f:ﬁ},} N

opment strategy for the readers/writers problem. The readers/writers problem,
*described intuitively, is as follows: given N readers and M writers, a reader per-
forms, cyclically, non-critical action NCS and critical action READ, and a writer performs,
again cyclically, non-critical action NCS and critical action WRITE. These readers and writ-
ers must be synchronized in such a way that if a writer performs the WRITE action it is the
only process that performs a critical action, i.e. mutual exclusion is required (ME). Further-
more, it is necessary that any request to execute the critical action is eventually granted,
i.e. eventual access should hold (EA). It is this synchronizer that has to be developed. But
before we give the development we formulate an abstract specification for the problem.

The abstract specification of Dijkstra consists of a program, implementing the above
readers and writers, and the requirements ME and EA. In our formalism this will be rep-
resented by system Sp and requirement Wy. The development process has four steps: in
the first step Dijkstra gives an implementation by a program that produces undesirable
deadlocked computations. In our formalism the first implementation is represented by
system & and a requirement W; which removes the deadlocked computations. We will
prove that S; relatively refines Sy with respect to (W, Wy). In the second step Dijkstra
uses the split binary semaphore technique to delete the deadlocked computations from
the first implementation; he obtains by this technique a second implementation that in-
troduces as undesirable computations new deadlocked ones. In our formalism the second
implementation is represented by the system Sy and the requirement Wy that removes
the newly introduced deadlocked computations. We will prove that Sy relatively refines
Sy with respect to (Wy, W;). These deadlocked computations are deleted in the third
step resulting in a third implementation that contains as undesirable computations unnec-
essarily blocking ones. These computations are not deadlocking computations but only
computations that are inefficient because they suspend a reader or writer unnecessarily.
In our formalism the third implementation will be represented by the system S; and the
requirement W3 that removes the unnecessarily blocking computations. It is proved that
Ss relatively refines S with respect to (W3, Wy). In the fourth step, these unnecessarily

47

Readers/Writers Example

blocking computations are deleted and also the resulting implementation is cleaned up. In
our formalism the fourth implementation will be represented by system S4 and it is proved
that Sy relatively refines S5 with respect to (true, W3), i.e., in the fourth step no further
requirements are imposed.

3.2 The abstract specification

Here Dijkstra’s strategy [Dij79] is followed and it is shown how the informal approach used
there can be formalized.

Dijkstra rewrites the informal specification as follows: as a first step, he describes readers
and writers by programs (he assumes that the semantics of these programs is intuitively
clear):

o

reader?: do true — NCS;READ od

o =

writer?: do true — NCS;WRITE od

Y

He then combines these programs into one parallel program Syn°. Syn® denotes the abstract
specification and is defined as follows:
syn” : ||X, reader} | |M, writer?
Where ||X, reader? is a notation for the N-fold parallel composition of reader?. Finally
he formulates an informal requirement to exclude from Syn® the unwanted sequences.
This requirement is the same as in the introduction: ME and EA. The complete abstract
specification is thus Syn® plus this requirement.
Each reader? and writ er? is represented respectively by DTL machine specification S,
and S, 0. We will incorporate the requirement EA as a liveness requirement in each machine
J

specification. The parallel composition of all the separate machine specifications Sy = ||V,
S0 HH]]\il S,o then corresponds to Syn® plus EA. ME will be incorporated as an extra
¢ J

requirement on Sy. The following sections will give in detail the machine specifications S,
and S0, and the extra requirement Wy.
J

3.2.1 Specification S,

The formal specification S,0 = (B,0, H,0) where Hoo = Lo AOT,0 A Lo and B,o, Lo, T,o

and L,o are as follows:

1. Basis Br? é ((In,,?,Out,,?),(V,,?,X,,?))

[l 1= > [l

48

3.2 The abstract specification

e s.. = 0: reader? is non critical.

e 5., = 1: reader? is critical.
2. Initial States:
Lo =5, =0

Reader? starts in the non critical state.

3. Transitions:
A
T,,? =

7,0 (c:i/\s,,l.:()/\s;i:l)
Reader? becomes critical.

ro V (e=iAs,=1As,=0)

Reader? becomes critical.

0 V stut,o
7, 7

These transitions are illustrated in figure 3.1

Figure 3.1: Transitions of reader?.

4. Liveness
As discussed above Lo should express the EA requirement, i.e., all the transitions are
weakly fair.

Let WF,o = {ro |k €{l,2}} and SF,, £ () then

L,,? £ /\ (OO En(r) — OOT) A /\ (OO0 En(r) — OOT)

TGWFTQ TGSFTQ
B B

3.2.2 Specification Sw?

The formal specification S0 = (B0, H,o) where Hyo = T,0 AOT, 0 ALy and By, 10,

T,0 and L,o are as follows:

49

Readers/Writers Example

1. Ba51s B 0 = ((Inwo,Out 0) (Vwo,Xwo))

Outw? £ 0,
Inw;) = 0,
vw? é {Sw] } 9
X, &

e s,, = 0: writer; is non critical.

0
J
0
J

® s, = l: writer? is critical.

2. Initial States:
A
Iwg = Sw] =0

Writer? starts in the non critical state.

3. Transitions:
T, 2
J
s _ T

Tow0 (6—1/\sw]—0/\sw]—1)

Writer? becomes critical.

s _ T

7,0 V(e—l/\sw]—l/\swj—())

Writer? becomes non critical.

T0 V stut, o
7,0 J

These transitions are illustrated in figure 3.2

Figure 3.2: Transitions of writer?.

4. Liveness
As discussed above L,o should express the EA requirement, i.e., all the transitions
J

are weakly fair.

Let WF, o = {rwe |k €{1,2}} and SF,, £ () then

ng = /\ (OQER(r) — OOT) A /\ (OO En(r) — 0OT)

TEWFwo TESF 0
J J

50

3.3 The first development step

3.2.3 Requirement W,

The extra condition on the composed system should express the mutual exclusion property
ME. A reader (writer) is critical if s,, =1 (sy, = 1. Let §(¢: : 1 <4 < N :s,, = 1) denote
the number of components such that s,, = 1. The condition is then as follows:

Wo =0 (#(j:1<j<M:s, =1)=0V
(fr:1<e<N:s,, =1)=0A4y:1<j<M:s,, =1)=1)

As seen 1n Section 2.5 Wy should be defined as a machine and a liveness condition in order
to apply the proof rule for relative refinement. This can be done quite easily. The liveness
condition is true. Define pas §(j: 1 <j<M:s,, =1)=0V({(i:1 <2< N:s, =
1):()/\ﬂ(j:1§j§M:swjzl)zl)andp’asﬂ(j:lgng:siUJ:1):0V(jj(i:
1<i<N:s, =1)=0A4(:1<j<M:s, =1)=1). Then pAU((pAp) Vstuto) is
the machine in DTL corresponding to Wy.

3.3 The first development step

Dijkstra’s next step is to translate the informally stated requirement into formal program
form, i.e. to transform reader? and writer? in such a way that they satisfy the mutual-
exclusion requirement ME. We discuss this translation informally.

He introduces shared variables aw and ar and binary semaphore x. Shared variable
ar represents the number of readers which may execute their READ, and aw represents
the number of writers which may execute their WRITE. A reader increases ar by 1 if it
allowed to execute its READ and decreases ar by 1 if it is finished with executing its
READ. Since ar will be changed and accessed by several readers, Dijkstra protects the
operation of increasing and decreasing ar by semaphore operations P and V on binary
semaphore z to ensure that only one reader changes ar at a time, i.e. mutual exclusion. The
synchronization requirement is brought into reader; by guarding the increasing operation
of ar with condition aw=0, i.e., the number of writers that may execute their WRITE equals
zero. The same can be done for writer;. The initial values of the shared variables are 0
and the initial value of semaphore x is 1. This results in the following programs:

reader; :
do true — NCS;
P(x);(x) if aw=0 —ar:=ar+l fi;V(x);
READ;
P(x);ar:=ar-1;V(x)
od

writer}:
do true — NCS;
P(x);(+) if aw=0 A ar=0—aw:=aw+1 fi;V(x);
WRITE;
P(x);aw:=aw-1;V(x)
od

syn' : |5y reader || |iZ

: 1
j=1 writer;

51

Readers/Writers Example

This first approximation can deadlock. A deadlocked sequence is for instance:

A writer starts in the initial state and then executes NCS;P(x); (+), as result
of that the value of aw changes in 1. A reader then executes NCS;P(x) ; (*)
and blocks in the if-fi clause of (%) because aw=1 and the semantics of this
if-fiis such that when no guard is fulfilled it blocks. Then no reader or writer
can then execute (*) or (+) because x=0 and x holds this value forever. The
requirement is thus that these deadlocked sequences are not generated.

Now Syn! will be specified in Stark’s formalism. Like the abstract specification each
reader! and writer} is represented by a separate machine specification §,1 and S,,1. The
d J

composed system S; =X, S HH]]\il S, and corresponds with Syn!. For S; the extra
d J
requirement W, for excluding deadlocked computations is formulated. In the following
subsections we give DTL machine specifications S,1 and §,1, and the extra requirement
: J

Wi.

3.3.1 Specification S,

The formal specification S,1 = (B,1,H,1) where H.x = 1. AOT,1 ALy and B,1, Ly, T

and L,1 are as follows:

1. Basis B,,l = ((IH,@, Out,,1), (V,,l,X,,l))

Inrl.l = ®7

OUtril £ 0,

vr} = {x,ar,aw,s,, },
X, = {6}

o (.1 =0: reader; is non critical.
k2

1
7
1

o

)
|

—

: reader; has passed its first P-operation.

K3
o (.1 = 2: reader! has increased ar by 1.
e (1 = 3: reader] is critical.

1
7
1

7

e (.1 = 4: reader; has passed its second P-operation.

o (.1 = 5: reader; has decreased ar by 1.

A A
et ¥y = (x,ar,aw.s,,. £.1) an 1= (xX,ar’,aw’,s 1).
L t \Ij 2 2 2 1767’1 d \Ijl /7 /7 ! , gl

Pt AN,
k3

2. Initial States:
I+ £ W =(1,0,0,0,0)

3. Transitions:
A
T, 2

52

3.3 The first development step

r (e=inGy=0Ax=1AW=V [0,1/x.0(,])
Reader! executes the first P-action.
71 v (c:i/\&,;zlAaW:O/\\I/’zllll[ar—|—1,2/ar,5r1})

Reader! can increase the number of active readers by if the number of active
writers is zero.

t V (e=iAly=2AW=0 1,13/, x.(,])
Reader! becomes critical.

m V (e=iAli=3Ax=1AT =T, [0,4/x,0,])
Reader} executes its second P-action.

7,1 v (e:i/\&,il:4/\\11’1:\111{211'—1,5/211',&,3})
Reader! decreases the number of active readers by one.

tao V (e=iAly=5AW=0[0,1,0/s,.x.(,])
Reader! becomes non critical.

1 \/(c:e/\X:l/\\Il’:\Ill[O/X])
The environment executes a P-operation on x.

ra vV (e=enly e{0,3 Ax =0T =0, [1/x])
The environment executes a V-operation on x.

Tl \ stut,,il

These transitions are illustrated in figure 3.3
4. Liveness:

L,1 expresses that the P- and V-operations on the semaphore x are strongly fair and
all the other transitions are weakly fair.

Let WF, = {r1, [k €{2,5}} and SF . = {rr, [k €{1,3,4,6,7,8}} then

L1 = A (OOEn(r) =001 A A (O0FEn(r) — O07)

TeWFr.l TGSF 1
B i

3.3.2 Specification Sw]l

The formal specification S,1 = (B, H,1) where H,, y = =1, 1A aT, 1A L, ; and Bwl, le,

T, and L, are as follows:

1. Basis Bwl = ((Inwl,Outwl), (le,le))

Iﬂwjl £ 0,

Outw]l £ 0,
A

Vw]l = {x,ar,aw,s,, |,
A

w {lur}

53

Readers/Writers Example

(5 ! S,, 5)
(3,1,0)

Figure 3.3: Transitions of reader;.

o/, =0 writer} is non critical.

1

e (1 = 1: writer; has passed its first P-operation.

o (1 = 2: writer! has increased aw by 1.

o [, = 3: writer; is critical.

J
1
j J
o [, =4 writer} has passed its second P-operation.

o [, =5 writer} has decreased aw by 1.

yand W) & (x',ar’,aw’,s!, ¢).

7w7w

A
Let ¥, = (X,ar,aw,sw],ﬁwjl

. Initial States:

I, = WU =(1,0,0,0)

J

. Transitions:
T, &
J

T (e=int,=0Ax=1A¥=1, {O,l/x,ﬁwﬂ)

Writer} executes the first P-action.
Tl V (c:i/\ﬁwl =lhar=0ANaw =0A VY =, [aW—I—I,Q/aW,EwlD

J J
Writer} can increase the numbers of active writers if the number of active writers

and readers is zero.

54

3.3 The first development step

T,V (e= ALy =20 0=, {1,1,3/5%,)(,5%1})
Writer} becomes critical.
r, v (e=iAla =3Ax=1AW=U[0,4/x,0,])
J J
Writer} executes the second P-action.
Tl V (c:i/\ﬁwl:4/\\11’1:\111{aw—1,5/aw,€w1})
J J
Writer} decreases the number of active writers by one.
Tl v (ezi/\ﬁw;:5/\\ll’:\111 {0,1,0/sw],x,€wﬂ)
Writer 5 becomes non critical.
Tyl \/(c:e/\X:l/\\Il’:\Ill[O/X])
The environment executes a P-operation on x.
. vV (e:eMwl €{0,3} Ax=0A V=1, [1/X])
J
The environment executes a V-operation on x.

Tyl V stut,
0 J

These transitions are illustrated in figure 3.4

Loty 8w, X)

w;
J

(3,?0)

Figure 3.4: Transitions of writer}.

4. Liveness
L,1 expresses that the P- and V-operations on the semaphore x are strongly fair and
J
all the other transitions are weakly fair.

55

Readers/Writers Example

Let WFle £ {Twlk | k€ {2,5}} and SFw]l £ {Twlk | ke {1,3,4,6,7,8}} then

Ly = A (OOEn(r) =007 A A (O0En(r) — 0OOT)

1
T rewr,, TESF,,
J J

3.3.3 Requirement W,

The condition should express that the described deadlocked sequences don’t occur, i.e., it
when ar is increased by 1 then aw = 0 and when aw is increased by 1 then aw = 0 and
ar = 0. Formally:

W, éI:I((;V\ﬁrilzl—mlW:O)/\(/]\<€w]1=1—>(31”:0/\aw:0)))

=1 7=1

This corresponds to the following machine: Let

pi = (i=1—aw=0

P, = Ui=1—aw' =0

[Ew;:1—>(ar:0/\aW:0)

p,, = l,=1—=(ar'=0Aaw’ =0)
J

then Wy is the conjunction of the machines p,; A U((p.; A pl;) V stut) and py,; A O ((pw; A
Ph;) Vstut) for 1 <e < Nand 1 <j< M,

3.3.4 & relatively refines §;

Since the semaphore x and the shared variables ar and aw are used only by the subcom-
ponents of Sy, we should prove Sy | {x,ar,aw} relatively refines Sy instead of S; relatively
refines Sp. According to definition 35, 36 and theorem 8 Sy | {x,ar,aw} relatively refines
So with respect to (W, W) iff the following holds:

O(B1) = 9(By) and
E(3X:.(Gi A (e=e = (x,ar,aw)’ = (x,ar,aw))) — (IXo. (Go))

where X; are the local variables from Sy, ie., Xy = {{1 |i=1,...,N}U{l, | j =
L...,M} U {x,aw,ar} and Gy is the composition of S,1 (+ = 1,...,N) and S,1 (j =

L,..., M) and Wy,
— A
let € = e14,..., €18, €L N41,-- -5 €1, N+M, and
PDA B pA A pA A
let Bi* = Br%""7B7’Jl\77Bw%7"'7Bw}w
A
then G; =

(Fer @pa (e e0) AN Ho [eni/ed A AL Hys [ngs/d]) AW,

Xy are the local variables from Sy, i.e., Xo = § and Gy is the composition of S0 (i =

1 .,N)andSw? (j=1,..., M) and Wy,

9 ..

56

3.3 The first development step

— A
let €¢ = €11,..., €N, CON41,-- -+ €O N+M, and
pDA B pA A pA A
let BO = Brg)’”"BT’?V’B’LU?’”"B’LU?\J
A
then Gy =

(EIEO QB({‘ (6, EO) A /\f\;I Hr? [60,2/] A /\] 1 H [60 N+]/]) A WO

Since Wy can’t be decomposed into sub—requirements but doesn’t constrain the ¢ variables

and W, can be decomposed into sub-requirements W,» = O({,;1 = 1 — aw = 0) for

reader! and W1 = O(/,n =1 — (aw = 0Aar = 0), and doesn’t constrain the ¢ variables
i J

Lemma 9, 10 and 11 can be used for the proof, i.e., following proof rule can be used

chﬂz 1W ﬂﬂ] 1I/V1

Wo . .
S, rw, 1ref S 0 W.1 constraining B,1
k2 k2
S, 1w, 1lt'ef Wo S : W1 constraining B,
J J

J

81 Wi ref Wo SO

This means we have to prove for i =1,...,Nand j=1,..., M:

(1) (3 (Ha AW,1)) = Ho A Wo
(2) (3w (Hur AW,1)) = Hyo A Wo

ad (1) Rule 3 will be used to prove (1). This means one has to prove

(a) SN Hist(Wy) |
(b) SN Hist(Wy) |
(¢) SN Hist(Wy) |

(L Apri) = Lo Ap
Tor A ((pm Apli) Vstut,) = T A((p Ap')V stute)
L

2
0
2

70

(a) Proof 1

Lt A pyi
= % Def. L, pr

(x,ar,aw, s, (1) = (1,0,0,0,0) A ({1 — aw = 0)
— % 0<f(j:1<j<M:s,, =1) <aw

0<t(i:1<j<M:s,=1)<ar

sp; =0

ANE(j:1<j<M:s, =1)=

V(i1 <j<M:s,, =1)= lAﬂ(izlgng:smzl):O))
= % Def. Lo,p

Ir?/\p

(b) Proof 2
Since T,1 is of the form stut,. V V. (e = a; Atrans;) then T.a A ((pri A pl;)V
stut,.) is equal to stut,: Vv \/Tl(e =a, Atrans, A p.; A pl;). T;,o is of the form
stut,,; VV.(e= aT/\tranlsT) so T,oN((pAp')Vstuty) is equal tolstut,,o VV, (e =
aT/\tlransT/\p/\p’). l l

57

Readers/Writers Example

Trl.ll A Pri A p;z
= (6:i/\€,,1 =0Ap s Ax=1Ap,, NV =,y {O,I/X,EHD
— stut,o
since s,, doesn’t change.

1, A pri Apy
= (6 =iNla=1Ap; Naw =0Ap,, ANVUi= Uy {ar—l—l,Q/ar,ﬁ,,;D
— stut,o
since s,, doesn’t change.

Trl.173 A pri A p;i
= (e=inly=2Ap AP A=, [1,1,3/s,.%,0,])
— (e=ins, =0ApAp NS, =1)
= T,,?yl/\p/\p’
becauseﬁril:1—>aW:Oand()gﬂ(j:lgng:swjzl)gaw and
0<t(i:1<i<N:s, =1)<ar.
ot Apri A
= (e=iAly =3Ax=1Ap:Apl AWI=0 [0,4/x,0,])
— stut,o
since sy, doesn't change.

7—7’115 A Pri A p;z
= (e =iAla =4 ANpi AP ANV =T, {ar— 1,5/ar,€r1})
— stut,o
since s,, doesn’t change.

7—7’116 /\pm/\p;’z
c=1NL1=5Ap Ap ANVT=T {0,1,0/smx,€rﬂ)
— e:i/\smzl/\p/\p’/\s;i:())
= T,,o2/\p/\p’
because 0 < §(j : 1 <j < M:s,, =1)<awand 0 <§(i:1 <i < N
s,, = 1) <ar.
Trl.17 /\pM /\pi’z
= (c:e/\X:1/\pm/\p;i/\\11’:\111[0/x])
— stut,o
since s,, doesn’t change.
T, Apri APy
= (e=enl e{0,3} Ax=0ApApl; A= [1/x])
— stut,o

k2
since s,, doesn’t change.

stut,: — stut,o
k2 k3
since s,, doesn’t change.

58

3.4 The second development step

(c) Lo
= (00Bn(r0) = O0re) A (OOEn(r0) — OO0
= (OO(c=ins, =0)»00((c=ins, =0As, =1))
From the fact that (see Figure 3.3) transitions 7, 1 and 7.1 are strongly fair
and 7, " is weakly fair follows that (QU En(r, 0) —> |:|<>T 0) ie., 70 is weakly
fair. From the fact that (see Figure 3.3) tran81t10ns T, and R are strongly
fair and 7,1 is weakly fair follows that (<>|:|En(7',,o2) — |:|<>T0), Le., T, s
weakly fair. ’ ’

ad (2) Analogue to the proof of (1).

ad (3) This is trivial because W, ¢ (AX, W, A /\j]\i1 ijl)

3.4 The second development step

As seen in section 3.3 the first implementation can generate deadlocked sequences. In this
step we change the components of the first implementation in such a way that deadlock
inside a PV-section is not possible anymore. This is the same as is done by Dijkstra: he
massages reader] and writer} into reader? and writer? so that no deadlocked sequences
inside a PV-section are generated any more.

One such deadlocked sequence generated by the first implementation is as follows:
suppose reader! has gained the access-right for the shared variables (first PV-segment)
and suppose aw = 1 (a writer is executing WRITE). Then reader}! can never increase ar by
1, i.e., reader! has deadlocked.

Dijkstra uses the split binary semaphore technique to prevent programs from becoming
deadlocked inside a PV-section. The idea is that we must prevent programs from getting
the access-right (get into a PV-section) for the shared variables if we know that they can
not give it back (get deadlocked inside a PV-section). For reader! this means: never let it
enter the first PV-section if aw does not equal zero. For writer} this means: never let it
enter the first PV-section if aw or ar does not equal zero. Reader} and writer} never block
in their second PV-section.

How does one prevent that reader} gets deadlocked inside a PV-section? This is done as
follows: reader! chooses, when it gives the access-right back, who can have it thereafter.
reader] executes therefore the following piece of program as replacement for V(mx):

CHOOSE: if true — V(m) [] aw=0 — V(r) [] aw=0 A ar=0 — V(w) fi

We have to split semaphore mx in three pieces. If aw equals zero then a reader is allowed to
enter its first PV-section, i.e., this PV-section is not guarded by P(mx) but by P(r). We
do this substitution for all PV sections of reader! and erter So we have replaced mx by
three other binary semaphores.

What is the initial value of these semaphores? If they all have initial value 1 then more
than one program can have access-right to the shared variables, i.e., only one has initial

59

Readers/Writers Example

value 1. Semaphore r can not have initial value 1 because if no reader wants to execute
READ then no writer can execute WRITE. The same holds for semaphore w. Thus m has
initial value 1. But then no reader or writer can enter the first PV-section. The solution of
this problem is that we insert a PV-section (P(m) ; CHOOSE) at front of the first one. This
is in short what Dijkstra does to prevent that reader! and writer} get deadlocked inside a
PV-section. The result of this transformation is:

reader?:
do true — NCS;
P(m) ; CHOOSE;
P(r) ;ar:=ar+1;CHOOSE;
READ;
P(m) ;ar:=ar-1;CHOOSE
od
writer?:
do true — NCS;
P(m) ; CHOOSE;
P(w) ;aw:=aw+1;CHOOSE;
WRITE;
P(m) ;aw:=aw-1;CHOOSE
od
syn® : ||X, reader? | |M, writer?

Syn? generates no sequences that can deadlock inside a PV-section. But Syn? can generate
sequences that can deadlock outside these sections, e.g. initially a reader? can choose for
a V(w) operation, and get blocked by a P(r) operation. Then no other reader or writer
can enter the first PV-section because semaphore m equals zero.

In the following sections the DTL machine specifications 87’@2 (corresponding to pro-
gram reader?) and S,z (corresponding to program writer?), and the extra requirement W,
excluding computatiojns that deadlock outside PV-sections, are given.

3.4.1 Specification S,

The formal specification S,2 = (B,2,H,2) where H,» = L> AOT,> A L2 and B2, 1>, T,

and L, 2 are as follows:

1. Basis Brz = ((In,,z, Outrz), (V,@,sz))

A

In,» = 0,

k2

A

Out,. = (),

k2

A

V2 = {m,r,w,ar,aw,s,, },
A

. {2}
e (> = 0: reader? is non critical.
k2

60

3.4 The second development step

e /> = 6: reader? has executed first P-action on m.

e (> =T: reader? has executed first CHOOSE.

2

e /> = 1: reader; has executed P-action on r.
k2

IS

e /> = 2: reader? has increased ar by 1.

IS

o (.2 = 3: reader; is critical.
k2

o=

has executed second P-action on m.

7
2

7

o /> =4: reader

o (2 = 5: reader; has decreased ar by 1.

A A
Let Uy = (m,r,w,ar,aw,s,,,/,2) and Uy = (m/,r',w',ar’,aw’ s, , /).
k2

I8 r;

2. Initial States:
I2 £ W, =(1,0,0,0,0,0,0)

3. Transitions:

Let CHO(X) £ v Wh= U, [1, X/m, ;]

Vo(aw =0 A W= Uy [1,X/r,(z])

V (aw=0Aar=0AUy= U, {1,X/W,€,,lz})

e (e=iA(l2,m) = (0,1) AWh= W, [0,6/m, (])
Reader? executes its first P-action on m.

oV (e=iAl:=6ACHO(T))
Reader? executes the first CHOOSE.

eV (e=iA(Lar) = (T.1) A W= W, |0,1/r,0,:])
Reader? executes P-action on r.

T2 v (e:i/\&,?:1A\Il’:\112{ar—|—1,2/ar,€,,lz})
Reader? increases the number of active readers by one.

oV (e=iAL:=2ANCHOB) A= U, [l/s,])
Reader? becomes critical.

ooV (e=iA(La,m)=(3,1)AUs= 0, [0,4/m,])
Reader? executes the second P-action on m.

T2 v (e:i/\&,?:4/\\11’2:\112{211'—1,5/211',&,?})
Reader? decreases the number of active readers by one.

eV (e=1iALz=5NCHO0) A Why=T3[0/s,])

Reader? becomes non critical.

61

Readers/Writers Example

T2 \/(eze/\m:1/\\11’:\112[0/m])
The environment executes a P-operation on m.
T2,V (eze/\r:1/\\I//:\I/2[0/r])
The environment executes a P-operation on r.
T2 \/(éze/\W:1/\\I//:\I/2[O/W])
The environment executes a P-operation on w.
T2 V (e=eAlz€{0,7,3) Am=0A W= ,[l/m])
The environment executes a V-operation on m.
T V (e=enlze{0,7,3} Ar=0ATh=W,[1/1])
The environment executes a V-operation on r.
T2 V(e=enl:e{0,7,3} Aw =0AUs=U,[1/w])
The environment executes a V-operation on w.

T2, V StUtrf
These transitions are illustrated in figure 3.5

4. Liveness
L,> expresses that the P- and V-operations on the semaphores m, r and w are
strongly fair and all the other transitions are weakly fair.

Let WF,» = {7 |k € {4,7}} and
2 2,k
SF,» = {r. | ke€{l,2,3,56,89,10,11,12,13,14}} then
2 2,k

Lf 2 /\ (OO En(r) — OOT) A /\ (OO0 En(r) — OOT)

4
TEWFT2 T€SF -2
B i

3.4.2 Specification Sw]z

The formal specification S, = (B JH,) where H,, > = L A aT, 2 ALy and Bz, L,

T,2 and L,2 are as follows:

1. Basis Bw2 = ((Inw2, Outh), (Vw2,Xw2))

Inwi £ 0,

Outw;z £ 0,

ijz £ {m,r,w,ar, aw, Sy, |,

Xop = Al

o/, w = 0: riter? 1s non critical.

o/, w = 6: riter? has executed first P-action on m.

62

3.4 The second development step

Figure 3.5: Transitions of reader?.

e (> = T: writer? has executed first CHOOSE.

e (> = 1: writer? has executed P-action on w.

o (,2 = 2: writer? has increased aw by 1.

e (,: = 3: writer? is critical.

o [, =4: writer? has executed second P-action on m.

o [, =5: writer? has decreased aw by 1.

A A
Let ¥y = (m,r,w,ar,aw,sw],ﬁwjz) and Uy = (m/, v/, w',ar’,aw’,s/ /' ,).

7u}7w

2. Initial States:

2 £ ¥, =(1,0,0,0,0,0,0)

63

Readers/Writers Example

3. Transitions:

Let CHO(X) & v Wh= W, [1,X/m,]|

Vo (aw =0 A Wh= U, [71,X/r,£w]2})

V (aw =0Aar=0A V)=, {I,X/W,Ewﬂ)

e, (e=1A(fp,m) = (0,1) A W=, [0,6/m,0,:])
Writer? executes its first P-action on m.

eV (c:iwa :6/\CHO(7))
Writer? executes the first CHOOSE.

T2V (ezi/\(ﬁwjz,w) = (7,1) A Uh= U, [o,l/w,zwﬂ)
Writer? executes P-action on w.

T2 v (c:i/\ﬁwjzzlAql’:\Ilg{aW—l—l,Z/aW,ﬁw?D
Writer? increases the number of active writers by one.

e,V (e=inl =2NCHOB) AW =W, [I/s,,])
Writer? becomes critical.

T Vo (e=in (u2,m) = (3,1) A Wh= Ty [0,4/m,zw]2})
Writer? executes the second P-action on m.

T2 v (ezi/\ﬁwjz:4/\\11’2:\112{aw—1,5/aw,€w3})
Writer? decreases the number of active writers by one.

e,V (€=1inle =5 NCHO0) AW =, [0/s,,])
Writer? becomes non critical.

T2 \/(eze/\m:1/\\11’:\112[0/m])
The environment executes a P-operation on m.

T2 V (e:e/\rzl/\\Il’gzlllz[O/r])
The environment executes a P-operation on r.

T2 \/(éze/\W:1/\\I//:\I/2[O/W])
The environment executes a P-operation on w.

T vV (cze/\ﬁwjz6{0,7,3}/\m:0/\\11’2:\112[1/m])
The environment executes a V-operation on m.

T vV (c:e/\ﬁwjz6{0,7,3}/\1':0/\\11’:\112[1/1'])
The environment executes a V-operation on r.

T vV (eze/\ﬁwjz6{0,7,3}AW:0A\II’2:\112[1/W])

The environment executes a V-operation on w.

64

3.4 The second development step

Tu?, V stut, 2
J

7

These transitions are illustrated in figure 3.6

Figure 3.6: Transitions of writer?.

4. Liveness:
L,> expresses that the P- and V-operations on the semaphores m, r and w are
J
strongly fair and all the other transitions are weakly fair.

Let WF » £ {r,> | k€ {4,7}} and
J 7,k
SF.,. = {r,. |k€{l1,2,3,56,89,10,11,12,13,14}} then
B 7,k

Lw;z = /\ (OQER(r) — OOT) A /\ (OO En(r) — 0OT)
’TEWFwQ ’TESFwQ

3.4.3 Requirement W,

W, should express that reader? and writer? executes CHOOSE in such a way that no dead-
locked computations are generated, i.e.,

65

Readers/Writers Example

o a V(m) is executed if the number of readers and writers that are bound to execute a
P(m) is greater than zero,

o a V(r) is executed if the number of readers that are bound to execute a P(r) is
greater than zero,

o a V(w) is executed if the number of writers that are bound to execute a P(w) is
greater than zero.

Let g be defined as

(mzl/\ﬂ(k:lgkgl\f:&,z6{0,1,2,3,4,5})+
fn:1<n<M:l,¢€{0,1,2,3,4,5}) > 0)

V (r=1naw=0Afk:1 <k<N:l2€{6,7}) >0)

V (w=1lAhaw=0Aar=0A§n:1<n<M:/l,. €{6,7})>0)

Then W3 is as follows

W, £ 0 ((/N\zrl2 € {0,7,3}—>q)A(/]\<5wj2 €10,7.3} %q))

=1

The same construction as in the previous development step is used to write this down

as a machine. Let p, = (AL, 42 € {0,7,3} = ¢) A (/\]]\i1 l,2 € {0,7,3} — q) then
2 J

Wy = pa AU((p2 A phy) V stuty). Again the liveness part of Wy equals true.

3.4.4 &, relatively refines S

Since the semaphore x and the shared variables ar and aw are used only by the sub-
components of §; and the semaphores m, w and r and the shared variables ar and aw
only by the subcomponents of S, we should prove S; | {m,w,r, ar,aw} relatively refines
S | {x,ar,aw}. According to definition 35, 36 and theorem 8 S, | {m,r, w,ar, aw}
relatively refines S | {x,ar,aw} with respect to (W, Wy) iff the following holds:

O(B;) = 9(By) and

= (3Xo. (Go A (e = e = (m,r, w,ar,aw) = (m,r,w,ar,aw))))
%
(IX:1.(G1 A (e = e = (x,ar,aw) = (x,ar,aw))))

where X, are the local variables from Sy, ie., Xo = {lo | i =1,...,N}U{l, | 7 =
Ly...,M} U {m,r,w,aw,ar} and Gy is the composition of S,2 (¢ = 1,...,N) and S,
(j=1,..., M) and Wy,

— A
let € = e21,..., €N, €2 N41,-- ., €2 N+M, and
pDA A pA A pA A
let B2 = BT%""7B7’?\77B’LU%7"'7B’LU?M
A
then G, =

(352- ©pa (6 &) AN Wz [eai/e] AL e [62,N+j/6]) AW,

66

3.4 The second development step

X; are the local variables from Sy, ie., Xy = {f1 |i=1,...., NYU{l, |j=1,...,M}U
{x,ar,aw} and Gy is the composition of S,1 (i =1,...,N)and S,» (j =1,..., M) and
Wy,

_ A
let € = e14,..., €18, €L N41,-- -5 €1, N+M, and
PDA B DA A pA A
let B = Br%""7B7’Jl\77Bw%7"'7Bw}w
A
then G; =

(351- ©pa (e &) ANL Hy e/ AN Hy [61,N+j/6]) AWy
As seen in the previous development step Wy is e-free and can be decomposed into sub-
requirements W1 and W1 (1 = 1,...,N and 7 = 1,...,M). W, however can’t be
d J
decomposed into sub-requirements but it is e-free. Now Lemma 9, 10 and 11 can be used
for the proof, i.e., following proof rule can be used

®£\;1 Hrll ®®Jj\il ijl ﬂ W2 g
QL (H N W) @ L, (H, N W)
o W0 ﬂj]\il Ww} c W W1 constraining B,
S,2 w,ref Wt S, W, constraining B,
2 w) 7 J J
Sw2 W2ref Y Swl
Sy w,ref "1 S,
This means we have to prove for i =1,...,Nand j=1,..., M:
(1) (3,2 (2 AW2)) = (3K, (Ha AW,))
(2) (a2 (Huz AW3)) = (3X,0 . (Hy AW,0))
(3) (W,,ll A ijl) —- W,
(4) (Fez Opa (€, @) AL Hpz [eai/e] AL oz [e2v/€]) A W2
%
(Fez. Opa (€,@2) AL (Hoz A W) [ei/e] A AL (Hyz A W) [e2,v45/¢])

ad (1) Rule 3 will be used to prove (1). This means one has to prove (a), (b) and (c)
below, for f the refinement mapping from S, to Sy, defined as: f = fy, Jeys fars faw

where f; | is defined as

if
lo=6 then (.2 —6
(=7 then (a2 —7T
(24 6A 0o #T then (o
fi | |
and fy is defined as
if
l>=6 then m-—1
E,,; #6 then m+r+w
fi

67

Readers/Writers Example

, 1.e., the first PV-section is stuttering and semaphore x is split into semaphores m,
r and w. Note: the refinement mappings for aw and ar are equal to the identity
mapping, so we can leave them out.

(a) SaNHist(Wy) = (L Apa) = (Lo Ape) [/X4]
(b) San Hist(W2) = T2 A((p2 Aph)V stuty)

= (T A ((pri A pl) V stut,n) [F/X4]
(¢) SN Hist(Wa) = Ly [f/X4]

(a) Proof 3
Irf A p2
= % Def. I,,?
(m,r,w,ar, aw,s,,i,ﬁ,,?) =(1,0,0,0,0,0,0)
— % Def. fx, fo,
((x, ar, aw,s,,i,ﬁ,,il)l: (1,0,0,0,0) ALy =1 — aw = 0) [/X4
= % Def. Irlvpri
(L. ! A Pri) {f/XJ
(b) Proof 4
Since T2 is of the form stut,2 V'V, (e = a, Atrans,) then T, A((p2Aply)Vstuts)
is equal to stut,2 V V. (e = a, Atrans, A p2 A phy). T,1 is of the form stut,: v
V.(e=a; A transT) so Tt A ((pri NPl V stut,,il) is equal to stut,; V V(e =
a- Atrans, A p.; Apl;).
- T2 Ap2 A py
= (67: 1A (E,,lz,m) = (0,1) A pa A ph A Uh= Wy [0,6/m,€r?})
= (e=inwi=u)[f/X]
— stut, [f/Xl}
The first P-operation of reader? is an stuttering step in reader!.
- T2 Ap2 A py
_ (67: Al =6Apy Apy ACHO(T))
= (e=inWi=u)[f/X]
— stut, [f/Xl}
The first V-operation of reader? is an stultering step in reader;.
- T2 Ap2 A py
= (67: 1A (ﬁr?,r) = (7,1) A pa A phy A Uh= Uy {0, 1/1’,&,?})
= (e=iAly=0Ax=1Ap; Apl AW =0y [0.1/x.0.]) [F/Xi]
= (7, Apri Ap) {JE/XJ
The second P-operation of reader? corresponds to the first P-operation of
reader;.

68

3.4 The second development step

T2, Apa A ph
(6:1/\52_1/\p2/\p2/\\112—\112{ar—|—1 2/ar, (2 D
(

— A (L, ! yaw) = (1,0) A pyy A pl, AU =y {ar—l—l,Z/ar,ErilD

@
7/X
= (T, Apri Ap) /%]
€ ar ncrement step o] reader. corresponds 10 € ar ncrement ste o
Th ' t step of reader? ponds to th ' t step of
reader; .

- T2 A p2 A py
= (e=iAle=2Ap APy ACTHOB) A W= W, [1/s,,]
— (e=iAly=2Ap Apl A U= [, 1,3/smx,zrilf) /4]
= (T, Apri Ap) /%]
If reader? becomes critical then reader! becomes critical.

— T2 A p2 A Pl
= (67: 1A (E,,lz,m) = (3,1) A pa A phy A U= Uy [0,4/m,€,,?})
— (6 =1ALr =3Ax=1Apy Ap,; ANV1=1T, {0,4/)(,&,11}) {f/Xl}
= (7, A AR /X4
The third P-operation of reader? corresponds to the second P-operation of
reader?.

- T2, Ap2 A 2
= (ezi/\&,?:4/\p2/\p’2/\\11’2:\112{ar—l,fi/ar,ﬁr?})
— (6 =1NGr =4 Ap Apy ANUT=T {ar — 1,5/&1’,&,3}) {f/Xl}
= (7, Apri Ap) /%]
The ar decrement step of reader? corresponds to the ar decrement step of
reader; .

- T2, Ap2 A Ph
= (e=iAlLe=5NAp Apy ACHOO) A W= W, [0]s,,]
= (e=iAla=5NApy Apl AT =T, [0, 1,0/smx,zrilf) /4]
= (7, Ap AR [F/X4]

If reader? becomes non-critical then reader! becomes non-critical.

- Trfg A P2 A p/2
= (c:e/\m:1/\p2/\p’2/\\Il’:\Ilg[0/m])
— (e=eAx=1Ap; Apl AW =W, [0/x]) [F/Xi]
= (7T, Apri Ap) {f/XJ
If the environment of reader? exvecutes a P-operation then the environment
of reader} also executes a P-operation.

69

Readers/Writers Example

- Triw A P2 A p/2
= (eze/\r:1/\p2/\p’2/\\11’2:\112[0/r])
— (e=eAx=1Ap; Ap AW =W, [0/x]) [F/X4]
= (T, Apri Ap) /%]
If the environment of reader? executes a P-operation then the environment
of reader! also executes a P-operation.

- 7—7’12711 A P2 A p/2
= (e:e/\W:1/\p2/\p’2/\\11’:\112[0/w])
— (e=eAx=1Ap; Ap AW =W, [0/x]) [F/X4]
= (T, Apri Ap) /%]
If the environment of reader? executes a P-operation then the environment
of reader} also executes a P-operation.

- Tr?yw A P2 A p/2
= (e=enlze{0,7,3) Am=0Apy Apy A Wh=U,[1/m])
— (e=enly €{0,3} Ax=0Aps Apl AWG= U [1/x]) [F/X4]
= (T, Apri Ap) /%]
If the environment of reader? executes a V-operation then the environment
of reader! also executes a V-operation.

o Trfls A P2 A pl?
= (e=enlz {0, 7,3} Ar=0Apy Apy AWh= Ty [1/1])
— (e=enl {03} Ax=0ApsApl AW= U [1/x]) [F/X4]
= (r1, Ape APl [F/X4]
If the environment of reader? executes a V-operation then the environment
of reader! also executes a V-operation.

- T2, NP2 A 2
— (cze/\&,? €{0,7,3} Aw=0Apy Ap, ATy= q;2[1/w])
— (e=enly €{0,3} Ax=0Aps Apl AW= U [1/x]) [F/X4]
= (7, Ape A) [T/X4]
If the environment of reader? executes a V-operation then the environment
of reader! also executes a V-operation.

— stut,.. — stut,. {f/Xl}
since s,, doesn’t change.

(c) Let WF,2 = {r2 |k €{4,7}} and
SF.e £ {72 | k€ {1,2,3,5,6,8,9,10,11,12,13,14}} then

L2 = A (OOEn(r) =001 A A (O0FEn(r) — O07)

TEWFT2 TGSFT2
B B

70

3.5 The third development step

Let WF,1 = {1 |k € {2,5}} and SF,; = {1 |k € {1,3,4,6,7,8}} then

. L /\ (OO En(r) — OOT) A /\ (OO En(r) — OOT)

TeWFr.l TGSF 1
B i

L

The following holds:
Sy Hist(Wa) = L2 — Ly [f/X]

since T, "L is relatively refined by 7, 2, Tl s relatively refined by 7, 2, and 7, L

is relatrvely refined by 7, 25 T2, and T2, and T, "L is relatively reﬁned by 7, 2,
and 7, " is relatively reﬁned by T2, and T is relatrvely refined by 7, 2, and
T s relatively refined by T2, T, 210 and T 2 and T, s relatively reﬁned by

T2 , T2 and 7,2 . So
2,12 2,13 1714

Sy Hist(Wy) k= Ly [f/X4]

ad (2) Analogue to the proof of (1).
ad (3) This is trivial because W, ¢ (AN, W A /\j]\i1 ijl)

ad (4) The following holds because W, doesn’t contain ¢; variables, i.e., it can be put
within the existential quantification, and furthermore Wy =W, [e3 /€] =W [e2 N4/ €]
(t=1,...,Nand y=1,..., M) because Wy doesn’t constrain the ¢ variable.

(Fez. Opa (€, @) AL Hpz [eai/e] AL Hoe [eavgi/c]) A Wo
%
(Fez. Opa (€, @) AL (Hoz A W) [ei/e] A AL (Hyz A W) [e2,v45/€])

3.5 The third development step

Dijkstra’s solution to the problem of the newly introduced deadlocked sequences is as
follows: record in a shared variable bX the number of components that can generate
a P-operation on a semaphore X as their first coming P-operation. A component that
executed a P-operation on X decreases bX by one. The component “knows” what its next
P-operation is, so it increases the corresponding shared variable by one. The guards in the
CHOOSE segment are changed so that the correct V-branch is chosen. The initial value of
bm is N + M because initially all processes have P(m) as their first coming P-operation.
The initial value of br and bw is then of course 0. Like in the second step the initial value
of m is 1 and that of ar,aw,r and w 0. The result of this transformation is as follows:

reader?:
do true — NCS;
P(m) ;bm:=bm-1;br:=br+1;CHOOSE;
P(r);br:=br-1;ar:=ar+1;bm:=bm+1;CHOOSE;
READ;

71

Readers/Writers Example

P(m) ;bm:=bm-1;ar:=ar-1;bm:=bm+1;CHOOSE
od

writer?:
do true — NCS;
P(m) ;bm:=bm-1;bw:=bw+1;CHOOSE;
P(w) ;bw:=bw-1;aw:=aw+1;bm:=bm+1;CHOOSE;
WRITE;
P(m) ;bm:=bm-1;aw:=aw-1;bm:=bm+1;CHOOSE
od

with CHOOSE: if bm>0 —V(m)
[aw=0 A br>0 —V(r)
[aw=0 A ar=0 A bw>0 —V(w)
fi

|

syn® : |, reader? || ||X

1 writer?
Syn? still generates sequences that Dijkstra does not allow. These sequences are generated
because CHOOSE is still non-deterministic. Suppose a reader? can choose between a V(m)
and a V(r) operation. Choosing V(m) causes that another readerﬁ (writer?) can signal that
it has finished executing READ (WRITE) or wants to execute READ (WRITE). A V(r) causes
that a readeri can execute READ. Choosing V(m) thus unnecessarily blocks a reader%. So it
is not a deadlocked sequence but only an inefficient sequence. The informal requirement
of Syn? is that no unnecessary blocking sequences are allowed.

In the following sections the DTL machine specifications S,,? (corresponding to pro-
gram reader?) and Swf (corresponding to program writer?), and the extra requirement W3,

excluding inefficient computations, are given.

3.5.1 Specification S,3

The formal specification S,s = (B,s,H,s) where Hs = Is AOT,s AL and B,s, Ls, T,

oy
?
and L,: are as follows:
?

1. Basis Brs = ((In,,s, Outrs), (V,@,er))

In, £ 0,

Out,,? é @,

Vs £ {m,bm,r, br,w,bw,ar, aw,s, },
Xr“?’ é {grg’}

e (2 = 0: reader? is non critical.
k2

e (.2 = 6: reader? executed first P-action on m.

72

3.5 The third development step

(s = 8: reader? updated bm and br.
o /:=1T-: reader? executed first CHOOSE.

o (o = 1: reader? executed P-action on r.
e (2 = 2: reader? updated br, ar and bm.
o (2 = 3: reader? is critical.

o (s =4: reader’

° executed second P-action on m.

3

o /.5 = 5: reader; updated ar.

K3

A
Let W5 = (m,bm,r,br,W,bW,ar,aW,sri,E,,?) and
A
Us = (m/,bm’, v/, br’,w',bw’ ar’,aw’ s ;).

2. Initial States
ls = Uy =(1,N+ M,0,0,0,0,0,0,0,0)
3. Transitions:
Let CHO(X) £ (bm > 0 A Wh= W5 [1, X/m, (s])

vV
V (aw =0Abr>0AWE= W51, X/r ()
Vo (aw=0Aar=0Abw > 0A W= s |1, X/w,(s])

o (€=1iA(2,m)=(0,1) AWh= W5 [0,6/m, (])
Reader? executes first P-action on m.
oV (e=iAly=6AWs=Us[bm— 1 br+1,8/bm,br(:|)
Reader? updates bm and br.
o,V (e=iAls =8ACHO(T))
Reader? executes first CHOOSE.
oV (e=iA(Lar) = (T.1) AWh= Vs |0,1/r, 0])
Reader? executes its P-action on r.
T v (e =1ALe=1AU5= U5 {br —l,ar+ 1,bm + 1,2/br,ar,bm,€r?})
Reader? updates br, ar and bm.
ooV (e=iALs =2ANCHO3) A= Uyl /s,])
Reader? becomes critical.
oV (e=iA(Lam)=(3,1)AUs=U5[0,4/m, ;])
Reader? executes second P-action on m.
T, v (c:i/\ﬁ,,?zél/\lllgzlllg [ar—1,5/ar,€r?})

Reader? updates ar.

73

Readers/Writers Example

o,V (e=iALs=5ANCHO(0) A Wh= Uy[0/s,])
Reader? becomes non critical.

7,3 \/(c:e/\mzl/\\Il’:\Ilg[O/m])

z 10
The environment executes a P-operation on m.

V (e:e/\rzl/\\Il’:\Ilg[O/r])
The environment executes a P-operation on r.

T3 \/(c:e/\W:l/\\Il’:\Ilg[O/W])

0,12

0,11

The environment executes a P-operation on w.

T V (e=enls €{0,T,3) Am=0AWs=Ws[1/m])

i,13
The environment executes a V-operation on m.

eV (e=enls €{0,7,3) Ar=0AWh=s[1/x])

z 14
The environment executes a V-operation on r.

eV (e=enls €{0,7,3) Aw =0AUs=Vs[1/w])

i,15
The environment executes a P-operation on w.

T3 V stut, s

70
These transitions are illustrated in figure 3.7

4. Liveness:
L, expresses that the P- and V-operations on the semaphores m, r and w are
strongly fair and all the other transitions are weakly fair.

Let WF,o = {rs | k€ {2,5,8}} and
SF,s 2 {re |ke{1,3,4,6,7,9,10,11,12,13,14,15}} then

L2 = A (OOEn(r) - 0O0r)A A (OCEn(r) —» OO7T)

TEWFT3 T€SF -3
B i

3.5.2 Specification Sw?

The formal specification S,» = (B,s,H,s) where H, s = =1, 8 A aT, 8 A L, : and Bws, st,

J

T,s and L,z are as follows:

1. Basis Bws = ((Inws, Outws), (sz,st))

A
Inws = @,
J
A
Outws = @,
J
A
Vwi = {m,bm,r br,w, bw, ar,aw,s,, |,
A
X, = {l,}
J J

74

3.5 The third development step

Figure 3.7: Transitions of reader?.

o /=0 wr1ter§ is non critical.
J
o/, =6: wr1ter§ executed first P-action on m.
J
o [, =28 wr1ter§ updated bm and bw.
J
o [, =T: wr1ter§ executed first CHOOSE.
J
o [, =1: wr1ter§ executed P-action on w.
J
o [, =2: writer} updated bw, aw and bm.
J
o [, =3: wr1ter§ is critical.
J
o [,5 =4 wr1ter§ executed second P-action on m.
J
o [s =5 wr1ter§ updated aw.
J

Let U5 = (m,bm,r,br,w,bw,ar,aw,s,, () and

52 (m',bm’,r',br,w’, bw’ ar’, aw’ s/ , /" ,).

7u}7w

75

Readers/Writers Example

2. Initial States
L £ Uy = (1, N+ M,0,0,0,0,0,0,0,0)

3. Transitions:
Let CHO(X) £ Vv (bm>0A W= Vs |1, X/m, ()
V o (aw =0Abr>0AWE= W51, X/r.{,0])
Vo (aw=0Aar=0Abw > 0A W= Vs |1, X/w.(,))

=3
[|>

e (e:i/\(ﬁwf,m): (0,1) A Uh= W, {0,6/m,€wﬂ)
Writer? executes first P-action on m.

T,V (e= AL =6\ W=V, [bm — 1, bw + 1,8/bm,bw,€wﬂ)
Writer? updates bm and bw.

re, v (e=iAl: =8ACHO(T))
Writer? executes first CHOOSE.

eV (ezi/\(ﬁwf,w):(ﬁl)/\\ll’zlllg [o,l/w,zwﬂ)
Writer? executes its P-action on w.

T v (e =1iA wa =1AU5= U4 [bW — 1,aw—l—l,brn—l—l,2/bW,aW,brn,€w§>D
Writer? updates bw, aw and bm.

e,V (e=1ALe =2ACHOB) A= W5 [1/s,,])
Writer? becomes critical.

TV (e=in (fus,m) = (3,1) A W= Wy [0,4/m,zw§,})
Writer? executes second P-action on m.

T, 8 vV (ezi/\ﬁwfzél/\lllg:\llg [aw—l,S/aW,Ewﬂ)
Writer? updates aw.

e,V (e=1ALe =5ACHOO) AWs=Ws[0/s,,])
Writer? becomes non critical.

Ty V (c:e/\mzl/\\Ilg:\Ilg[O/m])
The environment executes a P-operation on m.

Ty \/(c:e/\rzl/\\Il’:\Ilg[O/r])
The environment executes a P-operation on r.

Ty \/(c:e/\W:l/\\Il’:\Ilg[O/W])

The environment executes a P-operation on w.

76

3.5 The third development step

T vV (cze/\ﬁwf6{0,7,3}/\m:0/\\I/§,:\I/3[1/m])
The environment executes a V-operation on m.

T Vv (eze/\ﬁwf6{0,7,3}/\1':0/\\1152\1/3[1/1'])
The environment executes a V-operation on r.

T vV (eze/\ﬁwfE{O,?,?)}/\W:()/\\Il’zlllg[l/w])

The environment executes a P-operation on w.

Tw?, V stut, s
J

These transitions are illustrated in figure 3.8

Figure 3.8: Transitions of writer?.

4. Liveness:
L,: expresses that the P- and V-operations on the semaphores m, r and w are
J
strongly fair and all the other transitions are weakly fair.

Let WF,2 = {ry:, |k €{2,5,8}} and

77

Readers/Writers Example

SF,o £ {7, | k€ {1,3,4,6,7,9,10,11,12,13,14,15}} then

wa = /\ (OQER(r) — OOT) A /\ (OO En(r) — 0OT)

TEWng T€SF w3
J]

3.5.3 Requirement W;

The extra requirement W3 should exclude inefficient computations caused by the nondeter-
minism of CHOOSE. So it is natural to make CHOOSE more deterministic, i.e., when one can
choose between a V(r) (V(w)) and a V(m) operation priority is given to the V(zr) (V(w))
operation. Let g3 be defined as

(m=1Abm>0A-(aw =0Abr >0)A-(aw =0Aar=0Abw > 0)

V (r=1Aaw =0Abr>0)
V (w=1Aaw =0Aar=0Abw >0)

Then W3 is as follows

W, = O ((/N\&,? € {0,7,3}—>Q3)/\(7\€w§ €{0,7,3} —>Q3))

=1

So in CHOOSE priority is given to V(r) and V(w) by strengthen the guard of V(m) with the
complement of the guards of V(r) and V(w). The same construction as in the previous
development step is used to write this down as a machine. Let ps = (AN, ,,3 €{0,7,3} —
qs) N (/\]]\i1 ﬁwi € {0,7,3} = ¢3) then W3 = p3 AU((ps A p}) V stuts). Again the liveness
part of W3 equals true.

3.5.4 §; relatively refines S,

Since the semaphores m, r and w, and the shared variables ar, aw, br, bw and bm
are used only by the subcomponents of S3 and the semaphores m, w and r and the
shared variables ar and aw only by the subcomponents of &3, we should prove &3 |
{m,w,r,ar,aw, br, bw, bm} relatively refines S; | {m,w,r,ar,aw}. According to def-
inition 35, 36 and theorem 8 S3 | {m,w,r,ar,aw, br,bw,bm} relatively refines Sy |
{m,w,r ar,aw} with respect to (W5, Wy) iff the following holds:

O(Bs) = 9(Bz) and

E (3X3.(Gs A (e =e = (m,r,w,ar,aw, br,bw,bm)’ =(m, r, w,ar, aw, br, bw, bm))))
%
(IX5.(Ga A (e =e = (m,r,w,ar,aw)’ = (m,r,w,ar,aw))))

where X3 are the local variables from Ss, ie., Xg3 = {ls | i =1,...,N}U{l, | j =
Ly...,M}U{m,r,w,aw,ar,br,bw,bm} and Gs is the composition of S,z (: = 1,..., N)
and S,z (j=1,..., M) and Wj,

let &5 = d
et €3 = €31,...,63 N, €3 Ny1,...,€3 N4 M, all

78

3.5 The third development step

let B = BA,....BA B4, ..., B4
1 N 1 M
then G; =

(353- ©pa (6 &) AN He [esi/e] AL Hye [63,N+j/6]) A Ws

X are the local variables from Sy, ie., Xy = {£2|i=1,..., NYU{l.|j=1,...,M}U
{m,r,w,ar,aw} and Gy is the composition of S,z (¢t =1,...,N)and S,z (j =1,..., M)

and W,
— A
let € = e21,..., €N, €2 N41,-- ., €2 N+M, and
PDA B pA A pA A
let By = Brfv"'vB@vafv"'vafw
A
then G, =

(352- Opp (€, 2) AL He [eai/e] AL He [62,N+j/6]) AW,

As seen in the previous development step W, is e-free but can not be decomposed into sub-
requirements. Wi is e-free and can be decomposed into sub-requirements. Let p,; = ({2 €

{0,7,3} — ¢3) and W, £ Op,i, and p,; = (ﬁwf € {0,7,3} — ¢3) and Wwf 2 Opu,; then
W3 = (AX, W) A (jj\il W,z2). Now Lemma 9, 10 and 11 can be used for the proof, i.e.,
following proof rule can be used

W3 g ﬂf\;l Wr3 N ﬂ]]\i1 Ww3
¢ J

W .
Srf w ,ref Srf W,s constraining B,
k3 k3 k3

Swf w ,ref W Swj2 Wwf constraining Bwf
2
Ss w,ref 2 S,

This means we have to prove for i =1,...,Nand j=1,..., M:

(1) HXT;% . (Hrf A er)) — (Eerf . (Hrf A WZ))
(2) (IXur- (Hye AW,2)) = (3Xyz - (Hye A W)
(3) W3 — (W,,;% A Wwf)

ad (1) Rule 3 will be used to prove (1). This means one has to prove (a), (b) and (c) below,
for f the refinement mapping from S5 to Sy, defined as: f = fo,, fm, fr; fws faws far

where f;, is defined as

of
l:=8 then [(.:—2
(248 then (s
fi ’

, i.e., the updating of bm and br in the first PV-section in reader? is a stuttering step
in reader?. Note: the refinement mappings for m, r, w, aw and ar are equal to the

79

Readers/Writers Example

identity mapping, so we can leave them out.

(@) Ssn Hist(Ws) = (La Apei) = (La Apa) [/X2]
(0) SsnHist(Ws) = Toa A((pri A Pl V stut,:)

= (T2 A ((p2 A ph) V stuta)) [F/Xq]
(¢) SsnHist(Ws) = L [f/Xy]

(a) Proof 5
Ir? A Pri
= % Def. Lo, pri
(m, bm,r, br,w,bw,ar,aw,s,,, {,:) = (I, N + M,0,0,0,0,0,0,0,0)
— % Def fgrs,
bm=t(k:1<k<N:lee{0,....50)+
fn:1<n<M:/l,;€{0,1,2,3,4,5})
br=4(k:1<k<N:(:€{6,738})
bw=4f(n:1<n<M:/l,; €{6,7,8})
((m,r,w,ar, aw,sri,ﬁr?) =(1,0,0,0,0,0,0) A p2) {f/Xg}
= % Def I 2
(L2 A p2) {f/Xz}
(b) Proof 6
Since T,z is of the form stut,2 V\/ _ (e = a; Atrans,) then T2 A((paAph)Vstuty)
is equal to stut,2 V_(e = a, Atrans, A py A py). T,z is of the form stut,: Vv
V(e =a; Atrans;) so T.a A ((pr A pl;) Vstut,s) is equal to stut,s vV V (e =
a- Atrans, A p.; Apl;).
- Trf’l A Pri A p;z
= (e =1iA (ﬁr?,m) =(0,1) A pri Apl; NUE= Uy [0,6/m,€r?})
= (e=iA(fam)=(0,1) Aps Aph AWY= W5 [0,6/m, (2]) [F/Xs]
= (72, Am2 Aph) [F/X5]
The first P-operation of reader? corresponds with the first P-operation of
reader?.

- T2 Apri APy
= (67: 1AL =6 A ppi A pp; A U5=Vs {bm—l,br—l—l,8/bm,br,€r?})
= (e=inUh=,) [f/X,]
— stut,. [f/Xg}

The updating of br and bm in reader? is an stuttering step in reader?.

— T2 A pri APl
= (e=iAls=8ApsAply ACHO(T))
— (6:i/\€,,?:6/\p2/\p/2/\0H0(7)) [f/Xz}
= (72, Ap2 APh) [F/X5]

80

3.5 The third development step

The first V-operation of reader? corresponds to the first V-operation of
reader?.

_ T3, N pri APy
= (e=1A(Goyr) = (T.1) Ape Apls A Wh= W3 [0,1/1,0,5])
— (e=in(la,r)= (T, 1) Apa Apy AWh= Wy [0,1/1,0,2]) [[/Xs)]
= (72, Ap2 A ph) {f/Xz}

The second P-operation of reader? corresponds to the second P-operation of

reader?.
- Tps . N Pri A pr;
= (cyzi/\&,? =1Apy
Apl. ANU5= s [br —1l,ar+ 1,bm + 1,2/br,ar,bm,€r?D
— (6 =1 Al =1Aps A phy AN Wh= Uy {ar + 1,2/&1’,&,?}) {f/Xg}
= (72, Ap2 APh) [F/X5]

The ar decrement step of reader? corresponds to the ar decrement step of

reader?.
= T2 A pri APl
= (e=iNls=2Aps Aply ANCHOB) A Wh=W5(1/s,])
= (e=iAlLa=2Ap Aph ACHOB) AT, = U5 [1/s,,]) [[/X,]
= (r2, Ap2 Ay [F/Xo]
If reader? becomes critical then reader? becomes critical.
- T3 A Pri A Py
= (e =1iA (ﬁr?,m) =3, 1) Apu Apl, NUE= Uy [0,4/m,€,,;3D
= (e=iA(fz,m)= (3, 1) Apa Aph A Wh= W, |0,4/m 0,2) [F/Xe]
= (r2, Ap2 A) [F/Xo]

The third P-operation of reader? corresponds to the third P-operation of
reader?.

- T2 Apri APy
= (eyzi/\&,?:4/\pm'/\p;,i/\\11’:\113 {ar—1,5/ar,€,,?})
— (6 =1AL2 =4 Apy Apy ANV =Ty {ar — 1,5/&1’,&,?}) {f/Xz}
= (72, A2 Aph) [F/X5)]

The ar decrement step of reader? corresponds to the ar decrement step of

readerf.
- T2 Apri APy
= (e=iAnle=5ApsAp; ACHOO) A Us=5[0/s,])
— (e=1ALz=5ApApy ACHO0) ATy = U5 [0/s,,]) [[/Xo]
= (72, A2 Aph) [F/X5)]
The third V-operation of reader? corresponds to the third V-operation of
readerf.

81

Readers/Writers Example

Trf’ 10 A Pri A p;z
= (c:e/\m:1/\pm/\p;i/\\11’:\113[0/m])
— (cze/\m:1/\p2/\p’2/\\11’:\112[0/m]) {f/Xz}
= (72, Ap2 A Ph) [F/X5]
If the environment of reader? executes a P-operation then the environment
of reader? also executes a P-operation.

T A pri APl
= eze/\r:1/\pm/\p;i/\\11/:\113[0/r])
— (e=eAr=1Ap Aphy A W=V, [0/1]) [F/X]
= (re, Ap2 ARy [F/Xo]
If the environment of reader? exvecutes a P-operation then the environment
of reader? also executes a P-operation.

T N Pri APl
= (e=eAw=1ApuAplAWs=Us[0/w])
— (e=eAw=1Ap AphAUs=0,[0/w]) [[/Xs]
= (12, A A [£/Xe]
If the environment of reader? exvecutes a P-operation then the environment
of reader? also executes a P-operation.

Trf’w A Pri A p;z
= (e=enl: {0, 7,3} Am=0Apy Ap; A Wh= Us[l/m])
— (e=entlz € {0,7,3) Am=0Ap; Aph A Ws=Ts[1/m]) [f/X,]
= (12, Am2 APh) [F/X5]
If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

T, A Pri Al
= (e=enl: {0, 7,3} Ar=0Ap.Ap; AWh=Ts[1/1])
— (e=enle2 € {0,7,3) Ar=0Aps Aph ATs= T3 [1/1]) [[/X,]
= (72, Ap2 APh) [F/X5]
If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

T35 N Pri A\ Pri
= (e=enl2e{0, 7,3} Aw=0Ap;AplATs= w3[1/w])
— (e=enl e {0,7,3) Aw=0Apy Apy A W=y [1/w]) [f/X,]
= (72, Ap2Ap)) {JE/Xz}
If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

stut,: — stut,2 {f/Xz}
since s,, doesn’t change.

82

3.6 The fourth development step

(c) Let WF,2 = {r2 |k €{4,7}} and
SF,o 2 {r |k €{1,2,3,5,6,8,9,10,11,12,13, 14}} then

L2 = A OOEn(r) = 0O07)A A (O0En(r) — O07)

TEWFrg T€SF 2
k2 k2

Let WF,s = {72 |k € {2,5,8}} and
SF.. = {r1 | ke{1,3,4,6,7,9,10,11,12,13,14,15}} then

L2 = A OOEn(r) = 0O07)A A (O0En(r) — O07)

TEWFTS TESFE -3
The following holds:
Ss N Hist(Ws) = Lo — L2 [[/X]

since T, 2 is relatively refined by T, " and T, 8, and T, 2, is relatively refined by

T3

) and 7 2, is relatively refined by T, and T2, is relatively refined by T,

and T2, is relatlvely refined by 7, 8, and T2, is relatlvely refined by 7, 0, and
T2, is relatlvely refined by 7, @, and T, 2 is relatlvely refined by 7, 8, and T2,
is relatively refined by T3 and T2 18 relatively refined by 7, : 7, and T, 211

is relatively refined by 7, @ and T 2172 is relatively refined by 7. 8 and T2 s

relatively refined by 7,2, and 7,2 is relatively refined by 7. "

So
Ss 0 Hist(Ws) k= L2 [/Xs]

ad (2) Analogue to the proof of (1).

ad (3) This is trivial because W3 ¢ (AX, W, A /\j]\i1 ij’)

3.6 The fourth development step

We have already seen how we can prevent reader? to choose wrongly between V(r) and
V(w). Dijkstra also updates the PV-segments in such a way that only statements that
are actually executed are listed. It turns out that we do not anymore need bm. Also the
guards of CHOOSE get simpler. The result of this transformation is:

reader?:
do true — NCS;
P(m) ;br:=br+1;if aw>0 — V(m) [| aw=0 —V(r) fi;
P(r);br,ar:=br-1,ar+1;
if br=0 — V(m) [] br>0 —V(r)fi;
READ;
P(m) ;ar:=ar-1;

83

Readers/Writers Example

if ar>0 V bw=0 —V(m) [] ar=0 A bw>0 — V(w) fi
od

writer?:
do true — NCS;
P(m) ;bw:=bw+1;
if aw>0 V ar>0 — V(m) [| aw=0 A ar=0 — V(w) fi;
P(w) ;bw,aw:=bw-1,aw+1;V(m);
WRITE;
P(m) ;aw:=aw-1;
if br=0 A bw=0 — V(m) [] br>0 — V(r) [] bw>0 — V(w) fi
od
syn' : |, reader! || ||, writer!
In the following sections the DTL machine specifications S, (corresponding to program
reader}) and Sw;; (corresponding to program writer}) are given. It should be clear that the

extra requirement Wy is equal to true because no further requirements are imposed on Sj.

3.6.1 Specification S,

The formal specification S+ = (B,1,H,1) where H.a = La AOT,s AL+ and Ba, L+, T,

ris ek
and L,s are as follows:
k2

1. Basis B,,z; = ((In,,4, Outrz;), (V,A,X,,z;))

Ina =),
k2
Out,. = 0,
k2
V,a £ {m,r,br,w,bw,ar aw.s,, },
k2
A

Xr? = {grf}

e (.4 = 0: reader} is non critical.
k2
4

o (.4 = 6: reader; executes first P-action on m.
k2

o /.« =T: reader? has updated br.

7

e (.4 = &: reader! has left first PV-section.
4

o (.« = 1: reader; has executed P-action on r.
k2

o (.4 = 2: reader} has updated br and ar.

4

o (.4 = 3: reader] is critical.
k2

4

o (4 = 4: reader] has executed second P-action m.
k2

4

o (.« = 5: reader] has updated ar.

84

3.6 The fourth development step

A
Let Uy = (m,r,br,w,bw,ar, aw,s, ,(.4) and
k2

A
Uy = (m/,r',br’, w/,bw’ ar’,aw’ s/ ().

Iy et
k3

2. Initial States:
[+ = ¥, =(1,0,0,0,0,0,0,0,0)

3. Transitions:

Let CHO1(X) & (aw > 0 A W= W, [1,X/m, (,s))
(aw = 0 A W= Uy 1,X/r,€,,?})
Let CHO2(X) (br =0 A Wy= U, [1,X/m, ()
(br >0 A Wy= Uy |1, X/r,0])
Let CHO3(X) £ v ((ar >0V bw =0) A Wi= U, [1,X/m, ()
(

ar=0Abw > 0A W=, [1,X/w,(])

< < < << <L

4

T,s

. (€=1A(Gam)=(0,1) A W=V, [0,6/m, L))
Reader} executes its first P-action on m.

.V (e=iALa=6AWi=U,[br+1,8/br ()
Reader?! updates br.

ra. V (e=iALs=8ACHOUT))
Reader} leaves the first PV-section.

.V (e=iA(La) = (T.1) AW =Wy |0,1/r, 0])
Reader} executes its P-action on r.

T4 v (e =1ALs =1 AT =Ty [br— 1,ar 4+ 1,2/br,ar,€r?})
Reader} updates br and ar.

ra V (e=iALs=2ACHO23) AWy = W4[l/s,])
Reader! becomes critical.

TV (e=iA (La,m) = (3,1)ATs= 0, [0,4/m, (])
Reader? executes its second P-action on m.

T4 v (6:i/\€,,?:4/\\1121:\114 [ar—1,5/ar,€r?})
Reader?! updates ar.

.V (e=iALy=5ACHO3(0) A Wy=,[0/s,])
Reader! becomes non critical.

T4 V(c:e/\mzl/\\Il’:\Il4[0/m])

The environment executes a P-operation on m.

85

Readers/Writers Example

T4 V(c:e/\rzl/\\Il’:\Il4[0/r])

z 11
The environment executes a P-operation on r.
T,V (c:e/\W:l/\\Il’:\Il4[0/W])
The environment executes a P-operation on w.
e, Vo (e=enls €{0,7,3} Am=0A W=, [1/m])
The environment executes a V-operation on m.

ra, Vv (e=enly {0,733} Ar=0A W\ =V,[1/r])

The environment executes a V-operation on r.

T4 V (e=ents € {0,T,3) Aw=0A W= ,[1/w])

z 15
The environment executes a V-operation on w.

Tt V stut, 4
s 7

Ty

These transitions are illustrated in figure 3.9

Figure 3.9: Transitions of reader?.

4. Liveness:
L,s expresses that the P- and V-operations on the semaphores m, r and w are

86

3.6 The fourth development step

strongly fair and all the other transitions are weakly fair.

Let WF,s = {74 | k€ {2,5,8}} and
SF,o = {ra | ke{1,3,4,6,7,9,10,11,12,13,14,15}} then

L4 = A OOEn(r) =001 A A (O0En(r) — O07)

TEWFT4 TESF 4
k2 k2

3.6.2 Specification Sw;;

The formal specification S+ = (B,s, H,+) where H,, s = =1, A aT, A L, : and Bw4, Iw47

T,+ and L, are as follows:

1. Basis Bw4 = ((Inw4, Outw4), (Vw4,Xw4))

In, 4 £ 0,

Ouéwz; =

Vw;; Cos {m,r,br,w,bw,ar, aw,s,, },

Xur =)

o (= 0: erlter;1 is non critical.

. &%1 = 6: erlter;1 executes first P-action on m.
. &%1 =28 writer? has updated bw.

. &%1 =T writer? has left first PV-section.

° &%1 =1: writer? has executed P-action on w.
° &%1 =2 writer? has updated bw and aw.

. &%1 =3 writer? is critical.

° &%1 =4 writer? has executed second P-action m.
. &%1 = 5: writer? has updated aw.

J

Let ¥4 = (m,r,br,w,bw,ar,aw,s,,,(,) and

V) £ (m',v,br’,w',bw’ ar’, aw’ s ').

7w7w

2. Initial States:

Ly £ ¥, =(1,0,0,0,0,0,0,0,0)

87

Readers/Writers Example

3. Transitions:
Let CHOL(X) £ v ((aw >0 Var>0) A W)= U, |1, X/m, {,])
(aw =0ANar=0A V)= U, [1,X/W,€w;1})
Let CHO2(X) & Wy= W, |1, X/m, (]
Let CHO3(X) £ v (br=0Abw =0AWi= U, |1, X/m,0,])
vV (br>0AU,= U, [1,X/r,zwj4})
vV (bw > 0A U= U, [1,X/w,zw]4})

\%
\%

=3
(>

Tt (ezi/\(ﬁw;;,m): (0,1) A U= W, {0,6/m,€wﬂ)
Writer? executes its first P-action on m.

Tyt v (czi/\ﬁw;;:6A\I/’:\I/4[bw—|—1,8/bw,€w;;b
Writer? updates bw.

T4V (c:i/\ﬁw;;:é%/\CHOl(?))
Writer? leaves the first PV-section.

TV (c:i/\(ﬁw;;,r):(ﬁl)/\\ll’:\h [0,1/W,£wﬂ)
Writer? executes its P-action on w.

Tyt v (6 = i/\ﬁw;; =1AU,= U, [bW —l,aw + 1,2/bW,aW,€w;;D
Writer? updates bw and aw.

s,V (e=1A Ly =2ACHO23) AUy =0y [1/sy,])
Writer? becomes critical.

. V(€= 1A (fam) = (3, 1) AWl= 0, [0,4/m, 0])
Writer? executes its second P-action on m.

Tyt v (ezi/\ﬁw;;:4/\\11’:\114{aw—1,5/aw,€w;;})
Writer? updates aw.

v (€=1N01 =5ACHO3(0) A Wy= W, [0/s,,])
Writer? becomes non critical.

T V (c:e/\mzl/\\IlQ:\Iu[O/m])
The environment executes a P-operation on m.

T \/(c:e/\rzl/\%:\h[()/r])
The environment executes a P-operation on r.

o V(c:e/\W:l/\\Il’:\Il4[0/W])

The environment executes a P-operation on w.

88

3.6 The fourth development step

T vV (cze/\ﬁw;;6{0,7,3}/\m:0/\\1121:\114[1/m])
The environment executes a V-operation on m.

T Vv (c:e/\ﬁw;;6{0,7,3}/\1':0/\\1121:\1/4[1/1'])
The environment executes a V-operation on r.

T vV (eze/\ﬁw;;6{0,7,3}AW:0A\II’:\II4[1/W])

The environment executes a V-operation on w.

Tt V stut,
J

These transitions are illustrated in figure 3.10

Figure 3.10: Transitions of writer?.

4. Liveness:
L+ expresses that the P- and V-operations on the semaphores m, r and w are
J
strongly fair and all the other transitions are weakly fair.

Let WF o = {rue, |k €{2,5,8}} and

89

Readers/Writers Example

SF.s & {r,e |k €{1,3,4,6,7,9,10,11,12,13,14,15}} then

Lw;; = A (0O0En(r) = 0O0r)A A (O0En(r) — OO7T)
TEWE 4 TESF 4

3.6.3 S, relatively refines &3

Since the semaphores m, r and w, and the shared variables ar, aw, br, bw and bm are
used only by the subcomponents of &3 and the semaphores m, w and r and the shared
variables ar, aw, br and bw only by the subcomponents of S4, we should prove 84 |
{m,w,r,ar,aw, br, bw} relatively refines S; | {m, w,r,ar,aw, bm, br,bw}. According
to definition 35, 36 and theorem 8 &; | {m,w,r,ar,aw, br,bw} relatively refines Ss |
{m,w,r,ar,aw, br,bw,bm} with respect to (W, W3) iff the following holds:
O(B4) = 9(B3) and
E (3X4. (G4 A (e =e = (m,r,w,ar,aw, br,bw) =(m, r, w, ar,aw, br,bw))))
%
(3X5.(Gs A (e = e = (m,r,w,ar,aw, br, bw,bm)’ = (m, r, w,ar,aw, br,bw,bm))))

where X, are the local variables from Sy, ie., X4y = {la |i=1,...,N}U{l, | j =

Ly...,M}U{m,r,w,aw,ar,br,bw} and Gy is the composition of S,4 (: = 1,...,N) and
Sw;l J=1,..., M),

— A
let €4 = €41,...,€4N, CANF1,-- .5 €4 N+M, and
PDA B pA A pA A
let By = Br%,...,Br%,Bw%,...,Bw?M
A
then G, =

(Fer @ (e e0) AN Hos [eai/e] A AL Hos feanis/€])

X are the local variables from S5, ie., X3 = {fs|i=1,..., NYU{l,s |j=1,...,M}U
{m,r,w,ar,aw, br,bm,bw} and Gs is the composition of S,z (: = 1,...,N) and 8,5

(j=1,...,M) and W3,

— A
let €5 = e31,...,€3N, €3 N41,-- ., €3 N+M, and
pDA B pA A pA A
let By = Brf,...,Br?V,Bw?,...,Bw%J
A
then G; =

(353- ©pa (e &) ANL He [esi/e] AL Hye [63,N+j/6]) A Ws
As seen in the previous development step W3 is e-free and can be decomposed into sub-
requirements. Let p; = (f2 € {0,7,3} — ¢3) and W,s = Op,;, and py; = (e €

2 2 J

{0,7,3} — ¢3) and Wu}j’ = Op,,; then Wy = (AY, W,,?) A (/\]]\i1 ij’) Now Lemma 9, 10
and 11 can be used for the proof, i.e., following proof rule can be used

AL, W O, Wi © W

Srf W s ref "> Srf W.2 constraining B,:

W2 PR
Swf W ref Swf Wwf constraining Bwf
W
84 HI'Ef 2 83

90

3.6 The fourth development step

This means we have to prove for i =1,...,Nand j=1,..., M:

(1) (3. (M) = (X0 (H2 AW,2))
(2) (3 (Hy)) = (FXye - (Hyp AW,s))
(3) (W,,;% A Wwf) — W3

ad (1) Rule 3 will be used to prove (1). This means one has to prove (a), (b) and (c)
below, for f the refinement mapping from Sy to Ss, defined as:

.]E: ffrg7fm7fr7fwafawafarafbrafbwafbm where fbm is defined as
N+ M —br —bw

, 1.e., bm can be expressed in terms of br and bw. Note: the refinement mappings for
[trd, m, r, w, aw, ar, br and bw are equal to the identity mapping, so we can leave
them out.

(@) Sk Ls— (Lz Apw) [/Xs]
(b) Ss k= T = (T2 Al(pei Aph) V stut,)) [F/Xs]

(¢) Ssk Lo [f/X3

(a) Proof 7
L4

= % Def. L.

(m,r, br, w, bw, ar, aw,s,,, {,2) = (1,0,0,0,0,0,0,0,0)
— % Def. fom

((m,bm,r,br,w,bw,ar,aw,s,,i,ﬁ,,?) =

(1, N + M,0,0,0,0,0,0,0,0) A py) [F/Xs]
- 0 Def Is

(3 /\pm) {f/XS}
(b) Proof 8

T,z is of the form stut,s VV (e = a; Atrans;) so Tz A ((pri A pl;) Vstut,s) is
equal to stut,: V\V_ (e = a, Atrans, Ap.; A pl;).

- T4
rl

.

(e A (L m) = (0,1) A Wh= Wy [0,6/m, (4])
= (e=in(ﬁrs,m) (0,1) A pri A pl A Wh= W5 [0,6/m, £,z]) | F/Xs]
= (Tril N Pri /\pm) { /X3}
The first P-operation of reader! corresponds to the first P-operation of
reader?.

91

Readers/Writers Example

T4
= (e=iAnla=6AW\=W,[br+1,8/br,ly])
— (e=iAlz=6Ap,
ply AN Uh=Uy {bm—l,br—l—l,S/bm,br,ﬁrsD {f/Xg}
= (70, Apoi Apl) [F1Xs)]
The updating of br in reader! corresponds to the updating of br and bm
reader?.

ury
= (e=inla=8ACHOLT))
— (e=1AlLs=8ApsAp, ACHOT)) [J/Xs]
= (72, AP Ap) [F/Xs]
The first V-operation of reader? corresponds to the first V-operation of
reader?.

ury
= (e=iA(lu.0)= (T, 1) AWy= W, [0,1/1,04])
= (e=iA(lo.0) = (T,1) Apei Aply AWs= W5 [0, 1/, 0]) [F/Xs]
= (72, Apri AP) {JE/XB}
The second P-operation of reader? corresponds to the second P-operation of
reader?.

T4
= 6175:i/\£7,;1 =1AU,= Uy {br—l,ar—l—l,Z/br,ar,ﬁ,,?D
— (e=1ALs=1NAp,
Apl, NUs= Wy [br —l,ar+1,bm + 1,2/br,ar,bm,€r?D {f/Xg}
= (72, Apri AP) /%]
The ar decrement step of reader? corresponds to the ar decrement step of
reader?.

Trd
= (e=iAnls=2ACHO23) A Uy=U,[l/s,])

— (e=iAlLs=2Apu Apl ACHOB) A W= U351 /s,]) [f/Xs]
= (7, AP APl [/

If reader? becomes critical then reader? becomes critical.

TT?:
= (e=iA(fu,m)=(3,1)AWi=W,0,4/m L))
= (e=iA(fam)=(3,1)Apu Aply AWE= W5 [0,4/m, (5]) [/X3
= (e, Apri Apy) {JE/XB}
The third P-operation of reader! corresponds to the third P-operation of
reader?.

92

3.6 The fourth development step

T

= (= inby = AA W= Uy [ar - 5o 0,])

= (e=1nLy =4 Apy Apl AWE=Ts [ar — L5 ar, L]) [f/Xs]
= (72, Apei A D) [f / XS}

The ar decrement step of reader? corresponds to the ar decrement step of

8

reader?.

o Tr?,sa

= (e=iAnls=5ACHO3(0) A Wi= U,[0/s,])

— (e=1AlLs=5ApuApl ACHOO) A Ws=U5[0/s,]) [f/Xs]

= (72, Apei A9 |F/Xs)
The third V-operation of reader! corresponds to the third V-operation of
reader?.

- T,.4
710
= (e:e/\mzl/\lll’:\Il4[0/m])
— (e=eAm=1Ap;AplAUs=Us[0/m]) |f/Xs]
= (72, ANpei A o) [£/Xs]
If the environment of reader? exvecutes a P-operation then the environment
of reader? also executes a P-operation.

_ T
2,11
= (e:e/\rzl/\\Il’:\I/4[0/r])
—~ (e=eAr=1Ap.Ap AWh=U3[0/1]) [F/Xs]
= (7, Api AL [T/
If the environment of reader! executes a P-operation then the environment
of reader? also executes a P-operation.

_ T
2,12

= eze/\w:l/\\I/’:\I/4[O/w])

— (e=eAw=1Ap,; Ap,; ANVs= U3 [O/W]) {JE/X:J

= (7, AP AT [/X
If the environment of reader? exvecutes a P-operation then the environment
of reader? also executes a P-operation.

- T,.4
Ti13

= (e=enlye{0,7,3} Am=0A W)=, [1/m])
— (e=ents €{0,7,3) Am=0Apys A pjy A Uh=5[1/m]) [[/X;]
= (72, AP AD) {JE/XB}
If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

93

Readers/Writers Example

- T4
714

= (e=enly e {0, 7,3} Ar=0AT= U, [1/1])
— (e=enls €{0,7,3) Ar=0ApuiApl A W= s [1/r]) [[/Xs]
= (7, Api ADL) [T/
If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

- T4
115

_ (c—e/\&,?6{0,7,3}/\\7\7:0/\\11’:\114[1/"\’])
— (e=ent2 €{0,7,3) Aw=0Apui Apl A Ws=Ts[1/w]) []/Xs]
= (T, Apei AP [T/Xs]

If the environment of reader? executes a V-operation then the environment
of reader? also executes a V-operation.

— stut,.. — stut,: [.]E/Xg}
since s,, doesn’t change.

(c) Let WF,. = {rs |k €{2,5,8}} and
SF,o 2 {re |k € {1,3,4,6,7,9,10,11,12,13,14,15}} then

L4 = A OOEn(r) = 0O07)A A (O0En(r) — O07)

TEWFT4 TESF4
A
Let WF,. = {T,,?yk | k€ {2,5,8}} and
SF,e 2 {0 |k € {1,3,4,6,7,9,10,11,12,13,14,15}} then

L2 = A OOEn(r) = 0O07)A A (O0En(r) — O07)

TEWFTS TESF 3
The following holds:
SeELs = Lo [f / X3}

since = is relatively refined by T4 for k=0,...,15.

S0
Si er {JE/X?)}
ad (2) Analogue to the proof of (1).

ad (3) This is trivial because W3 ¢ (AX, W, A /\j]\i1 ij’)

94

Chapter 4

Stable Storage Example

5 his chapter first introduces in sect. 4.1 a general methodology for proving fault
D tolerant systems correct. This general methodology uses the relative refinement

concept of sect. 2.3.2. The remaining sections of this chapter give an illustration of
this general methodology by applying it to a fault tolerant system consisting of a number of
disks implementing stable storage. Section 4.2 introduces this application. In sections 4.3,
4.4, 4.5 and 4.6 the four steps of this general methodology are applied to the stable storage
example [Cri85, Sch9l].

4.1 The General Methodology

The general methodology consists of four steps. In the first step one gives the abstract
specification S £ (B, H) where H is a DTL formula specifying the fault tolerant system.
In this specification no faults are visible, hence they don’t occur as observables. The
designer’s task is to give an implementation of this system under the assumption that only
faults from certain classes can occur. These faults are called anticipated faults. These are
faults which may affect the implementation in that they may give rise to errors in the state
of the implementation, resulting subsequently in failures of that implementation. In step
2,3 and 4 of the methodology a fault-tolerant system is developed.

The second step identifies the anticipated faults which can affect an implementation
Sp = (Bp,Hp). This implementation serves as first approximation to the final implemen-
tation of S. It should be clear that Sp is not a refinement of S because of the possible
occurrences of anticipated faults. Sp is only a refinement when these faults do not occur,
i.e., Sp is a relative refinement of S. So in step 2 we must prove:

(1) Sp Wpref S

In the third step one specifies how these anticipated faults are detected, i.e., one has to
specify a detection layer Sp; for these faults. This layer is added in bottom-up fashion to
the implementation Sp of the second step and stops upon detection of the first error, i.e.,
Sps 1s a fail-stop implementation. So the second approximation to the final implementation
consists of the composition of Sp and Sp,. This approximation is clearly not a refinement
because when in Sp a fault occurs, and Sps detects the corresponding error, the whole

95

Stable Storage Example

approximation stops. One would like to have (eventually) an approximation that doesn’t
stop, i.e., the physical disk isn’t affected by faults and the detection layer should detect no
error. Let W £ (Wps, Wp) where Wp expresses that no faults occur and Wp, expresses
that no error is detected. Then we must prove the following:

(2) Sps |W| Sp ref We Sp.
From (1), (2) and the transitivity of relative refinement relation follows:
Sps |w| Sp ref S.

In the fourth step one specifies the corrective action to be undertaken after detection of an
error. This means in general that one needs redundancy, i.e., several copies of Sp and Sp
components, because when a detection layer Sp detects an error, the state before that error
has to be recovered and that can only be done by accessing another copy of Sp through
its corresponding detection layer Sp. Note that the Sp component doesn’t stop anymore
on the detection of an error but merely waits for the corrective action to be undertaken.
Say, we need N copies of Sp and Sp. The final implementation consists then of those NV
copies of Sp and Sp plus a recovery layer Sp. Let Wg express which kind of errors can be
recovered. If the following holds:

(3) Xy (Sp Il Sp,) || Sk wyref Sp 7] Sp
then from (1), (2), (3) and the transitivity of relative refinement follows the desired result,
le.:

I, (Se || Sp.) || Sk wyref S

This ends our exposition of the general methodology. In the next sections this method-
ology will be applied to a stable storage example.

4.2 Application: Introduction

Stable storage is defined as follows. A disk is used to store and retrieve data. During
these operations some faults can occur in the underlying hardware. To make the disk more
reliable one introduces layers for the detection and correction of errors, due to these faults.
The system with these detection and correction layers is called “stable storage”. This
stable storage is a fault tolerant system because it stores and retrieves data in a reliable
way under the assumption that faults from a certain class are recovered (corrected). This
class consists of two kinds of faults. The first one consists of faults that damage the disk
surface -the contents of the disk are said to be corrupted by these faults. The second one
consists of faults that affect the disk control system, and results into the contents of the
disk being read from or written to the wrong location. Notice that other kinds of faults,
such as power failure or physical destruction of the whole stable storage system, are not
taken into account. l.e., stable storage should function correctly provided such latter faults
do not occur.

96

4.3 First Step: Stable Storage

4.3 First Step: Stable Storage

4.3.1 Introduction

In this section we give a specification of a stable storage system as we ideally would like
to have it. So no faults are observed. If they occur internally, they should be repaired by
the system without leaving any observable trace. For that is the meaning of ‘stable’ here!

4.3.2 Specification

The abstract specification of the stable storage specifies the following: The user signals
with a read request event that he wants to read the contents of some location of stable
storage. Stable storage will then respond by sending the requested contents. The user
signals with a write request event that some data has to be written on some location of
stable storage, with a response event the stable storage signals that the write has been
performed. Note: we have a very simple stable storage that can handle only one request

at a time. The formal specification S = (B, H) where H £ IAOT AL and B, I, T and L

are as fTollows:

1. Basis B = ((In, Out), (V, X))

In £ {Rreq, Wreq!,

Out £ {Rres, Wres},
Vo2,

X L {l,r,s,M[n]|n e SN}

where SN is the set of sector numbers: [1,.., Z]. Let Inf be the set of information
items that could be stored and retrieved by stable storage but that will not be further
specified. For n € SN and ¢,d € Inf:

e Rreq?(n): the request to read sector n.

e Rres!(c): the response to the previous read request where ¢ are the contents of
requested sector.

e Wreq?(d): write information item d onto sector n.
e Wres!: previous write has been performed.

o (: local variable indicating the status of the stable storage; ¢ = 0 means no
requests are issued, / = 1 means a read request has been issued, and ¢ = 2
means a write request has been issued.

o 1: local variable indicating the requested sector.

e s: local variable indicating the contents of the requested sector or the to be
written data.

e M[n]: the physical sector n.
Let Wy & (£,r,5,M[1],...,M[Z]) and W4 = (¢',1,s', M'[1],..., M'[Z]).

Y

97

Stable Storage Example

2. Initial States:

[=(=0A A\ M[i]=dflt

€SN
Where dfit € Inf is some default information item.

3. Transitions:
T £
Ty (cereq?(n)/\EzO/\\I/’:\IIO [l,n/ﬁ,r])
The user requests the contents of sector n.
m v (e=Rres(M[]) Al =1AWp=W,[0/(])
Stable storage responds with the contents of the requested sector.
3V (c:Wreq?(n,d)/\Ez()/\\Il’:\Ilo [Z,n,d/ﬁ,r,s])
The user requests that d should be written onto sector n.
m v (e=Wres! Al =2AW=Wo[0,5/(, Mt]))
Stable storage responds with a signal that requested write is performed.

To V stut

These transitions are illustrated in figure 4.1

Figure 4.1: Transitions of stable storage.

4. Liveness condition:
The liveness condition expresses that the communication transitions are strongly fair.

Let SF ={7 |7 €{1,2,3,4}} then

I £ /\ (OO En(r) — 0OT)

TESKEF

98

4.4 Second Step: Physical Disk

4.4 Second Step: Physical Disk

4.4.1 Introduction

In this step, which is the first stage in our task to develop a fault tolerant system, we give
the specification of a physical disk. This specification is a first approximation to our fault
tolerant system, i.e., it acts as bottom layer of our desired implementation and because
the other layers haven’t been developed yet it is the only layer we have at this moment.
In this specification we must specify, because this is the first stage of our development,
which are the anticipated faults our system, i.e., we have to specify which are the faults of
our interest that could affect a physical disk. These faults are represented as events in our
formalism. This first approximation of stable storage is not a correct one because of these
anticipated faults (the physical disk doesn’t anticipate on these faults at all!). But under
the assumption that these faults don’t occur this first implementation is a refinement of
stable storage.

4.4.2 Specification

We must specify a physical disk, the anticipated faults and their impact on the physical
disk. We take as anticipated faults the following ones (cf. [Cri85, Sch91]):

e Damages of the disk surface causing corruption of the contents of a physical sector.

o Disk control faults causing the contents of a particular physical sector to be read or
written at a wrong location.

These two faults are described using two events: the dam event standing for a damage
to the disk surface and the csf event standing for a disk control system fault. As in the
specification of stable storage, the user requests with Rreq(n) that it wants to read the
contents of physical sector n. The physical disk then responds with Rres(c) delivering
the requested contents. With Wreq(n, d) the user signals that d should be written onto
sector n. The physical disk responds with Wres that the requested information has been
written. The formal specification Sp = (Bp, Hp) where Hp L I, AOTp ALp and Bp, Ip,
Tp and Lp are as follows:

1. Basis Bp = ((Inp,Outp), (VP,XP))

Inp £ {Rreq, Wreq},

Outp = {Rres, Wres},

Ve = 0,

Xp é {gp,rp,Sp,Mp[n],F[n] | n c PN}

where PN is the set of physical sector numbers: [1,..,Y]. Let Phy be the set of
information items that could be stored and retrieved by the physical disk but that
will not be further specified. The special information item () is introduced to model
disk surface damage faults. For n € PN and ¢,d € Phy:

99

Stable Storage Example

e Rreq?(n): the request to read sector n.

e Rres!(c): the response to the previous request where ¢ are the contents of
requested sector.

e Wreq?(d): write information item d onto sector n.

o Wres!: response that previous write has been performed.

o /p: local variable indicating the status of the physical disk.

o rp: local variable indicating the requested physical sector.

e sp: local variable indicating the requested contents or the data to be written.
e Mp[n]: the physical sector n.

e I': the control system, i.e., the control system maps sector n to sector F[n].

Let U, £ ({p,rp,sp, Mp[1],...,Mp[Y],F[1],...,F[Y]) and
W E (v, s, Mp[1], ..., MB[Y], F/1], ..., F/[Y]).

. Initial States:

Ip = (p=0A A (Mp[i] = dfit NF[i] =)

1€EPN

All sectors contain the default data item dfit and the control system has not been
affected by control system faults.

. Transitions:
Tp &
TP, (c:Rreq?(n)/\Ep =0AVY =T, [1,n/€p,rp])
The user requests the contents of sector n.
p2 V(€= Rres(Mp[F[rp])) A lp = 1 A W5 =0, [0/(p))
The physical disk responds with the contents of the requested sector.
TP3 \% (e = Wreq!(n,d) N lp =0 AU =T,y [Z,n,d/ﬁp,rp,sP])
The user requests that d should be written onto sector n.
pa V(€= Wres! Alp =2 A W =W, [0,sp/lp, Mp[F[rp]]])
The physical disk responds with a signal that requested write is performed.
sV (e=iAn#£ A W=V, [j/F[n])

Due to control system fault the sector n is mapped to sector j.

sV (e=1iAWi= U [@/Mp[n]])
Due to disk surface fault the contents of sector n are replaced by corrupted data

©.

TP,0 vV Stutp

These transitions are illustrated in figure 4.2 where fault is either a control system
fault or a disk surface fault.

100

4.4 Second Step: Physical Disk

fault Rreq?(n)

Rres(Mp[F[rp]]) 2

fault

Wreq?(n,d)

fault

Figure 4.2: Transitions of the physical disk.

4. Liveness condition:
The liveness condition expresses that the communication transitions are strongly fair.

Let SFp ={7p; |1 €{1,2,3,4}} then

Lp

A

/\ (OO En(r) — 0OT)

4.4.3 Requirement Wp

The requirement Wp expresses that the control system and disk surface faults never occur.

Wp £ O(A (Mpli] # @ A Fli] = i)

1€EPN

This corresponds to the following machine: Let

p

/

p

e [l

Neepn(Mp[i] # © A F[i] = 1)
Niepn (Mp[i] # © A F'li] = 4)

then Wp is equal to the machine p AQ((p A p') V stutp).

4.4.4 Sp relatively refines S

We should prove Sp relatively refines S. Let the external requirement for the system S be

true (i.e., no extra requirement is imposed). According to theorem 8 Sp relatively refines
S with respect to (Wp, W) iff the following holds:

O(Bp) = O(B) and

E (IXp.(Gp)) = (IX.(G))

101

Stable Storage Example

where Xp are the local variables from Sp, i.e., Xp = {{p,tp,sp, Mp[n],F[n] | n € PN}
and Gp 1s defined as

Ip AOTp ALp AWp
X are the local variables from S, i.e., X £ {f,r,s,M[n] | n € SN} and G is defined as
INOT AL
Rule 3 will be used to prove
E (3IXp.(Gp)) = (IX.(G)).

This means one has to prove (a), (b) and (c) below, for f the refinement mapping from
Sp to S, defined as: f = fe, fos fss Py (n € SN). We will assume that the set of sector
numbers SN is equal to the set of physical sector numbers PN. The refinement mappings
are defined as:

fe = Ip
fr é Ip
fs = sp
fapp = Mpn]
(a) Sp0Hist(Wp) = (Ip Ap) = 1[f/X]
(b) Sp 0 Hist(Wp) =Tp A((pAp)Vstutp) = T [f/X]
(¢) Spn Hist(Wp) | L|f/X]
(a) Proof 9
Ip A P
= % Def. Ip,p

lp =0 A Niepn(Mpli] = dflt ANF[i] = i)
ANiepn(Mpli] # © AF[i] =1
— % Def. barf
(6 =0 A Niesw M[i) = dfit) [f/X]
= % Def. 1
Hrx
(b) Proof 10
Since Tp is of the form stutp V V. (e = a; Atrans,) then Tp A ((p A p') Vstutp) is
equal to stutp V V. (e =a; Atrans, ApAp').

- TPi ApAp
= (e=Rreq?(n)Alp=0ApAp ANUI=T,4 [l,n/ﬁp,rp])
— (e=Rreq?(n) AL =0AWh=W,[1,n/l,1]) [f/X]
= nlf/X]
The read request at the physical disk level corresponds to the read request at the

abstract level.

102

4.4 Second Step: Physical Disk

P2 ApAp
= (e =Rres!(Mp[F[tp]) Alp = LA p Ap/ A Wi= W, [0/(p])
— (e=Rres(M[t]) AL =1AWh=Uo[0/1]) [f/X]
= nlf/X]
The read response at the physical disk level corresponds to the read response at
the abstract level.
TPa ApAp
= (e = Wreq?(n,d) Alp =0ApAp ANUo= Ty [Z,n,d/ﬁp,rp,sP])
— (= Wreq?(n,d) Al =0AVy= Uy [2,n,d/l1.5]) [f/X]
= nlf/X]
The write request at the physical disk level corresponds to the write request at
the abstract level.
TPaNpAp
= (e=Wres! Alp=2ApAp AWo=Wo[0,5p/Cp, Mp[F[rp]]])
— (€= Wres! AL =2 Uh= Wy [0,s/£,M[t]]) [f/X]
= nlf/X]
The write response at the physical disk level corresponds to the write response
at the abstract level.
Tps ApAp
(e=iAn#jApAp A=, [j/Fn]))
false
= T [f/X]
Due to the external requirement the disk control fault transition can not be taken,
i.e., is equal to false and from false everything can be inferred.
Tre ANp AP
= (e=inpAp A= 0, [©/Mp[n]])
false
= T [f/X]
Due to the external requirement the disk surface fault transition can not be taken,
i.e., is equal to false and from false everything can be inferred.

stutp — stut {f/X}

(c) Let SFp ={7p; |1 € {1,2,3,4}} then

Lp & /\ (OO En(r) — 0OT)

TESFP

. Let SF ={7, |7 €{1,2,3,4}} then

L £ /\ (OO En(r) — OOT).

TESKEF

103

Stable Storage Example

Then the following holds
Sp N Hist(Wp) = Lp — L[f/X]

since 7, is relatively refined by 7p; for i = 1,...,4. So
Sp N Hist(Wp) = L[f/X]

holds.

4.5 Third Step: Fail-Stop Detection Layer

4.5.1 Introduction

In this step, the second stage in our development of the fault tolerant system, we specify
in bottom-up fashion on top of the physical disk that has been specified in Section 4.4, the
layer that detects the faults that we assumed could affect the physical disk (the anticipated
faults). The detection layer acts as a sort of “interface” between the user and the physical
disk. It stops when an anticipated fault is detected by the detection mechanism, i.e., the
whole system (detection layer plus physical disk) stops when such a fault occurs. It also
informs the user which kind of anticipated fault has occurred. This second implementation
is “better” than the first one because now the user is certain, under the assumption that the
detection mechanism detects all the anticipated faults, that the retrieved data is reliable.
The implementation of the detection layer is such that as soon as a fault is detected the
system stops. This is called a fail-stop implementation [LA90]. As seen above, there are two
classes of anticipated faults. Consequently there are two kinds of detection mechanisms.
The first one checks whether the contents read from the physical disk are corrupted, i.e.,
detects errors due to damage of the disk surface. This is done with a cyclic redundancy
mechanism [LA90]. The second one checks whether the contents of read from the physical
disk originate from the right location. This is done with an address checking mechanism
[LA90] which encodes the location of the contents of the physical disk in the contents itself.

4.5.2 Specification

The detection layer consists of three parts: the first part checks whether the data retrieved
from the physical disk is affected by a corrupt data fault (the fault that damages the
disk surface). This is done with a cyclic redundancy check (CRC) mechanism [LA90].
The second part checks whether the data retrieved from the physical disk is from the
correct physical location, i.e., whether it is affected by a disk control system fault. This is
done with an address checking (ADR) mechanism [LA90]. The third part prevents further
access by the user of the physical disk when one of these two mechanisms detects a fault.
This can be easily done because the detection layer acts as “interface” between the user
and the physical disk, the detection layer then refuse to communicate with the user and
the physical disk. Furthermore this part then gives a message to inform the user which
anticipated fault has occurred.

104

4.5 Third Step: Fail-Stop Detection Layer

The protocol of this interface between user and physical disk is as follows. The user read
requests the contents of some physical sector by issuing a Rreq(n) event to the detection
disk layer. This detection disk layer issues after receipt of this event a Rreqp(m) event
to the physical disk. The physical disk then responds with a Rresp(c) event delivering
the requested contents of that physical sector. The detection layer then responds after
checking the contents with a Rresp(cd) event delivering either the requested contents or
an error message. The user write requests that d should be written on sector n by issuing a
Wreq(n, d) event to the detection layer. The detection layer then issues a Wreqp(m, dd)
event to the physical disk requesting that dd is written on sector m. The physical disk then
responds with a Wresp event that the requested information is written. The detection
layer then responds to the user with a Wres event that the information is written.

Logical sector numbers are introduced now, but are used in the next step to correct
disk surface damage faults, i.e. when the detection layer detects that data from a physical
sector number is affected by a disk surface damage fault, the correct data will be written to
another physical sector number. In order to retrieve these contents from this new location
logical sector numbers are introduced. When contents are stored at a new physical sector
the logical sector number will be pointing to this new sector. So actually the data are
retrieved from their logical sector number. In this step however, the mapping between
the logical sector numbers and the physical sector numbers will be the identity mapping
because they are not needed here. The detection layer is described more formally by the
following specification: Sps = (Bps, Hps) where Hp; 2 Ip, AOTp, A Lp, and Bps, Ip,,
Tps and Lp, are as follows:

L. Basis Bp, = ((Inps, Outps), (Vps, Xps))

Inps £ {Rreq, Wreq, Rresp, Wresp}
Outp, = {Rres, Wres, Rreqp, Wreqp},
Vp, £ 0,

Xps = {lps,tpsysps, LSps[i] | i € LN}

where LN is the set of logical sector numbers: ([1,..,Y]). Let Lg the set of data
items that the user wants to store on or to retrieve from the physical disk and Phy
the set information items that can be stored on or retrieved from the physical disk
(Note: an item from Phy is an crc-encoded and address-encoded item of Lg.) For

n &€ LN,c,de Lg, m & PN and cd,dd € Phy:
e Rreq?(n): the request from the user to read logical sector n.

e Rres!(c): the response of the detection layer to the previous request where ¢ are
the cre-decoded and address-decoded contents of the requested logical sector n.

e Wreq?(n,d): write information item d onto logical sector n.

o Wres!: response that previous write has been performed.

e Rregp!(m): the request from the detection layer to read physical sector m.

e Rresp?(cd): the response of the physical disk to the previous request where ¢

are the crc-encoded and address-encoded contents of requested physical.

105

Stable Storage Example

Wreqp!(m,dd): write information item dd onto physical sector m.
Wresp?: response that previous write has been performed.

lps: local variable indicating the status of the detection layer; fp, = 0: the
detection layer is waiting for a request, {p; = 1: the user has issued a read
request, /ps = 2: the detection layer has issued a read request, {ps; = 3: the
physical has responded to a read request with correct data, /p, = 4: the physical
disk has responded to a read request with incorrect data, fp; = 5: the detection
layer has responded to a read request with an error message (stop status),
l{ps = 6: the user has issued a write request, /p, = 7: the detection layer has
issued a write request, /p; = 8: the physical disk has responded to a write
request.

rps: local variable indicating the requested sector.

sps: local variable indicating the requested information or the data to be writ-
ten.

LSps[i]: the physical sector mapped to logical sector. i.

Let \112 é (KDS,I’DS,SDS,LSDSU],. . ,LSDS[Y]) and
\I}/Q é (K/DNIJDS? S/Ds7 LS,DS[1]7 trt LS/DS[Y])

. Initial states:

Ip

s 2 lp,=0A N LSp,[i] =i

1€ELN

. Transitions:
To describe the two detecting mechanisms as transitions the following functions are
needed: (see [LA90] for more information about this CRC-coding)

CC: Phy — Bool

(Cre-Check) Is used to check whether data from the physical disk is damaged
by a disk surface fault.

CD:Phy — (Lg x PN)

(Cre-Decode) Is used to decode the CRC-coded physical data into address for-
mat.

CFE:(Lgx PN)— Phy

(Cre-Encode) Is used to encode data in address format into physical CRC for-

mat.

AC : (Lgx PN x PN) — Bool

(Adr-Check) Is used to check whether data is read from the correct physical
location.

AD :(Lg x PN) — Lg

(Adr-Decode) Is used to decode data in address format into user format.

106

4.5 Third Step: Fail-Stop Detection Layer

Let

TDs,1

TDs,2

TDs,3

TDs,4

TDs,5

TDs,6

TDs,7

dd

1

C2

AE : (LN x Lg) — (Lg x PN)
(Adr-Encode) Is used to encode a physical sector number and a information
item given by the user into address format.

Good = CC(ed) N AC(CD(ed), LSps[rps))

data has not been affected by faults

Aer £ CC(ed) N =AC(CD(ed), LSps[rps))
data has been affected by a control system fault
Cer = =0C(cd)
data has been affected by a disk surface damage
= AD(CD(cd))

the address- and crc-decoded contents

LSDs[rDs]

physical sector
CE(AE(I’DS, SDs))

address- and crc-encoded contents

Iis

[le-

[le-

address error
address error message

[le-

Crc error
Crc error message

Iis

(¢ =Rreq?(n) Alp, =0 AWy= W, [1,n/lp,,1p.])
The user requests the contents of logical sector n.
\% (e = Rreqp!(m) A lps = 1 ANUH= U, [2/5175])
The detection layer requests the to logical sector rps; mapped physical sector.
\% (e = Rresp?(cd) Alps =2 N Good N Wh= W, [3,c/€DS,sDS])
The physical disk responds with the contents of the requested sector and the
detection layer detects no error in them.

\% (e = Rresp?(cd) ANMlps =2 N Acer AN Wh= U, [4,01/€DS,SDS])

The physical disk responds with the contents of the requested sector and the
detection layer detects a control system error.

\% (e = Rresp(ed) Nlps =2 N Cier AN Uy= W, [4,02/€DS,SDS])

The physical disk responds with the contents of the requested sector and the
detection layer detects a disk surface damage error.

V (€ =Rres!(sp.) A lp, = 3N Wy= U5 [0/(p,])
The detection layer responds with the contents of the user requested sector.
V (€=Rresl(sp.) A lp, = 4 A Wy= U5 [5/(p,])

The detection layer responds with an error message and then stops.

107

Stable Storage Example

Tpss V (e = Wreq?(n,d) A lps = 0 AN UhH= U, [6,n,d/€Ds,rDS,st])

The user requests that d should be written onto logical sector n.
Tao V(€= Wreqp!(m,dd) Alp, =6 A Wy= W, [7/(p,])

The detection requests that dd should be written onto physical sector m.
TDs.10 \% (ezWresp?/\ﬁDs =TAU,= U, [8/&75])

The physical disk responds with a signal to the detection layer that requested
write is performed.

TDs,11 vV (6 = Wres! A gps =8A \I}/ = \IIQ [O/EDS])

The detection layer responds with a signal to the user that the requested write
is performed.

TDs,0 vV stutDS

These transitions are illustrated in figure 4.3

Figure 4.3: Transitions of the fail-stop detection layer.

4. Liveness condition:
The liveness condition expresses that the communication transitions are strongly fair.

Let SFp, = {7ps, |1 € {1,...,11}} then

Lps = A (O0En(r) — O07)

T7ESFp,

108

4.5 Third Step: Fail-Stop Detection Layer

4.5.3 Requirement Wy,

The requirement Wp, should express that no errors are detected.

Wp = O(e = Rresp?(cd) — Good)

4.5.4 Sp, || Sp relatively refines Sp

The communication channels of Sp in Sps || Sp should be renamed in order to compose
Sps with Sp, i.e., instead of Hp as specification we should take

Hp [Rreqp, Wreqp, Rresp, Wresp/Rreq, Wreq, Rres, Wres] .

Let Spy be the specification with this renaming. According to theorem 8 Sp, |W| Sp1
relatively refines Sp with respect to (true, Wp) iff the following holds:

D(BD&pl) = D(Bp) and
= (IXps,p1- (Gps,p1)) = (IXp . (Gp))

where Xp; p1 are the local variables from Sp; || Sp1, i.e.,
XDs,Pl L {gDmrDs,SDs,LSDs[i] | 1 € LN} U {ﬁpl,rpl,sm,Mpl[n],F[n] | n € PN} and
Gps,p1 1s defined as

dey, €254 Opa (e,€1,€2) AN (Hps A Wps) [e1/€] A (Hpt A Wpy) [e2/ €]

This can be rewritten to following machine specification of Sy: Sy = (B, Hy) where Hy £

I, A\UTy A Ly and By, I, Ty and L, are as follows:

1. Basis B; = ((Iny, Outy), (Vz, X3))

In, £ {Rreq, Wreq}

Outy, = {Rres, Wres},

v2 é ®7

X2 é {gDmrDs,SDs,LSDs[Z] | (S LN}

U{lp1,tp1,8p1, Mpi[n],F[n] | n € PN}
Let

Uis = (Ips,tps,sps, LSps[1], ..., LSp,[Y],
gpl,rpl,Spl,Mpl[] Mpl[Y],F[l],,F[Y]))

\I}1/2 é (K/st rlev S/st LS [] [Y]v
533171’3317533171\/[331[]y M%l[y]vF/[l]v---vF/[Y])

2. Initial states:

I = lps=0ALlpr=0A A LSpsil=iA A (Mpi[i] = dflt AF[i] = 1)

1€ELN 1€EPN

109

Stable Storage Example

3. Transitions:

Let
¢ & ADCDMp [Flep]))
the address- and crc-decoded contents
m é LSDs[rDs]
physical sector
dd = CE(AE(rps,sps))
address- and crc-encoded contents
T, =
2.1 (6 = Rreq7(n) A gps =0A Epl =0A \I}1/2: \I}12 [1, n/KDS,I’DS])

72,2

72,3

72,4

72,5

72,6

T2,7

72,8

72,0

The user requests the contents of logical sector n.

vV (6 = i/\ KDS =1A gpl =0A \111/2: \1112 [2, 1,m/£D5,£p1,I’p1])

The detection layer requests the to logical sector rps; mapped physical sector.

vV (6 == i/\ KDS =2A gpl =1A \111/2: \1112 [3,0,0/£D5,SD5,£]D1])

The physical disk responds with the contents of the requested sector and because
of Wpy; and Wp, they are correct.

V (€=Rres!(sp.) A lps =3 A lpy =0 A Uyh= W15 [0/(p,])

The detection layer responds with the contents of the user requested sector.

V (e=Wreq?(n,d) Alp, =0 A lpy =0 A U= W5 [6,n,d/(p,, s, 5ps])
The user requests that d should be written onto logical sector n.

Vo (e=iAlpy=6ALpy=0AWh= U, [7,2,m,dd/lp,, lp1,1p1,5p1]))

The detection requests that dd should be written onto physical sector m.

Vo (e=iAlpy=TAlpy =2AWhy= U1, [8,0,5p1/Cps. (p1, Mp1 [Flrpa]]])
The physical disk responds with a signal to the detection layer that requested
write is performed.

V (e=Wresl Alp, =8N lpy = 0AW5= U1, [0/(p,])

The detection layer responds with a signal to the user that the requested write

is performed.

V stuty

Figure 4.4 illustrates the transitions of the relative composed system Sps |W| Spi.
Due to BA Opa (€, €1, €2) the communications events with the physical disk are trans-
formed into 1 events and due to Wp, and Wp; no faults occur and no errors are
detected.

4. Liveness condition:

The liveness condition expresses that all non-stutter transitions are strongly fair. Let

SFps ={m.i |t € {l,...,8}} then

Ly

= /\ (OO En(r) — 0OT)

TESF2

110

4.5 Third Step: Fail-Stop Detection Layer

Figure 4.4: Transitions of the relative composed system.

Xp are the local variables from Sp, i.e., Xp = {{p,rp,sp, Mp[n],F[n] | n € PN} and Gp

is defined as
Ip AOTp ALp A Wp
Rule 3 will be used to prove
= (3X,. (Gy)) = (IXp . (Gp)).

This means one has to prove (a), (b) and (c) below, for f the refinement mapping from S,

to Sp, defined as: f = fo,., frp, fop, fMp[n]s fEppa) (0 € SN). The refinement mappings are
defined as:

fep

Zf KDS =0 then KDS
KDS =1 then KDS
KDS =2 then gps—l
KDS =3 then £D5—2
KDS =6 then £D5—4
KDS =7 then KDS -5
KDS =8 then £D5—6

111

Stable Storage Example

fer = rps

fsp = SDs

e = AD(CD(Mp: [LS[n]]))
fepm = Fp[LS[h]]

(@) S = (1) = (Ip Ap) [F/Xp]
(b) Sab=Ty— (Tp A((pAp)V stutp)) [f/Xp]
() S:FLp {f/XP}

(a) Proof 11

I,
= % Def. 1y

(ps =0ALp1 =0 A Nigpn LSps[i] = 0 A Niepn(Mpi[i] = df 1t A F[1] = 1)
— % Def. f, p)

(lp = 0 A Asepn(Mpli] = dfit NF[i] = i) Ap) | [/Xp]
= % Def Ip

(Ip A p) [F/Xp]

(b) Proof 12
Since Tp is of the form stutp V V. (e = a; Atrans,) then Tp A ((p A p') Vstutp) is
equal to stutp V V. (e =a; Atrans, ApAp').

2.1
= (e=Rreq?(n) Alp, =0Alp; =0ATh= T, [1,n/lp,,1p,])
— (e = Rreq?(n) Alp=0Ap AP ANV =T, [l,n/ﬁp,rp]) [f/Xp}
= (tpaApAY) [f/XP]
The user read request at the second level corresponds to the user read request at
the first level.
72,2
= (e=iAlp=1Alpy =0AWh= Uy (2, 1,m/lp,, lp1,1p1])
= (e=inWi=uy)[f/Xp]
— stutp {f/Xp}
The read request to the physical disk at the second level corresponds to stutter
step of the physical disk at the first level.
72,3
= (e=iAlp,=2Alpy = 1A Wh= U1, [3,¢,0/(ps,sps, Lp1])
= (e=inwi=0,)[f/Xp]
— stutp {f/Xp}
The read response of the physical disk at the second level corresponds to the
stutter step of the physical disk at the first level.

112

4.5 Third Step: Fail-Stop Detection Layer

72,4
= (e =Rres!(sp.) A lp, =3 A lpy =0 A Uyh= 1, [0/(p,])
— (e =Rres!(Mp[F[tp]) A lp = L Ap A Y AW =01 [0/0p]) [F/Xp]
= (P2 ApAYD) [f/XP]
The read response of the detection layer at the second level corresponds to the
read response of the physical disk at the first level.

72,5

= ¢e= Wreq?(n,d) A ({ps,lp1)=(0,0)
/\\IIIIQZ \IIIQ [67 n7 d/£DS7rDS7 SDS]

— €= Wreq?(n,d)Alp=0ApAYp

AV =V, [2,n,d/lp,rp,sp] {f/XP}
= (paApAYD) [f/XP]
The user write request at the second level corresponds to the user write request
at the first level.
72,6
== (6 == i/\ KDS =6A Epl =0A \I}1/2: \I}12 [7,2,m,dd/ﬁps,ﬁpl,rpl,sm])
= (e=inWi=uy)[f/Xp]
— stutp {f/Xp}
The write request to the physical disk at the second level corresponds to the
stutter step of the physical disk at the first level.
T2,7
= (GZiA£D5:7/\£P1:2A\I}1/2: \I}12[8,0/£D5,£P1])
= (e=inWi=uy)[f/Xp]
— stutp {f/Xp}
The write response of the physical disk at the second level corresponds to the
stutter step of the physical disk at the first level.
72,8
= (e = Wres! Alp, =8N lp; = 0N Uh= Uy [O/KDS])
— (e=Wresl Alp =2ApAp AWi= W, [0,5p/lp, Mp[F[rp]]]) [F/Xp]
= (TPaApPAYD) [f/XP]
The write response of the detection layer at the second level corresponds to the
write response of the physical disk at the first level.

stut, — stutp {f/Xp}

(c) Let SFp ={7p; |1 € {1,2,3,4}} then

Lp = /\ (OO En(r) — 0OT)

TESFP

113

Stable Storage Example

. Let SFy ={m,|i€{l,...,8}} then

[, £ /\ (OO En(r) — OOT).

TESF2

Then the following holds
Syl Ly — Lp [f/Xp]
So
Sy b= Lp [F/Xp]

holds.

4.6 Fourth Step: Error Recovery Layer

4.6.1 Introduction

In this step the error recovery layer is specified. This is the layer that tries to correct the
errors detected by the detection layer. The technique used for error recovery is that of
the mirrored disk concept [LA90]. This mirror disk concept is as follows: instead of one
physical disk and corresponding detection layer N physical disks with identical contents
and N corresponding detection layers (N > 1) are maintained. In case some information
can no longer be retrieved from a disk, the information is still available on another one.
The user requests some contents from the error recovery layer. The error recovery layer
selects a disk from which it can retrieve these contents. Then it requests these contents
from the corresponding detection layer of that disk. The detection layer requests then the
contents from the physical disk and checks whether the contents are correct. The detection
layer then signals if the contents are correct and if not it will signal which error has it has
detected. If the contents are correct the error recovery layer will send them to the user
and is then ready for new requests from the user. As seen before the detection layer can
detect two kinds of errors: (1) errors due to disk surface damage fault and (2) errors due
to disk control system faults. The error recovery layer will react as follows on these errors:

ad (1) First, the error recovery layer selects another disk from which it can retrieve the
requested contents and when the corresponding detection layer signals that the con-
tents are correct, the error recovery layer will write these contents to another location
of the affected disk. In order to retrieve these contents from this new location log-
ical locations are introduced. When contents are stored at a new physical location
the logical location will be pointing to this new location. So actually the data are
retrieved from their logical location. Subsequently the error recovery layer will send
the contents to the user and is ready to receive new requests from the user. When
the detection-layer of the second disk also reports an error the error recovery layer
will react as described in ad(1) and ad(2) depending on the kind of error detected.

114

4.6 Fourth Step: Error Recovery Layer

ad (2) First, the error recovery layer disables the faulty disk and then it will select another
disk from which it can retrieve the requested contents and when the corresponding
detection layer signals that the contents are correct the error recovery layer will them
to the user. When the detection-layer of the second disk also reports an error the
error recovery layer will react as described in ad(1) and ad(2) depending on the kind
of error detected.

This error recovery process only works if the following assumptions are made:

o In order to store the contents on a new physical location enough spare locations
should be available on an affected disk.

e Furthermore, the following must always hold in order to recover the ad(1)-type of
error on a disk or to retrieve the contents from a logical location: for all logical
locations there exists at least one non-disabled physical disk that has correct data
stored on that logical location. This condition guarantees that always, each logical
location contains correct data (on which disk we don’t know, but it is a non-disabled
one and it is not the disk whose type 1 error has to be repaired).

4.6.2 Specification of the Recovery Layer

The error recovery layer acts as interface between the user and the N detection layers
of the N physical disks. The user requests with a Rreq(n) event the contents of some
logical sector n. The error recovery layer requests these contents, on receipt of this event, by
issuing a Rreqd,(n) event to one of the non-disabled detection layers. This detection layer
responds with an Rresd;(d) event. As seen in the third step there are three possibilities:

1. If this event delivers a message saying that the, to this detection layer corresponding,
physical disk has been affected by a disk control system fault then this detection layer
will be disabled and the error-recovery layer will send a Rreqd;(n) event to another
non-disabled detection layer.

2. If this event delivers a message that the, to this detection layer corresponding, phys-
ical disk has been affected by a disk surface damage fault then the error recovery
layer requests the contents with a Rreqd;(n) from another non-disabled detection
layer until it finds a detection layer that responds with the correct contents. Then
the error recovery layer can “repair” the physical disks that has been affected by a
disk surface damage fault at the same logical sector by generating a Wreqd, write
request event with the correct data to the same logical sector number of the corre-
sponding detection layers of those physical disks. The detections layers will respond
with a Wresd indicating that the affected physical disks has been repaired. The
design decision we make is that the detection layer has to find the spare physical
sector to which these contents can be written. After that, the error recovery layer
responds with a Rres(c¢) event to deliver the requested contents.

3. If this event delivers normal data the error recovery layer will respond with a Rres(c)
event delivering the requested contents.

115

Stable Storage Example

The user requests with a Wreq(n, d) event that d has to be written onto a logical sector n.
The error recovery layer requests with a Wreqd(n, d) event to all non-disabled detection
layers that d has to written on logical sector n to ensure that the corresponding physical
disks have identical contents on their logical sectors. The detection layers then respond to
these requests with a Wresd event. The error recovery layer then responds with a Wres
event to the user that the write operation has been performed.

The stable storage layer is described by the following specification: Sgr = (Bgr, Hg)

A

where Hr = Iz AUTR A Lg and Bpg, Ig, Tk and Lg are as follows:
1. Basis BR = ((InR,OutR), (VR,XR))

Ingp £ {Rreq, Wreq, Rresd;, Wresd; | i € Nd},
Outg = {Rres, Wres, Rreqd,, Wreqd, | i € Nd},
Ve = 0,

XR é {KR,I’R,SR,JER,G,A,W}

e Rreq?(n): the request from the user to read logical sector n.

Rres!(c): the response of the error recovery layer to the previous request where
¢ are the crc-decoded and address-decoded contents of the requested logical
sector.

Wreq?(n,d): user request to write information item d onto logical sector n.

o Wres!: write response to the user that the requested information is written.

Rreqd!;(n): the read request from the error recovery layer towards detection
layer 1.

Rresd?;(c¢): the read response from detection layer i to the previous request
where ¢ are the contents of the requested logical sector.

Wreqd!i(n,d): the write request from the error recovery layer to detection layer
¢ to write information item d onto logical sector n.

Wresd?;: response from detection layer ¢ to the error recovery layer that the
requested information has been written.

lg: local variable indicating the status of the error recovery layer; /fp = 0: the
error recovery layer is waiting for a request, g = 1: the user has issued a
read request or the detection layer responded to a read request with affected
data, fr = 2: the error recovery layer has issued a read request, {r = 3: the
detection responded to a read request with correct data or all affected disk are
repaired, {r = 4: the the detection responded to a read request with correct
data and there are affected disks, {r = 5: the error recovery layer has issued a
write request to repair an affected disk and there are still affected disks to be
repaired, {r = 6: the error recovery layer has issued a write request to repair an
affected disk and there are no more affected disks, {/r = 7: the user has issued
a write request, {r = 8: the error recovery layer has issued a write request and
there are still to be written disks, /g = 9: the error recovery layer has issued a
write request and there are no more to be written disks, /g = 10: the detection
layer of the last to be written disk responded to a write request.

116

4.6 Fourth Step: Error Recovery Layer

rgr: local variable indicating the requested sector.

sgr: local variable indicating the requested contents or the requested contents to
be written.

tr: local variable indicating the index of the disk to which a request has been
issued.

G: local variable indicating the set of indexes of non-disabled disks.

A: local variable indicating the set of indexes of by control system faults affected

disks.

W: local variable indicating the set of indexes on which data should be written.

Let U3 = (g, tR, SR, tr, G, A, W) and W5 £ (£, 1%, sh, tr, G', A, W),

2. Initial States:

I =lrg=0AG={l,....,. N} AA =1

The error recovery layer is waiting for requests from the user and all the N disks are

non-disabled.

3. Transitions:

Let

A
¢y = address error
address error message

A
Cy = Crc error
Crc error message

Goodl £ i=tpAdc#cy Nde# ca NA =10
data is not affected by faults and the number of affected disks is zero

Good2 = i =tpAde# ey ANde# ey NA# ()

data is not affected by faults and the number of affected disks is non-zero
Aer £ i=tpAde=¢

data is affected by control system fault

Cer 2 i=trAdc=cy

data is affected by disk surface damage

G- =G\ {}}

set of good disks minus ¢
A2 AN (i)

set of affected disks minus ¢
At 2 AU

set of affected disks plus 2
W AW {1}

set of to be written disks minus ¢

117

Stable Storage Example

Cl=icGAigA

disk 7 is good and not affected

C2EicANA= £

disk 7 is affected and the number of affected disks is greater than 1
C3Z£icANA" =0

disk ¢ is the only affected disk

C4£2iecWAW™ £0

disk ¢ should be written onto and the number of to be written disks is greater
than 1

Cs5 Zie WAW™ =0
disk ¢ is the only disk to be written onto

Tp £

TR,1

TR,2

TR,3

TR,4

TR,5

TR,6

TR,7

TR,8

TR,9

TR,10

(¢ = Rreq?(n) A lg = 0 A Wh= Wy [1,n/lg,15])
The user requests the contents of logical sector n.

V (e=Rreqdi(tp) A lp = 1A CLAWE=W5[2,i/lp, ty])
The error recovery layer requests the contents of logical sector rp from an en-
abled detection layer.

V (e =Rresd?i(cd) A lg = 2 A Goodl A Wy= U3 [3, cd/lp,sp])

The detection layer responds with the contents of the requested sector and the
detection layer has detected no error in them.

V (e =Rresd?i(cd) Al =2\ Aer AN W= W5[1,G™/(5,C])

The detection layer responds with the contents of the requested sector and the
detection layer has detected an control system error, so this detection layer will

be disabled.
V (e =Rresd?i(cd) Alg =2 A C.er N Wh= U5 [1, A%/l A])

The detection layer responds with the contents of the requested sector and the
detection layer detects an disk surface damage error, so disk ¢ has to be repaired.

V (e =Rresd?i(cd) A lg = 2 A Good2 A W= Ws[4, cd/lp,sp])

A correct disk has been found so the error recovery layer can repair the affected

disks.
V (€= Wreqd!i(tp,sp) A lp = 4 A C2 N W= U5 [5,i, A~ /lp, tr, A])
An affected disk is being repaired and there are still unrepaired disk.
V (e=Wresd? Alp=5NAi=tpAWs=s[4/ls])
The affected disk is repaired.
V (€= Wreqdli(tp,sp) A lg = 4 A C3 N Wh= U5 [6,A7 /. A])
An affected disk is being repaired and there are no unrepaired disks.
V (€= Wresd? Alp =6 Ai=tpAWs=Ws[3/(5])

All affected disk are repaired, so the user requested contents can be sent.

118

4.6 Fourth Step: Error Recovery Layer

tru V(€= Rres!(sp) Alp =3 A Wh=Ws[0/(r])
The error recovery layer responds with the requested contents.
TR12 V (e = Wreq?(n,d) NMlp =0A V5= U3[7,n,d, G/ER,I’R,SR,W])
The user requests that d should be written onto logical sector n.
TR,13 vV (6 = Wreqd!i(rR, SR) A KR =7TANC4AAN Pt = \113 [8, Z',W_/KR,JER,W])

The requested information is being written to a disk and there are still disks
which haven’t written them.

TR,14 vV (GZWI'eSd?Z'/\gRZS/\Z':tR/\\I/é: \113[7/513])
The requested information is written onto disk 1.

TR,15 vV (6 = Wreqd!i(rR, SR) A KR =TA 05 A \I// = \Ilg [9, Z',W_/KR,JER,W])
The requested information is being written to a disk and there are no disks
which haven’t written them.

TR,16 V (c:Wresd?i/\KR:9/\i:tR/\\I/§,: \113[10/513])

The requested information is written onto all disks.

TR,17 vV (GZWI'eS!/\nglo/\\I//:\Ilg [O/KR])
The error recovery layer responds with a signal to the user that requested write
is performed.

TR,0 vV stutR
These transitions are illustrated in figure 4.5

4. Liveness Condition:
The liveness condition expresses that the communication transitions are strongly fair.

Let SFp ={7pi |t € {l,...,17}} then

Lp £ /\ (OO En(r) — 0OT)

TESFR

4.6.3 Specification of the Detection Layer

The detection layer is nearly the same as the fail-stop detection layer the only difference is
that when error due to a disk surface fault has been detected the detection layer waits for
the corrective action to be undertaken, i.e., a write request of the correct data to the to
be repaired logical sector. It therefore selects a spare physical sector and maps the logical
sector to it. It then issues a write request to this new physical sector. The physical disk
then responds to this write request. The detection layer responds that the disk has been
repaired.

The detection layer is described more formally by the following specification: Sp =
(Bp,Hp) where Hp £ Ip AOTpH A Lp and Bp, Ip, Tp and Lp are as follows:

119

Stable Storage Example

ER = 10 Wresd?;
1

Wreqd!;(rg.sg

15
lr=717 Wreqd!;(rr,sg) P
rp=n [R =
14 =9
sp=d Wresd?; tr ?

Wreq?(n,d)

Rres!(sg)

Wresd?;

Wreqd!;(rp,sp
resd?;(cd)

Wreqd!;(rg,s
z(R R) ER — 5

9
Rresd?;(cd) lr=14 %7

SR = cd Wresd?;

Figure 4.5: Transitions of the error recovery layer.

1. Basis Bp = ((Inp, Outp), (Vp,Xp))

%
—
uy)
|
-~

Inp = {Rreqd, Wreqd, Rresp, Wresp},
Outp = {Rresd, Wresd, Rreqp, Wreqp},
Vp = 0,

Xp £ {Ip,rp,sp,LSp[i]|i € LN}

where LN is the set of logical sector numbers: ([1,..,Y]). Let Lg be the set of data
items that the user wants to store on or retrieve from the physical disk and Phy be
the set information items that can be stored on or retrieved from the physical disk
(Note: an item from Phy is an crc-encoded and address-encoded item of Lg.) For
n &€ LN,c,de Lg, m & PN and cd,dd € Phy:

e Rreqd?(n): the request from the user to read logical sector n.

e Rresd!(c): the response of the detection layer to the previous request where ¢
are the crc-decoded and address-decoded contents of the requested logical sector

n.

e Wreqd?(n,d): write information item d onto logical sector n.

e Wresd!: response that previous write has been performed.

120

4.6 Fourth Step: Error Recovery Layer

e Rregp!(m): the request from the detection layer to read physical sector m.

Rresp?(cd): the response of the physical disk to the previous request where ¢
are the crc-encoded and address-encoded contents of requested physical.

Wreqp!(m,dd): write information item dd onto physical sector m.

Wresp?: response that previous write has been performed.

lp: local variable indicating the status of the detection layer; /p = 0: the
detection layer is waiting for a request, /p = 1: the user has issued a read
request, {p = 2: the detection layer has issued a read request, /p = 3: the
physical has responded to a read request with correct data, /p = 4: the physical
disk has responded to a read request with incorrect data, {p = 5: the detection
layer has responded to a read request with an address error message (stop
status), {p = 6: the user has issued a write request, {p = 7: the detection layer
has issued a write request, /p = 8: the physical disk has responded to a write
request, /p = 9: the detection layer has responded to a read request with a crc
error message (can be repaired), /p = 9: the user has issued a write request in
order to repair the corresponding disk.

e rp: local variable indicating the requested sector.
o sp: local variable indicating the requested information or the data to be written.

o LSp[i]: the physical sector mapped to logical sector

Let \112 é (KD,I’D,SD,LSDU],...,LSD[Y]) and
Wy = ({1, sp, LSH[1], .., LSp[Y]).

2. Initial states:

Ip =(p=0 A\ LSp[i]=i
t€ELN

3. Transitions:
The same detection mechanism as the fail-stop detection layer is used. Let spare be

121

Stable Storage Example

a function that returns a spare physical sector number. Let

Aer

Tp

™D,1

TD,2

TD,3

TD.4

™D,

D6

™D,7

C.er

dd

1

C2

Good = CCO(ed) N AC(CD(ed),LSp[rp])

data has not been affected by faults

CC(ed) N =AC(CD(ed),LSp[rp))

data has been affected by a control system fault
-CC(ed)

data has been affected by a disk surface damage
AD(CD(cd))

the address- and crc-decoded contents

LSD[I’D]

physical sector
CE(AE(I’D, SD))

address- and crc-encoded contents

[le-

[le-

[le-

[le-

[le-

[le-

spare
spare physical sector

Iis

address error
address error message

Iis

Crc error
Crc error message

A

(¢ = Rreqd?(n) A lp =0 A Ws= W, [1,n/lp,1p])

The user requests the contents of logical sector n.
V (e=Rreqp!(m) A lp = 1 A Wy= W, [2/(p])

The detection layer requests the to logical sector rp mapped physical sector.
\% (e = Rresp?(cd) NMp = 2 AN Good N Why= W, [3,c/€D,sD])

The physical disk responds with the contents of the requested sector and the
detection layer detects no error in them.

\% (e = Rresp?(cd) NMlp =2 N Acer N UyH= U, [4,c1/€D,sD])

The physical disk responds with the contents of the requested sector and the
detection layer detects an control system error.

\% (e = Rresp?(cd) NMp =2 N C.er N UhH= U, [4,c2/€D,sD])

The physical disk responds with the contents of the requested sector and the
detection layer detects an disk surface damage error.

vV (e=Rresd!(sp) Alp =3 A Ws=0,[0/(p])
The detection layer responds with the contents of the user requested sector.
V (e=Rresd!(sp) Alp =4 Asp = AWs= 0, [5/(p])

In case of an address error the detection layer responds with the corresponding
error message and then stops.

122

4.6 Fourth Step: Error Recovery Layer

TD.,8 vV (c:Rresd!(sD)/\ED :4/\SD:CQ/\\I//:\I/2 [9/£D])
The detection layer responds with an error message and waits for the corrective
action.

Do V (e = Wreqd?(n,d) NMp =9 A Uy=Uy[10,n,d,2/lp,rp,sp, LSD[n]])
The user requests that d should be written on a spare physical sector.
iV (€= Wreqp!(m,dd) Alp =10 A Wy= U, [7/(p])
The detection layer requests that dd should be written onto physical sector m.
™ Vv (e = Wreqd?(n,d) NMp = 0A Uh= U, [6,n,d/€D,rD,sD])
The user requests that d should be written onto logical sector n.
iV (= Wreqp!(m,dd) Alp =6 AWy=W,[7/(p])
The detection requests that dd should be written onto physical sector m.
D13 \% (c:Wresp!/\ED =T7TAU,= U, [S/ED])
The physical disk responds with a signal to the detection layer that requested
write is performed.
TD,14 vV (GZWI'eSd!/\KDZS/\\I//:\IIQ [O/KD])
The detection layer responds with a signal to the user that requested write is

performed.

TD,0 vV stutD
These transitions are illustrated in figure 4.6

4. Liveness conditions:
The liveness condition expresses that the communication transitions are strongly fair.

Let SFp = {rp, |1 € {1,...,14}} then

ILp = /\ (OO En(r) — OOT)

TESFD

4.6.4 Requirement Wpg

The error recovery requirement should express that for all logical locations there exists
at least one non-disabled disk that has correct data stored on that logical location and
enough spare locations should be available on an affected disk.

Wpr =
O(Awern(Fi € G.CC{(Mp[LSpi[n]]) A ACH(C Di(Mpi[LSpilnl], LSpiln]))))
O(Vi € G.3m € PN;.m = spare;)

This corresponds to the following machine: Let
ps = (Anern(3i € G.CCMp[LSpiln]]) A ACH{CDi(Mp[LSpiln]], LSpi[n]))))
AP € G.dm € PN,.m = spare;)
ps = (Awern(Fi € GLOCMp[LSp;[n]]) A ACH(CDi(Mip,[LSpi[n]], LSpi[n))))
A(Yi € G'.3m € PN,.m = spare;)

>3

then Wg is equal to the machine p3 A U((ps A ps) V stuts).

123

Stable Storage Example

Rresp?(cd)

3

. Rreqgp!(m) m . Rresp?(cd)

Wreqd?(n,d) Rresp?(cd)

Wresd!

Wreqp?(m,dd)

14
F: 13
Wresp?

Figure 4.6: Transitions of the detection layer.

4.6.5 ||, (Spi || Spi) || Sk relatively refines Sp; || Sp

First we construct the system S; = I, (Spi || Spi) || Sg then according to theorem 8 Ss
relatively refines Sy (=Sps || Sp1) with respect to (Wg, true) iff the following holds:

O(Bs) = 9(Bz) and
E(3X5.(G3)) = (IX5. (Ga))

where X, are the local variables from Sps || Sp1, i.e.,
X, = {lpsstps,sps, LSps[i] | © € LN} U {lpy,tp1,sp1, Mpi[n],Fln] | n € PN} and Gy is
defined as

dey, €254 Opa (e,€1,€2) AN (Hps A Wps) [e1/€] A (Hpt A Wpy) [e2/ €]

This can be rewritten to following machine specification of Sy: Sy = (B, Hy) where Hy =
I, ATy ALy and B, I, Ty and Ly are defined in section 4.5. X3 are the local variables
fI’OHl 83, i.e., X3 é (U;yzl{gpj,rpj,SDj,LSDj[i] | Z - LN} U {gp]‘,rp]‘,Sp]‘,Mp]‘[n],F]‘[n] |
n€ PNYU{lgr,rr,sp,tr, G, A, W}, Let € = €14,..., €18, €215 .., €an, €3 and let BA =
By, ..., By, BA, ..., Bfy, B then Gj is defined as

(Fe. ©pa (e,)AL (Hpy) [eri/e) A (Hpj) [e25/e]) AR les/e]) A Wr

124

4.6 Fourth Step: Error Recovery Layer

The (3. Gpa (e, (AL (Hpy) [er;/e] A

(Hp;) [€2,/€]) AN Hr [e3/€]) part can be rewritten to

following machine specification S5 = (Bs, Hs) where Hs £ I, A0OT5 A Ly and Bs, I, T
and Lj are as follows:

1. Basis B3 = ((Iﬂg, Outg), (V3,X3))

Inj £ {Rreq, Wreq}

Outs = {Rres, Wres},

Vs = 0,

X3 £ as above

Let

W5 = ((lpj,rpjsspj, LSp;[1],. .., LSp,[Y],
Upiytpjyspi, Mpj[1], ..., Mp[Y] Fi[1, .
KR, TR,SR, tR, G, A, W)

\Ilé é ((K/DjvrlevleijS/Dj[l]v'"7LS/Dj

! / / /
ngverv SP]‘? MPj[l]v ceey
! / / ! 1 W/
£R7rR7SR7tR7G 7A7)

2. Initial states:

N
5 = A (Ip; Alpj) Alg

=1

3. Transitions:

Let

A
¢y = address error
address error message

A
Cy = Crc error
Crc error message

Goodl = i=tpANdc#ciNde# e NA =)

My [V, FALL],

Y)=,

Y)21 N

data is not affected by faults and the number of affected disks is zero

Good?2 = i=tpAdc#cy Nde# ca NA £

data is not affected by faults and the number of affected disks is non-zero

Aer £ i=tpAde=¢
data is affected by control system fault

Cer £ i=trAdc=cy
data is affected by disk surface damage

G~ = G\ {i}

set of good disks minus ¢

125

Stable Storage Example

A2 AN (i)

set of affected disks minus ¢

At 2 AU

set of affected disks plus ¢

W AW {1}

set of to be written disks minus 2

ClEZicGAiIgA

disk 7 is good and not affected

C2EicANA= £

disk 7 is affected and the number of affected disks is greater than 1
C32ieANAT =0

disk 7 is the only affected disk

C4=icWAW £

disk ¢ should be written onto and the number of to be written disks is greater
than 1

Ch £icWAW- =0

disk ¢ is the only disk to be written onto

q = ((pi.Lpi, (R)
status of detection layer ¢ and physical disk ¢ and the error recovery layer.

T, &

731

732

73,3

T34

735

736

(¢ = Rreq?(n) Alg = 0 A Wh=Ws[1,n/lp,t5])
The user requests the contents of logical sector n.

vV (6 = i/\ KR =1AC1LA Pt = \113 [Q,i, 17rR/£R7tR7£Di7rDi])
The error recovery layer requests the contents of logical sector rp from an en-
abled detection layer ¢.

Vv (6 =iAqg=(1,0,2) ANU3= V32, 17m/£Di7£Pi7rPi])
The detection layer ¢ requests the to logical sector rp; mapped physical sector
from physical disk .

vV (6 == i/\ q = (2, 1,2) A GOOdi A \I// == \113 [3,0,0/£D2',SD2',£]D2'])
The physical disk 7 responds with the contents of the requested sector and the
detection layer ¢ detects no error in them.

vV (6 == 1 A q = (2, 1, 2) A A.GTZ' A \I// == \113 [4, Cq1, O/KDZ', SDiagPi])
The physical disk 7 responds with the contents of the requested sector and the
detection layer ¢ detects a control system error.

vV (6 == i/\ q = (2, 1,2) A C.GTZ' A \I// == \112 [470270/6DiasDi7£Pi])
The physical disk 7 responds with the contents of the requested sector and the
detection layer ¢ detects a disk surface damage error.

126

4.6 Fourth Step: Error Recovery Layer

73,7

73,8

73,9

73,10

73,11

73,12

73,13

73,14

73,15

73,16

7317

73,18

73,19

73,20

73,21

vV (6 = i/\ q = (3,0,2) A Goodl A \I// = \113 [0,3,SDZ'/£D¢,£R,SR])
The detection layer 7 responds with the contents of the requested sector and the
detection layer 7 has detected no error in them.

v (e —iAqg=(4,0,2) A Aer; N W= V5[5, 1, G /lp;, IR, G])
The detection layer 7 responds with the contents of the requested sector and the
detection layer ¢ has detected an control system error, so this detection layer

will be disabled.
V (e=iAq=(4,0,2) A Ceri A Wh= U5[9,1,A*/(p;, (5, A])
The detection layer 7 responds with the contents of the requested sector and the

detection layer ¢ detects an disk surface damage error, so physical disk ¢ has to
be repaired.

vV (6 = i/\ q = (3,0,2) A Good2 N Pt = \113 [0,4,SDZ'/£D¢,£R,SR])
A correct disk ¢ has been found so the error recovery layer can repair the affected
disks.
V o (e=1Aqg=(9,0,4) AC2
/\\I// == \113 [10, TR,SR, 4, 5, i, A_/KDZ', T'DiySDi, LSDZ', KR, tR, A])
An affected disk ¢ is being repaired and there are still unrepaired disk.
vV (6 =1 A q = (10, 0, 5) A Pt = \113 [7, 2, my, ddi/gpi,gpi,rpi, Spi])
An affected disk ¢ is being repaired and there are still unrepaired disk.
v (6 =iNg=(7,2,5) ANUs= V3 [8707SPi/gDiagPiaMPi[FPi[rPi]]])
An affected disk ¢ is being repaired and there are still unrepaired disk.
V (e=iAq=(805)Ai=ty A Ws=U5[0,4/(p; (r])
The affected disk is repaired.
V o (e=1Aqg=(9,0,4) AC3
N s [10, 6, TR,SR, Ti, A_/KDZ', T'Diy SDi, LSDZ', KR, A])
An affected disk is being repaired and there are no further unrepaired disks.
vV (6 =1 A q = (10, 0, 6) A Pt = \113 [7, 2, my, ddi/gpi,gpi,rpi, Spi])
An affected disk ¢ is being repaired and there are no further unrepaired disks.
v (6 =iNg=(7,2,6) \Us= Uy [8707SPi/gDiagPiaMPi[FPi[rPi]]])
An affected disk ¢ is being repaired and there are no further unrepaired disks.
V (e=iAq=1(80,6)ni=tpAWs=0;[0,3/(p; (r])
All affected disk are repaired, so the user requested contents can be sent.
V (e=Rres!(sp) Aln =3 N Wh=W5(0/(x])
The error recovery layer responds with the requested contents.
V (e=Wreq?(n,d) A lp = 0 A Wh=Ws[7,n,d,G/lp, 1555, W])
The user requests that d should be written onto logical sector n.
V (e=iA¢g=(0,0,7)ANC4
AUE = Ua [8, 6,TR, SR, i, W_/KR, KDZ', r'Di, Sdis bR, W])
The requested information is being written to a disk and there are still unwritten

disks.

127

Stable Storage Example

73,22 vV (6 = i/\ q = (6,0,8) A \I// = \113 [7,2,mi,ddi/gpi,gpi,rpi,Spi])

The requested information is being written to a disk and there are still unwritten

disks.
T3723 AV (6 = i/\ q = (7,2,8) A \I// = \113 [8,0,Spi/gpi,gpi,Mpi[Fpi[I’pi]]])

The requested information is being written to a disk and there are still unwritten

disks.
a2V (€=iAq=(8,0,8) Ai =t AWs=Us[0,7/lp;, (r])

The requested information is written onto disk 1.
73,25 V (e=iAqg=1(0,0,7)AC5H
AL = \113 [9, 6, TR, SR, i, W_/KR, KDZ', T'Dis SDis tR, W])
The requested information is being written to a disk and there are no further
unwritten disks.

73,26 vV (6 =1 A q = (6, 0, 9) A \I// = \113 [7, 2, my, ddi/gpi,gpi,rpi, Spi])
The requested information is being written to a disk and there are no further
unwritten disks.

7327 vV (6 = i/\ q = (7,2,9) A \I// = \113 [8,0,Spi/gpi,gpi,Mpi[Fpi[I’pi]]])

The requested information is being written to a disk and there are no further
unwritten disks.

maas v (€=iAq=(8,0,9) Ai=tpAWs=Ws[0,10/p; (x])

The requested information is written onto all disks.

73,29 vV (GZWI'ES!/\KR = 10/\\11/:\113 [O/KR])

The error recovery layer responds with a signal to the user that requested write
is performed.

73,0 vV stut3

These transitions are illustrated in figure 4.7 with the transitions for the physical
disk omitted.

4. Liveness Condition:
The liveness condition expresses that all non-stuttering transitions are strongly fair.

Let SF3 ={ms,; |7 € {l,...,29}} then

[, = /\ (OO En(r) — 0OT)

TESFg

Rule 3 will be used to prove

E (3Xs5.(Gs3)) = (FX3. (Ga)).

128

4.6 Fourth Step: Error Recovery Layer

Wreq?(n,d)

Rres!(sg)

i lp=5
: 4 tp =1

Figure 4.7: Transitions of the final implementation of stable storage.

This means one has to prove (a), (b) and (c) below, for f the refinement mapping from

S3 to Sy, defined as: f = fstv fFst fSst fLSDS[m]7 s 7fLSDs[Y]7 ffPlvferfSPlvfMpl[nb fFPl[n]
(n € SN, m € LN). The refinement mappings are defined as:

ffPl

Zf KR =0 then KR
KR =1 then KR —1
KRZQ/\KPZ':O then KR—Q
KRZQ/\gpizl then KR—l

KR:?) then KR—?)
KR:4 then KR—4
KR:5 then KR—5
KR:6 then KR—6
KR: 7 then KR—'?
KRZS/\KPZ':O then KR—S
KRZS/\KPZ': then KR—6
ngg/\gpi: then KR—g
ngg/\gpiZQ then KR—'?
KR: 10 then ER—l()

129

Stable Storage Example

flocZDS

Zf KR =0 then KR
KR =1 then KR
KRZQ/\KPZ':O then KR—l
KRZQ/\gpizl then KR—l

KR =3 then KR

KR:4 then KR—Q
KR:5 then KR—?)
KR =6 then KR —4
KR =7 then KR —1
KR =8 then KR —1
ngg then KR—Q
KR: 10 then KR—Q

For i € G A ¢ ¢ A (physical ¢ is not affected by any fault)

fI‘pl é rP’L
A
fSpl = SPZ
A
IMpy] N Mp;[n]
fepm = Friln]
A
fI“DS = I'p;
fSDS é SDq
Juspam] = LSpi[m)]

(@) SsN Hist(W) b= (Is A ps) = (1) [F/Xe]
(b) Ssn Hist(Wr) |= (T3 A ((ps A py) V stuts) — (Ta) [f/X,]
(¢) 85N Hist(Wg) k= Ly [f/X,]

(a) Proof 13

I3 A'ps -
— %o Def 137p37f712

(1) [£/Xe]

(b) Proof 14
Since Ty is of the form stuts V V (e = a; Atrans,) then Ts A ((ps A py) V stuts) is
equal to stuts V V. (e = a; Atrans, A ps A\ ph).

- 73,0 A ps A ph
— (720) [J/X5]
The user read request at the third level corresponds to the user read request at

the second level.

130

4.6 Fourth Step: Error Recovery Layer

- Ta2 A ps A py
— stut, [f/Xg}
The read request to the detection layer 1 at the third level corresponds to the
stutter step at the second level.
- T35 A ps A ps
— (722) {J?/Xz}
The read request to physical disk 1 at the third level corresponds to the read
request to the physical disk at the second level.
- T34 A\ p3 A Py
— (72,3) {J?/Xz}
The read response of the physical disk v at the third level corresponds to the read
response of the physical disk at the second level because no errors are detected.
- T35 A p3 A py
— stut, [f/Xg}
The read response of the physical disk 1 at the third level corresponds to the
stutter step at the second level because a control system error is detected.
- 3.6 A\ Pa A Py
— stut, [f/Xg}
The read response of the physical disk 1 at the third level corresponds to the
stutter step at the second level because a disk surface error is detected.
- 737 A pa A py
— stut, []E/Xg}
The read response of the detection 1 at the third level corresponds to the stutter
step at the second level.
- T3 A p3 A py
— stut, [f/Xg}
The read response of the detection 1 at the third level corresponds to the stutter
step at the second level.
- 39 A p3 A py
— stut, [f/Xg}
The read response of the detection 1 at the third level corresponds to the stutter
step at the second level.
- 73,10 A\ p3 A pé
— stut, [f/Xg}
The read response of the detection 1 at the third level corresponds to the stutter
step at the second level.

- Forjy=11,...,18

Ts; A\ ps APy
— Stutg |:f/X2i|

131

Stable Storage Example

The correction step at the third level corresponds to the stutter step at the second
level.
73,19 A\ p3 A\ pé
— (T24) {J?/Xz}
The read response to the user at the third level corresponds to read response to
the user at the second level.
73,20 A\ p3 N\ pé
— (T24) {JE/Xz}
The write request of the user at the third level corresponds to the write request
of the user at the second level.

For j =21,25

T35 A\ P3 A s
— Stutg |:f/X2i|

The write request to the detection layer 1 at the third level corresponds to the
stutter step at the second level.
For j = 22,26

Taj A\ s A\ Pl
— (72) [[/X3]
The write request to the physical disk v at the third level corresponds to the write
request to the physical disk at the second level.
For j = 23,27

73, N\ ps A Py
- (72,7) [f/Xz}

The write response of the physical disk 1 at the third level corresponds to the
write response of the physical disk at the second level.
For j = 24,28

Ts; A\ ps APy
— Stutg |:f/X2i|

The write response of the detection layer ¢ at the third level corresponds to the

stutter step at the second level.

73,29 A\ p3 A\ pé
— (7'2,8) {J?/Xz}
The write response to the user at the third level corresponds to the write response
to the user at the second level.

stut; — stut, [f/Xg}

132

4.6 Fourth Step: Error Recovery Layer

(c) Let SF3 = {73, |7 € {l,...,29}} then

[y = /\ (OO En(r) — 0OT)

TESFg
. Let SFy ={m,|i€{l,...,8}} then

[, £ /\ (OO En(r) — OOT).

TESF,
Then the following holds

Ss N Hist(Ws) k= Ls — Lo [/X3
So

Ss N Hist(Ws) k= Ly [F/Xe]

holds.

133

Stable Storage Example

134

Bibliography

[Acz83]

[AFKSS]

[ALO1]

[AL93a]

[AL93b]

[AS85]

[ASS7]

[BKPS6]

[Bur82]

[Bur84]

[CCo4]

[CdR93a]

P. Aczel. On an inference rule for parallel composition, 1983. Unpublished,
University of Manchester.

K. R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for
distributed programming. Distributed Computing, 2(4):226-241, 1988.

M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, May 1991.

M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73-132, 1993.

M. Abadi and L. Lamport. Conjoining specifications. Technical Report 118,
Digital Systems Research Center, 1993.

B. Alpern and F.B. Schneider. Defining liveness. [Information Processing
Letters, 21(4):181-185, 1985.

B. Alpern and F. Schneider. Proving boolean combinations of deterministic
properties. In Proceedings of the second symposium on logic in computer

science, pages 131-137. IEEE, June 1987.

H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal semantics. In Proc. 13th ACM Symp. Princ. of Prog. Lang.,
pages 173-183, 1986.

J.P. Burgess. Axioms for tense logic, i. “since” and “until”. Notre Dame

Jornal of Formal Logic, 23(4):367-374, October 1982.

J.P. Burgess. Basic tense logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic., volume I1, pages 89—-133. Reidel Publishers,
1984.

A. Cau and P. Collette. Parallel composition of assumption-commitment
specifications: a unifying approach for shared variable and distributed mes-
sage passing concurrency. To appear in Acta Informatica, 1994.

A. Cau and W.-P. de Roever. Specifying fault tolerance within stark’s formal-
ism. In Proc. of the Twenty-Third International Symposium on Fault-Tolerant
Computing, pages 392-401. IEEE, 1993.

135

BIBLIOGRAPHY

[CAR93D]

[CKdR92]

[Cri85]

[Dij79]

[DK9O]

[Hoa84]

[Jon83]

[KMP93]

[LA90]

[Lam)]

[Lam83]

[Lam89]

[Lam91]

A. Cau and W.-P. de Roever. Using relative refinement for fault tolerance.
In Proceedings of FME’93 symposium: industrial strength formal methods,
1993.

A. Cau, R. Kuiper, and W.-P. de Roever. Formalising Dijkstra’s development
strategy within Stark’s formalism. In C. B. Jones, R. C. Shaw, and T. Denvir,
editors, Proc. 5th. BCS-FACS Refinement Workshop, 1992.

F. Cristian. A rigorous approach to fault-tolerant programming. IEFE Trans-
actions on Software Engineering, 11(1):23-31, 1985.

E.W. Dijkstra. A tutorial on the split binary semaphore, 1979. EWD 703.

E. Diepstraten and R. Kuiper. Abadi & Lamport and Stark: towards a
proof theory for stuttering, dense domains and refinements mappings. In
LNCS /30:Proc. of the REX Workshop on Stepwise Refinement of Distributed
Systems, Models, Formalisms, Correctness, pages 208-238. Springer-Verlag,
1990.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London,

1984.

C.B. Jones. Tentative steps towards a development method for interfer-
ing programs. ACM Transactions on Programming Languages and Systems,

5(4):596-619, 1983.

Y. Kesten, 7Z. Manna, and A. Pnueli. Temporal verification of simulation and
refinement. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,
LNCS 803: A Decade of Concurrency, Reflections and Perspectives, pages
273-346. Springer-Verlag, 1993.

P.A. Lee and T. Anderson. Fault Tolerance Principles and Practice, volume 3
of Dependable Computing and Fault-Tolerant Systems. Springer-Verlag, sec-
ond, revised edition, 1990.

L. Lamport. TLA - Temporal Logic of Actions. The hypertext page on TLA:
www.research.digital.com/ SRC/ personal/ Leslie_Lamport/ tla/ tla.html.

L. Lamport. What good is temporal logic. In R.E.A. Manson, editor, Infor-
mation Processing 83: Proc. of the IFIP 9th World Congress, pages 657-668.
Elsevier Science Publishers, North Holland, 1983.

L. Lamport. A simple approach to specifying concurrent systems. Commu-

nications of the ACM, 32(1):32-45, January 1989.

L. Lamport. The temporal logic of actions. Technical Report 79, Digital
Systems Research Center, 1991.

136

BIBLIOGRAPHY

[Lam94]

[LGAR79]

[MC81]

[MP89]

[PJ91]

[Pnu85]

[PWT90]

[Sch91]

[Sta84]

[Sta85]

[Stal8]

[Stiss]

[Ste91]

[WDSS]

L. Lamport. The temporal logic of actions. To appear in ACM TOPLAS,
July? 1994.

S. Lee, 5. Gerhart, and W.-P. de Roever. The evolution of list-copying al-
gorithms and the need for structured program verification. In Proc. of 6th

POPL, 1979.

J. Misra and K.M. Chandy. Proofs of networks of processes. IEFEFE Transac-
tions on Software Engineering, 7(4):417-426, July 1981.

7. Manna and A. Pnueli. An exercise in the verification of multi-process
programs. Technical report, Stanford University, 1989.

P.K. Pandya and M. Joseph. P—a logic - a compositional proof system for
distributed programs. Distributed Computing, 5:37-54, 1991.

A. Pnueli. In transition from global to modular temporal reasoning about
programs. In NATO ASI Series F 13: Logics and models of concurrent
systems, pages 123-144. Springer-Verlag, 1985.

P.R.H. Place, W.G. Wood, and M. Tudball. Survey of formal specification

techniques for reactive systems. Technical Report, 1990.

H. Schepers. Terminology and Paradigms for Fault Tolerance. Comput-
ing Science Notes 91/08 of the Department of Mathematics and Computing
Science Eindhoven University of Technology, 1991.

E.W. Stark. Foundations of a Theory of Specification for Distributed Systems.
PhD thesis, Massachusetts Inst. of Technology, 1984. Available as Report No.
MIT/LCS/TR-342.

E.W. Stark. A Proof Technique for Rely/Guarantee Properties. In LNCS
206: Fifth Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, pages 369-391. Springer-Verlag, 1985.

E.W. Stark. Proving entailment between conceptual state specifications. The-
oretical Computer Science, 56:135-154, 1988.

C. Stirling. A generalization of owicki-gries hoare logic for a concurrent while

language. Theoretical Computer Science, 58:347-359, 1988.

K. Stglen. A method for the development of totally correct shared-state
parallel programs. In J.C.M. Baeten and J.F. Groote, editors, LNCS 527:
Proceedings of Concur ‘91, pages 510-525. Springer-Verlag, 1991.

J.C.P. Woodcock and B. Dickinson. Using vdm with rely and guarantee-
conditions. In R. Bloomfield, L.. Marshall, and R. Jones, editors, LNCS 328:
Proceedings of VDM 88, The Way Ahead, pages 434-458. Springer-Verlag,
1988.

137

BIBLIOGRAPHY

[Wri87]

[XCC94]

[ZCdR92

[ZdBdR84]

[ZdRvEB84]

M. Wriedt. Allgemeine Topologie I. Technical report, Christian-Albrechts-
Universitat zu Kiel, 1987. Vorlesungsskript ausgearbeitet von M. Jager.

Q. Xu, A. Cau, and P. Collette. On unifying assumption—commitment style
proof rules for concurrency. In B. Jonsson and J. Parrow, editors, LNCS 836
CONCUR94: Concurrency Theory, pages 267-282. Springer-Verlag, 1994.

J. Zwiers, J. Coenen, and W.-P. de Roever. A note on compositional re-
finemnt. In C. B. Jones, R. C. Shaw, and T. Denvir, editors, 5th Refinement
Workshop, Workshops in Computing, pages 342-366, London, January 1992.
BCS-FACS, Springer Verlag.

J. Zwiers, A. de Bruin, and W.-P. de Roever. A proof system for partial cor-
rectness of dynamic networks of processes. In LNCS 164: Proc. of the Con-
ference on Logics of Programs 1983, pages 513-527. Springer-Verlag, 1984.

J. Zwiers, W.-P. de Roever, and P. van Emde Boas. Compositionality and
concurrent networks: soundness and completeness of a proof system. Tech-
nical report, University of Nijmegen, 1984. Technical Report 57.

138

Appendix A
Proofs of Dense Model Theorems

A.1 Proof of Theorem 1

Theorem 1 (Relationship between histories and infinite sequences)
Let h € H/ =, then (sel;)i>0 € SEQ/ ~ where sel; is as follows:

if nn(h) < co:
selyuirr = h(1) 0 <i<nn(h)
selyy; = hI{l h(ty) 0 <i<nn(h)
141
seloyizs = khn;l h(ty) E=nn(h) ANk <1
i
selyy; =]}Lr% h(ty) E=nn(h) Nk <1
if nn(h) = co:

56[2*24_1 == h(l) 0<q

sely = lim h(ty) 0 <1

141

Let seq = (sel;)iso € SEQ/[=~ then h € H[~j, where h is as follows:
if ns(seq) < oo:

h(0) = sely

h(t) = selyu—1 t ENAD <t < ns(seq)
h(t) = selgu tENAL> ns(seq)
h(t)=selp 1<t<i+l

if ns(seq) = oo:

h(0) = sely
h(t) = Selg*t_l t €N
h(t) = sely r<t<i+1

Proof 15 Let h € H/ ~ then h is of the form hy odi(hy) for some hy € H. According to
Def. 10 h is then of the form that at discrete points the non-stutter steps and at all other
points the stutter steps occur. The construction of seq above is such that at odd points the

139

Proofs of Dense Model Theorems

non-stutter steps (or A-steps if number of non-stutter steps is finite) and at even points
the A-step occur, i.e., a sequence from SEQ/ ~.

Let seq = (sel;)i>o € SEQ/ ~, then, according to Def. 11, seq is such that at odd
points non-stutter steps occur (or A-steps if the number of non-stutter stesp is finite) and
at the even points \ steps. The construction of h above is such that at discrete points
greater than zero the non-stutter steps occur (or X steps if the number of non-stutter steps
is finite) and at all other points the X steps, i.e. a history from H/[~.

A.2 Proof of Lemma 1

Lemma 1
Gliven machine M = (B, I,T) then

Comp(M) is a safety set.

Proof 16 One has to prove that Comp(M) is closed, i.e., H \ Comp(M) is an open set,
i.e., H\ Comp(M) € 14 (74 is the topological space defined in Def. 14).

HN\ Comp(M) € 74
= % Def. 14 74

Vh:de >0:Vh;:

(h e H\ Comp(M) ANd(h,hy) <e)— hy € H\ Comp(M)
= % Contraposition

Vh:3e >0:Vhy:hy € Comp(M)ANd(h,hy) <e)— h & Comp(M)
= % Def. 14 d(h,hy)

Vh:Vt:Yhy:(hli=hile Ahy € Comp(M)) — h € Comp(M)
— % Pred. Cale.

Vh:Vhy :¥t:(hli=hile Ahy € Comp(M)) — h € Comp(M)
— % Pred. Cale.

Vh:Yhy:(h=hiANhy € Comp(M)) — h € Comp(M)
— % Pred. Cale.

true

A.3 Proof of Theorem 2

Theorem 2
Let rexp be a rigid expression, exp be an exrpression, evexp an event expression and p a
temporal formula then

Vt, ho, by ho >, b1 — (() = rexp = (hy,di(hy) o di™' (ho)(t)) = rexp)
Vt, ho, by ho >, b1 — (() = exp = (hy,di(hy) o di™'(ho)(t)) = exp)

Vt, ho, h1 = ho ~g, h1 — ((ho,t) | evexp = (hy,di(hy) o di™' (ho)(t)) | evexp)
Vi, ho, hy : ho 224, hi — (() p iff (hi,di(hy) o di™'(ho)(%)) = p)

SURRO RIS S

140

A.3 Proof of Theorem 2

Proof 17
a Yt ho byt ho ~4, b1 — ((ho,t) = rexp = (hy,di(hy) o di™' (ho)(t)) = rexp)
The proof proceeds by induction on the structure of rexp

o rexp = pu:

(ho,t) = p
= % ho == hl o] dl(h) o] di_l(ho)
0)

(hy,di(h1) o di™" (ho)(t)) = p

® rerp =n:

(hovt) |: n
— % Def. 20
01, (0)(n)
= % ho—hlodl(hl)o i
Op, (di(h1) 0 di™ (f0)(0))(n)
— % Def. 20
(h, di(hy) o di™ (ho)(1)) = n

o cxp=n':

(ho,t) E '
— % Def. 20
01, (0) (1)
= % ho—hlodl(hl)o i
On, (di(h1) 0 di™' (ho)(0))(r)
— % Def. 20
(ha, di(hy) o di™' (ho)(t)) = '

o cap=n:

(ho,t) |:\n

= % Def. 20
Oho (0)(1)

== % ho = hl ¢] dl(1) odi™ (ho), dl(hl) o] dl_l(ho)(()) =0
O, (di(hy) © di™" (ho)(0))(n)

= % Def. 20

(h1,di(h1) o di™" (ho)(t)) ="

® rexrp =rexp; +rexps:

di™" (ho), di(hy) o di™ (o) (0) = 0

di™" (ho), di(hy) o di™ (ho)(0) = 0

(ho,t) E rexp + rexps
— % Def. 20

(ho,t) E rexpr + (ho,t) |= reaps
= % Induction

(hy,di(hy) o di™ (ho)(t)) | rexpr + (hy,di(hy) o di™'(ho)(t)) = rexp;
— % Def. 20

(hy,di(hy) o di™ (ho)(t)) | rexps + rexpy

141

Proofs of Dense Model Theorems

b \V/t,ho,hl : ho g, hl — ((ho,t) |: exrp = (hl,dl(hl) 0 di_l

The proof proceeds by induction on structure of exp:

® cap

® cap

® cap

® cap

=rexp:

(ho,t) E rexp
% Theorem 2a
(h1,di(hy) o di_l(ho)(t)) E rexp

(hovt) |: v
% Def. 20

0o (1) (V)
% ho—hlodl(h Jodi~

Op, (di(hy) o di™ (o)(1))(V)
% Def. 20
(b, di(hy) o di™ (ho)(1)) = v

Y(ho)

(ho, 1) = V'
% Def. 20
lim 8, (t1)(v)

=17

thgﬂ Ghl(dl(h Jodi~ (
% ty=di(hy)o0 di™Y(hg
li 0y, (t
di(hl)odi_llr(r;LO)(t)etQ m(f2)(V)
% Def. 20

(hy,di(hy) o di™'(h

o)(1)) E v

<

(ho,()) |:\V
% Def. 20
01, (0)(v)
% hozhlodl(1) odi”
On, (di(h1) 0 di™"(ho)(0))(v)
% Def. 20 d1()odi™t ho)()=20
(hy,di(hy) odi™ ((0)) E

H(ho)

<

(ho)(1)) = exp)

A.3 Proof of Theorem 2

t>0

(ho,t) E'V
— % Def. 20
7ltllig% Ory (11)(V)
= %ho—hlodl(1)od
7511im 0y, (di(hy) o di™"(ho)(t1)
= % to=di(hy)odi” (ho)

1
0

li 0, (1
t2—>di(h1)lcgll (ko) (%) m(t2)(V)

= % Def. 20
(h, di(hy) o di™' (ho)(1)) 'V

® crp = X:

1™ (ho)
(V)
(t1)

(hovt) |: X

— % Def. 20
O (1)(x)

= % ho—hlodl(h)odi™ (ho)
Op, (di(h) o di™ (ho)(1))(x)

— % Def. 20

(hy,di(hy) o di™ (ho)(1)) = x

o crp=x':

(hovt) |: X'
Jim 01, (1))
= %ho—hlodl(1)od
Jim 65, (di(ha) o di™" (o) (t)
e % t2 = dl(h) 0 dl (hO)

1
li 0, (1
di(hl)odi_llr(r;LO)(t)etQ i (f2)(x)

= % Def. 20
(h, dihy) o di (ho)(1)) = '

1™ (ho)
)(x)
(t1)

1

® caxp =X

(ho,0) Ex

= % Def. 20
01 (0)(x)

= % hthIOdl(hl)o
Op, (di(h1) o di™! (ho)(0))

= % D@f 207d1(h)O
(hy,di(hy) o di™! (ho)(0)

di™"(ho)
(x)
di™(ho)(0) = 0

) Fx

143

Proofs of Dense Model Theorems

t>0

(hovt) |:\X
= % Def. 20
T 0y, (1))
= % ho=hio dl(1) o dl_l(ho)
Jimy 05, (dihy) o di” H(ho)(11))(x)
— % ty=di(hy)odi” 1(0)(t1)

li 0, (1
t2—>di(h1)logil_1(h0)(t) m(f2)(x)

= % Def. 20
(h, di(h) o di™ (ho)()) = x

=expy + expy:

(ho,t) E expr + expy

— % Def. 20

(ho,t) E expr + (ho,t) |E exps
% Induction

(hy di(hy) o di™ (ho)(1)) b= exps + (ha, di(hy) o0 di™ (ho)(1)) = eaps

= % Def.20

(h1,di(hy) o di™'(ho)(t)) = expy + expy

¢ Yt ho,hy:ho g, h1 = ((ho,t) E evexp = (hy,di(hy) 0 di_l(ho)(t)) = evexp)

The proof proceeds by induction on structure of evexp:

e cvexrp =al:

(ho,t) E a?
= % Def. 20
a?
= % Def. 20
(h1,di(hy) o di

o cvexrp = al:

(hovt) |: al

= % Def. 20
al

= % Def. 20

(hy, di(h1) o di”

T (ho)(1)) [= a?

(o) (1)) k= !

144

A.3 Proof of Theorem 2

o cverp =1:

(ho,t) |: i
= % Def.20
1
= % Def.20
(s, di(h) o i~ (ho) (1)) =

® cvexrp = e:

(hovt) |: €

= % Def. 20
(S]

= % Def. 20

(h1,di(hy) o di™' (ho)(1)) = e

o

o cverp = \:

(hovt) |: A
= % Def. 20
A
= % Def. 20
(e, difha) o 47 (ho) (1)) = A

® cvexrp = €!

(hovt) |: €
— % Def. 20
¥no (1)(€)
= % ho = hyodi(hy)odi™(ho)
Uiy (di(hy) o di™ (ho)(1))(e)
— % Def. 20
(h1,di(hy) o di™(ho)(1)) = €

o cvexp =¢':

(ho,t) |: 6/
— % Def. 20
L g (1) (€)
= % ho = hyodi(hy)odi™ (ho)
Jim by, (di(h1) 0 di™ (ho)(11))(€)
= % ty=di(hy)odi” 1(h0)(t1)
lim %/)hl(tz)(ﬁ
dihy)odi™" (ho)(t)+
= N Def 20

(h1, di(h1) o di™! (ho)(t)) = ¢

145

Proofs of Dense Model Theorems

® cvexp =¢:

t=20

(ho,()) |:\6
= % Def. 20
1o (0)(€)
- % hozhlodi(h
P, (di(hy) o di™ ' (ho)
_ % Def. 20,di(hy) o
(b1, di(hr) 0 di™ (ho)(0)) f="e

t>0

(ho,t) E'c
— % Def. 20
Tim 4, (£1)(0)
= %ho—hlodl()011h0)
7513{)1@ 0y, (di(hy) o di™"(ho)(t1)
= % ty=di(hy)odi™"(ho)
lim ¢h1(t2)(6

ta—di(hy)odi~ (ko
— % Def. %0
(hy,di(hy) o di™" (ho)(t)) e

d ¥t ho, by ho 229, by = ((ho,t) | p iff (b1, di(h1) o di™" (ho)(1)) = p)
The proof prooceeds by induction on structure of p:

e p = true:

(ho,t) E true
= % Def. 20
true
= % Def. 20
(h1,di(hy) o di™(ho)(t)) = true

o p=(exp = eapy):

(ho,t) E expr = exps
= % Def. 20

(ho,t) E expr = (ho,t) E expy
= % Theorem 2b

(s di(hs) o i (ho)(1)) = ey = (b, di(ha) o di~ (o) (1)) |- c2ps
— % Def. 20

(hi,di(hy) o di™ (ho)(t)) | expr = expy

146

A.3 Proof of Theorem 2

o p=(exp <expy):

(ho, 1) |= expr < exps
— % Def. 20

(ho,t) E expr <?(ho,t) | exps
= % Theorem 2b

(h1,di(hy) o di_l(ho)(t)) E expr < (hy,di(hy) o di_l(ho)(t)) E expy
— % Def. 20

(hi,di(hy) o di™ (ho)(t)) | expr < expy

e p = (evexp, = evexps):

(ho,t) E evexp; = eveaps
— % Def. 20

(ho,t) E evexp = (ho,t) | evexpy
= % Theorem 2c

(hy,di(hy) o di™ (ho)(t)) | evexpy = (hi,di(h1) o di™' (ho)(1)) = evexp,
— % Def. 20

(h1,di(hy) o di_l(ho)(t)) E evexp; = evexpy

® p _— —|p0:

(hovt) |: ~Po
— % Def. 20

not (ho,t) = po
= % Induction

not (hy,di(hy)odi™"(ho)(t)) E po
— % Def. 20

(ha, di(h1) 0 di™" (ho)()) [E —po

e p=pVpy

(hov t) |: PV op2
= % Def. 20

(hov t) |: P or (hov t) |: P2
= % Induction

(h1,di(hy) o di_l(ho)(t)) = p1 or (hy,di(hy) 0 di_l(ho)(t)) E ps
= % Def. 20

(h,di(hy) o di™'(ho)(t)) = p1 V pa

147

Proofs of Dense Model Theorems

o D=

o D=

o D=

P 7/7 P2~

(hovt) |: n Zj{ P2

— % Def. 20
dtg > t: (ho,to) |E p2 and Vi1 € (t,t0) : (ho,t1) E p1
= % Induction
Jto >t : (hy,di(hy) o di™ (ho)(to)) |_ P2
and Yty € (t,1o) : (hl,dl(hl) odi™'(ho)(t1)) E m
= % ty=di(h) o di™(ho)(to), 13 = di(hy1) o di™ (ho)(t1)
Fty > di(hy) o di™ (ho)(t) : (hy,t2) = pa
and Yt € (di(hy) odi™" (ho)(t),t2) : (h1,13) FE p1
— % Def. 20
(h1, di(hy) o di™" (ho)(t)) b= p1 U py
p1 S pa:
(host) = p1 S p2
— % Def. 20
dtg < t: (ho,to) |E p2 and Vi1 € (to,1) : (ho,t1) E p1
= % Induction
Jto < t: (hy,di(hy) o di™ (ho)(t0)) E pa
and Yty € (to,1) : (hl,dl(h yodi™ (ho)(t1)) = 1
= %ty =di(hy) o di™'(ho)(to), t3 = di(h1) o di™" (ho)(t1)
3, < difa) o i (ho)(1)) (s 1) - po
and Y3 € (1, di(hy) o di™" (ho)(1)) : (h1,ts) = pu
— % Def. 20
(h1, di(hy) o di™" (ho)()) b= p1 S P2
Ix.po:
(ho,1) E 3x.po
— % Def. 20
dhy : hy x-variant of hg /\(2, 1) = po
= % hy = hgodi(hy)odi” (0)
Jhy = hy x-variant of hy o di(hy) o di™'(ho) A (hayt) = po
= % hs =hyodi(hg)o di_l(h)
hy x-variant of hy o di(hy) o di™ (ho)
& hyodi(ho) o di™'(hy) x-variant of hy

dhs : hs x-variant of hy A

% Def. 20
(hy,di(hy) o di™'(ho)(t))

(ha, di(h1) o di™" (ho)(t)) k= po

Ix.po

148

A.4 Proof of Lemma 2

e p=dec.pp:

(ho,) = Jepo
— % Def. 20
Jhy t hy e-variant of ho A (ha,t) = po
= % hi1=hgodi(hy)o di_l(ho)
Jhy : by e-variant of hy o di(hy) o di™' (ho) A (ha,t) = po
= % hs = hyodi(he)odi™ (hy),
hy e-variant of hy o di(hy) o di™ (ko)
> hyodi(hg) o di_l(hl) e-variant of hy
Jhs i hs e-variant of hy A (hs, di(hy) o di™' (ho)(1)) = po
— % Def. 20
(. di(hr) 0 7 (ho)(8)) = e

e p=dn.py:

(ho,t) = n.po
— % Def. 20
dhy 2 he n-variant of hg /\(2, 1) E po
= % hy = hgodi(hy)odi” ()
dhy : hy n-variant of hy o dl(1)odi” (0) A (ha,t) = po
= % hz = hyodi(hg)odi™'(hy),
hy n-variant of hy o di(hy) o di™" (ko)
& hyodi(ho) o di™'(hy) e-variant of hy
Jhs : hs n-variant of hy A (hs,di(h1) o di™'(ho)(t)) = po
— % Def. 20
(s di(hr) 0 7 (ho)(8)) = T

ho
h

h
(7

A.4 Proof of Lemma 2

Lemma 2

Let expg be an expression, exp be a state expression, w € VU X, rexp be a state rigid
expression, n € R, everpy an event expression, evexp a state event expression, ¢ € €, and
p a temporal formula. Then the following holds:

a (h,t) E expoexp/w] = ((h:w-~» exp),t) = expg

b (h,t) E exporexp/n] = ((h:n~>rexp),t) = expo

¢ (h,t) E evexpgevexp/e] = ((h: € ~ evexp),l) = evexpg
d (h.t) = plexp/w] if ((h:w~> exp)l) Ep

¢ (h,t) = plrexp/n] if ((h:n~>rexp),t) =p

[(ht) | pleveap/e] iff ((h: e~ eveap),t) = p

Proof 18
@ (h,t) b= epoleapfu] = ((h s w~> cxp),1) | cxpg
Proof by induction on the structure of expg:

149

Proofs of Dense Model Theorems

® cxrpy = rexp:

(h.1) = reaplep/ul

— % Def. 22
(h,t) = rexp

= % Def.26,w & varrexp
((h:w~>exp),t) E rexp

® crpyg =V
V=w

(h,t) = v [exp/w]

— % Def. 22
(h,t) = exp

— % Def. 26
((h:w~>exp),t) =V

(h,t) = v [exp/w]

— % Def. 22
(h,t) = v

— % Def. 26
((h:w~>exp),t) =V

o cupg =V’
vV=w

(1) v/ [eapfu

— % Def. 22
(h,t) = exp/

— % Def. 26
((h:w~exp),t) V'

(h.1) v/ [eapfu]

— % Def. 22
(h,t) E Vv

= % Def. 26
((h:w~exp),t) V'

® cxpg =V
vV=w
(o) E [eapfu
— % Def. 22
(h,t) = exp
— % Def. 26
((h:w~>exp),t) =V

150

A.4 Proof of Lemma 2

vVZEuw

(h,t) =V [exp/w]

= % Def. 22
(h,t) EV

— % Def. 26
((h:w~>exp),t) =V

® crpy = X!
X=w

(h,t) = x[exp/w]

— % Def. 22
(h,t) = exp

— % Def. 26
((h:w~exp),t) Ex

(h,t) = x[exp/w]

— % Def. 22
(h,t) = x

— % Def. 26
((h:w~exp),t) Ex

o capyg = x':
X=w

(1) b ' [erpf]

— % Def. 22
(h,t) = exp/

— % Def. 26
((h:w~>exp),t) =X

(h,t) = X' [exp/w]

— % Def. 22
(h,t) Ex

— % Def. 26
((h:w~>exp),t) =X

® cxpy = X!
X=w
(h 1) = [eapfc)
— % Def. 22
(h,t) = exp
— % Def. 26
((h:w~exp),t) Ex

151

Proofs of Dense Model Theorems

(h 1) = [eapfu

— % Def. 22
(hyt) b= x

— % Def. 26
((h:w~exp),t) Ex

® cIpy = exp; + expy

(h,t) | (expr + exps) [exp/w]
— % Def. 22
(h.1) = caps [expfu] + ceps [eapfu
— % Def. 20
(h 1) I cap [expfu] + (b,) 1= caps leapfu
= % Induction
((h:w~exp),t) Eexpr + ((h:w~ exp),t) E exps
— % Def. 20
((h:w~>exp),t) = exp + exps

b (h,t) = expglrexp/n] = ((h:n -~ rexp),t) = expg

Proof by induction on structure of expg

o cxpy = fi:
(h,t) E plrexp/n]
= % Def. 23
(hvt) |: U

= % Def. 26 and 20
((h:n~rexp),t) = p

® cTPg = No-
Ng="n

(h,t) | no [rexp/n]
— % Def. 23
(h,t) = rexp
— % Def. 26
((h :n~rexp),t) E no

ng £ n

(h,t) |= no [rexp/n]
— % Def. 23
(hvt) |: o
— % Def. 26
((h :n~rexp),t) E no

152

A.4 Proof of Lemma 2

® expy = ny:
Ng="n

(h 1) I b [reap/n]

— % Def. 23
(h,t) E rexp’

— % Def. 26
((h:n~rexp),t) E ny

ng £ n

(h,1) = ng [rexp/n]
— % Def. 23
(h, 1) = ng
— % Def. 26
((h :n~ rexp),t) E ng

® cxpy = Ng:
Ng="n

(h,t) Eno [rexp/n]
— % Def. 23
(h,t) Erexp
— % Def. 26
((h :n~rexp),t) E'ng

ng £ n

(h,t) Eno [rexp/n]
— % Def. 23
(h,t) E'ng
— % Def. 26
((h :n~rexp),t) E'ng

® cupy = w:

(h,t) = wlrexp/n]

— % Def. 23
(h,t) Fw

— % Def. 26
((h:n~rexp),t) Ew

o capyg = w':

(h,t) = w'[rexp/n]

— % Def. 23
(hvt) |: w'

— % Def. 26
((h:n~rexp),t) Eu'

153

Proofs of Dense Model Theorems

® cxpy = w:

(h,t) |="wlrexp/n]

— % Def. 23
(h,t) Ew

— % Def. 26
((h:n~rexp),t) Ew

® cIpy = exp; + expy

(h,t) | (expi + exps) [rexp/n]
— % Def. 23
(h.1) = caps [reap/n] + caps [reap/n]
— % Def. 20
(h 1) I cap [reapfn] + (b,) E caps [reap/n]
= % Induction
((h:n~>rexp),t) E expr+ ((h:n~rexp),t) E expy
— % Def. 20
((h :n~>rexp),t) |E exps + exps

¢ (h,t) = evexpg[evexp/e] = ((h : €~ evexp),t) = everpy

Proof by induction on structure of evexpg:

® cvexpy = A:

(h,t) E Xevexp/¢]

— % Def. 24
(h,t) = A

= % Def. 26 and 20
((h: e~ evexp),t) E A

o cvexpg = al:

(h,t) E a?[evexp/e]

— % Def. 24
(h,t) Ea?

= % Def. 26 and 20
((h: €~ evexp),t) E a?

o cverpy = al:

(h,t) E al[evexp/€]

— % Def. 24
(h,t) = al

= % Def. 26 and 20
((h: €~ evexp),t) | a!

154

A.4 Proof of Lemma 2

o cverpg = 1:

(h,t) Eilevexp/e]

— % Def. 24
(h,t) E1

= % Def. 26 and 20
((h: e~ evexp),t) E1

® cvexrpy = e:

(h,t) E elevexp/e]

— % Def. 24
(h,t) =e

= % Def. 26 and 20
((h: e~ evexp),t) Ee

® cvexpy = €y
€g = €

(1) E e [eveap/d
— % Def. 24
(h,t) = evexp
— % Def. 26
((h: e~ evexp),t) E €

€ F €

(h,t) E eo[evexp/e]
= % Def. 24
(h,t) | o
— % Def. 26
((h: e~ evexp),t) E €

o cverpy = €,
€g = €

(1) I & [eveap/d
— % Def. 24
(h,t) E evexp
— % Def. 26
((h: e~ evexp),t) E €

€ F €

(1) b & [eveap/d
— % Def. 24
(ht) ¢
— % Def. 26
((h: e~ evexp),t) E €

155

Proofs of Dense Model Theorems

® cvexpy = €y
€g = €

(1) E e [eveap/d
— % Def. 24
(h,t) Eevexp
— % Def. 26
((h: e~ evexp),t) E e

€ F €

(1) E e [eveap/d
— % Def. 24
(h 1) = o
— % Def. 26
((h: e~ evexp),t) E e

d (h,t) Eplexp/w] iff (h:w~> exp),t) =p
Proof by induction on structure of p:

e p = true:

(h,t) E true [exp/w]

= % Def. 25
(h,t) E true

= % Def. 26
((h:w~>exp),t) = true

o p=(exp = eapy):

(h,t) [(expr = expy) [exp/w]
— % Def. 25
(h.1) = caps [expfu] = cops [exp/u]
— % Def. 20
(1) | cap [expfu] = (1) | cop [erp/ul
= % Lemma 2a
((h:w~>exp),t) = exp = ((h:w-~>exp),l) E exps
— % Def. 20
((h:w~exp),t) E exp; = exps

156

A.4 Proof of Lemma 2

o D=

o D=

o D=

o D=

(expr < expy):

(h,t) | (expr < expy) [exp/w]
— % Def. 2
(hot) = caps [expfu] < cops [exp/ul
— % Def. 20
(h,1) = caps [expfu] < (b, 1) b= cop eapful
= % Lemma refsu.lea
((h:w~>exp),t) = expr < ((h:w-~>exp),l) E exps
— % Def. 20
((h:w~exp),t) E exps < exps

(evexp; = evexps):

(h,t) | (evexp) = eveapy) [exp/w]
— % Def. 25
(h,t) E evexp, = eveap,
— % Def. 20
(h,t) E evexpy = (h,t) |E evexpy
— % Def. 26
((h:w~exp),t) E everp = ((h 1w~ exp),t) | evexrps
— % Def. 20

((h:w~> exp),t) = evexp; = evexps
_|p1 e

(h,t) | (mp1) [exp/w]
= % Def. 25
(ht) | =(p1 [exp/w])
= % Def. 20
not (h,t) = p1 [exp/w]
= % Induction
not ((h:w~» exp),t) Ep
= % Def. 20
((h 2w~ exp),t) E —p

p1V ps:

(hy1) = (p1 V p2) [exp /]
— % Def. 25
(h,t) | (p1 [exp/w] V p2 [exp/w])
— % Def. 20
(h,1) | pilexp/w] or (h,1) |= p2[exp/w]
= % Induction
((h:w~>exp),t) Epor (h:w-~exp),t) = pa
— % Def. 20
((h:w~>exp),t) = p1 Vps

157

Proofs of Dense Model Theorems

o D=

o D=

o D=

P 7/7 P2’

(h,t) = (p1 U p2) [exp/w]
— % Def. 25
(h.t) = (p1 [exp/w] U py[exp/w])
— % Def. 20
dtg > t: (h,to) |E p2 lexp/w] and ¥ty € (t,to) : (h,11) = p1 [exp/w]
= % Induction
dtg >t ((h:w-~ exp),to) E po
and Yty € (t,t0) : ((h 1w~ exp),t1) = p1
— % Def. 20
((h s w -~ exp),t) = p1 U ps

~

p1 S pa:

(h,t) = (p1 S pa) [exp/w]
— % Def. 25
(h, 1) = (p1 [exp/w] S pa [exp/w])
— % Def. 20
dtg < t:(h,to) |E p2lexp/w] and ¥ty € (to, 1) : (h,11) = p1 [exp/w]
= % Induction
dtg <t:((h:w~ exp),ty) = pe
and V1 € (to,t) : ((h 1w~ exp),t1) = p1
— % Def. 20
((h s w~exp),t) = p1 S po

Ix.py for x € var(exp) U{w}:

(h,t) | (3x.p1) [exp/w]
= % Def. 25
(h,1) = 3x.(p1 [exp/w])
= % Def. 20
Jhy : hy x-variant of h and (hy,t) = p1 [exp/w]
= % Induction
dhy by x-variant of h and ((hy 1 w ~ exp),t) = p1
= % hy = (h1:w-~>exp),hs=(h:w-~ exp)
hy x-variant of h i1 f f hy x-variant of hs
Jhy : hy x-variant of hs and (ha,t) = py
— % Def. 20
((h:w~»exp),t) = Ix.p

158

A.4 Proof of Lemma 2

o p=depy:

(h.1) E (Be.n) [eapfu]
— % Def. 2
(h.t) = Je.(p1 [exp/w])
— % Def. 20
Jhy : hy e-variant of h and (hy,t) | p1 [exp/w]
= % Induction
Jhy : hy e-variant of h and ((hy 1 w ~ exp),t) E py
= % hy = (h1:w-~>exp),hs=(h:w-~ exp)
hy e-variant of h 1f f hy c-variant of hs
Jhy : hy e-variant of hs and (ha,t) E py
— % Def. 20
((h:w~exp),t) E e

e p=dn.p:

(h.1) E @) [exp/ul
— % Def. 25
(h.t) | 3n.(p1 [exp/w])
— % Def. 20
dhy : hy n-variant of h and (hy,t) | p1 [exp/w]
= % Induction
Jhy by n-variant of h and ((hy : w ~ exp),t) E pr
= % hy = (h1:w-~>exp),hs=(h:w-~ exp)
hy n-variant of h i f f hy n-variant of hs
Jhsy : hy n-variant of hs and (ha,t) E py
— % Def. 20
((h:w~>exp),t) = In.p;

¢ (h,t) | plrexp/n] if ((h:n-~>rexp),t) = p
Proof by induction on structure of p:

e p = true:

(h,t) E true[rexp/n]
= % Def. 25
(h,t) E true
= % Def. 26
((h :n~>rexp),t) | true

159

Proofs of Dense Model Theorems

o D=

o D=

o D=

o D=

(expy = expy):

(h,t) = (exps = exp;) [rexp/n]
— % Def. 25
(h.1) = caps [reap/n] = caps [reap/n]
— % Def. 20
(h,t) = expy [rexp/n] = (h,1) |= expy [rexp/n]
= % Lemma 2b
((h:n~rexp),t) Eexpy = ((h:n -~ rexp),t) = exps
— % Def. 20
((h:n~>rexp),t) E exp = expy

(expy < expy):

(h,t) = (exps < exps)[rexp/n]
— % Def. 25
(h.1) = caps [reap/n] < caps [reap/n]
— % Def. 20
(h,1) I cap [reapfn] < (1) | cop [reap/n]
= % Lemma 2b
((h:n~rexp),t) Eexpr < ((h:n~>rexp),t) = exps
— % Def. 20
((h:n~>rexp),t) E exp < expy

(evexp; = evexps):

(h,t) E (evexp, = evexps) [rexp/n]
— % Def. 25
(h,t) E evexp, = eveap,
— % Def. 20
(h,t) E evexpy = (h,t) |E evexpy
— % Def. 26
((h:n~rexp),t) E evexpr = ((h:n ~ rexp),t) = evexps
— % Def. 20

((h:n~>rexp),t) | evexrp = everpy
_|p1 e

(h,t) | (=p1) [rexp/n]
— % Def. 25
(1) E ~(p [rexp/n])
— % Def. 20
not (h,t) |= p1 [rexp/n]
= % Induction
not ((h:n~»rexp),t) = p
— % Def. 20
(h: s reap). 1) b

160

A.4 Proof of Lemma 2

e p=pVpy

(h.t) = (p1V p2) [rexp/n]
— % Def. 25
(h,t) & (p1 [rexp/n] V py [rexp/n])
— % Def. 20
(h.t) |= pi[rexp/n] or (h.t) |= p2[rexp/n]
= % Induction
((h:n~>rexp),t) Epror ((h:n-~>rexp),t) = ps
— % Def. 20
((h:n~>rexp),t) |Ep1V p2

~

o p=p U py:

(ht) & (p1 u p2) [rexp/n]
— % Def. 2
(h.t) = (p1[rexp/n] U py[rexp/n])
— % Def. 20
dtg > t: (h,to) |E p2[rexp/n] and Yt, € (t,t0) : (h,t1) |= p1 [rexp/n]
= % Induction
dtg >t : ((h:n~rexp),to) = p2
and Vt; € (t,t0) : ((h :n~ rexp),t;) Em
— % Def. 20
((h:n~rexp),t) Epr U ps

~

o p=p; S pa:

(ht) & (p1 S p2) [rexp/n]
— % Def. 2
(h.t) = (p1[rexp/n] S pa[rexp/n])
— % Def. 20
dtg < t:(h,to) |E p2[rexp/n] and Yti € (to, 1) : (h,t1) |= p1 [rexp/n]
= % Induction
dtg <t:((h:n~>rexp)to) = p2
and V11 € (to,t) : ((h:n -~ rexp),t;) Em
— % Def. 20
((h:n~rexp),t) Ep1 S pa

161

Proofs of Dense Model Theorems

o D=

o D=

o D=

dx.py -

(1) E (3x.p1) [rep/n]
— % Def. 2

(h,t) = 3x.(p1 [rexp/n])
— % Def. 20

Jhy hy x-variant of h and (hy,t) = p1 [rexp/n]
= % Induction

dhy by x-variant of h and ((hy : n~ rexp),t) E p
= % hy = (hy:n~>rexp),hs = (h:n-~rexp)

hy x-variant of h i1 f f hy x-variant of hs

Jhy : hy x-variant of hs and (ha,t) = py
— % Def. 20

((h:n~rexp),t) E Ix.;m

de.py:

(h.1) E (@epn) [reap/n]
— % Def. 2

(h,t) = Fe.(p1 [rexp/n])
— % Def. 20

dhy : hy e-variant of h and (hy,t) | py [rexp/n]
= % Induction

Jhy : hy e-variant of h and ((hy : n ~ rexp),t) = m
= % hy = (hy:n~>rexp),hs = (h:n-~rexp)

hy e-variant of h 1f f hy c-variant of hs

Jhy : hy e-variant of hs and (ha,t) E py
— % Def. 20

((h:n~>rexp),t) E Je.;m

dng.p1: for ng € varrexpU {n}

(h.1) E (3no.p1) [rexp/n]
= % Def. 25
(h,1) | 3no.(p1 [rexp/n])
= % Def. 20
dhy : hy ng-variant of h and (hy,t) | py [rexp/n]
= % Induction
Jhy : by ng-variant of h and ((hy : n~ rexp),t) E m
= % hy = (hy:n~>rexp),hs = (h:n-~rexp)
hy ng-variant of h o f f hy ng-variant of hs
Jhsy : hy ng-variant of hs and (ha,t) E p1
— % Def. 20
((h:n~>rexp),t) E Ing.pr

162

A.4 Proof of Lemma 2

ot b pleveap/e] iff (h: €~ eveap),t) = p

Proof by induction on structure of p:

o D=

o D=

o D=

o D=

true:

(h,t) | true [evexp/¢]
= % Def. 25
(h,t) E true
= % Def. 26
((h: €~ evexp),t) | true

(expr = expy):

(h,t) | (expr = cxps) [eveap/e]
— % Def. 25
(1) cop = caps
— % Def. 20
(h,t) = expy = (h,t) |= exps
— % Def. 26
((h: e~ evexp),t) E expr = ((h: €~ evexp),t) = exps
— % Def. 20
((h: e~ evexp),t) E exp = expy

(expr < expy):

(h,t) = (expy < exps) [evexp/e]
— % Def. 25
(h,1) | expr < expy
— % Def. 20
(h,t) | expr < (h,t) | exps
— % Def. 26
((h: e~ evexp),t) E expr < ((h: e~ evexp),t) = exps
— % Def. 20
((h: e~ evexp),t) E expr < expy

(evexp; = evexps):

(h,t) E (evexp, = evexpy) [evexp/e]
— % Def. 25
(h,t) E evexp, [evexp /€] = evexpy [everp, /€]
— % Def. 20
(h,t) E evexp, [evexpi/e] = (h,t) |E everps [everps/¢]
= % Lemma 2c
((h: e~ evexp),t) E evexrpy = ((h: € ~ evexp),t) = evexps
— % Def. 20

((h: e~ evexp),t) E evexrp = everpy

163

Proofs of Dense Model Theorems

[] p: —|p1:

(h,t) E (=p1) [evexp/e]
— % Def. 25
(1) = ~(p1 [eveap/])
— % Def. 20
not (h,t) = p1 [evexp/€]
= % Induction
not ((h: e~ evexp),t) = py
— % Def. 20
((h: e~ evexp),t) E ~pm

e p=pVpy

(h,t) | (p1 V p2) [eveap/d]
— % Def. 25
(h,t) |= (p1 [evexp/e] V pa [evexp/d])
— % Def. 20
(h,t) | p1[evexp/e] or (h,t) |= p2[evexp/e]
= % Induction
((h: e~ evexp),t) E p1 or ((h: e~ evexp),t) = pa
— % Def. 20
((h: e~ evexp),t) Ep1V pa

~

o p=p U py:

(h,t) | (p1 U p2) [evexp/e]
— % Def. 25
(h.1) E (n [eveap/d] T ps [eveap/c)
— % Def. 20
dtg > t: (h,to) = p2 [evexp/e] and Vi, € (t,t0) : (h,t1) |E p1 [evexp/€]
= % Induction
o >t : ((h: e~ evexp),to) E p2
and Yty € (t,t0) : ((h: e~ evexp),t1) E m
— % Def. 20
((h: e~ evexp),t) Ep1 U py

164

A.4 Proof of Lemma 2

o D=

o D=

o D=

P gpz-'

(h,t) E (p1 S p2) [eveap/]
— % Def. 25
(h.t) = (pi [eveap/d S paleverp/d)
— % Def 20
dtg < t:(h,to) |E p2[evexp/e] and Vi, € (to, 1) : (h,t1) |E p1 [evexp/e]
= % Induction
o < t:((h:e~s evexp),to) E p2
and Vi1 € (to,t) : ((h: e~ evexp),t1) E m
— % Def. 20
((h: e~ evexp),t) Epr1 S po

dx.py -

(1) E (Fxpr) [everp/d
— % Def. 2
(1) | 35 (1 [eveap/ <)
— % Def. 20
Jhy : hy x-variant of h and (hy,t) |= p1 [evexp/e]
= % Induction
dhy : hy x-variant of h and ((hy : € ~ evexp),t) = py
= % hy = (hy e~ evexp),hs = (h: e~ evexp)
hy x-variant of h i1 f f hy x-variant of hs
Jhy : hy x-variant of hs and (ha,t) = py
— % Def. 20
((h: e~ evexp),t) E Ix.py

deo.p1: for eo & evar(evexp) U {e}:

(h.t) E (Jeo.p1) [eveap/e]
= % Def. 25
(h,t) = Jeo.(p1 [eveap/e])
= % Def. 20
Jhy : hy €g-variant of h and (hy,t) | p1 [evexp/e]
= % Induction
Jhy : hy eg-variant of h and ((hy : € ~ evexp),t) E p1
= % hy = (hy e~ evexp),hs = (h: e~ evexp)
hy eg-variant of h o f f hy €g-variant of hs
Jhy : hy €g-variant of hs and (ha,t) = py
— % Def. 20
((h: e~ evexp),t) E Jeo.;m

165

Proofs of Dense Model Theorems

o D= Elno.pl:

(1) E (@) [eveap/d
— % Def. 2
(1) | 3n.(pn [eveap/d])
— % Def. 20
dhy by n-variant of h and (hy,t) | p1 [evexp/e]
= % Induction
Jhy by n-variant of h and ((hy : € ~ evexp),t) |E m
= % hy = (hy e~ evexp),hs = (h: e~ evexp)
hy n-variant of h i f f hy n-variant of hs
Jhsy : hy n-variant of hs and (ha,t) E py
— % Def. 20
((h: e~ evexp),t) E In.;m

A.5 Proof of Lemma 3

Lemma 3
Given a machine in DTL (B, 1ANUT) then there exists a semantic machine M = (B, I,T)
such that Comp(M) = Hist(IAOT).

Proof 19

Let I = {c €% |3h:0=0,0)Ah}=1} and

let T £ {(5,00,01) € AxX? | 3h: 3t : Stepy(t) = (8,00, 01)AStep,(t) € STUNR =0T}
then Hist(IAUOT) = Comp(M). Proof:

Hist(IAOT)
— % Def. 21
{heH |hEIALT}
— % Def. 20
{heH|hETIAVL: (ht) T}
= % Def. 28, def. of I andT
{h € H|0,(0) € I AVL: Step(t) € STUV Stepy(t) € T}
— % Def. 16
Comp(M)

A.6 Proof of Lemma 4

Lemma 4
Given DTL machine specification of a system (B,IANUT AL) then there exists a semantic
machine specification S = (B, Comp(M)N L) such that Comp(M)NL = Hist(INOTAL).

Proof 20
Let I = {c €% |3h:0=0,0)Ah}=1} and
let T £ {(5,00,01) € AxX? | 3h: 3t : Stepy(t) = (8,00, 01)AStep,(t) € STUNR =0T}

166

A.7 Proof of Lemma 5

and
let L £ Hist(L) then HistIAOT AL) = Comp(M) N L. Because of machine closedness
c(Comp(M) N Hist(L)) = Comp(M). Proof:

Hist(IANOT A L)
= % Def. 21
{heH|hEIAOT} N Hist(L)
= % Def. 20
{heH|hETIAVL: (ht)|ET}N Hist(L)
= % Def. 28, def. of I, T and L
{h € H|0,(0) € I AVL: Stepy(t) € STUV Stepy(t) e TN L
= % Def. 16
Comp(M)N L

A.7 Proof of Lemma 5

Lemma 5 (Properties of O and Q)
Given systems (By, Ho), (By, H1), (Ba, Ha) and (B, Hs3) then

Hy C Hy implies Ho@ Hy C Hi @ H,
Ox,, (Hi @ H2) = Ox, (H1) ® Ox, (Ha)
Hy C Hy implies Ox,(Hy) C Ox,(Hy)
(HoN H)®(H2N Hs) C (Ho @ Hay) N (H1 Q H3)

N TN N N
2L O O

Proof 21

(Cl) HO g H1 Zmphes H0®H2 g H1 ®H2

he Hy® H,
= % Def. 32

dhy € Ho, hy € Hy. @ (h, by, he)
— % Hy C Hy

dhy € Hy,hy € Hy. @ (h, by, hy)
= % Def. 32

he H Q H,

(b) OX12(H1 b HQ) = OXl(Hl) b OX2(H2)

167

Proofs of Dense Model Theorems

h € OX12(H1 b HQ)
= % Def. 30
dhs € Hi Q Hy : h Xy U Xg-variant of ha
= % Def. 32
Elhl,hg,hg . hl - ObSl A hz - ObSQ A ®(h3,h1,h2)
ANh X1 U Xg-variant of hs
= % = hs,thy = Py, 05 =ty
0|(227U3€)\(X1UX2) = 03|(2WU%)\(X1UX2)7
‘94|(2mu35)\X1 = ‘91|%mu35)\X17
‘95|(2mu36)\x2 =0, %muas)\XQ
03:01:02,0:04:05
3h1,h2,h4,h5 . hl € H1 A hz - H2 A ®(h,h4,h5)
hy Xi-variant of hq A hs Xg-variant of ho
= % Def. 30
Elh4 - OXl(Hl),hg, - OX2(H2) . ®(h,h4,h5)
= % Def. 32
h € OXl(Hl) b OX2(H2)

(¢) Ho C Hy implies Ox,(Hy) C Ox,(H,)

h € OXl(HO)
= % Def. 30

dhy : hy € Hg A h Xy-variant of hy
— % Hy C Hy

dhy : hy € Hy A h Xy-variant of hy
= % Def. 30

h € OXl(Hl)

(d) (HoN Hy)®(HyN Hs) C (Ho® Hy) N (Hy @ Hs)

h e (HoNHy)Q(Hy N Hj)
= % Def. 32

dhy,hy i hy € (Ho N Hy) A hy € (Hy N Hs) A @(h, by, hs)
— % Calculus

dhi,hy i hy € Ho AN hy € Hy AN @(h, hy, hy)

AJhi,hy i hy € Hi Ahy € Hs AN @(h, hy, hs)
= % Def. 32

he HHQHy, Nh e HH Q Hs

A.8 Proof of Theorem 3

Theorem 3 (Compositional refinement)

Gliven concrete systems S; = (B;, H;) (1 = 1,2) and abstract systems S; = (B;, H;) (j =
3,4) such that O(By) = 9(Bs) and O(By) = 9(By) then S; ref S; and Sy ref Sy implies
S1 || S ref S5 || Sa.

168

A.9 Proof of Lemma 6

Proof 22

81 H 82 ref 83 H 84

== % D@f 31,32,D(B1) = D(Bg),D(BQ) = D(B4)
Ox,,(H; ® Hy) C Ox,,(Hs Q@ Hy)

= % Lemma 5(b)
OXI (Hl) b OX2(H2) C OXS(H3) b OX4(H4)

= % Ox,(Hy) C Ox,(Hs) with Lemma 5(a) gives

(
OXI (Hl) ® OX2 (HQ) - OXS (H3) ® OX2(H2)
Ox,(H3) C Ox,(Hy4) with Lemma 5(a) gives
OXS(H3) OX2(H2) - OXS(H3) ® OX4(H4)

true

A.9 Proof of Lemma 6

Lemma 6
Given DTL machine specification S = (B,1 ANUT A L) then Ox(Hist(IAUT A L)) =
Hist(IX.(IAOT A L)))

Proof 23

Hist(IX.(IAOT A L)))
— % Def. 21
{h|h=3X.(IALTAL))}
— % Def. 20
{h | 3hy : hy X-variant of h AN hy ETAUT AL}
— % Def. 21
{h | 3hy : hy X-variant of h AN hy € Hist(IANTT A L)}
— % Def. 30
Ox(Hist(IANOT A L))

A.10 Proof of Theorem 4

Theorem 4 (Refinement of machine specifications)

Given concrete machine specification S, = (B, I. AOT. A L.) where B, = (B, (V.,X.))
and abstract machine specification S, = (B., 1, AOT, A Ly,) where B, = (B (V.,X,)).
Then S. refines S, denoted S. ref S, iff

O(B.) = 9(B,) and
(3IX.. (1. AOT. A L)) — (3X,. (I, AOT, A L))

169

Proofs of Dense Model Theorems

Proof 24

S, ref S,
= % Def. 31

O(B.) = O(B,)

Ox, (Hist(I.ANOT. A L)) C Ox, (Hist(I, A\ OT, ALy))
= % Lemma 6

O(B.) = O(B,)

Hist((3X.. (I. AOT. A L)) C Hist((3X, . (I, AOT, A Ly)))
= % Def. 20 and 21

O(B.) = O(B,)

E(3X.. (I.AOT. A L)) — (3X,. (I, AOT, A L))

A.11 Proof of Theorem 5

Theorem 5 (Semantic merge is almost conjunction)
Given machine system specifications (B;, 1; \UT; A L;) where B; = ((In;, Out;), (Vi, X;)),
for i = 1,2 and composed machine system specification as in definition 35, i.e., (B,H)

where U £ 361,62.B{4 ©pa (e,er,2) A (I AOTE A Ly)[er/e] A (I AQTy A Ly) [e2/€] and
B é ((Iﬂl \ Out2 U IH2 \ Outl, Out1 \ IH2 U Out2 \ Iﬂl), (V1 U VQ,Xl U Xg)) then

Proof 25

h € Hist(H)
— % Def. 20
3hy : hi{er, ea}-variant of hA
hi | BA©pa (e,) AT AOTL ALy) [er/e]) A (To AOT A Lg) [e2/¢]
= % Def. 20 and 25
3hy : hi{er, ea}-variant of hA
hy |: B ®B5“ (67 €1, 62)/\
(h:e~¢)EL ALT ALIA
(h:e~) ELALT AL
= % 01 =0,hg=(h1:€c~ €1),hg=(h1:ec~ ¢),
B(0(6) = B, er(D)(er) = (1)), ta(D)(e2) = a(1)(0)
i.e., hi{er, ea}-variant of h A hy = BA©pa (e,€1,€) iff @ (h,hs,hs)
Jhs, by hs E L AOT A LA
hy =TI AOT2 A LA
@ (R, hs, hy)
— % Def. 21
h e Hist(Iy A OT; A L) @ Hist(Io AOT; A L)

170

A.12 Proof of Theorem 6

A.12 Proof of Theorem 6

Theorem 6
Given machine specification S = (B,H) and given set of shared variables Vi C V then

Eney,(Hist(H)) = Hist(HA (e =e = V| =V}))

Proof 26

h € Ency, (Hist(H))
— % Def. 33

he Hist(H)AVE: () (e) =e — 0(1)]y, = lim ()],
= % Semantics. of (e =e = V| =V)

h € Hist(H)Ah € Hist(e=e = V| = V)
= % Calculus

h e HisttHAN(e=e= V] =Vy))

A.13 Proof of Lemma 7

Lemma 7
Given concrete system S, = (B., H.) and abstract system S, = (Ba, Hy) s.t. 9(B.) =
O(B,). If there exists a refinement mapping from S. to S,, then S, ref S,.

Proof 27

S, ref S,
— % Def. 31
O(B.) = 9(B,) and
Ox.(H.) C Ox,(H,)
— % 9(B.)=9(B.)
Ox.(H.) C Ox,(H,)
— % Def. 37, i.e. Ox, (f(H.)) C Ox,(H,),Ox (H.) = Ox, (f(H.))

true

A.14 Proof of Lemma 8

Lemma 8
Given concrete machine specification Se = (B.,Comp(M.) N L
A JR—

chine specification S, = (B,,Comp(M,) N L,) s.t. O(B.)
refinement mapping from S, to S, then S, ref S, .

¢) and given abstract ma-
O(B,). If there exists a

Proof 28
We first prove the following result:

171

Proofs of Dense Model Theorems

For all h, € Comp(M.,), there exists a h, € Comp(M,) s.t. for all t € R2°, (.(t),0.(1)) =
($a(t), 0(1)a) and f(0.(t)) = Oa(t).

h. € Comp(M.)
- % Def. 16

0.(0) € I.A

VL (L), 0.(0). FimB(1) € T,V (6(0)(c) € DAk e} A 0(1) = limd (1))
% Def. 38

F(0:(0)) € I

AVE: (alt), F(0:(1)), lim F(0:(11))) € TuV

¢
(Pa(t)(e) € {A,1 e}Af((1)) = lim f(0(t1)))
= % Def. 16
ha € Comp(Ma) AV (1he(t), 0.(1)) = (a(t), 0()a) A f(0(1)) = ba(t)

The proof of Lemma 8 is then as follows:

S, ref S,
— % Def. 31
O(B.) = 9(B,) and
Ox (Comp(M) N L) €
= % O(B.) = (a)
Ox.(Comp(M.) N L) C Ox, (Comp(M,) (1 L)
— % From Def. 37 f(Comp()NL)C L,
Property of f. [(Comp(M.) 1 L) C f(Comp(M.),
by above result, f(Comp(M.)) C Comp(M,),
Resulting in , f(Comp(M.)N L.) C Comp(M,)N L,
From Lemma 5(¢), Ox,(f(Comp(M.)N L.)) C Ox, (Comp(M,)N L,),
From Def. 37, Ox (Comp(M.) N L.) = Ox, (f(Comp(M.) N L))

X, (Comp(M,)N L,)

true

A.15 Proof of Theorem 7

Theorem 7 (Compositional relative refinement)

Gliven concrete systems S; = (B, H;) (1 = 1,2) and given set W. constraining Bz (the
basis of Sy || S2). And given abstract systems S; = (B, H;) (j = 3,4) and given set W,
constraining Bsy (the basis of Ss || S4). Then the following holds:

HQH,NWaQQW, C(HINWa)Q(H, N W)

Wc g Wcl ® Wc2

Wiz ® Wa4 c W, We; constraining B; (i=1,2)
Sy w, ref Ve Sy W, constraining B; (j=3,4)
Sy wref Vet S,

81 H 82 WCI'Ef Wa 83 H 84

172

A.16 Proof of Lemma 9

Proof 29
Assume agreement on the bases. Then according to Def. 39 and 40 we must infer from the

assumptions that Ox,,(H1 @ HyNW,) C Ox,,(HsQ Hi N W,).

Ox,,(H; @ Hy N W,.)
C % HIQH, "Wy Q@W, C(HI NWa)Q(H,N W)
Wc g Wcl ® Wc2
Lemma 5(¢)
Ox,, (Hi N W) @(Ha N Wep))
% Sy w, ref Was S,
Sy w,,ref Y S,
Lemma 5(a), (b)

Oxa (Hs N Was) @(Ha N W)
% Lemma 5(c), (d)

Ox,,(Hs Q@ Hi N W3 @ Wiay)

% Wa3®Wa4 g Wa
Lemma 5(¢)

Oxay (Hz @ Hy N W,)

1M

1M

1M

A.16 Proof of Lemma 9

Lemma 9
Given systems S; = (B;, H;) and sets W; constraining B; (i = 1,2) with no restrictions on
the event variables. Then the following holds:

(Hy 0 W) Q(Hy N W) = Hy R Hy Wy R W,

Proof 30
From Lemma 5(d) we infer (Hi N W) Q(Hy N W) C Hi Q@ Hy N W1 @ Wy so we must
prove H1 @ Ho N W1 Q@ Wy C (Hy N W1) Q(H2 N W3).

he HHQH, N W, Q W,
= % Def.32
Elhl,hg . hl € H1 A hz € H2 A ®(h,h1,h2)
/\Elhg,h4 : h3 € W1 A h4 € W2 A ®(h,h3,h4)
— % W, puts no restriction on ¢ variables,§ = 05 = 0,
Elhl,hg . hl € H1 A hz € H2 A ®(h,h1,h2)
Nhe Wi ANhe W,

= % Cale.
Elhl,hg . hl € H1 /\hz € H2 /\h - W1 /\h - W2 /\@(h,hl,hz)
— % W, puts no restriction on ¢ variables, = 0, = 05,

W, constrains B;
dhi,hy i hy € HHOWL Ahy € HyN Wy A@(h, by, hy)
= % Def. 32
h e (HiNW)Q(Hx N W)

173

Proofs of Dense Model Theorems

A.17 Proof of Lemma 10

Lemma 10

Gliven concrete systems S; = (B, H;) (i = 1,2) and given set W, constraining By2. And
given abstract systems S; = (Bj, H;) (7 = 3,4) and given set W, constraining Bss without
restricting the ¢ variables. Then the following holds:

HH,NWa Q@ W, C(HINWa)Q(H, N W)
Wc g W01®Wc2

St w, ref e Ss We; constraining B; (i=1,2)
Sy wref VS,

81 H 82 WCI'Ef Wa 83 H 84

Proof 31
Assume agreement on the bases. Then according to Def. 39 and 40 we must infer from
the assumptions that Ox,,(Hi @ Hx NW,.) C Ox,,(Hs Q@ HiNW,). We will first prove the
following:

OX34((H3 N Wa) ®(H4 N Wa)) C OX34(H3 ® Hyn Wa)

h € Ox, (HsNW,)Q(HsNW,))
= % Def. 30
Jdhy i hy € (HsNW,) Q(Hy NW,) A h Xsg-variant of hy
= % Def. 32
Jhy : (Fhs,hy s hs € (HsNWo) A hy € (HiNW,o) A @(hy, hs, hy))
Ah Xsy-variant of hq
— % 01 =03=0,W, doesn’t restrict the ¢ variables
dhy i (Fhs,hy i hs € Hs ANhy € Hy N hy € Wy A @(ha, hs, hy))
Ah Xsy-variant of hq
= % Cale.
Jhy i (Fhs,hy s hs € H3 A hy € Hy AN @(hy, hs, hy))
Nhy € W, A h Xazgq-variant of hq
= % Def. 32
dhy i hy € H3 Q@ Hy N W, A h Xazq-variant of hq
= % Def. 30
h € Ox,(Hs:Q HiN'W,)

174

A.18 Proof of Lemma 11

The proof of the Lemma is then as follows:

Ox,(HHQ H:NW.)
C % HQH, "Wy Q@Wo C(HI NWa)Q(H, N W)
Wc g Wcl ® Wc2
Lemma 5(¢)
Ox,, (Hi N Wer) @(Ha N Wer))
- % Sy w, ref We S,
Sy w,,ref VS,
Lemma 5(a), (b)
Oxoy ((Hs N Wo) @(Hs 0 W,))
- % Above result
Ox,,(Hs: Q@ Hin'W,)

A.18 Proof of Lemma 11

Lemma 11
Given sets W; (1 = 1,2) not restricting the € variables then

W1®W2 :W1QW2.

Proof 32

heW W,
= % Def. 32

dhy,hy i hy € Wi A hy € Wy A @(h, by, hy)
= % W; don’t restrict € variables, i.e.

@(hyh1,he) > h =hy = hy

Elhl,hzihlEWl/\hQEWQ/\h:hlth
= % Calc.

h e W, NnWw,

A.19 Proof of Theorem 8

Theorem 8 (Relative refinement of DTL machine specifications)

Given concrete machine specification S, = (B.,I. ANOT. A L.) and DTL formula W,
over B. and abstract machine specification S, £ (B., 1. A\UT, A L,) and DTL formula
W, over B,. Let G, = I.AOT. AL. AW, and G, = 1, AOT, AL, A W,. Then
Se Hist(w.ref HistWe) S iy

O(B.) = 9(B,) and
= (3Xe (Ge)) = (FXa - (Ga))

175

Proofs of Dense Model Theorems

Proof 33

Se Hist(w,ref Hist(Wa) g,
= % Def. 39

O(B.) = O(B,)

Ox, (Hist(I. AOT. A L) N Hist(W.))

C Ox, (Hist(I, AOT, A L) N Hist(W,))
= % Def. 21 and 20

O(B.) = O(B,)

Ox (Hist(I. NOT. AL AW.)) C Ox, (Hist(I, A\OT, AL, AW,))
= % Theorem 4

O(B.) = O(B,)

E(3X.. (I.AOT. AL AW,)) = (3X,. (I, AOT, AL, AW,))

A.20 Proof of Theorem 9

Theorem 9 (Relative composition corresponds to semantic merge)

Given machine system specifications (B;, 1; \UT; A L;) where B; = ((In;, Out;), (Vi, X;)),
and given DTL formulae W; over B; fori = 1,2 and let W = (Hist(W.), Hist(W,)) and
given the relative composed system as in Def. 41, i.e., (B,H) where B = ((In; \ Outy U
Iny \ Outy, Outy \ Ing U Outy \ Ing), (V1 UV, X3 UX3)) and H £ Jey, 62.(]3{4@354 (€, €1, €) A
(I AOTy ATy AWy [e/e] A (TIo AT A Ly A W) [e2/€]) then

Proof 34

Hist(I; AOT; A L)@ Hist(I, AOT, A L)
= % Def. 40

(Hist(I, AOT, ALy N Hist(W1) @(Hist(Io AOTy A Ly) N Hist(Ws))
= % Def. 21 and 20

(Hist(I; A\OTy AL AW))Q(Hist(Io AOTy A Ly A Wy))
= % Theorem 5, def. of H

Hist(H)

A.21 Proof of Lemma 12

Lemma 12
Given machines M = (B,1,T) and My = (B,1;,T}). Define machine My as (B, I, T,

where I, and Ty are as follows:
o [, = INiy, and
o I, =TNT.
Then Comp(My) = Comp(M) N Comp(My).

176

A.22 Proof of Lemma 13

Proof 35

h € Comp(M) N Comp(M,)
— % Def. 16

6(0) € INO(0) € [,

(Vt: Step, € TV Step, € STU) A (Vi : Stepy, € Ty V Stepy, € STU)
= % Calculus

0(0) e INL

Vt: Step, € TNTyV Step, € STU
— % Def. 16

h € Comp(M,)

A.22 Proof of Lemma 13

Lemma 13

Given concrete machine specification S. = (B, Comp()NL:) and set W, = Comp(M.,)
NL., and given abstract machine specification S, = (By, Comp(M,) N L,) and set W, =
Comp(My1) N Lyy s.t. O(B.) = O(B,). If there exists a relative refinement mapping from
S. to S, then S, w.ref " S,.

Proof 36
We first prove the following result:
For all h, € Comp(M.) N Comp(M.1), there exists a hy € Comp(M,) N Comp(M,1) s.t.

Jor all t € B2, (4b.(1),0.(1)) = (¥a(t),0(t)a) and f(0.(1)) = a(1).

h. € Comp(M.) N Comp(M.)
— % Def. 16

0.(0) € I.N I 4N

Vit ((1), Gc(t),girﬁﬁc(tl)> ET.NTaV (Yt)(e) € {\1,e} NO.(1) = }Hﬂac(h))
— % Def. 42

f(0:(0)) € I, N 1y

ALz (a(), J(0:(1)), lim (0:(11))) € To N TarV

[
(a(t)(e) € {1 e}/\f((1)) = lim f(0(t1)))
— % Def. 16
he € Comp(M,) N Comp(M,1)

AL (e(1), 0e(1)) = (a(1), 0(t)a) A F(O:(1)) = ba(1)

177

Proofs of Dense Model Theorems

The proof of Lemma 13 is then as follows:

S. w.ref Ve S,
= % Def. 39, Def. W, and W,
O(B.) = 9(B,) and
Ox (Comp(M.) N Comp(Mz) N LN Ley)
C Ox,(Comp(M,) N Comp(Ma1) (VLo (O Lay)
= % O(B.)=9(B,)
Ox (Comp(M.) N Comp(Mz) N LN Ley)
C Ox,(Comp(M,) N Comp(Ma1) (VLo (O Lay)
— % From Def. 42,
F(Comp(M.) N Comp(Me) VLo N Ley) € Ly N Loy
Property of f,
f(Comp(M.) N Comp(Ma)N LN L) C f(Comp(M.) N Comp(M.)),
by above result,
f(Comp(M.) N Comp(M.)) C Comp(M,) N Comp(M,1),
Resulting in |
f(Comp(M.) N Comp(Ma) N LN Ley)
C Comp(M,) N Comp(Mu1) N Ly N Ly
From Lemma 5(¢),
Ox, (f(Comp(M.) 0V Comp(Mey) (V Le O Ley))
C Ox, (Comp(M,) N Comp(Ma1) N Ly N La1),
From Def. 42,
Ox (Comp(M.) N Comp(Ma) N LeN L)
= Ox.(f(Comp(M.) N Comp(Mc1) (VLo O Ley)

true

178

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

