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Abstract

This thesis introduces a compositional dense time temporal logic for the
composition and re�nement of reactive systems� A reactive system is
speci�ed by a pair consisting of a machine and a condition on the com�
putations of this machine� In order to compose reactive systems� each
step in a computation has additionally composition information such as
�this is a system step� or �this is an environment step or �this is a com�
munication step� By de�ning a merge operator that merges two steps
into one step compositionality is achieved� Because a dense time tempo�
ral logic is used re�nement can be expressed easily in this logic� Existing
proof rules for re�nement are reformulated in our formalism� The no�
tion of relative re�nement is introduced to handle re�nement of systems
that only under certain conditions are considered to be correct re�ne�
ments� The proof rules for �normal re�nement are extended to handle
relative re�nement of systems� Relative re�nement is used to formalize
Dijkstra�s development strategy for the solution of the readers�writers
problem and to formalize a development strategy for certain fault tol�
erant systems� This development strategy is applied to the development
of a fault tolerant storage system�
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Chapter �

Introduction

C
urrent formal methods are far from solving the problems in software development�
The simplest view of the formal paradigm is that one starts with a formal speci�
�cation and subsequently decomposes this speci�cation in subspeci�cations which

composed together form a correct re�nement� These subspeci�cations are decomposed into
��ner� subspeci�cations� This re�nement process is continued until one gets subspeci��
cations for which an implementation can easily be given� This view is too idealistic in
a number of respects� First of all� most speci�cations of software are wrong �certainly
most informal ones� unless they have been formally analyzed� and contain inconsisten�
cies 	PWT
��� Secondly� even if a formal speci�cation is produced� this is only after a
number of approximation steps because writing a correct speci�cation is an even more
dicult process than producing a correct implementation� and should therefore be struc�
tured� resulting in a number of increasingly less abstract layers with speci�cations which
tend to increase in detail �and therefore become less readable 	LGdR�
��� Thirdly� even
an incorrect re�nement step may be useful in the sense that from this incorrect re�nement
step one can sometimes easier derive the correct re�nement step� This is especially the
case with intricate algorithms such as those concerning speci�c strategies for solving the
mutual exclusion problem� An interesting illustration of this third view is provided by
E�W� Dijkstra�s �Tutorial on the split binary semaphore� 	Dij�
� in which he solves the
readers�writers problem by subsequently improving incorrect re�nement steps till they are
correct� If this master of style prefers to approximate and �nally arrive at his correct solu�
tion using formally �incorrect� intermediate stages� one certainly expects that a formally
correct development process for that paradigm is dicult to �nd� The strategy described
in 	Dij�
� is necessarily informal� re�ecting the state of the art in �
�
�

In Chapter � a dense time formalism is introduced for the speci�cation and veri��
cation of re�nement of systems based on 	BKP��� DK
�� KMP
�� Sta��� Sta��� Sta����
This formalism will be used to describe above strategy of incorrect intermediate stages�
A dense time formalism is used because it allows one to deal with the stutter�problem
�explained in section ���� and it enables one to express hiding of �internal� variables
by existential quanti�cation� Instead of using the assumption�commitment approach of
	AL
�a� AL
�b� Jon��� MC��� PJ
�� Pnu��� Sti��� St�
�� WD��� ZdBdR��� ZdRvEB���
� uni�ed in 	XCC
�� CC
��� in order to achieve compositionality an event variable is used
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that stores �compositionality information� like �this is a system step� or �this is an en�
vironement step� or �this is a communication step�� A merging operator� �rst version
de�ned in 	Acz���� based on the one de�ned in 	CC
�� is introduced to merge this �com�
positionality information� of the components into �compositionality information� of the
composed system� The use of event variables has as second advantage that existing proof
rules for re�nement like those in 	Lam
�� KMP
�� can easily be extended to our frame�
work� The notion of relative re�nement is introduced to handle �incorrect� development
steps� The system speci�cation is therefore extended by a requirement that extracts the
�good� computations of the system� The re�nement proof rules are extended to handle
relative re�nement so that the correct part of incorrect development steps can be proven
correct�

In Chapter � we present Dijkstra�s development strategy of the readers�writers prob�
lem 	Dij�
� in our formalism� A preliminary version of this formalization� without proofs�
appeared in 	CKdR
�� using the original formalism of 	Sta���� Our formalism preserves
the �avour of the informal strategy in that it formalises Dijkstra�s argumentation in terms
of incorrect approximations to a correct program and provides a formal criterion for recog�
nising when a formally correct end product� the correct program� has �nally been reached�

In Chapter � we present a formal development strategy for the development of certain
fault tolerant systems using our notion of relative re�nement� A preliminary version of
this strategy appeared in 	CdR
�b� CdR
�a� using the original formalism of 	Sta���� The
formal strategy is as follows� one starts with an implementation for a speci�ed fault tolerant
system� This implementation contains some faults� i�e�� the re�nement step is incorrect
because of these faults� It is however relative correct because when these faults don�t
occur it is a correct implementation� In the next step we try to detect these faults�
i�e�� we construct a detection layer upon the previous implementation that stops that
implementation when it detects an error caused by these faults� This is called a fail�stop
implementation 	LA
�� and represents an improvement over the previous implementation
because now at least the implementation stops on the occurrence of such a fault� The
second implementation is also relatively correct because no occurrence of faults and the
detection layer doesn�t detect any error due to a fault then the second implementation is
correct� In the third approximation we recover these errors� i�e�� we don�t stop anymore
upon the detection of an error but merely recover the error by executing some special
program that neutralizes that error� This third approximated re�nement step is correct
under the assumption that certain conditions are ful�lled� which exclude the occurrence
of faults di�erent from those whose errors are neutralized� i�e�� it is again relative correct�
This strategy is used for the development of a fault tolerant storage system� a so called
stable storage�
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A Dense Model Formalism

��� Introduction

I
n this chapter we present a re�nement method for reactive systems� A system
is called reactive if it maintains some ongoing interaction with its environment�
for example an operating system� This contrasts with transformational systems

where from some input without further interaction output is produced� Because of this
characteristic reactive systems should be described as sets of behaviours �histories�� The
underlying model for these behaviours is dense� The method which we present is based
on the work of E�W� Stark 	Sta��� Sta��� Sta���� Here we present a framework which
can model both CSP based and shared variable based concurrency� using the work of
	BKP��� DK
�� KMP
���

In section ��� reactive systems are speci�ed by sets of histories together with a basis� A
history is pair consisting of an event and a state function� The domains of these functions
are the non�negative real numbers �the underlying dense model�� The event function
maps each non�negative real number to an event �an action occurring during the operation
of the system and its environment� and the state function maps each real number to
a state of the system and its environment� The intuition is that an occurrence of an
action causes �potentially� a state change as illustrated in Figure ���� The basis is a pair
consisting of an action basis and a process basis� where the action basis speci�es the input
and output channels over which the system communicates with its environment and the
process basis speci�es the local �only accessible by the system� and shared �accessible by
both system and its environment� variables� Due to this basis composition of reactive
systems corresponds to conjunction� Note that in for instance Lamport�s work on TLA
	Lam
�� Lam
�� Lam� this is not always the case� x �� �kx �� � must be modeled as
disjunction because conjunction leads to a �one process� speci�cation x �� �� In our model
however� it can be modeled as conjunction because the speci�cation of one component
also contains environmental information� especially about the other component� With a
�conjoining� operator the histories of both components are merged into a history of the
composite one� This conjoining operator based on 	CC
�� corresponds in our model almost
to conjunction and is actually an extended version of Aczel�s one 	Acz��� because it also
can handle CSP based concurrency whereas Aczel�s one can only handle shared variable
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based concurrency�
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Figure ���� This picture illustrates the notion of state and event function� which together characterize
the notion of computation of a machine� It illustrates the following computation� initially �s� x� � ��� ���
the event a� changes x into �� i�e�� s doesn	t change� In the interval 
�� t�� there are only � events� The
event i at point t� changes �s� x� into ��� ��� at point t� the event e changes s into � and at point t� the
event i doesn	t change s or x�

A notion of a machine is introduced for generating these histories� i�e�� a history is a
computation generated by a machine� With this machine notion only safety properties� i�e��
sets of histories generated by a machine� of a system can be speci�ed� so an extra condition
on the computations of this machine is introduced for specifying liveness properties of the
system�

The use of real numbers as domain for the event and state function handles the stutter
problem� This problem� �rst observed by Lamport 	Lam��� Lam�
�� is as follows� Given
two behaviours of a system� let the �rst behaviour contain only consecutive snap�shots of
the system that di�er from each other whereas the second behaviour contains the same
snap�shots but also some consecutive ones that are identical� This is called stuttering�
From the viewpoint of an observer these behaviours are considered as equal� Consequently�
any formalism that allows to distinguish between these behaviours is not abstract enough
and has a power of discrimination which is too strong� An example of such a formalism
is linear temporal logic with a next operator �� In the present formalism this excessive
expressive power is avoided as follows� state changes caused by events happen only now
and then� so that in between each two consecutive changes there are uncountably many
instants of time at which nothing happens� Consequently� it is impossible to count� or
express� stutter steps� Furthermore the use of real numbers for de�ning the event and
state function enables us to express hiding of variables as existential quanti�cation and
consider re�nement as implication� even if there are more �states� on the abstract level
than on the concrete level� let the history illustrated in Figure ��� be a history at the
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abstract level where x is the variable that should be hidden and let the history illustrated
in Figure ��� be a history at the concrete level� The history of Figure ��� is a re�nement
of the history of Figure ����
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Figure ���� This picture illustrates the following concrete computation� initially s � ���� the event a�
doesn	t change s� the event i changes s into �� and the event e changes s into ��

A dense time temporal logic DTL based on histories is introduced in section ������ This
logic is based on 	Sta��� Sta��� BKP��� DK
�� KMP
��� A salient feature of the dense time
temporal logic is the �immediately after� operator �� in a version which Lamport 	Lam���
approves of� i�e�� it is stutter insensitive� In this logic the notion of a machine and the
condition on the computations of that machine will be expressed� It is also possible to
express in this logic whether a system re�nes another system� i�e� the set of histories of the
�rst system is a subset of the histories of the second one and the �observable� part of the
abstract basis �i�e�� observable from outside of the component� is equal to the �observable�
part of the concrete basis� In our model initial stuttering is incorporated by default �cf�
	DK
��� and re�nement can be expressed using implication and existential quanti�cation�

In section ��� the notions of composition and re�nement of systems are de�ned� Firstly
in terms of histories �semantically� and secondly in the dense time temporal logic DTL
�syntactically�� It is also investigated how composition relates to re�nement� i�e�� the
notion of compositional re�nement 	ZCdR
�� is given� Compositional re�nement means
intuitively that if the components of an abstract composed system are re�ned by the
components of a concrete composed system then the abstract composed system is re�ned
by the concrete composed system� i�e�� re�nement is preserved under composition�

Section ��� gives proof rules for re�nement based on those given in 	Lam
�� KMP
���
These proof rules split the proof of re�nement of systems into ��� a proof of re�nement
of the safety parts of the systems and ��� a proof of re�nement of the liveness part of the
systems�
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Section ��� explains how the formalism can be used to describe relative �incorrect� re�
�nement steps as discussed in Chapter �� Also the notion of relative composition is intro�
duced which intuitively means that only restricted parts of the components are composed
together� The notion of compositional re�nement of section ��� is extended to composi�
tional relative re�nement� The proof rules for re�nement of section ��� are extended to
handle relative re�nement� These proof rules are used extensively in the readers�writers
example of Chapter � and the stable storage example of Chapter ��

��� Speci�cation of Reactive Systems

This section explains how reactive systems can be speci�ed� Firstly they will be speci�ed
at the semantical level� i�e�� by sets of histories� A history intuitively speci�es which event
occurs at a particular point and in what state the system is at that particular point�
Secondly reactive systems are speci�ed using the dense time temporal logic DTL�

����� Semantic Speci�cation of Reactive Systems

In 	Sta��� a method for specifying reactive systems is introduced� Such systems are char�
acterized by sets of histories� A history is a pair consisting of an event function and a
state function� An event function records at each point �i�e�� element of the positive reals�
including zero� which event occurs� An event is an instantaneous occurrence of an action
during the operation of a system� that can be generated by that system or its environ�
ment and that is of interest at the given level of abstraction� Four kinds of actions are
distinguished�

�� communication actions a��b�� i�e�� actions that transmit information over a channel�
A channel is a connection between the system and its environment�

�� system actions i� i�e�� non�communication actions of the system�

�� environment actions e� i�e�� non�communication actions of the environment�

�� silent actions �� i�e�� actions that don�t in�uence the status of the system�

Event states are introduced in order to record which event occurs during the operation of
the system� An event state is like the usual notion of state with the exception that instead
of normal program variables event variables are used� An event state is de�ned formally
in the following de�nition�

De�nition � �Event variable and event state�
Let Chan denote the set of all channels� Let E denote the set of event variables with typical
elements �� ��� ��� � � �� Event variable � will record which action occurs during the operation
of the system� and the event variables ��� ��� � � � are auxiliary event variables recording which
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actions occur in components of the system� Let A denote the set of actions� with typical el�
ements i �denoting system actions�� e �denoting environment actions�� a��b�� � � � denoting
respectively an input communication action over channel a and an output communication
action over channel b� and � denoting the silent action� An event state is a mapping �
from E to A� Let � denote the set of all event states�

An state function records at each point �a non�negative real number� the process state�
i�e� the usual notion of state of a system and its environment� In order to distinguish
the normal variables from the event variables the normal variables are called here process
variables� Three kind of process variables are distinguished�

�� shared process variables which are �shared� between a system and its environment�
and

�� local process variables which are only accessible by a system�

�� rigid variables which are not changed by the system and its environment� i�e�� which
are used for speci�cation purposes�

The process state is de�ned formally in the following de�nition�

De�nition � �Process variable and process state�
A process state is a mapping from variables to values� Let V denote the set of shared
variables with typical elements s� � � �� and X the set of local variables �V � X � �� with
typical elements x� � � �� and R the set of rigid variables with typical elements n� � � �� A state
is a mapping � from V�X�R to the set of values V al� Let  denote the set of all process
states�

As already said above� event and state functions are mappings from the non�negative reals
to� respectively event and process states� Because of this some requirements are needed
in order to specify �reasonable� histories� Here reasonable is used in the sense that in a
bounded interval only a �nite number of non�silent actions and process state changes can
occur� This requirement is called the �nite variability condition 	BKP���� Next several
notions for functions from R

�� �the positive reals including �� to some domain D are
introduced in order to de�ne this requirement and to formally de�ne the event and state
functions�

De�nition � �Left and right constant� limit�
Given function f � R��� D�
f is called left constant at t � R

��� if there exists a real number t�� � � t� � t� such
that f�t�� � d for all t� � �t�� t�� d is called the left limit of f at t� and is denoted by
lim
t��t

f�t���

f is called right constant at t � R��� if there exists a real number t�� t� � t� such that
f�t�� � d for all t� � �t� t��� d is called the right�limit of f at t� and is denoted by
lim
t�t�

f�t���

�In this chapter we omit the value part of the communication� i�e�� which value is transmitted� in order
to ease the formalism a little bit� In the example of the stable storage we will use this value part although
it is not formally introduce in this chapter
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De�nition � �Left and right continuous� discontinuous�
Given function f � R��� D�
f is called left continuous� if f�t� � lim

t��t
f�t�� for every t � ��

f is called right continuous� if f�t� � lim
t�t�

f�t�� for every t � ��

f is called discontinuous at t� if f�t� �� lim
t��t

f�t�� or f�t� �� lim
t�t�

f�t���

f is called strongly discontinuous at t� if f�t� �� lim
t��t

f�t�� and f�t� �� lim
t�t�

f�t���

De�nition 	 �Finite variability�
Given function f � R��� D�
f has the �nite variability property i� f has only 	nitely many points of discontinuity
in any interval 	a� b�� � � a � b� a� b � R���

Now event and state functions can be de�ned� 	DK
�� states that initial stuttering is
needed in order to express re�nement in a logic with the help of existential quanti�cation
and implication� We must �rst de�ne what stuttering� in the sense of 	DK
��� is in our
setting� In our setting a stutter step is a step in which a non�communication action doesn�t
change the state� So here this initial stuttering can included by requiring that in the �rst
interval the event function has the constant value � and the state function remains constant
there� Furthermore a state should remain constant for an interval of points in order to
be observable� Also non�� events are considered to be single points� Another possibility
would be for the events to remain constant during an interval of points� The intuitive
meaning of a history is that the points of non�� event occurrence mark the state changes�
For the non�� events the question to be answered is� at which point of the interval should
the state change take place� Answer� at the last point of the interval of the event� So for
events only the last point of the interval is interesting because it marks the state change�
So why consider an interval if only its last point is interesting� This is the explanation of
the choice made here that the non�� events occur only at single points� This is captured
by the following de�nitions�

De�nition 
 �restriction�
For g � A� � A�� A� � A� de	ne gj�A�

� A� � A� as gj�A�
�x� � g�x� for x � A�� If A� is a

set containing only one element x then we will write gj�x instead of gj�fxg�

For g � A� � �A� � A��� A� � A� de	ne gj�A�
� A� � �A� � A�� as gj�A�

�t��x� � g�t��x�
for x � A�� Again if A� is a set containing only one element x then we will write gj�x
instead of gj�fxg

De�nition � �Event function�
An event function � is a function from R

�� to �� such that �j�� has the 	nite variability
condition� ������� � � �i�e� initial stuttering� and for all points t� � is strongly discontin�
uous at t i� ��t���� �� � �i�e� an event function is almost constant ��� Let ! denote the
set of all event functions�

Figure ��� illustrates the notion of event function� At point t� event a� occurs� at point t�
event i occurs� at point t� event e occurs� and at all other points event � occurs� Points
t�� t� and t� are here the strongly discontinuous points�

�
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De�nition � �State function�
A state function 	 is a left continuous function from R

�� to  such that for all n � R

and t � R
��� 	�t��n� � 	����n� �i�e�� the rigid variables don
t change at all�� and for all

x � V � X� 	j�x satis	es the 	nite variability property and 	j�x����x� � lim
��t�

	j�x�t���x� �i�e�

initial stuttering�� Let " denote the set of all state functions�

Figure ��� illustrates the notion of state function� In interval 	�� t�� the system is in state
�s� x� � ��� ��� in interval �t�� t�� in state �s� x� � ��� ��� in interval �t�� t�� in state �s� x� �
��� �� and in interval �t��	� in state �s� x� � ��� ��� The event i at t� is an illustration of a
non�� stutter step�

The following de�nition combines the notions of state function and event function into
the notion of history� Two requirements are imposed on the combination of event and state
function in order to be a history� The �rst requirement is that silent actions don�t give
rise to process state changes� The second requirement is that communication actions don�t
change the shared variables# this requirement is imposed in order to model CSP 	Hoa���
like processes�

De�nition  �History�
A history h is a pair h�� 	i� where � is an event function and 	 is a state function s�t� a
� action doesn
t change the values of variables from V � X� i�e��


t � ��t���� � �� 	�t� � lim
t�t�

	�t��

and a communication action doesn
t change the values of shared variables� i�e��


t � ��t���� � a�� 	�t�j�
V
� lim

t�t�
	�t��j

�
V


t � ��t���� � a�� 	�t�j�V � lim
t�t�

	�t��j
�
V

Let H denote the set of all histories�

The following de�nition de�nes when a history is stutter equivalent to another history�
A history collapse function is introduced that takes a history and collapses it in such
a way that the non�stutter steps only occur at discrete points �elements of N� and at
all remaining points stutter steps occur� Also a restricted version of the history stutter
equivalence relation is de�ned� namely� restricted to the process state information� The
last one will be used to de�ne a �process state history stutter insensitive� logic DTL� This
logic will be restricted to a special kind of formulae in order to obtain the �history stutter
insensitive� logic�

De�nition �� �History collapse� stutter equivalent�
Given history h � H� the history collapse denoted 
h�h� is a function from H to H
de	ned as 
h�h�

M
� h � di�h� where di�h� is the discretization bijection for h from R

�� to
R
�� and is de	ned as follows�

Let tt�h� k� be the function from H�N to R�� that gives the point in R�� of the k�th change
in h� formally�

tt�h� ��
M
� �

for k � ��

tt�h� k�
M
� min�t � t � tt�h� k  �� � ���t���� �� f�� i� eg � 	�t� �� lim

tt�h�k����t�
	�t����

�
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Let nn�h� denote the number of non�stutter points of h� Then the discretization bijection
di�h� for h is de	ned as follows�

di�h��t�
M
����������

tt�h� k� $ �t k� � �tt�h� k $ �� tt�h� k�� nn�h� �	� � � k � nn�h�
�k � t � k $ �

tt�h� k� $ �t k� nn�h� �	� k � nn�h� � k � t
tt�h� k� $ �t k� � �tt�h� k $ �� tt�h� k�� nn�h� �	� � � k � k � t � k $ �

The inverse discretization of h is denoted di���h��
Given histories h�� h� � H� h� is history stutter equivalent to h� denoted h� �h h� i�

nn�h�� � nn�h��� and
	�h�h�� � 	�h�h��� and
��h�h���k� � ��h�h���k�� k � nn�h��

i�e�� the number of non�stutter steps should be equal� the state information should be equal
in both collapsed histories and the event information should be equal in the points of non�
stuttering� A restricted version of the history stutter equivalence relation is the one that
considers only the process state information� i�e�� h� is history process state stutter
equivalent to h� denoted h� ��h h� i�

nn�h�� � nn�h��� and
	�h�h�� � 	�h�h���

Application of above de�nition to the history of Figure ��� results in� tt�h� �� � �� tt�h� �� �
t�� tt�h� �� � t�� tt�h� �� � t�� and tt�h� k� �	 for k � � and nn�h� � �� The discretization
function di�h�t is as follows�

���������
t � t� � � t � �
t� $ �t �� � �t�  t�� � � t � �
t� $ �t �� � �t�  t�� � � t � �
t� $ �t �� � � t

The collapsed history 
h�h�� is illustrated in Figure ����

The following theorem relates histories to a special kind of in�nite sequences of pairs of
event and process states� in which sequences start with an � action� followed by possibly
stuttering actions� then followed by exactly one non�stuttering action etc� Furthermore
should every non�� event be surrounded by ��events� These kind of sequences are inspired
by those de�ned in 	KMP
��� For these kind of sequences a sequence collapse is de�ned
that removes all �nite stuttering# with the help of this collapse operator the sequence
stutter equivalence operator is de�ned�

De�nition �� �In�nite sequences�
De	ne a sequence element as a pair ��� �� of an event and a process state� Let seli �i � �� be

��
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� collapsed state function

� collapsed event function

Figure ���� This picture illustrates the collapsed history of Figure ���

the pair ��i� �i� then the sequence seq is a in	nite sequence of the form seq�sel�seq�sel� � � �
where seli � ��i� �i� is such that

�i��� �� ��
��i��� � a� � �i��� � a��� �ij�V � �i��j�V
�i��� � fi� eg � �i �� �i��

and seqi is a sequence of the form ��i�� �i�ni���i�� �i���i�� �i�ki�li where ni � �� ki � � and
li � �� and �i���� � � and �i���� � fi� eg�
Let SEQ denote the set of all such sequences� Let seq be a sequence of the above form
then 
s�seq� � �sel�i�i�� is the stutter free sequence obtained from seq by deleting all 	nite
stuttering from seq� Formally� Let ns�seq� denote the number of non�stutter steps in seq�
if ns�seq� �	�

sel���i�� � seli � � i
sel���i � ��i�� �i� � � i

if ns�seq� �	�

sel���i�� � seli � � i � ns�seq�
sel���i�� � ��k�� �k� k � ns�seq� � k � i
sel���i � ��i�� �i� � � i � ns�seq�
sel���i � ��k�� �k� k � ns�seq� � k � i

Let seq� and seq� be sequences then seq� is stutter equivalent to seq� denoted seq� �s seq�
i�� let 
s�seq�� � �sel

�
i �i�� and 
s�seq�� � �sel

�
i �i���

ns�seq�� � ns�seq�� and
��i � ��i and
��i ��� � ��i ���

��
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The relationship between the sequences and histories is that there exists a function from
the stutter equivalence classes of histories to the stutter equivalence classes of sequences
and a function from the stutter equivalence classes of sequences to the stutter equivalence
classes of histories�

Theorem � �Relationship between histories and in�nite sequences�
Let h � H� �h then �seli�i�� � SEQ� �s where seli is as follows�
if nn�h� �	�

sel��i�� � h�i� � � i � nn�h�
sel��i � lim

i�t�
h�t�� � � i � nn�h�

sel��i�� � lim
k�t�

h�t�� k � nn�h� � k � i

sel��i � lim
k�t�

h�t�� k � nn�h� � k � i

if nn�h� �	�

sel��i�� � h�i� � � i
sel��i � lim

i�t�
h�t�� � � i

Let seq � �seli�i�� � SEQ� �s then h � H� �h where h is as follows�
if ns�seq� �	�

h��� � sel�
h�t� � sel��t�� t � N� � � t � ns�seq�
h�t� � sel��t t � N� t � ns�seq�
h�t� � sel��i i � t � i$ �

if ns�seq� �	�

h��� � sel�
h�t� � sel��t�� t � N
h�t� � sel��i i � t � i$ �

The following sequence corresponds to the history of �gure ����

seq � ��i� �i�i���
����� � � ���s� � � ���x� � �
����� � a� ���s� � � ���x� � �
����� � � ���s� � � ���x� � �
����� � i ���s� � � ���x� � �
����� � � ���s� � � ���x� � �
�	��� � e �	�s� � � �	�x� � �
�i��� � � �i�s� � � �i�x� � � i � �

The basis is a pair consisting of a process basis� specifying the local and shared variables
of the system� and a action basis which speci�es the input and output communication
channels of a system� The following de�nition introduces basis and history sets that
constrain a speci�c process basis� i�e�� speci�c sets of shared variables and local variables
are constrained to change in speci�c ways� the variables outside this process basis can
change without restriction� with exception of the rigid variables which do not change at
all�

��
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De�nition �� �Basis� history set constraining a basis�
A basis �denoted by B� is a pair �BA� BP �� where BA �called action basis� is a pair
�In�Out� where In is a set of input communication channels and Out is a set of output
communication channels� and where BP �called process basis� is a tuple �V�X� where V
a 	nite set of shared variables and X a 	nite set of local variables�
Given a history h � H and process basis BP then the process basis restriction of h
denoted hj�BP is de	ned as h�� 	j�V�Xi�
Given a set of histories H and process basis BP then H is constrained by BP i� 
h�� h� �
H � h�j�BP � h�j�BP � �h� � H � h� � H��

The following de�nition introduces the notion of history speci	cation which is a pair con�
sisting of a basis and a set of histories constraining the process basis�

De�nition �� �History speci�cation of a system�
A history speci�cation of a system �denoted S� is a pair �B�H� where B is a basis and
H is a set of histories constraining process basis BP such that an environment action e
doesn
t change the local variables of the system�


t � ��t���� � e� 	�t�j�X � lim
t�t�

	�t��j
�
X

The following de�nition introduces several notions from topology �	Wri���� needed for the
de�nition of safety and liveness sets of histories� These de�nitions of safety and liveness
are based on those of 	AS���� Informally a safety set of histories consists of histories where
nothing �bad� happens and a liveness set of histories consists of histories where something
�good� eventually happens�

De�nition �� �Safety and liveness set�
Let H be a set of histories and h � H�

� The pre	x of h of length t denoted h �t is de	ned as

h �t �t��
M
�

�
h��t��� 	�t��i � � t� � t
h����� 	�t�i t� � t

Thus for t� � t only stutter actions occur in h �t �

� The distance function d from H�H � R
�� is de	ned as�

d�h�� h��
M
�

�����
� if h� � h�
� if h���� �� h����

�� supft�R��jh��t�h��t g otherwise

�H� d� is a metric space�

� H is called d�open i�


h � H � �� � � � 
h� � d�h� h�� � �� h� � H

��
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� The topology with fH � H j H is d�open g as its basis is called the d induced
topology of �H� d� denoted d�

� H is called a d�environment of h i�

�H� � d � h � H� �H� � H

� The interior of H denoted in�H� is de	ned as

fh � H j H is a d environment of hg

� The closure of H denoted cl�H� is de	ned as H n �in�H nH���

� H is a safety set i� cl�H� � H�

� H is a liveness set i� cl�H� � H�

Note� the only set that is both a safety and a liveness set is H 	AS����
A speci�cation method for systems that uses only sets of histories is not attractive�

Therefore the notion of machine is introduced� A machine consists of a set of states and
a state�transition relation� The intention is that the set of computations �i�e� histories�
of a machine associated to a system should correspond to the history speci�cation of this
system� A machine however can only generate safety sets of histories 	AS���� Therefore� a
liveness set is speci�ed as a condition on the set of computations �histories� of a machine�
Next the formal de�nition of a machine is given�

De�nition �	 �Machine�
The machine speci	cation M of a system is a triple �B� I� T � where�

� B� the basis of M � a tuple ��In�Out�� �V�X��� Note� the shared variables will be
printed in bold faced style in order to distinguish them from the local variables�

� I � a non�empty subset of  � the set of initial states� such that

� 
��� �� �  � ���j�V�X � ��j�V�X� � ��� � I � �� � I�� i�e�� it constrains the
variables from V � X only�

� T � the state�transition relation �	nite�� T � ��  �� such that

� 
��� �� �  � � � � � h�� ��� ��i � T � ��j�R � ��j�R� i�e�� the rigid variables don
t
change at all�

� 
��� ��� ��� �� �  � � � � � ���j�V�X � ��j�V�X���j
�
V�X � ��j�V�X�� �h�� ��� ��i �

T � h�� ��� ��i � T �� i�e� T constrains BP only�

� 
��� �� �  � � � � � �h�� ��� ��i � T � ����� � a� � ���� � a��� � ��j�V � ��j�V�
i�e�� a communication action doesn
t change the values of shared variables� and

� 
��� �� �  � � � � � �h�� ��� ��i � T � ���� � e� � ��j�X � ��j�X� i�e�� an
environment action doesn
t change the values of local variables of the system�

��
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� 
��� �� �  � � � � � h�� ��� ��i � T � ����� �� f�� i� eg � �� �� �� �� i�e�� no
stutter transitions are speci	ed�

The following example is an illustration of the notion of machine�

Example �
M � �B� I� T � where�

�� Basis� B � ��In�Out�� �V�X�� where

In
M
� fag

Out
M
� �

V
M
� fvg

X
M
� fug

� Initial States�

I � f� �  j ��u� � � and ��v� � �g

�� Transitions�
T �
fh�� ��� ��i � ��  � j

�a� ����� � a� and ���u� � � and ���u� � � and ���v� � ���v�� or

�b� ����� � i and ���u� � � and ���v� � � and ���u� � � and ���v� � �� or

�c� ����� � e and ���u� � ���u� and ���v� � ���v� $ ��g

The concepts of event and state functions are related by the notion of computation of a
machineM � A computation of M intuitively expresses that an event function and a state
function �t together in that at any point t any triple consisting of ��� the event occurring
at t� ��� the state just before and including t� and ��� the state just after t� belongs to
the state transition relation of M �see �g� ����� Because a state�transition relations don�t
contain stutter steps but histories do� a set of stutter transitions should be de�ned in order
to relate machine computations to histories�

De�nition �
 �Computation�
Let h � h�� 	i � H and t � R��� then de	ne the step occurring at t in h by�
Steph�t� � h��t�� 	�t�� lim

t�t�
	�t��i�

De	ne the set of stutter steps denoted STU as fh�� ��� ��i j ���� � f�� i� eg � �� � ��g�
A computation of a machine M � �B� I� T � is a history h � h�� 	i � H such that�

	��� � I and

t � Steph�t� � T � Steph�t� � STU�

Let the set of all computations of M be de	ned as�
Comp�M�

M
� fh � H j h is a computation of Mg�

��
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Lemma � �Machine is safety�
Given machine M � �B� I� T � then

Comp�M� is a safety set�

A proof of this lemma is given in 	AL
�� �it is also repeated in the appendix�� The
machine speci	cation of a system now consists of a machine M and a set of histories L
constraining the basis of this machine such that the closure of the intersection of Comp�M�
and L equals Comp�M�� This is the machine closedness property of a system speci�cation
introduced in 	AFK��� AL
��� Let A � B denote %A

S
B� By a result of 	AS��� every

set of histories can be written as the intersection of a safety set and a liveness set namely
cl�Comp�M� � L�

T
cl�Comp�M� � L� � �Comp�M� � L�� By the machine closedness

property this can be written as Comp�M�
T
Comp�M�� L� This means that Comp�M�

speci�es the safety properties and Comp�M�� L the liveness properties of the system�

De�nition �� �Machine speci�cation of a system�
Amachine speci�cation S of a system is a pair �B�Comp�M��L� whereM is a machine
with basis B and L a set of histories constraining only BP such that cl�Comp�M� � L� �
Comp�M�� The set of computations of S� denoted Comp�S�� is de	ned as Comp�M�� L�

����� DTL Speci�cation of Reactive Systems

As mentioned above� the local properties are described by a machine and the liveness
properties are described as a set of histories� The dense time temporal logic DTL is
introduced to describe both kind of properties� The one used here is a mixture of dense
time temporal logics de�ned in 	Sta��� Sta��� BKP��� DK
�� KMP
���

De�nition �� �Syntax of DTL�
The syntax of DTL is de	ned in Table �� where value � � V al� rigid variable n � R�
observable variable v � V� local variable x � X� event variable � � E and channel a � Chan�

Table ���� Syntax of DTL

Rigid Expressions
rexp ��� � j n j n� j&n j rexp� $ rexp� j � � �

Expressions
exp ��� rexp j v j v� j&v j x j x� j&x j exp� $ exp� j � � �

Event Expressions
evexp ��� a� j a� j i j e j � j � j �� j&�

Temporal formulae
p ��� true j exp� � exp� j exp� � exp� j evexp� � evexp� j �p j p� � p�

p� bU p� j p� bS p� j �x�p j ���p j �n�p

The informal semantics of the most interesting constructs are as follows�

� &x denotes the previous value of x�

�	
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� x denotes the current value of x�

� x� denotes the next value of x�

� � denotes the current action value of ��

� &� denotes the previous action valueof ��

� �� denotes the next action value of ��

� p� bU p� denotes strict �present not included in the future� until operator from tem�
poral logic�

� p� bS p� denotes strict �present not included in the past� since operator from temporal
logic�

� �x�p denotes existential quanti	cation over local variable x of p� i�e�� hiding�

� ���p denotes existential quanti	cation over event variable � of p� i�e�� hiding�

A state expression is an expression without any primed variables� A state formula is a
formula build from state expressions without bU and bS operators�

Table ��� lists some frequently used abbreviations� The following example � gives some
DTL formulae

Example � �Some DTL formulae��
� � a� � x � � � x

� � �
�
�a state�transition��

�x � � �a safety property��
and ��x � �� �x � �� �a liveness property��

Before we give the semantics of DTL formulae we de�ne for a variable x �local process or
event� the x�variant of a history�

De�nition � �x�variant� ��variant and n�variant of a history�
Let h� h� � H�
Let x � X then h� is a x�variant of h if �� � � and 	�j��V�X�R�nfxg � 	j��V�X�R�nfxg�

Let X � X then h� is a X�variant of h if �� � � and 	�j��V�X�R�nX � 	j��V�X�R�nX�

Let � � E then h� is a ��variant of h if ��j�Enf�g � �j�Enf�g and 	� � 	�

Let n � R then h� is a n�variant of h if �� � � and 	�j��V�X�R�nfng � 	j��V�X�R�nfng�

In the following de�nition the semantics of DTL is given without using valuation functions
for expressions� i�e�� this valuation function is implicitly de�ned by j�� By convention�
boolean values are not explicitly denoted� i�e�� we shall write �h� t� j� true rather than
�h� t� j� true

M
� tt�

De�nition �� �Semantics of DTL�
Let h � H� t � R��� n � R� v � V� x � X� and � � E�

� �h� t� j� �
M
� ��

��
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Table ���� Used abbreviations

false
M
� �true

p� � p�
M
� �p� � p� p� implies p�

p� � p�
M
� ���p� � �p�� p� and p�

p� � p�
M
� �p� � p�� � �p� � p�� p� equivalent p�


x�p
M
� ��x��p for all x p

�X�p
M
� �x�� � � � ��xn�p hiding over X � fx�� � � � � xngb�p M
� true bU p strict eventually p�c�p M
� � b��p strict always p�

�p
M
� p bU true is for some time going to be uninterruptedly p�

�p
M
� p � b�p non�strict eventually�

�p
M
� p �c�p non�strict always�

p� Up�
M
� p� � �p� � �p� bU p��� non�strict until�b�p M
� true bS p strict once p�c�p M
� � b��p strict has�always�been p�

�p
M
� p bS true has for some time been uninterruptedly p�f�p M
� ���p has arbitrarily recently been p�

�rst
M
� f�false �rst position in a history�

�p
M
� p � b�p non�strict once�

�p
M
� p �c�p non�strict has�always�been�

p� Sp�
M
� p� � �p� � �p� bS p��� non�strict since�

p� � p�
M
� ��p� � p�� p� entails p�

p� � p�
M
� ��p� � p�� p� is congruent p�

� �h� t� j� n
M
� 	����n��

� �h� t� j� n�
M
� 	����n��

� �h� t� j�&n
M
� 	����n��

� �h� t� j� x
M
� 	�t��x��

� �h� t� j� v
M
� 	�t��v��

� �h� �� j� &x
M
� 	����x�

t � �� �h� t� j� &x
M
� lim

t��t
	�t���x�

� �h� �� j� &v
M
� 	����v�

t � �� �h� t� j� &v
M
� lim

t��t
	�t���v�

� �h� t� j� x�
M
� lim

t�t�
	�t���x�

��
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� �h� t� j� v�
M
� lim

t�t�
	�t���v�

� �h� t� j� exp� $ exp�
M
� �h� t� j� exp� $ �h� t� j� exp��

� �h� t� j� exp�  exp�
M
� �h� t� j� exp�  �h� t� j� exp��

� �h� t� j� a�
M
� a��

� �h� t� j� a�
M
� a��

� �h� t� j� i
M
� i�

� �h� t� j� e
M
� e�

� �h� t� j� �
M
� ��

� �h� t� j� �
M
� �h�t�����

� �h� �� j� &�
M
� �������

t � �� �h� t� j� &�
M
� lim

t��t
��t������

� �h� t� j� ��
M
� lim

t�t�
��t������

� �h� t� j� true�

� �h� t� j� exp� � exp� i� �h� t� j� exp� � �h� t� j� exp��

� �h� t� j� evexp� � evexp� i� �h� t� j� evexp� � �h� t� j� evexp��

� �h� t� j� exp� � exp� i� �h� t� j� exp� � �h� t� j� exp��

� �h� t� j� �p i� �h� t� �j� p�

� �h� t� j� p� � p� i� �h� t� j� p� or �h� t� j� p��

� �h� t� j� p� bU p� i� there exists a t� � t� �h� t�� j� p� and for all t� � �t� t��� �h� t�� j�
p��

� �h� t� j� p� bS p� i� there exists a t� � t� �h� t�� j� p� and for all t� � �t�� t�� �h� t�� j�
p��

� �h� t� j� �x�p i� �h�� t� j� p� for some h�� a x�variant of h�

� �h� t� j� ���p i� �h�� t� j� p� for some h�� a ��variant of h�

� �h� t� j� �n�p i� �h�� t� j� p� for some h�� a n�variant of h�

��
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De�nition �� �Satis�ability� validity�
For a DTL formula p and a history h � H� h satis�es p denoted h j� p i� �h� �� j� p�
A DTL formula p is satis�able i� h j� p for some history h � H�
A DTL formula p is valid� denoted j� p� i� h j� p for all histories h � H�
Given a system S with basis B and set of computations Comp�S� then a DTL formula is
S�valid� denoted S j� p i� h j� p for all histories h � Comp�S��
Given a temporal formula p then the set of histories satisfying p denoted Hist�p� is de	ned
as fh j h j� pg�

The following theorem states that the logic DTL is history process state stutter insensitive�
Later on a restricted version of DTL is considered in order to make it history stutter
insensitive�

Theorem � �DTL is history process state stutter insensitive�
Let rexp be a rigid expression� exp be an expression� evexp an event expression and p a
temporal formula then

a 
t� h�� h� � h� ��h h� � ��h�� t� j� rexp � �h��di�h�� � di
���h���t�� j� rexp�

b 
t� h�� h� � h� ��h h� � ��h�� t� j� exp � �h��di�h�� � di
���h���t�� j� exp�

c 
t� h�� h� � h� ��h h� � ��h�� t� j� evexp � �h��di�h�� � di
���h���t�� j� evexp�

d 
t� h�� h� � h� ��h h� � ��h�� t� j� p i� �h��di�h�� � di
���h���t�� j� p�

The following de�nitions introduce substitution�

De�nition �� �Non�rigid process variable substitution in expressions�
De	ne substitution of w � V � X by state expression exp in expression exp� denoted
exp� 	exp�w� as follows� using � for syntactic equality�

� rexp 	exp�w� � rexp

� v 	exp�w� �

�
exp if v � w
v if v �� w

� v� 	exp�w� �

�
exp� if v � w
v� if v �� w

where exp� denotes the operation of �priming after� all occurrences of variables in
exp �note� exp is a state expression so all variables in exp are unprimed��

� &v 	exp�w� �

�
&exp if v � w
&v if v �� w

where &exp denotes the operation of �priming before� all occurrences of variables in
exp�

� x 	exp�w� �

�
exp if x � w
x if x �� w

� x� 	exp�w� �

�
exp� if x � w
x� if x �� w

��
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� &x 	exp�w� �

�
&exp if x � w
&x if x �� w

� �exp� $ exp�� 	exp�w� � exp� 	exp�w� $ exp� 	exp�w�

� � � �

De�nition �� �Rigid variable substitution in expressions�
De	ne substitution of n � R by state rigid expression rexp in expression exp� denoted
exp� 	rexp�n� as follows� using � for syntactic equality�

� � 	rexp�n� � ��

� n� 	rexp�n� �

�
rexp if n � n�
n� if n �� n�

� n�� 	rexp�n� �

�
rexp� if n � n�
n�� if n �� n�

�

� &n� 	rexp�n� �

�
&rexp if n � n�
&n� if n �� n�

�

� w 	rexp�n� � w� w � V � X�

� w� 	rexp�n� � w�� w � V � X

� &w 	rexp�n� �&w� w � V � X

� �exp� $ exp�� 	rexp�n� � exp� 	rexp�n� $ exp� 	rexp�n��

� � � �

De�nition �� �Event variable substitution in event expressions�
De	ne substitution of � � E by state event expression evexp in evexp� denoted
evexp� 	evexp��� as follows� using � for syntactic equality�

� � 	evexp��� � ��

� a� 	evexp��� � a��

� a� 	evexp��� � a��

� i 	evexp��� � i�

� e 	evexp��� � e�

� �� 	evexp��� �

�
evexp if �� � �
�� if �� �� �

� ��� 	evexp��� �

�
evexp� if �� � �
e�� if �� �� �

��
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� &�� 	evexp��� �

�
&evexp if �� � �
&e� if �� �� �

De�nition �	 �Process and event variable substitution in temporal formulae�
De	ne substitution for a non�rigid process variable w � V� X by state expression exp in a
temporal formula p� denoted p 	exp�w�� as follows�

� true 	exp�w� � true

� �exp� � exp�� 	exp�w� � exp� 	exp�w� � exp� 	exp�w�

� �evexp� � evexp�� 	exp�w� � �evexp� � evexp��

� �exp� � exp�� 	exp�w� � exp� 	exp�w� � exp� 	exp�w�

� ��p� 	exp�w� � ��p 	exp�w��

� �p� � p�� 	exp�w� � p� 	exp�w� � p� 	exp�w�

� �p� bU p�� 	exp�w� � �p� 	exp�w�� bU �p� 	exp�w��

� �p� bS p�� 	exp�w� � �p� 	exp�w�� bS �p� 	exp�w��
� ��x�p� 	exp�w� � �x��p 	exp�w�� if x �� var�exp� � fwg��

� ����p� 	exp�w� � ����p 	exp�w���

� ��n�p� 	exp�w� � �n��p 	exp�w��

De	ne substitution of rigid process variable n � R by state rigid expression rexp in temporal
formula p denoted p 	rexp�n� as follows�

� true 	rexp�n� � true

� �exp� � exp�� 	rexp�n� � exp� 	rexp�n� � exp� 	rexp�n�

� �evexp� � evexp�� 	rexp�n� � �evexp� � evexp��

� �exp� � exp�� 	rexp�n� � exp� 	rexp�n� � exp� 	rexp�n�

� ��p 	rexp�n�� � ��p 	rexp�n��

� �p� � p�� 	rexp�n� � p� 	rexp�n� � p� 	rexp�n�

� �p� bU p�� 	rexp�n� � �p� 	rexp�n�� bU �p� 	rexp�n��

� �p� bS p�� 	rexp�n� � �p� 	rexp�n�� bS �p� 	rexp�n��
� ��x�p� 	rexp�n� � �x��p 	rexp�n���

� ����p� 	rexp�n� � ����p 	rexp�n���

� ��n��p� 	rexp�n� � �n���p 	rexp�n��� if n� �� var�rexp� � fng��

��
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De	ne substitution of event variable � � E by state event expression evexp in temporal
formula p denoted p 	evexp��� as follows�

� true 	evexp��� � true

� �exp� � exp�� 	evexp��� � �exp� � exp��

� �evexp� � evexp�� 	evexp��� � �evexp� 	evexp��� � evexp� 	evexp����

� �exp� � exp�� 	evexp��� � �exp� � exp��

� ��p� 	evexp��� � ��p 	evexp����

� �p� � p�� 	evexp��� � �p� 	evexp���� � �p� 	evexp����

� �p� bU p�� 	evexp��� � �p� 	evexp���� bU �p� 	evexp����

� �p� bS p�� 	evexp��� � �p� 	evexp���� bS �p� 	evexp����
� ��x�p� 	evexp��� � �x��p 	evexp����

� �����p� 	evexp��� � �����p 	evexp���� where �� �� evar�evexp�� f�g�

The following introduces the history variant of a history�

De�nition �
 �History variant�
The history variant of a history with respect to non�rigid process variable w � V � X�
and a state expression exp� denoted by �h � w� exp�� is de	ned for w� � V�X as follows�
Let � � V al and � �  then

�� � w �� ���w��
M
�

�
� if w� � w
��w�� if w� �� w

then

�h � w� exp��t��
M
� h�h�t��� �	h�t�� � w �� �h� t�� j� exp�i

The history variant of a history with respect to rigid process variable n � R� and a state
rigid expression rexp� denoted by �h � n � rexp�� is de	ned for n� � R as follows� Let
� � V al and � �  then

�� � n �� ���n��
M
�

�
� if n� � n
��n�� if n� �� n

then

�h � n� rexp��t��
M
� h�h�t��� �	h�t�� � n �� �h� t�� j� rexp�i

The history variant of a history with respect to event variable � � E� and a state event
expression evexp� denoted by �h � � � evexp�� is de	ned for �� � E as follows� Let a � A

and � � � then

�� � � �� a�����
M
�

�
a if �� � �
����� if �� �� �

��
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then

�h � �� evexp��t��
M
� h��h�t�� � � �� �h� t�� j� evexp�� 	h�t��i

The following substitution lemma holds�

Lemma � �Substitution lemma�
Let exp� be an expression� exp be a state expression� w � V � X� rexp be a state rigid
expression� n � R� evexp� an event expression� evexp a state event expression� � � E� and
p a temporal formula� Then the following holds�

a �h� t� j� exp� 	exp�w� � ��h � w� exp�� t� j� exp�
b �h� t� j� exp� 	rexp�n� � ��h � n� rexp�� t� j� exp�
c �h� t� j� evexp� 	evexp��� � ��h � �� evexp�� t� j� evexp�
d �h� t� j� p 	exp�w� i� ��h � w� exp�� t� j� p
e �h� t� j� p 	rexp�n� i� ��h � n� rexp�� t� j� p
f �h� t� j� p 	evexp��� i� ��h � �� evexp�� t� j� p

The following proof system for DTL is inspired on 	Bur��� Bur��� BKP��� MP�
�� An
erroneous variant of it appeared in 	BKP��� where these authors state that it is �an almost
verbatim copy of 	Bur���� indeed �almost� their axiom F� was not copied well� Further�
more a link with the proof system of 	KMP
�� is established via axioms AX�b'AX�f �
i�e�� these axioms are needed for deriving their proof system� Note� because the models of
	Bur��� Bur��� need not to satisfy the �nite variability condition� and the persistency con�
dition �once in an interval �going back or forward� doesn�t bring you outside that interval�
and the induction axiom� This is the crucial di�errence between the model of 	KMP
�� and
ours and the one in 	Bur��� Bur���� The di�errence between the model of 	KMP
�� and
our model is that we have additional compositionality information as re�ected in axioms
AX�� AX� and AX��

The proof system is for the pure logic� i�e�� it is not meant for a speci�c reactive
system� Axioms AX��AX
 characterize our notion of histories# they should follow from
the de�nition of history �Def� 
�� and� because a history is a pair consisting of a event and a
state function� also from De�nition � and �� Ax�� and Ax�� are the axioms for substitution
and quanti�cation� Axioms F��F� are the axioms of the future part of DTL and P��P�
the past part� As rules we take standard ones� i�e�� the modus ponus� generalization�
specialization� instantiation and universal generalization�

De�nition �� �Proof system for DTL�
Let n � R� v � V� w � V � X� x � X and � � E�

Axioms All the axioms for state formulae�

AX� � �� � a� � � � a� � � � i � � � e�� ��� � � �&� � ��

Non�� actions are points surrounded by � actions conform De	nition ��

AX� � �rst� � � � � v� � v � x� � x

��
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The initially stuttering requirement conform De	nition � and ��

AX� � ��&x � x �&v � v�

The process variables are left continuous variables conform De	nition ��

AX� � ��x� � x � v� � v� � ���x� �� x � v� �� v�� ��x�� � x� � v�� � v���

The value of process variables are maintained during an interval� conform De	ni�
tion ��

AX� � ��n � n� � n �&n�

The rigid variables don
t change at all conform De	nition ��

AX� � �� � a� � � � a��� v� � v

Communication actions don
t change the shared variables conform De	nition ��

AX� � � � �� �v� � v � x� � x�

A � action causes no state change�

AX�a � b�p� b� b�p
AX�b � ��p� ��p
AX�c � ��p� ��p�
AX�d � ��p ��p
AX�e � ��p ��p
AX�f � �p � p��p ��p� p�� �p

The underlying structure is dense �a�� and satis	es the 	nite variability condition �b
� c�� and is persistent �d � e�� Axiom �f� is the induction axiom� For an explanation
of d�f see �KMP����

AX� � � b�true
There is no last element� i�e�� the future is unbounded�

AX
 � � b� b�c�false
There exists a 	rst element�

AX�� � �exp� � exp��� �p 	exp��w�� p 	exp��w��
� �rexp� � rexp��� �p 	rexp��n�� p 	rexp��n��
� �evexp� � evexp��� �p 	evexp����� p 	evexp�����

��
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where p is a state formula and none of the variables appearing in respectively exp��
exp�� rexp�� rexp�� evexp� and evexp� is quanti	ed in p�
Replacement of equal expressions�

AX�� � �
x�p�� p 	exp�x�
� �
n�p�� p 	rexp�n�
� �
��p�� p 	evexp���

where none of the variables appearing in exp� rexp and evexp is quanti	ed in p�
Quanti	er instantiation�

F� � c��p � q�� �r bU p� r bU q�

bU is monotonic in its second argument�

F� � c��p � q�� �p bU r� q bU r�

bU is monotonic in its 	rst argument�

F� � �p � r bU q�� �r bU �q � r bS p��

The relation of re�ection holding between past and future�

F� � �q bU p � ��r bU p��� q bU �q � �r�

F� � q bU p� �q � q bU p� bU p

F� � q bU �q � q bU p�� q bU p

F� � �q bU p � s bU r�� �q � s� bU �p � r� � �q � s� bU �p � s� � �q � s� bU �q � r�

The underlying structure is linear�

P� � c��p � q�� �r bS p� r bS q�

bS is monotonic in its second argument�

P� � c��p � q�� �p bS r� q bS r�

bS is monotonic in its 	rst argument�

P� � �p � r bS q�� �r bS �q � r bU p��

�	
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The relation of re�ection holding between past and future�

P� � �q bS p � ��r bS p��� q bS �q � �r�
P� � q bS p� �q � q bS p� bS p

P� � q bS �q � q bS p�� q bS p

P� � �q bS p � s bS r�� �q � s� bS �p � r� � �q � s� bS �p � s� � �q � s� bS �q � r�

The underlying structure is linear�

Rules

p� p� q

q

The Modus Ponus�

pc�p for state formula p in which all occurrences of
parameterized sentence symbols in p are rigid

Generalization�

�p

p
for state formula p

Specialization�

p

p 	p��p��
where p� doesn
t contain variables which are bound in p

Instantiation�

p� � p�

p� � 
x�p�
for x not free in p�

p� � p�

p� � 
n�p�
for n not free in p�

p� � p�

p� � 
��p�
for � not free in p�

Universal Generalization�

��
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The following de�nition characterizes a machineM in DTL� This kind of DTL formulae is
history stutter insensitive�

De�nition �� �Machine in DTL�
Given basis B � ��In�Out�� �V�X��� Let In� be de	ned as fa� j a � Ing and let Out� be
de	ned as fa� j a � Outg� Let I be a DTL formula over V � X without the bS � bU and �
operators� Let T be a 	nite set of DTL formulae  of the form �event� � trans�� where
event� is of the form � � a� where a� � fi� eg � In� � Out�� and trans� a DTL formula
over V�X and V� �X� �variables primed with �� without the bS � bU and � operators such
that �� � e�

V
x�X x

� � x�� i�e�� an environment action doesn
t change the local variables
of the system� De	ne the stutter step� denoted by stut� as � � � � �� � i � �V�X�� �
�V�X��� �� � e� �V�X�� � �V�X��� Let T be the DTL formula stut�

W
��T  � A machine

in DTL is de	ned as �B� I ��T��

Lemma �
Given a machine in DTL �B� I��T� then there exists a semantic machine M � �B� I� T �
such that Comp�M� � Hist�I ��T��

The following example is an illustration of a machine in DTL�

Example �
Machine M in example � as DTL�formula�

�� Basis� B � ��In�Out�� �V�X�� where

In
M
� fag�

Out
M
� ��

V
M
� fvg�

X
M
� fug

� Initial States�
I

M
� �v�u� � ��� ��

�� Transitions�
T

M
��
� � a� � u � � � �v�u�� � �v� ��

�
��

� � i � �v�u� � ��� �� � �v�u�� � ��� ��
�
��

� � e � �v�u�� � �v$ ��u�
�
�

stut

The machine speci�cation of a system in DTL is as follows�

De�nition � �Machine speci�cation of a system in DTL�
Given a machine �B� I��T� in DTL� LetWF � T be the set of weak fair transitions and
SF � T be the set of strong fair transitions� For  � T de	ne the enabledness condition
for  denoted En� � as �%v�� 	%v��%v�� where  	%v��%v�� denotes the substitution of %v� �a list of
variables not in V�X� for %v� �the list of primed variables in �� Let L be the DTL formulaV
��WF���En� �� �� � �

V
��SF���En� �� �� �� The machine speci�cation of

a system in DTL is then a tuple �B� I ��T � L��

��
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Note� in above de�nition L is such that cl�Hist�I � �T� � Hist�L�� � Hist�I � �T��
i�e�� it satis�es the machine closedness property� With this the following lemma is straight
forward�

Lemma �
Given DTL machine speci	cation �B� I � �T � L� of a system� there exists a semantic
machine speci	cation S � �B�Comp�M��L� such that Comp�M��L � Hist�I��T�L��

��� Re�nement and Composition of Reactive System

Speci�cations

In this section the notion of re	nement and composition of reactive systems is introduced�
Intuitively re�nement means that the set of histories of a concrete system is a subset
of the set of histories of an abstract system� Composition means that the histories of
the component systems are �merged� into composite histories� i�e�� the histories of the
composed system� Our merge operator is based on the merge operator of Aczel 	Acz����
Both are �rst de�ned at the semantic level and then for the DTL speci�cations�

����� Semantic Re�nement and Composition of Speci�cations

In this section re�nement and composition of reactive systems is de�ned at the semantical
level� Re�nement means that the set of histories of a concrete system is a subset of the
set of histories of an abstract system� Because histories also contains local information
the subset relation doesn�t correspond directly with re�nement� The local information
should �rst be projected away� The following de�nition captures this projection of local
information�

De�nition �� �Observable system speci�cation�
Given system speci	cation S � �B�H� where B � ��In�Out�� �V�X��� The observable
system speci�cation is de	ned as �O�B��OX�H�� where O�B� denotes the observable
basis and is de	ned as O�B�

M
� ��In�Out��V� �� and OX�H� denotes the set of observable

histories corresponding to H and is de	ned as

fh � H j �h� � H � h is an X�variant of h�g

De�nition �� �Re�nement of systems�
Given concrete system Sc

M
� �Bc�Hc� and abstract system Sa

M
� �Ba�Ha��

Sc re�nes Sa denoted by Sc ref Sa i� O�Bc� � O�Ba� and OXc�Hc� � OXa�Ha��

A more general de�nition of re�nement would be one wherein both the abstract and con�
crete system are composed of subsystems� Therefore the notion of composition is intro�
duced� Intuitively the composition of two systems is that matching histories are merged
into one history� A history of one system matches a history of the other system if for all
time points t

��� the state information of the two histories at time t are same and

��
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��a� in both histories the ��action occurs at time t or

��b� in both histories the environment action e occurs at time t or

��c� in one history at time t a process action i occurs and in the other one an environment
action e occurs at time t or

��d� in both histories at time t a communication action a occurs which is an input action
in one of them and an output action in the other one

��e� in one history at time t a communication action occurs which is not an communication
action in the other one and in the other history an environment action e occurs�

So if the two components each perform an i action this prohibited because we want to
model interleaving where only communication actions can possible occur simultaneously�
Two matching histories are then merged into one history by ��� �copying� the state�
information of the two histories# and in case ��a� the resulting event becomes �� and in
case ��b� the resulting event becomes e� and in case ��c� the resulting event becomes i� and
in case ��d� the resulting event becomes i� and in case ��e� the resulting event becomes
the communication action�

De�nition �� �Composition of two systems�
Given systems Si � �Bi�Hi� with Bi � ��Ini�Outi�� �Vi�Xi�� �i � �� �� such that In��In� �
�� Out� � Out� � � and X� � X� � �� The composed system S � S� k S� is de	ned as
�B�H� with B

M
� ��In� n Out� � In� n Out��Out� n In� � Out� n In��� �V� � V��X� � X���

and H
M
� H�

N
H�� The

N
is the merge operator which merges the histories h� � H� and

h� � H� into one history h and which is de	ned as follows�

H�

O
H�

M
� fh � H j �h� � H�� h� � H��� �h� h�� h��g

where for h � h�� 	i and hj � h�j � 	ji �j � �� ���
��h� h�� h�� i�

 	 � 	� � 	 � 	�
 
t �

� ��t���� � � � ���t���� � � � ���t���� � �
� ��t���� � e � ���t���� � e � ���t���� � e
� ��t���� � i � ���t���� � i � ���t���� � e
� ��t���� � i � ���t���� � e � ���t���� � i
� �a � In� �Out� � ��t���� � i � ���t���� � a� � ���t���� � a�
� �a � In� �Out� � ��t���� � i � ���t���� � a� � ���t���� � a�
� �a � In� nOut� � ��t���� � a� � ���t���� � a� � ���t���� � e
� �a � Out� n In� � ��t���� � a� � ���t���� � a� � ���t���� � e
� �a � In� nOut� � ��t���� � a� � ���t���� � e � ���t���� � a�
� �a � Out� n In� � ��t���� � a� � ���t���� � e � ���t���� � a�

The following Lemma expresses that the �making observable��operation and the merge
operator are monotonic and that the �making observable��operation on the composed
system is equal to the �making observable��operation on the components�

��
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Lemma 	 �Properties of O and
N
�

Given systems �B��H��� �B��H��� �B��H�� and �B��H�� then

�a� H� � H� implies H�
N
H� � H�

N
H�

�b� OX��
�H�

N
H�� � OX�

�H��
N
OX�

�H��
�c� H� � H� implies OX�

�H�� � OX�
�H��

�d� �H� �H��
N
�H� �H�� � �H�

N
H�� � �H�

N
H��

The following theorem of compositional re�nement can be inferred from the above lemma�

Theorem � �Compositional re�nement�
Given concrete systems Si � �Bi�Hi� �i � �� �� and abstract systems Sj � �Bj �Hj� �j �
�� �� such that O�B�� � O�B�� and O�B�� � O�B�� then S� ref S� and S� ref S� implies
S� k S� ref S� k S��

It is very common that a shared variable is only used by the subcomponents of a system
and not by the environment of the system� This variable acts then as a local variable for
the system� The following de�nition introduces encapsulation which makes certain shared
variables local to the system�

De�nition �� �Encapsulation�
Given system S � �B�H� where B � ��In�Out�� �V�X�� then encapsulation of V�

in S with V� � V is denoted by S � V� and de	ned by �B��EncV�
�H�� where B�

M
�

��In�Out�� �V nV��X� ren�V���� where ren is a mapping from the shared variables to the
local variables and intuitively �renames� the shared variables of V� to fresh local variables
�not already in X�� The encapsulation operator EncV�

�H� is de	ned as

fh � H j h � H � 
t � ��t���� � e� 	�t�j�V�
� lim

t�t�
	�t��j

�
V�
g

As ren mapping in above de�nition we usually take the identity mapping �almost it trans�
forms bold variables names to non�bold variables names� because those shared variables
that we want to make local are not yet in the set of local variables� In the following when
ren is not given this identity mapping should be assumed�

����� Re�nement and Composition of DTL Speci�cations

In this section the re�nement and composition notion of the previous section are translated
into DTL by de�ning it for machine speci�cations �Def� �
�� This means that �rst the
observable machine speci�cation should be de�ned in DTL�

De�nition �� �Observable machine speci�cation in DTL�
Given machine speci	cation �B� I��T�L� in DTL and then the corresponding observable
machine speci	cation is de	ned as �O�B�� ��X � �I ��T � L����

The following lemma expresses that existential quanti�cation relates to the semantic notion
of observable histories�

��
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Lemma 

Given DTL machine speci	cation S � �B� I � �T � L� then OX�Hist�I � �T � L�� �
Hist���X � �I ��T � L���

Theorem � �Re�nement of machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Ic ��Tc �Lc� where Bc

M
� �BA

c � �Vc�Xc��
and abstract machine speci	cation Sa

M
� �Ba� Ia ��Ta � La� where Ba

M
� �BA

a � �Va�Xa���
Then Sc re�nes Sa denoted Sc ref Sa i�

O�Bc� � O�Ba� and
��Xc � �Ic ��Tc � Lc�� � ��Xa � �Ia ��Ta � La��

Composition of DTL machine speci�cations can be de�ned in the same way as in the
previous section�

De�nition �	 �Composition of two DTL machine speci�cations�
Given DTL machine system speci	cations Si

M
� �Bi� Ii ��Ti �Li� where Bi

M
� �BA

i � B
P
i ��

for i � �� �� Let BA
�

�BA
�

��� ��� ��� be de	ned as

��
� � � � � �� � � � �� � �
� � � e � �� � e � �� � e
� � � i � �� � i � �� � e
� � � i � �� � e � �� � i
�

W
a�In��Out� � � i � �� � a� � �� � a�

�
W
a�In��Out� � � i � �� � a� � �� � a�

�
W
a�In�nOut� � � a� � �� � a� � �� � e

�
W
a�Out�nIn� � � a� � �� � a� � �� � e

�
W
a�In�nOut� � � a� � �� � e � �� � a�

�
W
a�Out�nIn� � � a� � �� � e � �� � a�

�

Then the composed machine system speci	cation S is de	ned as �B�H� where

H
M
� ���� ���BA

�

�BA
�

��� ��� ��� � �I� ��T� � L�� 	����� � �I� ��T� � L�� 	�����

B
M
� ��In� nOut� � In� nOut��Out� n In� �Out� n In��� �V� � V��X� �X����

This de�nition can be easily extended for n DTL speci�cations� One has then to de�ne a
predicate � 
BA��� %�� corresponding to the operation of merging n components�

Theorem 	 �Semantic merge is almost conjunction�
Given machine system speci	cations �Bi� Ii ��Ti � Li� where Bi

M
� ��Ini�Outi�� �Vi�Xi���

for i � �� � and composed machine system speci	cation as in de	nition ��� i�e�� �B�H�
where H

M
� ���� ���BA

�

�BA
�

��� ��� ��� � �I� � �T� � L�� 	����� � �I� ��T� � L�� 	����� and

B
M
� ��In� nOut� � In� nOut��Out� n In� �Out� n In��� �V� � V��X� �X��� then

Hist�I� ��T� � L��
O

Hist�I� ��T� � L�� � Hist�H�

��
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Encapsulation of shared variables for DTL speci�cations is de�ned as follows�

De�nition �
 �Encapsulation�
Given machine speci	cation S

M
� �B�H� then encapsulation of V� in S with V� � V

denoted by S � V� is de	ned as �B��H��� � e� V�
� � V��� where B�

M
� �E�VnV��X�V���

The following theorem states that above de�nition indeed captures encapsulation�

Theorem 

Given machine speci	cation S

M
� �B�H� and given set of shared variables V� � V then

EncV�
�Hist�H�� � Hist�H � �� � e� V�

� � V���

Example �
Abstract machine speci	cation Sa

M
� �B� I � �T � L� is re	ned by the composition of

concrete machines speci	cations Sc�
M
� �B�� I���T� �L�� and Sc�

M
� �B�� I���T� �L���

The abstract machine speci	cation Sa is de	ned as follows�

�� Basis B � ��In�Out�� �V�X��

In
M
� fbg�

Out
M
� fag�

V
M
� fsg�

X
M
� fxg

� Initial States

I
M
� �s� x� � ��� ��

�� Transitions
T

M
�

�
�
� � a� � x � � � �s� x�� � �s� ��

�
�
�
� � b� � x � � � �s� x�� � �s� ��

�
�
�
� � i � �s� x� � ��� �� � �s� x�� � ��� x�

�
�
�
� � e � �s� x�� � ��� x�

�
� stuta

These transitions are illustrated in 	gure ��� Note� the stutter transitions are not
drawn in all subsequent 	gures in order to minimize the number of edges�

�� Liveness

L
M
� true

��
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��
�s� x�
�

��� ��

�� ��

�� ��
��

a�

��

e

�s� x�
�
��� ��

�� ��

�� ��
��

b�

��

e

�s� x�
�
��� ��

�� ��

�� ��

��

e

�s� x�
�

��� ��

�� ��

�� ��
��a�
�s� x�
�
��� ��

�� ��

�� ��
��b�
�s� x�
�
��� ��

�� ��

�� ��

OO

i

Figure ���� Abstract machine

The de	nition of Sc� is as follows�

�� Basis B� � ��In��Out��� �V��X���

In�
M
� fcg�

Out�
M
� fag�

V�
M
� fsg�

X�
M
� ftg

� Initial States

I�
M
� �s� t� � ��� ��

�� Transitions
T�

M
�

�
�
� � a� � t � � � �s� t�� � �s� ��

�
�
�
� � c� � t � � � �s� t�� � �s� ��

�
�
�
� � e � �s� t�� � ��� t�

�
�
�
� � e � �s� t�� � ��� t�

�
� stut�

These transitions are illustrated in 	gure ��

�� Liveness

L�
M
� true

The de	nition of Sc� is as follows�

��
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��
�s� t�
�

��� ��
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��
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��

e
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�
��� ��

�� ��
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��

c�

��

e

�s� t�
�
��� ��

�� ��

�� ��

��

e

�s� t�
�

��� ��

�� ��

�� ��
��a�

OO

e
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�
��� ��

�� ��

�� ��
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OO
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�
��� ��

�� ��

�� ��
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e

Figure ���� Concrete machine �

�� Basis B� � ��In��Out��� �V��X���

In�
M
� fbg�

Out�
M
� fcg�

V�
M
� fsg�

X�
M
� fug

� Initial States

I�
M
� �s�u� � ��� ��

�� Transitions
T�

M
�

�
�
� � c� � u � � � �s�u�� � �s� ��

�
�
�
� � b� � u � � � �s�u�� � �s� ��

�
�
�
� � i � �s�u� � ��� �� � �s�u�� � ���u�

�
�
�
� � e � �s�u�� � ���u�

�
� stut�

These transitions are illustrated in 	gure ��

�� Liveness
L�

M
� true

According to de	nition �� the composition of Sc� and Sc� is as follows�

� ��In� nOut� � In� nOut��Out� n In� �Out� n In��� �V� �V��X� �X��� �
���� ����BA

�

�BA
�

��� ��� ��� � �I� ��T� � L�� 	����� � �I� ��T� � L�� 	������ �

��
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Figure ���� Concrete machine �

where

In� nOut� � In� nOut� � fag
Out� n In� �Out� n In� � fbg
V� � V� � fsg
X� � X� � ft�ug
I� 	����� � I� 	����� � �s� t�u� � ��� �� ��

T� 	����� � T� 	����� �
h
�
�
�� � a� � t � � � �s� t�� � �s� ��

�
�
�
�� � c� � t � � � �s� t�� � �s� ��

�
�
�
�� � e � �s� t�� � ��� t�

�
�
�
�� � e � �s� t�� � ��� t�

�
�stut� 	������
�h
�
�
�� � c� � u � � � �s�u�� � �s� ��

�
�
�
�� � b� � u � � � �s�u�� � �s� ��

�
�
�
�� � i � �s�u� � ��� �� � �s�u�� � ���u�

�
�
�
�� � e � �s�u�� � ���u�

�
�stut� 	������

L� 	����� � L� 	����� � true

Let Hc
M
� ���� ����BA

�

�BA
�

��� ��� ��� � �I� � �T� � L�� 	����� � �I� � �T� � L�� 	������ and

Ha
M
� I ��T � L� then the composition of Sc� and Sc� re	nes Sa i�

��� O�Bc� � O�B�
��� j� ��t�u � �Hc��� ��x � �Ha��

The following section will show that both conditions hold� Hence we have re	nement�

�	



��� Proving Re
nement of Reactive System Speci
cations

��� Proving Re�nement of Reactive System Speci��

cations

This section explains how re�nement of reactive systems can be proved� The standard
technique of Abadi ( Lamport 	AL
�� is used� i�e�� re�nement is proven by providing a
re�nement mapping from the concrete system to the abstract system� Firstly we give its
de�nition at the semantic level and then for DTL speci�cations�

����� Proving Semantic Re�nement of Speci�cations

Re�nement of reactive systems is proved by means of a re	nement mapping from the con�
crete system to the abstract system� A re�nement mapping maps a history at the concrete
level to a history at the abstract level� more speci�cally� it maps the states appearing in
the concrete history to states appearing in the abstract history�

De�nition �� �Re�nement mapping between systems�
Given concrete system Sc

M
� �Bc�Hc� and abstract system Sa

M
� �Ba�Ha� s�t� O�Bc� �

O�Ba�� A re�nement mapping from Sc to Sa is a mapping f from states appearing
in histories of Hc to states appearing in histories of Ha� i�e�� f is mapping from with
f �  �  s�t�

� The values of observable variables are not changed� i�e�� for all � �  � �j�Vc � f���j�Vc�

� For all hc � Hc there exists a ha � Ha s�t� for all t � R
��� �c�t� � �a�t� and

	a�t� � f�	c�t���

Lemma �
Given concrete system Sc

M
� �Bc�Hc� and abstract system Sa

M
� �Ba�Ha� s�t� O�Bc� �

O�Ba�� If there exists a re	nement mapping from Sc to Sa� then Sc ref Sa�

The concept of re�nement mappings can also be applied to machine speci�cations� A
machine speci�cation is of the form �B�Comp�M� � L�� Re�nement means then that
f�Comp�Mc��Lc� � Comp�Ma��La for re�nement mapping f � This can be split into ���
f�Comp�Mc��Lc� � Comp�Ma� and ��� f�Comp�Mc��Lc� � La� From f�Comp�Mc�� �
Comp�Ma� follows ��� because f�Comp�Mc� � Lc� � f�Comp�Mc��� So the veri�cation
condition can be split into a condition on machines and a condition involving machines
together with supplementary conditions� This leads to the following de�nition�

De�nition �� �Re�nement mapping between machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc��Lc�� where Mc

M
� �Bc� Ic� Tc��

and abstract machine speci	cation Sa
M
� �Ba� Comp�Ma� � La�� where Ma

M
� �Ba� Ia� Ta��

A re�nement mapping from machine speci	cation Sc to machine speci	cation Sa is a
mapping f �  �  s�t�

� For all � �  � �j�Vc � f���j�Vc�

� � For all �c � Ic� there exist �a � Ia s�t� �a � f��c��

��
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� For all hd� �c�� �c�i � Tc� hd� f��c��� f��c��i � Ta or �f��c�� � f��c�� � d��� �
f�� i� eg�

� For all hc � Comp�Mc� � Lc there exist a ha � La s�t� for all t � R��� �c�t� �
�a�t� and f�	c�t�� � 	a�t��

The following lemma expresses that re�nement mappings are indeed sound for proving
re�nement of machine speci�cations�

Lemma �
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc� � Lc� and abstract machine

speci	cation Sa
M
� �Ba� Comp�Ma� � La� s�t� O�Bc� � O�Ba�� If there exists a re	nement

mapping from Sc to Sa then Sc ref Sa�

����� Proving Re�nement of DTL Speci�cations

Proving re�nement of machine speci�cations in DTL means according to Theorem � that
the observable bases are equal and that a formula with two existential quanti�cations is
valid� More speci�cally�
Given concrete machine speci�cation Sc

M
� �Bc� Ic � �Tc � Lc� and abstract machine

speci�cation Sa
M
� �Ba� Ia � �Ta � La�� Then Sc re�nes Sa is denoted Sc ref Sa and

de�ned by

O�Bc� � O�Ba� and
��Xc � �Ic ��Tc � Lc�� � ��Xa � �Ia ��Ta � La��

So we must have a rule to prove the following�

�x��p� � �x��p�

The following rule does the job�

p� � p� 	exp�x��

�x��p� � �x��p�

for x� not free in p�
none of the variables appearing in exp is quanti�ed in p�

as the following derivation shows�

p� � p� 	exp�x��
� � Generalization� prop�calc�

p� � p� 	exp�x��
� � contraposition

�p� 	exp�x��� �p�
� � Ax�� � 
x���p� � �p� 	exp�x�� where none of the variables

appearing in exp is quanti�ed in �p��Modus Ponus

x���p� � �p�

� � Rule �q� � q��� q� � 
x��q�� for x� not free in q�

x���p� � 
x���p�

� � �p� p�Modus Ponus

x���p� � 
x���p�

� � contraposition
�x��p� � �x��p�

��
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From the previous section it should be clear that this exp is exactly the re�nementmapping
f � and that the proof can be split in a safety part and a liveness part �i�e�� the proof of
p� � p� 	exp�x�� of above rule is split into a safety and a liveness part�� This culminates
in the following proof rule for re�nement based on similar ones in 	Lam
�� KMP
���

Rule � �Proof rule for re�nement�
Given concrete machine speci	cation Sc

M
� �Bc� Ic ��Tc � Lc� and abstract machine spec�

i	cation Sa
M
� �Ba� Ia ��Ta � La� s�t� O�Bc� � O�Ba�� Let f be a re	nement mapping

from Sc to Sa then

Sc j� Ic � Ia 	f�Xa�
Sc j� Tc � Ta 	f�Xa�
Sc j� La 	f�Xa�

j� ��Xc � �Ic ��Tc � Lc��� ��Xa � �Ia ��Ta � La��

When La is of the form�
��WFa

���En� ���� � �
�

��SFa

���En� �� �� �

�see Def� �
�� the last premise of above rule can be split into

Sc j�
V
��WFa���En� ���� � 	f�Xa�

Sc j�
V
��SFa���En� �� �� � 	f�Xa� �

This is equal to

Sc j�
V
��WFa�En� �� ��En� ��  �� 	f�Xa�

Sc j�
V
��SFa���En� �� � � 	f�Xa�

using some temporal logic calculus� So one gets the following proof rule� similar rules
appearing in 	Lam
�� KMP
���

Rule � �Proof rule for re�nement�
Given concrete machine speci	cation Sc

M
� �Bc� Ic � �Tc � Lc� where Lc is of the formV

��WFc���En� �� �� ��
V
��SFc���En� �� �� �� Furthermore given abstract ma�

chine speci	cation Sa
M
� �Ba� Ia��Ta�La� where La is of the form

V
��WFa���En� ��

�� � �
V
��SFa���En� �� �� �� Let O�Bc� � O�Ba�� Let f be a re	nement mapping

from Sc to Sa then

Sc j� Ic � Ia 	f�Xa�
Sc j� Tc � Ta 	f�Xa�
Sc j�

V
��WFa En� � 	f�Xa�� ��En� � 	f�Xa��  	f�Xa��

Sc j�
V
��SFa��En� � 	f�Xa�� � 	f�Xa�

j� ��Xc � �Ic ��Tc � Lc��� ��Xa � �Ia ��Ta � La��

Rule � is used in the following example for proving re�nement of example ��

��
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Example 	
From example � we have�
Let Hc

M
� ���� ����BA

�

�BA
�

��� ��� ��� � �I� � �T� � L�� 	����� � �I� � �T� � L�� 	������ and

Ha
M
� I ��T � L then the composition of Sc� and Sc� re	nes Sa i�

��� O�Bc� � O�B�
��� j� ��t�u � �Hc��� ��x � �Ha��

Because the observable bases are equal ��� holds� �� is proven with rule �� This means
one has to 	nd a re	nement mapping f � In order to 	nd such a mapping the picture of
the Sc�kSc� is given� �Note only the reachable states are drawn��

��
�s� t�u�
�

��� �� ��

�� ��

�� ��

��

e

��

a�

�s� t�u�
�

��� �� ��

�� ��

�� ��

��

e

��

i

�s� t�u�
�

��� �� ��

�� ��

�� ��

��

e

��

b�

�s� t�u�
�

��� �� ��

�� ��

�� ��

��

e

�s� t�u�
�

��� �� ��

�� ��

�� ��
��a�
�s� t�u�
�

��� �� ��

�� ��

�� ��
��i
�s� t�u�
�

��� �� ��

�� ��

�� ��
��b�
�s� t�u�
�

��� �� ��

�� ��

�� ��

OO

i

Figure ���� Transitions of Sc�kSc�

Relating the above 	gure with 	gure �� one sees that f is as de	ned follows�

if
t � � � u � � then f�s� t� u� � t
t � � � u � � then f�s� t� u� � t
t � � � u � � then f�s� t� u� � t u
t � � � u � � then f�s� t� u� � u

fi

The following premises should be valid in order to apply the rule�

� Sc j� �s� t�u� � ��� �� ��� ��s� x� � ��� ��� 	f�x�

Substitution means replacing x by t because t � � � u � �� This results in�

�s� t�u� � ��� �� ��� �s� t� � ��� ��

This is valid�

� Sc j�
�
� � a� � t � � � �s� t�u�� � �s� ��u�

�
��
� � a� � x � � � �s� x�� � �s� ��

�
	f�x�

��
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Substitution means replacing x by t because t � �� and replacing x� by t� because
t� � �� This results in�

Sc j�
�
� � a� � t � � � �s� t�u�� � �s� ��u�

�
��
� � a� � t � � � �s� t�� � �s� ��

�
This is valid�

� Sc j�
�
� � b� � u � � � �s� t�u�� � �s� t� ��

�
��
� � b� � x � � � �s� x�� � �s� ��

�
	f�x�

Substitution means replacing x by t u because u � �� and replacing x� by u� because
u� � �� This results in�

Sc j�
�
� � b� � u � � � �s� t�u�� � �s� t� ��

�
��
� � b� � t u � � � �s�u�� � �s� ��

�
This is valid because from 	gure �� one sees that u � �� t � � holds�

� Sc j�
�
� � e � �s� t�u�� � ��� t�u�

�
��
� � e � �s� x�� � ��� x�

�
	f�x�

Substitution means replacing x by f � and replacing x� by f�� This results in�

Sc j�
�
� � e � �s� t�u�� � ��� t�u�

�
��
� � e � �s� f�� � �s� f�

�
This is valid because �t�u�� � �t�u�� f � � f �

� Sc j�
�
� � i � �t�u� � ��� �� � �s� t�u�� � �s� �� ��

�
�
stuta 	f�x�

Because stuta
M
�

� � �

�
�
� � i � �s� x�� � �s� x�

�
�

�
� � e � �s� x�� � �s� x�

�
��
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it su�ces to prove�

Sc j�
�
� � i � �t�u� � ��� �� � �s� t�u�� � �s� �� ��

�
��
� � i � �s� x�� � �s� x�

�
	f�x�

Substitution means replacing x by t because t � � � u � �� and replacing x� by t� u�

because t� � � � u� � �� This results in�

Sc j�
�
� � i � �t�u� � ��� �� � �s� t�u�� � �s� �� ��

�
��
� � i � �s� t u�� � �s� t�

�
This is valid�

� Sc j�
�
� � i � �s�u� � ��� �� � �s� t�u�� � ��� t�u�

�
��
� � i � �s� x� � ��� �� � �s� x�� � ��� x�

�
	f�x�

Substitution means replacing x by u because u � � � t � �� and replacing x� by u�

because u� � � � t� � �� This results in�

Sc j�
�
� � i � �s�u� � ��� �� � �s� t�u�� � ��� t�u�

�
��
� � i � �s�u� � ��� �� � �s�u�� � �s�u�

�
This is valid�

� Sc j� stutc � stuta 	f�x�

De	nition of stuta and stutc results in

Sc j� � � �

�
�
� � i � �s� t�u�� � �s� t�u�

�
�
�
� � e � �s� t�u�� � �s� t�u�

�
�
� � �

�
�
� � i � �s� x�� � �s� x�

�
	f�x�

�
�
� � e � �s� x�� � �s� x�

�
	f�x�

This is valid�

� Sc j� true 	f�x�

This is valid�

So Sc�kSc� ref Sa�

��
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��� Relative Re�nement and Composition of Reactive

System Speci�cations

In this section the concept of relative re�nement and composition in the development of
systems is explained� Ordinary re�nement stipulates that the set of histories generated by
the concrete system is included in the set of histories generated by the abstract system�
Relative re�nement means that this inclusion almost holds� i�e�� if one leaves some of the
histories generated at the concrete level out of account this inclusion holds� Histories
generated by the abstract system can also be left out because a concrete system could
be an abstract system in a next re�nement step� Ordinary composition means that the
histories of two components are merged into the histories of the composed system� Relative
composition means that one leaves certain histories out of this merge� i�e�� the merge is
performed on smaller sets of histories generated by the components� In the �rst two
subsections we consider the sets that extract the good computations as arbitrary� i�e�� it
can be a safety set� liveness set or neither of them� In the third subsection a condition
similar to machine closedness is imposed on a relative system� i�e�� the relative system can
then be split into a safety part and a liveness part� Using this fact a proof rule for relative
re�nement is constructed in the last subsection based on rule given in Section ���� Again
we formulate these concepts �rst in terms of sets of histories and then in DTL�

����� Semantic Relative Re�nement and Composition of Speci�

�cations

De�nition � �Relative re�nement of systems�
Given concrete system Sc

M
� �Bc�Hc� and aset Wc of allowed histories for Sc �Wc � H

constraining Bc� and abstract system Sa
M
� �Ba�Ha� together with a set Wa of allowed

histories for Sa �Wa � H constraining Ba�� Let Gc
M
� Hc � Wc and Ga

M
� Ha � Wa�

Then Sc relatively re�nes Sa with respect to �Wc�Wa�� denoted by Sc Wcref
Wa Sa� i�

O�Bc� � O�Ba� and OXc�Gc� � OXa�Ga��

Relativizing can also be used for composition� i�e�� if during composition one gets unwanted
histories these are removed� using a set that characterizes the allowed histories�

De�nition �� �Relative composition of two systems�
Given systems Si � �Bi�Hi� where Bi � ��Ini�Outi�� �Vi�Xi�� and �i � �� �� such that
X� � X� � � and given sets Wi � H constraining Bi� Let W denote �W��W��� Then the
relative composed system S with respect to W � denoted S� jW j S�� is de	ned as �B�H�

with B
M
� ��In� n Out� � In� n Out��Out� n In� � Out� n In��� �V� � V��X� � X���� and

H
M
� H� W

�	
����H�
M
� �H� �W��

N
�H� �W���

The following is a compositional relative re�nement theorem�

Theorem � �Compositional relative re�nement�
Given concrete systems Si � �Bi�Hi� �i � �� �� and given set Wc constraining B�� �the

��
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basis of S� k S��� And given abstract systems Sj � �Bj�Hj� �j � �� �� and given set Wa

constraining B�� �the basis of S� k S��� Then the following holds�

�H�
N
H�� � �Wc�

N
Wc�� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

Wa�
N
Wa� �Wa

S� Wc�
ref Wa� S�

S� Wc�
ref Wa� S�

S� k S� Wcref
Wa S� k S�

Wci constraining Bi �i����
Waj constraining Bj �j�����

If the extra requirements W don�t constrain the ��variables then the following lemma can
be used to prove the �rst premise of above theorem�

Lemma 
Given systems Si � �Bi�Hi� and sets Wi constraining Bi �i � �� �� with no restrictions on
the event variables� Then the following holds�

�H� �W��
O
�H� �W�� � H�

O
H� �W�

O
W�

In case the abstract requirement Wa can�t be decomposed into component requirements
the following rule can be used�

Lemma ��
Given concrete systems Si � �Bi�Hi� �i � �� �� and given set Wc constraining B��� And
given abstract systems Sj � �Bj �Hj� �j � �� �� and given set Wa constraining B�� without
restricting the � variables� Then the following holds�

H�
N
H� �Wc�

N
Wc� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

S� Wc�
ref Wa S�

S� Wc�
ref Wa S�

S� k S� Wcref
Wa S� k S�

Wci constraining Bi �i����

The following lemma is useful for proving the second premise of the theorem�

Lemma ��
Given sets Wi �i � �� �� not restricting the � variables then

W�

O
W� � W� �W��

����� Relative Re�nement and Composition of DTL Speci�ca�

tions

Theorem � �Relative re�nement of DTL machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Ic � �Tc � Lc� and DTL formula Wc

over Bc and abstract machine speci	cation Sa
M
� �Ba� Ia ��Ta � La� and DTL formula

Wa over Ba� Let Gc
M
� Ic � �Tc � Lc � Wc and Ga

M
� Ia � �Ta � La � Wa� Then

Sc Hist�Wc�ref
Hist�Wa� Sa i�

O�Bc� � O�Ba� and
j� ��Xc � �Gc��� ��Xa � �Ga��

��
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De�nition �� �Relative composition of two DTL machine speci�cations�
Given machine system speci	cations �Bi� Ii ��Ti � Li� where Bi

M
� ��Ini�Outi�� �Vi�Xi���

and given DTL formulae Wi over Bi for i � �� �� Then the relative composed machine
speci	cation S w�r�t� W is de	ned as �B�H� where B

M
� ��In� nOut� � In� nOut��Out� n

In� �Out� n In��� �V� �V��X� �X��� and H
M
� ���� ����BA

�

�BA
�

��� ��� ��� � �I� ��T� � L� �

W�� 	����� � �I� ��T� � L� �W�� 	�������

Theorem  �Relative composition corresponds to semantic merge�
Given machine system speci	cations �Bi� Ii ��Ti � Li� where Bi

M
� ��Ini�Outi�� �Vi�Xi���

and given DTL formulae Wi over Bi for i � �� � and let W
M
� �Hist�Wc��Hist�Wa�� and

given the relative composed system as in Def� ��� i�e�� �B�H� where B
M
� ��In� n Out� �

In� nOut��Out� n In��Out� n In��� �V��V��X��X��� and H
M
� ���� ����BA

�

�BA
�

��� ��� ����

�I� ��T� � L� �W�� 	����� � �I� ��T� � L� �W�� 	������ then

Hist�I� ��T� � L�� W�	
����Hist�I� ��T� � L�� � Hist�H�

����� Proving Semantic Relative Re�nement of Speci�cations

The above sections explain the purpose of the restricting set W � In order to prove relative
re�nement we must know how this set W looks like� Is it a safety set� a liveness set or
neither of them� A result of 	AS��� states that every set of histories can be represented as
the intersection of a safety and a liveness set� Now lemma � expresses that for a machine
M�� Comp�M�� is a safety set� So we will representW as a machineM� and an external set
L� s�t� W is machine closed� i�e�� cl�Comp�M�� � L�� � Comp�M��� We also require that
�B�Comp�M� � Comp�M�� � L � L�� is machine closed� i�e�� cl�Comp�M� �Comp�M�� �
L � L�� � Comp�M� � Comp�M��� because this is the system that is used in the relative
re�nement relation� We want to use the re�nement mappings of Def� �� to prove relative
re�nement of systems� This means that Comp�M� � Comp�M�� should be represented
as a machine M� such that Comp�M�� � Comp�M� � Comp�M��� The following lemma
expresses that this M� can be constructed from M and M��

Lemma ��
Given machines M

M
� �B� I� T � and M�

M
� �B� I�� T��� De	ne machine M� as �B� I�� T��

where I� and T� are as follows�

� I�
M
� I � I�� and

� T�
M
� T � T��

Then Comp�M�� � Comp�M� � Comp�M���

Now the technique of re�nement mappings from Section ��� can be applied to prove relative
re�nement of systems� This is expressed in the following de�nition�

De�nition �� �Relative re�nement mapping between machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc��Lc� and set Wc � Comp�Mc��

�Lc�� and given abstract machine speci	cation Sa
M
� �Ba� Comp�Ma� � La� and set Wa �

Comp�Ma�� � La�� A relative re�nement mapping from machine speci	cation Sc to
machine speci	cation Sa is a mapping f �  �  s�t�

��
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� For all � �  � �j�Vc � f���j�Vc�

� � For all �c � Ic � Ic�� exist �a � Ia � Ia� s�t� �a � f��c��

� For all hd� �c�� �c�i � Tc�Tc�� hd� f��c��� f��c��i � Ta�Ta� or �f��c�� � f��c���
d��� � f�� i� eg�

� For all hc � Comp�Mc� � Comp�Mc� � Lc there exist a ha � La � La� s�t� for
all t � R��� h�c�t�� 	c�t�i � h�a�t�� 	�t�ai and f�	c�t�� � 	a�t��

The following lemma expresses that relative re�nement mappings are indeed sucient for
proving relative re�nement of machine speci�cations�

Lemma ��
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc��Lc� and set Wc � Comp�Mc��

�Lc�� and given abstract machine speci	cation Sa
M
� �Ba� Comp�Ma� � La� and set Wa �

Comp�Ma�� � La� s�t� O�Bc� � O�Ba�� If there exists a relative re	nement mapping from
Sc to Sa then Sc Wcref

Wa Sa�

����� Proving Relative Re�nement of DTL Speci�cations

Using the results of the previous section and Section ��� it is not surprising that following
rule can be applied to prove relative re�nement of systems�

Rule � �Proof rule for relative re�nement�
Given concrete machine speci	cation Sc

M
� �Bc� Ic ��Tc �Lc� and Wc

M
� Ic� ��Tc� �Lc�

and abstract machine speci	cation Sa
M
� �Ba� Ia ��Ta � La� and Wa

M
� Ia� ��Ta� � La�

s�t� O�Bc� � O�Ba�� Let f be a relative re	nement mapping from Sc to Sa then

Sc �Hist�Wc� j� �Ic � Ic��� �Ia � Ia�� 	f�Xa�
Sc �Hist�Wc� j� �Tc � Tc��� �Ta � Ta�� 	f�Xa�
Sc �Hist�Wc� j� �La � La�� 	f�Xa�

j� ��Xc � �Ic ��Tc � Lc �Wc��� ��Xa � �Ia ��Ta � La �Wa��

�	



Chapter �

Readers�Writers Example

��� Introduction

T
he relative re�nement technique will now be used to formalize Dijkstra�s devel�
opment strategy for the readers�writers problem� The readers�writers problem�
described intuitively� is as follows� given N readers and M writers� a reader per�

forms� cyclically� non�critical action NCS and critical action READ� and a writer performs�
again cyclically� non�critical action NCS and critical action WRITE� These readers and writ�
ers must be synchronized in such a way that if a writer performs the WRITE action it is the
only process that performs a critical action� i�e� mutual exclusion is required �ME�� Further�
more� it is necessary that any request to execute the critical action is eventually granted�
i�e� eventual access should hold �EA�� It is this synchronizer that has to be developed� But
before we give the development we formulate an abstract speci�cation for the problem�

The abstract speci�cation of Dijkstra consists of a program� implementing the above
readers and writers� and the requirements ME and EA� In our formalism this will be rep�
resented by system S� and requirement W�� The development process has four steps� in
the �rst step Dijkstra gives an implementation by a program that produces undesirable
deadlocked computations� In our formalism the �rst implementation is represented by
system S� and a requirement W� which removes the deadlocked computations� We will
prove that S� relatively re�nes S� with respect to �W��W��� In the second step Dijkstra
uses the split binary semaphore technique to delete the deadlocked computations from
the �rst implementation# he obtains by this technique a second implementation that in�
troduces as undesirable computations new deadlocked ones� In our formalism the second
implementation is represented by the system S� and the requirement W� that removes
the newly introduced deadlocked computations� We will prove that S� relatively re�nes
S� with respect to �W��W��� These deadlocked computations are deleted in the third
step resulting in a third implementation that contains as undesirable computations unnec�
essarily blocking ones� These computations are not deadlocking computations but only
computations that are inecient because they suspend a reader or writer unnecessarily�
In our formalism the third implementation will be represented by the system S� and the
requirement W� that removes the unnecessarily blocking computations� It is proved that
S� relatively re�nes S� with respect to �W��W��� In the fourth step� these unnecessarily

��
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blocking computations are deleted and also the resulting implementation is cleaned up� In
our formalism the fourth implementation will be represented by system S� and it is proved
that S� relatively re�nes S� with respect to �true�W��� i�e�� in the fourth step no further
requirements are imposed�

��� The abstract speci�cation

Here Dijkstra�s strategy 	Dij�
� is followed and it is shown how the informal approach used
there can be formalized�
Dijkstra rewrites the informal speci�cation as follows� as a �rst step� he describes readers
and writers by programs �he assumes that the semantics of these programs is intuitively
clear��

reader�i� do true � NCS�READ od

writer�j� do true � NCS�WRITE od

He then combines these programs into one parallel program Syn�� Syn� denotes the abstract
speci�cation and is de�ned as follows�

Syn� � kNi�� reader�i k k
M
j�� writer�j �

Where kNi�� reader
�
i is a notation for the N �fold parallel composition of reader

�
i � Finally

he formulates an informal requirement to exclude from Syn� the unwanted sequences�
This requirement is the same as in the introduction� ME and EA� The complete abstract
speci�cation is thus Syn� plus this requirement�

Each reader�i and writer
�
j is represented respectively by DTL machine speci�cation Sr�i

and Sw�

j
� We will incorporate the requirement EA as a liveness requirement in each machine

speci�cation� The parallel composition of all the separate machine speci�cations S�
M
� kNi��

Sr�
i
kkMj�� Sw�

j
then corresponds to Syn� plus EA� ME will be incorporated as an extra

requirement on S�� The following sections will give in detail the machine speci�cations Sr�i
and Sw�

j
� and the extra requirement W��

����� Speci�cation Sr�i

The formal speci�cation Sr�
i
� �Br�

i
�Hr�

i
� where Hr�

i

M
� Ir�

i
��Tr�

i
� Lr�

i
and Br�

i
� Ir�

i
� Tr�

i

and Lr�
i
are as follows�

�� Basis Br�
i

M
� ��Inr�

i
�Outr�

i
�� �Vr�

i
�Xr�

i
��

Outr�
i

M
� ��

Inr�i
M
� ��

Vr�i

M
� fsrig�

Xr�i

M
� �

��
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cation

� sri � �� reader
�
i is non critical�

� sri � �� reader
�
i is critical�

�� Initial States�

Ir�
i

M
� sri � �

Reader�i starts in the non critical state�

�� Transitions�
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����� Requirement W�

The extra condition on the composed system should express the mutual exclusion property
ME� A reader �writer� is critical if sri � � �swj � �� Let ��i � � � i � N � sri � �� denote
the number of components such that sri � �� The condition is then as follows�

W�
M
� � ���j � � � j �M � swj � �� � ��

���i � � � i � N � sri � �� � � � ��j � � � j �M � swj � �� � ��

As seen in Section ��� W� should be de�ned as a machine and a liveness condition in order
to apply the proof rule for relative re�nement� This can be done quite easily� The liveness
condition is true� De�ne p as ��j � � � j � M � swj � �� � � � ���i � � � i � N � sri �
�� � � � ��j � � � j � M � swj � �� � �� and p� as ��j � � � j � M � s�wj � �� � � � ���i �
� � i � N � s�ri � �� � � � ��j � � � j �M � s�wj � �� � ��� Then p����p � p

��� stut�� is
the machine in DTL corresponding to W��

��� The �rst development step

Dijkstra�s next step is to translate the informally stated requirement into formal program
form� i�e� to transform reader�i and writer

�
j in such a way that they satisfy the mutual�

exclusion requirement ME� We discuss this translation informally�
He introduces shared variables aw and ar and binary semaphore x� Shared variable

ar represents the number of readers which may execute their READ� and aw represents
the number of writers which may execute their WRITE� A reader increases ar by � if it
allowed to execute its READ and decreases ar by � if it is �nished with executing its
READ� Since ar will be changed and accessed by several readers� Dijkstra protects the
operation of increasing and decreasing ar by semaphore operations P and V on binary
semaphore x to ensure that only one reader changes ar at a time� i�e� mutual exclusion� The
synchronization requirement is brought into readeri by guarding the increasing operation
of ar with condition aw��� i�e�� the number of writers that may execute their WRITE equals
zero� The same can be done for writerj� The initial values of the shared variables are �
and the initial value of semaphore x is �� This results in the following programs�

reader�i�

do true � NCS�

P�x����� if aw�� �ar��ar�� ��V�x��
READ�

P�x��ar��ar	��V�x�

od

writer�j�

do true � NCS�

P�x����� if aw�� � ar���aw��aw�� ��V�x��
WRITE�

P�x��aw��aw	��V�x�

od

Syn� � kNi�� reader�i k k
M
j�� writer�j

��
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This �rst approximation can deadlock� A deadlocked sequence is for instance�

A writer starts in the initial state and then executes NCS�P�x������ as result
of that the value of aw changes in �� A reader then executes NCS�P�x�����
and blocks in the if	fi clause of ��� because aw�� and the semantics of this
if	fi is such that when no guard is ful�lled it blocks� Then no reader or writer
can then execute ��� or ��� because x�� and x holds this value forever� The
requirement is thus that these deadlocked sequences are not generated�

Now Syn� will be speci�ed in Stark�s formalism� Like the abstract speci�cation each
reader�i and writer

�
j is represented by a separate machine speci�cation Sr�i and Sw�

j
� The

composed system S�
M
� kNi�� Sr�i kk

M
j�� Sw�

j
and corresponds with Syn�� For S� the extra

requirement W� for excluding deadlocked computations is formulated� In the following
subsections we give DTL machine speci�cations Sr�

i
and Sw�

j
� and the extra requirement
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Figure ���� Transitions of reader�i �
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Figure ���� Transitions of writer�j �

�� Liveness
Lw�

j
expresses that the P� and V�operations on the semaphore x are strongly fair and

all the other transitions are weakly fair�
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����� Requirement W�

The condition should express that the described deadlocked sequences don�t occur� i�e�� it
when ar is increased by � then aw � � and when aw is increased by � then aw � � and
ar � �� Formally�

W�
M
� �

�	
 N�
i��

�r�i � �� aw � �

�
�

�	 M�
j��

�w�

j
� �� �ar � � � aw � ��

�A�A
This corresponds to the following machine� Let

pri
M
� �r�i � �� aw � �

p�ri
M
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r�
i
� �� aw� � �

pwj
M
� �w�

j
� �� �ar � � � aw � ��

p�wj
M
� ��

w�

j
� �� �ar� � � � aw� � ��

then W� is the conjunction of the machines pri ����pri � p�ri� � stut� and pwj ����pwj �
p�wj� � stut� for � � i � N and � � j �M �

����� S� relatively re�nes S�

Since the semaphore x and the shared variables ar and aw are used only by the subcom�
ponents of S�� we should prove S� � fx�ar�awg relatively re�nes S� instead of S� relatively
re�nes S�� According to de�nition ��� �� and theorem � S� � fx�ar�awg relatively re�nes
S� with respect to �W��W�� i� the following holds�

O�B�� � O�B�� and
j� ��X� � �G� � �� � e� �x� ar� aw�� � �x� ar� aw���� ��X� � �G���

where X� are the local variables from S�� i�e�� X�
M
� f�r�i j i � �� � � � � Ng � f�w�

j
j j �

�� � � � �Mg � fx� aw� arg and G� is the composition of Sr�
i
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j
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Since W� can�t be decomposed into sub�requirements but doesn�t constrain the � variables
and W� can be decomposed into sub�requirements Wr�

i

M
� ���r�

i
� � � aw � �� for

reader�i and Ww�

i

M
� ���w�

j
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Lemma 
� �� and �� can be used for the proof� i�e�� following proof rule can be used
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�c� Lr�
i

� ���En�r�
i��
�� ��r�

i��
� � ���En�r�

i��
�� ��r�

i��
�

� ����� � i � sri � ��� ���
�
� � i � sri � � � s

�
ri
� �

�
�

From the fact that �see Figure ���� transitions r�i�� and r�i�� are strongly fair

and r�
i��
is weakly fair follows that ���En�r�

i��
�� ��r�

i��
�� i�e�� r�

i��
is weakly

fair� From the fact that �see Figure ���� transitions r�i�� and r�i�� are strongly

fair and r�
i��
is weakly fair follows that ���En�r�

i��
� � ��r�

i��
�� i�e�� r�

i��
is

weakly fair�

ad ��� Analogue to the proof of ����

ad ��� This is trivial because W� � �
VN
i��Wr�

i
�
VM
j��Ww�

j
��

��� The second development step

As seen in section ��� the �rst implementation can generate deadlocked sequences� In this
step we change the components of the �rst implementation in such a way that deadlock
inside a PV�section is not possible anymore� This is the same as is done by Dijkstra� he
massages reader�i and writer

�
j into reader

�
j and writer

�
j so that no deadlocked sequences

inside a PV�section are generated any more�
One such deadlocked sequence generated by the �rst implementation is as follows�

suppose reader�i has gained the access�right for the shared variables ��rst PV�segment�
and suppose aw � � �a writer is executing WRITE�� Then reader�i can never increase ar by
�� i�e�� reader�i has deadlocked�

Dijkstra uses the split binary semaphore technique to prevent programs from becoming
deadlocked inside a PV�section� The idea is that we must prevent programs from getting
the access�right �get into a PV�section� for the shared variables if we know that they can
not give it back �get deadlocked inside a PV�section�� For reader�i this means� never let it
enter the �rst PV�section if aw does not equal zero� For writer�j this means� never let it
enter the �rst PV�section if aw or ar does not equal zero� Reader�i and writer

�
j never block

in their second PV�section�
How does one prevent that reader�i gets deadlocked inside a PV�section� This is done as
follows� reader�i chooses� when it gives the access�right back� who can have it thereafter�
reader�i executes therefore the following piece of program as replacement for V�mx��

CHOOSE� if true � V�m� aw�� � V�r� aw�� � ar�� � V�w� �

We have to split semaphore mx in three pieces� If aw equals zero then a reader is allowed to
enter its �rst PV�section� i�e�� this PV�section is not guarded by P�mx� but by P�r�� We
do this substitution for all PV�sections of reader�i and writer

�
j � So we have replaced mx by

three other binary semaphores�
What is the initial value of these semaphores� If they all have initial value � then more
than one program can have access�right to the shared variables� i�e�� only one has initial

��
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value �� Semaphore r can not have initial value � because if no reader wants to execute
READ then no writer can execute WRITE� The same holds for semaphore w� Thus m has
initial value �� But then no reader or writer can enter the �rst PV�section� The solution of
this problem is that we insert a PV�section �P�m��CHOOSE� at front of the �rst one� This
is in short what Dijkstra does to prevent that reader�i and writer

�
j get deadlocked inside a

PV�section� The result of this transformation is�

reader�i�

do true � NCS�

P�m��CHOOSE�

P�r��ar��ar���CHOOSE�

READ�

P�m��ar��ar	��CHOOSE

od

writer�j�

do true � NCS�

P�m��CHOOSE�

P�w��aw��aw���CHOOSE�

WRITE�

P�m��aw��aw	��CHOOSE

od

Syn� � kNi�� reader�i k k
M
j�� writer�j

Syn� generates no sequences that can deadlock inside a PV�section� But Syn� can generate
sequences that can deadlock outside these sections� e�g� initially a reader�i can choose for
a V�w� operation� and get blocked by a P�r� operation� Then no other reader or writer
can enter the �rst PV�section because semaphore m equals zero�

In the following sections the DTL machine speci�cations Sr�
i
�corresponding to pro�

gram reader�i � and Sw�

j
�corresponding to program writer�j �� and the extra requirementW��

excluding computations that deadlock outside PV�sections� are given�

����� Speci�cation Sr�i

The formal speci�cation Sr�
i

M
� �Br�

i
�Hr�

i
� where Hr�

i

M
� Ir�

i
��Tr�

i
� Lr�

i
and Br�

i
� Ir�

i
� Tr�

i

and Lr�i are as follows�

�� Basis Br�
i
� ��Inr�

i
�Outr�

i
�� �Vr�

i
�Xr�

i
��

Inr�i
M
� ��

Outr�i
M
� ��

Vr�
i

M
� fm� r�w�ar�aw� srig�

Xr�
i

M
� f�r�

i
g

� �r�
i
� �� reader�i is non critical�
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� �r�
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� �� reader�i has executed �rst P�action on m�

� �r�
i
� �� reader�i has executed �rst CHOOSE�

� �r�
i
� �� reader�i has executed P�action on r�

� �r�
i
� �� reader�i has increased ar by ��

� �r�i � �� reader
�
i is critical�

� �r�i � �� reader
�
i has executed second P�action on m�

� �r�i � �� reader
�
i has decreased ar by ��
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M
� �m� r�w�ar�aw� sri� �r�i � and !�

� M
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�
r�i
��
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M
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�� Transitions�
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h
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i
� � � CHO���
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Reader�i executes the �rst CHOOSE�
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�
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i
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� � !�
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i
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Reader�i executes P�action on r�

r�
i��
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�
� � i � �r�
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� � !�

h
ar$ �� ��ar� �r�

i
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Reader�i increases the number of active readers by one�

r�i�� �
�
� � i � �r�

i
� � � CHO��� �!�

� � !� 	��sri �
�

Reader�i becomes critical�

r�
i��
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i
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Reader�i executes the second P�action on m�
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r�
i�	

�
�
� � e �m � � � !�

� � !� 	��m�
�

The environment executes a P�operation on m�

r�
i���

�
�
� � e � r � � �!�

� � !� 	��r�
�

The environment executes a P�operation on r�

r�
i���

�
�
� � e �w � � �!�

� � !� 	��w�
�

The environment executes a P�operation on w�

r�
i���

�
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� � e � �r�

i
� f�� �� �g �m � � �!�
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The environment executes a V�operation on m�
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i
� f�� �� �g �w � � �!�
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�

The environment executes a V�operation on w�

r�i�� � stutr�i

These transitions are illustrated in �gure ���

�� Liveness
Lr�i expresses that the P� and V�operations on the semaphores m� r and w are
strongly fair and all the other transitions are weakly fair�
Let WFr�

i

M
� fr�

i�k
j k � f�� �gg and
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Figure ���� Transitions of reader�i �
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Figure ���� Transitions of writer�j �

�� Liveness�
Lw�

j
expresses that the P� and V�operations on the semaphores m� r and w are

strongly fair and all the other transitions are weakly fair�
Let WFw�

j

M
� fw�

j�k
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SFw�

i

M
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��WF

w�
j
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��SF
w�
j

���En� ���� �

����� Requirement W�

W� should express that reader�i and writer
�
j executes CHOOSE in such a way that no dead�

locked computations are generated� i�e��
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� a V�m� is executed if the number of readers and writers that are bound to execute a
P�m� is greater than zero�

� a V�r� is executed if the number of readers that are bound to execute a P�r� is
greater than zero�

� a V�w� is executed if the number of writers that are bound to execute a P�w� is
greater than zero�

Let q be de�ned as

�m � � � ��k � � � k � N � �r�
k
� f�� �� �� �� �� �g�$

��n � � � n �M � �w�
n
� f�� �� �� �� �� �g� � ��

� �r � � � aw � � � ��k � � � k � N � �r�
k
� f�� �g� � ��

� �w � � � aw � � � ar � � � ��n � � � n �M � �w�
n
� f�� �g� � ��

Then W� is as follows

W�
M
� �

�	� N�
i��

�r�i � f�� �� �g � q� � �
M�
j��

�w�

j
� f�� �� �g � q�

�A
The same construction as in the previous development step is used to write this down
as a machine� Let p�

M
� �

VN
i�� �r�i � f�� �� �g � q� � �

VM
j�� �w�

j
� f�� �� �g � q� then

W� � p� ����p� � p��� � stut��� Again the liveness part of W� equals true�

����� S� relatively re�nes S�

Since the semaphore x and the shared variables ar and aw are used only by the sub�
components of S� and the semaphores m� w and r and the shared variables ar and aw
only by the subcomponents of S�� we should prove S� � fm�w� r�ar�awg relatively re�nes
S� � fx�ar�awg� According to de�nition ��� �� and theorem � S� � fm� r�w�ar�awg
relatively re�nes S� � fx�ar�awg with respect to �W��W�� i� the following holds�

O�B�� � O�B�� and
j� ��X� � �G� � �� � e� �m� r�w� ar� aw�� � �m� r�w� ar� aw����
�
��X� � �G� � �� � e� �x� ar� aw�� � �x� ar� aw����

where X� are the local variables from S�� i�e�� X�
M
� f�r�

i
j i � �� � � � � Ng � f�w�

j
j j �

�� � � � �Mg � fm� r�w� aw� arg and G� is the composition of Sr�i �i � �� � � � � N� and Sw�

j

�j � �� � � � �M� and W��
let %��

M
� e���� � � � � ���N � ���N��� � � � � ���N�M � and

let %BA
�

M
� BA

r�
�

� � � � � BA
r�
N
� BA

w�

�

� � � � � BA
w�

M

then G�
M
��

�%���� 
BA
�

��� %��� �
VN
i��Hr�

i
	���i��� �

VM
j��Hw�

j
	���N�j���

�
�W�
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X� are the local variables from S�� i�e�� X�
M
� f�r�

i
j i � �� � � � � Ng � f�w�

j
j j � �� � � � �Mg �

fx�ar�awg and G� is the composition of Sr�i �i � �� � � � � N� and Sw�

j
�j � �� � � � �M� and

W��
let %��

M
� e���� � � � � ���N � ���N��� � � � � ���N�M � and

let %BA
�

M
� BA

r�
�

� � � � � BA
r�
N

� BA
w�

�

� � � � � BA
w�

M

then G�
M
��

�%���� 
BA
�

��� %��� �
VN
i��Hr�

i
	���i��� �

VM
j��Hw�

j
	���N�j���

�
�W�

As seen in the previous development step W� is ��free and can be decomposed into sub�
requirements Wr�

i
and Ww�

j
�i � �� � � � � N and j � �� � � � �M�� W� however can�t be

decomposed into sub�requirements but it is ��free� Now Lemma 
� �� and �� can be used
for the proof� i�e�� following proof rule can be usedNN

i��Hr�i

NNM
j��Hw�

j

T
W� �NN

i���Hr�
i
�W��

NNM
j���Hw�

j
�W��TN

i��Wr�
i
�
TM
j��Ww�

j
� W�

Sr�i W�
ref

W
r�
i Sr�i

Sw�

j
W�
ref

W
w�
j Sw�

j

S� W�
ref W� S�

Wr�
i
constraining Br�

i

Ww�

j
constraining Bw�

j

This means we have to prove for i � �� � � � � N and j � �� � � � �M �

���
�
�Xr�

i
� �Hr�

i
�W��

�
�
�
�Xr�

i
� �Hr�

i
�Wr�

i
�
�

���
�
�Xw�

j
� �Hw�

j
�W��

�
�
�
�Xw�

j
� �Hw�

j
�Ww�

j
�
�

��� �Wr�
i
�Ww�

j
��W�

��� ��%���� 
BA
�

��� %��� �
VN
i��Hr�i

	���i��� �
VM
j��Hw�

j
	���N�j���� �W�

�
��%���� 
BA

�

��� %��� �
VN
i���Hr�

i
�W�� 	���i��� �

VM
j���Hw�

j
�W�� 	���N�j����

ad ��� Rule � will be used to prove ���� This means one has to prove �a�� �b� and �c�
below� for %f the re�nement mapping from S� to S�� de�ned as� %f � fx� f�

r�
i

� far� faw

where f�
r�
i

is de�ned as

if
�r�

i
� � then �r�

i
 �

�r�
i
� � then �r�

i
 �

�r�i �� � � �r�i �� � then �r�i
fi

and fx is de�ned as

if
�r�

i
� � then m �

�r�
i
�� � then m$ r $ w

fi
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� i�e�� the �rst PV�section is stuttering and semaphore x is split into semaphores m�
r and w� Note� the re�nement mappings for aw and ar are equal to the identity
mapping� so we can leave them out�

�a� S� �Hist�W�� j� �Ir�
i
� p��� �Ir�

i
� pri�

h
%f�X�

i
�b� S� �Hist�W�� j� Tr�

i
� ��p� � p��� � stut��

� �Tr�
i
� ��pri � p�ri� � stutr�i ��

h
%f�X�

i
�c� S� �Hist�W�� j� Lr�i

h
%f�X�

i
�a� Proof �

Ir�i � p�
� � Def� Ir�

i

�m� r�w� ar� aw� sri� �r�i � � ��� �� �� �� �� �� ��

� � Def� fx� f�
r�
i

��x� ar� aw� sri� �r�i � � ��� �� �� �� �� � �r�
i
� �� aw � ��

h
%f�X�

i
� � Def� Ir�

i
� pri

�Ir�
i
� pri�

h
%f�X�

i
�b� Proof �

Since Tr�i
is of the form stutr�i �

W
��� � a� �trans�� then Tr�i

���p��p����stut��
is equal to stutr�

i
�
W
� �� � a� � trans� � p� � p���� Tr�

i
is of the form stutr�

i
�W

� �� � a� � trans�� so Tr�
i
� ��pri � p�ri� � stutr�i � is equal to stutr�i �

W
� �� �

a� � trans� � pri � p�ri��

� r�i�� � p� � p��

�
�
� � i � ��r�

i
�m� � ��� �� � p� � p�� � !�

� � !�

h
�� ��m� �r�

i

i�
�

�
� � i �!�

� � !�

� h
%f�X�

i
� stutr�

i

h
%f�X�

i
The 	rst P�operation of reader�i is an stuttering step in reader�i �

� r�
i��
� p� � p��

�
�
� � i � �r�i � � � p� � p�� � CHO���

�
�

�
� � i �!�

� � !�

� h
%f�X�

i
� stutr�

i

h
%f�X�

i
The 	rst V�operation of reader�i is an stuttering step in reader�i �

� r�i�� � p� � p��

�
�
� � i � ��r�

i
� r� � ��� �� � p� � p�� �!�

� � !�

h
�� ��r� �r�

i

i�
�

�
� � i � �r�

i
� � � x � � � pri � p�ri � !�

� � !�

h
�� ��x� �r�

i

i� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
The second P�operation of reader�i corresponds to the 	rst P�operation of
reader�i �
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� r�
i��
� p� � p��

�
�
� � i � �r�

i
� � � p� � p�� �!�

� � !�

h
ar $ �� ��ar� �r�

i

i�
�

�
� � i � ��r�i � aw� � ��� �� � pri � p�ri � !�

� � !�

h
ar$�� ��ar� �r�i

i�h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
The ar increment step of reader�i corresponds to the ar increment step of
reader�i �

� r�
i��
� p� � p��

�
�
� � i � �r�i � � � p� � p�� � CHO��� �!�

� � !� 	��sri �
�

�
�
� � i � �r�i � � � pri � p�ri � !�

� � !�

h
�� �� ��sri � x� �r�i

i� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If reader�i becomes critical then reader�i becomes critical�

� r�i�� � p� � p��

�
�
� � i � ��r�

i
�m� � ��� �� � p� � p�� � !�

� � !�

h
�� ��m� �r�

i

i�
�

�
� � i � �r�

i
� � � x � � � pri � p�ri � !�

� � !�

h
�� ��x� �r�

i

i� h
%f�X�

i
� �r�i�� � pri � p�ri�

h
%f�X�

i
The third P�operation of reader�i corresponds to the second P�operation of
reader�i �

� r�
i��
� p� � p��

�
�
� � i � �r�i � � � p� � p�� �!�

� � !�

h
ar  �� ��ar� �r�i

i�
�

�
� � i � �r�

i
� � � pri � p�ri � !�

� � !�

h
ar �� ��ar� �r�

i

i� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
The ar decrement step of reader�i corresponds to the ar decrement step of
reader�i �

� r�i�� � p� � p��

�
�
� � i � �r�i � � � p� � p�� � CHO��� �!�

� � !� 	��sri �
�

�
�
� � i � �r�

i
� � � pri � p�ri � !�

� � !�

h
�� �� ��sri � x� �r�i

i� h
%f�X�

i
� �r�i�� � pri � p�ri�

h
%f�X�

i
If reader�i becomes non�critical then reader�i becomes non�critical�

� r�i�	 � p� � p��

�
�
� � e �m � � � p� � p�� �!�

� � !� 	��m�
�

�
�
� � e � x � � � pri � p�ri � !�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�
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� r�
i���
� p� � p��

�
�
� � e � r � � � p� � p�� �!�

� � !� 	��r�
�

�
�
� � e � x � � � pri � p�ri � !�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�

� r�
i���
� p� � p��

�
�
� � e � w � � � p� � p�� � !�

� � !� 	��w�
�

�
�
� � e � x � � � pri � p�ri � !�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�

� r�
i���
� p� � p��

�
�
� � e � �r�

i
� f�� �� �g �m � � � p� � p�� � !�

� � !� 	��m�
�

�
�
� � e � �r�

i
� f�� �g � x � � � pri � p�ri �!�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a V�operation then the environment
of reader�i also executes a V�operation�

� r�
i���
� p� � p��

�
�
� � e � �r�

i
� f�� �� �g � r � � � p� � p�� �!�

� � !� 	��r�
�

�
�
� � e � �r�

i
� f�� �g � x � � � pri � p�ri �!�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a V�operation then the environment
of reader�i also executes a V�operation�

� r�i��� � p� � p��

�
�
� � e � �r�

i
� f�� �� �g � w � � � p� � p�� �!�

� � !� 	��w�
�

�
�
� � e � �r�i � f�� �g � x � � � pri � p�ri �!�

� � !� 	��x�
� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a V�operation then the environment
of reader�i also executes a V�operation�

� stutr�i � stutr�i

h
%f�X�

i
since sri doesn
t change�

�c� Let WFr�i
M
� fr�

i�k
j k � f�� �gg and

SFr�
i

M
� fr�

i�k
j k � f�� �� �� �� �� �� 
� ��� ��� ��� ��� ��gg then

Lr�
i

M
�

�
��WF

r�
i

���En� �� �� � �
�

��SF
r�
i

���En� �� �� �
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Let WFr�
i

M
� fr�

i�k
j k � f�� �gg and SFr�

i

M
� fr�

i�k
j k � f�� �� �� �� �� �gg then

Lr�
i

M
�

�
��WF

r�
i

���En� �� �� � �
�

��SF
r�
i

���En� �� �� �

The following holds�

S� �Hist�W�� j� Lr�
i
� Lr�

i

h
%f�X�

i
since r�i�� is relatively re�ned by r�i�� � r�i�� is relatively re�ned by r�i�� � and r�i��
is relatively re�ned by r�

i��
� r�

i��
and r�

i��
� and r�

i��
is relatively re�ned by r�

i��
�

and r�
i��
is relatively re�ned by r�

i��
� and r�

i��
is relatively re�ned by r�

i��
� and

r�i�� is relatively re�ned by r�i�	 � r�i��� and r�i��� � and r�i�� is relatively re�ned by

r�
i���
� r�

i���
and r�

i���
� So

S� �Hist�W�� j� Lr�
i

h
%f�X�

i
ad ��� Analogue to the proof of ����

ad ��� This is trivial because W� � �
VN
i��Wr�i

�
VM
j��Ww�

j
��

ad ��� The following holds because W� doesn�t contain �� variables� i�e�� it can be put
within the existential quanti�cation� and furthermore W��W� 	���i����W� 	���N�j���
�i � �� � � � � N and j � �� � � � �M� because W� doesn�t constrain the � variable�

��%���� 
BA
�

��� %��� �
VN
i��Hr�i

	���i��� �
VM
j��Hw�

j
	���N�j���� �W�
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��%���� 
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��� %��� �
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i���Hr�

i
�W�� 	���i��� �

VM
j���Hw�

j
�W�� 	���N�j����
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Dijkstra�s solution to the problem of the newly introduced deadlocked sequences is as
follows� record in a shared variable bX the number of components that can generate
a P�operation on a semaphore X as their �rst coming P�operation� A component that
executed a P�operation on X decreases bX by one� The component �knows� what its next
P�operation is� so it increases the corresponding shared variable by one� The guards in the
CHOOSE segment are changed so that the correct V�branch is chosen� The initial value of
bm is N $M because initially all processes have P�m� as their �rst coming P�operation�
The initial value of br and bw is then of course �� Like in the second step the initial value
of m is � and that of ar� aw� r and w �� The result of this transformation is as follows�

reader�i�

do true � NCS�

P�m��bm��bm	��br��br���CHOOSE�

P�r��br��br	��ar��ar���bm��bm���CHOOSE�

READ�

��



Readers�Writers Example

P�m��bm��bm	��ar��ar	��bm��bm���CHOOSE

od

writer�j�

do true � NCS�

P�m��bm��bm	��bw��bw���CHOOSE�

P�w��bw��bw	��aw��aw���bm��bm���CHOOSE�

WRITE�

P�m��bm��bm	��aw��aw	��bm��bm���CHOOSE

od

with CHOOSE� if bm
� �V�m�

aw�� � br
� �V�r�

aw�� � ar�� � bw
� �V�w�

�

Syn� � kNi�� reader�i k k
M
j�� writer�j

Syn� still generates sequences that Dijkstra does not allow� These sequences are generated
because CHOOSE is still non�deterministic� Suppose a reader�i can choose between a V�m�
and a V�r� operation� Choosing V�m� causes that another reader�k �writer

�
l � can signal that

it has �nished executing READ �WRITE� or wants to execute READ �WRITE�� A V�r� causes
that a reader�k can execute READ� Choosing V�m� thus unnecessarily blocks a reader

�
k� So it

is not a deadlocked sequence but only an inecient sequence� The informal requirement
of Syn� is that no unnecessary blocking sequences are allowed�

In the following sections the DTL machine speci�cations Sr�
i
�corresponding to pro�

gram reader�i � and Sw�

j
�corresponding to program writer�j �� and the extra requirementW��

excluding inecient computations� are given�

����� Speci�cation Sr�i

The formal speci�cation Sr�
i

M
� �Br�

i
�Hr�

i
� where Hr�

i

M
� Ir�

i
��Tr�

i
� Lr�

i
and Br�

i
� Ir�

i
� Tr�

i

and Lr�
i
are as follows�

�� Basis Br�
i
� ��Inr�

i
�Outr�

i
�� �Vr�

i
�Xr�

i
��

Inr�
i

M
� ��

Outr�
i

M
� ��

Vr�
i

M
� fm�bm� r�br�w�bw�ar�aw� srig�

Xr�i

M
� f�r�i g

� �r�i � �� reader
�
i is non critical�

� �r�
i
� �� reader�i executed �rst P�action on m�

��
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� �r�
i
� �� reader�i updated bm and br�

� �r�i � �� reader
�
i executed �rst CHOOSE�

� �r�
i
� �� reader�i executed P�action on r�

� �r�i � �� reader
�
i updated br� ar and bm�

� �r�
i
� �� reader�i is critical�

� �r�i � �� reader
�
i executed second P�action on m�

� �r�
i
� �� reader�i updated ar�

Let !�
M
� �m�bm� r�br�w�bw�ar�aw� sri� �r�i � and
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� �m��bm�� r��br��w��bw��ar��aw�� s�ri� �
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i
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M
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h
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M
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r�i��

�
� � i � ��r�i �m� � ��� �� �!�

� � !�

h
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i�
Reader�i executes �rst P�action on m�

r�
i��

�
�
� � i � �r�

i
� � �!�

� � !�

h
bm ��br$ �� ��bm�br� �r�

i

i�
Reader�i updates bm and br�

r�i�� �
�
� � i � �r�

i
� � � CHO���

�
Reader�i executes �rst CHOOSE�

r�
i��
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�
� � i � ��r�

i
� r� � ��� �� � !�

� � !�

h
�� ��r� �r�

i
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Reader�i executes its P�action on r�

r�i�� �
�
� � i � �r�i � � �!�
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h
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The extra requirementW� should exclude inecient computations caused by the nondeter�
minism of CHOOSE� So it is natural to make CHOOSE more deterministic� i�e�� when one can
choose between a V�r� �V�w�� and a V�m� operation priority is given to the V�r� �V�w��
operation� Let q� be de�ned as

�m � � � bm � � � ��aw � � � br � �� � ��aw � � � ar � � � bw � ��

� �r � � � aw � � � br � ��
� �w � � � aw � � � ar � � � bw � ��

Then W� is as follows
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�w�

j
� f�� �� �g � q��
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So in CHOOSE priority is given to V�r� and V�w� by strengthen the guard of V�m� with the
complement of the guards of V�r� and V�w�� The same construction as in the previous
development step is used to write this down as a machine� Let p�

M
� �
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part of W� equals true�

����� S relatively re�nes S�

Since the semaphores m� r and w� and the shared variables ar� aw� br� bw and bm
are used only by the subcomponents of S� and the semaphores m� w and r and the
shared variables ar and aw only by the subcomponents of S�� we should prove S� �

fm�w� r�ar�aw�br�bw�bmg relatively re�nes S� � fm�w� r�ar�awg� According to def�
inition ��� �� and theorem � S� � fm�w� r�ar�aw�br�bw�bmg relatively re�nes S� �

fm�w� r�ar�awg with respect to �W��W�� i� the following holds�

O�B�� � O�B�� and
j� ��X� � �G� � �� � e� �m� r�w� ar� aw�br�bw�bm�� ��m� r�w� ar� aw�br�bw�bm����
�
��X� � �G� � �� � e� �m� r�w� ar� aw�� � �m� r�w� ar� aw����

where X� are the local variables from S�� i�e�� X�
M
� f�r�

i
j i � �� � � � � Ng � f�w�

j
j j �

�� � � � �Mg � fm� r�w� aw� ar�br�bw�bmg and G� is the composition of Sr�i �i � �� � � � � N�
and Sw�

j
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As seen in the previous development step W� is ��free but can not be decomposed into sub�
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identity mapping� so we can leave them out�
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If the environment of reader�i executes a P�operation then the environment
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��� The fourth development step

We have already seen how we can prevent reader�i to choose wrongly between V �r� and
V �w�� Dijkstra also updates the PV�segments in such a way that only statements that
are actually executed are listed� It turns out that we do not anymore need bm� Also the
guards of CHOOSE get simpler� The result of this transformation is�

reader�i�
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if ar
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Figure ����� Transitions of writer�j �

�� Liveness�
Lw�

j
expresses that the P� and V�operations on the semaphores m� r and w are

strongly fair and all the other transitions are weakly fair�
Let WFw�

j

M
� fw�

j�k
j k � f�� �� �gg and

��
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SFw�

j

M
� fw�

j�k
j k � f�� �� �� �� �� 
� ��� ��� ��� ��� ��� ��gg then

Lw�

j

M
�

�
��WF

w�
j

���En� �� �� � �
�

��SF
w�
j

���En� ���� �

����� S� relatively re�nes S

Since the semaphores m� r and w� and the shared variables ar� aw� br� bw and bm are
used only by the subcomponents of S� and the semaphores m� w and r and the shared
variables ar� aw� br and bw only by the subcomponents of S�� we should prove S� �

fm�w� r�ar�aw�br�bwg relatively re�nes S� � fm�w� r�ar�aw�bm�br�bwg� According
to de�nition ��� �� and theorem � S� � fm�w� r�ar�aw�br�bwg relatively re�nes S� �

fm�w� r�ar�aw�br�bw�bmg with respect to �W��W�� i� the following holds�

O�B�� � O�B�� and
j� ��X� � �G� � �� � e� �m� r�w� ar� aw�br�bw�� ��m� r�w� ar� aw�br�bw����
�
��X� � �G� � �� � e� �m� r�w� ar� aw�br�bw�bm�� � �m� r�w� ar� aw�br�bw�bm����

where X� are the local variables from S�� i�e�� X�
M
� f�r�

i
j i � �� � � � � Ng � f�w�

j
j j �

�� � � � �Mg � fm� r�w� aw� ar�br�bwg and G� is the composition of Sr�i �i � �� � � � � N� and
Sw�

j
�j � �� � � � �M��

let %��
M
� e���� � � � � ���N � ���N��� � � � � ���N�M � and

let %BA
�

M
� BA

r�
�

� � � � � BA
r�
N

� BA
w�

�

� � � � � BA
w�

M

then G�
M
��

�%���� 
BA
�

��� %��� �
VN
i��Hr�

i
	���i��� �

VM
j��Hw�

j
	���N�j���

�
X� are the local variables from S�� i�e�� X�

M
� f�r�

i
j i � �� � � � � Ng � f�w�

j
j j � �� � � � �Mg �

fm� r�w�ar�aw�br�bm�bwg and G� is the composition of Sr�
i
�i � �� � � � � N� and Sw�

j

�j � �� � � � �M� and W��
let %��

M
� e���� � � � � ���N � ���N��� � � � � ���N�M � and

let %BA
�

M
� BA

r�
�

� � � � � BA
r�
N
� BA

w�

�

� � � � � BA
w�

M

then G�
M
��

�%���� 
BA
�

��� %��� �
VN
i��Hr�

i
	���i��� �

VM
j��Hw�

j
	���N�j���

�
�W�

As seen in the previous development step W� is ��free and can be decomposed into sub�
requirements� Let pri

M
� ��r�

i
� f�� �� �g � q�� and Wr�

i

M
� �pri� and pwj

M
� ��w�

j
�

f�� �� �g � q�� and Ww�

j

M
� �pwj then W� � �

VN
i��Wr�

i
� � �

VM
j��Ww�

j
�� Now Lemma 
� ��

and �� can be used for the proof� i�e�� following proof rule can be usedTN
i��Wr�

i
�
TM
j��Ww�

j
� W�

Sr�
i
W
r�
i

ref W� Sr�
i

Sw�

j
W
w�
j

ref W� Sw�

j

S� Href
W� S�

Wr�
i
constraining Br�

i

Ww�

j
constraining Bw�

j
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This means we have to prove for i � �� � � � � N and j � �� � � � �M �

���
�
�Xr�

i
� �Hr�

i
�
�
�
�
�Xr�

i
� �Hr�

i
�Wr�

i
�
�

���
�
�Xw�

j
� �Hw�

j
�
�
�
�
�Xw�

j
� �Hw�

j
�Ww�

j
�
�

��� �Wr�i
�Ww�

j
��W�

ad ��� Rule � will be used to prove ���� This means one has to prove �a�� �b� and �c�
below� for %f the re�nement mapping from S� to S�� de�ned as�
%f � f�

r�
i

� fm� fr� fw� faw� far� fbr� fbw� fbm where fbm is de�ned as

N $M  br bw

� i�e�� bm can be expressed in terms of br and bw� Note� the re�nement mappings for
ltr�� m� r� w� aw� ar� br and bw are equal to the identity mapping� so we can leave
them out�

�a� S� j� Ir�
i
� �Ir�

i
� pri�

h
%f�X�

i
�b� S� j� Tr�i

� �Tr�i
� ��pri � p�ri� � stutr�i ��

h
%f�X�

i
�c� S� j� Lr�

i

h
%f�X�

i

�a� Proof �

Ir�i
� � Def� Ir�i

�m� r�br�w�bw� ar� aw� sri� �r�i � � ��� �� �� �� �� �� �� �� ��

� � Def� fbm
��m�bm� r�br�w�bw� ar� aw� sri� �r�i � �

��� N $M� �� �� �� �� �� �� �� �� � pri�
h
%f�X�

i
� � Def� Ir�

i

�Ir�
i
� pri�

h
%f�X�

i
�b� Proof �

Tr�
i
is of the form stutr�

i
�
W
��� � a� � trans�� so Tr�

i
� ��pri � p�ri� � stutr�i � is

equal to stutr�
i
�
W
� �� � a� � trans� � pri � p�ri��

� r�i��
�

�
� � i � ��r�

i
�m� � ��� �� � !�

� � !�

h
�� ��m� �r�

i

i�
�

�
� � i � ��r�

i
�m����� ��� pri � p�ri � !�

��!�

h
�� ��m� �r�

i

i� h
%f�X�

i
� �r�

i��
� pri � p�ri�

h
%f�X�

i
The 	rst P�operation of reader�i corresponds to the 	rst P�operation of
reader�i �

��
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i� h
%f�X�
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h
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i
The updating of br in reader�i corresponds to the updating of br and bm
reader�i �

� r�
i��

�
�
� � i � �r�i � � � CHO����

�
�

�
� � i � �r�

i
� � � pri � p�ri � CHO���

� h
%f�X�

i
� �r�i�� � pri � p�ri�

h
%f�X�

i
The 	rst V�operation of reader�i corresponds to the 	rst V�operation of
reader�i �

� r�
i��

�
�
� � i � ��r�i � r� � ��� �� �!�
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The second P�operation of reader�i corresponds to the second P�operation of
reader�i �
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�
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i
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h
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The ar decrement step of reader�i corresponds to the ar decrement step of
reader�i �
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i��

�
�
� � i � �r�i � � � CHO���� �!�

� � !� 	��sri �
�

�
�
� � i � �r�

i
� � � pri � p�ri � CHO��� � !�

� � !� 	��sri �
� h
%f�X�

i
� �r�i�� � pri � p�ri�

h
%f�X�

i
If reader�i becomes critical then reader�i becomes critical�
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The third P�operation of reader�i corresponds to the third P�operation of
reader�i �
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The ar decrement step of reader�i corresponds to the ar decrement step of
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The third V�operation of reader�i corresponds to the third V�operation of
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If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�
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If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�
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If the environment of reader�i executes a P�operation then the environment
of reader�i also executes a P�operation�
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If the environment of reader�i executes a V�operation then the environment
of reader�i also executes a V�operation�
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If the environment of reader�i executes a V�operation then the environment
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� r�i���
�

�
� � e � �r�

i
� f�� �� �g � w � � �!�

� � !� 	��w�
�

�
�
� � e � �r�i � f�� �� �g � w�� � pri � p�ri �!�

��!� 	��w�
� h
%f�X�

i
� �r�i��� � pri � p�ri�

h
%f�X�

i
If the environment of reader�i executes a V�operation then the environment
of reader�i also executes a V�operation�

� stutr�
i
� stutr�

i

h
%f�X�

i
since sri doesn
t change�

�c� Let WFr�
i

M
� fr�

i�k
j k � f�� �� �gg and

SFr�
i

M
� fr�

i�k
j k � f�� �� �� �� �� 
� ��� ��� ��� ��� ��� ��gg then

Lr�i
M
�

�
��WF

r�
i

���En� �� �� � �
�

��SF
r�
i

���En� �� �� �

Let WFr�
i

M
� fr�

i�k
j k � f�� �� �gg and

SFr�
i

M
� fr�

i�k
j k � f�� �� �� �� �� 
� ��� ��� ��� ��� ��� ��gg then

Lr�i
M
�

�
��WF

r�
i

���En� �� �� � �
�

��SF
r�
i

���En� �� �� �

The following holds�

S� j� Lr�
i
� Lr�

i

h
%f�X�

i
since r�

i�k
is relatively re�ned by r�

i�k
for k � �� � � � � ���
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ad ��� Analogue to the proof of ����
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Chapter �

Stable Storage Example

T
his chapter �rst introduces in sect� ��� a general methodology for proving fault
tolerant systems correct� This general methodology uses the relative re�nement
concept of sect� ������ The remaining sections of this chapter give an illustration of

this general methodology by applying it to a fault tolerant system consisting of a number of
disks implementing stable storage� Section ��� introduces this application� In sections ����
���� ��� and ��� the four steps of this general methodology are applied to the stable storage
example 	Cri��� Sch
���

��� The General Methodology

The general methodology consists of four steps� In the �rst step one gives the abstract
speci�cation S

M
� �B�H� where H is a DTL formula specifying the fault tolerant system�

In this speci�cation no faults are visible� hence they don�t occur as observables� The
designer�s task is to give an implementation of this system under the assumption that only
faults from certain classes can occur� These faults are called anticipated faults� These are
faults which may a�ect the implementation in that they may give rise to errors in the state
of the implementation� resulting subsequently in failures of that implementation� In step
��� and � of the methodology a fault�tolerant system is developed�

The second step identi	es the anticipated faults which can a�ect an implementation
SP

M
� �BP �HP �� This implementation serves as �rst approximation to the �nal implemen�

tation of S� It should be clear that SP is not a re�nement of S because of the possible
occurrences of anticipated faults� SP is only a re�nement when these faults do not occur�
i�e�� SP is a relative re	nement of S� So in step � we must prove�

��� SP WP
ref S

In the third step one speci�es how these anticipated faults are detected� i�e�� one has to
specify a detection layer SDs for these faults� This layer is added in bottom�up fashion to
the implementation SP of the second step and stops upon detection of the �rst error� i�e��
SDs is a fail�stop implementation� So the second approximation to the �nal implementation
consists of the composition of SP and SDs� This approximation is clearly not a re�nement
because when in SP a fault occurs� and SDs detects the corresponding error� the whole

��



Stable Storage Example

approximation stops� One would like to have �eventually� an approximation that doesn�t
stop� i�e�� the physical disk isn�t a�ected by faults and the detection layer should detect no
error� Let W

M
� �WDs�WP � where WP expresses that no faults occur and WDs expresses

that no error is detected� Then we must prove the following�

��� SDs jW j SP ref WP SP �

From ���� ��� and the transitivity of relative re�nement relation follows�

SDs jW j SP ref S�

In the fourth step one speci	es the corrective action to be undertaken after detection of an
error� This means in general that one needs redundancy� i�e�� several copies of SP and SD
components� because when a detection layer SD detects an error� the state before that error
has to be recovered and that can only be done by accessing another copy of SP through
its corresponding detection layer SD� Note that the SD component doesn�t stop anymore
on the detection of an error but merely waits for the corrective action to be undertaken�
Say� we need N copies of SP and SD� The �nal implementation consists then of those N
copies of SP and SD plus a recovery layer SR� Let WR express which kind of errors can be
recovered� If the following holds�

��� kNi�� �SPi k SDi
� k SR WR

ref SDs jW j SP

then from ���� ���� ��� and the transitivity of relative re�nement follows the desired result�
i�e��

kNi�� �SPi k SDi
� k SR WR

ref S

This ends our exposition of the general methodology� In the next sections this method�
ology will be applied to a stable storage example�

��� Application	 Introduction

Stable storage is de�ned as follows� A disk is used to store and retrieve data� During
these operations some faults can occur in the underlying hardware� To make the disk more
reliable one introduces layers for the detection and correction of errors� due to these faults�
The system with these detection and correction layers is called �stable storage�� This
stable storage is a fault tolerant system because it stores and retrieves data in a reliable
way under the assumption that faults from a certain class are recovered �corrected�� This
class consists of two kinds of faults� The �rst one consists of faults that damage the disk
surface �the contents of the disk are said to be corrupted by these faults� The second one
consists of faults that a�ect the disk control system� and results into the contents of the
disk being read from or written to the wrong location� Notice that other kinds of faults�
such as power failure or physical destruction of the whole stable storage system� are not
taken into account� I�e�� stable storage should function correctly provided such latter faults
do not occur�

�	
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��� First Step	 Stable Storage

����� Introduction

In this section we give a speci�cation of a stable storage system as we ideally would like
to have it� So no faults are observed� If they occur internally� they should be repaired by
the system without leaving any observable trace� For that is the meaning of )stable� here�

����� Speci�cation

The abstract speci�cation of the stable storage speci�es the following� The user signals
with a read request event that he wants to read the contents of some location of stable
storage� Stable storage will then respond by sending the requested contents� The user
signals with a write request event that some data has to be written on some location of
stable storage� with a response event the stable storage signals that the write has been
performed� Note� we have a very simple stable storage that can handle only one request
at a time� The formal speci�cation S � �B�H� where H

M
� I ��T � L and B� I� T and L

are as follows�

�� Basis B � ��In�Out�� �V�X��

In
M
� fRreq�Wreqg�

Out
M
� fRres�Wresg�

V
M
� ��

X
M
� f�� r� s�M	n� j n � SNg

where SN is the set of sector numbers� 	�� ��� Z�� Let Inf be the set of information
items that could be stored and retrieved by stable storage but that will not be further
speci�ed� For n � SN and c� d � Inf �

� Rreq��n�� the request to read sector n�

� Rres��c�� the response to the previous read request where c are the contents of
requested sector�

� Wreq��d�� write information item d onto sector n�

� Wres�� previous write has been performed�

� �� local variable indicating the status of the stable storage# � � � means no
requests are issued� � � � means a read request has been issued� and � � �
means a write request has been issued�

� r� local variable indicating the requested sector�

� s� local variable indicating the contents of the requested sector or the to be
written data�

� M	n�� the physical sector n�

Let !�
M
� ��� r� s�M	��� � � � �M	Z�� and !�

� M
� ���� r�� s��M�	��� � � � �M�	Z���

��
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�� Initial States�

I
M
� � � � �

�
i�SN

M	i� � dflt

Where dflt � Inf is some default information item�

�� Transitions�
T

M
�

�
�
� � Rreq��n� � � � � � !�

� � !� 	�� n��� r�
�

The user requests the contents of sector n�

� �
�
� � Rres�M	r�� � � � � �!�

� � !� 	����
�

Stable storage responds with the contents of the requested sector�

� �
�
� �Wreq��n� d� � � � � �!�

� � !� 	�� n� d��� r� s�
�

The user requests that d should be written onto sector n�

� �
�
� �Wres� � � � � �!�

� � !� 	�� s���M	r��
�

Stable storage responds with a signal that requested write is performed�

� � stut

These transitions are illustrated in �gure ���

��

� � �
�� ��
�� ��

��
Rreq��n�

�

��

Wreq��n�d�

�

� � �
r � n

�� ��
�� ��oo

Rres��M�r��
�

� � �
r � n
s � d

�� ��

�� ��

OO

Wres�

�

Figure ���� Transitions of stable storage�

�� Liveness condition�
The liveness condition expresses that the communication transitions are strongly fair�
Let SF � fi j i � f�� �� �� �gg then

L
M
�

�
��SF

���En� ���� �

��
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��� Second Step	 Physical Disk

����� Introduction

In this step� which is the �rst stage in our task to develop a fault tolerant system� we give
the speci�cation of a physical disk� This speci�cation is a �rst approximation to our fault
tolerant system� i�e�� it acts as bottom layer of our desired implementation and because
the other layers haven�t been developed yet it is the only layer we have at this moment�
In this speci�cation we must specify� because this is the �rst stage of our development�
which are the anticipated faults our system� i�e�� we have to specify which are the faults of
our interest that could a�ect a physical disk� These faults are represented as events in our
formalism� This �rst approximation of stable storage is not a correct one because of these
anticipated faults �the physical disk doesn�t anticipate on these faults at all��� But under
the assumption that these faults don�t occur this �rst implementation is a re�nement of
stable storage�

����� Speci�cation

We must specify a physical disk� the anticipated faults and their impact on the physical
disk� We take as anticipated faults the following ones �cf� 	Cri��� Sch
����

� Damages of the disk surface causing corruption of the contents of a physical sector�

� Disk control faults causing the contents of a particular physical sector to be read or
written at a wrong location�

These two faults are described using two events� the dam event standing for a damage
to the disk surface and the csf event standing for a disk control system fault� As in the
speci�cation of stable storage� the user requests with Rreq�n� that it wants to read the
contents of physical sector n� The physical disk then responds with Rres�c� delivering
the requested contents� With Wreq�n� d� the user signals that d should be written onto
sector n� The physical disk responds withWres that the requested information has been
written� The formal speci�cation SP � �BP �HP � where HP

M
� IP ��TP �LP and BP � IP �

TP and LP are as follows�

�� Basis BP � ��InP �OutP �� �VP �XP ��

InP
M
� fRreq�Wreqg�

OutP
M
� fRres�Wresg�

VP
M
� ��

XP
M
� f�P � rP � sP �MP 	n��F	n� j n � PNg

where PN is the set of physical sector numbers� 	�� ��� Y �� Let Phy be the set of
information items that could be stored and retrieved by the physical disk but that
will not be further speci�ed� The special information item c� is introduced to model
disk surface damage faults� For n � PN and c� d � Phy�

��
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� Rreq��n�� the request to read sector n�

� Rres��c�� the response to the previous request where c are the contents of
requested sector�

� Wreq��d�� write information item d onto sector n�

� Wres�� response that previous write has been performed�

� �P � local variable indicating the status of the physical disk�

� rP � local variable indicating the requested physical sector�

� sP � local variable indicating the requested contents or the data to be written�

� MP 	n�� the physical sector n�

� F� the control system� i�e�� the control system maps sector n to sector F	n��

Let !�
M
� ��P � rP � sP �MP 	��� � � � �MP 	Y ��F	��� � � � �F	Y �� and

!�
� M
� ���P � r

�
P � s

�
P �M

�
P 	��� � � � �M

�
P 	Y ��F

�	��� � � � �F�	Y ���

�� Initial States�

IP
M
� �P � � �

�
i�PN

�MP 	i� � dflt � F	i� � i�

All sectors contain the default data item d�t and the control system has not been
a�ected by control system faults�

�� Transitions�
TP

M
�

P��
�
� � Rreq��n� � �P � � �!�

� � !� 	�� n��P � rP �
�

The user requests the contents of sector n�

P�� �
�
� � Rres��MP 	F	rP ��� � �P � � � !�

� � !� 	���P �
�

The physical disk responds with the contents of the requested sector�

P�� �
�
� �Wreq��n� d� � �P � � �!�

� � !� 	�� n� d��P � rP � sP �
�

The user requests that d should be written onto sector n�

P�� �
�
� �Wres� � �P � � � !�

� � !� 	�� sP ��P �MP 	F	rP ���
�

The physical disk responds with a signal that requested write is performed�

P�	 �
�
� � i � n �� j � !�

� � !� 	j�F	n��
�

Due to control system fault the sector n is mapped to sector j�

P�� �
�
� � i � !�

� � !� 	 c��MP 	n��
�

Due to disk surface fault the contents of sector n are replaced by corrupted data
c��

P�� � stutP

These transitions are illustrated in �gure ��� where fault is either a control system
fault or a disk surface fault�
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��

�P � �
�� ��
�� ��

��
Rreq��n�

�

��

Wreq��n�d�

�

�AGFfault ED ��

�P � �
rP � n

�� ��
�� ���A BC

fault

EDoo
oo

Rres�MP �F�rP ���
�

�P � �
rP � n
sP � d

�� ��

�� ��

OO

Wres�

�

BC�A
fault

GF��

Figure ���� Transitions of the physical disk�

�� Liveness condition�
The liveness condition expresses that the communication transitions are strongly fair�
Let SFP � fP�i j i � f�� �� �� �gg then

LP
M
�

�
��SFP

���En� ���� �

����� Requirement WP

The requirement WP expresses that the control system and disk surface faults never occur�

WP
M
� ��

�
i�PN

�MP 	i� �� c�� F	i� � i�

This corresponds to the following machine� Let

p
M
�

V
i�PN �MP 	i� �� c�� F	i� � i�

p�
M
�

V
i�PN �M

�
P 	i� �� c�� F�	i� � i�

then WP is equal to the machine p ����p � p�� � stutP ��

����� SP relatively re�nes S

We should prove SP relatively re�nes S� Let the external requirement for the system S be
true �i�e�� no extra requirement is imposed�� According to theorem � SP relatively re�nes
S with respect to �WP �W� i� the following holds�

O�BP � � O�B� and
j� ��XP � �GP ��� ��X � �G��

���
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where XP are the local variables from SP � i�e�� XP
M
� f�P � rP � sP �MP 	n��F	n� j n � PNg

and GP is de�ned as

IP ��TP � LP �WP

X are the local variables from S� i�e�� X
M
� f�� r� s�M	n� j n � SNg and G is de�ned as

I ��T � L

Rule � will be used to prove

j� ��XP � �GP ��� ��X � �G�� �

This means one has to prove �a�� �b� and �c� below� for %f the re�nement mapping from
SP to S� de�ned as� %f � f�� fr� fs� fM�n� �n � SN�� We will assume that the set of sector
numbers SN is equal to the set of physical sector numbers PN � The re�nement mappings
are de�ned as�

f�
M
� �P

fr
M
� rP

fs
M
� sP

fM�n�
M
� MP 	n�

�a� SP �Hist�WP � j� �IP � p�� I
h
%f�X

i
�b� SP �Hist�WP � j� TP � ��p � p�� � stutP �� T

h
%f�X

i
�c� SP �Hist�WP � j� L

h
%f�X

i
�a� Proof 

IP � p
� � Def� IP � p

�P � � �
V
i�PN�MP 	i� � dflt � F	i� � i�

�
V
i�PN �MP 	i� �� c�� F	i� � i

� � Def� barf

�� � � �
V
i�SNM	i� � dflt�

h
%f�X

i
� � Def� I

I
h
%f�X

i
�b� Proof ��

Since TP is of the form stutP �
W
� �� � a� � trans�� then TP � ��p � p�� � stutP � is

equal to stutP �
W
� �� � a� � trans� � p � p���

� P�� � p � p�

�
�
� � Rreq��n� � �P � � � p � p� �!�

� � !� 	�� n��P � rP �
�

�
�
� � Rreq��n� � � � � �!�

� � !� 	�� n��� r�
� h
%f�X

i
� �

h
%f�X

i
The read request at the physical disk level corresponds to the read request at the
abstract level�
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� P�� � p � p�

�
�
� � Rres��MP 	F	rP ��� � �P � � � p � p� �!�

� � !� 	���P �
�

�
�
� � Rres�M	r�� � � � � �!�

� � !� 	����
� h
%f�X

i
� �

h
%f�X

i
The read response at the physical disk level corresponds to the read response at
the abstract level�

� P�� � p � p�

�
�
� �Wreq��n� d� � �P � � � p � p� �!�

� � !� 	�� n� d��P � rP � sP �
�

�
�
� �Wreq��n� d� � � � � �!�

� � !� 	�� n� d��� r� s�
� h
%f�X

i
� �

h
%f�X

i
The write request at the physical disk level corresponds to the write request at
the abstract level�

� P�� � p � p�

�
�
� �Wres� � �P � � � p � p� �!�

� � !� 	�� sP ��P �MP 	F	rP ���
�

�
�
� �Wres� � � � � �!�

� � !� 	�� s���M	r��
� h
%f�X

i
� �

h
%f�X

i
The write response at the physical disk level corresponds to the write response
at the abstract level�

� P�	 � p � p�

�
�
� � i � n �� j � p � p� �!�

� � !� 	j�F	n��
�

� false

� T
h
%f�X

i
Due to the external requirement the disk control fault transition can not be taken�
i�e�� is equal to false and from false everything can be inferred�

� P�� � p � p�

�
�
� � i � p � p� �!�

� � !� 	 c��MP 	n��
�

� false

� T
h
%f�X

i
Due to the external requirement the disk surface fault transition can not be taken�
i�e�� is equal to false and from false everything can be inferred�

� stutP � stut
h
%f�X

i
�c� Let SFP � fP�i j i � f�� �� �� �gg then

LP
M
�

�
��SFP

���En� ���� �

� Let SF � fi j i � f�� �� �� �gg then

L
M
�

�
��SF

���En� ���� ��

���
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Then the following holds

SP �Hist�WP � j� LP � L
h
%f�X

i
since i is relatively re�ned by P�i for i � �� � � � � �� So

SP �Hist�WP � j� L
h
%f�X

i
holds�

��� Third Step	 Fail�Stop Detection Layer

����� Introduction

In this step� the second stage in our development of the fault tolerant system� we specify
in bottom�up fashion on top of the physical disk that has been speci�ed in Section ���� the
layer that detects the faults that we assumed could a�ect the physical disk �the anticipated
faults�� The detection layer acts as a sort of �interface� between the user and the physical
disk� It stops when an anticipated fault is detected by the detection mechanism� i�e�� the
whole system �detection layer plus physical disk� stops when such a fault occurs� It also
informs the user which kind of anticipated fault has occurred� This second implementation
is �better� than the �rst one because now the user is certain� under the assumption that the
detection mechanism detects all the anticipated faults� that the retrieved data is reliable�
The implementation of the detection layer is such that as soon as a fault is detected the
system stops� This is called a fail�stop implementation 	LA
��� As seen above� there are two
classes of anticipated faults� Consequently there are two kinds of detection mechanisms�
The �rst one checks whether the contents read from the physical disk are corrupted� i�e��
detects errors due to damage of the disk surface� This is done with a cyclic redundancy
mechanism 	LA
��� The second one checks whether the contents of read from the physical
disk originate from the right location� This is done with an address checking mechanism
	LA
�� which encodes the location of the contents of the physical disk in the contents itself�

����� Speci�cation

The detection layer consists of three parts� the �rst part checks whether the data retrieved
from the physical disk is a�ected by a corrupt data fault �the fault that damages the
disk surface�� This is done with a cyclic redundancy check �CRC� mechanism 	LA
���
The second part checks whether the data retrieved from the physical disk is from the
correct physical location� i�e�� whether it is a�ected by a disk control system fault� This is
done with an address checking �ADR� mechanism 	LA
��� The third part prevents further
access by the user of the physical disk when one of these two mechanisms detects a fault�
This can be easily done because the detection layer acts as �interface� between the user
and the physical disk� the detection layer then refuse to communicate with the user and
the physical disk� Furthermore this part then gives a message to inform the user which
anticipated fault has occurred�

���
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The protocol of this interface between user and physical disk is as follows� The user read
requests the contents of some physical sector by issuing a Rreq�n� event to the detection
disk layer� This detection disk layer issues after receipt of this event a Rreqp�m� event
to the physical disk� The physical disk then responds with a Rresp�c� event delivering
the requested contents of that physical sector� The detection layer then responds after
checking the contents with a Rresp�cd� event delivering either the requested contents or
an error message� The user write requests that d should be written on sector n by issuing a
Wreq�n� d� event to the detection layer� The detection layer then issues aWreqp�m�dd�
event to the physical disk requesting that dd is written on sectorm� The physical disk then
responds with a Wresp event that the requested information is written� The detection
layer then responds to the user with a Wres event that the information is written�

Logical sector numbers are introduced now� but are used in the next step to correct
disk surface damage faults� i�e� when the detection layer detects that data from a physical
sector number is a�ected by a disk surface damage fault� the correct data will be written to
another physical sector number� In order to retrieve these contents from this new location
logical sector numbers are introduced� When contents are stored at a new physical sector
the logical sector number will be pointing to this new sector� So actually the data are
retrieved from their logical sector number� In this step however� the mapping between
the logical sector numbers and the physical sector numbers will be the identity mapping
because they are not needed here� The detection layer is described more formally by the
following speci�cation� SDs � �BDs�HDs� where HDs

M
� IDs ��TDs � LDs and BDs� IDs�

TDs and LDs are as follows�

�� Basis BDs � ��InDs�OutDs�� �VDs�XDs��

InDs
M
� fRreq�Wreq�Rresp�Wrespg

OutDs
M
� fRres�Wres�Rreqp�Wreqpg�

VDs
M
� ��

XDs
M
� f�Ds� rDs� sDs�LSDs	i� j i � LNg

where LN is the set of logical sector numbers� �	�� ��� Y ��� Let Lg the set of data
items that the user wants to store on or to retrieve from the physical disk and Phy
the set information items that can be stored on or retrieved from the physical disk
�Note� an item from Phy is an crc�encoded and address�encoded item of Lg�� For
n � LN � c� d � Lg� m � PN and cd� dd � Phy�

� Rreq��n�� the request from the user to read logical sector n�

� Rres��c�� the response of the detection layer to the previous request where c are
the crc�decoded and address�decoded contents of the requested logical sector n�

� Wreq��n� d�� write information item d onto logical sector n�

� Wres�� response that previous write has been performed�

� Rreqp��m�� the request from the detection layer to read physical sector m�

� Rresp��cd�� the response of the physical disk to the previous request where c
are the crc�encoded and address�encoded contents of requested physical�

���
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� Wreqp��m�dd�� write information item dd onto physical sector m�

� Wresp�� response that previous write has been performed�

� �Ds� local variable indicating the status of the detection layer# �Ds � �� the
detection layer is waiting for a request� �Ds � �� the user has issued a read
request� �Ds � �� the detection layer has issued a read request� �Ds � �� the
physical has responded to a read request with correct data� �Ds � �� the physical
disk has responded to a read request with incorrect data� �Ds � �� the detection
layer has responded to a read request with an error message �stop status��
�Ds � �� the user has issued a write request� �Ds � �� the detection layer has
issued a write request� �Ds � �� the physical disk has responded to a write
request�

� rDs� local variable indicating the requested sector�

� sDs� local variable indicating the requested information or the data to be writ�
ten�

� LSDs	i�� the physical sector mapped to logical sector� i�

Let !�
M
� ��Ds� rDs� sDs�LSDs	��� � � � �LSDs	Y �� and

!�
� M
� ���Ds� r

�
Ds� s

�
Ds�LS

�
Ds	��� � � � �LS

�
Ds	Y ���

�� Initial states�

IDs
M
� �Ds � � �

�
i�LN

LSDs	i� � i

�� Transitions�
To describe the two detecting mechanisms as transitions the following functions are
needed� �see 	LA
�� for more information about this CRC�coding�

� CC � Phy� Bool
�Crc�Check� Is used to check whether data from the physical disk is damaged
by a disk surface fault�

� CD � Phy � �Lg � PN�
�Crc�Decode� Is used to decode the CRC�coded physical data into address for�
mat�

� CE � �Lg � PN� � Phy
�Crc�Encode� Is used to encode data in address format into physical CRC for�
mat�

� AC � �Lg � PN � PN�� Bool
�Adr�Check� Is used to check whether data is read from the correct physical
location�

� AD � �Lg � PN�� Lg
�Adr�Decode� Is used to decode data in address format into user format�

��	
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� AE � �LN � Lg�� �Lg � PN�
�Adr�Encode� Is used to encode a physical sector number and a information
item given by the user into address format�

Let

Good
M
� CC�cd� � AC�CD�cd��LSDs	rDs��

data has not been a�ected by faults

A�er
M
� CC�cd� � �AC�CD�cd��LSDs	rDs��

data has been a�ected by a control system fault

C�er
M
� �CC�cd�

data has been a�ected by a disk surface damage

c
M
� AD�CD�cd��

the address� and crc�decoded contents

m
M
� LSDs	rDs�

physical sector

dd
M
� CE�AE�rDs� sDs��

address� and crc�encoded contents

c�
M
� address error

address error message

c�
M
� crc error

crc error message

TDs
M
�

Ds��

�
� � Rreq��n� � �Ds � � �!�

� � !� 	�� n��Ds� rDs�
�

The user requests the contents of logical sector n�

Ds�� �
�
� � Rreqp��m� � �Ds � � �!�

� � !� 	���Ds�
�

The detection layer requests the to logical sector rDs mapped physical sector�

Ds�� �
�
� � Rresp��cd� � �Ds � � �Good �!�

� � !� 	�� c��Ds� sDs�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects no error in them�

Ds�� �
�
� � Rresp��cd� � �Ds � � �A�er �!�

� � !� 	�� c���Ds� sDs�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects a control system error�

Ds�	 �
�
� � Rresp�cd� � �Ds � � � C�er � !�

� � !� 	�� c���Ds� sDs�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects a disk surface damage error�

Ds�� �
�
� � Rres��sDs� � �Ds � � � !�

� � !� 	���Ds�
�

The detection layer responds with the contents of the user requested sector�

Ds�� �
�
� � Rres��sDs� � �Ds � � � !�

� � !� 	���Ds�
�

The detection layer responds with an error message and then stops�
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Ds� �
�
� �Wreq��n� d� � �Ds � � �!�

� � !� 	�� n� d��Ds� rDs� sDs�
�

The user requests that d should be written onto logical sector n�

Ds�� �
�
� �Wreqp��m�dd� � �Ds � � �!�

� � !� 	���Ds�
�

The detection requests that dd should be written onto physical sector m�

Ds��� �
�
� �Wresp� � �Ds � � �!�

� � !� 	���Ds�
�

The physical disk responds with a signal to the detection layer that requested
write is performed�

Ds��� �
�
� �Wres� � �Ds � � � !�

� � !� 	���Ds�
�

The detection layer responds with a signal to the user that the requested write
is performed�

Ds�� � stutDs

These transitions are illustrated in �gure ���
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Figure ���� Transitions of the fail�stop detection layer�

�� Liveness condition�
The liveness condition expresses that the communication transitions are strongly fair�
Let SFDs � fDs�i j i � f�� � � � � ��gg then

LDs
M
�

�
��SFDs

���En� �� �� �

���
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����� Requirement WDs

The requirement WDs should express that no errors are detected�

WP
M
� ��� � Rresp��cd�� Good�

����� SDs k SP relatively re�nes SP

The communication channels of SP in SDs k SP should be renamed in order to compose
SDs with SP � i�e�� instead of HP as speci�cation we should take

HP 	Rreqp�Wreqp�Rresp�Wresp�Rreq�Wreq�Rres�Wres� �

Let SP� be the speci�cation with this renaming� According to theorem � SDs jW j SP�
relatively re�nes SP with respect to �true�WP � i� the following holds�

O�BDs�P�� � O�BP � and
j� ��XDs�P� � �GDs�P���� ��XP � �GP ��

where XDs�P� are the local variables from SDs k SP�� i�e��

XDs�P�
M
� f�Ds� rDs� sDs�LSDs	i� j i � LNg � f�P�� rP�� sP��MP�	n��F	n� j n � PNg and

GDs�P� is de�ned as

���� ���BA
Ds
�BA

P�
��� ��� ��� � �HDs �WDs� 	����� � �HP� �WP�� 	�����

This can be rewritten to following machine speci�cation of S�� S� � �B��H�� where H�
M
�

I� ��T� � L� and B�� I�� T� and L� are as follows�

�� Basis B� � ��In��Out��� �V��X���

In�
M
� fRreq�Wreqg

Out�
M
� fRres�Wresg�

V�
M
� ��

X�
M
� f�Ds� rDs� sDs�LSDs	i� j i � LNg

�f�P�� rP�� sP��MP�	n��F	n� j n � PNg

Let

!��
M
� ��Ds� rDs� sDs�LSDs	��� � � � �LSDs	Y ��

�P�� rP�� sP��MP�	��� � � � �MP�	Y ��F	��� � � � �F	Y ���

!��
� M

� ���Ds� r
�
Ds� s

�
Ds�LS

�
Ds	��� � � � �LS

�
Ds	Y ��

��P�� r
�
P�� s

�
P��M

�
P�	��� � � � �M

�
P�	Y ��F

�	��� � � � �F�	Y ��

�� Initial states�

I�
M
� �Ds � � � �P� � � �

�
i�LN

LSDs	i� � i �
�

i�PN

�MP�	i� � dflt � F	i� � i�

���
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�� Transitions�
Let

c
M
� AD�CD�MP�	F	rP�����

the address� and crc�decoded contents

m
M
� LSDs	rDs�

physical sector

dd
M
� CE�AE�rDs� sDs��

address� and crc�encoded contents

T�
M
�

���
�
� � Rreq��n� � �Ds � � � �P� � � �!��

� � !�� 	�� n��Ds� rDs�
�

The user requests the contents of logical sector n�

��� �
�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� ��m��Ds� �P�� rP��
�

The detection layer requests the to logical sector rDs mapped physical sector�

��� �
�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� c� ���Ds� sDs� �P��
�

The physical disk responds with the contents of the requested sector and because
of WP� and WDs they are correct�

��� �
�
� � Rres��sDs� � �Ds � � � �P� � � �!��

� � !�� 	���Ds�
�

The detection layer responds with the contents of the user requested sector�

��	 �
�
��Wreq��n� d� � �Ds � � � �P� � � �!��

� � !�� 	�� n� d��Ds� rDs� sDs�
�

The user requests that d should be written onto logical sector n�

��� �
�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� ��m� dd��Ds� �P�� rP�� sP��
�

The detection requests that dd should be written onto physical sector m�

��� �
�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� �� sP���Ds� �P��MP�	F	rP����
�

The physical disk responds with a signal to the detection layer that requested
write is performed�

�� �
�
� �Wres� � �Ds � � � �P� � � �!��

� � !�� 	���Ds�
�

The detection layer responds with a signal to the user that the requested write
is performed�

��� � stut�

Figure ��� illustrates the transitions of the relative composed system SDs jW j SP��
Due to BA

Ds
�BA

P�
��� ��� ��� the communications events with the physical disk are trans�

formed into i events and due to WDs and WP� no faults occur and no errors are
detected�

�� Liveness condition�
The liveness condition expresses that all non�stutter transitions are strongly fair� Let
SFDs � f��i j i � f�� � � � � �gg then

L�
M
�

�
��SF�

���En� ���� �

���
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Figure ���� Transitions of the relative composed system�

XP are the local variables from SP � i�e�� XP
M
� f�P � rP � sP �MP 	n��F	n� j n � PNg and GP

is de�ned as

IP ��TP � LP �WP

Rule � will be used to prove

j� ��X� � �G���� ��XP � �GP �� �

This means one has to prove �a�� �b� and �c� below� for %f the re�nement mapping from S�
to SP � de�ned as� %f � f�P � frP � fsP � fMP �n�� fFP �n� �n � SN�� The re�nement mappings are
de�ned as�

f�P
if �Ds � � then �Ds

�Ds � � then �Ds

�Ds � � then �Ds  �
�Ds � � then �Ds  �
�Ds � � then �Ds  �
�Ds � � then �Ds  �
�Ds � � then �Ds  �
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frP
M
� rDs

fsP
M
� sDs

fMP �n�
M
� AD�CD�MP�	LS	n����

fFP �n�
M
� FP�	LS	n��

�a� S� j� �I��� �IP � p�
h
%f�XP

i
�b� S� j� T� � �TP � ��p � p�� � stutP ��

h
%f�XP

i
�c� S� j� LP

h
%f�XP

i
�a� Proof ��

I�
� � Def� I�

�Ds � � � �P� � � �
V
i�LN LSDs	i� � i �

V
i�PN�MP�	i� � dflt � F	i� � i�

� � Def� %f� p

��P � � �
V
i�PN�MP 	i� � dflt � F	i� � i� � p�

h
%f�XP

i
� � Def� IP

�IP � p�
h
%f�XP

i
�b� Proof ��

Since TP is of the form stutP �
W
� �� � a� � trans�� then TP � ��p � p�� � stutP � is

equal to stutP �
W
� �� � a� � trans� � p � p���

� ���
�

�
� � Rreq��n� � �Ds � � � �P� � � �!��

� � !�� 	�� n��Ds� rDs�
�

�
�
� � Rreq��n� � �P � � � p � p� �!�

� � !� 	�� n��P � rP �
� h
%f�XP

i
� �P�� � p � p��

h
%f�XP

i
The user read request at the second level corresponds to the user read request at
the 	rst level�

� ���
�

�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� ��m��Ds� �P�� rP��
�

�
�
� � i � !�

� � !�

� h
%f�XP

i
� stutP

h
%f�XP

i
The read request to the physical disk at the second level corresponds to stutter
step of the physical disk at the 	rst level�

� ���
�

�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� c� ���Ds� sDs� �P��
�

�
�
� � i � !�

� � !�

� h
%f�XP

i
� stutP

h
%f�XP

i
The read response of the physical disk at the second level corresponds to the
stutter step of the physical disk at the 	rst level�
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� ���
�

�
� � Rres��sDs� � �Ds � � � �P� � � �!��

� � !�� 	���Ds�
�

�
�
� � Rres��MP 	F	rP ��� � �P � � � p � p� �!�

� � !� 	���P �
� h
%f�XP

i
� �P�� � p � p��

h
%f�XP

i
The read response of the detection layer at the second level corresponds to the
read response of the physical disk at the 	rst level�

� ��	
� � �Wreq��n� d� � ��Ds� �P�� � ��� ��

�!��
� � !�� 	�� n� d��Ds� rDs� sDs�

� � �Wreq��n� d� � �P � � � p � p�

�!�
� � !� 	�� n� d��P � rP � sP �

h
%f�XP

i
� �P�� � p � p��

h
%f�XP

i
The user write request at the second level corresponds to the user write request
at the 	rst level�

� ���
�

�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� ��m� dd��Ds� �P�� rP�� sP��
�

�
�
� � i � !�

� � !�

� h
%f�XP

i
� stutP

h
%f�XP

i
The write request to the physical disk at the second level corresponds to the
stutter step of the physical disk at the 	rst level�

� ���
�

�
� � i � �Ds � � � �P� � � � !��

� � !�� 	�� ���Ds� �P��
�

�
�
� � i � !�

� � !�

� h
%f�XP

i
� stutP

h
%f�XP

i
The write response of the physical disk at the second level corresponds to the
stutter step of the physical disk at the 	rst level�

� ��
�

�
� �Wres� � �Ds � � � �P� � � �!��

� � !�� 	���Ds�
�

�
�
� �Wres� � �P � � � p � p� �!�

� � !� 	�� sP ��P �MP 	F	rP ���
� h
%f�XP

i
� �P�� � p � p��

h
%f�XP

i
The write response of the detection layer at the second level corresponds to the
write response of the physical disk at the 	rst level�

� stut� � stutP
h
%f�XP

i
�c� Let SFP � fP�i j i � f�� �� �� �gg then

LP
M
�

�
��SFP

���En� ���� �

���
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� Let SF� � f��i j i � f�� � � � � �gg then

L�
M
�

�
��SF�

���En� ���� ��

Then the following holds

S� j� L� � LP
h
%f�XP

i
So

S� j� LP
h
%f�XP

i
holds�

��� Fourth Step	 Error Recovery Layer

����� Introduction

In this step the error recovery layer is speci�ed� This is the layer that tries to correct the
errors detected by the detection layer� The technique used for error recovery is that of
the mirrored disk concept 	LA
��� This mirror disk concept is as follows� instead of one
physical disk and corresponding detection layer N physical disks with identical contents
and N corresponding detection layers �N � �� are maintained� In case some information
can no longer be retrieved from a disk� the information is still available on another one�
The user requests some contents from the error recovery layer� The error recovery layer
selects a disk from which it can retrieve these contents� Then it requests these contents
from the corresponding detection layer of that disk� The detection layer requests then the
contents from the physical disk and checks whether the contents are correct� The detection
layer then signals if the contents are correct and if not it will signal which error has it has
detected� If the contents are correct the error recovery layer will send them to the user
and is then ready for new requests from the user� As seen before the detection layer can
detect two kinds of errors� ��� errors due to disk surface damage fault and ��� errors due
to disk control system faults� The error recovery layer will react as follows on these errors�

ad ��� First� the error recovery layer selects another disk from which it can retrieve the
requested contents and when the corresponding detection layer signals that the con�
tents are correct� the error recovery layer will write these contents to another location
of the a�ected disk� In order to retrieve these contents from this new location log�
ical locations are introduced� When contents are stored at a new physical location
the logical location will be pointing to this new location� So actually the data are
retrieved from their logical location� Subsequently the error recovery layer will send
the contents to the user and is ready to receive new requests from the user� When
the detection�layer of the second disk also reports an error the error recovery layer
will react as described in ad��� and ad�� depending on the kind of error detected�

���
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ad ��� First� the error recovery layer disables the faulty disk and then it will select another
disk from which it can retrieve the requested contents and when the corresponding
detection layer signals that the contents are correct the error recovery layer will them
to the user� When the detection�layer of the second disk also reports an error the
error recovery layer will react as described in ad��� and ad�� depending on the kind
of error detected�

This error recovery process only works if the following assumptions are made�

� In order to store the contents on a new physical location enough spare locations
should be available on an a�ected disk�

� Furthermore� the following must always hold in order to recover the ad����type of
error on a disk or to retrieve the contents from a logical location� for all logical
locations there exists at least one non�disabled physical disk that has correct data
stored on that logical location� This condition guarantees that always� each logical
location contains correct data �on which disk we don�t know� but it is a non�disabled
one and it is not the disk whose type � error has to be repaired��

����� Speci�cation of the Recovery Layer

The error recovery layer acts as interface between the user and the N detection layers
of the N physical disks� The user requests with a Rreq�n� event the contents of some
logical sector n� The error recovery layer requests these contents� on receipt of this event� by
issuing a Rreqdi�n� event to one of the non�disabled detection layers� This detection layer
responds with an Rresdi�d� event� As seen in the third step there are three possibilities�

�� If this event delivers a message saying that the� to this detection layer corresponding�
physical disk has been a�ected by a disk control system fault then this detection layer
will be disabled and the error�recovery layer will send a Rreqdj�n� event to another
non�disabled detection layer�

�� If this event delivers a message that the� to this detection layer corresponding� phys�
ical disk has been a�ected by a disk surface damage fault then the error recovery
layer requests the contents with a Rreqdj�n� from another non�disabled detection
layer until it �nds a detection layer that responds with the correct contents� Then
the error recovery layer can �repair� the physical disks that has been a�ected by a
disk surface damage fault at the same logical sector by generating a Wreqdj write
request event with the correct data to the same logical sector number of the corre�
sponding detection layers of those physical disks� The detections layers will respond
with a Wresd indicating that the a�ected physical disks has been repaired� The
design decision we make is that the detection layer has to �nd the spare physical
sector to which these contents can be written� After that� the error recovery layer
responds with a Rres�c� event to deliver the requested contents�

�� If this event delivers normal data the error recovery layer will respond with a Rres�c�
event delivering the requested contents�

���
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The user requests with aWreq�n� d� event that d has to be written onto a logical sector n�
The error recovery layer requests with a Wreqd�n� d� event to all non�disabled detection
layers that d has to written on logical sector n to ensure that the corresponding physical
disks have identical contents on their logical sectors� The detection layers then respond to
these requests with a Wresd event� The error recovery layer then responds with a Wres
event to the user that the write operation has been performed�

The stable storage layer is described by the following speci�cation� SR � �BR�HR�
where HR

M
� IR ��TR � LR and BR� IR� TR and LR are as follows�

�� Basis BR � ��InR�OutR�� �VR�XR��

InR
M
� fRreq�Wreq�Rresdi�Wresdi j i � Ndg�

OutR
M
� fRres�Wres�Rreqdi�Wreqdi j i � Ndg�

VR
M
� ��

XR
M
� f�R� rR� sR� tR�G�A�Wg

� Rreq��n�� the request from the user to read logical sector n�

� Rres��c�� the response of the error recovery layer to the previous request where
c are the crc�decoded and address�decoded contents of the requested logical
sector�

� Wreq��n� d�� user request to write information item d onto logical sector n�

� Wres�� write response to the user that the requested information is written�

� Rreqd�i�n�� the read request from the error recovery layer towards detection
layer i�

� Rresd�i�c�� the read response from detection layer i to the previous request
where c are the contents of the requested logical sector�

� Wreqd�i�n� d�� the write request from the error recovery layer to detection layer
i to write information item d onto logical sector n�

� Wresd�i� response from detection layer i to the error recovery layer that the
requested information has been written�

� �R� local variable indicating the status of the error recovery layer# �R � �� the
error recovery layer is waiting for a request� �R � �� the user has issued a
read request or the detection layer responded to a read request with a�ected
data� �R � �� the error recovery layer has issued a read request� �R � �� the
detection responded to a read request with correct data or all a�ected disk are
repaired� �R � �� the the detection responded to a read request with correct
data and there are a�ected disks� �R � �� the error recovery layer has issued a
write request to repair an a�ected disk and there are still a�ected disks to be
repaired� �R � �� the error recovery layer has issued a write request to repair an
a�ected disk and there are no more a�ected disks� �R � �� the user has issued
a write request� �R � �� the error recovery layer has issued a write request and
there are still to be written disks� �R � 
� the error recovery layer has issued a
write request and there are no more to be written disks� �R � ��� the detection
layer of the last to be written disk responded to a write request�

��	
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� rR� local variable indicating the requested sector�

� sR� local variable indicating the requested contents or the requested contents to
be written�

� tR� local variable indicating the index of the disk to which a request has been
issued�

� G� local variable indicating the set of indexes of non�disabled disks�

� A� local variable indicating the set of indexes of by control system faults a�ected
disks�

� W� local variable indicating the set of indexes on which data should be written�

Let !�
M
� ��R� rR� sR� tR�G�A�W� and !�

� M
� ���R� r

�
R� s

�
R� tR�G

��A��W���

�� Initial States�

IR
M
� �R � � �G � f�� � � � � Ng �A � �

The error recovery layer is waiting for requests from the user and all the N disks are
non�disabled�

�� Transitions�
Let

� c�
M
� address error

address error message

� c�
M
� crc error

crc error message

� Good�
M
� i � tR � dc �� c� � dc �� c� �A � �

data is not a�ected by faults and the number of a�ected disks is zero

� Good�
M
� i � tR � dc �� c� � dc �� c� �A �� �

data is not a�ected by faults and the number of a�ected disks is non�zero

� A�er
M
� i � tR � dc � c�

data is a�ected by control system fault

� C�er
M
� i � tR � dc � c�

data is a�ected by disk surface damage

� G� M
� G n fig

set of good disks minus i

� A� M
� A n fig

set of a�ected disks minus i

� A� M
� A � fig

set of a�ected disks plus i

� W� M
� W n fig

set of to be written disks minus i
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� C�
M
� i � G � i �� A

disk i is good and not a�ected

� C�
M
� i � A �A� �� �

disk i is a�ected and the number of a�ected disks is greater than �

� C�
M
� i � A �A� � �

disk i is the only a�ected disk

� C�
M
� i �W �W� �� �

disk i should be written onto and the number of to be written disks is greater
than �

� C�
M
� i �W �W� � �

disk i is the only disk to be written onto

TR
M
�

R��
�
� � Rreq��n� � �R � � � !�

� � !� 	�� n��R� rR�
�

The user requests the contents of logical sector n�

R�� �
�
� � Rreqd�i�rR� � �R � � � C� �!�

� � !� 	�� i��R� tR�
�

The error recovery layer requests the contents of logical sector rR from an en�
abled detection layer�

R�� �
�
� � Rresd�i�cd� � �R � � � Good� �!�

� � !� 	�� cd��R� sR�
�

The detection layer responds with the contents of the requested sector and the
detection layer has detected no error in them�

R�� �
�
� � Rresd�i�cd� � �R � � � A�er �!�

� � !� 	��G
���R�G�

�
The detection layer responds with the contents of the requested sector and the
detection layer has detected an control system error� so this detection layer will
be disabled�

R�	 �
�
� � Rresd�i�cd� � �R � � � C�er �!�

� � !� 	��A
���R�A�

�
The detection layer responds with the contents of the requested sector and the
detection layer detects an disk surface damage error� so disk i has to be repaired�

R�� �
�
� � Rresd�i�cd� � �R � � � Good� �!�

� � !� 	�� cd��R� sR�
�

A correct disk has been found so the error recovery layer can repair the a�ected
disks�

R�� �
�
� �Wreqd�i�rR� sR� � �R � � � C� � !�

� � !� 	�� i�A
���R� tR�A�

�
An a�ected disk is being repaired and there are still unrepaired disk�

R� �
�
� �Wresd�i � �R � � � i � tR �!�

� � !� 	���R�
�

The a�ected disk is repaired�

R�� �
�
� �Wreqd�i�rR� sR� � �R � � � C� � !�

� � !� 	��A
���R�A�

�
An a�ected disk is being repaired and there are no unrepaired disks�

R��� �
�
� �Wresd�i � �R � � � i � tR �!�

� � !� 	���R�
�

All a�ected disk are repaired� so the user requested contents can be sent�

���
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R��� �
�
� � Rres��sR� � �R � � � !�

� � !� 	���R�
�

The error recovery layer responds with the requested contents�

R��� �
�
� �Wreq��n� d� � �R � � �!�

� � !� 	�� n� d�G��R� rR� sR�W�
�

The user requests that d should be written onto logical sector n�

R��� �
�
� �Wreqd�i�rR� sR� � �R � � � C� � !�

� � !� 	�� i�W���R� tR�W�
�

The requested information is being written to a disk and there are still disks
which haven�t written them�

R��� �
�
� �Wresd�i � �R � � � i � tR �!�

� � !� 	���R�
�

The requested information is written onto disk i�

R��	 �
�
� �Wreqd�i�rR� sR� � �R � � � C� � !�

� � !� 	
� i�W���R� tR�W�
�

The requested information is being written to a disk and there are no disks
which haven�t written them�

R��� �
�
� �Wresd�i � �R � 
 � i � tR �!�

� � !� 	����R�
�

The requested information is written onto all disks�

R��� �
�
� �Wres� � �R � �� � !�

� � !� 	���R�
�

The error recovery layer responds with a signal to the user that requested write
is performed�

R�� � stutR

These transitions are illustrated in �gure ���

�� Liveness Condition�
The liveness condition expresses that the communication transitions are strongly fair�
Let SFR � fR�i j i � f�� � � � � ��gg then

LR
M
�

�
��SFR

���En� ���� �

����� Speci�cation of the Detection Layer

The detection layer is nearly the same as the fail�stop detection layer the only di�erence is
that when error due to a disk surface fault has been detected the detection layer waits for
the corrective action to be undertaken� i�e�� a write request of the correct data to the to
be repaired logical sector� It therefore selects a spare physical sector and maps the logical
sector to it� It then issues a write request to this new physical sector� The physical disk
then responds to this write request� The detection layer responds that the disk has been
repaired�

The detection layer is described more formally by the following speci�cation� SD �
�BD�HD� where HD

M
� ID ��TD � LD and BD� ID� TD and LD are as follows�
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Figure ���� Transitions of the error recovery layer�

�� Basis BD � ��InD�OutD�� �VD�XD��

InD
M
� fRreqd�Wreqd�Rresp�Wrespg�

OutD
M
� fRresd�Wresd�Rreqp�Wreqpg�

VD
M
� ��

XD
M
� f�D� rD� sD�LSD	i� j i � LNg

where LN is the set of logical sector numbers� �	�� ��� Y ��� Let Lg be the set of data
items that the user wants to store on or retrieve from the physical disk and Phy be
the set information items that can be stored on or retrieved from the physical disk
�Note� an item from Phy is an crc�encoded and address�encoded item of Lg�� For
n � LN � c� d � Lg� m � PN and cd� dd � Phy�

� Rreqd��n�� the request from the user to read logical sector n�

� Rresd��c�� the response of the detection layer to the previous request where c
are the crc�decoded and address�decoded contents of the requested logical sector
n�

� Wreqd��n� d�� write information item d onto logical sector n�

� Wresd�� response that previous write has been performed�

���
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� Rreqp��m�� the request from the detection layer to read physical sector m�

� Rresp��cd�� the response of the physical disk to the previous request where c
are the crc�encoded and address�encoded contents of requested physical�

� Wreqp��m�dd�� write information item dd onto physical sector m�

� Wresp�� response that previous write has been performed�

� �D� local variable indicating the status of the detection layer# �D � �� the
detection layer is waiting for a request� �D � �� the user has issued a read
request� �D � �� the detection layer has issued a read request� �D � �� the
physical has responded to a read request with correct data� �D � �� the physical
disk has responded to a read request with incorrect data� �D � �� the detection
layer has responded to a read request with an address error message �stop
status�� �D � �� the user has issued a write request� �D � �� the detection layer
has issued a write request� �D � �� the physical disk has responded to a write
request� �D � 
� the detection layer has responded to a read request with a crc
error message �can be repaired�� �D � 
� the user has issued a write request in
order to repair the corresponding disk�

� rD� local variable indicating the requested sector�

� sD� local variable indicating the requested information or the data to be written�

� LSD	i�� the physical sector mapped to logical sector

Let !�
M
� ��D� rD� sD�LSD	��� � � � �LSD	Y �� and

!�
� M
� ���D� r

�
D� s

�
D�LS

�
D	��� � � � �LS

�
D	Y ���

�� Initial states�

ID
M
� �D � �

�
i�LN

LSD	i� � i

�� Transitions�
The same detection mechanism as the fail�stop detection layer is used� Let spare be

���
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a function that returns a spare physical sector number� Let

Good
M
� CC�cd� � AC�CD�cd��LSD	rD��

data has not been a�ected by faults

A�er
M
� CC�cd� � �AC�CD�cd��LSD	rD��

data has been a�ected by a control system fault

C�er
M
� �CC�cd�

data has been a�ected by a disk surface damage

c
M
� AD�CD�cd��

the address� and crc�decoded contents

m
M
� LSD	rD�

physical sector

dd
M
� CE�AE�rD� sD��

address� and crc�encoded contents

x
M
� spare

spare physical sector

c�
M
� address error

address error message

c�
M
� crc error

crc error message

TD
M
�

D��

�
� � Rreqd��n� � �D � � �!�

� � !� 	�� n��D� rD�
�

The user requests the contents of logical sector n�

D�� �
�
� � Rreqp��m� � �D � � �!�

� � !� 	���D �
�

The detection layer requests the to logical sector rD mapped physical sector�

D�� �
�
� � Rresp��cd� � �D � � � Good �!�

� � !� 	�� c��D� sD�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects no error in them�

D�� �
�
� � Rresp��cd� � �D � � � A�er �!�

� � !� 	�� c���D� sD�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects an control system error�

D�	 �
�
� � Rresp��cd� � �D � � � C�er �!�

� � !� 	�� c���D� sD�
�

The physical disk responds with the contents of the requested sector and the
detection layer detects an disk surface damage error�

D�� �
�
� � Rresd��sD� � �D � � �!�

� � !� 	���D�
�

The detection layer responds with the contents of the user requested sector�

D�� �
�
� � Rresd��sD� � �D � � � sD � c� �!�

� � !� 	���D �
�

In case of an address error the detection layer responds with the corresponding
error message and then stops�

���
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D� �
�
� � Rresd��sD� � �D � � � sD � c� �!�

� � !� 	
��D �
�

The detection layer responds with an error message and waits for the corrective
action�

D�� �
�
� �Wreqd��n� d� � �D � 
 � !�

� � !� 	��� n� d� x��D� rD� sD�LSD	n��
�

The user requests that d should be written on a spare physical sector�

D��� �
�
� �Wreqp��m�dd� � �D � �� �!�

� � !� 	���D�
�

The detection layer requests that dd should be written onto physical sector m�

D��� �
�
� �Wreqd��n� d� � �D � � � !�

� � !� 	�� n� d��D� rD� sD�
�

The user requests that d should be written onto logical sector n�

D��� �
�
� �Wreqp��m�dd� � �D � � �!�

� � !� 	���D �
�

The detection requests that dd should be written onto physical sector m�

D��� �
�
� �Wresp� � �D � � �!�

� � !� 	���D�
�

The physical disk responds with a signal to the detection layer that requested
write is performed�

D��� �
�
� �Wresd� � �D � � �!�

� � !� 	���D�
�

The detection layer responds with a signal to the user that requested write is
performed�

D�� � stutD

These transitions are illustrated in �gure ���

�� Liveness conditions�
The liveness condition expresses that the communication transitions are strongly fair�
Let SFD � fD�i j i � f�� � � � � ��gg then

LD
M
�

�
��SFD

���En� �� �� �

����� Requirement WR

The error recovery requirement should express that for all logical locations there exists
at least one non�disabled disk that has correct data stored on that logical location and
enough spare locations should be available on an a�ected disk�

WR
M
�

��
V
n�LN ��i � G�CCi�MPi	LSDi	n���� ACi�CDi�MPi	LSDi	n���LSDi	n�����

��
i � G��m � PNi�m � sparei�

This corresponds to the following machine� Let

p�
M
� �

V
n�LN ��i � G�CCi�MPi	LSDi	n��� � ACi�CDi�MPi	LSDi	n���LSDi	n�����

��
i � G��m � PNi�m � sparei�

p��
M
� �

V
n�LN ��i � G

��CCi�M�
Pi	LS

�
Di	n��� �ACi�CDi�M�

Pi	LS
�
Di	n���LS

�
Di	n�����

��
i � G���m � PNi�m � sparei�

then WR is equal to the machine p� ����p� � p��� � stut���
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Figure ���� Transitions of the detection layer�

����� kNi�� �SDi k SPi� k SR relatively re�nes SDs k SP

First we construct the system S�
M
� kNi�� �SDi k SPi� k SR then according to theorem � S�

relatively re�nes S� ��SDs k SP�� with respect to �WR� true� i� the following holds�

O�B�� � O�B�� and
j� ��X� � �G���� ��X� � �G���

where X� are the local variables from SDs k SP�� i�e��
X�

M
� f�Ds� rDs� sDs�LSDs	i� j i � LNg � f�P�� rP�� sP��MP�	n��F	n� j n � PNg and G� is

de�ned as

���� ���BA
Ds
�BA

P�
��� ��� ��� � �HDs �WDs� 	����� � �HP� �WP�� 	�����

This can be rewritten to following machine speci�cation of S�� S� � �B��H�� where H�
M
�

I� ��T� � L� and B�� I�� T� and L� are de�ned in section ���� X� are the local variables
from S�� i�e�� X�

M
� �

SN
j��f�Dj� rDj� sDj �LSDj	i� j i � LNg � f�Pj � rPj� sPj �MPj	n��Fj	n� j

n � PNg� � f�R� rR� sR� tR�G�A�Wg� Let %�
M
� ����� � � � � ���N � ����� � � � � ���N� �� and let %BA M

�
BA
D�� � � � � B

A
DN � B

A
P�� � � � � B

A
PN � B

A
R then G� is de�ned as

��%e�� 
BA ��� %e��
VN
j���HDj� 	���j��� � �HPj� 	���j���� �HR 	������ �WR

���
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The ��%e�� 
BA ��� %e��
VN
j���HDj� 	���j��� � �HPj� 	���j���� �HR 	������ part can be rewritten to

following machine speci�cation S�
M
� �B��H�� where H�

M
� I� ��T� � L� and B�� I�� T�

and L� are as follows�

�� Basis B� � ��In��Out��� �V��X���

In�
M
� fRreq�Wreqg

Out�
M
� fRres�Wresg�

V�
M
� ��

X�
M
� as above

Let

!�
M
� ���Dj � rDj� sDj�LSDj 	��� � � � �LSDj	Y ��

�Pj � rPj� sPj �MPj	��� � � � �MPj	Y ��Fj	��� � � � �Fj	Y ��j�������N �
�R� rR� sR� tR�G�A�W�

!�
� M
� ����Dj � r

�
Dj� s

�
Dj�LS

�
Dj 	��� � � � �LS

�
Dj	Y ��

��Pj � r
�
Pj� s

�
Pj �M

�
Pj	��� � � � �M

�
Pj	Y ��F

�
j	��� � � � �F

�
j	Y ��j�������N

��R� r
�
R� s

�
R� t

�
R�G

��A��W��

�� Initial states�

I�
M
�

N�
j��

�IDj � IPj� � IR

�� Transitions�
Let

� c�
M
� address error

address error message

� c�
M
� crc error

crc error message

� Good�
M
� i � tR � dc �� c� � dc �� c� �A � �

data is not a�ected by faults and the number of a�ected disks is zero

� Good�
M
� i � tR � dc �� c� � dc �� c� �A �� �

data is not a�ected by faults and the number of a�ected disks is non�zero

� A�er
M
� i � tR � dc � c�

data is a�ected by control system fault

� C�er
M
� i � tR � dc � c�

data is a�ected by disk surface damage

� G� M
� G n fig

set of good disks minus i

���
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� A� M
� A n fig

set of a�ected disks minus i

� A� M
� A � fig

set of a�ected disks plus i

� W� M
� W n fig

set of to be written disks minus i

� C�
M
� i � G � i �� A

disk i is good and not a�ected

� C�
M
� i � A �A� �� �

disk i is a�ected and the number of a�ected disks is greater than �

� C�
M
� i � A �A� � �

disk i is the only a�ected disk

� C�
M
� i �W �W� �� �

disk i should be written onto and the number of to be written disks is greater
than �

� C�
M
� i �W �W� � �

disk i is the only disk to be written onto

� q
M
� ��Di� �Pi� �R�

status of detection layer i and physical disk i and the error recovery layer�

T�
M
�

���
�
� � Rreq��n� � �R � � � !�

� � !� 	�� n��R� rR�
�

The user requests the contents of logical sector n�

��� �
�
� � i � �R � � � C� � !�

� � !� 	�� i� �� rR��R� tR� �Di� rDi�
�

The error recovery layer requests the contents of logical sector rR from an en�
abled detection layer i�

��� �
�
� � i � q � ��� �� �� �!�

� � !� 	�� ��m��Di� �Pi� rPi�
�

The detection layer i requests the to logical sector rDi mapped physical sector
from physical disk i�

��� �
�
� � i � q � ��� �� �� �Goodi �!�

� � !� 	�� c� ���Di� sDi� �Pi�
�

The physical disk i responds with the contents of the requested sector and the
detection layer i detects no error in them�

��	 �
�
� � i � q � ��� �� �� �A�eri �!�

� � !� 	�� c�� ���Di� sDi� �Pi�
�

The physical disk i responds with the contents of the requested sector and the
detection layer i detects a control system error�

��� �
�
� � i � q � ��� �� �� � C�eri �!�

� � !� 	�� c�� ���Di� sDi� �Pi�
�

The physical disk i responds with the contents of the requested sector and the
detection layer i detects a disk surface damage error�

��	



��	 Fourth Step Error Recovery Layer

��� �
�
� � i � q � ��� �� �� �Good� �!�

� � !� 	�� �� sDi��Di� �R� sR�
�

The detection layer i responds with the contents of the requested sector and the
detection layer i has detected no error in them�

�� �
�
� � i � q � ��� �� �� �A�eri �!�

� � !� 	�� ��G���Di� �R�G�
�

The detection layer i responds with the contents of the requested sector and the
detection layer i has detected an control system error� so this detection layer
will be disabled�

��� �
�
� � i � q � ��� �� �� � C�eri �!�

� � !� 	
� ��A
���Di� �R�A�

�
The detection layer i responds with the contents of the requested sector and the
detection layer i detects an disk surface damage error� so physical disk i has to
be repaired�

���� �
�
� � i � q � ��� �� �� �Good� �!�

� � !� 	�� �� sDi��Di� �R� sR�
�

A correct disk i has been found so the error recovery layer can repair the a�ected
disks�

���� � �� � i � q � �
� �� �� � C�
�!�

� � !� 	��� rR� sR� xi� �� i�A
���Di� rDi� sDi�LSDi� �R� tR�A��

An a�ected disk i is being repaired and there are still unrepaired disk�

���� �
�
� � i � q � ���� �� �� �!�

� � !� 	�� ��mi� ddi��Di� �Pi� rPi� sPi�
�

An a�ected disk i is being repaired and there are still unrepaired disk�

���� �
�
� � i � q � ��� �� �� �!�

� � !� 	�� �� sPi��Di� �Pi�MPi	FPi	rPi���
�

An a�ected disk i is being repaired and there are still unrepaired disk�

���� �
�
� � i � q � ��� �� �� � i � tR �!�

� � !� 	�� ���Di� �R�
�

The a�ected disk is repaired�

���	 � �� � i � q � �
� �� �� � C�
�!�

� � !� 	��� �� rR� sR� xi�A���Di� rDi� sDi�LSDi� �R�A��

An a�ected disk is being repaired and there are no further unrepaired disks�

���� �
�
� � i � q � ���� �� �� �!�

� � !� 	�� ��mi� ddi��Di� �Pi� rPi� sPi�
�

An a�ected disk i is being repaired and there are no further unrepaired disks�

���� �
�
� � i � q � ��� �� �� �!�

� � !� 	�� �� sPi��Di� �Pi�MPi	FPi	rPi���
�

An a�ected disk i is being repaired and there are no further unrepaired disks�

��� �
�
� � i � q � ��� �� �� � i � tR �!�

� � !� 	�� ���Di� �R�
�

All a�ected disk are repaired� so the user requested contents can be sent�

���� �
�
� � Rres��sR� � �R � � � !�

� � !� 	���R�
�

The error recovery layer responds with the requested contents�

���� �
�
� �Wreq��n� d� � �R � � �!�

� � !� 	�� n� d�G��R� rR� sR�W�
�

The user requests that d should be written onto logical sector n�

���� � �� � i � q � ��� �� �� � C�
�!�

� � !� 	�� �� rR� sR� i�W���R� �Di� rDi� sdi� tR�W��

The requested information is being written to a disk and there are still unwritten
disks�

���
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���� �
�
� � i � q � ��� �� �� �!�

� � !� 	�� ��mi� ddi��Di� �Pi� rPi� sPi�
�

The requested information is being written to a disk and there are still unwritten
disks�

���� �
�
� � i � q � ��� �� �� �!�

� � !� 	�� �� sPi��Di� �Pi�MPi	FPi	rPi���
�

The requested information is being written to a disk and there are still unwritten
disks�

���� �
�
� � i � q � ��� �� �� � i � tR �!�

� � !� 	�� ���Di� �R�
�

The requested information is written onto disk i�

���	 � �� � i � q � ��� �� �� � C�
�!�

� � !� 	
� �� rR� sR� i�W���R� �Di� rDi� sDi� tR�W��

The requested information is being written to a disk and there are no further
unwritten disks�

���� �
�
� � i � q � ��� �� 
� �!�

� � !� 	�� ��mi� ddi��Di� �Pi� rPi� sPi�
�

The requested information is being written to a disk and there are no further
unwritten disks�

���� �
�
� � i � q � ��� �� 
� �!�

� � !� 	�� �� sPi��Di� �Pi�MPi	FPi	rPi���
�

The requested information is being written to a disk and there are no further
unwritten disks�

��� �
�
� � i � q � ��� �� 
� � i � tR �!�

� � !� 	�� ����Di� �R�
�

The requested information is written onto all disks�

���� �
�
� �Wres� � �R � �� � !�

� � !� 	���R�
�

The error recovery layer responds with a signal to the user that requested write
is performed�

��� � stut�

These transitions are illustrated in �gure ��� with the transitions for the physical
disk omitted�

�� Liveness Condition�
The liveness condition expresses that all non�stuttering transitions are strongly fair�
Let SF� � f��i j i � f�� � � � � �
gg then

L�
M
�

�
��SF�

���En� ���� �

Rule � will be used to prove

j� ��X� � �G���� ��X� � �G��� �

���
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Figure ���� Transitions of the �nal implementation of stable storage�

This means one has to prove �a�� �b� and �c� below� for %f the re�nement mapping from
S� to S�� de�ned as� %f � f�Ds� frDs� fsDs� fLSDs�m�� � � � � fLSDs�Y �� f�P� � frP�� fsP� � fMP��n�� fFP� �n�
�n � SN � m � LN�� The re�nement mappings are de�ned as�

f�P�
if �R � � then �R

�R � � then �R  �
�R � � � �Pi � � then �R  �
�R � � � �Pi � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � � �Pi � � then �R  �
�R � � � �Pi � � then �R  �
�R � 
 � �Pi � � then �R  

�R � 
 � �Pi � � then �R  �
�R � �� then �R  ��

���
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floc�Ds
if �R � � then �R

�R � � then �R
�R � � � �Pi � � then �R  �
�R � � � �Pi � � then �R  �
�R � � then �R
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � � then �R  �
�R � 
 then �R  �
�R � �� then �R  �

For i � G � i �� A �physical i is not a�ected by any fault�

frP�
M
� rPi

fsP�
M
� sPi

fMP��n�
M
� MPi	n�

fFP��n�
M
� FPi	n�

frDs
M
� rDi

fsDs
M
� sDi

fLSDs�m�
M
� LSDi	m�

�a� S� �Hist�WR� j� �I� � p��� �I��
h
%f�X�

i
�b� S� �Hist�WR� j� �T� � ��p� � p��� � stut��� �T��

h
%f�X�

i
�c� S� �Hist�WR� j� L�

h
%f�X�

i
�a� Proof ��

I� � p�
� � Def� I�� p�� %f � I�

�I��
h
%f�X�

i

�b� Proof ��
Since T� is of the form stut� �

W
� �� � a� � trans�� then T� � ��p� � p��� � stut�� is

equal to stut� �
W
� �� � a� � trans� � p� � p����

� ��� � p� � p��
� �����

h
%f�X�

i
The user read request at the third level corresponds to the user read request at
the second level�

���
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� ��� � p� � p��
� stut�

h
%f�X�

i
The read request to the detection layer i at the third level corresponds to the
stutter step at the second level�

� ��� � p� � p��
� �����

h
%f�X�

i
The read request to physical disk i at the third level corresponds to the read
request to the physical disk at the second level�

� ��� � p� � p��
� �����

h
%f�X�

i
The read response of the physical disk i at the third level corresponds to the read
response of the physical disk at the second level because no errors are detected�

� ��	 � p� � p��
� stut�

h
%f�X�

i
The read response of the physical disk i at the third level corresponds to the
stutter step at the second level because a control system error is detected�

� ��� � p� � p��
� stut�

h
%f�X�

i
The read response of the physical disk i at the third level corresponds to the
stutter step at the second level because a disk surface error is detected�

� ��� � p� � p��
� stut�

h
%f�X�

i
The read response of the detection i at the third level corresponds to the stutter
step at the second level�

� �� � p� � p��
� stut�

h
%f�X�

i
The read response of the detection i at the third level corresponds to the stutter
step at the second level�

� ��� � p� � p��
� stut�

h
%f�X�

i
The read response of the detection i at the third level corresponds to the stutter
step at the second level�

� ���� � p� � p��
� stut�

h
%f�X�

i
The read response of the detection i at the third level corresponds to the stutter
step at the second level�

� For j � ��� � � � � ��

��j � p� � p��
� stut�

h
%f�X�

i
���
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The correction step at the third level corresponds to the stutter step at the second
level�

� ���� � p� � p��
� �����

h
%f�X�

i
The read response to the user at the third level corresponds to read response to
the user at the second level�

� ���� � p� � p��
� �����

h
%f�X�

i
The write request of the user at the third level corresponds to the write request
of the user at the second level�

� For j � ��� ��

��j � p� � p��
� stut�

h
%f�X�

i
The write request to the detection layer i at the third level corresponds to the
stutter step at the second level�

� For j � ��� ��

��j � p� � p��
� �����

h
%f�X�

i
The write request to the physical disk i at the third level corresponds to the write
request to the physical disk at the second level�

� For j � ��� ��

��j � p� � p��
� �����

h
%f�X�

i
The write response of the physical disk i at the third level corresponds to the
write response of the physical disk at the second level�

� For j � ��� ��

��j � p� � p��
� stut�

h
%f�X�

i
The write response of the detection layer i at the third level corresponds to the
stutter step at the second level�

� ���� � p� � p��
� ����

h
%f�X�

i
The write response to the user at the third level corresponds to the write response
to the user at the second level�

� stut� � stut�
h
%f�X�

i
���
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�c� Let SF� � f��i j i � f�� � � � � �
gg then

L�
M
�

�
��SF�

���En� ���� �

� Let SF� � f��i j i � f�� � � � � �gg then

L�
M
�

�
��SF�

���En� ���� ��

Then the following holds

S� �Hist�W�� j� L� � L�
h
%f�X�

i
So

S� �Hist�W�� j� L�
h
%f�X�

i
holds�

���
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Appendix A

Proofs of Dense Model Theorems

A�� Proof of Theorem �

Theorem � �Relationship between histories and in�nite sequences�
Let h � H� �h then �seli�i�� � SEQ� �s where seli is as follows�
if nn�h� �	�

sel��i�� � h�i� � � i � nn�h�
sel��i � lim

i�t�
h�t�� � � i � nn�h�

sel��i�� � lim
k�t�

h�t�� k � nn�h� � k � i

sel��i � lim
k�t�

h�t�� k � nn�h� � k � i

if nn�h� �	�

sel��i�� � h�i� � � i
sel��i � lim

i�t�
h�t�� � � i

Let seq � �seli�i�� � SEQ� �s then h � H� �h where h is as follows�
if ns�seq� �	�

h��� � sel�
h�t� � sel��t�� t � N� � � t � ns�seq�
h�t� � sel��t t � N� t � ns�seq�
h�t� � sel��i i � t � i$ �

if ns�seq� �	�

h��� � sel�
h�t� � sel��t�� t � N
h�t� � sel��i i � t � i$ �

Proof �	 Let h � H� �h then h is of the form h� � di�h�� for some h� � H� According to
Def� �� h is then of the form that at discrete points the non�stutter steps and at all other
points the stutter steps occur� The construction of seq above is such that at odd points the

���
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non�stutter steps �or ��steps if number of non�stutter steps is 	nite� and at even points
the ��step occur� i�e�� a sequence from SEQ� �s�

Let seq � �seli�i�� � SEQ� �s then� according to Def� ��� seq is such that at odd
points non�stutter steps occur �or ��steps if the number of non�stutter stesp is 	nite� and
at the even points � steps� The construction of h above is such that at discrete points
greater than zero the non�stutter steps occur �or � steps if the number of non�stutter steps
is 	nite� and at all other points the � steps� i�e� a history from H� �h�

A�� Proof of Lemma �

Lemma �
Given machine M � �B� I� T � then

Comp�M� is a safety set�

Proof �
 One has to prove that Comp�M� is closed� i�e�� H nComp�M� is an open set�
i�e�� H n Comp�M� � d �d is the topological space de	ned in Def� ����

H n Comp�M� � d
� � Def� �� d


h � �� � � � 
h� �
�h � H n Comp�M� � d�h� h�� � ��� h� � H n Comp�M�

� � Contraposition

h � �� � � � 
h� � h� � Comp�M� � d�h� h�� � ��� h � Comp�M�

� � Def� �� d�h� h��

h � 
t � 
h� � �h �t� h� �t �h� � Comp�M��� h � Comp�M�

� � Pred� Calc�

h � 
h� � 
t � �h �t� h� �t �h� � Comp�M��� h � Comp�M�

� � Pred� Calc�

h � 
h� � �h � h� � h� � Comp�M��� h � Comp�M�

� � Pred� Calc�
true

A�� Proof of Theorem �

Theorem �
Let rexp be a rigid expression� exp be an expression� evexp an event expression and p a
temporal formula then

a 
t� h�� h� � h� ��h h� � ��h�� t� j� rexp � �h��di�h�� � di
���h���t�� j� rexp�

b 
t� h�� h� � h� ��h h� � ��h�� t� j� exp � �h��di�h�� � di
���h���t�� j� exp�

c 
t� h�� h� � h� ��h h� � ��h�� t� j� evexp � �h��di�h�� � di
���h���t�� j� evexp�

d 
t� h�� h� � h� ��h h� � ��h�� t� j� p i� �h��di�h�� � di
���h���t�� j� p�

���



A�� Proof of Theorem �

Proof ��

a 
t� h�� h� � h� ��h h� � ��h�� t� j� rexp � �h��di�h�� � di
���h���t�� j� rexp�

The proof proceeds by induction on the structure of rexp

� rexp � ��

�h�� t� j� �
� � h� � h� � di�h�� � di

���h��
�h��di�h�� � di

���h���t�� j� �

� rexp � n�

�h�� t� j� n
� � Def� ��

	h�����n�
� � h� � h� � di�h�� � di

���h���di�h�� � di
���h����� � �

	h��di�h�� � di
���h�������n�

� � Def� ��
�h��di�h�� � di

���h���t�� j� n

� exp � n��

�h�� t� j� n�

� � Def� ��
	h�����n�

� � h� � h� � di�h�� � di
���h���di�h�� � di

���h����� � �
	h��di�h�� � di

���h�������n�
� � Def� ��

�h��di�h�� � di
���h���t�� j� n�

� exp �&n�

�h�� t� j�&n
� � Def� ��

	h�����n�
� � h� � h� � di�h�� � di

���h���di�h�� � di
���h����� � �

	h��di�h�� � di
���h�������n�

� � Def� ��
�h��di�h�� � di

���h���t�� j�&n

� rexp � rexp� $ rexp��

�h�� t� j� rexp� $ rexp�
� � Def� ��

�h�� t� j� rexp� $ �h�� t� j� rexp�
� � Induction

�h��di�h�� � di
���h���t�� j� rexp� $ �h��di�h�� � di

���h���t�� j� rexp�
� � Def� ��

�h��di�h�� � di
���h���t�� j� rexp� $ rexp�

���
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b 
t� h�� h� � h� ��h h� � ��h�� t� j� exp � �h��di�h�� � di
���h���t�� j� exp�

The proof proceeds by induction on structure of exp�

� exp � rexp�

�h�� t� j� rexp
� � Theorem �a

�h��di�h�� � di
���h���t�� j� rexp

� exp � v�

�h�� t� j� v
� � Def� ��

	h��t��v�
� � h� � h� � di�h�� � di

���h��
	h��di�h�� � di

���h���t���v�
� � Def� ��

�h��di�h�� � di
���h���t�� j� v

� exp � v��

�h�� t� j� v�

� � Def� ��
lim
t�t�

	h��t���v�

� � h� � h� � di�h�� � di
���h��

lim
t�t�

	h��di�h�� � di
���h���t����v�

� � t� � di�h�� � di
���h���t��

lim
di�h��	di

���h���t��t�

	h��t���v�

� � Def� ��
�h��di�h�� � di

���h���t�� j� v�

� exp �&v�
t � �

�h�� �� j�&v
� � Def� ��

	h�����v�
� � h� � h� � di�h�� � di

���h��
	h��di�h�� � di

���h�������v�
� � Def� ���di�h�� � di

���h����� � �
�h��di�h�� � di

���h������ j�&v

���



A�� Proof of Theorem �

t � �

�h�� t� j�&v
� � Def� ��

lim
t��t

	h��t���v�

� � h� � h� � di�h�� � di
���h��

lim
t��t

	h��di�h�� � di
���h���t����v�

� � t� � di�h�� � di
���h���t��

lim
t��di�h��	di

���h���t�
	h��t���v�

� � Def� ��
�h��di�h�� � di

���h���t�� j�&v

� exp � x�

�h�� t� j� x
� � Def� ��

	h��t��x�
� � h� � h� � di�h�� � di

���h��
	h��di�h�� � di

���h���t���x�
� � Def� ��

�h��di�h�� � di
���h���t�� j� x

� exp � x��

�h�� t� j� x�

� � Def� ��
lim
t�t�

	h��t���x�

� � h� � h� � di�h�� � di
���h��

lim
t�t�

	h��di�h�� � di
���h���t����x�

� � t� � di�h�� � di
���h���t��

lim
di�h��	di

���h���t��t�

	h��t���x�

� � Def� ��
�h��di�h�� � di

���h���t�� j� x�

� exp �&x�

�h�� �� j�&x
� � Def� ��

	h�����x�
� � h� � h� � di�h�� � di

���h��
	h��di�h�� � di

���h�������x�
� � Def� ���di�h�� � di

���h����� � �
�h��di�h�� � di

���h������ j�&x

���



Proofs of Dense Model Theorems

t � �

�h�� t� j�&x
� � Def� ��

lim
t��t

	h��t���x�

� � h� � h� � di�h�� � di
���h��

lim
t��t

	h��di�h�� � di
���h���t����x�

� � t� � di�h�� � di
���h���t��

lim
t��di�h��	di

���h���t�
	h��t���x�

� � Def� ��
�h��di�h�� � di

���h���t�� j�&x

� exp � exp� $ exp��

�h�� t� j� exp� $ exp�
� � Def� ��

�h�� t� j� exp� $ �h�� t� j� exp�
� � Induction

�h��di�h�� � di
���h���t�� j� exp� $ �h��di�h�� � di

���h���t�� j� exp�
� � Def� ��

�h��di�h�� � di
���h���t�� j� exp� $ exp�

c 
t� h�� h� � h� ��h h� � ��h�� t� j� evexp � �h��di�h�� � di
���h���t�� j� evexp�

The proof proceeds by induction on structure of evexp�

� evexp � a��

�h�� t� j� a�
� � Def� ��

a�
� � Def� ��

�h��di�h�� � di
���h���t�� j� a�

� evexp � a��

�h�� t� j� a�
� � Def� ��

a�
� � Def� ��

�h��di�h�� � di
���h���t�� j� a�

���
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� evexp � i�

�h�� t� j� i
� � Def� ��

i
� � Def� ��

�h��di�h�� � di
���h���t�� j� i

� evexp � e�

�h�� t� j� e
� � Def� ��

e
� � Def� ��

�h��di�h�� � di
���h���t�� j� e

� evexp � ��

�h�� t� j� �
� � Def� ��

�
� � Def� ��

�h��di�h�� � di
���h���t�� j� �

� evexp � ��

�h�� t� j� �
� � Def� ��

�h��t����
� � h� � h� � di�h�� � di

���h��
�h��di�h�� � di

���h���t�����
� � Def� ��

�h��di�h�� � di
���h���t�� j� �

� evexp � ���

�h�� t� j� ��

� � Def� ��
lim
t�t�

�h��t�����

� � h� � h� � di�h�� � di
���h��

lim
t�t�

�h��di�h�� � di
���h���t������

� � t� � di�h�� � di
���h���t��

lim
di�h��	di

���h���t��t�

�h��t�����

� � Def� ��
�h��di�h�� � di

���h���t�� j� ��

���
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� evexp �&��
t � �

�h�� �� j�&�
� � Def� ��

�h�������
� � h� � h� � di�h�� � di

���h��
�h��di�h�� � di

���h���������
� � Def� ���di�h�� � di

���h����� � �
�h��di�h�� � di

���h������ j�&�

t � �

�h�� t� j�&�
� � Def� ��

lim
t��t

�h��t�����

� � h� � h� � di�h�� � di
���h��

lim
t��t

	h��di�h�� � di
���h���t������

� � t� � di�h�� � di
���h���t��

lim
t��di�h��	di

���h���t�
�h��t�����

� � Def� ��
�h��di�h�� � di

���h���t�� j�&�

d 
t� h�� h� � h� ��h h� � ��h�� t� j� p i� �h��di�h�� � di
���h���t�� j� p�

The proof prooceeds by induction on structure of p�

� p � true�

�h�� t� j� true
� � Def� ��

true
� � Def� ��

�h��di�h�� � di
���h���t�� j� true

� p � �exp� � exp���

�h�� t� j� exp� � exp�
� � Def� ��

�h�� t� j� exp� � �h�� t� j� exp�
� � Theorem �b

�h��di�h�� � di
���h���t�� j� exp� � �h��di�h�� � di

���h���t�� j� exp�
� � Def� ��

�h��di�h�� � di
���h���t�� j� exp� � exp�

��	
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� p � �exp� � exp���

�h�� t� j� exp� � exp�
� � Def� ��

�h�� t� j� exp� ���h�� t� j� exp�
� � Theorem �b

�h��di�h�� � di
���h���t�� j� exp� � �h��di�h�� � di

���h���t�� j� exp�
� � Def� ��

�h��di�h�� � di
���h���t�� j� exp� � exp�

� p � �evexp� � evexp���

�h�� t� j� evexp� � evexp�
� � Def� ��

�h�� t� j� evexp� � �h�� t� j� evexp�
� � Theorem �c

�h��di�h�� � di
���h���t�� j� evexp� � �h��di�h�� � di

���h���t�� j� evexp�
� � Def� ��

�h��di�h�� � di
���h���t�� j� evexp� � evexp�

� p � �p��

�h�� t� j� �p�
� � Def� ��

not �h�� t� j� p�
� � Induction

not �h��di�h�� � di
���h���t�� j� p�

� � Def� ��
�h��di�h�� � di

���h���t�� j� �p�

� p � p� � p��

�h�� t� j� p� � p�
� � Def� ��

�h�� t� j� p� or �h�� t� j� p�
� � Induction

�h��di�h�� � di
���h���t�� j� p� or �h��di�h�� � di

���h���t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� p� � p�

���
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� p � p� bU p��

�h�� t� j� p� bU p�
� � Def� ��

�t� � t � �h�� t�� j� p� and 
t� � �t� t�� � �h�� t�� j� p�
� � Induction

�t� � t � �h��di�h�� � di
���h���t��� j� p�

and 
t� � �t� t�� � �h��di�h�� � di
���h���t��� j� p�

� � t� � di�h�� � di
���h���t��� t� � di�h�� � di

���h���t��
�t� � di�h�� � di

���h���t� � �h�� t�� j� p�
and 
t� � �di�h�� � di

���h���t�� t�� � �h�� t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� p� bU p�

� p � p� bS p��

�h�� t� j� p� bS p�
� � Def� ��

�t� � t � �h�� t�� j� p� and 
t� � �t�� t� � �h�� t�� j� p�
� � Induction

�t� � t � �h��di�h�� � di
���h���t��� j� p�

and 
t� � �t�� t� � �h��di�h�� � di
���h���t��� j� p�

� � t� � di�h�� � di
���h���t��� t� � di�h�� � di

���h���t��
�t� � di�h�� � di

���h���t�� � �h�� t�� j� p�
and 
t� � �t��di�h�� � di

���h���t�� � �h�� t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� p� bS p�

� p � �x�p��

�h�� t� j� �x�p�
� � Def� ��

�h� � h� x�variant of h� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h��
�h� � h� x�variant of h� � di�h�� � di

���h�� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h���
h� x�variant of h� � di�h�� � di

���h��
� h� � di�h�� � di

���h�� x�variant of h�
�h� � h� x�variant of h� � �h��di�h�� � di

���h���t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� �x�p�

���
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� p � ���p��

�h�� t� j� ���p�
� � Def� ��

�h� � h� ��variant of h� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h��
�h� � h� ��variant of h� � di�h�� � di

���h�� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h���
h� ��variant of h� � di�h�� � di

���h��
� h� � di�h�� � di

���h�� ��variant of h�
�h� � h� ��variant of h� � �h��di�h�� � di

���h���t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� ���p�

� p � �n�p��

�h�� t� j� �n�p�
� � Def� ��

�h� � h� n�variant of h� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h��
�h� � h� n�variant of h� � di�h�� � di

���h�� � �h�� t� j� p�
� � h� � h� � di�h�� � di

���h���
h� n�variant of h� � di�h�� � di

���h��
� h� � di�h�� � di

���h�� ��variant of h�
�h� � h� n�variant of h� � �h��di�h�� � di

���h���t�� j� p�
� � Def� ��

�h��di�h�� � di
���h���t�� j� �n�p�

A�� Proof of Lemma �

Lemma �
Let exp� be an expression� exp be a state expression� w � V � X� rexp be a state rigid
expression� n � R� evexp� an event expression� evexp a state event expression� � � E� and
p a temporal formula� Then the following holds�

a �h� t� j� exp� 	exp�w� � ��h � w� exp�� t� j� exp�
b �h� t� j� exp� 	rexp�n� � ��h � n� rexp�� t� j� exp�
c �h� t� j� evexp� 	evexp��� � ��h � �� evexp�� t� j� evexp�
d �h� t� j� p 	exp�w� i� ��h � w� exp�� t� j� p
e �h� t� j� p 	rexp�n� i� ��h � n� rexp�� t� j� p
f �h� t� j� p 	evexp��� i� ��h � �� evexp�� t� j� p

Proof ��

a �h� t� j� exp� 	exp�w� � ��h � w� exp�� t� j� exp�

Proof by induction on the structure of exp��

���
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� exp� � rexp�

�h� t� j� rexp 	exp�w�
� � Def� ��

�h� t� j� rexp
� � Def� ��� w �� varrexp

��h � w� exp�� t� j� rexp

� exp� � v�
v � w

�h� t� j� v 	exp�w�
� � Def� ��

�h� t� j� exp
� � Def� ��

��h � w� exp�� t� j� v

v �� w

�h� t� j� v 	exp�w�
� � Def� ��

�h� t� j� v
� � Def� ��

��h � w� exp�� t� j� v

� exp� � v��
v � w

�h� t� j� v� 	exp�w�
� � Def� ��

�h� t� j� exp�

� � Def� ��
��h � w� exp�� t� j� v�

v �� w

�h� t� j� v� 	exp�w�
� � Def� ��

�h� t� j� v�

� � Def� ��
��h � w� exp�� t� j� v�

� exp� �&v�
v � w

�h� t� j�&v 	exp�w�
� � Def� ��

�h� t� j�&exp
� � Def� ��

��h � w� exp�� t� j�&v

���
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v �� w

�h� t� j�&v 	exp�w�
� � Def� ��

�h� t� j�&v
� � Def� ��

��h � w� exp�� t� j�&v

� exp� � x�
x � w

�h� t� j� x 	exp�w�
� � Def� ��

�h� t� j� exp
� � Def� ��

��h � w� exp�� t� j� x

x �� w

�h� t� j� x 	exp�w�
� � Def� ��

�h� t� j� x
� � Def� ��

��h � w� exp�� t� j� x

� exp� � x��
x � w

�h� t� j� x� 	exp�w�
� � Def� ��

�h� t� j� exp�

� � Def� ��
��h � w� exp�� t� j� x�

x �� w

�h� t� j� x� 	exp�w�
� � Def� ��

�h� t� j� x�

� � Def� ��
��h � w� exp�� t� j� x�

� exp� �&x�
x � w

�h� t� j�&x 	exp�w�
� � Def� ��

�h� t� j�&exp
� � Def� ��

��h � w� exp�� t� j�&x

���



Proofs of Dense Model Theorems

x �� w

�h� t� j�&x 	exp�w�
� � Def� ��

�h� t� j� x
� � Def� ��

��h � w� exp�� t� j�&x

� exp� � exp� $ exp�

�h� t� j� �exp� $ exp�� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� $ exp� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� $ �h� t� j� exp� 	exp�w�
� � Induction

��h � w� exp�� t� j� exp� $ ��h � w� exp�� t� j� exp�
� � Def� ��

��h � w� exp�� t� j� exp� $ exp�

b �h� t� j� exp� 	rexp�n� � ��h � n� rexp�� t� j� exp�

Proof by induction on structure of exp�

� exp� � ��

�h� t� j� � 	rexp�n�
� � Def� ��

�h� t� j� �
� � Def� �� and ��

��h � n� rexp�� t� j� �

� exp� � n��
n� � n

�h� t� j� n� 	rexp�n�
� � Def� ��

�h� t� j� rexp
� � Def� ��

��h � n� rexp�� t� j� n�

n� �� n

�h� t� j� n� 	rexp�n�
� � Def� ��

�h� t� j� n�
� � Def� ��

��h � n� rexp�� t� j� n�

���



A�� Proof of Lemma �

� exp� � n���
n� � n

�h� t� j� n�� 	rexp�n�
� � Def� ��

�h� t� j� rexp�

� � Def� ��
��h � n� rexp�� t� j� n��

n� �� n

�h� t� j� n�� 	rexp�n�
� � Def� ��

�h� t� j� n��
� � Def� ��

��h � n� rexp�� t� j� n��

� exp� �&n��
n� � n

�h� t� j�&n� 	rexp�n�
� � Def� ��

�h� t� j�&rexp
� � Def� ��

��h � n� rexp�� t� j�&n�

n� �� n

�h� t� j�&n� 	rexp�n�
� � Def� ��

�h� t� j�&n�
� � Def� ��

��h � n� rexp�� t� j�&n�

� exp� � w�

�h� t� j� w 	rexp�n�
� � Def� ��

�h� t� j� w
� � Def� ��

��h � n� rexp�� t� j� w

� exp� � w��

�h� t� j� w� 	rexp�n�
� � Def� ��

�h� t� j� w�

� � Def� ��
��h � n� rexp�� t� j� w�

���



Proofs of Dense Model Theorems

� exp� �&w�

�h� t� j�&w 	rexp�n�
� � Def� ��

�h� t� j�&w
� � Def� ��

��h � n� rexp�� t� j�&w

� exp� � exp� $ exp�

�h� t� j� �exp� $ exp�� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� $ exp� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� $ �h� t� j� exp� 	rexp�n�
� � Induction

��h � n� rexp�� t� j� exp� $ ��h � n� rexp�� t� j� exp�
� � Def� ��

��h � n� rexp�� t� j� exp� $ exp�

c �h� t� j� evexp� 	evexp��� � ��h � �� evexp�� t� j� evexp�

Proof by induction on structure of evexp��

� evexp� � ��

�h� t� j� � 	evexp���
� � Def� ��

�h� t� j� �
� � Def� �� and ��

��h � �� evexp�� t� j� �

� evexp� � a��

�h� t� j� a� 	evexp���
� � Def� ��

�h� t� j� a�
� � Def� �� and ��

��h � �� evexp�� t� j� a�

� evexp� � a��

�h� t� j� a� 	evexp���
� � Def� ��

�h� t� j� a�
� � Def� �� and ��

��h � �� evexp�� t� j� a�

���



A�� Proof of Lemma �

� evexp� � i�

�h� t� j� i 	evexp���
� � Def� ��

�h� t� j� i
� � Def� �� and ��

��h � �� evexp�� t� j� i

� evexp� � e�

�h� t� j� e 	evexp���
� � Def� ��

�h� t� j� e
� � Def� �� and ��

��h � �� evexp�� t� j� e

� evexp� � ���
�� � �

�h� t� j� �� 	evexp���
� � Def� ��

�h� t� j� evexp
� � Def� ��

��h � �� evexp�� t� j� ��

�� �� �

�h� t� j� �� 	evexp���
� � Def� ��

�h� t� j� ��
� � Def� ��

��h � �� evexp�� t� j� ��

� evexp� � ����
�� � �

�h� t� j� ��� 	evexp���
� � Def� ��

�h� t� j� evexp�

� � Def� ��
��h � �� evexp�� t� j� ���

�� �� �

�h� t� j� ��� 	evexp���
� � Def� ��

�h� t� j� ���
� � Def� ��

��h � �� evexp�� t� j� ���

���



Proofs of Dense Model Theorems

� evexp� �&���
�� � �

�h� t� j�&�� 	evexp���
� � Def� ��

�h� t� j�&evexp
� � Def� ��

��h � �� evexp�� t� j�&��

�� �� �

�h� t� j�&�� 	evexp���
� � Def� ��

�h� t� j� ��
� � Def� ��

��h � �� evexp�� t� j�&��

d �h� t� j� p 	exp�w� i� ��h � w� exp�� t� j� p

Proof by induction on structure of p�

� p � true�

�h� t� j� true 	exp�w�
� � Def� ��

�h� t� j� true
� � Def� ��

��h � w� exp�� t� j� true

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� � exp� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� � �h� t� j� exp� 	exp�w�
� � Lemma �a

��h � w� exp�� t� j� exp� � ��h � w� exp�� t� j� exp�
� � Def� ��

��h � w� exp�� t� j� exp� � exp�

��	



A�� Proof of Lemma �

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� � exp� 	exp�w�
� � Def� ��

�h� t� j� exp� 	exp�w� � �h� t� j� exp� 	exp�w�
� � Lemma refsu�lea

��h � w� exp�� t� j� exp� � ��h � w� exp�� t� j� exp�
� � Def� ��

��h � w� exp�� t� j� exp� � exp�

� p � �evexp� � evexp���

�h� t� j� �evexp� � evexp�� 	exp�w�
� � Def� ��

�h� t� j� evexp� � evexp�
� � Def� ��

�h� t� j� evexp� � �h� t� j� evexp�
� � Def� ��

��h � w� exp�� t� j� evexp� � ��h � w� exp�� t� j� evexp�
� � Def� ��

��h � w� exp�� t� j� evexp� � evexp�

� p � �p��

�h� t� j� ��p�� 	exp�w�
� � Def� ��

�h� t� j� ��p� 	exp�w��
� � Def� ��

not �h� t� j� p� 	exp�w�
� � Induction

not ��h � w� exp�� t� j� p�
� � Def� ��

��h � w� exp�� t� j� �p�

� p � p� � p��

�h� t� j� �p� � p�� 	exp�w�
� � Def� ��

�h� t� j� �p� 	exp�w� � p� 	exp�w��
� � Def� ��

�h� t� j� p� 	exp�w� or �h� t� j� p� 	exp�w�
� � Induction

��h � w� exp�� t� j� p� or ��h � w� exp�� t� j� p�
� � Def� ��

��h � w� exp�� t� j� p� � p�

���



Proofs of Dense Model Theorems

� p � p� bU p��

�h� t� j� �p� bU p�� 	exp�w�
� � Def� ��

�h� t� j� �p� 	exp�w� bU p� 	exp�w��
� � Def� ��

�t� � t � �h� t�� j� p� 	exp�w� and 
t� � �t� t�� � �h� t�� j� p� 	exp�w�
� � Induction

�t� � t � ��h � w� exp�� t�� j� p�
and 
t� � �t� t�� � ��h � w� exp�� t�� j� p�

� � Def� ��

��h � w� exp�� t� j� p� bU p�

� p � p� bS p��

�h� t� j� �p� bS p�� 	exp�w�
� � Def� ��

�h� t� j� �p� 	exp�w� bS p� 	exp�w��
� � Def� ��

�t� � t � �h� t�� j� p� 	exp�w� and 
t� � �t�� t� � �h� t�� j� p� 	exp�w�
� � Induction

�t� � t � ��h � w� exp�� t�� j� p�
and 
t� � �t�� t� � ��h � w� exp�� t�� j� p�

� � Def� ��

��h � w� exp�� t� j� p� bS p�

� p � �x�p� for x �� var�exp� � fwg�

�h� t� j� ��x�p�� 	exp�w�
� � Def� ��

�h� t� j� �x��p� 	exp�w��
� � Def� ��

�h� � h� x�variant of h and �h�� t� j� p� 	exp�w�
� � Induction

�h� � h� x�variant of h and ��h� � w� exp�� t� j� p�
� � h� � �h� � w� exp�� h� � �h � w� exp�

h� x�variant of h iff h� x�variant of h�
�h� � h� x�variant of h� and �h�� t� j� p�

� � Def� ��
��h � w� exp�� t� j� �x�p�

���



A�� Proof of Lemma �

� p � ���p��

�h� t� j� ����p�� 	exp�w�
� � Def� ��

�h� t� j� ����p� 	exp�w��
� � Def� ��

�h� � h� ��variant of h and �h�� t� j� p� 	exp�w�
� � Induction

�h� � h� ��variant of h and ��h� � w� exp�� t� j� p�
� � h� � �h� � w� exp�� h� � �h � w� exp�

h� ��variant of h iff h� ��variant of h�
�h� � h� ��variant of h� and �h�� t� j� p�

� � Def� ��
��h � w� exp�� t� j� ���p�

� p � �n�p��

�h� t� j� ��n�p�� 	exp�w�
� � Def� ��

�h� t� j� �n��p� 	exp�w��
� � Def� ��

�h� � h� n�variant of h and �h�� t� j� p� 	exp�w�
� � Induction

�h� � h� n�variant of h and ��h� � w� exp�� t� j� p�
� � h� � �h� � w� exp�� h� � �h � w� exp�

h� n�variant of h iff h� n�variant of h�
�h� � h� n�variant of h� and �h�� t� j� p�

� � Def� ��
��h � w� exp�� t� j� �n�p�

e �h� t� j� p 	rexp�n� i� ��h � n� rexp�� t� j� p

Proof by induction on structure of p�

� p � true�

�h� t� j� true 	rexp�n�
� � Def� ��

�h� t� j� true
� � Def� ��

��h � n� rexp�� t� j� true

���



Proofs of Dense Model Theorems

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� � exp� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� � �h� t� j� exp� 	rexp�n�
� � Lemma �b

��h � n� rexp�� t� j� exp� � ��h � n� rexp�� t� j� exp�
� � Def� ��

��h � n� rexp�� t� j� exp� � exp�

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� � exp� 	rexp�n�
� � Def� ��

�h� t� j� exp� 	rexp�n� � �h� t� j� exp� 	rexp�n�
� � Lemma �b

��h � n� rexp�� t� j� exp� � ��h � n� rexp�� t� j� exp�
� � Def� ��

��h � n� rexp�� t� j� exp� � exp�

� p � �evexp� � evexp���

�h� t� j� �evexp� � evexp�� 	rexp�n�
� � Def� ��

�h� t� j� evexp� � evexp�
� � Def� ��

�h� t� j� evexp� � �h� t� j� evexp�
� � Def� ��

��h � n� rexp�� t� j� evexp� � ��h � n� rexp�� t� j� evexp�
� � Def� ��

��h � n� rexp�� t� j� evexp� � evexp�

� p � �p��

�h� t� j� ��p�� 	rexp�n�
� � Def� ��

�h� t� j� ��p� 	rexp�n��
� � Def� ��

not �h� t� j� p� 	rexp�n�
� � Induction

not ��h � n� rexp�� t� j� p�
� � Def� ��

��h � n� rexp�� t� j� �p�

�	�



A�� Proof of Lemma �

� p � p� � p��

�h� t� j� �p� � p�� 	rexp�n�
� � Def� ��

�h� t� j� �p� 	rexp�n� � p� 	rexp�n��
� � Def� ��

�h� t� j� p� 	rexp�n� or �h� t� j� p� 	rexp�n�
� � Induction

��h � n� rexp�� t� j� p� or ��h � n� rexp�� t� j� p�
� � Def� ��

��h � n� rexp�� t� j� p� � p�

� p � p� bU p��

�h� t� j� �p� bU p�� 	rexp�n�
� � Def� ��

�h� t� j� �p� 	rexp�n� bU p� 	rexp�n��
� � Def� ��

�t� � t � �h� t�� j� p� 	rexp�n� and 
t� � �t� t�� � �h� t�� j� p� 	rexp�n�
� � Induction

�t� � t � ��h � n� rexp�� t�� j� p�
and 
t� � �t� t�� � ��h � n� rexp�� t�� j� p�

� � Def� ��

��h � n� rexp�� t� j� p� bU p�

� p � p� bS p��

�h� t� j� �p� bS p�� 	rexp�n�
� � Def� ��

�h� t� j� �p� 	rexp�n� bS p� 	rexp�n��
� � Def� ��

�t� � t � �h� t�� j� p� 	rexp�n� and 
t� � �t�� t� � �h� t�� j� p� 	rexp�n�
� � Induction

�t� � t � ��h � n� rexp�� t�� j� p�
and 
t� � �t�� t� � ��h � n� rexp�� t�� j� p�

� � Def� ��

��h � n� rexp�� t� j� p� bS p�

�	�



Proofs of Dense Model Theorems

� p � �x�p� �

�h� t� j� ��x�p�� 	rexp�n�
� � Def� ��

�h� t� j� �x��p� 	rexp�n��
� � Def� ��

�h� � h� x�variant of h and �h�� t� j� p� 	rexp�n�
� � Induction

�h� � h� x�variant of h and ��h� � n� rexp�� t� j� p�
� � h� � �h� � n� rexp�� h� � �h � n� rexp�

h� x�variant of h iff h� x�variant of h�
�h� � h� x�variant of h� and �h�� t� j� p�

� � Def� ��
��h � n� rexp�� t� j� �x�p�

� p � ���p��

�h� t� j� ����p�� 	rexp�n�
� � Def� ��

�h� t� j� ����p� 	rexp�n��
� � Def� ��

�h� � h� ��variant of h and �h�� t� j� p� 	rexp�n�
� � Induction

�h� � h� ��variant of h and ��h� � n� rexp�� t� j� p�
� � h� � �h� � n� rexp�� h� � �h � n� rexp�

h� ��variant of h iff h� ��variant of h�
�h� � h� ��variant of h� and �h�� t� j� p�

� � Def� ��
��h � n� rexp�� t� j� ���p�

� p � �n��p�� for n� �� varrexp � fng

�h� t� j� ��n��p�� 	rexp�n�
� � Def� ��

�h� t� j� �n���p� 	rexp�n��
� � Def� ��

�h� � h� n��variant of h and �h�� t� j� p� 	rexp�n�
� � Induction

�h� � h� n��variant of h and ��h� � n� rexp�� t� j� p�
� � h� � �h� � n� rexp�� h� � �h � n� rexp�

h� n��variant of h iff h� n��variant of h�
�h� � h� n��variant of h� and �h�� t� j� p�

� � Def� ��
��h � n� rexp�� t� j� �n��p�

�	�



A�� Proof of Lemma �

f h� t� j� p 	evexp��� i� ��h � �� evexp�� t� j� p

Proof by induction on structure of p�

� p � true�

�h� t� j� true 	evexp���
� � Def� ��

�h� t� j� true
� � Def� ��

��h � �� evexp�� t� j� true

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	evexp���
� � Def� ��

�h� t� j� exp� � exp�
� � Def� ��

�h� t� j� exp� � �h� t� j� exp�
� � Def� ��

��h � �� evexp�� t� j� exp� � ��h � �� evexp�� t� j� exp�
� � Def� ��

��h � �� evexp�� t� j� exp� � exp�

� p � �exp� � exp���

�h� t� j� �exp� � exp�� 	evexp���
� � Def� ��

�h� t� j� exp� � exp�
� � Def� ��

�h� t� j� exp� � �h� t� j� exp�
� � Def� ��

��h � �� evexp�� t� j� exp� � ��h � �� evexp�� t� j� exp�
� � Def� ��

��h � �� evexp�� t� j� exp� � exp�

� p � �evexp� � evexp���

�h� t� j� �evexp� � evexp�� 	evexp���
� � Def� ��

�h� t� j� evexp� 	evexp���� � evexp� 	evexp����
� � Def� ��

�h� t� j� evexp� 	evexp���� � �h� t� j� evexp� 	evexp����
� � Lemma �c

��h � �� evexp�� t� j� evexp� � ��h � �� evexp�� t� j� evexp�
� � Def� ��

��h � �� evexp�� t� j� evexp� � evexp�

�	�



Proofs of Dense Model Theorems

� p � �p��

�h� t� j� ��p�� 	evexp���
� � Def� ��

�h� t� j� ��p� 	evexp����
� � Def� ��

not �h� t� j� p� 	evexp���
� � Induction

not ��h � �� evexp�� t� j� p�
� � Def� ��

��h � �� evexp�� t� j� �p�

� p � p� � p��

�h� t� j� �p� � p�� 	evexp���
� � Def� ��

�h� t� j� �p� 	evexp���� p� 	evexp����
� � Def� ��

�h� t� j� p� 	evexp��� or �h� t� j� p� 	evexp���
� � Induction

��h � �� evexp�� t� j� p� or ��h � �� evexp�� t� j� p�
� � Def� ��

��h � �� evexp�� t� j� p� � p�

� p � p� bU p��

�h� t� j� �p� bU p�� 	evexp���
� � Def� ��

�h� t� j� �p� 	evexp��� bU p� 	evexp����
� � Def� ��

�t� � t � �h� t�� j� p� 	evexp��� and 
t� � �t� t�� � �h� t�� j� p� 	evexp���
� � Induction

�t� � t � ��h � �� evexp�� t�� j� p�
and 
t� � �t� t�� � ��h � �� evexp�� t�� j� p�

� � Def� ��

��h � �� evexp�� t� j� p� bU p�

�	�



A�� Proof of Lemma �

� p � p� bS p��

�h� t� j� �p� bS p�� 	evexp���
� � Def� ��

�h� t� j� �p� 	evexp��� bS p� 	evexp����
� � Def� ��

�t� � t � �h� t�� j� p� 	evexp��� and 
t� � �t�� t� � �h� t�� j� p� 	evexp���
� � Induction

�t� � t � ��h � �� evexp�� t�� j� p�
and 
t� � �t�� t� � ��h � �� evexp�� t�� j� p�

� � Def� ��

��h � �� evexp�� t� j� p� bS p�

� p � �x�p� �

�h� t� j� ��x�p�� 	evexp���
� � Def� ��

�h� t� j� �x��p� 	evexp����
� � Def� ��

�h� � h� x�variant of h and �h�� t� j� p� 	evexp���
� � Induction

�h� � h� x�variant of h and ��h� � �� evexp�� t� j� p�
� � h� � �h� � �� evexp�� h� � �h � �� evexp�

h� x�variant of h iff h� x�variant of h�
�h� � h� x�variant of h� and �h�� t� j� p�

� � Def� ��
��h � �� evexp�� t� j� �x�p�

� p � ����p�� for �� �� evar�evexp�� f�g�

�h� t� j� �����p�� 	evexp���
� � Def� ��

�h� t� j� �����p� 	evexp����
� � Def� ��

�h� � h� ���variant of h and �h�� t� j� p� 	evexp���
� � Induction

�h� � h� ���variant of h and ��h� � �� evexp�� t� j� p�
� � h� � �h� � �� evexp�� h� � �h � �� evexp�

h� ���variant of h iff h� ���variant of h�
�h� � h� ���variant of h� and �h�� t� j� p�

� � Def� ��
��h � �� evexp�� t� j� ����p�

�	�
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� p � �n��p��

�h� t� j� ��n�p�� 	evexp���
� � Def� ��

�h� t� j� �n��p� 	evexp����
� � Def� ��

�h� � h� n�variant of h and �h�� t� j� p� 	evexp���
� � Induction

�h� � h� n�variant of h and ��h� � �� evexp�� t� j� p�
� � h� � �h� � �� evexp�� h� � �h � �� evexp�

h� n�variant of h iff h� n�variant of h�
�h� � h� n�variant of h� and �h�� t� j� p�

� � Def� ��
��h � �� evexp�� t� j� �n�p�

A�� Proof of Lemma �

Lemma �
Given a machine in DTL �B� I��T� then there exists a semantic machine M � �B� I� T �
such that Comp�M� � Hist�I ��T��

Proof �
Let I

M
� f� �  j �h � � � 	h��� � h j� Ig and

let T
M
� fh�� ��� ��i � �� � j �h � �t � Steph�t� � h�� ��� ��i�Steph�t� �� STU �h j� �Tg

then Hist�I ��T� � Comp�M�� Proof�

Hist�I ��T�
� � Def� ��

fh � H j h j� I ��Tg
� � Def� ��

fh � H j h j� I � 
t � �h� t� j� Tg
� � Def� ��� def� of I and T

fh � H j 	h��� � I � 
t � Steph�t� � STU � Steph�t� � Tg
� � Def� ��

Comp�M�

A�� Proof of Lemma �

Lemma �
Given DTL machine speci	cation of a system �B� I��T�L� then there exists a semantic
machine speci	cation S � �B�Comp�M��L� such that Comp�M��L � Hist�I��T�L��

Proof ��
Let I

M
� f� �  j �h � � � 	h��� � h j� Ig and

let T
M
� fh�� ��� ��i � �� � j �h � �t � Steph�t� � h�� ��� ��i�Steph�t� �� STU �h j� �Tg

�		



A�� Proof of Lemma �

and
let L

M
� Hist�L� then Hist�I��T � L� � Comp�M� � L� Because of machine closedness

cl�Comp�M� �Hist�L�� � Comp�M�� Proof�

Hist�I ��T � L�
� � Def� ��

fh � H j h j� I ��Tg �Hist�L�
� � Def� ��

fh � H j h j� I � 
t � �h� t� j� Tg �Hist�L�
� � Def� ��� def� of I� T and L

fh � H j 	h��� � I � 
t � Steph�t� � STU � Steph�t� � Tg � L
� � Def� ��

Comp�M� � L

A�
 Proof of Lemma �

Lemma 	 �Properties of O and
N
�

Given systems �B��H��� �B��H��� �B��H�� and �B��H�� then

�a� H� � H� implies H�
N
H� � H�

N
H�

�b� OX��
�H�

N
H�� � OX�

�H��
N
OX�

�H��
�c� H� � H� implies OX�

�H�� � OX�
�H��

�d� �H� �H��
N
�H� �H�� � �H�

N
H�� � �H�

N
H��

Proof ��

�a� H� � H� implies H�
N
H� � H�

N
H�

h � H�
N
H�

� � Def� ��
�h� � H�� h� � H��� �h� h�� h��

� � H� � H�

�h� � H�� h� � H��� �h� h�� h��
� � Def� ��

h � H�
N
H�

�b� OX��
�H�

N
H�� � OX�

�H��
N
OX�

�H��

�	�
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h � OX��
�H�

N
H��

� � Def� ��
�h� � H�

N
H� � h X� �X��variant of h�

� � Def� ��
�h�� h�� h� � h� � Obs� � h� � Obs� � ��h�� h�� h��
�h X� �X��variant of h�

� � � � ��� �� � ��� �	 � ��

	j��V�X�n�X��X��
� 	�j

�
�V�X�n�X��X��

�

	�j��V�X�nX�
� 	�j��V�X�nX�

�

		j��V�X�nX�
� 	�j��V�X�nX�

	� � 	� � 	�� 	 � 	� � 		
�h�� h�� h�� h	 � h� � H� � h� � H� � ��h� h�� h	�
h� X��variant of h� � h	 X��variant of h�

� � Def� ��
�h� � OX�

�H��� h	 � OX�
�H�� � ��h� h�� h	�

� � Def� ��
h � OX�

�H��
N
OX�

�H��

�c� H� � H� implies OX�
�H�� � OX�

�H��

h � OX�
�H��

� � Def� ��
�h� � h� � H� � h X��variant of h�

� � H� � H�

�h� � h� � H� � h X��variant of h�
� � Def� ��

h � OX�
�H��

�d� �H� �H��
N
�H� �H�� � �H�

N
H�� � �H�

N
H��

h � �H� �H��
N
�H� � H��

� � Def� ��
�h�� h� � h� � �H� �H�� � h� � �H� �H�� � ��h� h�� h��

� � Calculus
�h�� h� � h� � H� � h� � H� � ��h� h�� h��
��h�� h� � h� � H� � h� � H� � ��h� h�� h��

� � Def� ��
h � H�

N
H� � h � H�

N
H�

A�� Proof of Theorem �

Theorem � �Compositional re�nement�
Given concrete systems Si � �Bi�Hi� �i � �� �� and abstract systems Sj � �Bj �Hj� �j �
�� �� such that O�B�� � O�B�� and O�B�� � O�B�� then S� ref S� and S� ref S� implies
S� k S� ref S� k S��

�	�



A�� Proof of Lemma 	

Proof ��

S� k S� ref S� k S�
� � Def� ��� ���O�B�� � O�B���O�B�� � O�B��

OX��
�H�

N
H�� � OX��

�H�
N
H��

� � Lemma ��b�
OX�

�H��
N
OX�

�H�� � OX�
�H��

N
OX�

�H��
� � OX�

�H�� � OX�
�H�� with Lemma ��a� gives

OX�
�H��

N
OX�

�H�� � OX�
�H��

N
OX�

�H��
OX�

�H�� � OX�
�H�� with Lemma ��a� gives

OX�
�H��

N
OX�

�H�� � OX�
�H��

N
OX�

�H��
true

A�� Proof of Lemma �

Lemma 

Given DTL machine speci	cation S � �B� I � �T � L� then OX�Hist�I � �T � L�� �
Hist���X � �I ��T � L���

Proof ��

Hist���X � �I ��T � L���
� � Def� ��

fh j h j� ��X � �I ��T � L��g
� � Def� ��

fh j �h� � h� X�variant of h � h� j� I ��T � Lg
� � Def� ��

fh j �h� � h� X�variant of h � h� � Hist�I ��T � L�g
� � Def� ��

OX�Hist�I ��T � L��

A�� Proof of Theorem �

Theorem � �Re�nement of machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Ic ��Tc � Lc� where Bc

M
� �BP

c � �Vc�Xc��
and abstract machine speci	cation Sa

M
� �Ba� Ia ��Ta � La� where Ba

M
� �BP

a � �Va�Xa���
Then Sc re�nes Sa denoted Sc ref Sa i�

O�Bc� � O�Ba� and
��Xc � �Ic ��Tc � Lc�� � ��Xa � �Ia ��Ta � La��

�	�
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Proof ��

Sc ref Sa
� � Def� ��

O�Bc� � O�Ba�
OXc�Hist�Ic ��Tc � Lc�� � OXa�Hist�Ia ��Ta � La��

� � Lemma �
O�Bc� � O�Ba�
Hist���Xc � �Ic ��Tc � Lc��� � Hist���Xa � �Ia ��Ta � La���

� � Def� �� and ��
O�Bc� � O�Ba�
j� ��Xc � �Ic ��Tc � Lc��� ��Xa � �Ia ��Ta � La��

A��� Proof of Theorem �

Theorem 	 �Semantic merge is almost conjunction�
Given machine system speci	cations �Bi� Ii ��Ti � Li� where Bi

M
� ��Ini�Outi�� �Vi�Xi���

for i � �� � and composed machine system speci	cation as in de	nition ��� i�e�� �B�H�
where H

M
� ���� ���BA

�

�BA
�

��� ��� ��� � �I� � �T� � L�� 	����� � �I� ��T� � L�� 	����� and

B
M
� ��In� nOut� � In� nOut��Out� n In� �Out� n In��� �V� � V��X� �X��� then

Hist�I� ��T� � L��
O

Hist�I� ��T� � L�� � Hist�H�

Proof �	

h � Hist�H�
� � Def� ��

�h� � h�f��� ��g�variant of h�
h� j� BA

�

�BA
�

��� ��� ��� � �I� ��T� � L�� 	����� � �I� ��T� � L�� 	�����

� � Def� �� and ��
�h� � h�f��� ��g�variant of h�
h� j� BA

�

�BA
�

��� ��� ����

�h � �� ��� j� I� ��T� � L��
�h � �� ��� j� I� ��T� � L�

� � 	� � 	� h� � �h� � �� ���� h� � �h� � �� ����
���t���� � ��t����� ���t����� � ���t����� ���t����� � ���t����
i�e�� h�f��� ��g�variant of h � h� j� BA

�

�BA
�

��� ��� ��� i� � �h� h�� h��

�h�� h� � h� j� I� ��T� � L��
h� j� I� ��T� � L��
��h� h�� h��

� � Def� ��
h � Hist�I� ��T� � L��

N
Hist�I� ��T� � L��

���



A��� Proof of Theorem 	

A��� Proof of Theorem �

Theorem 

Given machine speci	cation S

M
� �B�H� and given set of shared variables V� � V then

EncV�
�Hist�H�� � Hist�H � �� � e� V�

� � V���

Proof �


h � EncV�
�Hist�H��

� � Def� ��
h � Hist�H� � 
t � ��t���� � e� 	�t�j�V�

� lim
t�t�

	�t��j
�
V�

� � Semantics� of �� � e� V�
� � V��

h � Hist�H� � h � Hist�� � e� V�
� � V��

� � Calculus
h � Hist�H � �� � e� V�

� � V���

A��� Proof of Lemma 


Lemma �
Given concrete system Sc

M
� �Bc�Hc� and abstract system Sa

M
� �Ba�Ha� s�t� O�Bc� �

O�Ba�� If there exists a re	nement mapping from Sc to Sa� then Sc ref Sa�

Proof ��

Sc ref Sa
� � Def� ��

O�Bc� � O�Ba� and
OXc�Hc� � OXa�Ha�

� � O�Bc� � O�Ba�
OXc�Hc� � OXa�Ha�

� � Def� ��� i�e� OXa�f�Hc�� � OXa�Ha��OXc�Hc� � OXa�f�Hc��
true

A��� Proof of Lemma �

Lemma �
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc� � Lc� and given abstract ma�

chine speci	cation Sa
M
� �Ba� Comp�Ma� � La� s�t� O�Bc� � O�Ba�� If there exists a

re	nement mapping from Sc to Sa then Sc ref Sa�

Proof ��
We 	rst prove the following result�

���
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For all hc � Comp�Mc�� there exists a ha � Comp�Ma� s�t� for all t � R��� h�c�t�� 	c�t�i �
h�a�t�� 	�t�ai and f�	c�t�� � 	a�t��

hc � Comp�Mc�
� � Def� ��

	c��� � Ic�

t � h�c�t�� 	c�t�� lim

t�t�
	c�t��i � Tc � ��c�t���� � f�� i� eg � 	c�t� � lim

t�t�
	c�t���

� � Def� ��
f�	c���� � Ia
�
t � h�a�t�� f�	c�t��� lim

t�t�
f�	c�t���i � Ta�

��a�t���� � f�� i� eg � f�	c�t�� � lim
t�t�

f�	c�t����

� � Def� ��
ha � Comp�Ma� � 
t � h�c�t�� 	c�t�i � h�a�t�� 	�t�ai � f�	c�t�� � 	a�t�

The proof of Lemma � is then as follows�

Sc ref Sa
� � Def� ��

O�Bc� � O�Ba� and
OXc�Comp�Mc� � Lc� � OXa�Comp�Ma� � La�

� � O�Bc� � O�Ba�
OXc�Comp�Mc� � Lc� � OXa�Comp�Ma� � La�

� � From Def� ��� f�Comp�Mc� � Lc� � La

Property of f� f�Comp�Mc� � Lc� � f�Comp�Mc���
by above result� f�Comp�Mc�� � Comp�Ma��
Resulting in � f�Comp�Mc� � Lc� � Comp�Ma� � La

From Lemma ��c��OXa�f�Comp�Mc� � Lc�� � OXa�Comp�Ma� � La��
From Def� ���OXc�Comp�Mc� � Lc� � OXa�f�Comp�Mc� � Lc��

true

A��� Proof of Theorem 


Theorem � �Compositional relative re�nement�
Given concrete systems Si � �Bi�Hi� �i � �� �� and given set Wc constraining B�� �the
basis of S� k S��� And given abstract systems Sj � �Bj�Hj� �j � �� �� and given set Wa

constraining B�� �the basis of S� k S��� Then the following holds�

H�
N
H� �Wc�

N
Wc� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

Wa�
N
Wa� �Wa

S� Wc�
ref Wa� S�

S� Wc�
ref Wa� S�

S� k S� Wcref
Wa S� k S�

Wci constraining Bi �i����
Waj constraining Bj �j�����

���



A��	 Proof of Lemma �

Proof �
Assume agreement on the bases� Then according to Def� �� and �� we must infer from the
assumptions that OX��

�H�
N
H� �Wc� � OX��

�H�
N
H� �Wa��

OX��
�H�

N
H� �Wc�

� � H�
N
H� �Wc�

N
Wc� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

Lemma ��c�
OX��

��H� �Wc��
N
�H� �Wc���

� � S� Wc�
ref Wa� S�

S� Wc�
ref Wa� S�

Lemma ��a�� �b�
OX��

��H� �Wa��
N
�H� �Wa���

� � Lemma ��c�� �d�
OX��

�H�
N
H� �Wa�

N
Wa��

� � Wa�
N
Wa� � Wa

Lemma ��c�
OX��

�H�
N
H� �Wa�

A��� Proof of Lemma �

Lemma 
Given systems Si � �Bi�Hi� and sets Wi constraining Bi �i � �� �� with no restrictions on
the event variables� Then the following holds�

�H� �W��
O
�H� �W�� � H�

O
H� �W�

O
W�

Proof ��
From Lemma ��d� we infer �H� � W��

N
�H� � W�� � H�

N
H� � W�

N
W� so we must

prove H�
N
H� �W�

N
W� � �H� �W��

N
�H� �W���

h � H�
N
H� �W�

N
W�

� � Def���
�h�� h� � h� � H� � h� � H� � ��h� h�� h��
��h�� h� � h� � W� � h� � W� � ��h� h�� h��

� � Wi puts no restriction on � variables� 	 � 	� � 	�
�h�� h� � h� � H� � h� � H� � ��h� h�� h��
�h � W� � h � W�

� � Calc�
�h�� h� � h� � H� � h� � H� � h � W� � h � W� � ��h� h�� h��

� � Wi puts no restriction on � variables� 	 � 	� � 	��
Wi constrains Bi

�h�� h� � h� � H� �W� � h� � H� �W� � ��h� h�� h��
� � Def� ��

h � �H� �W��
N
�H� �W��

���
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A��
 Proof of Lemma �

Lemma ��
Given concrete systems Si � �Bi�Hi� �i � �� �� and given set Wc constraining B��� And
given abstract systems Sj � �Bj �Hj� �j � �� �� and given set Wa constraining B�� without
restricting the � variables� Then the following holds�

H�
N
H� �Wc�

N
Wc� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

S� Wc�
ref Wa S�

S� Wc�
ref Wa S�

S� k S� Wcref
Wa S� k S�

Wci constraining Bi �i����

Proof ��
Assume agreement on the bases� Then according to Def� �� and �� we must infer from
the assumptions that OX��

�H�
N
H� �Wc� � OX��

�H�
N
H� �Wa�� We will 	rst prove the

following�

OX��
��H� �Wa�

O
�H� �Wa�� � OX��

�H�

O
H� �Wa�

h � OX��
��H� �Wa�

N
�H� �Wa��

� � Def� ��
�h� � h� � �H� �Wa�

N
�H� �Wa� � h X���variant of h�

� � Def� ��
�h� � ��h�� h� � h� � �H� �Wa� � h� � �H� �Wa� � ��h�� h�� h���
�h X���variant of h�

� � 	� � 	� � 	��Wa doesn
t restrict the � variables
�h� � ��h�� h� � h� � H� � h� � H� � h� � Wa � ��h�� h�� h���
�h X���variant of h�

� � Calc�
�h� � ��h�� h� � h� � H� � h� � H� � ��h�� h�� h���
�h� � Wa � h X���variant of h�

� � Def� ��
�h� � h� � H�

N
H� �Wa � h X���variant of h�

� � Def� ��
h � OX��

�H�
N
H� �Wa�

���



A��� Proof of Lemma ��

The proof of the Lemma is then as follows�

OX��
�H�

N
H� �Wc�

� � H�
N
H� �Wc�

N
Wc� � �H� �Wc��

N
�H� �Wc��

Wc � Wc�
N
Wc�

Lemma ��c�
OX��

��H� �Wc��
N
�H� �Wc���

� � S� Wc�
ref Wa S�

S� Wc�
ref Wa S�

Lemma ��a�� �b�
OX��

��H� �Wa�
N
�H� �Wa��

� � Above result
OX��

�H�
N
H� �Wa�

A��� Proof of Lemma ��

Lemma ��
Given sets Wi �i � �� �� not restricting the � variables then

W�

O
W� � W� �W��

Proof ��

h � W�
N
W�

� � Def� ��
�h�� h� � h� � W� � h� � W� � ��h� h�� h��

� � Wi don
t restrict � variables� i�e�
��h� h�� h��� h � h� � h�

�h�� h� � h� � W� � h� � W� � h � h� � h�
� � Calc�

h � W� �W�

A��� Proof of Theorem �

Theorem � �Relative re�nement of DTL machine speci�cations�
Given concrete machine speci	cation Sc

M
� �Bc� Ic � �Tc � Lc� and DTL formula Wc

over Bc and abstract machine speci	cation Sa
M
� �Ba� Ia ��Ta � La� and DTL formula

Wa over Ba� Let Gc
M
� Ic � �Tc � Lc � Wc and Ga

M
� Ia � �Ta � La � Wa� Then

Sc Hist�Wc�ref
Hist�Wa� Sa i�

O�Bc� � O�Ba� and
j� ��Xc � �Gc��� ��Xa � �Ga��

���



Proofs of Dense Model Theorems

Proof ��

Sc Hist�Wc�ref
Hist�Wa� Sa

� � Def� �

O�Bc� � O�Ba�
OXc�Hist�Ic ��Tc � Lc� �Hist�Wc��
� OXa�Hist�Ia ��Ta � La� �Hist�Wa��

� � Def� �� and ��
O�Bc� � O�Ba�
OXc�Hist�Ic ��Tc � Lc �Wc�� � OXa�Hist�Ia ��Ta � La �Wa��

� � Theorem �
O�Bc� � O�Ba�
j� ��Xc � �Ic ��Tc � Lc �Wc��� ��Xa � �Ia ��Ta � La �Wa��

A�� Proof of Theorem �

Theorem  �Relative composition corresponds to semantic merge�
Given machine system speci	cations �Bi� Ii ��Ti � Li� where Bi

M
� ��Ini�Outi�� �Vi�Xi���

and given DTL formulae Wi over Bi for i � �� � and let W
M
� �Hist�Wc��Hist�Wa�� and

given the relative composed system as in Def� ��� i�e�� �B�H� where B
M
� ��In� n Out� �

In� nOut��Out� n In��Out� n In��� �V��V��X��X��� and H
M
� ���� ����BA

�

�BA
�

��� ��� ����

�I� ��T� � L� �W�� 	����� � �I� ��T� � L� �W�� 	������ then

Hist�I� ��T� � L�� W�	
����Hist�I� ��T� � L�� � Hist�H�

Proof ��

Hist�I� ��T� � L�� W�	
����Hist�I� ��T� � L��
� � Def� ��

�Hist�I� ��T� � L�� �Hist�W���
N
�Hist�I� ��T� � L�� �Hist�W���

� � Def� �� and ��
�Hist�I� ��T� � L� �W���

N
�Hist�I� ��T� � L� �W���

� � Theorem �� def� of H
Hist�H�

A��� Proof of Lemma ��

Lemma ��
Given machines M

M
� �B� I� T � and M�

M
� �B� I�� T��� De	ne machine M� as �B� I�� T�

where I� and T� are as follows�

� I�
M
� I � I�� and

� T�
M
� T � T��

Then Comp�M�� � Comp�M� � Comp�M���

��	



A��� Proof of Lemma ��

Proof �	

h � Comp�M� � Comp�M��
� � Def� ��

	��� � I � 	��� � I�
�
t � Steph � T � Steph � STU� � �
t � Steph � T� � Steph � STU�

� � Calculus
	��� � I � I�

t � Steph � T � T� � Steph � STU

� � Def� ��
h � Comp�M��

A��� Proof of Lemma ��

Lemma ��
Given concrete machine speci	cation Sc

M
� �Bc� Comp�Mc��Lc� and set Wc � Comp�Mc��

�Lc�� and given abstract machine speci	cation Sa
M
� �Ba� Comp�Ma� � La� and set Wa �

Comp�Ma�� � La� s�t� O�Bc� � O�Ba�� If there exists a relative re	nement mapping from
Sc to Sa then Sc Wcref

Wa Sa�

Proof �

We 	rst prove the following result�
For all hc � Comp�Mc� � Comp�Mc��� there exists a ha � Comp�Ma� � Comp�Ma�� s�t�
for all t � R��� h�c�t�� 	c�t�i � h�a�t�� 	�t�ai and f�	c�t�� � 	a�t��

hc � Comp�Mc� � Comp�Mc��
� � Def� ��

	c��� � Ic � Ic��

t � h�c�t�� 	c�t�� lim

t�t�
	c�t��i � Tc � Tc� � ��c�t���� � f�� i� eg � 	c�t� � lim

t�t�
	c�t���

� � Def� ��
f�	c���� � Ia � Ia�
�
t � h�a�t�� f�	c�t��� lim

t�t�
f�	c�t���i � Ta � Ta��

��a�t���� � f�� i� eg � f�	c�t�� � lim
t�t�

f�	c�t����

� � Def� ��
ha � Comp�Ma� � Comp�Ma��
�
t � h�c�t�� 	c�t�i � h�a�t�� 	�t�ai � f�	c�t�� � 	a�t�

���
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The proof of Lemma �� is then as follows�

Sc Wcref
Wa Sa

� � Def� �
�Def� Wc and Wa

O�Bc� � O�Ba� and
OXc�Comp�Mc� � Comp�Mc�� � Lc � Lc��
� OXa�Comp�Ma� � Comp�Ma�� � La � La��

� � O�Bc� � O�Ba�
OXc�Comp�Mc� � Comp�Mc�� � Lc � Lc��
� OXa�Comp�Ma� � Comp�Ma�� � La � La��

� � From Def� ���
f�Comp�Mc� � Comp�Mc�� � Lc � Lc�� � La � La�

Property of f�
f�Comp�Mc� � Comp�Mc�� � Lc � Lc�� � f�Comp�Mc� � Comp�Mc����
by above result�
f�Comp�Mc� � Comp�Mc��� � Comp�Ma� � Comp�Ma���
Resulting in �
f�Comp�Mc� � Comp�Mc�� � Lc � Lc��
� Comp�Ma� � Comp�Ma�� � La � La�

From Lemma ��c��
OXa�f�Comp�Mc� � Comp�Mc�� � Lc � Lc���
� OXa�Comp�Ma� � Comp�Ma�� � La � La���
From Def� ���
OXc�Comp�Mc� � Comp�Mc�� � Lc � Lc��
� OXa�f�Comp�Mc� � Comp�Mc�� � Lc � Lc���
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