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ABSTRACT 

Landfilling of municipal solid waste is a major waste disposal method, especially in 

developing countries despite its pressing environmental challenges. Reuse of the landfill 

composite has been suggested as a sustainable management option that could limit its 

negative effect. This research evaluated the compositional trend and characteristics of landfill 

composites with depth in order to assess its suitability as a precursor for activated carbon.  A 

bulk system classification was used during analysis of the composite parameters (‘more 

degraded’ and ‘less degraded’ components). Both landfills had similar waste constituents, 

but varied in relation to moisture, TOC, and heavy metals contents. The elemental and 

chemical constituents of an active and a closed landfill were compared using Fourier 

transform - infrared (FTIR) spectroscopy, scanning electron microscope/energy-dispersive 

X-ray (SEM/EDX) spectroscopy, and proximate analysis. The two landfills had similar major 

elemental constituents representing 96.5 % and 98.4 % of elemental composition for the 

closed (O > C > Si> Fe > Ca >Al) and active(C > O > Si > Al > Ca > Fe) landfill samples 

respectively. A single step chemical activation process of precursor was applied involving 

irradiation with microwave energy and KOH as the activation agent. The average percentage 

yield of activated carbon (AC) from active landfill precursor was higher than that from closed 

landfill for all three depths of sampling (upper, 23.8 and 19.3 %; mid, 52.4 and 34.7 %; lower 

35.7 and 27.0 %). Methylene blue adsorption capacity and BET surface analysis indicated 

adsorption capacity and surface area of AC from degraded precursor increased with depth. 

All AC conformed to a multilayer adsorption model and a pseudo second order kinetic. 

Carbonyl and hydroxyl groups were the major functional group on the surface of activated 
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carbon. The AC properties indicated that precursors from both landfills are potentially 

suitable for generation of adsorbent suitable for removal of cationic dyes and pollutants. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Municipal Solid Waste Generation  

Solid Waste generation is an inevitable part of man’s activities as a result of his interaction 

with the biotic and abiotic factors within the environment. Municipal Solid Waste (MSW) 

generation continues to grow both in per capita and overall terms. This increase is due largely 

to accelerated industrialization, urbanization, population growth and affluent life styles (Renou 

et al., 2008).  

An estimated global growth rate of 7 % in MSW generation was reported between 2003 and 

2006. The current global MSW generation level of approximately 1.3 billion tons per year is 

expected to double by 2025 (Hoornweg and Bhada-Tata, 2012, UNEP, 2009).  Per capita waste 

generation were significantly higher in regions and countries with dense population and 

increased industrialization (Hoornweg and Bhada-Tata, 2012, Kawai and Tasaki, 2016). The 

Organization for Economic Co-operation and Development countries (OECD) and Eastern 

Partner countries (EAP) constitute more than 60 % of the waste generated globally, with 

average per capita waste generation of 2.2 kg/capita/day. Urban waste generation was found 

to have influenced this growth rate trend. Urban collected MSW quantities are estimated at 

1200 million tons in 2013 and it is expected to reach 2,650 million tons in 2050. This represents 

a 97 % increase in urban MSW generated by 2050 (IEA, 2016). 
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Major city centers of the world have a huge waste generation burden due to increasing 

economic activities attracting the residence of affluent members of the society. Beijing, Tokyo, 

New Delhi, Rio de Janeiro contributed large proportions of their countries per capita waste 

generation. Figure 1.1 present the per capita generation of some cities 

 

Figure 1.1:   2015 per capita waste generation of some cities (source from International 

Environmental Agency data base) 

Irwan et al. (2011) reported that large population households in Malaysia generated less waste 

compared to small population households of higher economic standing. In 1997, waste 

generation in Rio de Janeiro, Brazil was 8042 tons/day compared to 6200 tons /day in 1994, 

despite the fact that population growth during that period was practically zero (Renou et al., 

2008). Urban residents produce about twice as much waste as their rural counterparts 

(Hoornweg and Bhada-Tata, 2012).  Municipal waste generation is influenced by 

multivariance factors depending on prevailing conditions within an area (Medina, 1999). 
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Municipal solid waste identification and classification are tools to understanding the 

underlining generation factors.   

 

1.2 Solid waste classification  

1.2.1 Approach to waste classification 

Waste classification is influenced by the origin, nature, properties and activities generating 

waste. Waste has been classified based on the United Nations Organization indexes for all 

economic activities; the international standard industrial classification (ISIC) (UN, 1971). The 

ISIC is based on the rationale of classifying economic activities beginning from the general 

and, from here, narrowing down to higher levels of specific. Waste generation has been 

investigated based on this classification in developing a model to predict waste reduction target 

for economic class (Sjöström and Östblom, 2010) 

Classification of waste by origin of generation may generally address a heterogeneous stream 

of waste.  Municipal waste, agricultural, mining waste, construction and demolition are waste 

classifications focused on the area where waste is generated. Most often, waste composition 

may vary widely based on peculiarity of the origin of waste. For example, agricultural waste 

will include heterogeneous stream of materials like raw and processed foods, manure and 

fertilizers, machineries and tools, pesticide other materials used in the agricultural process.     
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Wastes are also grouped based on different intrinsic properties of the waste. Waste can be 

grouped based on: toxicity, hazardous and non- hazardous; degradability, degradable/ non 

degradable; and moisture content, dry or wet.   

 

1.3 Municipal Solid Waste (MSW) 

Municipal solid waste (MSW) is a complex solid waste stream, consisting of different classes 

of waste generated from diverse activities. (Hoornweg and Bhada-Tata, 2012). Municipal 

wastes are solid waste collected by municipalities or local authorities with properties of a 

household waste (EU 1999). 

Municipal wastes have been defined based on the strategic policy and goals of agencies and 

governmental institutions, although most definitions underline the similarity in the waste 

generation source: municipal and household waste (see Table 1.1).  The MSW waste 

generation patterns depends on the distribution of activities within the area (Sjöström and 

Östblom, 2010). A hierarchical source classification of MSW has established connection 

between the source of waste and the type of waste generated in the municipal (Buenrostro et 

al., 2001). An IPCC report in 2006 highlighted three main sources of municipal waste: 

household waste; garden (yard) and park waste; and commercial/institutional waste. The MSW 

waste generation patterns and composition will depend on the distribution and volume of 

activities within the area. 
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Definition of MSW 

EU Directive (1999): “waste from household, as well as other waste which, because of its 

nature or composition, similar to waste from household" 

IPCC (2006): “waste collected by municipalities or other local authorities, include 

household waste. garden yard and park waste, and commercial Institutional waste" 

Gol (2008): "waste from household and household-like waste derives from commercial 

area, industrial areas, special areas, social facilities. public facilities, and/or other 

facilities" 

PAHO (2010): “solid or semi-solid waste produced through the general activities of a 

population center_ includes waste from households. Commercial businesses, services, and 

institutions, as well as common (non-hazardous) hospital waste, waste from industrial 

offices, waste collected through street sweeping. and the trimmings of plants and trees 

along streets and in plazas and public green spaces" 

OECD (2013): 'materials that are not prime products that is, products produced for the 

market) for which the generator has no further use in terms of his/her own purposes of 

production, transformation or consumption, and of which he/she wants to dispose" 

Table 1.1: Municipal waste definition by international organization (source: Munawar, 

2014) 
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1.3.1 MSW composition 

The MSW waste composition mainly reflects the climatic condition, culture norm, economic 

development, lifestyle, geographic, and local legislation within the generation locality (Irwan 

et al.2011; AbdAlqader and Hamad, 2012; Hoornweg and Bhada-Tata, 2012). Classification 

of the MSW composition is often influenced by the management strategy intended for the 

waste.  For example, the UK Environmental Agency has classified MSW into 44 categories in 

evaluating collection and management procedures (EA, 2015), while the inter-governmental 

committee on climate change (IPCC 2006) has identified 11 classes of MSW in evaluating the 

green gas generation potentials.  Amijo de vega et al. (2008) identified MSW characterization 

as the first step to any successful waste management strategy, in order to: estimate material 

recovery potential; determine sources and component of generated waste; identify processing 

machineries; determine physico-chemical and thermal properties of the wastes; and to maintain 

compliance with regulations. 

 

1.4  MSW management strategy  

 

1.4.1 Management hierarchy  

The integrated solid waste management principle has identified five distinct steps for effective 

MSW management. The waste management pyramid presented in Figures 1.2 shows 

management options in order of preference and environmental friendliness.  
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             Figure 1.2:   Hierarchically Waste Management System 

In reality, there is no single treatment system which is generally appropriate to solving the 

ever-growing MSW disposal problems. A combination of all the methods is required to have 

balance waste management strategy which can effectively management all classes of MSW 

composition (Menikpura et al., 2013). This is referred as the integrated Solid Waste 

Management System (ISWM). The  EU's Waste Framework Directive (EU, 2008) and Landfill 

Directive (EU, 1999) set binding targets  aimed at increasing waste prevention, recycling and 

discouraging landfilling for members countries based on its hierarchical solid waste 

management system. The cross-country report on the  EU's Waste Framework Directive (EU, 

2008), which analyzed the municipal solid waste management in 32 European countries, 

showed that recycling grew with over 0.9 billion of tons of recycled waste but about half of 

the total waste (2.5 billion tons) still been landfilled for  twenty-one member countries between 

2001- 2012. Figures 1.3 present the performance of each waste management system. 
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Figure 1.3: Municipal Solid Waste treatment report of EU states (Eurostat), Disposal: 

landfilled waste. 
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1.4.2  Landfill management  

Landfill is the final waste disposal site, where MSW is disposed into or onto the land (DEFRA, 

2010). A municipal solid waste landfill (MSWLF) is a discrete area of land or excavation site 

that receives household waste or other types of non-hazardous wastes such as commercial solid 

waste. It acts as a final sink, a long-term geological deposit which closes the material loop 

(Cossu, 2012).  Landfill is one of the most widely employed methods for the disposal of 

municipal solid waste (Yang et al., 2013). There are hundreds of thousands of active, closed, 

and abandoned landfills worldwide, with nearly 100,000 in the U.S. and more than 150,000 in 

Europe (Jain et al., 2014, Friedrich and Trois, 2013).  In Ireland, landfill accepts over two 

million tons of waste per year from household, commercial and industrial wastes (EA, 2015). 

Landfill represents the major means of waste management in sub-Sahara Africa. Most 

countries in Africa practiced open dumping for final disposal of solid waste (Johannessen and 

Boyer, 1997). The main reasons for wide used of landfill practice are due to the low cost and 

simplicity in handling the MSW, particularly in less developed countries (Munawar, 2014).   

 

1.4.3 Type of landfill 

Landfill is classified based on the management practice on the landfill or types of waste 

disposed on the landfill. For example, the EU waste directive frame work 1999/31/EC 

classified landfill based on the nature of waste disposed in the landfill (EU, 1999): i) hazardous 

landfill (for disposal of reactive, corrosive, toxic, waste); ii) non-hazardous landfill, (for 

disposal of MSW, non-corrosive bottom ash, and industrial waste); iii) and inert landfill (for 
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disposal of inert construction & demolition material, soil and other inert material). Landfill can 

be broadly classified into controlled and uncontrolled, based on the management system 

employed in the day to day running of the landfill (Themelis and Priscilla, 2007). WHO’s 

evaluation of landfill practice had grouped landfill based on availability of pollution control 

management facilities. This includes the incorporation of technology to ensure collection and 

control of landfill gas, leachate collection and treatment, application of a daily soil cover on 

waste, and implementation of plans for closure and after closure care. Table1.2 present types 

of landfill based on these criteria.  

 

 Table 1.2: Categorization of landfill based on availability of sustainable technology 

(source: Johannessen and Boyer, 1997) 
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1.4.3.1 Dumpsite/uncontrolled landfill 

The open dumping of solid waste is the primitive stage of waste management which still 

remains the predominant waste disposal option in most of the developing countries. Open 

dumps involves indiscriminate disposal of solid waste in an area with no measures to control 

operations, including those related to the environmental effects of the dumpsite. MSW is 

deposited until it reaches a height considered undesirable based on esthetic reasons (Themelis 

and Priscilla, 2007). The dumpsite sites are often maintained through indiscriminate burning 

to reduce the volume of waste. There are no boundaries to mass transfer in form of gas, liquid 

and solid from the dumpsite to the environment posing major environmental and health 

challenges to the immediate environment. The relevance of dumpsite in low income countries 

may be associated to the ease associated with establishment of dumpsite, the proximity to user 

and no technical requirement of the practice.  

 

1.4.3.2  Sanitary landfill 

The term sanitary landfill is generally used for landfill management facility which has 

incorporated management scheme to curtail negative health and environmental effect of 

landfilled waste (Youcai and Ziyang, 2017).  The concept started in 1959 with the use of waste 

compaction and application of soil cover to increase aesthetic and safety of landfill. In many 

cases, however, as much as 50 % of the operational budget is consumed on daily cover 

(Johannessen and Boyer, 1997).The concept as now developed into the incorporation of 

engineering process which focuses on the management of different potential landfill hazards. 
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The leachate collection and treatment plant, gas collection and flaring or reuse mechanism, 

impermeable baseliner and top covering and sites access control measures are essential features 

in a modern sanitary landfill. An evaluation carried out in 2010 by the WHO showed only a 

few sanitary landfills can be found in Asia, Latin America and Africa, while most of existing 

sanitary landfill lack one major infrastructure or the other. Deficiency in any of the required 

facility may pose treat to the environment. In the US and EU, resident time of wastes in sanitary 

landfills is been accelerated with use of bioreactors within sanitary landfills systems. The 

bioreactor is able to accelerate decomposition of disposed waste through the introduction of 

leachate recycling and addition of appropriate microbe. 

 

1.5 Challenges of landfill management. 

 Landfilling may provide an initial economical means of waste disposal, but effective 

management of possible hazards emanating from this process is a major challenge, casting 

doubt on the sustainability of the method. The major environmental challenges associated with 

the management of landfills are the surface and ground water contamination, land 

contamination, generation of greenhouse gas (GHG) and odor emissions (Bolan et al., 2013). 

The inherent challenges persist over the period of operations and closure of the landfill site. It 

impacts on the quality of the environment and public health of the immediate surroundings of 

the landfill site. The process of waste degradation and leachate formation within the landfill 

are major source of both organic and inorganic contaminates for water bodies, landmass and 

the atmosphere. 
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1.5.1 Landfill water pollution 

The imminent danger posed by different toxic organic and inorganic compounds generated by 

the waste leachate have an overbearing health effect on the surface and underground water, 

and human activities within the landfill environment. Landfill leachates contain contaminants, 

including dissolved gases, heavy metal (loids) and xenobiotic compounds (Kulikowska and 

Klimiuk, 2008; Bolan et al., 2013). The most common organic contaminants in landfill 

leachates include pesticides, BTEX (Benzene, Toluene, ethylbenzenes and Xylenes), 

chlorinated aliphatic hydrocarbons, and chlorinated benzene compounds (Slack et al., 2005). 

High levels of chemicals (Cr, Mn, Ca, Mg, Na, K, NH4, Fe, Cl-, SO4
2- and CO3

2-) and 

bacteriological (E. coli and total coliform) contamination have been observed in some boreholes 

within 50-100 m from the landfill without contentment facility (Adeolu et al., 2011). With 

confirmed cases of carcinogenic or co-carcinogenic potential in landfill leachate, the risk of 

chemically overloading hydro-geology aquifer layers with contaminants may create a major 

imbalance in sensitive ecosystems with diverse effect on organisms and man’s source of water 

(Scaglia et al., 2011; Foo et al., 2013).  In general, the interactions between groundwater 

resources and solid waste leachates have been reported by many researchers across the world  

such as:  Suresh and Kottureshwara, 2009; Karunakaran et al., 2009; Akudo et al., 2010; 

Rajkumar et al., 2010; Ali, 2012). Major factors which influence landfill leachate production 

included: the type of the wastes deposited; rainfall and other climatic factors; the degree of 

surface and groundwater ingress; the age of deposited waste; degree of compaction; and cover, 

capping and restoration (EP, 2015). Ground water pollution prevention is the main task of 

design and construction of impermeable underground barriers, leachate collection and treatment 
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facility. It is estimated that landfill leachate production will continue for about 30-40 years (EP, 

2015, Cossu, 2012).  During this period, the problems of inadequate maintenance may pose an 

environmental risk in the long-term future (Johannessen and Boyer, 1997). 

 

1.5.2 Air pollution  

 Landfilled organic fractions of waste when degraded generate landfill gases (LFGs), consisting 

mainly of methane (CH4) and carbon dioxide (CO2), which are the main GHG constituents. In 

2010, U.S. EPA identified waste landfills as the third largest anthropogenic source of CH4 

accounting for 16 % of total CH4 emissions (U.S. EPA, 2012). The landfill gas generation rate 

depends on the volume of waste, climatic factor and landfill practice. Buildup of landfill gas 

has also resulted in intermittent landfill fires (Liu et al 2016). Landfill gases generated from 

sulfur based materials are also responsible for the obnoxious odour within the vicinity of the 

landfill (Xu et al., 2014, Penza et al., 2015). 

Landfill covers are the major methods employed for odour control. The cost implication of 

daily covering has limited the compliance to this practice (Johannessen and Boyer, 1997). 

Modified intervals of landfill covering are been adopted by respective landfill to reduce cost.  

The most common mitigation strategy is the capture of LFG for flaring or combustion to 

recover energy, as this presents significant environmental, economic and energy gain (Yang et 

al., 2013, Kashyap et al., 2016). However, the number of gas wells provided is limited; US 

average about one well per 4000m2 of landfill (U.S. EPA, 2012). Less than 10 % of the landfill 
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gas generation potential is been captured, utilized or flared (Themelis and Ulloa, 2007). Gas 

flaring is the process of combusting gas capable of generating greenhouse gas at a high altitude 

(U.S. EPA, 2012).Methane recovery is quite an expensive technology which is being 

implemented mainly in developed countries. For example, the installation costs for the gas-

flaring system in Bisasar Road landfill, South Africa was 6.6 million Rand (US$1.5 million), 

while the operational costs may double within few years of operation. (Johannessen and Boyer, 

1997). Despite huge landfill generation gas potential in landfills in the developing countries 

only a few landfills (less 5 %) have the provision to collect landfill gas. Motivation to collect 

landfill gas for flaring is poor owing to low economic benefit. The efficiency of LFG collection 

depends largely upon uncertain factors of waste composition and decomposition rate, which 

could rapidly vary across the depth. Poor waste characterization before and after disposal are 

factors which also inhibit adequate evaluation of  landfill gas potential in abandon and active 

landfill in the developing countries. Figure 1.4 presents the effects of uncontrolled landfill on 

man. 
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Figure 1.4:   Effects of uncontrolled landfill on man (Source: Oeltzschner  and mutz, 1994) 

1.6 Landfill Environmental Sustainability 

Sustainable landfill is a system of landfill where the disposed waste mass is managed to prevent 

any environmental pollution through simple, robust and cost effective measures (Batagarawa, 

2011). The major driving focus is safe disposal into the landfill. Sustainability in respect to 

landfilling implies a multi-layer process that includes appropriate background knowledge of 

the waste and area geological, technical treatment plan of waste before, during and after 

landfilling(Cucchiella et al.,2017). Cossu (2012) defines: “a sustainable landfill as a system 

that should reach an acceptable equilibrium with the environment within one generation (30-

40 years)”.  
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The main aim of environmental sustainability is a well-defined resource consumption achieved 

by the effective waste management processes with an assurance of pollution free environment 

(Hung et al., 2007; Roussat et al., 2009).  The new strategies in waste management focus on 

stabilization and safe final disposal of waste materials that can be integrated in a closed loop 

in the short term through pre–treatment of waste before landfilling.  (Imran et al., 2008; 

Batagarawa, 2011)   The Europrean Directive 75/442/EEC (The Waste Framework 

Directive1), and in particular Article 4, requires that waste be treated before it is landfilled. 

The main objective is to ensure a carefully managed mass flow of waste to avoid the risk of 

creating environmental imbalance from disposed organic and inorganic substances. Converting 

waste into mass which does not only ensure stability in the flow of matter (liquid, gas, solid) 

but also help to sink possible contaminants will help in the landfill sustainability. Pollution 

control is ensured by inhibiting the movement of waste elements which are inimical to the 

environment. Based on needs we have mobilized different types of substances and elements 

from the geological deposits (i.e. mineral and ore deposits, oil reservoirs) where they existed 

in an inert non-mobile form or in a form which are not directly available to the environment 

(Cossu, 2012). In sustainable landfill, attempt is made to reverse the process. Immobilize 

substance and element of waste into the earth geology within short possible life span. 
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1.7 Activated Carbon Precursor and Properties 

1.7.1 Activation carbon chemistry  

Activated carbon is a crude form of graphite with a random or amorphous structure which is 

highly porous over a broad range of pore size cracks and crevices to cracks and crevices of 

molecular dimensions. The spaces between the crystallites of activated carbon constitute the 

micro porous structure with a large internal surface area of 250 m2/g-2500 m2/g. (Marsh and 

Rodriguez-Reinoso, 2006) 

The IUPAC (International Union of Pure and Applied Chemists) define activated Carbon as: 

“a porous solid high in content of the element carbon in a structurally non-graphitic state, 

formed from a char which has been subjected to the reaction with gases, sometimes with the 

addition of chemicals, e.g. ZnCl2, before, during or after carbonization in order to increase 

adsorptive properties”. It is a strong adsorbent for organic materials and other non-polar 

compound (Marsh and Rodriguez-Reinoso, 2006) 

Activated carbon is generally considered to exhibit a low affinity for water, which is an 

important property with respect to the adsorption of gases in the presence of moisture. The 

adsorption characterization of activated carbon is affected by surface chemistry of the activated 

carbon.   
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1.7.2 Surface chemistry 

Surface chemistry of activated carbon is mainly influenced by the nature of the precursor and 

the activation process, although the functionalities of most activated carbon are often similar. 

It consists of condensed poly aromatic or poly aliphatic sheets as building blocks and 

heteroatom which influence the chemical properties of activated carbon. Oxygen is an 

important heteroatom that occurs in the form of carboxylic acid groups, phenolic base hydroxyl 

groups, and quinone carbonyl groups (Figueiredo et. al, 1999; Lei et al., 2002).  Other 

commonly found heteroatoms include nitrogen, hydrogen, sulfur, and phosphorous (Shafeeyan 

et al., 2010). The acidic and basic characteristic of activated carbon surface is determined by 

the type of surface functional groups formed by heteroatoms and the delocalized electrons of 

the carbon structure (Laszlo and Szucs, 2001; Shafeeyan et al., 2010)   

The oxygen containing surface groups which are mainly found on the outer surface or edge of 

the basal plane mainly influence the chemical nature of the carbon. The formation of carboxylic 

acid or carboxylic anhydride, lactone, and phenolic hydroxyl functional groups have been 

reported as the sources of surface acidity, while surface functionalities such as chromene, 

ketone, and pyrone have been proposed to contribute to the carbon basicity (Figueiredo et. al, 

1999; Laszlo et al., 2001; Laszlo and Szucs, 2001; Shafeeyan et al., 2010). Figure 1.5 illustrates 

a typical activated carbon structure showing  the functional group effect on pH nature of the 

activated carbon (Shafeeyan et al., 2010).   
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Figure 1.5: the structure of activated carbon showing the functional group and the pH 

effect. (Source: Shafeeyan et al., 2010) 

1.7.2.1  Structure of activated carbon  

The structural order of activated carbon is a major feature distinguishing it from other members 

of the carbons family. According to Franklin (1951), activated carbon are non-graphitizable 

carbons which do not have long-range parallelism of grapheme layers ever after heating above 

2000 °C in contrast to regular graphitizable carbon with well planarity and stacking graphene 

layers.  Figure 1.6 shows the structure of the type of carbon  

 

(a)                                                    (b) 

Figure 1.6: The crystalline structure of (a) non graphitizable carbon and (b) graphitizable 

and (Source:  Marsh and Rodriguez-Reinoso, 2006) 
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 Non-graphitizable carbons are usually formed from precursor containing less hydrogen or 

more oxygen developing a strong system of cross linking of crystallites. These short-range 

structures of non-planar units are bonded together through carbon linkage during the 

carbonization stage (Marsh and Rodriguez-Reinoso, 2006).  

 

1.7.2.2 Porosity  

The activation process leads to partial removal of various carbonaceous compounds within 

each non-planar unit creating spaces between the elementary crystallites. The voids formed are 

termed as pores. (Mcdougall, 1991; Marsh and Rodriguez-Reinoso, 2006). The volume of the 

pores in activated carbons is opined as greater than 0.2 ml/g while the width varies from 3 Å 

to several thousand angstroms. Pores are often classified for in terms of their diameters. 

According to the IUPAC definition, pores can be distinguished in three groups (see Table 1.3) 

with respect to their dimensions (Marsh and Rodriguez-Reinoso, 2006, Sing et al., 1985). 

Table 1.3:   Pore Sizes of Activated Carbon 

Type of pores Diameter 

Macropores Pores D> 50 nm (500 Å), 

Mesopores Pores 2 nm < D ≤50 nm (20- 500 Å),  

Micropores Pores D < 2 nm (20 Å)  

 (Source:  Marsh and Rodriguez-Reinoso, 2006, Sing et al., 1985) 
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In the cross sectional view, pores appear to be of either cylindrical or rectangular in shape, but 

from microgram observation, they  form a variety of irregular  shapes: contracted entrance 

(ink-bottle shaped),  capillaries open at both ends or with one end closed, regular slits between 

two planes, v-shaped, tapered pores, and other forms  (Mcdougall, 1991, Marsh  and 

Rodriguez-Reinoso, 2006) 

The Macropores functions as the transitional arteries through which carbon granules access the 

molecules to be adsorbed. The pores account for about 5 % of the total surface area of the 

activated carbon. Their volume in the activated carbon is generally between 0.2 cm3/g and 0.5 

cm3/g and their surface area about is 0.5 m2/g to 2 m2/g (Mcdougall, 1991; Marsh and 

Rodriguez-Reinoso, 2006). 

The micropores account for about 95 % of pores in the internal surface area and has a volume 

of about 0.15 cm3/g to 0.50 cm3/g. Depending on the nature of the precursor employed and the 

activation process the percentages of the transitional pores and the micropores could vary 

widely. 

 

1.7.2.3 Classification of Adsorption Isotherms for porous solid 

Adsorption isotherms have been grouped into the six types according to the IUPAC 

classification (see Figure 2) (Sing et al., 1985).The shape of the graph form due to the 

relationship between relative gas pressure (p/po) of nitrogen gas and the amount adsorbed by 

the adsorbent  is used to determine the type of  isothermal adsorption peculiar to an adsorbent.  
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A Type I isotherm is observed in adsorbent having small external surfaces with large 

microporous. It is indicative of a monolayer adsorption of adsorbate molecules. This 

adsorption isothermal is common to activated carbons and molecular sieve zeolites.  (Sing et 

al. 1985, Shairafan, 2012) 

The Type II isotherm is indicative of unrestricted monolayer-multilayer adsorption. This is 

common to adsorbent having a mixed of micro and mesopores. The point B in figure 1.7 

represents the point at which monolayer adsorption coverage ends and the multilayer 

adsorption commence.  

                                            

 

          Figure 1.7   Type of adsorption isotherm by IUPAC (Sing et al., 1985) 

Isotherms Type III and V have a common convex shape with the relative pressure axis. This 

convex shape represents the occurrence of cooperative adsorption, where there is a strong 

interaction between adsorbates leading to the adsorption of more molecules. The adsorption of 
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nitrogen gas on polyethylene has observe to display a type III isothermal adsorption (Sing et 

al., 1985) 

 

The Type VI isothermal occurs for mesoporous materials having monolayer-multilayer 

adsorption with capillary condensation thus leading to the formation of a hysteresis loop.  

Hysteresis loop is formed due to differences in curvature of the meniscus on adsorption 

(cylindrical) and desorption (spherical) during the adsorption and the desorption. The shapes 

of hysteresis loops have often been identified with specific pore structures. Figures 1.8 

provided the types of hysteresis loop as identify by IUPAC.  

                              

                      Figure 1.8:  The hysteresis loop classification by IUPAC (Sing et al., 1985) 

Hysteresis type H1 is associated with solids having pores of spheroidal, uniform particle size, 

H2 is observed in silica gels, and H3 and H4 in observed narrow slit-shape or plate-like pores 

(Sing et al., 1985). 
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1.7.3 Activation Process 

There are two main steps for the preparation of Activated carbon: (1) the carbonization of the 

carbonaceous raw material below 800 °C, in the absence of oxygen, and (2) the activation of 

the carbonized product (char), which is either through physical or chemical activation. 

 

1.7.3.1 Carbonization of carbonaceous raw material  

The main aim of carbonization step is to improve the carbon content of the precursor through 

reduction in the volatile and non-carbon content: oxygen and hydrogen in the precursor.   

Precursor is subjected to pyrolytic decomposition at a temperature between 600-900 °C under 

the flow of nitrogen or carbon dioxide. The precursor char generated are with carbon atoms 

rearranged into graphitic-like structures. The carbonization of precursor has been reported to 

have effect on the quality of the final activated carbon products (Ioannidou and Zabaniotou, 

2007). 

 

1.7.3.2 Chemical activation 

In chemical activation processes the char is impregnated with activating agents under the flow 

of inert gas either nitrogen or carbon dioxide (Foo and Hameed, 2012a, Rashidi and Yusup, 

2017). The use of two major groups of activation agents is well reported in chemical activation. 

The acidic activating agent which includes the use of: H3PO4 (Liou, 2010), HCl (Alvarez et 
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al., 2007), and H2SO4 (Karago et al., 2008) and the basic activating agent: KOH (Foo and 

Hameed 2012a), K2CO3 (Ferrera-Lorenzo et. al, 2014), NaOH (Lillo-Rodenas et al., 2001, 

Islam et al., 2017)).  Depending on the nature of the precursor the choice of the activation used 

is premised upon the dehydrating properties of activating reagent.  Carbonization and 

activation can be carried out simultaneously in chemical activation, with the precursor initially 

mixed with chemical activating agents before application of heat at desired temperature of 

between 450 °C to 900 °C. This method will often lead to activated carbon of higher micropore 

volumes and wider micropore sizes. A major advantage of chemical activation is that the 

process requires lower temperature and a shorter duration of time when compared with 

physical activation. (Suhas et al., 2007, Rashidi and Yusup, 2017). These activation conditions 

(chemical impregnation, reduced temperature and duration) have greatly affect the potential of 

generating a higher yield of activated carbon using chemical activation. The chemical agents 

dehydrates precursor, inhibiting the formation of tar and other volatile products leading to 

charring and aromatization of the carbon skeleton, with porous structure and extended surface 

area (Marsh and Rodriguez-Reinoso, 2006). Proper washing of the activated carbon is an 

essential procedure in chemical activation. Activated carbon washing is aimed at recovery of 

activating agent and removal of associated impurities which could affect the properties of the 

activated carbon produced (Mcdougall, 1991). Impregnation ratios, heating source and 

temperature, gas flow rate have been reported to influence chemical activation process of 

precursors.  
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1.7.3.3 Physical activation 

In physical activation, the resulting char is subjected to further heating in the presence of 

activating agents such as carbon dioxide, steam or air within the temperature range 600–1200 

°C. This results in the removal of the more disorganized carbon and the formation of a well-

developed micropore structure (Suhas et al, 2007, Rashidi and Yusup, 2017). 

1.7.4  Raw material/precursor 

Most of the commercial activated carbons are produced from either coal based or petroleum 

pitch, which is prone to exhaustion due to natural limit in volume and spread of coals globally. 

Several researches have focus on the use of different activated carbon precursors. Agricultural 

materials rich in organic carbon including coal, peat, woods, fruit, nutshell and coconut shell 

have been used as precursor for activated carbon (Aygun et al., 2003; Li et al., 2008; Alslaibi 

et al. 2013, Zubrik et al., 2017). Recently, biomass wastes which are major constituents of 

some landfills have been identified as potential precursor for the production of activated 

carbon. A wide range of solid waste has been shown to be suitable for the production of 

activated carbon: plants (Tang et. al., 2012, Foo et. al., 2013a, Dieme et al., 2017), wood and 

sawdust (Foo and Hameed, 2012b) and industrial sludge (Fu, et.al., 2013). Synthetic materials 

and papers have also been used as a precursor for the production of mesoporous activated 

carbon (Nahil and  Williams ,2012).  A key element is the reliability and the constancy of the 

resource. Most developing countries have a high percentage of organic matter in their waste 

stream, ranging from 40 to 85 % of the total waste, which is disposed mainly to the landfills 

(Hoornweg and Bhada-Tata, 2012). The International Panel on Climate Change (IPCC, 2006) 
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estimates that organic waste constitutes 89 – 92 % of waste generated in sub-Sahara Africa. 

De la Cruz et al., 2013 work on carbon storage in the landfill indicated that excavated landfill 

samples had an average 64.6 ±18 % biogenic carbon.  Although different waste materials have 

been used as activated carbon precursor the possibility of converting landfill composite directly 

to activated carbon have not been well reported.  

1.7.5 Choice of activation heating system.  

In the activation process, the heating system applied is a primary variable that can affect the 

activation procedure, mechanism and chemistry of the activated product.  Activation heating 

source is broadly classified into conventional (used of electric mantles and furnace) and 

microwave energy (microwave oven) (Lam and Chase, 2012). The electromagnetic field from 

the microwave diffuses into the molecules of the bulk substance resulting in intra molecular 

heat generation, with about 90 % conversion efficiencies of electricity into thermal energy 

(Yuen and Hameed, 2009). The use of microwave radiation offers enhanced uniformed 

distribution of heat, effective heat transfer, and ensures a better control of experiment which 

represents reductions in the treatment time and energy consumption when compared to 

conventionally heating system. Microwave radiation provides a rapid and energy-efficient 

heating process about 50 % higher than using heating by natural gas, steam or electric furnace. 

Additionally, microwave heating provides an efficient way in the removal of oxygenated 

functionalities from carbon surfaces. In separate studies, Alslaibi et al. (2013) and Ferrera-

Lorenzo et al. (2014) have reported that microwave treatment of precursors resulted in 

comparable improvement in pore size formation and chemical properties of the activated 

carbons.  
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1.7.6 Uses 

Activated carbons are essential adsorbents used in many industries. There applications are 

majorly concerned with the adsorption of species from the liquid or gas phase for effective 

purification or chemicals recovery. They are used as primary or secondary cleaning agent in 

waste water, textile and water purification industries. They are also used as catalyst support. 

Activated carbon has been deployed in the removal of recalcitrant inorganic and organic 

compounds from landfill leachate (Foo et al., 2013a; Kurniawan et al., 2006; Aziz et al., 2004; 

Heavey, 2003). Toxic compounds like aromatics and chlorinated compounds and moisture 

content in landfill gas haven been effectively removed using granular activated carbon (Shin 

et al., 2002). The strong market position held by activated carbon adsorbents relates to their 

unique properties and low cost compared with that of possible competitive adsorbents (Girgis 

et. al., 2002; Yu et al., 2013) 

Activated carbon is a very versatile substrate with respect to its interactions with various 

organic and inorganic compounds. It is able to function as a simple adsorbent that is akin to 

synthetic polymeric adsorbents, since molecular compounds can be physically adsorbed onto 

its large internal surface area, and be retained there by Van der Waals forces. It can also 

function as a reducing agent or, in the presence of excess oxygen, as an oxidation catalyst 

(Marsh and Rodriguez-Reinoso, 2006). 
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1.8 Scope of the present study  

This research work has as its overall aim: To evaluate the enrichment levels of carbon and the 

degree of inorganic content in selected landfills with the view to investigating the possibility of 

using landfill composite as a suitable precursor for activated carbon, in order to improve the 

environmental sustainability of the landfills.  

The following specific objectives will be addressed in order to achieve the overall aim:  

(1) determine the heavy metals concentrations in the landfills composite;  

(2) determine the elemental composite of landfills composite in relation to depth; 

(3) determine possibility of using the solid waste composite as a precursor for activated 

carbon production; 

(4) determine the correlation of the landfill depth and age as a functionality of precursor 

suitability. 

 

1.8.1 Significance of Study 

Landfill remains a major means of solid waste management despite concerted efforts at 

reducing over reliance on this method of final waste disposal. Sustainable management of the 

huge tonnage of landfill waste to prevent immediate and future environmental pollution is still 

a challenge especially for developing countries with poor technical and financial resource to 

either upgrade the existing landfill or convert old landfill to energy.  The huge percentages of 
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degradable waste in these landfills pose a major challenge in the greenhouse gas generation. 

Alternative management option will be needed to improve eco-friendliness of these landfills. 

The present research seeks to investigate the possibility of using landfill composite as a 

suitable precursor for activated carbon in order to improve the environmental sustainability of 

the landfills. It seeks to exploit the possible abundance of carbon in the landfill especially for 

developing countries for activation carbon production while reducing greenhouse gas emission 

through carbon sequestration. The effect of landfill composite composition and depth in 

relation to availability of carbon and the quantity of activated carbon produced will be 

investigated. The research finding could provide a path towards reduction of the volume of 

mass land used for landfill and the period of landfill maintenance after closure. It could also 

provide an alternative use of the large reclaimed soil and more degraded part of mined landfill.  

1.8.2 Research questions 

This research design was premised on the following assumptions: 

A) The landfill composites were mainly household waste. 

B) The composite should have good percentage of organic carbon since they are mostly 

domestic waste. 

C) The heavy metal content of the landfill composite should be within limits and can 

be extracted using appropriate acid. 
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D) The age and depth of landfill composite should play significant role in the % yield 

of activated carbon to be produced. 

E) The nature of landfill composite should influence the quantity of activated carbon 

produced 

In order to verify the assumptions the following research questions were developed:  

• Is there adequate information about the landfill waste composition in the landfills? 

• What is the concentration level of the heavy metals in the landfill? 

• Are the elemental compositions in the landfill rich in carbon and by what value? 

• Are there significant change in the spread of the elemental composition of the 

landfill with depth and why? 

• Do the age and depth of the landfill affect the elemental composition? 

• What factors will affect the % yield of the activated carbon? 

 

1.8.3 Thesis layout  

This thesis has seven different chapter addressing distinct but interrelated issues with the 

following content:   

Chapter 1: gives the background to the research and the literatures review. It evaluated the 

trends and challenges of Municipal Solid Waste (MSW) generation and management globally. 

The impacts and challenges of sustainable landfills management were reviewed. The chemistry 

of activated carbon, precursor options and uses of activated carbon were discussed.  
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Chapter 2 gives the description of the sampling location Lagos Nigeria, itemized the waste 

management practice, population size, climatic and anthropogenic conditions.  

Chapter 3 elucidates on sampling procedure, quality control measures, analytical and 

instrumentation methods used in this research work. 

Chapter 4 presents procedures used in evaluating the proximate properties, heavy metals, and 

elemental properties of the samples. The result findings were presented and discussed. 

Chapter 5 presents the activation instrumentation designs for both microwave energy and 

conventional heating system. It discusses the activations conditions and some of the effect on 

% yield.  

Chapter 6 this chapter presents activated carbon characterization using spectroscopic methods, 

BET surface analysis and adsorption studies.  

Chapter 7 presents discussions on finding and deduction which reflect on current literatures 

leading to the overall conclusions and recommendations of the present research.  
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CHAPTER TWO 

GENERAL FEATURES OF THE SAMPLING AREA 

2.1 Geological location of sampling area 

Nigeria is located in West Africa along the Gulf of Guinea and lies between 4 ° to 14 °N 

latitudes and 3 ° to 14 °E longitudes. It is bordered by Benin Republic, Niger Republic, and 

Cameroon to the west, north, and east respectively while the Atlantic Ocean in the south. 

(Aboyade, 2004). Its land area is about 924,000 km2 comprising of 910,900 km2of land area 

and 13,879 km2 of water area. Around 40 % of the land mass covering from North West and 

North Central is mainly guinea savannah, while the rest is mangrove swamp at the end of 

southern region and Sudan savannah at the farthest northern region (NBS, 2012).  

 

2.2   Climatic condition  

Nigeria is characterized with high humidity and heavy rainfall. It has two distinct seasons: a 

wet season that typically occurs between April and October, and a dry season that occurs during 

the rest of the year (Longe and Enekwechi, 2007; NBS, 2012). The seasons are mainly 

controlled by two air masses: moist air coming from the Atlantic Ocean and dry continental 

air from the South African landmass. The total annual rainfall varies across Nigeria with the 

greatest total precipitation of about 4,000 millimeters average annual rainfall at the southeast  

and decreases towards the north to about 1,250 millimeters rainfall per year.   
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Nigeria maintains a relatively high temperature of between 28 °C to 40 °C throughout the year. 

This enhances decomposition of waste especially during wet season (Hamoda et al., 1998; 

Sundberg and Johnsson, 2008, Batagarawa, 2011). The coastal region of the south west 

experiences the lowest annual temperature while the North has the highest temperatures. 

Temperatures across the country are at its highest peak before the commencement of the rains 

and drop to its lowest at inflow of cool air from December to February (NBS, 2012). 

2.3 Population 

Nigeria is the most populous country in Africa with a population of about 173 million and 

accounts for 47 % of the West Africa’s population. The country’s population growth rate of 

2.80 % per year is one of the highest in the world.  Its population had more than quintupled 

from 33 million in 1950 to 173 million in 2012. According to the World Bank, Nigeria was 

about 180.3 million in 2015 (World Bank 2015). The country’s population is distributed along 

regional, political and commercial activities with population concentration in cities like Lagos, 

Kano and Rivers.      

The sampling location, Lagos state, is the commercial centre of the nation with high population 

density and associated urban challenges. Figure 2.1 shows the location of Lagos on the Nigeria 

map.  
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Figure 2.1: Nigeria Map showing the location of Lagos State (source: Jánossy et al., 2009) 

2.4 Lagos State population and economy 

Lagos state is the commercial nerve centre of Nigeria. It has a large costal area, bordered by 

22 % of water lagoons which represents 3,577 km2 land mass. Lagos Metropolis represents 

only 37 % of the state’s land area and it is inhabited by more than 80 % of the state’s population, 

resulting in a population density of about 20,000 persons/km2 (Aboyade, 2014).  Lagos city 

with an estimated population of 22 million is one of the most populous African city and the 

second fastest growing African city with annual growth rate of 4-6 % (Afolayan et al., 2012; 

EnvironQuest, 2009). Lagos is the premier industrial city in West Africa having important sea 

and air port attracting large concentration of multinationals and national companies. More than 

60 % of Nigeria's non-oil economy is located in Lagos. Being the industrial and commercial 

hub of Nigeria, there is continuous migration of people from other parts of the country. Its 

population is expected to grow to over 50 million by 2025 making it one of the world’s largest 

cities (World Bank, 2009).  Lagos has a total of 57 Local Council Development Areas ( 
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LCDAs) expanding from the fringes of the southwest mouth of Lagos Lagoon to the mainland 

west of the lagoon and the conurbation, including Ikeja (which is the capital of Lagos State).  

The domestic waste generation in Lagos is estimated between 8,000 and 11,100 metric tons 

every day, with about 60 % of this waste derivable from food and other biodegradable 

components (World Bank, 2009) 

 

2.5 Current MSW management practice in Lagos 

The Lagos Waste Management Authority (LAWMA) by virtue of the LAWMA Law 2007, is 

the main agency charged with responsibilities of managing domestic, commercial, industrial, 

and medical waste streams in Lagos state while Lagos State Environmental Protection Agency 

(LASEPA), the Local Government Councils, (LGCs) and the Ministry of Environment and 

Physical Planning (MEPP) are to provide essential supportive service for the purpose of waste 

management. (Kofoworola, 2007; EnvironQuest, 2009)  

 The Lagos Waste Management Authority (LAWMA) introduced private sector participation 

(PSP) in the collection of waste from domestic and commercial area within the state while 

special firm were contracted to handle the medical waste. (EnvironQuest, 2005). Waste 

collection is carried out once in a week per locality with compactors trucks.  Figure 2.2 shows 

a typical PSP trucks ready to offload at the dumpsite. Wastes are usually collected from 

household, commercial centres and disposed as mixed waste without segregation from source. 

All waste collected is disposed at the landfill within the state. The state currently has a total of 

six landfill sites of which three are closed landfill while two are active landfills (LAWMA, 
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2012). The locations of some the landfills are as indicated in Figure 2.3. There are other 

informal waste collectors who with the aid of pushcart or hand truck collect waste from clients 

and disposed at illegal dumpsites (Afon, 2007). Waste enforcement law is quite poor in the 

state and this is obvious in the indiscriminate waste dumping in open places, drains, streams 

constituting different human challenges. 

Figure 2.2: Compactor truck used for waste disposal in Lagos state (taking during 

sampling) 

As result of scarcity of land for landfill practice and the Lagos Metropolitan Development and 

Governance Project (LMDGP), the state is seeking alternative means to extending the life span 

of the present active landfills and the possibility of reclaiming landmass occupied by the closed 

landfill for reuse.  
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Figure 2.3: locations of active and closed landfills within Lagos State (source: Jánossy et 

al., 2009) 

2.6 Sampling location  

2.6.1 Active landfill 

The Olusoshun active landfill site is located in the northern part of Lagos within the Ojota area 

of Ikeja Local Government Council, within Longitude 6 ° 35' 50"E to 6 ° 36' 30 "E and Latitude 

3 ° 22 ' 45 "N to 3 ° 23 ' 30 "N. It has been in operation since November 1992 with an area of 

42 hectares and receives an average of 8,000 metric tons of waste daily. The site was initially 

used as an excavation site where sand for road construction was mined. Excavation depth was 

about 12 m before tipping of waste commenced but the waste height is about 18m (Longe and 
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Enekwechi, 2007). The area available for landfill at the site has reduced to about 37 hectares 

with the introduction of a landfill gas monitoring area, recycling area and leachate ponds. The 

solid wastes collected are not subjected to any treatment before being land filled. Wastes 

disposed are manually sorted by authorized waste pickers and the rest are usually spread across 

the landfill, compact with a waste compactors and capped at intervals. The site is expected to 

be closed by 2025 (Lawma, 2012). 

2.6.2 Closed landfill  

The Abule-Egba closed landfill is located in the Western part of Lagos, under the Alimosho 

Local government council, with an area of about 10.2 hectares. It started receiving waste in 

1984 and has an estimated 1.3 million metric tons of waste with an average height of 12.5 

metres. The site has been closed since 2009 (Lawma, 2012). The Abule-Egba site was mainly 

managed through burning of waste within the excavated area. There were no practice of 

compaction and capping of disposed waste at the landfill site. It received mainly market and 

household waste.   

 

2.6.3 Anthropogenic activities around dumpsites 

Initially, the Olusosun dumpsite was at the outskirts of the metropolis but due to rapid urban 

development the site is presently within developed locality of the metropolis. The dumpsite is 

surrounded by residential, commercial and industrial neighborhoods. It is bordered to the East 

by 'Total' Filling Station and mini-Bus Park to its West is the Oregun Industrial Estate (Housing 

companies like Dangote Salt, UAC, Mr. Bigg's, etc.) and to the North by LAMATA Office 
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(Motorways House) and Seven-Up Bottling Company and to the South by the Kudirat Abiola 

Way on which lies many residential as well as industrial/commercial facilities (See Figure 2.4) 

(EnvironQuest, 2005).  

 

Figure 2.4: showing Olushosun landfill with relation to landmarks (EnvironQuest, 2005) 

Similar to active landfill, Abule-Egba closed dumpsite is bounded by Lagos – Abeokuta 

expressway in the East and to the North is a large market (Ilepo market) and mini- bus stop, to 

its west the mini market (Katagowa Market) and residential area, by the South is an Onado  

filling station and metal industrial area. Appendix 1 present pictures of key features at both 

landfills. 
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                                           CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents the basis for the sampling plan and implementation procedure in line 

with RCRA Waste Sampling Draft Technical Guidance and EPA’s Guidance on Choosing a 

Sampling Design for Environmental Data Collection and Quality Assurance Project Plan, 

EPA QA/G-5S (USEPA 200a). The EPA guidance provided guidelines on sampling and 

investigating disposed hazardous and non-hazardous solid waste for possible material 

recovery or reuse which is consistent with the present research work. There had been several 

landfill samplings, focused on deep-depth (2-30 metres) landfill mining (Jain et al., 2005, 

2013; Quaghebeur et al., 2013; Kaartinen et al., 2013; Garcia et al., 2016) respectively. The 

procedure required the use of heavy drilling equipment, more technical personnel and huge 

financial demand. The basic principles of obtaining a representative sample from these 

procedures were however consistent with the general procedure provided by the RCRA waste 

sampling procedure of either systematic or stratified composite sampling. The RCRA waste 

sampling procedure provided guidelines which are suitable for a layer sampling of landfill 

informed its preference.  

The solid waste evaluating methods SW 846 chapter two (inorganic) was reviewed and 

considered appropriate for evaluating heavy metal concentrations in samples. This chapter 

also presents the quality control procedure used in maintaining samples integrity throughout 
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the analysis process. Lastly, it elucidates the different analytical instrument used during 

sample analysis.   

3.2 Pre-sampling plan 

3.2.1 Development of the project Data Quality Objectives (DQO) 

Seven basic steps were taken during the Project DQO development  

Step 1: Project objectives analysis 

The project objectives were analyzed to aid critical decision in the sampling plans. The 

following specific project objectives were identified as the overall reasons of sampling: 

i) Determination of heavy metals load 

ii) Determination of the total organic carbon  

iii) Determination of the elemental composition in the landfill layers 

iv) Assessment of samples as precursor for activated carbon.   

The major stakeholder that will be involved in this project was identified as the agency in 

charge of waste management in Lagos state: The Lagos Waste Management Authority 

(LAWMA). This research concept was presented and discussed with the Agency technical 

team and approval was given for the sampling. Presented in Appendix 2 is a copy of the 

approval letter.  
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Step 2: Identification of possible decision  

The overall key decision statements regarding this research project were identified thus: 

❖ The landfill composite should contain little heavy metal and be rich in organic carbon or 

other forms of carbon. Hence, its suitability for conversion into activated carbon. The 

conversion process is carried out straight away.  

❖ The landfill composite contains significant concentration of heavy metals but is rich in 

organic carbon or other forms of carbon. It is suitable for conversion into activated carbon 

but the conversion process must ensure removal of the heavy metals associated with the 

landfill.  

❖ The landfill composite contains less concentration of the heavy metals and is not rich in 

organic carbon and other related carbon. It is less suitable for conversion into activated 

carbon except with enrichment of the carbon content. Enrichment process could be 

introduced into the conversion process. 

❖ The landfill composite contains high concentration of the heavy metals and is not rich in 

organic carbon and other related carbon. It is less suitable for conversion into activated 

carbon except with enrichment of the carbon content and proper extraction of the heavy 

metals. Enrichment process and strong extraction process could be introduced into the 

conversion process. 

 Step 3: Identification of inputs to the decision 

Sampling will be taken with the following conditions  

i) Landfill should be gridded into equal parts  



45 
 

ii) Each landfill cell is to be of equal land area, and is located using GPS    

iii) The metals of interest are Pb, Cr, Cd, Ag, As, Ba, Se, and Hg. These heavy metals are 

selected based on recommendations by USEPA and Federal Environmental Protections 

Agency (Nigeria) that these metals are key to landfill heavy metals toxicity.  

iv) Total heavy metal analysis of the sample is to be run. If the total metal analysis indicated 

that the concentrations of the metals are lower than USEPA threshold standard then toxicity 

characteristic leaching concentration is deducted from the values obtained for the total 

analysis (total metal concentration = 20X TCLP) (EPA method  1131)  

v) If the concentration of the total heavy metals content of the samples are higher than the 

USEPA standard then TCLP will be prepared for all the samples. 

vi)Total heavy metals content of the sample is to determined using EPA method 3051a/6020B 

vii) Total organic carbon will be determined using the Walkley-Black and the dry 

combustion  

method (Schumacher, 2002) 

viii) The proximate analysis will be determined using method ASTMD 3713-5 

ix) The elemental carbon will be determined using EDX analysis 

x) If the total organic carbon or the total elemental carbon content of the composite is at least 

(TOC, fixed carbon, element carbon)  ≥ 10 % then suitability for conversion  may be high but 

if the carbon content is generally low (TOC, fixed carbon, element carbon) <10 %  potentially 

low yield may be expected from conversion process. 
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xi) Activation process should be designed to low temperature range due to the degraded nature 

of the precursor. 

xii) The products characteristic should be evaluated to determine the physical, chemical and 

adsorption properties. 

Step 4:  Defining Boundaries 

i) Sampling Profile 

Sampling profile depths of between 15 and 50 cm were designed to inform on early changes 

in the landfill waste parameters during their earlier disposal period, as recommended by 

International Panel on Climate Change (IPCC) guideline for countries unable to evaluate these 

solid waste parameters before disposal. This single layer profile sampling method was 

adopted to also obtain samples with similar physicochemical properties within each layer of 

the landfills. Sampling within this depth range also provides spatial profile information on the 

properties of waste within the first receptor layer of the landfills. 

From evaluation of the Olusoshun landfill site some areas were covered with clayey covering 

while other were uncovered. Sampling design at the landfill site accommodated other 

structure such as the recycle facilities, offices and stores. Samplings were obtained after 

removal of the cap soil where necessary.  

Depth Distance              Sampling point 

Upper 0- 10cm 7cm 

Mid 11 – 20cm  21cm 

Lower 31 – 50cm 42cm  

 



47 
 

ii) Sample Quantity  

500 g of sample was obtained from each sampling point based on quantity of sample required 

for each analysis (300 g for heavy metal determination (SW-864), 100 g will be needed for 

total organic carbon analysis and 100 g for other analyses)  

Landfill composite was handled and characterized based on the landfill layer and are generally 

assumed to have some degree of toxicity. 

Samples were obtained and evaluated during the rain and dry season to accommodate for 

climate influence on the heavy metal distribution within each layer of the respective landfills. 

For each landfill layer duplicated samples were evaluated for heavy metals concentration and 

the average were determined. The toxicity levels of samples are compared to the USEPA 

threshold standard.   

Step 5: Developing Decision Rules 

i) Action level 

The action level for all metals to be evaluated is set at the maximum limit stated by USEPA 

regulation for evaluating waste toxicity in term of heavy metal concentrations as stated below 

 

 

 



48 
 

Contaminant Regulated Level(mg/l) 

Arsenic (As) 5 

Barium (Ba) 100 

Cadmium (Cd) 1 

Chromium (Cr) 5 

Lead (Pb) 5 

Selenium (Se) 1 

Silver (Ag) 5 

Mercury(Hg) 0.2 

Table 3.1: Heavy metals and regulatory limits as set by the USEPA (source SW-864 

Chapter 3) 

Hence, any heavy metals concentration below the value of USEPA standard is considered not 

toxic while any above or equal to it is considered toxic. 

Toxic level of samples will inform activation conditions and procedures.  

ii) Sample population 

 The RCRA regulations for waste toxicity characterization 40 CFR 261.24 specified no 

regulatory population for toxicity evaluation but only specified in Table 1 of Part 261.24 the 

metals concentration threshold of which must not be equaled or exceeded. For the 

determination of the sample population the “exceedance procedure” was adopted (USEPA 

1989a).  

The exceedance method is a nonparametric method which requires the assumption of the 

number of samples in the data set that will comply with the set limit or that will exceed the 



49 
 

standard, usually zero or one. The statistical performance criteria of the samples can be 

specified and the number of samples required determined. The major constrain of this method 

is that more samples are required compared to the parametric methods.   

The USEPA regulatory concentrations of toxic heavy metals of interest stated above were 

taken as maximum limit. With the assumption that majority of the samples are non-toxic and 

none will exceed the maximum concentration limit of these metals (based on waste 

composition given by the regulatory body of the landfill) the statistical performance was set 

at 90 % confidence interval and 90th upper percentile. 

The number of samples was determined from Table G-3a in Appendix G page 275 RCRA 

draft technical guidance 2002 which is presented as Appendix 3. The table is based on the 

formula n= log(α )/ log(p ). In which p=0.9 and ( 1- α ) =0.9 , where  α= confidence interval , 

p= upper percentiles  and n= number of samples. The sample population was determined as 

22.  

Step 6: Specifying Limits on Decision Errors 

Two potential decision errors could be made based on interpreting samples analysis in term 

of heavy metal content: 

Error Decision (i): Concluding that the true proportion (P) of the waste that is non-toxic was 

greater than 0.90 when it was truly less than 0.90, and consequently heavy metals may be 

leached out during washing process in the activation procedure with possibility of health and 

environmental risk. 



50 
 

Error Decision (ii): Concluding that the true proportion (P) of the waste that is non-toxic was 

less than 0.90 when it was truly greater than 0.90 and consequently leached heavy metals 

during activation process (washing) will have less potential environmental implications.  

Error (i) has more severe implication than error (ii), hence the baseline condition (null 

hypothesis) is chosen that the true proportion (P) of the waste that is non- toxic was less than 

0.90 

                                     Null Hypothesis and Possible Decision Errors   

“Null Hypothesis” Possible Decision Errors 

(baseline condition) Type I Error (α), False Rejection      Type II Error (β), False Acceptance 

The true proportion 

(P) of the waste that is 

non-toxic was less 

than 0.09  

Concluding that the composite is not 

toxic when it was 

Concluding that the composite is 

toxic when it was not. 

In order to set the boundaries of the Gray region, the null hypothesis (baseline condition) is 

assumed that the waste is toxic, hence, one limit of the Gray region is bounded by the Action 

Level and the other limit is set at a point where it is desirable to control the Type II (false 

acceptance) error. One bound of the Gray region is set at 0.90 (the Action Level) since a “no 

exceedance” criterion is included in the decision rule, while the other bound of the Gray region 

will be set at 1. 

The acceptable probability of making a Type I (false rejection) error is set at 10 percent (α). 

Hence, only 0.1 or 10 percent chance of concluding the waste is non-toxic when at least a 

portion of the waste is toxic is allowed. The use of the exceedance rule method does not 

require specification of the Type II (false acceptance) error rate. 
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Step 6   output summary  

Action level 0.09 

Grey action  0.09 to 1     ∆    0.01 

Null Hypothesis P<0.09 

False Rejection Decision Error Limit 

(probability of a Type I error)  0.1 

False Acceptance Decision Error Limit 

(probability of a Type II error)   not specified 

Step 7 Optimization of the Data Collection Design 

Sampling method: Random and Systematic methods were reviewed for use. Since site 

operations are not the same for both landfills, and the operation also changes depending on 

governmental policy a systematic random sampling method was preferred. This will require 

gridding the landfill sites into cell and collecting equal number of samples from each cell at 

similar depth.  

Quality Control of sample: Two groups of quality control samples have been identified as 

required for the project: Sampling and analysis quality controls samples 
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Sampling quality controls  

Equipment blank:  the decontaminated sampling equipment is rinsed using de-ionized water 

under field conditions to evaluate the effectiveness of equipment decontamination or to detect 

sample cross contamination. 

Field blank: this sample is prepared in the field using de-ionized water to evaluate the potential 

for contamination by site contaminants not associated with the sample collected (e.g., airborne 

organic vapors). 

Analysis quality control samples  

Reagent blanks: this will be analyzed along with the samples but will not contain any sample 

of interest but will undergo all process.  

Duplicate samples: selected samples will have replicate sample to evaluate reproducibility of 

result. 

Spikes sample: Known concentration of sample will be added to determine the recovery 

studied and certificated reference sample will be analyzed to evaluated process accuracy. 

Activation process design: A review of the samples result will initiate the activation design. 

Two production options will be evaluated with variation in the activation parameters: the 

heating source using conventional furnace and microwave oven.    
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3.2.2 Developing Standard Operating Procedure for Sampling 

The essence of the standard operating procedure is to outline equipment and methods that will 

be used in obtaining a representative sample of landfill composite from selected landfill sites 

(Olusosun and Abule-egba landfill sites) for analysis. The procedure addressed key points - 

as scope and application of procedure, gridding method, checklist and quality control sample. 

Appendix 4 present the detailed standard operation procedure developed for the purpose of 

sampling. 

 

Pre Sampling Visit 

The sites were visited to evaluate site activities and factors that could influence sampling 

operation. The active landfill site was observed to have a number of activities which affected 

the choice which influence sampling point within the allocated distance point.  

Waste sorting: There were large volumes of segregated wastes within some of the sampling 

area. The volume of the waste could influence the composition of waste within the area. Waste 

sorters have specific locations within the landfill which were avoided during sampling.  Figure 

3.1 highlight some of the activities at the active landfill. 
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Figure 3.1:   Area having sorted recyclable waste on the active landfill 

Work in progress area: Area just receiving waste could not be sampled due to health and safety 

concern relating to the use of heavy equipment like bulldozer and compactors.  

Closed landfill: The only area avoided at closed landfill is a small area having illegal dumping 

of organic waste from the market just by the East side of the dumpsite (see figure 3.2). This 

area is capable of given wrong composition of waste compared other part of the landfill.  
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Figure 3.2:       Fresh organic waste in the closed landfill 

 

3.3 Analytical Instrument  

A number of analytical instrument were used during the analysis of samples to evaluate 

different properties of the samples. Instruments were selected based on methods’ 

recommendation, analyte of interest and sensitivity of instruments.  

3.3.1 Inductively coupled plasma - mass spectrometry (ICP-MS)  

Inductively coupled plasma mass spectrometry (ICP-MS) analytical instrument was deployed 

for the evaluation of inorganic content of samples (Figures 3.3). ICP-MS is a trace multi-

elemental detector capable of the detecting range of metals and non-metals concentrations as 

low as part per trillion. It has wide application potential with high speed, precision and 

sensitivity above other elemental analytical instrument like atomic absorption and emission 

technique which had created a surge in its application in heavy metal detection.   
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ICP-MS has been considered more suitable for the detection of over 60 different elements in 

acid leachate of solid waste matrix (USEPA 6020B). The high temperature plasma heat source 

(5,5000C) will break all types of chemical bond making it a very versatile atomizer and 

molecular ionizer effective for the determination of total elemental content of heavy metal. 

ICP-MS works by measuring the ions of analyte generated by the plasma torch. The acid 

digest of solid waste is nebulized and transported by argon gas to the plasma torch.  The 

sample is ionized and drifted to the mass spectrometer which detect component by the mass 

to charge ratio (M/Z).  The type of acid and heat source used for waste digestion could 

influence the availability of elemental content of acid digest analyzed using ICP-MS (USEPA 

6020B). 
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Figure 3.3   Inductively coupled plasma spectrometer (Agilent 7500 ICP-MS Agilent 

Technology, UK) 

 

3.3.2 Microwave Digestion 

Microwave assisted digestion system offers a fast, effective and convenient  sample 

preparation for multi-element analytical techniques such as ICP-OES and ICP-MS. 

Microwave assisted digestion system provides an effective method in the determination of 

“total” metal analysis in a variety of matrices including organic and inorganic materials. 

Microwave heating source for acid digestion has been found to lead to better quantification 

of heavy metal toxic level in soil, waste, and food samples than conventional heating source 

(Poley-vos et al., 1991; Zelano et al., 1994, Al-Rmalli, 2012). In regards to this research, 

microwave assistant digestion was considered most appropriate considering the complexity 
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associated with landfill composites. A variety of acids was chosen to verify trends in heavy 

metals contents in the samples. The CEM MARS X microwave digester (see Figure 3.4) has 

24 sample vessels and power system range of 0 - 1800 Watts. The 20 ml samples vessels are 

fixed into a continuous mode turntable to ensure even distribution of microwave energy. The 

touch screen display provides an interface to select desired option of programme to be run.  

 

 Figures 3.4: CEM, microwave digestion MARXpress USA 

3.3.3 Fourier transform-infrared (FTIR) spectroscopy  

FTIR is a viable non-destructive analytical method for chemical characterization of waste. 

FTIR spectroscopy has been widely used in the characterization and stability assessment of 

waste (Smidt and Meissl, 2007). The interaction between the infrared radiation and waste 
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components reveals its functional groups and bonding systems (Smidt and Schwanninger, 

2005; Sitko et al., 2004). The band position shapes and intensities are indicative of different 

functional groups (Ouatmane et al., 2000; Smidt and Meissl, 2007; Smidt et. al, 2009). FTIR 

spectroscopy can be adapted to different types of mode to analyze different material (gas, 

liquid, aqueous, amorphous and solid) from gas sensor mode to Attenuated Total Reflectance 

(ATR) mode (see Figure 3.5). The main advantages of (ATR) FTIR spectroscopy is that it is 

a faster technique suitable for most samples (solids, liquids, gels, pastes) and provides 

characterization with high sample reproducibility (Ouatmane et al., 2000). In this research, 

ATR FTIR was applied to evaluate the chemical functionalities of precursors and activated 

carbons in order to understand the functionality of different landfills precursors and their 

respective activated carbon.  

             

Figure 3.5 Alpha Fourier transform-infrared (FTIR) spectrometer (Bruker ) 
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3.3.4 Scanning Electron Microscope with Energy Dispersive X-Ray Spectroscopy 

(SEM/EDX) 

SEM/EDX provides a rapid and non-destructive method for the analysis of trace and major 

elements in solid samples. SEM/EDX is an effective analytical tool in source apportionment 

of environmental particulate matter (PM), evaluating size, chemistry, and morphology of 

particles (USEPA, 2002A; Wu et. al, 2011). It has been used to characterize the elemental 

composition of waste from mining areas, polluted soil sample and composite organic 

materials (Gonzalez-Fernandez, 2007; Kalfa, 2007; USEPA, 2002A). EDX evaluates 

characteristic X-ray lines of elements generated from sample as result interaction with X-ray 

source. SEM is ideal for imaging and analyzing the morphology of surfaces area porosity. 

EDX was used in this research to provide information on the elemental components of 

precursor and activated carbon produced. The surface morphology of precursor and activated 

carbons were also evaluated using SEM technique.   

         

     Figure 3.6:  Carl Zeiss EVO HD 18 SEM and Oxford EDX 

1 

     3 

  

2 

1: Energy Dispersive X ray spectroscope   2. Scanning electron microscope 

3. Monitoring screen  
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3.3.5 Ultraviolet /Visible Spectrophotometer 

Spectrophotometer is an essential analytical tool in quantitative analysis of sample through 

absorption principle. It is used to determine how much light a chemical substance absorbs 

when a known wavelength of light beam is passed through it. Quantitative wavelength suitable 

for analyte of interest could be determined through wavelength scanning. The instrument 

measures the amount of photons (the intensity of light) incident on the sample and amount 

receive by the detector after passing through the sample. Using the beer Lambert principle, 

the concentration of the sample is determined from the absorbance.    

A = ϵlc 

where 

A   = the measure of absorbance (no units),  

 ϵ = the molar extinction coefficient or molar absortivity (or absorption coefficient),  

 l = the path length, and  

 c=  the concentration. 

The light source of spectrophotometer could be varied from the ultra violet visible wavelength 

region of ultraviolet range (185 - 400 nm) and visible range (400 - 700 nm)    to   infrared 

region (700 - 15000 nm). In this research work, spectrophotometer was used to evaluate the 

adsorption capacity of produced activated carbon (see Figures 3.7). 



62 
 

Figure 3.7:   G120845 Thermo Electron Helios Gamma Spectrophotometer 

3.3.6 An Eltra CS800 Carbon Sulfur Determinator 

The ELTRA CS-800 with induction furnace shown in  Figures 3.8 offers a reliable tool for the 

determination of total carbon, total organic carbon and sulfur in minerals and inorganic 

samples( Sinha et al., 2002, Zhao and Zhao, 2009, Desrochers et al ., 2015). It has 4 

independent infrared (IR) cells used for precise simultaneous analysis of varying 

concentrations of carbon and sulfur in one measurement of combusted sample in the induction 

furnace. The sensitivity of the cells ranges from ppb levels to ppm depending on analyte of 

interest. With an average analysis time of 40 to 50 seconds, ELTRA CS-800 offer a fast and 

versatile application in inorganic sample evaluation. In this research, ELTRA CS-800 was used 

to determine the TOC of precursors.  



63 
 

 

Figure 3.8 Eltra CS800 Carbon Sulfur Determinator 

3.3.7 BET surface area analyser 

Micromeritics Gemini 2365 is an essential analytical instrument in the determination of 

surface area and porosity through gas adsorption analysis (see Figure 3.9). It has a unique 

identical sample balance tubes with well reproduced analytical conditions (pressure and 

temperature) during analysis. The interaction of pressurized gas flow into the tubes by a 

control valve is determined through static volumetric and mass detection analysis. The 

instrument has been used to determine the surface area for different porous material: 

nanoparticles and activated carbon (Franz et al., 2000, Attia et al., 2005, Ji and Zhang, 2009).  

The instrument was used in this research to determine the surface area, the porosity size, pores 

volume and adsorption isothermal of the activated carbon. 
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Figure 3.9 Micromeritics Gemini 2365 
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3.4 Sampling procedure  

The sites were systematically gridded into seven sampling cells using a procedure described 

by Resource Conservation and Recovery Act (RCRA) waste sampling technical guideline 

USEPA (2002). A sampling cell was approximately 14,571 m2 for the closed landfill and 

52,857 m2 for the active landfill. Each cell was located using the GPS and a total of three 

samples were obtained from each cell at different locations at the following depth: (i) upper-

depth between 0-15 cm; (ii) mid-depth between 16–35 cm; and (iii) low-depth between 36-

50 cm.  Sampling was carried out at the end of both the wet and dry seasons, in March and 

August 2014 respectively. Samples were collected from areas without landfill covering. 

Sample collection was achieved using a bucket auger and samples were placed in 

decontaminated plastic containers. An average of 500 g of sample was collected from each 

sampling point and some parameters (pH and temperature) of the samples were determined 

on site according to EPA 9045D procedures. Samples were air-dried in the laboratory for three 

days and other sample treatments - oven drying, sieving and sorting followed. The moisture 

content of samples was evaluated by the ASTM D3173 procedure (ASTM, 1988). 

 

3.5 Summary 

This chapter has presented an overview of the research plans;  

Highlighted sampling and implementation procedure. 

Explained analytical instrument used in the research work. 
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CHAPTER FOUR 

PRECURSOR CHARACTERIZATION 

4.1 Introduction 

This chapter presents results and discussions on the precursors’ characterization in the 

following categories: compositional and physical, proximate and TOC, heavy metals, 

elemental and functionalities. The characterization studies were aimed at understanding 

different properties of the precursors that may affect the activation process. Figure 4.1 

presents the flow chart on precursor treatment 

 

4.1.1 Compositional and Physical Characterization  

The landfill sites selected as precursors consist of mainly heterogeneous municipal solid 

waste from both closed and active landfill as explained in Chapter 2. Identifying the 

composition and physical properties of the waste present in landfills is important to the 

design of an activation process. This chapter reports on the experimental procedure taken 

to determine the composition of the landfill waste and their physical properties. While some 

physical properties were determined at the sampling sites, others were evaluated in the 

laboratory.  
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Collection of sample and determination 

of the pH and temperature before 

leaving the sampling site 

 Dry sample in oven at 105 °C until a 

constant weigh is attain                          

  

Taking quantity required for each 

analysis 

Compositing and Homogenization of 

sample components into two groups 

more degraded (MD) and less degraded 

(LD) component based on size and depth 

to get a representative sample 

MD < 6.35mm and LD> 6.35mm 

  Separation samples into components       

using mesh size of sieves and hand 

picking waste into classes 

  FLOW CHART OF SAMPLE TREATMENT 

Location                              Activities                       parameter and 

method used 

ON SITE                                                                                                                                pH and Temperature                      

                                        (EPA 9045D) 

 

                                                                                                                                                Moisture content                                                                                                                                                                                                                                                                                                                                                                                                                                   

(ASTMD3174) 

 

                                                                                                                                                  Compositional 
analysis (Jain et al., 
2013,  Quaghebeur et 
al., 2013) 

  

IN THE LABORATORY 

 

 

 

 

                                                                                                                                 TOC ( Schumacher , 2002)  

                                                                                                                                 Proximate analysis 

                                                                                                                                   (ASTMD 3715-7) 

                                                                                                                                         Heavy metals concentration 
(EPA 3050B) 

                                                                                                                                      FTIR, EDX/SEM  
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4.1.2 Proximate analysis and Total Organic Carbon (TOC) 

Proximate properties of precursors are one of the major factors that will influence the activation 

process of biomass (Bolan et al., 2013, Shen et al., 2010). Proximate analysis for dried sample 

consists of the determination of ash, volatile matter and fixed carbon contents of the raw 

precursor. These values essentially affect both the combustion behavior of precursor, 

percentage yield and nature of product formed (Bolan et al., 2013). High moisture content 

could decrease the percentage yield while volatile matter/fixed carbon ratios of precursor 

influence combustion efficiency. On the other hand, ash content adds to the waste weight 

without enhancing the heating value and percentage yield. The organic carbon constituent in 

samples is determined from the TOC values. For this research, the proximate properties of 

sample were evaluated using ASTMD 3714-5 methods, and TOC determined using an Eltra 

CS800 Carbon Sulfur Determinator and by Walkley Black methods TOC (Zhao and Zhao, 2009, 

Schumacher, 2002) 

 

 

4.1.3 Heavy metals Concentration of precursors.  

Heavy metal burden of landfill is a major source of environmental toxicity (Page et al., 2014). 

It is responsible for the contamination of both surface and ground water. Depending on the 

nature, total concentrations and chemistry of heavy metal in the landfill composite, the leachate 

of landfill can either be a high or low risk to the environment (Jain et al., 2013). Heavy metals 

in the landfill site have been observed to be a major, non-volatile inorganic contamination 
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which concentrations may not change due to landfill degradation but mobilized within and out 

of landfill through leachate flow. For the activation process of landfill composite, heavy metal 

concentrations in the precursor will be needed to design appropriate step within the conversion 

process to enhance heavy metal removal. Heavy metal concentrations of precursor in this work 

were determined using ICP-MS. The metals of interest are: As, Cd, Cr, Pb, Se, Ba, and Ag. Hg 

is excluded from the list of metal of interest because it is not detected by ICP-MS due its high 

volatility (EPA 3050B). 

 

4.1.4 Elemental content and surface morphology of precursor 

Knowing the elemental content of the precursor is essential to understanding the surface 

chemistry of the activated carbon that is made from it. It is important for understanding the 

possible ionic interaction within the activated site of carbon. It aids the explanation of the 

possible interaction between the available heteroatoms and the condensed poly aromatic or 

poly aliphatic sheets of the activated carbon. This plays a significant role in the chemical 

properties of the activated carbon. The spore sizes, type and distribution of precursor could 

play a major role in the adsorption capacity of the synthesized activated carbon. Reported 

here is the precursor elemental content and surface morphology in relation to the nature of 

the precursor (more degraded and less degraded) and sampling depth. The evaluation was 

carried out using Scanning electron microscope (SEM) with energy dispersive X-ray analysis 

(EDX) as described in Chapter 2.   
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4.1.5  Functionalities of the precursor  

Chemical properties of precursor are largely influenced by the functional groups within the 

structure. Identifying the functional groups of the precursor is essential to understanding 

possible effect of activation parameters and possible functionality of the resulting activation 

product. The functional peaks will also provide information on the degradation properties 

and possible organic content of the precursor.  

 

4.2 Methods 

4.2.1    pH and temperature 

The RCRA procedure has recommended determination of pH and temperature of waste 

properties on site. The EPA 9045D was used for this purpose.  20 g of each sample was 

collected into a plastic container and 20 mL of reagent water was added. The plastic was 

covered and shaken for 5 min. The solution was allowed to settle and the pH measurement and 

temperature was taken using Adwa AD11 pH meter. The reading of each sample was taken 

twice and the average determined.  

4.2.2   Moisture content determination  

Moisture content was determined using ASTM D 3173. Samples were spread on stainless 

steel container of known weight and placed in thermostatic drying oven at 105 °C and the 

weight of sample determined every 1 hour until a constant weight is attained. 
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The moisture content was determined thus  

Mw = Weight of sample on the field (Wo) – Weight of sample after drying (W1) 

                                    Weight of sample on the field (Wo) 

 

4.2.3 Compositional characterization 

 Samples were separated into groups based on size and physical identification of the types of 

wastes. Separation was carried out by manual hand picking and sieve size method.  Waste 

composites of less than 0.425mm mesh size of sieve were regarded as fine composition of 

the waste, while waste composites greater than 0.425mm but are less than 6.35mm were 

regarded as intermediate composition of the sample. Other compositions, which were greater 

than 6.35mm, were identified and placed in the appropriate class of waste. The fine and 

intermediate composition of waste - consisting of mostly soil and degraded waste - were 

classified as more degraded composite (MD) of the sample, while the remaining constituents 

were regarded as the less degraded (LD) (see Figure 4.1). Each bulk classification of waste 

was crushed and homogenized to make a representative samples for the analysis. The 

compositional procedure were design in line with methods used by Jain et al., 2005 and 2013 

and Quaghebeur et al., 2013.  
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Figure 4.1:         Chart showing sample classification into components  

Eleven classes of waste were identified from the samples. They included glass, inert, metal, 

textile, wood, plastic, paper and cardboard, fine, intermediate, other and leather.  

 

4.2.4 Proximate Analysis 

The ash content of samples was determined using the ASTM D3174 method: representative 

samples (2 g) were weighed in a crucible and placed in a carbolite furnace for 1 h at 750 °C. 

After cooling the samples in a desiccator, the differences in weight were expressed as the 

percentage of the dry weights:  

%Ash content = (Wo – Wash)/Wo)*100 %   

sample

More 
Degraded

fine ( S< 
0.425mm) 

intermediate

(0.425mm<S<6.3
5mm) 

Less 
degraded

S>6.35mm 
other waste 
classification
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Wo is the dry weight; Wash is the weight of ash after heating at 750°C. The volatile carbon 

content of samples was determined by heating 2 g of samples at 925°C for 7 mins in a 

carbolite furnace (ASTM D3175), while the fixed carbon content was determined by 

subtracting the weight content of volatile and ash contents from the dry weight of the sample. 

Results were expressed as the percentage of the dry weigh (Kalanatarifard and Yang , 2011). 

%Volatile content = ( Wo –WVC)/Wo)*100 % 

Wo is the dry weight; WVC is the weight of sample after heating at 925 oC. 

 

4.2.5 Total Organic Carbon (TOC) 

4.2.5.1 Dry Method 

An Eltra CS800 Carbon Sulfur Determinator was used; 1g of sample was treated with 6.5M 

HCl acid in an Erlenmeyer flask inside the TOC-module to remove inorganic carbon 

interference. Samples were placed in a crucible, and then combusted in the induction furnace 

at temperature of 1500 °C with a flow of pure oxygen that purges the CO2 out of the flask, 

through to an infrared detector. The instrument was calibrated with reference material (3.0 % 

C steel) before and during the analysis. 
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4.2.5.2 Walkley Blacky method  

Representative samples (1g) were oxidized using 0.1M dichromate and concentrated H2SO4. 

The excess Cr2O7
2- was titrated with ferrous sulfate using ferroin indicator until color change 

from green to reddish brown. A blank sample was run using the same procedure. Triplicate 

titre values were determined and the average was used to calculate TOC content as thus: 

 %C = (B-S) * M of Fe2+ * 12 * 100 * 1.73 

                     g of soil * 4000 

where: 

B = Volume (ml) of Fe2+ solution used to titrate blank 

S = Volume (ml) of Fe2+ solution used to titrate sample 

12/4000 = milliequivalent weight of C in g. 

Total carbon conversion factor = 1.73(Schumacher, 2002) 

 

4.2.6 Heavy metals concentrations in precursor 

4.2.6.1 Precursor Acid Digestion  

All digestion vessels were cleaned by washing with hot 6.3M hydrochloric acid at 80 °C, for a 

minimum of two hours followed by hot 7.3M nitric acid at the same temperature and time. The 

vessels were then rinsed with reagent water and dried in an oven. Homogenised samples 

(approximately 0.500 g) were weighed to the nearest 0.001 g into the cleaned digestion vessels. 

Concentrated nitric acid (10 ml) was added to each vessel containing the sample in a fume 
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hood. These samples were pre-digested in the hood with the vessel loosely capped for 15 

minutes. The digestion vessels were then tightly capped and placed in the CEM MARS Xpress 

digester microwave system after the power efficiency has been confirmed. The samples were 

digested using pre-programmed EPA3051 which digested samples by first raising temperature 

of each sample to 175 Electrical conductivity (EC) in 5.5 minutes and remain at 175 EC for 

4.5 minutes. The heating system was at 60 % of 1600W. The vessels were allowed to cool for 

1 hour before removing them from the microwave system. The vessels were vented in the fume 

hood for 30 minutes. 

  Samples were filtered and diluted with reagent water to the 50 ml mark, then centrifuge at 

3000 rpm for 7 minutes. Samples were further diluted at 1:10 with reagent water. 5 ml of these 

samples were pipette and the heavy metal content detected using an Agilent 7500 ICP-MS. A 

total of 30 samples were digested using nitric acid while the remaining 31 samples were 

digested using the combination of nitric and hydrochloric acids (8 ml+3 ml).  

 

4.2.6.2 Determination of heavy metals content in digested samples using ICP-MS 

Agilent 7500 ICP-MS was used for the heavy metals determination. The instrument uses a 

collision cell for interference removal. Calibration standards for elements were prepared in the 

range 0.0-10 mg/l.  An auto sampler (Cetac ASX-520) was used to inject the samples through 

the nebulizer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The instrument was 

optimized with instrument parameters set at  
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 PARAMETER                                                VALUE  

RF Power (W)                                                   1400  

Cool Gas Flow (l/min)                                        13  

Auxiliary Gas Flow (l/min)                              0.8  

Nebuliser Gas Flow (l/min)                         0.85-0.90 

Sample Uptake Rate (ml/min)                   0.4 approx.  

Sample Introduction System  

Concentric nebulizer                              1.5mm ID injector 

Instrumental calibration, reagent blank, instrument standards were run to evaluate the 

instrument optimum operation.  

 

4.2.7 Elemental content and surface morphology of precursor 

The homogenized samples were mounted on an aluminum stub with conductive carbon tape. 

The dust on the samples was removed with a spray before being placed in the sample chamber 

for analysis. The heterogeneous nature of these samples particles requires that multi-spot 

analysis of sample is carried out (USEPA 2002a). The working distance (WD) was maintained 

at 8.5 mm while the diameter apertures of sample were varied between 1µm and 1mm for the 
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analysis of three different spots for each diameter. The accelerating voltage for all analysis 

was at 20 Kev.   

 

 

 

4.2.8  Functionalities of the precursors  

Representative samples (1 g) were additionally homogenised by means of a pestle and mortar 

prior to analysis using an Alpha ATR-FTIR Spectrometer (Bruker). The FTIR 

spectrophotometer covered a frequency range of 4000–400 cm−1. In order to improve the signal 

to noise ratio, prior to every measurement background correction of the spectrum with a 

reference spectrum of the empty ATR crystal was carried out.  

 

4.2.9 Quality Control  

4.2.9.1 pH 

Necessary quality control steps were taken during reading. The pH meter was calibrated 

using buffer 7 and 10 before use. Reagent water was used to clean the electrode after each 

measurement. The electrode is gently wrapped to dry using a tissue. Electrode is well covered 

with aqueous solution before measurement is taken.  
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4.2.9.2 Heavy metal determination 

4.2.9.2.1 Power calibration 

Three point power calibration involving measurement of absorbed power at three power setting 

of 400W, 800W and 1600W was carried out as thus: 

 1kg = 1 litre of distilled water is weighed (1,000.0 g + 0.1 g) into a beaker. The initial 

temperature of the water was determined a using thermometer. The beaker was covered and 

placed in microwave cavity and irradiated with microwave at selected power wattage for 2 

minutes. The beaker was removed and the water vigorously stirred and the temperature 

measured within the first 30 seconds. The distilled water is disposed and the beaker allowed to 

cool by washing under the tap. The whole process was repeated using a fresh quantity of 1 litre 

distilled water and the average determine after running the calibration thrice. The power 

absorbed is determined by the following relationship: 

    P          = (K Cp m ∆T)/t 

Where: 

P = the apparent power absorbed by the sample in Watts 

(W = joule sec-1) 

K = the conversion factor for thermo chemical calories sec to watts (which equals 4.184) 

Cp = the heat capacity, thermal capacity, or specific heat (cal g-1 °C -1) of water  

m = the mass of the water sample in grams (g) 
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    ∆T = the final temperature minus the initial temperature (°C) 

t = the time in seconds (s) 

Using the experimental conditions of 2 minutes and 1 kg of distilled water  

 the calibration equation simplifies to: 

P = 47*∆T 

Presented below in table 4.1 is the calibration result with the efficiency range for each power 

rating 

Table 4.1:    Power calibration of the Microwave digester 

S/N 

Power 

rating 

(W) 

Power reading (W) 

Average 

power 

reading 

(PX)  

Power 

limit 

point 

(PL) 

difference(PX-PL)  

     1st 2nd 3rd       

1 400 329 376 376 360 340 20 

2 800 799 705 752 752 680 72 

3 1600 1363 1457 1504 1441 1360 81 

From Table 4.1 above, the microwave digester indicated highest wattage efficiency at 1600W. 

Although, all power rating options was above limits set for each point. The microwave digester 

was run using 1600W. 
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4.2.9.2.2 Quality control samples 

Digested along with each batch of samples are other quality control samples: the spiked 

sample, duplicate sample, field blank, equipment blank, and reagent blank.  A certified 

reference standard soil sample, CRM051-50G, was also analyzed to evaluated reproducibility 

of the extraction system.   

 

4.2.9.2.3 Spiked sample procedure 

Analyte grade chromium standard was used for the spiking process. The spiking concentration 

was determined to be 20 mg/l which is more than 20 times the quantification limit for 

chromium (20 X 0.75 mg/l = 15mg/l). Chromium standard solution (2 ml) was dissolved in 10 

ml standard flask and made to mark. 2ml aliquots of the solution were added to 0.5g of the 

sample and allowed to dry in the oven at 50°C. The dried sample was digested as stated in 

Section 4.2.3 above  

 

4.3 Result and discussion   

4.3.1 pH values 

A total of 44 and 33 samples were evaluated for the active landfill and closed landfill 

respectively.  The pH values of samples in both landfills during the wet and dry seasons were 

mainly within the range of 7.2-7.6, with an average pH of 7.2 and 7.5 for the active landfill 

and 7.5 and 7.2 for the closed landfill respectively (Table 4.2). Landfill waste with pH >7 is 
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considered as intermediately stable and the age to be >5 years (Kurniawan et al., 2006, 

Kulikowska, and Klimiuk, 2008).  At this pH, methanogenesis should be enabled through 

methanogenic microorganisms convert volatile fatty acids (VFA) to biogas (Sormunen et al., 

2008).  This accession confirms Ogunyemi et al. (2010), who reported high population 

counts of bacteria and fungi at an active landfill (Olusosun) and a closed landfill (Abule-

egba) while evaluating the microbial content of soil from the landfills at pH of 7.5 and 7.8 

respectively. In the present study, pH also had different relationships with depth for the two 

landfills. The upper depth in the active landfill showed higher pH during both season with 

an average of 7.6, while the upper depth in the closed landfill showed the lowest during both 

season with an average of 7.3.  

 

4.3.2 Temperature  

Both landfills samples exhibit similar trend in the temperature values across the depth and 

with seasonal variation. The average temperature for all depth in both landfills sample were 

higher in the dry seasons (active landfill: dry season 33.3 °C, wet seasons   26.7 °C, closed 

landfill:  dry season 34.9 °C, wet season 28.2 °C). For both landfills, the temperature 

increased with increase depth during the dry seasons while having no definitive trend in the 

wet seasons. This observation may indicate the effect of precipitation which tends to affect 

the heat content on the landfill through moisture movement across the depth. 
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Table 4.2:  Comparison of measured parameters for active and closed landfills 

 

   Active landfill N= 44    Closed landfill   N= 33 

 

Depth                         Upper  Mid Lower  Upper  Mid     Lower 

Seasons                   Wet Dry Wet Dry Wet       Dry    Wet        Dry  Wet   Dry  Wet    

Dry 

 

Average moisture (%) 31.1         25.8  40.4 23.8 33.4          28.0  29.5        19.7       36.2        24.1   30.38            

31.0 

Average TOCMD (%) 5.9            4.8             5.3            5.2         7.1            6.1         8.5             3.9             7.2          4.8          7.6               

3.8 

Average TOCLD (%) 9.8          ND             10.2          ND           7.6          ND        14.3            ND            13.3       ND          10.3            

ND  

Average pH   7.5            7.5              7.4            6.7          7.6          7           7.6               6.9             7.4         7.5          7.4                

7.1 

Temperature (°C) 25.6        33.5 27.7         31.2      26.9        40.4        28              34.6             28.1     34.9    28.5    

35.1                        

TOCMD, TOC of more degraded samples; TOCLD, TOC of less degraded samples; ND, not determined: N, number sample. 
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4.3.3 Moisture content 

The moisture content in both landfills varied with depth and seasonal condition. The major 

source of water flow in both landfills is from precipitation during the wet season. The water 

system of the landfills ensures that no other external water gets into the landfills and excess 

runoff water from the rain is collected in the leachate ponds at active landfill, while in the 

closed landfill it forms water logs at low level areas within the landfill. The active landfill had 

moisture content during both seasons at an average of 34.9 % during wet season and at 25.8 

% during the dry seasons, compared to 31.9 % and 24.4 % respectively for the closed landfill. 

The difference in the average moisture content can be attributed to low absorption capacity 

associated with older waste in the closed landfill.  

During the wet season, both landfills showed similar trend in moisture content (see Table 4.2) 

despite differences in waste composition. The variation in the more degraded composition in 

the upper depth of the landfills (82.6 % closed landfill; 63.9 % active landfill) had little impact 

on the moisture contents, at 29.1 % and 33.1 % for the closed and active landfill respectively.  

The more degraded components possess pores which can be filled with liquid during 

precipitation. As the volume of liquid increases within pores, the liquid is able to move by 

gravity to the next layer (Booth and Price, 1989; Munawar, 2014). The more degraded 

component seems to provide a water infiltration path within the landfill rather than absorption 

of moisture. At mid-depth, however, there was a higher percentage of less degraded 

components (35.5 % (w/w) closed landfill; 38.8 % (w/w) active landfill), which are less 

porous waste components (nylon, glass, metal, stone and leather). This slows the gravitation 

movement of the liquid, which may be responsible for the accumulation of moisture in the 
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mid layer, at 31.2 % and 40.4 % for closed and active landfills respectively. Table 4.3 below 

shows the statistical regression analysis of the relationship between the more and less 

degraded components with moisture content of both landfills; moisture content in both 

landfills had a positive significant statistical relationship with less degraded weight (p<0.01), 

and a negative relationship with more degraded weight percentage (p<0.05). 

Table 4.3:  Regression analysis of waste parameters for both landfills  

 

                                 Active landfill                                                                  Closed landfill 

 

Parameters                #MD Weight              ## LD Weight                   #MD weight          ## LD weight 

  

Moisture content (%) - 0.86*   0.81*        -0.99*                  0.96*            

pH    0.89^    0.88^                                  - 0.31^                  0.26^ 
# MDTOC                             0.42^     -0.11^                             
## LDTOC       0.59^   0.15^                 

 

    * Values have p<0.01                          #   more degraded  

    ^ Values have p>0.05                  ##   less degraded 

 

4.3.4 Composition  

The compositions of samples from both landfills were similar in that three constituents are the 

major component in the entire cell sampled: fine, intermediate and Nylon. Figure 4.2 shows 

the average distribution of waste type in the landfills samples. Fine and intermediate 

components of waste constituted an average of 66.1 % and 75.3 % (w/w) of waste in both 

active and closed landfills respectively. There was a clear trend in the depth distribution of 

fine and intermediate components of  waste in the active landfill: with increasing depth the 

intermediate constituent progressively decrease from 55.8 %(w/w) to 43.5 % (w/w), while the 

fine constituent  increased from 13.6 % (w/w) to 24.2 % (w/w). Conversely, for the closed 
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landfill, the intermediate constituent increased from 45.0 % (w/w) to 54.7 % (w/w) with 

increasing depth, while the fine component decreased from 37.8 % (w/w) to 21.2 % (w/w) 

(see Table 4.4).  Generally, the volume of waste and soil in the landfill will be determined by 

the local practices, the landfill age, and the ratio of decomposed organic waste (Møller et al 

2009). Jain et al. (2013) and Quaghebeur et al. (2013) have reported that 75 % of the fine and 

intermediate components of excavated waste were from the daily soil cover and degraded part 

of the waste. However, daily landfill covering was not practiced for the sites in the present 

study and the most likely source of the fine and intermediate constituents will be from the 

point of generation and from the degraded part of the waste. Nylon constituted an average of 

15.1 % (w/w) of waste in the active landfill and 8.6 % in the closed landfill. Unlike other 

reported waste compositions from Thailand and Belgium (Quaghebeur et al., 2013), nylon 

weight was not combined with plastic weight in the present study because of the large volume 

of nylon compared to other forms of plastic, and the need to recognize it as major stream of 

waste onto the landfills. The relatively high volume of nylon at the active landfill can be trace 

to the increasing use of polythene bags in household and commercial activities, as reported by 

Umara et. al, (2012). 
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Table 4.4      Composition (%) of samples with depth for both landfills 

 

                                   Active landfill     N = 44       Closed landfill        N= 33  

  Depth:           upper                 mid                    lower                  upper                        mid                     lower 

Fine  13.6   13.4  24.2  37.8 22.7  21.2 

Intermediate        55.8                47.8 43.5 45.0 44.8 54.7 

Nylon                          12.4  21.8   11.3  5.5 16.0 4.4 

Wood   5.6  0.6  4.6  0.1 0.2 2.3 

Metal                            1.5                   0.7 0.5 0.2 0.3 2.4 

Plastic    2.5  1.5                    1.8  2.5   1.3  0.5 

Leather    0.2   0.9  0.3 0.0 0.2 0.2 

Textile    4.2   2.3  3.2 4.9 0.8 4.6 

Glass    1.1    2.0   4.2 0.4 4.5 4.2 

Stone     2.8   6.7 3.4 3.3 6.7 3.2 

Paper  0.0 1.3 2.0 0.1 0.2 0.0 

Other      0.3  1.0     1.0 0.2 2.3                      2.3 

 Total      100 100 100 100                   100                    100 

 

N: number of sample
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Figure 4.2 Average distribution waste compositions in the closed and active landfills 

samples 

 

In both landfills the paper constituent was a low proportion of the compositions; an average of 1.1 

% (w/w) of the waste in the active landfill and a very minor constituent (0.1 % w/w) of the whole 

waste mass in the closed landfill. Paper constituent was lowest at lower depth (0.1% for active 

landfill and 0 % for the closed landfill). The low volume of paper in the samples could be due to 

the degradation of paper in the landfill. A similar observation was made on the decomposition of 

paper/cardboard by Quaghebeur et al. (2013), who reported a decrease from 14 % (w/w) of 

landfilled waste to 4 % (w/w) of the waste during evacuation. Also, Sormunen et al. (2008) 

observed that the proportion of paper and cardboard decreased towards the bottom of the 

investigated landfills, indicating their degradation.  

 

      Active landfill Closed landfill 
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4.3.5 Total organic carbon (TOC) 

TOC determination indicated that 24 % of the samples had above >10 % TOC by mass, while 32 

% had above the recommended quantity (IPCC 2006; DEFRA,  2010)  for waste to be landfilled 

(6 % TOC). The less degraded component of the samples had more TOC than the more degraded 

samples in both landfills, with an average of 12.6 % for closed landfill and 9.2 % for active landfill. 

The TOC for both landfills varied with season but there was little evidence of a relationship with 

moisture content of samples (see Figure 4.3).  TOC of samples showed no pattern with depth, with 

the exception of average TOC of the more degraded samples which increased with depth from 4.8 

% to 6.1 % during the dry season in the active landfill.  Similar observation was made by García 

et al., 2016 evaluation of organic carbon content in excavated landfill waste who observed no 

linear relationship between depth of waste sample and availability of degradable organic fraction 

for a depth of 2- 30 m. 

This result indicates that the non-degraded organic carbons are present in the less degraded 

components of both landfills. Stricter regulation is considered for these types of waste due to their 

recalcitrant nature on the landfill (Renou et al., 2008). TOC of samples obtained during the wet 

season were greater than those of the dry season (7.8 % and 4.7 % for closed landfill; 6.1 % and 

5.4 % for the active landfill).  This may be due to the possibility of increased dissolved organic 

carbon within the landfill during the wet season. During the wet season increased precipitation 

washes out the degraded organic carbon forming leachate containing dissolved organic compound 

complex and colloid particulates, which move through layers within the landfills. The transport of 

leachate is affected by a variety of chemical and hydrologic factors, which enhance or impede the 

re-absorption of the organic carbon complex through the waste profile (Ogundiran and Afolabi, 

2008). 



89 
 

 

 

 

Figure 4.3   Correlation studies between moisture content and TOC 

MD: More degraded, LD: Less degraded, TOC:  Total organic content. 
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4.3.6 Proximate analysis 

The proximate constituents of most samples from both landfills showed the same trend: 

ash content>volatile carbon>fixed carbon (Table 4.5). The more degraded samples of both 

landfills had very similar proportions of ash and fixed carbon (closed landfill, 58.8 and 

17.0 % respectively; active landfill 57.2 and 17.2 % respectively). This reflects stability in 

the material composition of these components of waste due to degradation. Degraded 

waste and biomass are often high in ash and fixed content compared with fresh material 

(Simkovic et. al., 2008)   

Statistical analysis (ANOVA) of the proximate constituents of the more degraded and less 

degraded samples revealed that the differences between the active and closed landfill 

samples were not significant (p>0.05). There were no evident trends for proximate 

constituents, with sampling depth for the closed landfill. However, for the active landfill, 

volatile carbon of the more degraded sample increases progressively from 23.1 to 25.4 % 

with increased depth, while the ash content decreases from 60.2 to 56.2 %. In evaluating 

wastes for thermal conversion, 

Proximate properties are the essential characterization used. The high average ash content 

(51 %) of these wastes is a limiting factor for their utility in heat generation. Ash content 

adds to the waste weight without enhancing the heating value, and also increases the ignition 

temperature of the waste which can reduce plant output and result in increased operating 

costs.  
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Table 4.5:  Comparison of the average Proximate Composition (W/W %) of Samples from the Active 

and Closed landfills with depths 

                                                                                                       Closed landfill 

Depth Upper layer               Mid layer     Lower layer 

Sample volatile ash fixed total   volatile ash fixed total   volatile ash fixed total 

MD 
20.8  

(9.71) 

61.2 

(12.67) 

18 

(5.73) 
100   

33.4 

(12.25) 

52.4 

(12.29) 

14.2 

(6.44) 
100   

23.4 

(3.8) 

58 

(7.07) 

18.6 

(7.1) 
100 

LD 
43.8 

(20.51) 

45.2 

(17.57) 

 

11 

(4.56) 
100   

49.3 

(22.71) 

41.3 

(19.6) 

9.4 

(4.79) 
100   

41.6 

(13.99) 

46.3 

(12.74) 

12.1 

(4.27) 
100 

                   Active landfill 

MD 
23.1 

(8.95) 

60.2 

(10.97) 

16.7 

(4.89) 
100   

23.7 

(9.95) 

59.9 

(8.49) 

16.4 

(12.45) 
100   

25.4 

(13.43) 

56.2 

(12.95) 

18.4 

(6.5) 
100 

LD 
39.6 

(21.18) 

46.1 

(16.78) 

14.3 

(5.79) 
100   

40 

(25.8) 

47.4 

(18.84) 

12.6 

(8.45) 
100   

39 

(15.68) 

44.6 

(10.43) 

16.4 

(7.26) 
100 

More degraded samples (MD); less degraded samples (LD). The values in parentheses are 

the standard deviation based on 33 samples for each layer. 
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4.3.7 Heavy metal concentrations 

 4.3.7.1 Quality control sample  

The detection limits for samples were evaluated by analyzing replicate determinations of 

the reagent blank. The results of blanks for each digestion were used to calculate the limit 

of detection (LOD) and limit of quantification (LOQ) using the equations. 

LOD = 3 X SD and LOQ = 10 X SD (see Table 4.6) where SD is the standard deviation of 

the blank 

Table 4.6  Detection limit using Aqua Regia and HNO3 

Detection limit using  Aqua Regia 

Blank Sample Cr As Se Ag Cd Ba Pb 

MDL (mg/l)  0.68 0.01 0.11 0.00 0.00 0.52 0.19 

SD 
0.75 0.00 0.04 0.01 0.00 0.14 0.05 

LOD=3XSD 2.25 0.01 0.12 0.04 0.00 0.41 0.16 

LOQ=10XSD 7.48 0.02 0.41 0.15 0.02 1.37 0.54 

Detection limit using  HNO3 

Blank Sample Cr As Se Ag Cd Ba Pb 

MDL (mg/l) 0.33 0.01 0.05 0.00 0.00 0.91 0.28 

SD 0.08 0.01 0.02 0.01 0.00 0.24 0.04 

LOD=3XSD 0.23 0.02 0.07 0.02 0.00 0.71 0.13 

LOQ=10XSD 0.75 0.08 0.23 0.08 0.01 2.37 0.44 
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For the elements of interest As, Cd, Cr, Pb, Se, Ba, and Ag, 65 % of elements in the four 

duplicate sample replicated well with variation within limit (relative percentage difference 

(RPD) <20 %). The recovery study of spiked sampled was between 88 % and 99 % for the 

three spiked samples. Concentration of certificated referenced sample analyzed was within 

predicted interval for 60 % of the metals and replicated at (RPD< 8 %) for all elements 

except Ag. Table 4.7- 4.9 presents the values of the quality control samples. 

 

Table:   4.7      Duplicate studies of samples using Aqua regia and HNO3                              

                                                        Duplicate sample digested using  aqua regia 

Sample\metal  Cr (mg/l) Zn(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

sample 1 50.3  7032.4 4.8 1.0 0.9 6.9 119.3 306.6 

sample 2 56.5 8515.3 5.5 1.1 1.1 8.3 121.4 404.0 

RPD  12 % 19 % 14 % 10 % 25 % 18 % 2 % 27 % 

Duplicate sample digested using  HNO3 

sample\metal Cr (mg/l) Zn(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

sample 1 26.9 256.5 1.0 0.30 0.2 0.4 32.1 34.6 

sample 2 16.9 257.9 1.0 0.25 0.1 0.6 32.6 27.7 

RPD 46 % 1 % 0 % 15 % 46 % 29 % 2 % 22 % 
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Table 4. 8                                       Recovery studies of samples 

Sample ID 
number of 

sample 

conc. of 

sample(mg/l) 

conc. of spiked 

sample (mg/l) 

spiked 

conc.(mg/l) 

% 

recovery  
acid used 

CMD Lower 1 28.3 46.2 20 89.5 HNO3 

AMD upper 1 33.1 52.8 20 98.5 HNO3 

AMD upper 1 32.6 52.2 20 98 
 Aqua 

reiga 

Closed landfill more degraded lower depth (CMD lower); Active landfill more degraded 

upper depth (AMD upper); Relative percentage difference (RPD ) 

Table 4.9 Certified reference sample  

 

    

  

 Acid 

Used 

Cr 

(mg/l) 

As 

(mg/l) 

Se 

(mg/l) 

Ag 

(mg/l) 

Cd 

(mg/l) 

Ba 

(mg/l) 

Pb 

(mg/l) 

Aqua 

regia 
112.7 48.4 142.0 1.4 234.7 707.2 355.9 

HNO3 149.5 56.2 175.0 43.9 264.0 798.0 423.7 

RPD 7 % 4 % 5 % 47 % 3 % 3 % 4 % 



95 
 

4.3.7.2 Acid extraction effect  

Six of the seven USEPA-defined toxic heavy metals investigated, microwave digestion with 

Aqua regia resulted in higher concentration of metals than with HNO3. Only Pb showed a 

higher average concentration of 150.9 mg/l for HNO3 compared to 135 mg/l for aqua regia. 

Concentrations of heavy metals in samples varied with type of acid used. A student T-test 

was used to investigate if there are significant statistical differences in the concentrations of 

metals of each acid. The concentrations of metals in the acid digest had no significant 

statistical difference with p > 0.05.  Both acids indicated a higher burden of heavy metals 

(>10 %) in closed landfill samples than active landfill samples, except for Cd and As. For 

both acids, five of the metals of interest had elevated concentrations in the more degraded 

component than the less degraded samples of both landfills (see table 4.10-4.13). The 

combination of nitric acid and hydrochloric acid was found suitable for the extraction of 

more metal from samples 
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Table 4.10        Toxic metals concentrations of closed landfill  samples using aqua regia 

More degraded     N=2 

depth Cr(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

upper 23.1(0.7) 3.1(0.4) 0.8(0.1) 0.5(0.2) 5.4(0.1) 75.3(26.5) 184.0(52.4) 

mid 31.0(15.1) 4.9(2.0) 0.5(0.1) 0.6(0.3) 4.1(1.8) 145.0(15.2) 154.2(61.5) 

lower 31.1(18.3) 3.6(2.5) 0.4(0.1) 0.6(0.6) 11.8(11.4) 210.6(118.9) 157.6(117.6) 

                                                        Less degraded 

upper 23.0(12.1) 2.4(0.6) 0.3(0.1) 1.0(0.1) 2.2(2.1) 126.3(76) 177.2(154.7) 

mid 20.5(6.8) 2.4(0.4) 0.4(0.1) 0.4(0.2) 3.2(0.9) 70.3(16) 118.6(74.7) 

lower 35.2(22.4) 4.6(1.5) 1.1(0.9) 1.0(0.6) 6.4(1.7) 311.6(42.5) 380.1(81.6) 
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Table 4.11      Toxic metals concentrations of closed  landfill using HNO3 acid 

  More degraded    N=2   

Depth Cr(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

upper 23.5(6.7) 2.2(1.2) 0.5(0.2) 0.4(0.1) 4.5(2.3) 58.7(1.5) 184.8(36.6) 

mid 30.8(2.9) 5.2(3.1) 0.6(0.3) 0.6(0.5) 5.2(0.6) 202.6(51.2) 211.4(25.3) 

lower 22.4(7.8) 2.1(0.3) 0.4(0.1) 1.0(1.2) 4.9(0.3) 99.1(23.0) 140.1(51.5) 

                 Less degraded 

upper 18.4(9.0) 2.1(0.8) 0.3(0.1) 0.6(0.1) 3.3(0.3) 138.7(27.7) 183.0(146.7) 

mid 21.2(7.4) 2.1(0.7) 0.3(0.0) 0.7(0.1) 7.3(3.1) 106.3(7.7) 195.6(45.1) 

lower 25.1(16.7) 2.4(1.2) 0.3(0.1) 0.9(0.8) 4.2(2.9) 229.0(240.8) 355.5(123.8) 

Values in parentheses are the standard deviations; N: Number of sample 
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Table 4.12           Toxic metals concentrations(mg/l) of active landfill  samples using aqua 

regia 

    More degraded  

depth Cr(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

upper 39.4(9.6) 2.4(0.4) 0.3(0.0) 0.6(0.2) 1.7(0.5) 68.0(2.4) 66.1(22.0) 

mid 21.1(2.6) 1.8(0.3) 0.3(0.0) 0.3(0.1) 2.1(0.2) 66.6(6.9) 71.6(6.3) 

lower 20.2(6.9) 2.1(0.3) 0.3(0.0) 5.9(5.2) 4.1(0.4) 68.5(15.3)) 59.6(21.6) 

                                                    Less degraded 

upper 27.3(0.5) 1.6(0.8) 0.3(0.0) 0.3(0.2) 1.0(0.9) 50.0(25.4) 60.0(36.0) 

mid 34.3(9.1) 2.1(0.8) 0.3(0.1) 0.5(0.1) 6.0(3.0) 48.6(13.9) 127.8(10.3) 

lower 16.0(4.5) 1.6(0.5) 0.3(0.0) 0.3(0.1) 1.2(0.5) 54.9(20.9) 63.9(38.1) 
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Table 4.13                         Toxic metals concentrations of active  landfill using HNO3 acid 

More degraded 

depth Cr(mg/l) As(mg/l) Se(mg/l) Ag(mg/l) Cd(mg/l) Ba(mg/l) Pb(mg/l) 

upper 22.6(14.4) 1.8(0.3) 0.1(0.0) 0.7(0.0) 2.0(0.7) 109.2(37.6) 76.1(41.3) 

mid 15.8(2.7) 16.4(20.4) 0.2(0.0) 2.6(3.3) 3.0(2.3) 75.0(14.2) 81.3(12.4) 

lower 23.9(10.4) 2.0(1.0) 0.2(0.0) 0.3(0.2) 1.9(0.8) 75.4(25.2) 68.7(34.0) 

less degraded 

upper 14.7(0.8) 1.2(0.3) 0.1(0.0) 0.2(0.1) 1.3(0.2) 45.1(12.5) 68.3(38.9) 

mid 28.7(1.5) 1.3(0.1) 0.2(0.0) 0.5(0.0) 8.8(9.1) 48.2(0.7) 121.4(68.5) 

lower 31.0(20.2) 1.3(0.1) 0.2(0.1) 0.3(0.0) 1.5(0.0) 58.6(0.6) 121.4(75.0) 

Values in parentheses are the standard deviations, N: Number of sample 
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4.3.7.3 Availability of heavy metals  

The profile of heavy metals in both landfills samples showed the trend that the 

concentrations of metals was in the order Pb> Ba> Cr> Cd > As > Ag >Se. The elemental 

concentrations of these metals in the two landfills samples were mostly below both the 

USEPA toxic waste values and Flemish limit standards for waste soil reuse as agricultural 

compost and fertilizer, as reported by Quaghebeur et al. (2013) exept for  Pb which were 

above limit the in the closed landfill (Table 4.14). 
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     TABLE 4.14: Comparison of the average concentrations (mg/l) of toxic metals of samples from Active And Closed landfills     

to the Flemish Regulations Limit and the USPEA Toxic Metal Standards 

Sample / Element 

A

As Cd Cr Hg Pb 

 

Se 

 

Ba 

 

Ag 

Closed-MD    (n=12) 

2.69 

(1.64) 

4.84 

(1.9) 

23.87 

(8.01) 

ND 

 

212.00 

(94.76) 

0.44 

(0.20) 

69.50 

(27.0) 

0.70 

(0.50) 

Closed-LD     ( n=12) 

 

3.50 

(1.50) 

5.50              

(4.8) 

27.34 

(12.06) ND 

195.28 

(114.30) 

 

0.57 

(0..37) 

 

156.53 

(98.63) 

 

0.68 

(0.38) 

Active-MD   (n=12) 

 

4.01 

(8.43) 

3.08 

(3.9) 

23.11 

(10.31) ND 

89.87        

(43.87) 

 

0.20 

(0.03) 

 

134.0 

(97.48) 

 

0.76  

(1.31) 

Active-LD      (n=12) 

 

1.92               

(0.51) 

2.69 

(2.1) 

26.37 

(9.83) ND 

74.84 

(31.28) 

 

0.32 

(0.03) 

 

59.42 

(14.84) 

 

1.32 

(2.67) 

Flemish limit  values a 150 6 250 5 300 

  

100 

 

5 

USEPA TCLP concentrations b 5 1  0.2 5 

 

 1 

  

More degraded samples (MD); less degraded samples (LD); number of samples (n); standard deviations are shown in parenthesis; 

United States Environmental Protection Agency USEPA; toxicity characteristic leaching procedure concentrations (TCLP).   

a for use of soil waste as fertilizer and compost as reported by Quaghebeur et al.2013 
b USEPA TCLP heavy metal concentrations limit for municipal waste. 

Total elemental Concentration is 20 TCLP concentrations, according to method 11311 USEPA. 
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Boron and selenium were rarely detected in the entire sample analyzed. The availability of 

metals bears no definite trend with the depth for both landfill samples regardless of the acid 

used in digestion.  

 

4.3.8 Elemental characterization   

Tables 4.15 and 4.16 below presents the elemental concentrations for samples at each depth. 

The two landfills had similar major elemental constituents, representing 96.5 % and 98.4 % 

of the elemental composition for the closed (O > C > Si > Fe > Ca >Al) and active (C > O > 

Si > Al > Ca > Fe) landfills respectively. For both landfills, Mn and Ni were rarely found: 

their occurrence was less than 5 % and 1.4 % for closed and active landfill samples 

respectively. When comparing across the two landfills, each of these major elemental 

constituents were within the same range for (C, O) and (Al, Fe, Ca, Si).   

The elemental composition of the more degraded samples varied with depth of landfills. For 

the active landfill, O, Al and K concentrations progressively decrease from the upper to the 

lower layer (Al, 4.36 to 1.13 %; O, 42.09 to 36.78 %; K, 0.21 to 0.12 %), while Ti and C 

increased down the layers (Ti, 0.21 to 1.2 1%; C, 35.25 to 47.66 %).  For the closed landfill, 

Ca, Cu and Ti concentrations increased with depth of sampling.  There was no clear trend in 

the elemental composition of less degraded samples with depth for both landfills. The depth 

distribution of the elemental concentrations in the more degraded samples could be associated 

with a leaching effect on the degraded components of waste. Leachate is able to flow through 

the more degraded component of waste interacting with the elemental components, which 
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could change the redox of the liquid present and thus influence mobility of constituents. A 

similar observation was made by Kaartinen et al. (2013), who reported a decrease in the 

concentrations of Cl and S down layers of degraded waste samples due to a leaching effect.  

The concentrations of Al (1.5 % w/w), Si (5.0 % w/w) and Ti (0.36 % w/w) reported for a closed 

landfill in Finland (Kaartinen et al., 2013), of the same age range and for fine components < 20mm 

mesh, were similar to values obtained for degraded samples from the closed  landfill in the present 

study.  The concentrations of Fe for the more degraded samples from the closed landfill were also 

similar to levels reported by Quaghebeur et al. (2013) who reported concentrations of Fe between 

1.7 and 3.9 % (w/w) for the fine fraction  (<10 mm  of municipal solid waste). 
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                            Table 4.15: Descriptive analysis of the elemental constituents of closed landfill samples in each layer (w/w %)                    

                
Element     C O Mg Al Si P S Cl Ca Fe Zn K Ti Cu Na        Mn 

 MORE DEGRADED SAMPLES                                  
Upper layer                 
Mean (7)  39.07 38.76 0.14 1.69 8.23 2.89 0.14 0.04 6.8 0.96 0.91 0.22 0.08 ND 0.06 ND 

Median  37.94 43.99 0 0.59 2.25 0.33 0.16 0 4.14 0.93 0.93 0 0    0  
SD  21.39 12.03 0.24 3.19 9.77 3.57 0.14 0.08 7.17 0.96 0.55 0.47 0.16    0.15  

Range  

19.39-

81.69 

18.31-

51.88 

0.0-

0.65 

0-

8.91 

0-

26.45 

0.0-

7.89 

0.0-

0.31 

0.0-

0.16 

0.0-

14.37 

0.0-

2.88 

0.0-

1.83 

0.0-

1.26 

0.0-

0.42    

  0.0-

0.39                    
Mid layer                  
Mean (12)  36.26 39.93 0.16 1.31 3.82 0.1 0.04 0.01 8.37 9.18 0.35 0.04 0.31 0.11 0.01 ND 

Median  31.89 43.43 0 1.09 3.04 0 0 0 1.84 1.64 0 0 0 0 0  
SD  22.55 13.69 0.28 1.26 4.3 0.17 0.09 0.03 11.99 14.89 0.48 0.1 0.65 0.16 0.04   

Range  

15.17-

84.21 

15.79-

58.15 

0.0-

0.79 

0.0-

3.96 

0.0-

14.69 

0.0-

0.45 

0.0-

0.29 

0.0-

0.1 

0.0-

31.3 

0.0-

35.46 

0.0-

1.2 

0.0-

0.27 

0.0-

2.13 

0.0- 

0.37 

 0.0-

0.14  
Lower layer                 
Mean (9)  40.96 32.5 0.11 1.95 4.47 0.21 0.9 0.11 10.43 2.33 0.57 0.21 0.35 0.92 0.04 ND 

SD  6.55 8.86 0.18 0.81 5.65 0.32 1.8 0.3 10.12 2.86 0.9 0.47 0.63 1.63 0.08  
Median  40.34 36.12 0 1.67 2.58 0.15 0 0 7.98   1.23 0 0 0 0 0  

Range  

32.28-

51.78 

14.81-

41.41 

0.0-

0.53 

0.0-

2.74 

0.0-

17.82 

0.0-

1.03 

0.0-

5.01 

0.0-

0.9 

0.48-

25.28 

0.0-

7.82 

0.0-

2.03 

0.0-

1.45 

0.0-

1.79 

0.0- 

4.29 

0.0-

0.2  

LESS DEGRADED SAMPLES                
Upper layer                 
Mean (11)  40.92 38.42 0.13 2.83 4.93 0.31 0.07 0.03 1.84 8.14 0.73 0.57 0.34 0.03 0.03 0.67 

Median  41.22 36.56 0.07 2.9 3.42 0.26 0 0 0.95 4.97 0.31 0.11 0.27 0 0 0 

SD  7.79 8.32 0.19 1.8 4.05 0.16 0.08 0.07 1.76 7.53 0.96 1.18 0.41 0.09 0.09 2.22 

Range  

23.91-

31.95 

26.5-

54.18 

0.0-

0.54 

0.24-

5.24 

0.49-

13.58 

0.11-

0.67 

0.0-

0.23 

0.0-

0.23 

0.33-

5.85 

0.15-

19.06 

0.0-

2.78 

0.0-

3.98 

0.0-

1.4 

0.0- 

0.29 

0.0-

0.29 7.35 

Mid layer                  
Mean (12)  39.42 39.5 0.39 1.03 13.02 1.04 0.07 0.02 3.61 0.81 0.66 0.12 0.08 0.07 0.04 0.04 

Median  34.31 41.93 0.2 0.69 6.83 0.23 0 0 1.06 0.5 0 0 0 0 0 0 

SD  18.08 9.19 0.85 0.98 12.84 2.88 0.12 0.06 6.18 0.95 1.86 0.27 0.14 0.24 0.13 0.09 

Range  

19.05-

73.42 

22.92-

51.88 

0.0-

3.06 

0.0-

2.91 

0.84-

30.91 

0.0-

10.16 

0.0-

0.38 

0.0-

0.21 

0.0-

19.05 

0.0-

2.66 

0.0-

6.51 

0.0-

0.86 

0.0-

0.38 

0.0- 

0.82 0.45 0.32 

Lower layer                 

 

Mean (11) 22.81 49.22 0.08 2.82 10.89 0.22 0.18 0.02 1.44 10.4 0.24 0.29 0.55   ND 0.03      ND  

Median  23.45 48.94 0 0.32 7.21 0 0 0 0.59 3.49 0 0 0  0  
SD  9.87 5.37 0.12 3.51 14.18 0.41 0.33 0.08 2.23 12.25 0.39 0.61 1.3  0.11  

Range  

6.5-

37.12 

41.45-

60.49 

0.0-

0.28 

0.15-

9.56 

0.58-

43.47 

0.0-

1.34 

0.0-

1.11 

0.0-

0.26 

0.0-

7.11 

0.0-

28.08 

0.0-

1.09 

0.0-

2.09 

0.0-

4.34  

0.0-

0.36  
SD = standard deviation; ND = not detected; values in parentheses are the number of sample. Elemental composition was determined by SEM/EDX analysis 
                                 Table 4.16: Descriptive analysis of the elemental constituents of Active landfill samples in each layer (w/w %)              
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SD = standard deviation; ND = not detected; values in parentheses are the number of sample. Elemental composition was determined by SEM/EDX analysis. 

Element                   C O Mg Al Si P S Cl Ca Fe Zn K Ti Cu Na Mn 

MORE DEGRADED SAMPLES 

Upper layer                  

Mean (12) 35.25 42.09 0.36 4.36 9.63 0.05 0.13 ND 5.57 2.11   ND 0.21 0.24 0.02  ND ND 

Median 30.1 44.01 0 1.57 9.27 0 0      0.7 1.81    0.05 0 0    
SD 21.73 13.45 0.66 4.09 7.22 0.12 0.3      13.75 1.89      0.39 0.36 0.05    

Range 

10.19- 

71.22 

17.96-

57.76 

0.0-

2.19 

0.63-

10.27 

1.05-

22.63 

0.0-

0.38 

0.0-

0.9      

0.0-

48.49 

0.0-

5.79      

0.0-

1.37 

0.0-

1.14 

0.0-

0.18    
Mid layer                 
Mean (12) 42.86 39 0.09 4.02 6.77 0.31 0.23 0.06 1.88 3.46 0.78 0.17 0.3 0.04 0.03 0.02 

Median 44.71 37.86 0 2.09 2.95 0.24 0.07 0 0.64 3.21 0.25 0.12 0.12 0 0 0 

SD 22.02 12.52 0.13 4.18 8.25 0.31 0.4 0.15 2.68 3.06 1.03 0.23 0.41 0.09 0.11 0.05 

Range 

13.5- 

70.95 

23.38-

56.54 

0.0-

0.42 

0.57-

13.58 

0.73-

28.98 

0.0-

0.98 

0.0-

1.35 

0.0-

0.42 

0.0-

7.77 

0.3-

10.14 

0.0-

2.53 

0.0-

0.79 

0.0-

1.24 

0.0-

0.27 

0.0-

0.37 

0.0-

0.19 
                 
Lower layer                
Mean (12) 47.66 36.78 0.42 1.73 8.51 0.08 0.04 0.04 2.18 1.07 0.02 0.12 1.21 0.03 0.02 ND 

Median 54.66 30.68 0.11 1.24 3.17 0 0 0 0.71 0.53 0 0.1 0 0 0  
SD 22.06 11.84 1.08 2.08 10.39 0.13 0.07 0.06 4.82 1.1 0.06 0.12 3.99 0.08 0.05  

Range 

13.79-

70.26 

22.42-

55-43 

0.0-

3.84 

0.23-

8.11 

0.7-

29.41 

0.0-

0.41 

0.0-

0.23 

0.0-

0.15 

0.19-

17.19 

0.13-

3.39 

0.0-

0.22 

0.0-

0.29 

0.0-

13.87 

0.0-

0.24 

0.0-

0.13  
                 
LESS DEGRADED SAMPLES               
Upper layer                 

Mean (12) 44.82 37.68 0.71 3.04 7.31 0.05 0.07 0.06 4.93 0.96 

       

ND 0.19 0.11 0.01 0.04 ND 

Median 53.39 35.83 0 1.82 3.35 0 0 0 0.35 0.8        0.05 0.04 0 0  
SD 23.45 9.74 2.3 2.85 9.22 0.19 0.17 0.17 9.91 0.42        0.33 0.14 0.04 0.1  

Range 

11.71-

71.66 

26.06-

52.56 

0.61-

9.38 

0.64-

29.47 

0.0-

28.83 

0.0-

0.65 

0.0-

0.51 

0.0-

0.57 

0.0-

28.98 

0.59-

1.93        

0.0-

1.11 

0.0-

0.38 

0.0-

0.13 

0.0-

0.28  
Mid layer                                  
Mean (11) 39.8 43.25 0.05 5.05 7.41 0.08 0.07 0.02 0.64 2.27 0.07 0.17 0.6 0.02 0.47 ND 

Median 30.7 47.91 0 6.47 7.96 0 0 0 0.34 2.56 0 0.11 0.24 0 0  
SD 23.22 14.47 0.11 3.66 5.62 0.14 0.21 0.07 0.85 1.83 0.23 0.24 1.4 0.05 1.37  

Range 

19.47-

85.48 

14.43-

55.89 

0.0-

0.32 

0.0-

9.43 

0.09-

20.17 

0.0-

0.37 

0.0-

0.71 

0.0-

0.23 

0.0-

2.67 

0.0-

5.91 

0.0-

0.75 

0.0-

0.83 

0.0-

4.79 

0.0-

0.18 

0.0-

4.58                   
Lower layer                
Mean (12) 48.21 37.09 0.21 3.21 5.98 0.08 0.15 0.18 2.47 1.65 0.09 0.35 0.14 0.02 0.18 ND 

Median 50.79 35.03 0.11 3 5.05 0 0.16 0.17 1.43 0.92 0 0.27 0.12 0 0.21  
SD 19.14 11.69 0.3 2.67 6.04 0.12 0.12 0.14 3.37 1.96 0.16 0.32 0.15 0.06 0.15  

Range 

16.83-

82.43 

17.44-

55.19 

0.0-

1.05 

0.0-

8.55 

0.0-

22.5 

0.0-

0.31 

0.0-

0.36 

0.0-

0.47 

0.0-

12.07 

0.0-

6.65 

0.0-

0.42 

0.0-

0.93 

0.0-

0.49 

0.0-

0.16 

0.0-

0.48  
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However, the concentrations of K, Fe, Ti and Mn for both landfills were lower than those 

obtained for soil contaminated with recyclable urban waste in Brazil (Anjos et al., 2002). A 

comparison of elemental medians of both landfills using a non-parametric Mann-Whitney U-

test indicated that there were no significant statistical differences (p>0.05) in concentrations 

between active and closed landfills for C, O, Mg, Si, P, S, Cl, Fe, Zn, Ti, Cu and Na. However, 

Al was found to be significantly higher (p=0.024) in the active landfill, while Ca was 

significantly higher (p=0.023) in the closed landfill. 

4.3.8.1 Cluster analysis for elemental constituents 

Hierarchical agglomerative cluster analysis was performed using Ward’s method, and 

squared Euclidean distances as a measure of similarity. Ward’s method was considered more 

appropriate agglomerative technique for the data analysis as it partitions data set into cluster 

by computing sum of squared distances within each set with minimum increase in the overall 

sum of squares partitions (Punj & Stewart, 1983; Liao, 2005). 

Average linkage and centroid methods are other methods which measure either minimum or 

maximum distance between the data sets (Liao, 2005). The cluster analysis was used as an 

unsupervised exploratory technique to investigate similarities among the elemental 

composition of the two landfills. The analysis of the closed landfill samples generated two 

main clusters (Figure 4.4): one comprised mostly of more degraded samples (5 of the 7 

cluster members), while the other comprised mostly of less degraded samples (4 of the 5 

cluster members). The analysis of the active landfill samples also generated two main 

clusters, but with an equal number of more degraded and less degraded samples in each 
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cluster (Figure 4.5). A Mann-Whitney U-test analysis was conducted on the mean levels of 

elements to establish potential significant difference between the main clusters for each 

landfill. Levels of C, O, Si and Ti showed significant difference (p<0.05) between the main 

clusters for each of the landfills. This suggests that more samples from the closed landfill 

had similar trends in their element composition based on sample composition (more 

degraded / less degraded) than other associated factors such as depth and sampling seasons. 

For the active landfill, however, the elemental composition of samples showed no clear 

similarity trend in relation to sample composition, depth and sampling season.  

The elemental composition of samples will largely depend on the nature of waste material, 

which can be influenced by interaction with the complex heterogeneous environment of the 

landfill (Shen et al., 2010, He et al., 2011). Discrimination analysis revealed that C, O and 

Si were the major discriminators of the clusters for both landfills (Wilks’ lambda <0.5, F > 

58.516 (see Table 4.17).  Wilk’s lambda value shows how well each level of the independent 

variables contributes to the model. The scale ranges from 0 to 1, where 0 means total 

discrimination, and 1 means no discrimination. The significance of the change in the model 

is measured with an F-test; if the F-value is greater than the critical value, the variable is 

kept in the model. Hence, the smaller the Wilk’s lambda values and the higher the F-test 

result, the greater the discriminating capacity of the variable (Rodrigues et al., 2010). 

  

  

http://www.statisticshowto.com/independent-variable-definition/
http://www.statisticshowto.com/independent-variable-definition/
http://www.statisticshowto.com/f-test/
http://www.statisticshowto.com/probability-and-statistics/find-critical-values/
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Figure 4.4:  Dendrogram showing similarity in the closed landfill samples based on 

elemental composition data. Dry season (D); rain season (R); more degraded samples 

(MD); less degraded sample (LD); depth of sampling (lower, mid, upper) 

 



109 
 

 

Figures 4.5:  Dendrogram showing similarity in the active landfill samples based on 

elemental composition data. Dry season (D); rain season (R); more degraded samples 

(MD); less degraded sample (LD); depth of sampling (lower, mid, upper). 
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TABLE 4.17: Discrimination capacities of elemental components in the detected 

clusters of closed and active landfills samples 

 Element                Closed landfill    (Fig.4.4)                          Active landfill (Fig4.5) 

                            Wilks’ lambda          F         Wilks’ lambda        F            

C           0.201  274.841  0.484   63.685                         

O       0.244  213.394  0.452   72.696 

Mg   0.954  3.176   0.991   0.533 

Al   0.908  28.468   0.993   0.429 

Si     0.541  58.517   0.851   10.530 

P   0.997  0.190   0.999   0.0542 

S   0.996  0.287   0.991   3.358 

Cl  0.991  0.649   0.969   1.89 

Ca   0.967  2.338   0.997   0.200 

Fe   0.976  1.705   0.993   0.422 

Zn   0.942  4.260   1.000   0.482 

K   0.971  2.087   0.971   1.767 

Ti     0.992  0.539   0.995   0.287 

Cu     1.000  0.010   0.951   3.117 

Na   0.989  0.776   0.999   0.080  

The most discriminating elements are shown in bold 

 

4.3.9  Functionalities of the precursor 

Figure 4.6 presents representative FTIR spectra of the different samples analyzed. The  

characteristic fresh waste peaks for organic functional group were absent in all analyzed 
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samples (24 samples) of  both landfills, vis: at 1740 cm-1 and  1760 cm-1 for esters and 

carboxylic respectively; carboxylic acids at 1260 –1240 cm-1; and aromatic primary and 

secondary amines at 1320 cm-1 (Wu et. al, 2011). The spectra of samples from both landfills 

shared some common characteristic peaks, while other peaks were only associated with either 

active or closed landfill samples. No remarkable differences were observed when comparing 

the FTIR peaks of samples based on depth or sampling season. However, the FTIR of fresh 

municipal waste obtained before landfilling showed all major peaks of organic functional 

groups: 1240 cm-1, 1320 cm-1,1538 cm-1 1638cm-1, 1742 cm-1 (Figure 4.6).  

 

Figure 4.6: Typical infrared spectra of (a) active landfill, (b) fresh municipal waste, 

and (c) closed landfill samples 
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4.3.9.1  FTIR peaks common to both landfills  

A small peak of carboxylic acid group (C–O stretch vibration and C–O of plane vibration) at 

1420 cm-1 (Smidt et al., 2002) was found in samples from both landfills. Very weak aliphatic 

methyl and methylene peaks, at 2960 cm-1 and 2920 cm-1 respectively (Smith,1999), were 

only found in a few samples from both landfills (40 % of active and closed landfill samples). 

Taken together, these findings indicate that samples from both landfills comprised non-fresh 

waste. Smidt & Meissl (2007) have attributed weakness or disappearance of aliphatic methyl 

and methylene peaks, at 2920 cm-1 and 2850 cm-1 respectively, as an indicator of waste 

degradation. The organic functional groups spectral peaks are known to decrease in intensity 

or disappear with progressive degradation of waste (Smidt and Schwanninger, 2005). 

The prominent peaks common to the active and closed landfill samples spectral were peaks 

of inorganic compounds. The intense peaks at around 1030-3 cm-1 and 1000-9 cm-1 can be 

attributed to silica, clay minerals (Si–O–Si and Si–O stretching vibration) and quartz 

(Madejova, 2013); particularly strong absorption at 1032-3 cm-1 and 1006-9 cm-1 was evident 

for samples from the closed landfill. The peaks have been attributed to reflect the degree of 

soil, silica content or degradation in waste (Ouatmane et al., 2000, Reig, 2002, Smidt and 

Meissl, 2007). Increasing decomposition of the organic matter within waste will lead to a 

relative increase of mineral compounds that is responsible for the increase in the 

corresponding absorption peaks (Grube et al., 1999, Ouatmane et al., 2000, Reig, 2002, Smidt 

et al., 2002, Smidt and Meissl K, 2007).   

A peak at 910-15 cm-1 attributed to the vibrations of inner and surface OH groups of clayey 

mineral (kaolin) (Reig, 2002) and a carbonate peak at 875 cm-1 attributed to C–O out of plane, 
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were also observed for both landfills (Reig, 2002). The latter peak (carbonates) was 

prominent in all the FTIR spectra of closed landfill samples, but was either weak or absent in 

FTIR spectra of active landfill samples (presence in 5 out of 12 samples of active landfill 

samples). Wu et al. (2011) and Smidt & Meissl (2007) observed a sharp peak at 875 cm-1 for 

abandoned landfill and decomposed food waste compost, which was associated with increase 

in mineralization of organic matter. The weakness or absence of carbonates peaks at 873 cm-

1 in most active landfill samples may be caused by interference from other mineral material 

within the waste. 

 

4.3.9.2  Differential FTIR peaks 

The major distinguishing peaks of the active landfill samples were at 3690 cm-1 and 3619 cm-

1, attributed to O-H vibration of clayey (kaolin) materials (Madejova ,2013). The 3619 cm-1 

peak arose from interaction between the inner hydroxyl groups with the tetrahedral and 

octahedral sheets (Madejova, 2013; Reig, 2002) while that at 3695 cm-1 was related to the in-

phase symmetric stretching vibration of hydroxyl groups (Madejova, 2013; Reig, 2002). 

These peaks have been observed by Smidt et al. (2013) as the major peaks common to 

samples of compost of abandoned landfill, when compared to a compost of yard/kitchen 

wastes during the evaluation of waste stability after 42 days.  

The peak at 1113 cm-1, found only in active landfill samples, has been attributed to the C-O 

stretching vibration of carbohydrates such as polysaccharides (García-Gil et al .,2008, Grube 

et al., 2006).  A few samples (3 of 12 samples analysed) from the active landfill also showed 
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a peak at 1389 cm-1, which canbe attributed to N-O stretching vibration of nitrates (García-

Gil et al., 2008). In most of the closed landfill samples (8 of 12 samples analysed) peaks at 

1640-50 cm-1 and 1540-80 cm-1 were observed, which can be attributed respectively to the 

amide I and amide II groups of proteins (Grube et al., 1999). These peaks could be due to 

decomposition of proteins leading to the formation of small compounds with amide bonds in 

the active landfill and closed landfills.  

A quartz doublet of peaks at 775-9 cm-1 and 750-9 cm-1 was also prominent in the less 

degraded samples of active landfill samples, which can be attributed to the presence of silicate 

mineral. Reig et al. (2002) considered that a peak at 779 cm-1 is best attributed to quartz.  

 

4.4 Conclusion 

4.4.1  Compositional and physical characterization 

It can be inferred that for both landfills, the distribution of less degraded composition plays 

a significant role in the moisture content at each depths. The pH and temperature values 

reflect the effect of rainfall and possible filtration during seasonal variations. This is 

consistent with Quaghebeur et al. (2013), who reported a significant difference in moisture 

content in the sampled landfill layers due to the presence of poor-draining or impervious 

layers in the landfill.  Kim and Townsend (2012) reported that degradation of waste will 

vary with variation in the moisture content of waste in the landfills. The moisture content 

of the waste are indication that the waste precursor will required heating process that will 

ensure moisture contents are removed. Dry weight of sample will be used to prevent error 
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in the weight of the precursor before conversion. Moisture of sample may have also 

influenced the degradation level which may consequently affect the yield.  

 

4.4.2 Proximate analysis and TOC 

The TOC content of less degraded sample of both landfills (>10 %) indicates that this set 

of precursors may be more suitable for the activation process than the more degraded. The 

seasonal variations in the TOC content of precursors portent a possible loss of precursors’ 

organic carbon content as dissolve organic carbon which may affect % yield.  The high 

ash content (> 51 %) of these wastes is a factor that could reduce the yield, require 

increased carbonization temperature and also increase the ash content of produced 

activated carbon.  Activated carbon precursors are often rated according to their low ash 

on their low content in ash content and high fixed carbon.  Fixed carbon content of more 

degraded precursors was higher than the less degraded precursors and comparable to fixed 

carbon of other biomass previous used for activation process.  This may influenced the 

yield of more degraded sample positively.  

 

 

4.4.3 Heavy metals concentrations 

The heavy metal analysis reveals that the closed landfill and more degraded samples have 

higher concentrations of heavy metals than the active and less degraded samples 

respectively.  The heavy metal level of both landfills was below set thresholds limit for most 
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metals expect Pb in the closed landfill.  Aqua regia extraction capacity was higher than the 

nitric acid.   

The result indicated that landfill composite of both landfills may be suitable as precursor 

with heavy metal toxicity below set thresholds. Aqua regia will be preferred for the acid 

extractive process in the conversion process. The concentration and time for extraction 

process may also be essentially reduced because of the low content of heavy metals in the 

samples. 

4.4.4 Elemental composition  

Both landfills consist of three major elements (C, O, Si) which can potentially influence 

the chemistry and activation process of the precursors. Oxygen was identified as the major 

heteroatom consisting of 37.1 % and 42.4 % for more and less degraded precursors in the 

closed landfill and 39.3 % for both more and less degraded precursors in the active landfill 

respectively. The elemental constituents of the closed landfill were influence by the nature 

of precursor (less degraded or more degraded) than other factors such the depth and 

sampling seasons. 

 

4.4.5 Functionalities of Precursors  

The spectral analysis of samples from both landfills indicated a high level of mineralisation, 

which is indicative of stability in both landfills. The presence of mineral peaks, which were 

particular high in the active landfill, indicated the present of calcite (1420 cm-1) and clayey 
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material (3690, 3620, 1031, 1009, 912 cm-1) ( Reig et al 2002).  The practice of covering the 

active landfill with clayey material may have elevated these mineral peaks; the clayey landfill 

covering material could drift within the active landfill during the rainy season. The FTIR 

spectra indicate that the composite of both landfills is not best suited to use as compost or 

soil enrichment since essential organic peaks are absent, vis: 1740 cm-1 and  1760cm-1 for 

esters and carboxylic respectively; carboxylic acids at 1260 cm-1 and 1240 cm-1; and aromatic 

primary and secondary amines at 1320 cm-1. The absence of these peaks also indicates limited 

potential for biogas generation from the landfills.  However, this does not preclude 

consideration of the waste composite as a landfill covering after adequate toxicity evaluation.  

4.5 Overall chapter conclusions  

The following conclusions are made: 

❖ The compositions of samples from both landfills were similar, consisting largely (>65 %) 

of three main constituents: fine, intermediate and Nylon. 

❖ More degraded components in both landfills represents > 52 % of most sample 

constituents. 

❖ The moisture content of the waste indicates that a heating process to remove/reduce 

moisture contents would be required prior to use of the waste for activated carbon 

production. Dry weight of sample should be used to prevent error in the weight of the 

precursor before conversion.  

❖ There is a linear relationship between the moisture content of landfill samples and the 

distribution of the less degraded component of the waste.   



118 
 

❖ The high ash content (>51 %) of these samples is a factor that could affect the activation 

carbon process. It will require the use of high heating temperature during activation process 

which may influence the yield.   

❖ The heavy metal concentrations of samples were generally below set thresholds 

expect for Pb in the closed landfill.  Aqua regia acid extracted higher concentrations 

of most metals content making it the preferred acid for the activation process. 

❖ The two landfills had similar major elemental constituents (O , C ,Si,  Fe , Ca  and 

Al), representing 96.5 % and 98.4 % of the elemental composition for the closed and 

active landfills respectively 

❖ The elemental compositions of samples were largely depend on the nature of sample 

(more degraded and less degraded).  

❖ The spectral analysis of samples from both landfills indicated a high level of 

mineralization (degradation) with prominent silica, clay minerals (Si–O–Si and Si–

O stretching vibration and quartz, carboxylic acid group (C–O stretch vibration and 

C–O of plane vibration functional groups and absent of major organic peaks.  

There are similarities in most landfill composite properties which may enhance the use of a 

single activation process for all samples regardless of the type of dumpsite. The major 

challenge is the heating source which should ensure activation whilst minimizing loss of 

carbon through decomposition. The TOC and Fixed carbon content of the precursors may 

also have a favorably effect on the activation process. Based on the evaluated precursor 

properties, the ash content is considered as a major factor which can negatively impact on 

the activation process.  
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                                           CHAPTER FIVE 

ACTIVATION PROCESS OF PRECURSOR   

5.1 Introduction  

This chapter presents the activation instrumentation design, conditions and the AC yield.  

Three activation routes were proposed to accommodate observed properties of the precursor 

which can influence the activation process. These methods were identified after reviews of 

previous research works. Nagano et al. (2000) had observed that municipal refuse derived 

fuel pre-treated with nitric acid had porosity suitable for the adsorption of dioxin just like 

commercial activated carbon. Karago et al. (2008) prepared activated carbon from sunflower 

oil cake by washing the biowaste in sulfuric acid before activation.  Liou (2010) also leached 

sugar cane bagasse and sunflower seed hull with 0.5M NaOH before impregnation with 

phosphoric acid and zinc chloride. These pre-activation treatment processes are intended to 

remove impurities from the precursors and produce chars that have initial pore structures 

(Yuen and Hameed, 2009). In the present research work, acid leaching of sample before 

activation was intended to reduce the inorganic load of sample before activation. A number 

of researchers had reported production of microporous AC from biowaste with carbonization 

between 450-500 °C, and decomposition of organic matter and reduction in BET surface 

above 500 °C (Fu et al., 2013; Girgis et al., 2002). A conventional heating source using a 

two steps activation procedure was used in this study to ensure effective carbonization 

despite limiting ash content. Conventional heating source refers to use of combustion 
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furnace for the activation process. Table 5.1 highlights some other literatures review which 

inform the selection of some of the activation procedures.  

Table 5.1: Literature Review of some activities optimum conditions 

* Activation was under N2 gas flow for all process.  

 

Precursor Activation parameters Reference 

  
Activating 

agent 

Carbonizati-

on  condition 
Optimum activation conditions*    

    

temperature 

(°C)/ time 

(hrs) 

temperature 

(°C) 

time 

(h) 

impregnation 

ratio (IR) 
  

Rubber wood 

sawdust   
H3PO4 200/1 500 0.75 1.5 

Srinivasakannan 

and AbuBakar, 

2004 

Olive seed waste KOH 800/1 900 2 4 
Stavropoulos and 

Zabaniotou, 2005 

Rice straw KOH 700/1 800 2 4 Oh and  Park, 2002 

Cassaval peel KOH nil 750 1 5:02 
Sudaryanto et al., 

2006 

Corn  KOH 500/2 550 1 2 
Bagheri and Abedi, 

2009 

Olive stone  KOH  600/1 900 1 1 
Martinez et al., 

2006 

Coconut shells  NaOH  500/2 700 1.5 3 Cazetta et al., 2011 

Rice bran  H2SO4 nil 850 1.5 1 Suzuki et al., 2007 

Paper black liquor Steam 450/1 725 0.67 Nil Fu et al., 2013 

Peanut hull KOH 500/2 700 3 1.1 

Girgis et al., 2002   ZnCl 300/6 750 6 0.5 

  H3PO4 500/3 500 6 0.75 
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Lastly, a microwave heating source with one step activation was used to reduce the potential 

loss of carbon common to conventional heating systems, as reported by Suhas et al. (2007), 

Yuen and Hameed (2009) and Wu  et al. (2014).  The influence of some of the activation 

parameters on the activation carbon yield was also investigated. Figure 5.1 presents the flow 

chart for the activation process while table 5.2 present the aim of each activation process and 

the choice of sample for each process 

 

Figure 5.1:  Flow chart of the activation process 

Raw material    Crushing    Sieving  

Composite   

formation 

  Homogenization 

    Acid waste Carbonization 

Impregnation 

Activation 
Washing 

Drying 
Product 
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                                    Table 5.2:   The activation process and the choice of precursors used 

S/N Aim of activation No of samples Basis  for the selection  

of samples 

 Total number 

samples for 

activation  

1. To compare the 

suitability of precursor 

based on depth 

 3 samples of active 

landfill  (less degraded  

and upper , mid, lower 

3 samples of closed 

landfill (less degraded of 

samples: Upper, Mid, 

Lower depth 

i) less degraded 

samples of both 

landfills had high 

TOC (65 % of 

samples  with  TOC> 

10 %) 

 

ii) 64 % of yield in the 

first activation were of  

less degraded samples 

 

iii) the number of 

samples represent 50 

% of all less degraded 

samples  

 

 6 samples 

 

 

2. To evaluated 

reproducibility of 

activation process 

3 samples of  active 

landfill (more degraded 

sample: upper, mid, 

lower) 

i) the proximate 

analysis result 

indicated that more 

degraded samples had 

closed properties. This 

 

 

 12 samples 
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3 samples of  closed 

landfill( more degraded 

sample: upper, mid, 

lower) 

will reduce the 

possible variation that 

could arise from 

precursor difference.  

 

 

ii) it also provide an 

evaluation of 

suitability of more 

degraded samples for 

activation carbon  

 

iii) the number of 

sample represent 50 % 

of all more degraded 

samples 

3. To evaluated activating 

agent ratio effect on 

activated carbon 

produced 

2 samples of active 

landfill  (less and more 

degraded sample at the 

upper depth) 

2 samples  of closed 

landfill (less and more 

degraded samples at  

Upper depth) 

 

To be able to compare 

result with result 

obtained from  (1) 

above 

 

 

12  samples 
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4. 

 

 

 

 

 

 

 

 

 

To evaluate the wattage 

effect on  activated 

carbon produced 

1 sample of active 

landfill  (less degraded 

sample :upper) 

1 sample  of closed 

landfill (less degraded 

samples: Upper) 

To be able to compare 

result with result 

obtained from  (1) and 

(3) above 

 

 

6 samples 
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5.2 Material and method  

5.2.1 Activation instrumentation 

5.2.1.1 Conventional heating system   

Two steps activation was carried out in carbolite tubular furnace. The diagrammatic sketch 

of the instrument set up is shown below.   

 

Figure 5.2: Schematic diagram of the convectional activation instrumentation 

5.2.1.2 Instrumentation component  

The furnace dimension (65cm length and internal diameter 20.8 mm) determined the length 

and the diameter of the quartz tube to be use.  A quartz tube of 19 mm internal diameter, 1.5 

mm thickness and 75 cm in length was found to fix into the furnace opening with no space to 

prevent heat loss, and also long enough to allow connection of other fitting to both ends of the 

quartz tube. A cast clamps (aluminum) and centering rings were fixed at the end of the tubes 

to prevent gas and heat escape during activation process. Gas flow was ensured through the 

use of a Parker A-Lok fitting which was connected to 1/4'' outer diameter stainless tube to 
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deliver nitrogen to the system. A flow meter was connected to the gas outlet of the nitrogen 

cylinder to measure the gas flow rate, while the pressure of the gas cylinder was measured 

using the pressure gas connected at the top of the cylinder. The tube outlet was connected into 

adsorption solution placed in the fume cupboard. The major instruments used during the 

activation process are shown in Figure 5.3

 

 Figures 5.3: Showing major instrument using in conventional activation process  

G 

F 

A: Carbolite furnace   B: Quartz tube     C:   Cast clamps     D: Parker A-Lok     E: Power 

button       F: Power indicator       G: Flow meter    H:  Pressure gauge I: Nitrogen Cylinder 

 

A 

B 

E 

C 

F 

H 

I 

G 

D 
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5.2.2 Microwave instrumentation 

The design and set up of the microwave instrumentation had to be developed from scratch as 

there was no initial instrument on ground. Effort was devoted to the review of microwave 

oven design and safety issues. Advice on the construction and operation of the microwave was 

obtained from (1) the Microwave Unit, Electrical Department, University of Lagos, Nigeria 

and (2) a microwave technical expert at De-Monfort University waste water laboratory. 

From review of past research work, instrumentation for microwave activation using a modified 

domestic oven can be classified into: i) microwave cavity design ii) temperature device and 

iii) gas flow design. 

5.2.2.1 Microwave cavity design  

The microwave design entails the choice of electromagnetic radiation source to be use, the 

cavity to be installed within the microwave and the sample holder selection.  

Source of electromagnetic radiation wave (EMW):  The microwave source could be purposely 

built microwave cavity or modify domestic microwave (Yuen and Hameed, 2009). The use of 

domestic microwave with different modification was prevalent in most reported work. The 

major concern with a domestic microwave was the issue of safety during modification, the 

prevention of EWM leakage to the environment and the lack of a rotating reactor system, 

which may affect uniform heating of precursor in the reactor (Sharifan, 2014; Menendez et 

al., 2012). An LG intellowave domestic microwave (model no MB-382W/03) with the 
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following specification: frequency rating: 2.5 KHz, time rating: 1- 60mins, voltage: 240V, 

wattage range of 90, 180, 360, 600, 800 W was selected for the process. The specifications 

were considered suitable for the purpose of activation. During modification narrow diameter 

opening outlet of 60 mm were used to prevent leakage. For safety assurance, microwave edges 

and duct area were covered with Teflon tape to prevent leakage. The choices of sample holder 

and quantity of sample to be run were also selected to ensure better contact with microwave 

radiation. 

 Reactor cavity: The reactor cavity is the compartment where the activation process takes place 

within the microwave radiation area. The cavity should be of material that allow microwave 

radiation pass through it (transparent to microwave). Quartz tube has been largely used in most 

journals, but Teflon and glass are considered as also transparent to microwave (Yuen and 

Hameed, 2009). The reactor cavity either has a horizontal or a vertical orientation depending 

on the magnetron position and the gas flow direction. Foo and Hameed (2012) activation of 

sugarcane was carried in a horizontal cavity, while Menendez et al. (2010) had used vertical 

cavity respectively. Teflon has been used in industrial microwave systems, such as Marx5 and 

Marx6, therefore, a vertical reactor cavity design with the use of Teflon plastic was employed. 

Although the controlled run (without sample) was successful, on introduction of sample into 

the cavity it could not withstand the heat generated from the sample which melted the cavity. 

The option of using quartz tube of 4 cm internal diameter which runs vertical through the 

microwave area with gas inlet and outlet at each end of the tube was considered and found to 

be stable during control and trial runs (see Figure 5.4) 
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   Figure 5.4:  Reactor cavity design    A: Teflon cavity       B: Quartz cavity  

Sample holder: An emphasis was placed on choice of sample holder since it can impact on the 

degree of radiation reaching the sample. Salema and Ani (2011) and Ji et al. (2007) have 

previous used perforated stainless and crucible as sample holder, respectively.   In the present 

research, the used of Pyrex glass, stainless steel and combustion crucible as sample holders 

were explored to observe the effect on samples  At wattages of 360, 600 and 800 an electric 

arc, known has a ‘hot spot’ (Menéndez et al., 2011), was generated with used of either pyrex 

glass or combustion crucible. The non-formation of hot spot after 15 min radiation of samples 

at 600 or 800 W, with the use of stainless steel holder, indicated the possibility that microwave 

radiation was prevented from reaching the sample. The heat generated within 1-3min of run 

  A B 
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cracked all the glasses when run with samples, but the combustion crucible was able to hold 

sample and withstands the radiation for 15 minutes. The large electric arc usually referred to 

as Hot Spot or Microsplasmas are observed when carbon based material are heated using 

microwave. These sparks last only a fraction of a second (Menéndez et al., 2011). The carbon 

content of samples has delocalized π-electrons which are free to move in relatively broad 

regions; the movement is constricted by the microwave radiation resulting in high dielectric 

loss tangent: tan δ = ε”/ ε’. This causes molecular heat generation where some excited 

electrons are able to jump out of the material, resulting in the ionization of the surrounding 

atmosphere (Menéndez et al., 2011).  Unlike the glass holder, the stainless steel holder did not 

generate any spark but glowed during radiation. (See Figures 5.5 a-c). The combustion 

crucible was used as sample holder for the activation process.  

  

Figure 5.5: Generation of hot spot using different sample holder. A: Pyrex glass, B: 

combustion crucible, C: stainless steel   

 

 A B C 
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5.2.2.2 Temperature measure device and gas flow design 

Determination of the sample temperature during radiation is a major challenge with 

microwave activation. The cavity environment is often determined using a pyrometer or 

thermocouple. The actual temperature of the sample could be a hundred degrees higher. An 

infrared pyrometer (BENETECH GM 300) with laser probe was used to monitor temperature 

during and after each irradiation of sample and the average determined. It is recognized that 

the barrier of glass may affect the temperature reading.   

 Gas flow design: The nitrogen gas was designed to flow from the bottom to the top of the 

cavity. The direction of the nitrogen will aid the outward flow of generated gaseous component 

during activation. Also, nitrogen gas is intended to create an inert environment throughout the 

activation process. The microwave cavity is often constructed to ensure prevention of 

microwave leakage to the environment which will also prevent oxygen inflow. An inert 

environment was maintained by purging the cavity with nitrogen before running. Figures 5.6 

shows the microwave set up. 
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Figure 5.6: Microwave instrumental set up  

 

5.3  Activation parameters  

5.3.1 Convention activation  

The activation parameters used for the process varied based on intended parameter of 

interest and the instrumentation set requirement. Parameters which are key to the nature of 

activated carbon produced are thus:  

Activation temperature: The activation temperature has been highlighted as an essential factor 

in the activation process (Pastor-Villegas and Durán-Valle, 2002; Aygün et al., 2003; 

Wigmans, 1989). It is attributed to enhancement of the reactivity between the carbon and 

 

E 

  
   D 

   B 

A: Flow meter and pressure gauge    B: Nitrogen cylinder   C: Gas inlet connector D: Reactor  

E Gas outlet connector     F: Wattage regulator    G: Time regulator 

A 
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activating agent (Baçaoui et al, 2001). For a two steps activation process, the carbonization 

temperature had been reported to affect the optimum activation temperature (Fu at al., 2013; 

and Girgis et al., 2002). For example, the temperature studied by Tsai et al. (1997) for the 

preparation of ACs from corn cob observed that char yield from carbonization process 

decreases with increase in temperature from 500 to 800 °C. Coupled with the observation 

made by Fu at al. (2013) and Girgis et al. (2002) on the negative effect of carbonization 

temperature above 500 °C, the carbonization temperature for the conventional  heating system 

was kept at 500 °C for 1.5 hours ,while the activation temperature was increased from 700 to 

800 °C for two hours.  

Activating agent: The impregnation ratio of activating agent to the precursor has been reported 

as another significant factor in the activation process (Njoku et al., 2014; Foo and Hameed, 

2012). Studies by Suhas et al. (2007) have shown that the use of KOH at high carbonization 

temperature leads to enhanced pore formation in activation carbon produced from biomass, 

due to formation of water vapour which evaporates during heating process. Guo et al. (2002) 

have proposed a possible reaction mechanism between KOH and carbon material as thus: 

4 KOH + C  →    K2CO3 + K2O + 2 H2 ................................(1) 

KOH reacts with disordered or amorphous carbon at high temperatures to form K2CO3 as well 

as the decomposition product K2O along with the evolution of hydrogen. Considering the 

decomposition of KOH into K2O as well as the reducing ability of carbon, additional reactions 

do take place during the process of activation as shown: 
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2 KOH→ K2O + H2O ..................................................... (2) 

C + H2O (steam) → H2 + CO .................................... (3) 

CO + H2O → H2 + CO2 ............................................... (4) 

K2O + CO2 → K2CO3 ............................................... (5) 

K2O + H2→  2 K + H2O ............................................. (6) 

K2O + C→ 2 K + CO ............................................... (7) 

K2CO3 + 2C→ 2 K + 3 CO .................................. (8) 

The steam generated in (step 2) causes removal of amorphous carbon as CO as shown in (step 

3) leading to formation of pores. Additional carbon is also consumed for reducing K+ to K as 

shown in steps (7) and (8) 

The elemental composition of the precursor shows low content of potassium (< 0.25 %), which 

should reduce formation of K2O and enhance reaction 3 above. In the present research, KOH 

was used as the activation agent and the quantity was varied during the activation process to 

study the effect on activation yield. 

Gas flow: An inert gas mixture (N2/CO2) is introduced at a flow rate that can drift the vapour 

and volatile content off the reactor during the activation to avoid re-condensation and possible 

secondary reactions with the precursor (Sharifan, 2014). The gas flow rate effect has not been 

widely reported due to the possible influence of precursors’ properties and temperature on gas 



135 
 

flow rate (Sharifan, 2014).  At higher flow rate of N2 gas, Lua et al. (2004) observed a decrease 

in volatile matter from char produced and a corresponding increase in the fixed carbon yields 

from pistachio nut shells precursor. In the present study, 99.5 % nitrogen gas was for the 

activation process. The flow rate of N2 gas was kept constant at 400 cm3/ minutes throughout 

the activation process. 

5.3.2  Development of activation parameters for the microwave activation  

Preliminary runs of sample were carried out to evaluated suitable condition for microwave 

activation of samples. Table 5.3 shows the how the conditions were varied in the preliminary 

runs, and inference made. 

Table 5.3: Preliminary run of samples and inference made in respect to activation 

parameters 

    Activation parameters varied Sample used   Observations Inference 
1. Ratio of activating agent to 

sample.  

 

Reasons for the variation:  
- Sample holder could only 

take small quantity of 

sample (1 -2.1g) which 

should be properly dried to 

avoid splashing within the 

cavity.  

 

The activating agent was mixed 
with sample at ratios of 1:1, 

2:1, 3:1 and subjected to oven 

dried at 105oc till a constant  

weight was attained 

Coconut, 

ALD upper  

CMD upper  

                 

Ratio 3:1 did not dry after 

48hours of oven drying for 

all samples used. 

 

Ratios 2:1 and 1:1 dried 

within 12hours but attained 

a constant weight after 24 

hours. 

 

Ratio 3:1 could not 

be used for 

activation for these 

samples. 

Ratio 1:1 is 

considered a 

suitable ratio for the 

purpose of sample 

loading. A lower 

ratio of 0.5:1 was 

also considered. 

24hours drying 

period was used for 

all samples 
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Active landfill less degraded sample (ALD); Closed landfill more degraded sample (CMD); Active 

more degraded sample (AMD).   

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Wattage selection 

 

Reasons for variation: 

- Wattage rating of 

microwave is expected 

to vary in the intense 

and interaction with 

samples.  

 

Selecting suitable wattage for 

activation is important. 

Samples were run at 180, 360, 

600 or 800W  

Coconut,  

ALD mid  

CMD mid   

At 180W, after 5 minutes 

irradiation of samples in 

microwave no visible 

reaction could be observe 

(no generation of 

microplasmas nor gaseous 

build up). 

 

At 360, 600 or 800W there 

was intense gaseous build 

up within the cavity for 

coconut and active landfill 

samples, while 

microplasma occurred 

within 1-5seconds for all 

samples. 
  

At 800W sample holders 

cracked within 15minutes 

of run. 

600W was preferred 

as  sample holder 

could withstand 

15mins radiation 

without  cracking 

and  closest to 

wattage previously 

reported 

3. Duration of radiation 

 

Reasons for variation: 

- Exposure period may 

affect the sample 

carbonization and 

vaporization volatile 

carbon in the sample.  
-  

The samples were run for 

20mins, 15mins or 10mins  

 

AMD Upper  

CMD upper  

At 20mins all sample 

holder cracked and sample 

could not be effectively 

recovered. 

  

At 15mins and 10mins 

samples were recovered.  

 

10mins was 

preferred as the run 

time for samples to 

reduce possibility of 

sample holder 

cracking and lost of 

samples. 
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5.4 Activation process  

5.4.1 Conventional activation 

Method one (carbonization and activation): 

 Dried sample (2-5g) was carbonized at a temperature of 500°C under nitrogen gas flow of 

400cm3 /min for 1:30mins in a tubular furnace. The resulting char and activating agent was 

dissolve (ratio 1:1 or 1:2) in 10 ml distilled water and dried in the oven at 105°C for 3 hours. 

The sample was then activated at 700°C for 2hours under the flow of nitrogen gas at 

400cm3/minutes.  

Method two (acid wash): 

 Sample (2-5g) and activating agent at ratio of 1:1 or 1:2 (w/v) to the sample were 

homogenized using a Griffin flask shaker for 5 minutes. The mixture was heated on the hot 

plate for 30minutes at temperature of 105 °C using 6.3M aqua regia acid. The mixture was 

filtered and the residue dried at 105 °C in the oven for 3hours before activation at the same 

condition in method one.  

Method Three (one step): 

This was a single step activation process in which samples were directed activated without 

initial carbonization.  Weighed sample (2-5 g) and activating agent was dissolved in 10ml of 

water at a ratio 1:2 or 1:1. The slurry was agitated with Griffin shaker for 10 mins. The slurry 

was allowed to dry in the oven for 3hours at 105 °C and then transfer to the tube furnace and 
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activated at 800 °C for 2hrs. The product was washed with distilled water and dried in the 

oven. 

 

5.4.2 Microwave activation  

Samples were further homogenized using a mortar and pestle to an average particle size of 

0.25mm. An aliquot (5 g) of sample was impregnated with 10 ml 10 M KOH solution. The 

mixture was agitated on a stirrer at 80 rpm for 1 hour.  The mixture was dried in an oven at 

105°C for 24 hours to attain a constant weight. Dried sample (2g) was loaded into a sample 

holder (combustion tube) in the reactor fixed within the microwave cavity. Pure nitrogen gas 

(99.5 %) was passed through the microwave cavity at a flow rate of 15 cm3/minutes for 1 

minute to purge the oxygen, then the sample was irradiated for 10 minutes under the stream 

of nitrogen gas. The sample was allowed to cool while under nitrogen gas flow. An Infrared 

Pyrometer (BENETECH GM 300) with laser probe was used to monitor temperature during 

and after each irradiation of sample and the average determined.  

The activated samples were first washed with 5 % HCl to remove the KOH and then 

continuously washed with distilled water until the pH was within a neutral range (6-7). The 

activated sample was then dried in the oven at 105 °C to a constant weight. The % yield (dry 

sample) was determined as:  

 % yield = (weight of precursor before activation - weight of precursor after activation)   ⃰ 100    

                                      Weight of precursor before activation                                     Eq.  (5.1)         
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5.4.3 Comparing the activation processes 

The conventional activation process took an average of 4 hours and the use of 24,000 ml 

volume of nitrogen gas per sample compared to microwave activation with less consumption 

of nitrogen (225 ml per sample) and faster activation period of an average of 15 minutes per 

sample. Conventional heating was only used to evaluate a single run of sample while the 

microwave system was used to carry out studies of samples reproducibility and 

characterization.  

5.5 Result and discussion  

5.5.1 Microwave activation 

5.5.1.1 Activation conditions,  yield  

Table 5.4 presents the activation conditions for each precursor, together with the associated 

yield and reproducibility for the activated carbon produced. Reproducibility was assessed to 

determine if the heterogeneous nature of the precursor affected the activated carbon yield and 

its adsorption properties. At the same activation condition of 600 W and impregnation ratio of 

1:1, the average yields of samples from active landfill were higher than closed landfill for all 

sampling depths (upper, 23.8 % and 19.3 %; mid, 52.4 % and 34.7 %; lower, 35.7 % and 27.0 

%). 
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aActivation condition power =600W, impregnation ratio =1:1, duration = 10mins , 

               ^ Samples without reproducibility studies, Closed landfill (C); More degraded (MD);  

Active landfill(A); Less degraded(LD):, Upper depth (Upper); Mid depth (mid), lower :lower depth 

 

More degraded samples of the active landfill showed better reproducibility in the percentage 

yield (up to 18 % RPD) compared to those more degraded sample of the closed landfill (up to 

30 % RPD). For both active and closed landfills, the activation yield did not show a definitive 

Table 5.4: The activated carbon reproducibility with depth 

S/N Samples names % yielda 

  RPD 

%yield of 

sample 1 

and 2 

 pH 

1 AMD Upper 

1 23.8 

0 

 6.2 
    

2 23.8  6.3 

2 AMD Mid 
1 57.1 

 18 
 6.4 

2 47.6  6.5 

3 AMD Lower 
1 47.6 

17 
 6.7 

2 23.8  7.1 

4 CMD Upper 
1 30.8 

30 
 6.7 

2 7.7  6.8 

5 CMD Mid 
1 30.8 

5 
 6.7 

2 38.5  6.9 

6 CMD Lower 
1 38.5 

21 
 6.2 

2 15.4  6.5 

7 ALD upper^   57.1   6.4 

8 ALD Mid^  47.6   6.4 

9 ALD Lower^  47.6   6.4 

10 CLD upper^  34.6   6.4 

11 CLD mid^   15.4   6.9 

12 CLD lower^   23.8    6.8 
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trend with depth or with the extent of organic content (TOC) of the initial samples; high TOC 

samples did not produce relatively higher yields. The pH of samples from both landfills 

samples were within the same narrow range, pH   6.2 - 7.1. These data indicated that under 

the same set of activation parameters the percentage yields from the heterogeneous precursor 

used (landfill composite) were reasonably reproducible (<30 % RPD). 

Proximate and ultimate properties, together with ignition temperature, are considered to be 

key characteristics of biomass for dry conversion processes (Garcia et al., 2013; Garcia et al., 

2012). The precursors at each depth of both landfills maintained close proximate properties.  

 

5.5.1.2 Effect of irradiation power  

The closed landfill yield of AC progressively decreased from 42.9 % to 33.3 % with increased 

irradiation power, while the active landfill had the lowest yield of 33.3 % at 800 W (Table 

5.5). The low yield at 800 W may be attributed to increased gasification of precursor. During 

the activation process at 800W, intense build-up of gaseous components within the reaction 

cavity was observed within the 1-5 seconds of exposure to microwave radiation. The process 

of precursor degradation, volatilization and decomposition is known to increase with rising 

microwave power (Foo and Hameed, 2012a; Guo and Lua, 2000; Foo and Hameed, 2012).  
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Table 5.5: Percentage  yield  of AC with variations in irradiation power and 

impregnation ratio 

 

 Samples Ma/Ms wattage (W) % yield pH 

 

 

1.ALD upper   1:1 360 38.1 6.6 

 
 2.ALD  upper   1:1 600 57.1 6.4 

 

 3.ALD Upper   1:1 800 33.3 6.4 

 
4. CLD upper    1:1 360 42.9 6.5 

 
5. CLD  upper   1:1 600 34.6 6.4 

 

6. CLD upper    1:1 800 33.3 6.3 

 

 

7. ALD upper 0.5:1 

a 

47.6a 6.2 

 
8.  ALDupper  1:1 57.1 6.4 

 
 9. ALD upper 2:1 33.3 6.4 

 
10. ALD upper 0.5:1 14.3 6.4 

 
11. CLD upper  0.5:1 28.6 6.3 

 
12. CLD  upper 1:1 42.9 6.4 

 

13. CLD upper  2:1 47.6 6.2 

 
14. CLD upper  0.5 : 1 28.6 6.5 

 
15. CMD upper 0.5:1 38.1 6.3 

 
16. CMD upper 1:1 19 6.7 

 
17. AMD upper 0.5:1 42.9 6.2 

 
18. AMD upper 1:1 23.8 6.2 

             Ma: weight of activating agent: Ms: weight of sample;  a:activation condition  

duration =10mins,  wattage  = 600W; Closed landfill (C); More degraded (MD); 

Active landfill(A); Less degraded(LD):, Upper depth (Upper); Mid depth (mid), lower :lower depth  
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5.5.1.3 Effect of activation reagent ratio 

Effect of impregnation ratio (activating reagent: precursor) on the AC yield was evaluated by 

varying the ratio of the chemical reagent from 0.5:1 to 3:1. 

The percentage yields of less degraded samples of active landfill in respect to impregnation 

ratio were in order of 1:1 > 2:1 > 0.5:1, while for the closed landfill samples the order was 2:1 

> 1:1 > 0.5:1. More degraded samples of both landfills had a ratio in the order of 0.5:1> 1:1. 

At a ratio 3:1 the samples did not solidify after 24 h drying at 105oC and this ratio was 

considered not suitable for activation.  

Activating agent impregnation ratio is an important parameter in a chemical activation 

process, which influences both quantity and quality of the AC produced (Liou, 2010; Njoku 

et al., 2014; Ferrera-lorenzo et al., 2014). A ratio of 0.5:1 was observed to be more suitable 

than 1:1 for more degraded sample, with yield enhancement from 19 to 38 % and from 24 to 

43 % for the closed and active landfill respectively. This suggests that the degraded nature of 

precursor, with increased surface area, was more able to absorb activating agent. For less 

degraded sample of both landfills, increase in impregnation ratio from 0.5:1 to 1:1 led to 

increase in percentage yield (active 47.6 to 57.1 %, closed 28.6 to 42.9 %).  Similarly, Foo 

and Hameed (2012) observed that an increasing ratio of activation chemical reagent from 0.25- 

1.25 for Mangosteen peel precursor increased yield of AC from 76.03 to 88.01 %. 
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5.5.2  Conventional activation  

As shown in Table 5.6, five of the 16 samples activated using the convectional heating source 

either vapourised during activation (3 samples) or dissolve during washing (2 samples). 

Vapourization of samples during activation was only peculiar to sample activated using acid 

wash method. The acid wash may have led to oxidation of both organic and fixed carbon of 

the precursor to carbon IV oxide and weaken the carbon matrix, which can vapourize during 

activation. Similar observation was made by Foo et al., 2012b that the addition sulfuric acid 

to coconut husk led to low AC due to the water vapour formed from the dehydration by H2SO4 

which increased the carbon burn off.       
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   Table 5.6: Percentage yield of AC and activation condition for the conventional 

activation 

Sample 

number 

sample 

name 
method IR % yield pH 

activation 

condition* 

1 CLDlower 

 

Acid 

wash and 

activation 

1 8 6.3 HNO3 washing 

at 105°C for 

30mins, 

activated 

temperature 

700°C for 

2hours. 

2 CLDmid 1 13 6.5 

3 AMDupper 2 
vapourizes 

4 AMDmid 2 

5 AMDlower 2     

6 CMDlower 

 

Two 

steps 

activation 

1 11 6.5 Carbonized at 

500°C for 

1.5hours under 

N2 at 

400ml/min  and 

activated at 

700°C 

7 CMDmid 1 12 6.5 

8 CMDmid 2 19 6.7 

9 CMD lower 2 

dissolve 
10 AMD mid 2 

11 ALDupper 

 

One step 

activation 

2 8 6.7 

impregnation 

and activated at 

800°C for 3hrs 

12 ALDlower 2 13 6.9 

13 CLDmid 2 18 6.9 

14 ALDlower 2 16 6.9 

15 AMDupper 1 10 6.7 

16 AMDmid 1 14 6.9 

 * Activation was under N2 at 400ml/min   IR: impregnation ratio; C: closed landfill; MD: 

more degraded; A: active landfill; LD: less degraded; Upper: upper depth; mid: mid depth ; 

lower: lower depth 

 

  

All samples (2) lost during acid wash method were more degraded samples, one from the 

closed landfill and the other from the active landfill. This may also indicated the effect of heat 
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on the degraded nature of carbon in these set of samples.  The AC % yields were between 8- 

19 % for all samples evaluated, while the pH was within the range 6.3 - 6.9.  

The thermal heating source was found to have a negative effect on the % yield of activated 

carbon produced, possibly due to loss of carbon. Carbon lost as result of increase in 

carbonization and activation temperature has previously been reported by Lua and Guo (2000). 

Based on the result of the activation process the convection heating source was less preferred 

to the microwave energy; the latter was used for further characterization studies.  

5.6 Conclusion  

The conventional activation process had a major challenge: sample loss associated with carbon 

loss during activation. The vapourization of acid washed precursor indicated possible 

oxidation of precursor during washing. The conventional activation results suggest carbon 

matrix may not be able to withstand further increase in temperature in carbonization and 

activation temperature.  This could be associated with the degraded nature of the precursor, as 

other fresh biowaste has been subjected to higher activation temperature of 850-950 °C with 

less loss of carbon (Stavropoulos and Zabaniotou, 2005; Martınez et al., 2006). Also, 

Ioannidou and Zabaniotou (2007) recommendation of carbonization temperature range 

between 500 and 850 °C and activation temperature range between 800 and 900 °C may not 

apply to this type of precursor. Microwave activation provided a faster and higher yield for 

most samples than the convection method. Increase in impregnation ratio or microwave power 

decreased the percentage yield of AC. More degraded samples of the active landfill showed 
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better reproducibility of percentage yield (up to 18 % RPD) compared to those more degraded 

sample of the closed landfill (up to 30 % RPD).  
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CHAPTER SIX 

  ACTIVATED CARBON CHARACTERIZATION 

6.1 Introduction 

It has been established that the adsorption capacity of activated carbons (ACs) can be 

identified through the physical characteristics such as porosity, pore volume, surface area pore 

size and the surface chemistry (Ahmad et al., 2007). This chapter presents the surface, 

functional and adsorption characterization of produced activated carbon. The characterization 

was carried out to evaluate the surface area, pore formation and distribution of the produced 

activated carbon. The functionalities and adsorption potentials properties were also evaluated. 

The adsorption kinetics of the activated carbons were studied to understand the factors 

influencing the adsorption capabilities of the activated carbon. The adsorption isotherm was 

studied using both aqueous and gas adsorbates. 

 

6.2 Methods  

6.2.1 Surface morphology 

The ACs were mounted onto an aluminum stub with conductive carbon tape and coated with 

gold reflective layer before sputtering with gold. Gold dust on the AC was removed with air 

spray before being placed in the ionization chamber of the SEM (Carl Zeiss, EVO HD15) for 

analysis. The working distance was varied between 8.0 to 8.5 mm. An aperture diameter of 1 
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or 2 µm was used for the analysis. The accelerating voltage for all analysis was between 20 

and 10 keV. 

 

6.2.2 Adsorption studies  

Assessment of the adsorption capacity of activated carbon samples was carried out using 

methylene blue (MB). A 25 mg/l solution of MB in distilled water prepared from a 100 mg/l 

stock solution. An aliquot (10 ml) of the 25 mg/l MB solution was added to 10 mg of activated 

carbon. The mixture was agitated in a Brunswick C76 water bath shaker at 200rpm for two 

hours at 23°C.  Supernatant solution (2 ml) was pipetted off after the solution was allowed to 

settle and MB concentration in the supernatant was determined by measuring absorbance at 

664 nm. The amount of adsorbed MB at equilibrium, qe (mg/g), was calculated by:  

qe = (Co- Ce)V                                                                Eq.   (  6.1) 

            W 

Where Co and Ce (mg/l) are the initial and final concentrations of MB before and after 

equilibrium, respectively. V is the volume of the solution (l), and W is the mass of dry 

adsorbent used (g).  

The % uptake of MB was determined by: 

% uptake of MB =   Co – Ce  X    100                           Eq.   (6.2) 

                                      Co 



150 
 

The experimental procedure used to determine the adsorption equilibrium of AC, described 

above, was modified to investigate the effect of adsorbent dosage at 50 mg, 25 mg and 10 mg. 

The pH effect on adsorption rate was evaluated by adjusting the pH of the solution to 2-3 or 

11-12, through the addition of 5 % HCl or 0.1M of KOH respectively. The temperature effect 

on adsorption rate was determined by varying the temperature in a Labline orbit environ 

shaker (model 3527) at 23, 30 and 50°C. Adsorption capacity of an activated carbon at other 

time t (qt) during the analysis was determined as follows: 

qt = ( Co − Ct)V                                                        Eq.     (6.3) 

            W  

where qt (mg/g) is the amount of MB adsorbed at time t (min), Co (mg/l) is the initial 

concentration of  MB, Ct is the concentration of  MB (mg/l) at time (t), V (l) is the volume of 

the solution and W (g) is the weight of activated carbon.  

 

6.2.3 Surface area characterization  

The surface area and pore structure parameters of an activated carbon sample were obtained 

by nitrogen adsorption–desorption isotherm, determined using a Micromeritics Gemini 2365 

surface area analyzer. AC (0.2g) was purged at 20°C for 18 hours under a constant flow of 

Helium gas using a Micromeritics Flowprep 060 at 77.5 K. The AC was outgassed at 250°C. 

The surface area was calculated by the BET (Brunauer, Emmett and Teller) equation using N2 

adsorption values within 0.1 to 0.3 relative pressure (p/p0) (Sing et al., 1985). The pore size 

distribution was determined by the Barrett-Joyner-Halenda (BJH) method. Nitrogen 
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adsorption isotherm was measured over a relative pressure (p/p0) range from approximately 

10-2 to 1. The total pore volume (V) was measured by converting the amount of N2 gas 

adsorbed (expressed in cm3/g STP) at a relative pressure of 0.99 to liquid volume of the 

nitrogen adsorbate (Guo and Lua, 2000; Li et al., 2008). 

6.2.4 Functionalities of AC  

The functionalities of the AC were determined using FTIR, as described in section 4.2.8 

 

6.3 Result and Discussion   

6.3.1 Scanning electron microscopy (SEM) 

SEM micrographs of some the precursors and AC obtained are shown in Figure 6.1. The 

precursors’ surface morphology depicts a compact and covered surface texture, while the AC 

surface displayed well defined porosity distributed across the surface area. Comparison of the 

surface morphology of the four micrographs indicates modification in the surface area after 

microwave radiation. The AC surface morphology could not however give sufficient 

information on the influence of the precursor used on the nature of pore formed.  Also, the 

relationship between the nature of the pore formation and adsorption capacity could not be 

inferred from the microphotographs. An adsorption study on the AC was therefore carried out 

(see Section 6.3.2). SEM micrographs of other AC samples are presented as Appendix 5. 
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 Figure 6.1: SEM image of precursors and of activated carbon  

 A and C: precursor and AC of less degraded active landfill lower sample 

 B and D: precursor and AC of more degraded active land lower sample 

 Activation condition: wattage (600W); impregnation ratio (1:1); duration (10minuntes) 

 

 

 

A

A 

 A B 

D 

A 
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6.3.2 Adsorption studies 

 

 

6.3.2.1. Effect of adsorbent quantity 

Figure 6.2 shows the adsorption capacity of AC produced from the precursor of samples from 

both landfills at 23°C.  The adsorption capacities of the AC decreased with increase in weight 

of AC; the adsorption capacity was 36 – 190 mg/g for 10 mg AC, 59-82 mg/g for 25 mg and 

38- 45 mg/g for 50 mg of the absorbent. For 10ml of MB at 25 mg/l concentration, an 

optimum adsorbent dosage of 10 mg was selected to use for the equilibrium experiment. The 

decrease in adsorption capacity of AC could be due to the splitting effect in the flux 

(concentration gradient) between the adsorbate and adsorbent (Beekaroo and Mudhoo, 2011).  

As the quantity of adsorbent increase from 10mg to 50mg with MB concentration kept 

constant at 25mg/l, there is an increase in the number of surface sites of adsorbent available 

for the adsorbate adhesion leading to lower number of adsorbate molecule per site.  Only AC 

from less degraded closed landfill precursor had the optimum adsorption capacity of  58 mg/g 

at 25 mg and a reduced adsorption capacity of 36mg/g at 10mg, properly due to decrease in 

adsorbent sites with reduction in weight. 
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Figure 6.2: Effect of concentration of adsorbent on methylene blue adsorption capacity 

of absorbent. 

Active  landfill (A); closed landfill (C); more degraded (MD);  less degraded (LD); upper 

depth (upper); mid depth (mid); lower depth (lower) 

 

6.3.2.2 Adsorption capacity with depth of sampling 

The adsorption capacity of AC produced from less degraded active landfill decrease with 

depth from (upper: 43 mg/g, mid: 32 mg/g, lower: 16 mg/g), while adsorption capacity of the 

AC from more degraded precursor of closed landfill increases with depth (upper: 35 mg/g, 

mid: 39 mg/g, lower: 42 mg/g) at a temperature of 23°C using 50mg absorbent. This trend 

may reflect the elemental content of carbon in the precursor. The adsorption capability of 9 
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out of 12 of the AC follows the same trend as reported for elemental content of carbon in the 

elemental characterization studies of the precursors reported in chapter four,  i.e. active 

degraded: upper > mid > lower, closed degraded:  lowe r> upper > mid. For both landfills the 

average adsorption capacity AC from more degraded precursors was higher than AC from 

less degraded precursors (active landfill 42 to 30 mg/g, closed landfill 41 to 36 mg/g). This 

may be due to a higher fixed carbon content in the more degraded samples than the less 

degraded samples.  Fixed carbon of a biomass represents the carbon content available for fuel 

and energy conversion (García et al, 2013).  Table 6.1 compares the average optimum 

absorption capacity of the AC with AC from other biogenic waste. The optimum adsorption 

capacity of AC generated from both landfills was within the values reported for AC from oil 

palm and tea waste.  
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Table 6.1: Comparison of the optimum adsorption capacities of MB onto different biogenic 

waste adsorbents. 

  

Adsorbents   

Adsorption 

capacity 

(mg/g) 

Reference 

    

 
Cotton waste 

 
24                         McKay et al. (1986) 

  

 

Coconut husk based activated 

carbon 

 
66 

 Prauchner and Rodríguez-

Reinoso, (2012) 
  

 
Tea waste 

 
85.16 Uddin et al. (2009) 

  

 

Activated carbon from oil palm 

wood 

 
90.9               Tamai et al. (1996) 

  

 
black lignin liquor 

 
92.51 Fu et al. (2013) 

  

 

             

              Mangosteen peel                                     

 

this study 

  345   Foo and Hameed (2012a) 

  

 closed landfill composite 

activated carbon 

More 

degraded 
152 

 

  

 

less 

degraded 
101 

 

  

 

active landfill composite 

activated carbon 

More 

degraded 
190 

 

  

  
  

less 

degraded 
157   
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6.3.2.3 Temperature effect on adsorption 

There was an increase in the percentage uptake of MB with increase in temperature from 30 

to 50 °C, for all AC samples tested. However, only 60 % of the AC samples indicated an 

increase in the percentage uptake of MB with increase in temperature from 23 to 30 °C (see 

Figure 6.3). The AC from more degraded precursor of active landfill (upper and lower layer) 

showed higher uptake of MB at 23 °C than at 30 °C. An ANOVA statistical analysis was 

used to investigate if there is a significant difference in % MB uptake at the three 

temperatures: 23, 30 and 50 °C.  Taking the landfill type (closed and active) and sample 

nature (more degraded and less degraded) as the fixed factors, the ANOVA analysis showed 

that there is no significant statistical difference in % MB uptake at each of temperature point 

for the AC of both landfill with p >0.2 (see Table 6.2). 
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Figure 6.3:  Effect of temperature on the uptake of MB (methylene blue)  

T23, temperature at 23°C; T30, temperature at 30°C; T50, temperature at 50°C.   Active  landfill 

(A); closed landfill (C); more degraded (MD);  less degraded (LD); upper depth (upper); mid 

depth (mid); lower depth (lower); N:number of replicate sample. 
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Table 6.2:    ANOVAs  analysis of adsorption capacity at different temperatures 

temperature  F value P value N*   

23°C 0.276 0.614 10 
 

30°C .901 0.370 10 
 

50° C 1.644 0.236 10   

N* number of samples; sample analyze:  AMD Upper – AMD Lower, ALD Upper –ALD Lower,  CMD 

Upper; CMD Lower, CLD Upper and CLD Lower .Active  landfill (A); closed landfill (C); more 

degraded (MD);  less degraded (LD); upper depth (upper); mid depth (mid); lower depth (lower); 

N:number of replicate sample. 

 

6.3.2.4 pH effect on adsorption 

The percentage uptake of MB onto the activated carbons was affected by solution pH. For all 

the AC investigated (6 samples), uptake of MB was found to be optimal at a solution pH within 

6-7 (Figure 6.4). This is similar to the observation made by Gercel et al., 2007 and Karago et 

al., 2008 who observed an optimum adsorption of MB at the pH of 6 for activated carbon 

produced from Euphorbia Rigida and sunflower oil cake respectively.  Solution pH and ionic 

strength are major factors that can influence the adsorption process in solution (Foo and 

Hameed 2012; Njoku et al., 2014).  
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Figure 6.4:  Effect of pH on the adsorption capacity of AC  Active landfill (A); closed 

landfill (C); more degraded (MD); less degraded (LD); upper depth (upper); mid depth 

(mid); lower depth (lower). 

Solution pH effect on adsorption capacity is controlled by the electrostatic interactions 

between the charged surface adsorbents and the adsorbates present in the solution (Moreno-

Castilla 2004; Karago et al., 2008; Foo and Hameed, 2012). In acidic medium, the presence 

of excess H+ ions and protonated MB compete with MB cations for the adsorption sites. At 

neutral pH, AC becomes more negatively charged and consequently increasing MB cations 

uptake on the adsorption site. In the basic medium, the drop in adsorption capacity could have 

been due to electrostatic repulsion between OH- in the medium and the surface functional 

group of the adsorbent. Moreno-Castilla (2004) reported low adsorption in ortho-

chlorophenol due to electrostatic repulsions between the negative surface charge and 

phenolate–phenolate anions in solution at basic pH medium.  
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At pH 11-12, the adsorption capacity of AC of more degraded active landfill precursor   

progressively decreased with depth:  114mg/g -upper, 106mg/g-mid and73mg/g –lower. 

There was no clear trend in MB adsorption with pH or with depth of sampling for other AC 

samples.  

 

6.3.2.5 Adsorption equilibrium isotherms 

Adsorption equilibrium isotherms are important in the explanation of the dynamics between 

absorbates on the adsorbents and their distribution in liquid phases when attaining 

equilibrium state (Weng and Pan, 2007; Karago et al, 2008). Langmuir and Freundlich 

isotherm models were used to analyze the equilibrium data for the adsorption of MB onto the 

respective AC. Langmuir models’ central assumption is that adsorption occurs only at the 

homogeneous adsorbent surfaces sites, which are equally available and have equivalent 

energy to adsorb equal numbers of molecules with no interaction between these molecules 

(Weng and Pan, 2007; Karago et al, 2008). 

The model is expressed by the equation  

Ce = Ce  +   bL    

Qe    qm      qm                                           Eq.       (6.4) 

Where Ce is the concentration of MB solution (mg/l) at equilibrium. qm and bL are Langmuir 

constants related to the maximum adsorption capacity (mg/g) and energy of adsorption 

(L/mg). The plot of Ce/Qe versus Ce should give a linear graph when the adsorption follows 
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Langmuir isotherm with the slope equal to 1/qm and intercept b/qm (Weng and Pan, 2007; 

Karago et al, 2008; Foo and Hameed, 2012). 

Samples were also evaluated using Langmuir isothermal dimensionless constant (RL), which 

evaluates the type of absorption as either unfavorable when (RL >1), linear (RL=1), favorable 

(0<RL<1), or irreversible (RL= 0)  Weng and Pan, 2007; Kavitha and Namasivayam, 2007; 

Foo et al., 2013).  

RL is expressed as: 

RL = __1___                                         Eq.   (6.5) 

       (1+bCo) 

Where b is the Langmuir constant and Co is the initial dye concentration (mg/l). 

Of nine AC samples evaluated, six (67 %) conformed to the Langmuir model, showing a linear 

trend with coefficient of determination values (R2) within the range 0.8-0.9 (Figure 6.5). Two 

of the three activated carbon samples from less degraded sample conformed to the Langmuir 

model.  Details of the Langmuir values for each sample are given in Table 6.3. The Langmuir 

equilibrium constant values were within 0.2-0.8, which fall within the favourable range RL 

=0<RL<1. 
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Figure 6.5: Langmuir plots for the adsorption of methylene blue onto the activated 

carbons 

A: AC from active landfill more degraded precursor   B: AC from closed landfill more 

degraded precursor. 
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Table 6.3: Comparing the Langmuir and Freundlich model parameters of AC 

     Depth                                                 Langmuir Freundlich 

 
Q0(mg/g) R2 b RL(L/mg) R2 n kf(L/g) 

AMD* upper  16.2 0.939 0.10216 0.281 0.9984 1.1737089 0.1569 

 AMD mid 59.3 0.1162 0.02138 0.652 0.9375 1.618123 0.0605 

AMD lower  17.7 0.919 0.08324 0.325 0.9606 1.1290505 0.1676 

ALD# upper 12.2 0.9991 0.23646 0.145 0.9805 0.8755801 0.1929 

 ALD mid 51.7 0.1557 0.01488 0.729 0.9328 1.5432099 0.1448 

ALD lower -0.045 0.825 -0.1597 -0.334 0.6779 24.630542 -0.0995 

CMD^ upper  12.6 0.9961 0.13456 0.229 0.9919 1.1286682 0.1748 

 CMD mid  3.37 0.9571 -0.4644 -0.094 0.9698 0.8730574 0.2331 

CMD lower  12.5 0.1804 0.05812 0.408 0.6952 2.8034763 0.0149 

AMD * : Active more degraded  ,  ALD# :Active less degraded,  CMD^: Closed more degraded  

The Freundlich isotherm model assumes that adsorption occurs on heterogeneous surfaces 

with interaction between the adsorbed molecules. The model is expressed by  

log10(X/M) = log10 Kf + 1/n log10 Ce                                      Eq.     (6.6) 

Where X is the amount of MB adsorbed (mg), m is the weight of the adsorbent used (g), Ce 

is the equilibrium concentration of MB in solution (mg/l), Kf (mg/g) (l/mg)1/n and 1/n are 

Freundlich constants. A plot log Ce and log (x/m) was used to evaluated AC conformance to 

Feundlich model (see Figure 6.6).  

All nine AC samples evaluated conformed to the Freundlich model with the R2 >0.9 for 7 

samples (78 %) of AC (see Table 6.4). This suggests that adsorption by the activated carbons 

is best explained by Freundlich model. Figure 6.7 shows the adsorption effect of AC at 

equilibrium. 
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Figure 6.6:  Freundlich plots for the adsorption of methylene blue onto the activated 

carbons. C: AC from closed more degraded precursor   D: AC from active less degraded 

precursor 

                                       

 Figure 6.7:   Shows the AC adsorption effect at equilibrium  
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6.3.2.6   Adsorption dynamics 

The kinetic rate orders of MB adsorption onto the AC were evaluated using the pseudo first 

order and pseudo second order kinetic models. The expression for the first order given by 

Lagergren expression (Dogana et al., 2006): 

Log (qe-qt) = log qe – K1                                      Eq.     (6.7) 

                                2.303t 

Where qe and qt are the amounts of MB adsorbed (mg/g) at equilibrium and at time t (min), 

respectively, and k1 is the rate constant of adsorption (min-1).  The plot of log (qe-qt) versus t 

gave a poor linear graph of R2< 0.4 for 67 % (8 of 12) of the AC evaluated. The kinetic 

adsorption of AC did not conform to the first order rate order. The values of K1 and qe were 

determined from the slope and intercept respectively (Table 6.4) 
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The second-order kinetic model given by Dogana et al., 2006 expressed as  

t  =    _1__ +  __1__                                     Eq.   (6.8) 

qt       hqe 
2         qe

t      

 

the initial adsorption rate, h   is  defined as 

h= k2qe
2 

Where (h) is the initial adsorption rate, the equilibrium adsorption capacity (qe), and the 

second-order constants k2 (g/mg min). The plot of t/q versus t (Fig 6.8) gave a linear graph 

with R2 value higher than 0.9 for 75 % of the AC evaluated. The qe experimental and qe 

calculated had relative percentage different < 10 % for 67 % of AC (see Table 6.4). Thus, the 

adsorption kinetics of MB onto AC was more favorably described by second-order kinetic 

model.  
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 Table 6.4: Comparing  the first and second order parameters 

Sample 2nd order   1st order  
 

  

 R2 qe
cal(mgg-1) k2(gmg-1min-1) qe

exp(mgg-1) R2 k1(min-1) 
 

AMDupper 0.9859 169.2047 0.001656 144 0.5488 -0.0509 
 

AMD mid 0.9924 89.28571 0.002798 69.9 0.0699 -0.00368 
 

AMD lower 0.995 183.1502 0.003506 167.2 0.5687 -0.03201 
 

ALDupper 0.9888 118.2033 0.009209 112.7 0.5379 -0.04721 
 

ALD mid 0.0048 588.2353 1.79E-07 42 0.1296 -0.01359 
 

ALD lower 0.7082 87.0322 6.69E-06 97.1 0.4603 -0.01313 
 

CMDupper 0.4455 -03.1092 0.022428 36.5 0.3418 0.013818 
 

CMDmid 0.9177 344.8276 0.000232 185.6 0.8781 -0.00806 
 

CMDlower 0.9177 158.296 0.002657 133 0.7532 -0.0251 
 

CLDupper 0.786 161.5509 0.000838 112 0.9096 -0.0251 
 

CLDmid 0.995 105.2632 1.09E-05 146 0.7909 -0.00898 
 

CLDlower 0.998 207.4689 0.003821 191.7 0.5`56 -0.04744 
 

AMD: Active more degraded ,  ALD :Active less degraded,  CMD: Closed more degraded   CLD: Closed less 

degraded 
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  Figure 6.8:  second order kinetic for the adsorption of methylene blue onto ACs  

(A) AC from closed landfill less degraded precursor;  (B) AC from active more  degraded 

precursor  
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6.3.3 BET surface analysis 

The BET surface area of the AC samples is as presented in Table 6.5. For both closed and 

active landfills, the BET surface area of more degraded samples increases with depth (closed 

landfill 72.53 m2/g, 86.07 m2/g and 132.51 m2/g) and (active landfill 34.02 m2/g, 38.08 m2/g 

and 105 m2/g). AC surface area of less degraded samples had no definite depth relationship. 

The surface area of AC of more degraded closed landfill samples follow the same trend as the 

adsorption capacity of MB (adsorption increased with depth as explain in section 6.3.2.2) 

                      Table 6.5: BET surface area and pore surface area of AC 

Sample name BET surface area (m2/g) Pore surface area(m2/g) 

CMD upper 72.53 5.8 

CMD mid 86.07 3.85 

CMD lower 132.51 5.19 

AMD upper 34.02 7.49 

AMD mid 38.08 1.38 

AMD lower 105.15 ND 

ALD upper 51.64 0.87 

ALD lower 92.89 11.33 

CLD upper 31.75 2.58 

CLD mid 89.33 4.59 

                                        *ND: not determined   
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A further study of the pore distribution in three selected samples (AC from closed landfill 

more degraded lower depth sample (CMD lower), AC from active landfill less degraded upper 

depth sample  (AMD upper )and AC from active landfill more degraded upper depth sample 

(ALD upper) ) is shown Figure 6.9. The graph shows the distribution of mesoporous, with 

most pores diameters of the AC were within the range 2-5 nm. 

The average pore size of 3.7 nm, 4.6nm, 5.9 nm for analyzed AC further confirms the graphic 

observation that the AC consist of mostly mesopores. The AC had average pore volumes of 

0.102, 0.160 and 0.126 cm3respectively. 

 

 

 

 

 

                

Figure 6.9: pore size distributions of the activated carbon. A, AC of closed landfill more degraded 

sample; B, AC of active landfill more degraded sample;  C, AC of active landfill less degraded sample. 
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The adsorption isothermal was determined by the plot of relative pressure (P/Po) and N2 

volume at STP in cm3/g (see Figure 6.10).  For all plots in figure 6.10, the quantity of N2 

adsorbed increases with the increase in the relative pressure indicating the adsorption of 

second layers with a characteristics hysteresis formation peculiar to Type IV isothermal 

adsorption.  (Sing et al., 1985; Teng et al., 2000). Type IV adsorption process conforms to the 

Freundlich adsorption models of unrestricted monolayer - multilayer adsorption with the 

adsorbate-absorbate interaction playing the major role. Hysteresis appearance at above 0.4 can 

be associated with capillary condensation in mesopore structures (Sing et al., 1985).  The 

hysteresis has a type H4 loop which is attributed to narrow slit-like pores (Sing et al., 1985).  

The large Langmuir area of 636 m2/g, 466.1 m2/g, 361.8 m2/g further strength the high 

adsorption potential of the activated carbon.  Hu et al. (2001) observed adsorption isothermal 

of type I and II for the AC from coconut shells as the ratio of activating agent impregnation 

increased. 
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Figure 6.10:  Nitrogen isotherms adsorption of the AC.   A: AC of closed landfill more 

degraded sample, B: AC of active landfill more degraded sample C: AC of active landfill less 

degraded sample. 
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6.3.4 Functionalities of AC  

A total of 42 FTIR spectra were reviewed to investigate the nature of functional group 

common to ACs. Major peaks located at 3320-3380, 1635-1694, 990-998, 770-779 and 699 

cm-1 were prominent in most (8 of 12) of the AC samples. The peak at 3320-3380 cm-1 was 

identified as stretching vibration of hydroxyl group from alcohol or phenol (Kaartinen et al., 

2013; Ferrera-Lorenzo et al.; 2014a, Weng and Pan, 2007; Karago et al., 2008; Kavitha and 

Namasivayam, 2007), which may  reflect –OH from residual KOH.  The 1635-1694cm-1   

peak is attributed to C=C stretching vibration of olefin groups (Weng and Pan, 2007; Karago 

et al.; 2008, Kavitha and Namasivayam, 2007), while the  peaks at 990-998, 779, and  699 

cm-1  were ascribed  to  C-H out of plane bending of aliphatic groups (Suhas et al., 2007; 

Weng and Pan, 2007; Karago et al., 2008). 

The FTIR spectra of the AC of both landfills showed significant changes in functional groups 

when compared to spectra of their respective precursors. Figure 6.11 compares typical FTIR 

spectra of the precursor to those of their respective AC.  
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Figure 6.11: Typical spectra of AC and precursor. (i). active landfill AC, (ii) active landfill 

precursor,    (a) closed landfill AC, (b) closed landfill precursor. 
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Prominent peaks of active landfill precursor at 3690 and 3619 cm-1, attributed to O–H 

vibration of Si-OH of clayey materials (Quaghebeur et al., 2013; Madejova, 2003) (see 

section 4.3.9.1), was absent in all AC samples of the landfill. This could be attributed to 

oxidation of the OH group during activation. OH vibration of clayey material (Si-OH) 

become less stable with increase in temperature and could be oxidized to carboxyl or 

aldehyde (Suhas et al., 2007). Suhas et al. (2007) observed that with increased heating deeper 

oxidation of OH containing groups takes place leading to formation of carboxyl and 

aldehydes. 

The intense peaks at around 1030–3 and 1000–9 cm-1 were attributed to silica, clay minerals 

(Si–O–Si and Si–O stretching vibration) (Quaghebeur et al., 2013; Ouatmane et al., 2000), 

which were present in the precursors of both landfill but absent in AC of the active landfill, 

except for the upper layer. In most (60 %) of the closed landfill AC, however, these peaks 

were retained but were less intense. This suggests that the source of these peaks in AC differs 

for each landfill. The AC peaks for active landfill sample could be mainly from clay mineral 

which is less resistant to heat, while those of the AC from closed landfill could be largely due 

to Si-O-Si stretching of silica, which is more stable to heat. 

A very weak aliphatic methyl peak at 2980-4 cm-1 was found in 95 % of AC samples from the 

closed landfill, but was completely absent in all AC of the active landfill.  Other peaks at 1558-

1560 cm-1 were ascribed to C-O groups conjugated with aromatic rings (Foo et al., 2013).  The 

peaks at 1440-12 cm-1  were attributed to C–O–H in-plane bending of carboxylic carbon 

(Kaartinen et al., 2013; Suhas et al., 2007),  while those at 1340-1395 cm-1 were ascribed to 
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conjugated moieties of oxygen functional group of  C=O stretching and C-O stretching in 

carboxylic group (Ji et al., 2007).  The peaks located at 1165 and 874cm-1, attributed to C–O 

and C–H vibrations (Liou, 2010) respectively, were found in AC from both landfill types but 

were more prominent in the closed landfill than the active landfill.  

6.4 Conclusion 

The AC generated from different precursors had different characteristics and adsorption 

potentials. The nature of landfill (closed and active), the nature of sample (degraded and less 

degraded) and the depth were factors observed to have influenced some properties of the 

produced ACs. Precursors from both landfills generated AC with different adsorption capacity 

and BET area but had similar functionalities and pore size distribution. For both landfills, 

more degraded precursors generated AC had higher adsorption capacity with higher surface 

area (active landfill, 131 mg/g and 59.1 m2/g; closed landfill, 126 mg/g and 97.0 m2/g).   The 

more degraded sample of both landfills showed similar trends in the character of the produced 

AC (surface increase with depth). AC of the less degraded precursor of active landfill had 

higher adsorption capacity with higher surface area compared to the closed landfill precursor, 

with no definite trend with depth. The AC exhibited a monolayer-multilayer adsorption 

isothermal of type II order. The AC shows less presence of micropores, which indicates that 

it may not be suitable for the absorption of some gaseous pollutants (pore size < 1nm).  

However, with the AC consisting of mainly of mesopores and adsorption capacity of 34 mg/g 

– 190 mg/g for methylene blue, the AC could be used to adsorb a range of cationic dyes and 

pollutants. 
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CHAPTER SEVEN 

CONCLUSION AND RECOMMENDATION 

7.1 Conclusions  

This chapter presents an overview of the research objective and findings in order to draw 

conclusion on the observations made during the course of this research work.  

The practice of waste landfilling is a long age practice which is still an integral part of 

Municipal solid waste system despite associated environmental challenges (Bolan et al., 

2014). Sustainable Management of active and closed landfill is desirable to preserve our 

ecosystem from pollution and optimize land utility. The first step to a successful sustainable 

landfill management system is undertaking a compositional characterization of waste disposed 

to understand the potential alternative uses (Armijo et al., 2008). This research has been able 

to provide strategic information on the composition of samples in a closed and active landfill 

in Lagos, Nigeria.  Both landfills showed similarity in waste constituent despite age difference 

(active: 1-2 years; closed: 5-6years). Polythene waste was found to be the predominant non-

biodegradable component representing 45 % and 35 % of less degraded waste in the active 

and closed landfill respectively. Recovery practice of polythene from landfill has been poorly 

reported and may not economically viable due to the intense cleanup process it would require 

before reuse. However, the use of polythene and polyethylene terephthalate waste as activated 

precursor has been reported by Laszlo et al. (2001) and Mendoza-Carrasco et al. (2016).  The 

virgin wastes of the remaining constituents of the less degraded samples in the landfills have 
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been previously investigated as precursors for activated carbon: plants (Tang et al., 2012; Foo 

et al., 2013), wood (Fu, et al., 2013;Foo and Hameed, 2012) and synthetic materials and papers 

(Nahil and  Williams, 2012). Degraded components constitute above 55 % of landfill 

composite for both landfills. Degraded or soil component of mined landfill are often above 50 

% of extracted waste  Jain et al., (2013 and 2014) and Frandegard (2013) made similar 

observation of degraded or reclaimed soil, consisting of 52 % and 53 % of mined landfill in 

Florida and Sweden respectively. The compositions of waste in the two landfills were 

considered to have good potential as activated carbon precursor.   

The inorganic contents of both landfills were generally below regulatory standards, except for 

Pb in the more degraded closed landfill samples.  The closed landfill with no leachate 

collection pond has a high risk of Pb leaching into the environment as runoff water from the 

landfill. Levels of inorganic contaminants (Cr, Cu, As, and Ag) were generally within the 

same magnitude as in household wastes reported for Finland (Vesanto et al. 2007; Kaartinen 

et al. 2013). 

Both landfills were rich in C, O, S, Fe, Al and Ca elemental content. This identifies O and S 

as the prominent hereatoms that could affect the surface chemistry of the produced activated 

carbon.  The ratio of carbon and oxygen content throughout the depths in both landfills were 

within 1:1, providing coordination between the poly aromatic or poly aliphatic sheets and the 

heteroatom. 

Total Organic carbon (TOC) is one of the major contrasts between the two landfills.  The 

distribution of TOC could be affected by the nature of waste, precipitation and landfill practice 
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(Jain et al., 2005; Quaghebeur et al., 2013).  Although the TOC of more degraded samples of 

both samples were similar (active: 5.9 % and closed 5.7 %), the TOC of less degraded samples 

in the closed landfill was more than 10 % higher the active landfill for all the depths. Kaartinen 

et al.  (2013)  evaluated the TOC of mined waste and reported a low TOC of 5.3 – 4.8 % for 

waste of size < 20 mm, while waste of size >70 mm had a TOC of 11 %. The possibility of 

TOC loss as dissolved organic carbon (DOC) during the wet season was also observed in both 

landfills. In term of suitability for used as activated carbon based on the TOC content, the 

samples of closed landfill were favoured.   

Fixed carbon of a biomass represents the carbon content available for fuel and energy 

conversion (García et al., 2012 and 2013). The proximate properties of samples in both landfill 

were in order Ash > volatile > fixed carbon. The fixed carbon of precursors (average 17 %) 

for both landfills was considered suitable for activation despite the limiting ash content. 

Biomass having fixed carbon of 17.1, 16.3 and 14.8 %, has been previously used as precursor 

for AC activation, by Guo and Lua (2000) and Liou (2010).  

Precursors from both landfills had peaks which indicated mineralized nature of the constituent 

with the absence of aliphatic methyl and methylene peaks at 2920 cm-1 and 2850 cm-1 and 

prominent inorganic peaks attributed to silica, clay minerals (Si–O–Si and Si–O stretching 

vibration) and quartz at 1030-3 cm-1 and 1000-9 cm-1. Smidt & Meissl (2007) and Smidt   & 

Schwanninger (2005)   characterized degraded waste using these peaks. The precursor’s 

degraded nature is considered a major factor in the heating source to be used for the activation 

process.  The use of conventional heating source resulted in low % yield of activated carbon 
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due to vaporization during activation process. The degraded nature of precursor may have 

influenced vapourization of elemental carbon. Carbon loss during carbonization using 

combustion furnace was attributed to thermal decomposition of carbon bond at high 

temperature 400 °C.   The use of a microwave oven provided a heating system that enhanced 

molecular heating with less possibility of carbon loss. Increase in impregnation ratio above 

1:1 or microwave power above 600W decreased the percentage yield of AC. This was 

consistent with the observation made by Ferrera-Lorenzo et al. (2014) ,Njoku, et al.(2014) 

and Foo and Hameed,2012  that impregnation ratio and microwave power influenced  the  

quantity of activated carbon produce.  

The AC of both landfills differ in properties based on depth and type of landfill. Generally, 

AC showed good pore formation when compared to their respective precursors. The BET 

surface area of AC increased with depth for both landfills. A similar trend was observed in 

the MB adsorption capacity of AC of the more degraded samples of the closed landfill. AC 

from the more degraded samples had higher adsorption capacity than that from the less 

degraded samples. At equilibrium, the isothermal adsorption of MB onto AC conformed 

more to the Fredulich’s model than to Langmuir’s model. The adsorption kinetics of MB onto 

AC was more favorably described by second-order kinetic model. AC of more degraded 

samples showed distribution of both micropores and mesopores with most pores of the AC 

between 1-5nm. The BET isothermal adsorption graph further confirmed the multilayer 

adsorption properties of AC. 
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The landfill composite properties and the AC formed can be compared to some other biomass:  

oil palm stone and black liquor lignin which have been identified as having potential of been 

sustainably managed by conversion to activated carbon (Guo and Lua, 2000; Fu et al., 2013). 

Considering this reuse option for landfill composite could provide a means for use of large 

percentage of degraded and mixed resource from the landfill which cannot be easily 

separated.  It could increase the integrated resource management of landfill with potential 

reuse as landfill liner and leachate pond adsorbent. Organic and inorganic mass transfer 

within the landfill could be curtailed with the reuse of the landfill composite AC as daily 

landfill covering. This could reduce huge budget on landfill covering and close the loop for 

virgin soil on landfill. The potential generation of greenhouse gas will be further reduced and 

weight of waste left in the landfill will be reduced thus increasing the life span of the landfill.  

Studies by Jain et al. (2013 and 2014) indicated that landfill mining for resource reuse, 

recycle and recovery is environmental beneficial and economical cost effective than doing 

nothing throughout the closure period.  

In conclusion, these research findings provide essential information on the potential used of 

municipal landfill composite as a precursor for AC generation and its characterization. 

Landfill composites were considered suitable for AC activation, except for the degraded 

nature and inorganic content in the closed landfill. The AC quality in terms of surface area 

and adsorption capacity increases with depth. With a Langmuir surface of 636 m2/g and MB 

adsorption capacity of 190 mg/g, the AC could be used to adsorb a range of cationic dyes and 

pollutants. 
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7.2 Contribution to knowledge 

• The first part of this research work had shown that both active and closed landfill 

investigated consist largely of decomposed materials across the sampled depth. This is a 

strong indication that aerobic landfill condition existed within these layers. The 

degradation process of waste within this depth is expected to be accelerated due to 

temperature range above 25 °C and moisture content above 32 %. The use of SEM/EDX 

and FTIR for precursor characterization present a faster and non-destructive method 

applied for the first time to these samples been investigated.  

• The landfill composite of both landfills were found suitable for used as a precursor for the 

generation of activated carbon. This represent a novel source of precursor for the activation 

carbon production and possible novel reuse option for landfill composite. It creates a 

possible window for an integrated landfill management system.  

• The depth of both landfill composites made a significant difference on the adsorption 

capacity and surface area of the generated activated carbon, while age difference play no 

definite role. Increase in the depth of precursor resulted largely to higher quality of 

activated carbon. This is a new research finding indicating relationship between depth of 

landfill composite and the quality of activated carbon produced.    
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7.3 Limitation of Result 

The major limitation of the present results as with most landfill parameters is that is  highly 

dependent on the type of waste disposed, climatic condition and the landfill management 

practice. It is difficult to generalize results for all landfills.  

7.4  Recommendations and future research 

The finding reported here present a single profile evaluation of the landfills to create the 

basis for an in-depth look at resource potential in the landfill located in Lagos, Nigeria. A 

deeper sampling of the landfill to establish spatial trend between profiles is necessary in 

order to design a robust landfill mining strategy and activation conditions.  A study of 

quality optimization conditions for the activation process using landfill composite is 

necessary to enhance the use of this management option. 

The using of anaerobic landfill composite as a precursor is necessary to assess its 

suitability for the production of activated carbon. It will help establish the possible 

application of this conversion strategy to both anaerobic landfill composite common in the 

developed countries and aerobic composite peculiar to developing countries.    

AC regeneration studies are necessary to enable better understanding of management 

strategy for the exhausted AC. Evaluating adsorption potential of the landfill leachate 

content onto the activated carbon is highly desired to determine the possibility of 

deploying it for this purpose. There is need for the government to enact policy and strategy 

to prevent continuous buildup of non–biodegradable waste (Polythene) in active landfill. 

This type of waste is best recycled rather than disposed on the landfill. 
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Appendix 1 

Key features of the sampling area  

Active landfill Olushosun 
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Main entrance to Olusosun landfill and the reserve area for energy from waste project 

    Covering of some area of the dumpsite for access 

purpose 

    The height of disposed waste at active landfill  
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Closed Landfill Abule egba  

 

 

      Closed landfill proximity to a petrol station and a major high way 

                            Water logged section of the closed landfill 

Vegetation covering some section of the landfill 
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Appendix 2 

Approval letter for sampling 
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Appendix 3 

RCRA draft technical guidance statistical table on no exceeding 

sampling procedure 
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Appendix 4 

STANDARD OPERATING PROCEDURE FOR SAMPLING 

1.0 Scope and application: the essence of this standard operating procedure is to outline 

equipments and methods that will be used in obtaining a representative sample of landfill 

composite from selected landfill sites for analysis. 

2.0 Purpose of sampling: to determine the heavy metals concentrations and total organic 

carbon concentrations of landfill composite samples 

3.0 Method Summary:  

An appropriate sampler (decontaminated bucket auger ) is used to obtain a landfill composite 

sample at different specific depth measured with a stainless steel meter rule. The sample is 

weigh and kept in a plastic container before being transfer to the laboratory for appropriate 

analysis. 

4.0 Sampling Locations:   Olushosun and Abule Egba, landfill Sites in Lagos State, Nigeria 

5.0 Sample Method: systematic grid sampling method is to be used. 

5.1Gridding method 

Each Site is divided into 7 equal cells on the map and three locations of equal distance within 

each cell are located with help of a Global Position Satellite (GPS) as sampling point.  

Olushosun:      Area capacity 42.7 hectares     cell size 42.7/7= 6.1hectares        sampling 

distance  8.5/3=2.03hectares 

Abule egba:      Area capacity 10.2 hectares     cell size10.5/7 = 1.5       sampling distance   

2.04/7= 0.5hectares 

5.2 Gridded map of the sampling sites       
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              Active land landfill      Closed landfill  

 

 

A systematic grid map of each landfill is drawn as a guide. 

6.0 Sampling equipment: One  Sampler/ bucket auger which is made up of  non contaminating 

material and can scoop a   volume of 500g and  a distance of 50cm ,  50 plastic  containers, 

pH meter, GPS, Conductivity meter,  chest cooler, labels, sampling log notes, de-ionized 

water, weigh balance, tissue paper, video and camera , survey stakes or flags, one 

homogenization container 

7.0 Preservative: None for now 

8.0 Sampling codes: the code for each sample will be First letter of sampling site name, depth 

range and the number on the grid. for example: 

OLUSHOSUN 

Upper sample code:  OU 1, OU2 OU3-------------OU8 

Mid sample code: OM1, OM2,OM3--------OM8 

Low sample code: OL1 , OL2, OL3--------OL8 
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9.0 Sample label                     SAMPLE LABEL 

Sample code ----------------------------------------------------------   

Location /location coordinate ------------------------------- 

Sample type------------------------------------------------------------ 

Sampling Date ------------------------------------------------------- 

Sampling Time ------------------------------------------------------- 

Preservatives used------------------------------------------------- 

10.0 Field note Content 

10.1 Site record 

Sampling site          date ----       time ----   

 Site Observations     

Constrain and modification in activities  

Reasons 

Duration of sampling on the site 

11.0 Procedure 

11.1 pre sampling 

Review all information available on the landfills site 

Carry out the site survey to determine health and safety issue 

Obtain necessary sampling and monitoring equipment as stated above. 

Clean sampler as directed by the manufacturer and ensure dryness of instrument 

Clean and calibrate all measuring instrument e.g PH meter, GPS, weighing balance 

Check all label and sampling log note for conformity in inform and adequacy for sampling  

Confirm purity level of reagent and solvents to be used. 

Carry out a checklist of materials and equipment to be used for sampling. 
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11.2 Sampling  

Convey all materials and instruments to sampling site in a compartment free of possible 

contamination  

Locate sampling points based on the grid map and consideration for the following: 

I. time/ age variation years.>Month>  as given by the authority 

ii. Anthropogenic activities of interest 

iii. Information received from operators 

iv. Observed contamination 

Locate the sampling point 

Record the coordinates  

Update the sampling note  

Fill the sampling label  

Disinfect the sampler by wiping the samplers with clean tissue paper twice 

Check the plastic container for cleanliness and free from contaminants  

Place the plastic container on the weighing balance  

Take the sample at appropriate depth and weigh 500g with sampler operated to specification. 

Take the PH, temperature and conductivity reading of the samples. 

cover the sample and keep in the chest cooler 

Prepare the field blank and the equipment blank. 

Place the containers in a contamination free area 

Convey samples to the laboratory. 

13.0 Quality Control of sampling  

Prepare: 
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Equipment blank:  the decontaminated sampling equipment is rinsed using de-ionized water 

under field conditions to evaluate the effectiveness of equipment decontamination or to 

detect sample cross contamination. 

 

Field blank: this sample is prepared in the field using de-ionized water to evaluate the potential 

for contamination by site contaminants not associated with the sample collected (e.g., airborne 

organic vapors) 

Sample of Field Record 

 DATE SITE 

NAME 

SAMPLE 

TYPE 

SAMPLE 

CODE 

COORDINATE pH TEMP. 

(°C) 

CONDUCI

VITY 

WEIGHT OF 

EMPTY 

CONTAINER 

WEIGHT 

OF 

SAMPLE + 

CONTAIN

ER 

1. 18-01-

14 

OLUSO

SUN 

SOLID Os1 N06°35.743’ 

E003°22.687’ 

 

7.80 36.2 1049µs 61.2g 599.5g 

2. 18-01-

14 

OLUSO

SUN 

SOLID OM1 N06°35.771’ 

E003°22.625’ 

7.65 35.0 1162µs 58.2g 628.3g 

3. 18-01-

14 

OLUSO

SUN 

SOLID OL1 N06°35.807’ 

E003°22.581’ 

7.12 36.8 1290µs  

53.5g 

683.2g 

4. 18-01-

14 

OLUSO

SUN 

SOLID OS2 N06°35.761’ 

E003°22.587’ 

7.20 34.2 383µs 53.0g 1,040.0g 

5. 18-01-

14 

OLUSO

SUN 

SOLID OM2 N06°35.722 

E003°22.660 

6.87 32.5 772µs 58.5g 769.1g 

6. 18-01-

14 

OLUSO

SUN 

SOLID OL2 N06°35.686’ 

E003°22.647’ 

7.28 36.7 414µs 51.6g 986.6g 

7. 25-04-

14 

OLUSO

SUN 

SOLID OS3 N06°35.611 

E003°22.647 

76.0 25.3 1385µs 63.3g 1000.5g 

8. 25-04-

14 

OLUSO

SUN 

SOLID OM3 N06°35.549’ 

E003°22.662’ 

6.95 28.2 672 µs 71.8g 1213.9g 

9. 25-04-

14 

OLUSO

SUN 

SOLID OL3 N06°35.499’ 

E003°22.774’ 

8.61 31.8 1812µs 63.8g 1177.6g 

10. 25-04-

14 

OLUSO

SUN 

SOLID OS4 N06°35.580’ 

E003°22.708’ 

8.26 34.0 1304µs 63.6g 1092.0g 

11. 25-04-

14 

OLUSO

SUN 

SOLID OM4 N06°35.580’ 

E003°22.759’ 

7.14 31.1 2010µs 70.9g 1494.5g 

12. 25-04-

14 

OLUSO

SUN 

SOLID OL4 N06°35.419’ 

E003°22.769’ 

7.52 32.1 1032µs 69.7g 2343.0g 

13. 25-04-

14 

OLUSO

SUN 

SOLID OS5 06°35.561’ 

E003°22.811’ 

7.23 31 347µs 64.9g 1234.5g 
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14. 24-01-

14 

OLUSO

SUN 

SOLID OM5 06°35.670’ 

E003°22.698’ 

7.27 33.8 715µs 64.3g 1331.8g 

 

15. 

 

24-01-

14 

 

OLUSO

SUN 

 

SOLID 

 

OL5 

 

06°35.671 

E003°22.775’ 

 

7.20 

 

34.8 

 

1174µs 

 

64.3g 

 

1177.6g 

16. 24-01-

14 

OLUSO

SUN 

SOLID OS6 N6°35.675 

E003°.22620’ 

7.65 37.3 3999µs 73.5g 1363.6g 

17. 24-01-

14 

OLUSO

SUN 

SOLID OM6 N06°.770 

E003°22.747’ 

8.30 32.8 860µs 75.5g 824.0g 

18. 24-01-

14 

OLUSO

SUN 

SOLID OL6 N6°35.784 

E003°22.657’ 

7.60 33.9 1520µs 71.6g 1192.9g 

19. 24-01-

14 

OLUSO

SUN 

SOLID OS7 N06°35.776° 

E003°22.607’ 

7.40 37.1 926µs 75.5g 1115.0g 

20. 25-01-

14 

OLUSO

SUN 

SOLID OM7 N06°35.772 

E003°22.557’ 

7.62 33.7 329µs 73.1g 1009.8g 

21. 25-01-

14 

OLUSO

SUN 

SOLID OL7 N06°35.664’ 

E003°22.536’ 

7.77 33.7°C 1092µs 70.0g 1050.1g 

22. 25-01-

14 

OLUSO

SUN 

SOLID OS8 N06°35.800’ 

E003°22.816’ 

7.22 31.40C 654µs 70.2g 995.5g 
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Appendix 5 

Scanning Electron Microscopy micrographs of AC samples  

 
 

C D 

A 

E F 

  B 

SEM image of AC from Close landfill sample  

Depth of sampling for more degraded precursor: (A)upper; (B) mid; (c)  lower     

Depth of sampling for less degraded precursor:    (D) upper  (E ) mid  (F)  lower 
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 i ii 

iii 
iv 
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Vi 

 SEM image of AC from active landfill sample:   I , ii, iii  :upper – lower more degraded  

                                                                                      iv, v, vi : upper – lower less degraded  
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