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Abstract—Uncertainty analysis methods are widely used in 

today’s Electromagnetic Compatibility (EMC) simulations in 
order to take account of the non-ideality and unpredictability in 
reality and improve the reliability of simulation results. The 
Stochastic Galerkin Method (SGM) and the Stochastic 
Collocation Method (SCM), both based on the generalized 
Polynomial Chaos (gPC) expansion theory, have become two 
prevailing types of uncertainty analysis methods thanks to their 
high accuracy and high computational efficiency. This paper, by 
using the Feature Selective Validation (FSV) method, presents the 
quantitative accuracy comparison between the foregoing two 
methods, with the commonly used Monte Carlo Method (MCM) 
used as the comparison reference. This paper also introduces 
SCM into the CST software simulation as an example of 
performing uncertainty analysis. The advantages and limitations 
of SGM and SCM are discussed in detail in this paper. Finally, the 
strategy of how to choose between SGM, SCM, and MCM under 
different situations is proposed in the conclusion section. 
 

Index Terms— Stochastic Galerkin Method, Stochastic 
Collocation Method, Uncertainty Analysis, Electromagnetic 
Compatibility Simulation. 
 

I. INTRODUCTION 
owadays, the Electromagnetic Compatibility (EMC) 
community is facing a growing demand for stochastic 

models which can introduce the uncertainty in reality into 
simulations. Uncertainty inevitably arises from realistic 
non-ideality and unpredictability such as tolerances in 
dimensions, variations in geometry, material defects, and so 
forth. In order to analyze the effects of uncertainty, many 
uncertainty analysis methods have been presented in recently 
studies [1-3]. 

Among these analysis approaches, the Monte Carlo Method 
(MCM) is conventionally the first choice for EMC simulations 
[1, 2]. In MCM, the uncertainty parameters are sampled 
according to their distributions, consequently a huge number of 
simulations need to be performed until the final simulation 
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results are obtained. MCM has been proved quite accurate for 
EMC simulations in existing literatures [1, 2], however at the 
cost of low computational efficiency. Anyway, thanks to its 
high accuracy, MCM can be used as the reference for 
evaluating the performance of other uncertainty analysis 
methods in terms of precision. 

The Method of Moments (MoM) [3] and the Perturbation 
Method (PM) [4] are two other types of the existing uncertainty 
analysis methods. MoM uses the first order Taylor series 
expansions to estimate the mean and uncertainty of the output. 
However, if the output depends on the input in a nonlinear 
manner, the accuracy of MoM will be very poor [3]. Although 
PM tends to be more accurate than MoM, the magnitude of the 
uncertainties cannot be too large at both the inputs and outputs 
[4], which greatly limits the application of PM. In a word, 
conventional uncertainty analysis methods can hardly 
guarantee high accuracy and high efficiency simultaneously. 

Recently, two other types of analysis approaches, the 
Stochastic Galerkin Method (SGM) and the Stochastic 
Collocation Method (SCM), have been proposed and applied to 
EMC simulations [5, 6]. As verified by [7], both of them have 
been proved to be accurate and computational efficient. Based 
on the generalized Polynomial Chaos (gPC) expansion theory, 
both SGM and SCM express the uncertainty analysis results by 
a polynomial of random variables. SGM is based on the 
Galerkin process, as a result it is the optimal solution in theory, 
and has been introduced into the EMC simulation for solving 
the stochastic Transmission Line Model and the stochastic 
Maxwell equations [8-11]. In contrast to SGM, SCM is based 
on the multidimensional Lagrange Interpolation theorem, and 
is also used to perform uncertainty analysis in the EMC field 
[12, 13]. The advantage of SCM is that it can be performed 
without changing the original solver like MCM, therefore the 
solver can be treated as a “black box” during the uncertainty 
analysis. 

By using the Feature Selective Validation (FSV) method [14, 
15], this paper evaluates the performance of SGM and SCM by 
solving an EMC uncertainty analysis problem put forward in 
[9]. Furthermore, SCM is introduced into the CST software 
simulation [16, 17] in order to implement the uncertainty 
analysis. The advantages and limitations of SGM and SCM are 
discussed in detail. 

The structure of the paper is as follows: Section II introduces 
the generalized Polynomial Chaos (gPC) expansion theory; 
Section III discusses the SGM and SCM mechanisms; Section 
IV validates the algorithm by solving a realistic modeling 
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problem; Section V shows the example of applying the 
uncertainty analysis using a commercial software; Section VI 
provides a detailed discussion on the differences between the 
uncertainty analysis methods; and the conclusion part of this 
paper is presented in Section VII. 

II. THE GENERALIZED POLYNOMIAL CHAOS THEORY  
Engineering device parameters can be quite uncertain in 

realistic environment due to the complexity of operating 
conditions. For example, the heights of the wires inside a 
bundled cable in a car or an airplane can be quite uncertain 
because of the natural structure of the bundle or simply because 
of the movement of the car or the airplane. Consequently it is 
almost impossible to calculate the crosstalk in such cables by 
using traditional deterministic EMC simulation methods, since 
the inputs of these models are no longer fixed values. In this 
case, uncertainty analysis methods need to be introduced into 
EMC simulations in order to solve the cable model with 
uncertain inputs. 

The generalized Polynomial Chaos (gPC) expansion theory, 
as a non-sampling-based method to determine evolution of 
uncertainty in dynamical system, has been attached much 
attention to in recent studies thanks to its high accuracy and 
high efficiency. The core idea of the gPC theory is briefly 
presented as follows using a transmission line model as an 
example. 

In a lossless transmission line, the current and voltage 
propagation equations can be written as 

 

( , ) ( , )
,

( , ) ( , )

V z t L I z t
z t

I z t C V z t
z t

∂ ∂ = ⋅ ∂ ∂
 ∂ ∂ = ⋅
∂ ∂  

(1) 

where L  and C  are the inductance and capacitance per unit 
length, and ( , )I z t  and ( , )V z t  are the current and voltage at 
time t  and at the position z  respectively. 

Since the bundle cannot be perfectly stable and the car or the 
airplane may be moving, the positions of the wires in the bundle 
cable must be treated as random variables, and such uncertainty 
can be modeled by a random event θ  expressed as 

 

{ }1 2( ) ( ),  ( ),  ,  ( ) ,nξ θ ξ θ ξ θ ξ θ= 

 

(2) 
where ( )ξ θ  is the random variable space, ( )iξ θ  is one random 
variable with its own distribution depending on the random 
event. In this case, it is possible to use either Gaussian 
distribution or uniform distribution to model the randomness of 
the wire heights. 

The independence of all the random variables in the random 
space is an essential prerequisite for applying the gPC theory. 
Such independence can be supported by the Karhunen-Loeve 
expansion [7]. 

The per-unit-length parameters L  and C  in (1) can also be 
modulated by the foregoing random event θ . Therefore with 
all the randomness included, the stochastic transmission line 
propagation equations can be re-written as 

 

( , , ) ( ) ( , , )
,

( , , ) ( ) ( , , )

V z t L I z t
z t

I z t C V z t
z t

ξ ξ ξ

ξ ξ ξ

∂ ∂ = ⋅ ∂ ∂
 ∂ ∂ = ⋅
∂ ∂  

(3) 

where ( )L ξ  and ( )C ξ  are input parameters modulated by the 
random variables, and ( , , )I z t ξ  and ( , , )V z t ξ  are output 
parameters influenced by the random inputs. The goal of any 
uncertainty analysis method is to obtain those outputs. 

In the gPC theory, the outputs can be expanded in the 
polynomial form of the random variables as (4) and (5), with 
the time variable t and the location variable z omitted for 
simplicity: 

 

0 0 1 1 2 2( , , ) ( ) ( ) ( ),V z t v v vξ ϕ ξ ϕ ξ ϕ ξ= + +

 

(4) 

 

0 0 1 1 2 2( , , ) ( ) ( ) ( ),I z t i i iξ ϕ ξ ϕ ξ ϕ ξ= + +

 

(5) 
where ( )iϕ ξ  denotes the Chaos Polynomial which is 
determined by the Askey rule [7] as shown in Table I. The 
Askey rule illustrates the one-to-one correspondence between 
the distribution of the random variables and the form of the 
polynomial. In other words, as long as the distribution of the 
random variable is given, the Chaos Polynomial ( )iϕ ξ  can be 
determined. The Chaos Polynomials in (4) and (5) are identical 
because they are all generated from the same random variables. 
The coefficients of the polynomial in (4) and (5), ii  and iv , are 
to be solved. Admittedly ii  and iv  are functions of z and t, for 
simplicity z and t are omitted. The core idea of the gPC theory is 
to express the uncertainty analysis results in the polynomial 
form of the random variables at the inputs. 
 

TABLE I 
THE ASKEY RULE 

Random variables Wiener-Askey chaos Support 

Gaussian Hermite-chaos ( , )−∞ +∞  

Gamma Laguerre-chaos [0, )+∞  

Beta Jacobi-chaos [0,  1]  

Uniform Legendre-chaos [ 1,  1]−  

 
 
According to the Askey rule, the polynomials in (4) and (5) 

are orthogonal to each other, and their relationship is presented 
as 

 

2,  ,i j i ijjjj   δ=

 

(6) 

where ijδ  is the Kronecker function and can be expressed as 

 

1 ( )
 .

0 ( )ij

i j
i j

δ
=

=  ≠

 

(7) 

The definition of the inner product is given as 

 

,  ( ) ( ) ( ) ,i j i j w djjj   ξ j ξ ξ ξ= ∫
 

(8) 

where ( )w ξ  is the weight function and can be obtained by the 
joint probability density of the random variables [7]. In the 
same way, the supports of the integration are the joint supports 
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of every random variable. 

III. THE SGM AND THE SCM MECHANISMS 
Both the Stochastic Galerkin Method (SGM) and the 

Stochastic Collocation Method (SCM) are based on the 
foregoing gPC theory, and their results can be expressed in the 
polynomial form. 

The theoretical basis of SGM is the Galerkin Process. The 
outputs parameters in (3), ( , , )I z t ξ  and ( , , )V z t ξ , are 
unfolded by plugging in (4) and (5). When the Galerkin Process 
is performed on both sides of the stochastic differential 
equation, an augmented certain differential equation will be 
obtained using the inner product calculation shown in (8). 
Traditional EMC simulation methods can be used in this 
augmented equation. Thus, the coefficients such as ii  and iv  
will be acquired. The uncertainty analysis results, such as the 
expectation or the “worst case” of the output parameters, can be 
easily obtained by sampling the random variable ξ  in (4) and 
(5). More details of SGM can be found in [6, 7]. 

As the SCM method is novel in EMC simulations, and it will 
be described in detail here. The theoretical basis of the SCM is 
the multidimensional Lagrange Interpolation theorem [12]. 

The one-dimensional Lagrange Interpolation formula is 
given as 

 
1

( )( ) ( ) ( ),
M

k k
k

Lag f y f y Lag y
=

= ∑
 

(9) 

 

0 1 1 1

0 1 1 1

( )
( )( ) ( )( ) ( )

,
( )( ) ( )( ) ( )

k

k k M

k k k k k k k M

Lag y
y y y y y y y y y y

y y y y y y y y y y
− +

− +

=

− − ⋅⋅⋅ − − ⋅⋅ ⋅ −
− − ⋅⋅⋅ − − ⋅⋅ ⋅ −

(10) 

where ( )f y  is the true value of the function to be solved, 
( )( )Lag f y  is the estimated value of ( )f y  using the Lagrange 

Interpolation, { }1 1, My y y⋅ ⋅ ⋅  is a set of interpolation points and 

M is the total number of the points, ( )kf y  is true function 
value at the points, ( )kLag y  is the Lagrange Polynomial and 
its form is given by (10). It is worth noting that y  is similar to 
the random variable ξ  in the uncertainty analysis. 

It is obviously seen that the Lagrange Polynomial satisfies 

 

( ) ,i j ijLag y δ=

 

(11) 
where ijδ  is the Kronecker function shown in(6). 

In the multidimensional Lagrange Interpolation theorem, the 
interpolation points are in the tensor product form of the 
one-dimensional interpolation points, whilst the Lagrange 
Polynomial is also in the tensor product form. More details 
about the multidimensional Lagrange Interpolation theorem 
can be found in [12]. 

The uncertainty analysis result of SCM is given as follows by 
using the Lagrange Interpolation theorem: 

 

~

1
( ) ( , , ) ( ) ( ),

M

k k
k

V LagV z t V y Lagξ ξ ξ
=

= = ∑
 

(12) 

As shown in (12), the SCM result is in the form of a 

polynomial of the random variables ξ , like (4) and (5). 
~

( )V ξ  
is the final result of the output parameter ( , , )V z t ξ  using the 
Lagrange Interpolation. ( )kV y  is the “deterministic” EMC 
simulation result at the interpolation points ky . ( )kLag ξ  is the 
multidimensional Lagrange Polynomial of the interpolation 
points ky . 

The interpolation points are chosen by the tensor product 
form of zero points of the Chaos Polynomial. Back to (9), M 
presents the number of these interpolation points. The 
orthogonality of the Chaos Polynomial guarantees that such 
selection is the optimal solution of SCM [12]. 

The expectation value of SCM is calculated as shown in (13), 
where the supports of the integration are the joint supports of 
the random variables according to Table I. 

 

~

1
( )( ) ( ) ( ) ( ) ,

M

k k
k

E V V y Lag y w y dyξ Γ
=

= ∫∑
 

(13) 

Other statistical properties, such as the standard deviation 
and the worst case value, can be obtained by sampling the 
random variables in (12). 

According to (12), essentially the EMC simulation is simply 
to calculate ( )kV y , consequently there is no need to change the 
original solver. This is a special advantage of SCM compared 
with SGM, which makes the realization of SCM easier. 
However, in SCM, the error in the interpolation calculation 
inevitably manifests itself in the final analysis results, therefore 
theoretically the accuracy of SGM is expected to be slightly 
better than that of SCM. 

IV. ALGORITHM VALIDATION  
In order to evaluate the performance of the SGM and the 

SCM approaches, a common EMC uncertainty analysis 
problem in EMC simulation is presented in this section. The 
uncertainty model is the crosstalk calculation of the cables with 
wires that are random in height, which has been mentioned in [9] 
and [13] as an example. 

The analysis results obtained by applying the MCM 
approach will be treated as the reference data. The results of 
applying SGM and SCM are compared with the foregoing 
reference data by using the FSV method, in this way the 
accuracy of SGM and SCM will be presented clearly in this 
example. Fig. 1 shows the uncertainty model of the crosstalk 
calculation problem. 

As shown in Fig. 1, the amplitude of the excitation source is  
1V , the radius of the radiating conductor and the disturbed 
conductor are both 0.1mm , the horizontal distance between 
the two conductors is 0.03m , the length of the two conductors 
are both 0.5m . All the loads are 50Ω .The radiating conductor 
and the disturbed conductor are surrounded by vacuum. The 
relative dielectric constant and the relative magnetic 
permeability of the vacuum are both 1. 

If the heights of the two conductors are uncertain, and the 
height of the radiating conductor 1h  obeys uniform distribution 
U[0.04,0.05]m  while the height of the disturbed conductor 2h  
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obeys uniform distribution , two random 
variables can be used to model the randomness in height: 

  

(14) 

  

(15) 
where  and  both stand for uniform distribution . 
 

Fig. 1. The uncertainty model of the crosstalk calculation problem. 
 

The Multiple Conductor Transmission Line Model can be 
presented to solve the problem in this example, and the 
electrical parameters such as the inductance matrix will be 
influenced by the randomness in height. The relationship 
between the inductance parameters and the heights of the 
conductors is expressed as 

  

(16) 

  

(17) 

where  is for the mutual inductance of the two cables,  is 
the permeability of vacuum,  is the separation between the 
two conductors,  is the self-inductance, and  is the radius 
of the conductor. 

The uniform distribution is a one-to-one correspondence 
with the Legendre polynomial according to the Askey rule in 
Table I. For SGM, the 2rd-order Legendre polynomial is 
proposed, therefore altogether six polynomials can be acquired 
according to the gPC theory in [7], which are , 

, , ,  

 and . They are in 

the tensor product form of the one-dimensional polynomial. 
For SCM, the interpolation points  are chosen in the 

tensor product form of the zero points of the Legendre 
polynomials. The 3th-order polynomial on one-dimensional 

 
is chosen. The zero points are 

. As the number of the random variables is 2, 

the tensor product form is . 

The selection of the order of SGM and SCM is discussed 
here. When the order of the polynomial increases, the results 
will be more accurate, but the calculation time will also become 
longer. There exists an appropriate order, and the results of this 
order are convergent. Namely, when the order increases after 
this appropriate order, the results will be stable. 

Thus, the judgment rule is shown as follow. From low order 
to high order, the uncertainty analysis is undertaken one by one. 
When the results of two adjacent orders are much the same, it is 
proved that the method is convergent. Thus, the relatively 
higher one of the two orders is the order of the method, and its 
results are the final results. In our case, as to SGM, the first 
order results and the second order results are almost same, so 
we choose second order for SGM. In the similar way, third 
order is decided for SCM. 

The probability density of the crosstalk voltage value at the 
far end of the disturbed conductor is calculated by MCM, SGM, 
and SCM respectively. The results generated by MCM are 
treated as the reference data, and 20000 samples are used in 
MCM in order to guarantee the convergence. 

Fig. 2 and Fig. 3 show the uncertainty analysis results at the 
single frequency points  and , expressed in the 
form of probability density. Two different situations are 
considered: the lossless transmission line, and the loss uniform 
transmission line with the resistance per unit length R and the 
conductance per unit length G. 
 

 
Fig. 2. The probability density of the crosstalk voltage value at 2MHz. 
 

 
Fig. 3. The probability density of the crosstalk voltage value at 50MHz. 
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In Fig.2 and 3, the solid line means the lossless transmission 
result, and the dashed line is the loss uniform result. The blue 
lines stand for the results of MCM, green of SCM and red of 
SGM. According to Fig. 2, at 2MHz  both SGM and SCM are 
seemingly as accurate as MCM. However, as the frequency 
increases in Fig. 3, the accuracy of SCM falls below that of 
MCM, whilst the accuracy of SGM is still a close match with 
that of MCM. 

In order to further study the performance of SCM and SGM, 
the frequency range is extended to the span of 
1MHz -100MHz . The expectation information, the standard 
deviation information, and the worst case information are 
presented instead of the Probability Density Function (PDF) 
information, as shown in Fig. 4, Fig. 5, and Fig. 6 respectively. 
These figures contain both the lossless transmission line results 
(solid lines) and the loss uniform transmission line results 
(dashed lines). 

By using FSV, the Total-GDM values between MCM and 
SGM, as well as those between MCM and SCM, are calculated 
as listed in Table II. 
 

TABLE II 
THE TOTAL-GDM VALUES 

Total-GDM value Expectation Standard deviation Worst case 
SGM 0.03 0.22 0.04 
SCM 0.13 0.23 0.14 

SGM (R and G) 0.03 0.17 0.04 
SCM (R and G) 0.12 0.25 0.12 

 

 
Fig. 4. The expectation of the crosstalk calculation from 1MHz to 100MHz. 
 

 
Fig. 5. The standard deviation of the crosstalk calculation from 1MHz to 
100MHz. 

 
Fig. 6. The worst case of the crosstalk calculation from 1MHz to 100MHz. 

 
FSV has proved its successful applications in credibility 

evaluation of certainty EMC simulation results [13]. The main 
idea of FSV is shown in Fig. 7. The Fourier transform is firstly 
applied to the original data sets, and then DC part, the low- and 
the high-frequency part are defined. These parts can be used to 
acquire the values of the Amplitude Difference Measure (ADM) 
and the Feature Difference Measure (FDM). The Global 
Difference Measure (GDM) consists of both ADM and FDM, 
and more details can be found in [14, 15]. Total-GDM, a value 
which provides a quantitative description in FSV, indicates the 
validity of simulation results. There exists a one-to-one 
correspondence between Total-GDM and the qualitative 
description, as shown in Table III. 

 

 DC part
low-frequency part
high-frequency part

 DC part
low-frequency part
high-frequency part

 

ADM
 

FDM

 

GDM

decompose
simulation resultsreference data

decompose

 
Fig. 7. The main idea of FSV [14]. 

 
TABLE III 

RELATIONSHIP BETWEEN TOTAL-GDM AND QUANTITATIVE DESCRIPTION [14] 
Total-GDM(quantitati

ve) 
FSV 

interpretation(qualitative) 
Less than 0.1 Excellent 

Between 0.1 and 0.2 Very Good 

Between 0.2 and 0.4 Good 

Between 0.4 and 0.8 Fair 

Between 0.8 and 1.6 Poor 

Greater than 1.6 Very Poor 

 
According to Table III, the expectation and the worst case 

results of SGM are an “Excellent” match with the results of 
MCM, with the standard deviation being a “Good” or “Very 
Good” match. In contrast, the expectation and the worst case 
results of SCM are merely a “Very Good” match with the 
results of MCM, and the standard deviation is a “Good” match 
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which is similar to that of SGM. 
The solid lines in Fig. 5, which represent the lossless results, 

show a good match between SCM and MCM yet an even better 
match between SGM and MCM. Nevertheless, the total-GDM 
of the standard deviation in Table II shows similar values for 
“SGM and MCM” (0.22) and “SCM and MCM” (0.23). In 
order to explain this phenomenon, the ADM value and the 
FDM value are studied. The ADM of SGM and MCM is 
0.0993, and the FDM is 0.1829. In contrast, the ADM of SCM 
and MCM is 0.0757, and the FDM is 0.1918. Table II and III 
have proved that SGM is better than SCM in terms of the 
overall trend, however SCM outweighs SGM in some specific 
details. Consequently the GDM values of SGM (0.22) and 
SCM (0.23) are close. 

To sum up, although SCM has shown a decent accuracy, it 
has been demonstrated that SGM is even more accurate and can 
be as good as MCM. Nevertheless, according to these figures, 
as the frequency increases the inherent interpolation error of 
SCM will become significant, which leads to the deterioration 
of the SCM accuracy at high frequencies compared to that at 
low frequencies. 

Compared between the lossless results and the loss uniform 
results, the expectation of the former is larger than the latter. 
The reason is that some energy has been dissipated on the 
unit-length resistance R and the unit-length conductance G in 
the loss uniform transmission line, therefore the voltage in far 
end will be smaller. Meanwhile, the standard deviation of the 
lossless results is smaller than that in the loss uniform results. 
The conductance per unit length G is also influenced by the 
uncertain height parameter in (14) and (15), similar to the 
unit-length inductance L and unit-length capacitance C .  

As for the computational efficiency, the simulation time of 
SGM is 0.22s while that of SCM is 0.17s. On the contrary, the 
simulation time of MCM goes up to 394.45s, which means that 
the computational efficiencies of SGM and SCM are both much 
better than that of MCM. Furthermore, as the simulation time of 
a single deterministic run becomes longer, the difference 
between the MCM and other uncertainty analysis methods will 
be more significant. 

V. THE UNCERTAINTY ANALYSIS USING A COMMERCIAL 
SOFTWARE 

In Section IV, it has been demonstrated that SGM is slightly 
more accurate than SCM, taking MCM as the reference. 
However, the advantage of SCM is that the solver requires no 
modification to perform the calculation, which indicates a 
better applicability of SCM over SGM under common 
circumstances. 

This section shows an example of performing uncertainty 
analysis using CST, a commercial software. Since the solver in 
the software cannot be changed during the uncertainty analysis, 
SGM is not included in this simulation, and only SCM and 
MCM are presented. 

The model used is similar to that shown in Fig. 1. The height 
of the radiating conductor 1h  is no longer an uncertain value 
but a fixed value of 0.04m. The height of the disturbed 

conductor 2h  still obeys uniform distribution 
U[0.025, 0.035]m .The load GR  of the disturbed conductor 
becomes the uncertain parameter, obeying the uniform 
distribution U[49, 51] Ω . The results focus on the probability 
density of the crosstalk voltage value at the far end of the 
disturbed conductor. 

The Cable Studio and the Design Studio in CST are launched. 
Two parallel cables like Fig. 1 are designed in the Cable Studio 
(distributed parameter model). A finite PEC (perfect electronic 
conductor) board is adopted to imitate the ground. In the Design 
Studio, the loads information is designed, and the sine 
excitation in 20MHz is set. The cable positions in the Cable 
Studio can be changed to implement the uncertain input 2h . 
The changes of GR  can be realized in the Design Studio. 

During the uncertainty analysis process of MCM and SCM, 
the CST software is treated as a “black box”, and multiple runs 
of deterministic simulations are needed. In this example, 5000 
deterministic simulation runs of MCM will be taken in order to 
ensure the convergence of MCM. Meanwhile, 9 deterministic 
simulation runs of SCM are executed like the choice in Section 
IV, and the interpolation points are also 

15 15 15 15{ ,0, } { ,0, }
5 5 5 5

− ⊗ − . Fig. 8 shows the results at 

the single frequency point 20MHz . The blue solid line shows 
the result of MCM, and the red dashed line shows the result of 
SCM. 

The expectation of the results in MCM is 15.3m V , and that 
in SCM is 15.2m V  with the error of 0.7%. The standard 
deviation of the results in MCM is 16.9m V , and that in SCM 
is 17.3m V  with the error of 2.4%. This indicates that MCM 
and SCM present very similar accuracy, however SCM requires 
much less computational effort. 
 

 
Fig.8. The results of MCM and SCM of the probability density function of the 
crosstalk voltage at 20MHz, by using CST. 
 

In this section, it is demonstrated that the accuracy of SCM is 
as good as MCM according the CST simulation. Furthermore, 
the computational efficiency of SCM outweighs that of MCM. 
Such advantage in efficiency will be even more magnificent if 
the uncertainty analysis problems become complicated. 
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VI. PERFORMANCE DIFFERENCES BETWEEN SCM, SGM, AND 
MCM 

In this section, the performance differences between SCM, 
SGM, and MCM are discussed in detail. 

In terms of accuracy, MCM is the best uncertainty analysis 
method so far because it is based on the Weak Law of Large 
Numbers [5]. SGM is based on the Galerkin Process, and its 
result is the optimal solution under the order of the Chaos 
polynomial, as a result SGM is as accurate as MCM. In contrast, 
the accuracy of SCM is somewhat lower than that of MCM 
because of the error incurred in the interpolation calculation. 

Considering the computational efficiency, both SCM and 
SGM present similar superiority over MCM, because SCM and 
SGM only require a limited number of “deterministic” EMC 
simulations, on the contrary MCM needs thousands of them. 
The longer each single EMC simulation lasts, the more efficient 
and thus more desirable SCM and SGM can be. 

As far as the applicability is concerned, both SCM and MCM 
have proved their advantages, because there is no change in the 
original solver during the uncertainty analysis. SGM, owing to 
its mechanism and particularly the change in the solver, limits 
its applicability when the model with uncertainty becomes 
complicated. 

As to the hard-disk storage space, SCM and MCM only need 
the space for a single EMC simulation at a time, because the 
cache is cleared and the space is released right after one certain 
simulation is completed. On the opposite, SGM, since based on 
the Galerkin Process calculation, occupies much greater storage 
space because a huge number of projection results need to be 
stored. 

For a High Dimensionality Problem of a random space, the 
computational efficiency of these three methods will decline 
anyway when the dimensionality rises up. The influence of the 
dimensionality upon MCM and SCM is a little larger than SGM, 
because the amounts of the simulations in MCM and SCM 
grow exponentially along with the increase of the dimension. 

According to the discussions above, the performance 
comparison of MCM, SGM and SCM is given in Table IV. 

 
TABLE IV 

THE PERFORMANCE COMPARISON OF MCM, SGM AND SCM 
 MCM SGM SCM 

Accuracy good good relatively good 
Computational efficiency low high high 
Hard-disk storage space little big little 

Used in software yes no yes 
Applicability good bad good 

Influence of dimensionality big relatively big big 

 

VII. CONCLUSION 
This paper presented the performance comparison of the 

Stochastic Galerkin Method (SGM) and the Stochastic 
Collocation Method (SCM). By using the Feature Selective 
Validation (FSV) method and comparing with the commonly 
used Monte Carlo Method (MCM), it has been demonstrated 
that SGM is as accurate as MCM, and slightly better than SCM. 
By performing an uncertainty analysis example using CST, it is 
shown that the applicability of SCM is as good as MCM, and 

much better than SGM. 
According to the discussion in Section VI, the strategy of 

selecting a suitable uncertainty analysis method is proposed as 
follow. If a single EMC simulation takes time under minute 
level, MCM will be the best among the three. If the time of a 
single simulation is more than hour level and the demand for 
accuracy is high, SGM should be the most desirable. If the time 
of a single simulation is more than hour level and the solver is 
either complicated or not open-sourced, SCM may be the most 
advisable one. 
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