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Abstract

Ensemble learning can improve the performance of individual classifiers by combining their decisions. The

sparseness of ensemble learning has attracted much attention in recent years. In this paper, a novel multiob-

jective sparse ensemble learning (MOSEL) model is proposed. Firstly, to describe the ensemble classifiers

more precisely the detection error trade-off (DET) curve is taken into consideration. The sparsity ratio (sr)

is treated as the third objective to be minimized, in addition to false positive rate (fpr) and false negative

rate (fnr) minimization. The MOSEL turns out to be augmented DET (ADET) convex hull maximization

problem. Secondly, several evolutionary multiobjective algorithms are exploited to find sparse ensemble

classifiers with good performance. The relationship between the sparsity and the performance of ensemble

classifiers on the ADET space is explained. Thirdly, an adaptive MOSEL classifiers selection method is

designed to select the most suitable ensemble classifiers for a given dataset. The proposed MOSEL method

is applied to well-known MNIST datasets and a real-world remote sensing image change detection problem,

and several datasets are used to test the performance of the method on this problem. Experimental results

based on both MNIST datasets and remote sensing image change detection show that MOSEL performs

significantly better than conventional ensemble learning methods.

Keywords: Ensemble Learning, sparse representation, classification, multiobjective optimization, change

detection.
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1. Introduction

The idea of ensemble learning methods [1] is to construct a set of classifiers with base learning al-

gorithms and then classify new data points by taking a (weighted) vote of their predictions. Generally,

ensemble methods combine the prediction of individual methods and can obtain better predictive perfor-

mance than any individual method alone. Ensemble learning methods have attracted much attention in5

recent years. Not only have many ensemble algorithms been proposed [2, 3], but also ensemble learning

methods have been applied to many areas [4, 5], such as medical information processing [1] and satellite

image classification [6].

In general, an ensemble learning algorithm is constructed in two steps, i.e., training a number of compo-

nent classifiers and then combining the predictions of the components. The most prevailing approaches for10

training component classifiers are bagging [7], boosting [8], random subspace [9], and rotation forest [10].

Recently, research has drawn attention to multiobjective optimization of ensemble learning [11, 12] and

several evolutionary multiobjective algorithms (EMOAs) have been used to deal with it. Generally, most

of this work is trying to obtain a set of classifiers with good performance on both diversity and accuracy

by using multiobjective optimization algorithms with different objectives. The multiobjective deep belief15

networks (DBNs) ensemble method was proposed in [13], in which a MOEA was applied to evolve multi-

ple DBNs by considering accuracy and diversity as two conflicting objectives. A divide-and-conquer based

optimization framework for ensemble classifiers generation was proposed in [12], in which the accuracy of

each class was treated as the objectives to describe the performance of classifiers. Besides, maximizing the

ensemble size is also taken as an additional objective. The Pareto image features were applied for candi-20

date classifiers generation in [14] by using a multiobjective evolutionary trace transform algorithm. These

methods do not consider the redundancy between classifiers and the efficiency of ensemble learning, as it

requires a large amount of memory to store the candidates of classifiers and lots of computation time is also

needed to predict the label of each new input instance.

In this paper, we focus on combining the predictions of component classifiers by finding several appro-25

priate sparse weight vectors for them. Many works have addressed the complexity of ensemble classifiers

by reducing the number of classifiers in the component candidate set. The relationship between the ensem-
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ble learning and its component classifiers is analyzed in [15], which reveals that a better performance can

be obtained by ensembling many instead of all the available classifiers. A genetic algorithm is adopted to

evolve the weights of the component classifiers, showing that it can generate ensemble classifiers with small30

sizes but good generalization ability. However, only the accuracy is considered in this method, the result

contains redundant classifiers, as the sparsity of ensemble classifiers is not considered. Several pruning

strategies are analyzed in [16], including reduction error (RE), Kappa pruning (KP), complementarity mea-

sure (CM) and margin distance (MD). Matching pursuit (MP) is used to prune the ensemble classifiers in

[17] by balancing the diversity and the individual accuracy. In these methods, the greedy strategy is used to35

search for the optimal classifiers set and it is easy to fall into the local extremum.

The theoretical and empirical evidence in [18] suggests that a smaller ensemble size can often obtain

better performance than a larger ensemble. It is, therefore, possible to obtain an ensemble which mini-

mizes the number of individual classifiers and preserves or improves the performance of attributes, such as

accuracy and cost of misclassification.40

Sparse ensembles were proposed in [19]. The outputs of multiple classifiers were combined by using a

sparse weight vector. The hinge loss and the 1-norm regularization were exploited to calculate the sparse

weight vector, formulated as a linear programming problem. However, the 1-norm metric cannot describe

the sparseness of ensemble classifiers precisely. This is because a weight vector with a group of small values

can improve the performance of 1-norm measurement but cannot improve the performance of sparseness.45

The 0-norm metric can describe the sparseness more precisely [20]. The sparse ensemble learning is applied

for synthetic aperture radar (SAR) image classification in [6] and for Youtube videos classification in [21].

The 0-norm learning can be regarded as an NP-hard problem, it is still an open problem to search the global

optimum.

Compressed sensing (CS) [22] was brought to ensemble learning in [23]. It explores the globally opti-50

mal subset of classifiers for a given ensemble. To solve the compressed sensing problem, a sparse weighting

vector which contains many zeros should be generated first, and then appropriate weights should be pro-

vided for the remaining classifiers according to their relative importance. Several popular methods such as

SpaRAS [24], OMP [25], FISTA [26], PFP [27] are used to tune the weight vector of ensemble classifiers. In

[23] it is shown that compressed sensing ensembles are often as accurate as, or more accurate than, conven-55

tional ensembles, although they use only small subsets of the total set of classifiers. However, the sparseness
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should be set in advance when using the compressed sensing methods. Meanwhile, the characteristics of

the unbalanced data classification were not taken into consideration.

In this paper, we propose the novel concept of a multiobjective sparse ensemble learning (MOSEL)

method, in which the relationship between the sparsity and the classification performance is explained. To60

accurately describe the performance of ensemble classifiers, the detection error trade-off (DET) [28] perfor-

mance is taken into consideration by adopting the false positive rate (fpr) and the false negative rate (fnr)

simultaneously. Besides, the sparsity ratio (sr) of ensemble classifiers is treated as the third objective to

be minimized. The DET can describe the classifiers more precisely than the accuracy metric especially for

unbalance data classification problems [28]. Besides, the evolutionary multiobjective algorithm (EMOA)65

[29] technique is first applied to evolve the combining weights of ensemble component classifiers. With

the technique of tri-objective ensemble learning, we can obtain a set of ensemble classifiers with different

sparseness, rather than an ensemble classifier with a certain sparseness that is previously set. The spar-

sity and the error rates of ensemble classifiers are explainable and their trade-offs are quantifiable in the

augmented DET (ADET) space.70

We analyze the properties of the ADET for sparse ensemble learning and several state-of-the-art many-

objective optimization algorithms are applied to solve multiobjective ADCH maximization problems, in-

cluding the two-archive algorithm (Two Arch2) [30], which focuses on convergence and diversity sepa-

rately, the decomposition based algorithms, such as NSGA-III [31], the evolutionary algorithms based on

both dominance and decomposition (MOEA/DD) [32], the reference vector guided evolutionary algorithm75

(RVEA) [33], an indicator based evolutionary algorithm with reference point adaptation (AR-MOEA) [34],

and 3D convex-hull-based evolutionary multiobjective optimization algorithm (3DFCH-EMOA) [35, 36].

By using EMOAs we can obtain a set of potentially optimal ensemble classifiers with different sr-fpr-fnr

trade-offs.

The remaining paper is organized as follows. Section 2 gives a brief introduction to multiobjective80

optimization of sparse ensemble method. Section 3 presents the results of several classification problems

with MNIST [37] and remote sensing change detection datasets, and Section 4 provides concluding remarks.
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2. Multiobjective sparse ensemble learning

2.1. Ensemble Learning

The idea of a sparse ensemble of classifiers is to combine the predictions of all classifiers in the candidate85

set using a sparse weight vector. The sparse vector has many elements with the value of zero and only

classifiers corresponding to nonzero weights are selected for the ensemble. To improve the performance of

the ensemble classifier and to reduce the memory demand for the components, it is required to select an

optimal subset of classifiers and the corresponding weights vector for this subset. The problem of seeking

sparse weights vectors can be modeled as a combinatorial optimization problem, which can be solved by90

evolutionary algorithms [30].

In this paper, we only consider binary supervised ensemble classification problems. With a set of

training samples Xtr = {(x j, y j)|x j ∈ Rd, y j ∈ {−1,+1}, j = 1, 2, . . . ,Mtr}, where y j is the class label cor-

responding to a given input x j, d is the dimensionality of sample of features, and Mtr is the number of

instances. Note that in this work we only consider binary classification problems and we set the labels as95

{−1, 1}, where 1 represents positive category and −1 represents negative category, given a set of classifiers

{C1(x),C2(x), . . . ,CN(x)}, where Ci(x) is the i-th classifier in the candidate ensemble set. Usually, the clas-

sifier Ci(x) is obtained by using the training dataset Xtr with the strategy of random selection of the features

or the instances.

A classifier can be obtained by using a training dataset with a machine learning algorithm, which can be100

described as an estimate of the unknown function y = f (x). The classifier Ci(x) is a hypothesis fi(x) about

the true function f (x), which can predict the class label y for a new input vector x from a testing dataset Xts

or a validation dataset Xval. Usually, the training dataset is used for base classifiers learning, the validation

dataset is used for ensemble pruning and the test dataset is used for ensemble classification performance

evaluation. Denote by f ji the prediction of the ith learner Ci(x) for the jth sampling of the validation sample105

x j, that is described by Eq. (1).

f ji = Ci(x j). (1)

The prediction output label vector fi can be obtained by implementing the classifier Ci for the validation

dataset Xval with size Mval, which is denoted as in Eq. (2).
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fi = [ f1i, f2i, . . . , fMvali]
T . (2)

The matrix F of prediction labels for all instances obtained by all of the classifiers can be denoted by

Eq. (3),110

F = [f1, f2, . . . , fN] (3)

where fi = [ f1i, f2i, . . . , fMi]T , i = 1, 2, . . . ,N, and F ∈ RMval×N .

The ensemble learning can improve the performance of classifiers by combining the decisions of each

classifier and assigning weight wi to each of the classifier Ci(x), and the vector of weights w is denoted by

Eq. (4).

w = [w1,w2, . . . ,wN]T . (4)

The predicted label vector ypredict obtained by ensemble learning for the input dataset X can be described115

as in Eq. (5).

ypredict = Fw. (5)

The perfect ensemble classifier can be obtained by solving an equation yval = ypredict. Usually, the

number of equations is larger than that of the weighting variables in the equation system. In this case, there

are typically no exact solutions for equations. In this case, the equation system can be approximately solved

by using optimization algorithms to find solutions, which can minimize the difference between the training120

labels and predicting labels.

2.2. Multiobjective optimization of ensemble learning

The DET curve [28] is taken into consideration to describe the performance of ensemble classifiers,

which has been proved to be a good measurement to evaluate the performance of classifiers [38]. The

definition of the DET curve is closely related to the two-by-two confusion matrix, which describes the125

relationship between the ground truth and the predicted class for a binary classifier. A confusion matrix
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is shown in Table 1, which includes four possible outcomes. An outcome is a true positive if a positive

instance is correctly classified and it is a true negative if a negative instance is correctly classified. Whenever

a negative instance is classified as positive, we call it a false positive. Finally, whenever a positive instance

is classified as negative, we call it a false negative.130

Table 1: A two-by-two confusion matrix of binary classifiers
True class

P+ N−

Predicted class P+ True positives (TP) False positives (FP)
N− False negatives (FN) True negatives (TN)

Let TN denote the number of true negatives, FP the number of false positives, TP the number of true

positives, and FN the number of false negatives. Then the false positive rate (fpr) is defined as fpr =

FP/(TN + FP), and the false negative rate (fnr) is defined as fnr = FN/(TP + FN). To minimize the

difference between true labels and predicted labels, both fpr and fnr should be minimized.

To obtain sparse ensemble classifiers with good performance, not only should the difference between135

true label vector yval and predicted label vector ypredict be minimized, but also the number of nonzero

elements in the weight vector w should be minimized. In Eq. (6) we define the sparsity ratio (sr) to describe

the sparseness of ensemble,

sr =
‖w‖0

N
. (6)

Here, N is the number of classifiers in the candidate ensemble set and ‖w‖0 represents the number of

nonzero entities in the weight vector. The weight vector w is constrained to non-negative values, as negative140

weightings are neither intuitively meaningful nor reliable [23]. We try to find ensemble classifiers with a

low value of sr in order to reduce classification effort and to counteract overfitting of the ensemble classifier.

The computational cost of an ensemble classifier with high sr is considered to be higher than that of an

ensemble classifier with lower sr. We prefer an ensemble classifier with lower sr when given two ensemble

classifiers with the same performance criteria (fpr, fnr). So sr, fpr and fnr are conflicting with each other.145

A low value of sr means that a small number of classifiers are selected for the ensemble, i.e., the ensemble

classifier has a low value of sr, which would result in a poor performance of fpr and fnr. By treating the

sparse term sr as the third objective, the sparse ensemble turns out to be a multiobjective problem. We
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denote it as multiobjective sparse ensemble learning (MOSEL) which is described in Eq. (7),

min MOSEL(w) := ( f pr, f nr, sr)(w),

subject to w ∈ Ω, (7)

where Ω is the set of all possible weight vectors and w refers to the weightings with good performance of150

sparse ensemble classifiers.

2.3. Sparse real encoding

The sparse real encoding strategy is designed to represent the weight vector for the evolutionary algo-

rithms, which is an improved version of the real encoding method. The sparse real encoding is constituted

by an array of real values in the interval [0, 0.1]. The length of the chromosome is determined by the num-155

ber of candidate classifiers for ensembles. Two strategies are used to modify the real encoding approach

for multiobjective sparse ensembles. One is called hard threshold sparse the other is called inequality

constraint. Details will be discussed below.

The classifier with a small value of weight in the ensemble learning system does not contribute much

to the final decision. In this paper, we ignore the classifiers with small values by adopting a hard threshold160

strategy. The value of weights smaller than the threshold is set to zero, as described in Eq. (8)

wupdate(i) =


0, if w(i) < σ

w(i), else,
(8)

where σ is the hard threshold. In the experimental section, the value is set to 0.05, where N is the number

of candidate classifiers. The sparse real encoding can model the solution of sparse ensemble learning, and

then several EMOAs can be applied to evolve the individuals in the population set.

2.4. Adaptive MOSEL classifiers selection165

The proposed MOSEL can deliver a set of ensemble classifiers, in this part we designed an adaptive

selection method to choose the most suitable classifier for a given dataset [39]. Let p(P+) signify the

frequency of positive samples and p(N−) denote that of negative samples for a dataset. With an ensemble
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classifier, the risk (R) can be denoted as Eq. 9,

R = λ(FN, P+) · p(P+) · f nr + λ(FP,N−) · p(N−) · f pr, (9)

where λ(FN, P+) is the loss incurred for deciding Negative when the true label is Positive and so is λ(FP,N−).170

In many real-world problems we can not obtain the label of each sample, however, we can estimate the dis-

tributions of a dataset with a predefined classifier, and we denote them as p̂(P+) and p̂(N−). Specifically,

we do not consider cost-sensitive classification problem in this paper, Eq. 9 can be simplified as Eq. 10:

R = p̂(P+) · f nr + p̂(N−) · f pr. (10)

Algorithm 1 Adaptive MOSEL classifiers selection (mosel, Xts)
Require: mosel is the ensemble classifiers set, the performance of each classifier in ADET space with

Xval can be obtained
Ensure: the most suitable ensemble classifier for Xts

1: Set t ← 0 and select a classifier it from the solution set mosel randomly
2: Predict the labels for Xts by EnCwit and evaluate the dataset distributions p̂t(P+) and p̂t(N−)
3: t ← t + 1
4: it ← arg minn

j=1 p̂t−1(P+) · f nr j + p̂t−1(N−) · f pr j

5: if it = it−1 then
6: return EnCit
7: else
8: Go to step 2
9: end if

The most suitable ensemble classifier can be selected by minimizing the risk R. The adaptive MOSEL

classifiers selection algorithm is described in Alg. 1. Firstly, randomly select an ensemble classifier from175

the mosel set, and then evaluate the distributions of the given dataset. Under the evaluated distributions we

can select the most suitable ensemble classifier by minimizing Eq. 10. If the selected classifier is the same

as the preselected one it can be returned as the most suitable classifier, else go back to Step 2.

2.5. Framework of MOSEL

The description of the framework of MOSEL is given in Alg. 2. Firstly, we train a set of candidate180

classifiers with Xtr by adopting bagging or random subspace strategies. Secondly, optimize the sparse

vector w by using EMOAs with Xval, which is used to evaluate the performance of each individual of

9



EMOAs. Thirdly, the most suitable ensemble classifiers for Xts can be obtained by adopting adaptive

MOSEL classifiers selection algorithm.

Algorithm 2 Learning Procedure for MOSEL
1: Training a set of candidate of classifiers with Xtr

2: Optimizing the sparse vector w by using EMOAs with Xval

3: Obtain the most suitable ensemble classifier for Xts by using adaptive MOSEL classifiers selection
algorithm

3. Experimental studies185

3.1. Algorithms involved

In this section, we present the experimental results of the proposed multiobjective sparse ensemble

learning methods and then compare the results with the results obtained by two compressed sensing (CS)

ensemble methods and two pruning ensemble methods. The sparse ensemble methods in our comparison in-

clude SpaRAS [24], OMP [25], which are the most popular methods for solving sparse reconstruction prob-190

lems [23]. The compared pruning methods are Kappa pruning (KP) [16] and ensemble based on matching

pursuit (MP) [17]. Several state-of-the-art EMOAs are used to search the solutions of MOSEL, including

Two Arch2 [30], NSGA-III [31], MOEA/DD [32], RVEA [33], AR-MOEA [34] and 3DFCH-EMOA [36].

The MNIST [37] and remote sensing change detection datasets are selected to evaluate the performance of

the above methods. The strategy of random subspaces [9] is adopted as the dataset manipulation and the195

classification and regression tree (CART) [40] is used as the base learner. For each mentioned algorithm,

10 independent trials are conducted.

3.2. Parameter setting

The experiment stopping criteria of the six EMOAs are set with a maximum of 30000 function eval-

uations. The simulated binary crossover (SBX) and polynomial bit-flip mutation operators are applied in200

the experiments with crossover probability of pc = 0.9 and the mutation probability of pm = 0.1. The

population size is set to 100 for all EMOAs. All of the experiments were implemented using Matlab code

running on an IBM X3650 server with Xeon E5-2600 2.9GHz processors and 32GB memory under Ubuntu

16.04. The details of experiments are described in the following.
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3.3. Experimental results on MNIST datasets205

3.3.1. Dataset description

The MNIST dataset [37] is widely used for machine learning and pattern recognition methods on real-

world data. It contains a training set with 60,000 examples and a testing set with 10,000 examples. Some

samples from MNIST dataset are shown in Fig. 1. The handwritten digits have been size-normalized and

centered in a fixed-size image (i.e., 28 × 28). The intensity of each pixel in an image is treated as its features,210

so the dimensionality of features set for each sample is 784. In this part, we use small amount of examples

for training and validation, and the remains for testing.

Figure 1: Samples from MNIST dataset

Table 2: The details of MNIST dataset used in the experiments
class No. all set No. of testing No. of training ds1 ds2 ds3 ds4 d5 ds6 ds7 d8 ds9

0 6903 5923 980 + - - - - - - - -
1 7877 6742 1135 - + - - - - - - -
2 6990 5958 1032 - + - - - - - -
3 7141 6131 1010 - + - - - - -
4 6824 5842 985 - + - - - -
5 6313 5421 892 - + - - -
6 6876 5918 958 - + - -
7 7293 6265 1028 - + -
8 6825 5851 974 - +

9 6958 5949 1009 -

The MNIST dataset we used in this part is described in the left part of Table 2. As we only consider

binary classification problems in this paper, we select several sub-datasets from the whole dataset, including

ds1-ds9 (details are listed in the right part of Table 2). All of the sub-datasets contain two classes, for215

instance, the positive class in ds2 includes ’1’, and the negative class includes ’0’ and ’2’. Both balanced

and unbalanced datasets are created; for instance, in the ds9 dataset, the ratio of positive instances to negative
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instances is about 1:9. For each of the datasets, 1/2 of training instances are randomly selected for candidate

classifiers generation and the rest is used for ensemble performance evaluation.

3.3.2. Experimental results and discussion220

Firstly, the reference Pareto front is shown to illustrate the properties of solutions of tested EMOAs,

which is calculated as the best set of solutions of several algorithms achieved in the first experimental run.

Without loss of generality, we only discuss the result of the ds3 dataset in Table 2.

0.10

0.2

0

0.4

fnr

0.05

sr

0.6

0.8

fpr

1

0.05
00.1

(a) The reference Pareto front in 3D
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Figure 2: The reference Pareto front for ds3 dataset

The obtained reference Pareto front is shown in Fig. 2(a). We can see that the reference Pareto front

includes a set of discrete points on the ADET surface. To illustrate the reference Pareto front clearly, two225

dimensional projections are shown in Fig. 2(b) and Fig. 2(c), corresponding to fpr × sr projection and fnr ×

sr projection, respectively. From Fig. 2(b) we conclude that: 1) The fpr could not be reduced to zero, even

with all of the classifiers active, but it got very close to it; 2) The best result of fpr can be obtained with the

value of sr in the range of [0.3, 0.75] and in the range of [0.75, 1.0], which is almost exactly zero; 3) There

are no points (solutions) in the objective space region with the value of sr below 0.3, as the performance of230

the fpr is too bad. From Fig. 2(c) we conclude that: 1) The performance of fnr decreases with the decreasing

of sr, when sr is above 0.8; 2) The best result of fnr is obtained with the value of sr in the range of [0.3, 0.5];

3) The performance of fnr is suppressed when the value of sr is below 0.3. Taking the conclusions of Fig.

2 together, some more conclusions can be made: 1) The fpr, fnr and sr are conflicting with each other,

as they cannot reach the best result simultaneously; 2) The highest value of sr can not guarantee the best235

performance of fpr and fnr; 3) Very few classifiers can reduce the performance of ensemble learning, as

the performance of both fpr and fnr degrades when the value of sr is lower than 0.3. The solutions of each
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EMOA are discussed next.
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Figure 3: The Pareto front for ds3 dataset (three axis projection) obtained by six EMOAs

The Pareto front and reference Pareto front by six EMOAs are shown in Fig 3, in which the points of the

Pareto front are marked in red and the points of reference Pareto front are marked in blue. By Comparing240

all Pareto front in Fig 3, we can see that: 1) The solutions of Two Arch2, NSGA-III, MOEA/DD, and AR-

MOEA convergence to the local area; 2) The solutions of RVEA and 3DFCH-EMOA are distributed in a

wider space; 3) RVEA can find solutions with low value of sr; 4) 3DFCH-EMOA can obtain solutions with

a high and low value of sr.

Several metrics are chosen to evaluate the performance of studied algorithms in the comparative exper-245

iment on these datasets, including classification accuracy (acc), false positive rate (fpr), false negative rate

(fnr), sparse ratio (sr) and Kappa coefficient (Kappa) [41]. Kappa coefficient is a statistic indicator which

measures inter-rater agreement for categorical items. It is generally thought to be a more robust measure

than simple percent agreement calculation, as Kappa takes into account the possibility of the agreement

occurring by chance. Generally, the larger the value of the Kappa, the better performance of the algorithm.250

The statistical results of these metrics are listed in the following tables. In these tables the best results

obtained are marked in light grey and the second best results are marked in dark grey.
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Table 3: Mean and standard deviation of accuracy of ensemble methods on MNIST datasets

Methods
Datasets ds1 ds2 ds3 ds4 ds5

MP 0.9889 ± 0.0028 0.9766 ± 0.0023 0.9355 ± 0.0051 0.9419 ± 0.0046 0.9570 ± 0.0035
KP 0.9829 ± 0.0038 0.9695 ± 0.0043 0.9204 ± 0.0046 0.9232 ± 0.0076 0.9503 ± 0.0051
SpaRSA 0.9921 ± 0.0054 0.9836 ± 0.0082 0.9583 ± 0.0201 0.9506 ± 0.0187 0.9741 ± 0.0132
OMP 0.9885 ± 0.0032 0.9765 ± 0.0024 0.9347 ± 0.0043 0.9418 ± 0.0046 0.9561 ± 0.0035
Two Arch2 0.9957 ± 0.0006 0.9891 ± 0.0007 0.9704 ± 0.0016 0.9641 ± 0.0014 0.9787 ± 0.0016
NSGA-III 0.9952 ± 0.0007 0.9893 ± 0.0005 0.9696 ± 0.0021 0.9651 ± 0.0011 0.9798 ± 0.0012
MOEA/DD 0.9952 ± 0.0012 0.9893 ± 0.0009 0.9698 ± 0.0022 0.9644 ± 0.0018 0.9797 ± 0.0010
RVEA 0.9959 ± 0.0008 0.9886 ± 0.0007 0.9696 ± 0.0016 0.9639 ± 0.0015 0.9778 ± 0.0018
AR-MOEA 0.9959 ± 0.0009 0.9897 ± 0.0004 0.9702 ± 0.0015 0.9648 ± 0.0018 0.9795 ± 0.0009
3DFCH-EMOA 0.9962 ± 0.0005 0.9894 ± 0.0005 0.9707 ± 0.0018 0.9654 ± 0.0012 0.9802 ± 0.0013

Methods
Datasets ds6 ds7 ds8 ds9 Average

MP 0.9484 ± 0.0041 0.9714 ± 0.0023 0.9724 ± 0.0018 0.9472 ± 0.0024 0.9599
KP 0.9345 ± 0.0062 0.9622 ± 0.0048 0.9650 ± 0.0048 0.9416 ± 0.0036 0.9500
SpaRSA 0.9624 ± 0.0102 0.9748 ± 0.0123 0.9796 ± 0.0066 0.9578 ± 0.0052 0.9704
OMP 0.9488 ± 0.0043 0.9714 ± 0.0022 0.9726 ± 0.0016 0.9472 ± 0.0024 0.9597
Two Arch2 0.9614 ± 0.0034 0.9830 ± 0.0008 0.9823 ± 0.0006 0.9569 ± 0.0016 0.9757
NSGA-III 0.9638 ± 0.0025 0.9828 ± 0.0006 0.9827 ± 0.0006 0.9579 ± 0.0015 0.9762
MOEA/DD 0.9630 ± 0.0022 0.9829 ± 0.0003 0.9823 ± 0.0007 0.9568 ± 0.0013 0.9759
RVEA 0.9604 ± 0.0020 0.9825 ± 0.0006 0.9820 ± 0.0005 0.9556 ± 0.0013 0.9751
AR-MOEA 0.9619 ± 0.0026 0.9828 ± 0.0006 0.9822 ± 0.0005 0.9569 ± 0.0013 0.9760
3DFCH-EMOA 0.9630 ± 0.0021 0.9832 ± 0.0006 0.9827 ± 0.0004 0.9569 ± 0.0016 0.9764

Table 3 shows the mean and standard deviation of the classification accuracy. The average classification

accuracy for each method is listed in the last column of the table. By comparing all the results we can

conclude that the methods of MOSEL outperform CS and pruning ensemble methods. 3DFCH-EMOA and255

NSGA-III outperform other methods for most of the datasets.

Table 4: Mean and standard deviation of Kappa of ensemble methods on MNIST datasets

Methods
Datasets ds1 ds2 ds3 ds4 ds5

MP 0.9776 ± 0.0056 0.9493 ± 0.0050 0.8214 ± 0.0129 0.8089 ± 0.0159 0.8377 ± 0.0145
KP 0.9657 ± 0.0077 0.9338 ± 0.0092 0.7765 ± 0.0147 0.7474 ± 0.0233 0.8123 ± 0.0184
SpaRSA 0.9841 ± 0.0108 0.9644 ± 0.0177 0.8844 ± 0.0550 0.8395 ± 0.0588 0.9022 ± 0.0491
OMP 0.9769 ± 0.0064 0.9492 ± 0.0051 0.8193 ± 0.0109 0.8088 ± 0.0158 0.8342 ± 0.0136
Two Arch2 0.9914 ± 0.0012 0.9763 ± 0.0016 0.9174 ± 0.0045 0.8805 ± 0.0050 0.9183 ± 0.0065
NSGA-III 0.9903 ± 0.0015 0.9767 ± 0.0012 0.9151 ± 0.0061 0.8844 ± 0.0037 0.9228 ± 0.0047
MOEA/DD 0.9904 ± 0.0024 0.9767 ± 0.0020 0.9159 ± 0.0063 0.8818 ± 0.0062 0.9222 ± 0.0042
RVEA 0.9917 ± 0.0016 0.9751 ± 0.0015 0.9150 ± 0.0046 0.8798 ± 0.0055 0.9147 ± 0.0074
AR-MOEA 0.9917 ± 0.0017 0.9775 ± 0.0009 0.9168 ± 0.0043 0.8832 ± 0.0062 0.9215 ± 0.0035
3DFCH-EMOA 0.9924 ± 0.0011 0.9769 ± 0.0012 0.9182 ± 0.0052 0.8852 ± 0.0043 0.9244 ± 0.0053

Methods
Datasets ds6 ds7 ds8 ds9 Average

MP 0.7539 ± 0.0216 0.8643 ± 0.0104 0.8601 ± 0.0096 0.6601 ± 0.0156 0.8370
KP 0.6718 ± 0.0441 0.8168 ± 0.0256 0.8213 ± 0.0256 0.6243 ± 0.0219 0.7967
SpaRSA 0.8183 ± 0.0453 0.8788 ± 0.0594 0.8965 ± 0.0330 0.7181 ± 0.0269 0.8762
OMP 0.7549 ± 0.0221 0.8645 ± 0.0101 0.8615 ± 0.0083 0.6601 ± 0.0156 0.8366
Two Arch2 0.8060 ± 0.0200 0.9179 ± 0.0038 0.9091 ± 0.0034 0.6993 ± 0.0144 0.8907
NSGA-III 0.8200 ± 0.0144 0.9169 ± 0.0031 0.9112 ± 0.0032 0.7092 ± 0.0134 0.8941
MOEA/DD 0.8155 ± 0.0134 0.9175 ± 0.0018 0.9088 ± 0.0040 0.6989 ± 0.0117 0.8920
RVEA 0.8002 ± 0.0119 0.9156 ± 0.0033 0.9072 ± 0.0029 0.6881 ± 0.0120 0.8875
AR-MOEA 0.8091 ± 0.0156 0.9170 ± 0.0029 0.9087 ± 0.0027 0.7002 ± 0.0114 0.8917
3DFCH-EMOA 0.8149 ± 0.0126 0.9191 ± 0.0032 0.9110 ± 0.0023 0.6991 ± 0.0143 0.8935
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The statistical results of Kappa are shown in Table 4. By comparing the results on the table, we can

see that MOSEL methods outperform CS and pruning methods for most of the MNIST datasets. NSGA-III

and 3DFCH-EMOA outperform other methods on most of these datasets. NSGA-III plays slightly better

than 3DFCH-EMOA in the metric of Kappa. SpaRSA performs better than other CS and pruning ensemble260

methods.

Table 5: Mean and standard deviation of fpr of ensemble methods on MNIST datasets

Methods
Datasets ds1 ds2 ds3 ds4 ds5

MP 0.0086 ± 0.0023 0.0182 ± 0.0042 0.0367 ± 0.0079 0.0194 ± 0.0039 0.0198 ± 0.0040
KP 0.0133 ± 0.0061 0.0224 ± 0.0050 0.0408 ± 0.0078 0.0308 ± 0.0085 0.0236 ± 0.0058
SpaRSA 0.0063 ± 0.0049 0.0100 ± 0.0082 0.0203 ± 0.0151 0.0167 ± 0.0154 0.0088 ± 0.0094
OMP 0.0084 ± 0.0022 0.0183 ± 0.0056 0.0375 ± 0.0072 0.0194 ± 0.0039 0.0200 ± 0.0042
Two Arch2 0.0045 ± 0.0008 0.0028 ± 0.0006 0.0105 ± 0.0015 0.0018 ± 0.0004 0.0028 ± 0.0004
NSGA-III 0.0043 ± 0.0009 0.0032 ± 0.0009 0.0110 ± 0.0015 0.0023 ± 0.0006 0.0027 ± 0.0004
MOEA/DD 0.0044 ± 0.0014 0.0032 ± 0.0008 0.0115 ± 0.0014 0.0019 ± 0.0004 0.0030 ± 0.0006
RVEA 0.0047 ± 0.0009 0.0033 ± 0.0010 0.0108 ± 0.0016 0.0017 ± 0.0005 0.0029 ± 0.0005
AR-MOEA 0.0040 ± 0.0009 0.0028 ± 0.0005 0.0108 ± 0.0013 0.0020 ± 0.0004 0.0028 ± 0.0006
3DFCH-EMOA 0.0042 ± 0.0008 0.0027 ± 0.0007 0.0103 ± 0.0014 0.0017 ± 0.0004 0.0026 ± 0.0004

Methods
Datasets ds6 ds7 ds8 ds9 Average

MP 0.0177 ± 0.0038 0.0130 ± 0.0021 0.0099 ± 0.0016 0.0152 ± 0.0029 0.0176
KP 0.0186 ± 0.0051 0.0150 ± 0.0025 0.0132 ± 0.0033 0.0181 ± 0.0040 0.0217
SpaRSA 0.0069 ± 0.0090 0.0089 ± 0.0068 0.0054 ± 0.0046 0.0051 ± 0.0060 0.0098
OMP 0.0171 ± 0.0039 0.0130 ± 0.0020 0.0100 ± 0.0016 0.0152 ± 0.0029 0.0176
Two Arch2 0.0021 ± 0.0006 0.0034 ± 0.0006 0.0022 ± 0.0003 0.0014 ± 0.0003 0.0035
NSGA-III 0.0022 ± 0.0004 0.0034 ± 0.0003 0.0024 ± 0.0003 0.0018 ± 0.0004 0.0037
MOEA/DD 0.0023 ± 0.0006 0.0037 ± 0.0005 0.0023 ± 0.0004 0.0016 ± 0.0003 0.0038
RVEA 0.0021 ± 0.0004 0.0036 ± 0.0005 0.0022 ± 0.0002 0.0015 ± 0.0004 0.0036
AR-MOEA 0.0023 ± 0.0005 0.0035 ± 0.0006 0.0024 ± 0.0002 0.0017 ± 0.0004 0.0036
3DFCH-EMOA 0.0019 ± 0.0005 0.0033 ± 0.0003 0.0021 ± 0.0003 0.0015 ± 0.0004 0.0034

As most of the datasets used in this part are large and the distributions of them are unbalance, a small

improvement of the accuracy and Kappa can cause many samples to be correctly classified and reduce

misclassification costs greatly. To show the classification performance in more detail, the fpr and fnr are

compared in Table 5 an Table 6, respectively. From these tables, we can see that MOSEL methods out-265

perform other compared methods on fpr, which represents the misclassification ratio of negative instances.

Since in the most of MNIST datasets that we used in this paper, there are far more negative instances than

positive samples, the reduction of fpr can largely decrease the number of misclassified samples. When

comparing results for the fnr metric, we can also make a conclusion that the proposed MOSEL methods

have great advantages in the MNIST datasets.270

Table 7 shows the mean value and standard deviation of non-zero classifiers of the ensemble. By com-

paring the results we can conclude that KP and OMP have good performance on sparsity, however, they
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Table 6: Mean and standard deviation of fnr of ensemble methods on MNIST datasets

Methods
Datasets ds1 ds2 ds3 ds4 ds5

MP 0.0141 ± 0.0054 0.0326 ± 0.0068 0.1521 ± 0.0149 0.2126 ± 0.0195 0.1629 ± 0.0277
KP 0.0213 ± 0.0052 0.0449 ± 0.0094 0.2020 ± 0.0296 0.2605 ± 0.0212 0.1847 ± 0.0212
SpaRSA 0.0098 ± 0.0061 0.0278 ± 0.0090 0.1090 ± 0.0363 0.1802 ± 0.0321 0.1142 ± 0.0356
OMP 0.0151 ± 0.0066 0.0326 ± 0.0080 0.1529 ± 0.0149 0.2127 ± 0.0194 0.1674 ± 0.0232
Two Arch2 0.0040 ± 0.0011 0.0253 ± 0.0018 0.0899 ± 0.0056 0.1722 ± 0.0069 0.1168 ± 0.0102
NSGA-III 0.0055 ± 0.0010 0.0239 ± 0.0009 0.0915 ± 0.0073 0.1648 ± 0.0049 0.1104 ± 0.0079
MOEA/DD 0.0052 ± 0.0023 0.0239 ± 0.0020 0.0892 ± 0.0080 0.1700 ± 0.0082 0.1100 ± 0.0069
RVEA 0.0035 ± 0.0014 0.0257 ± 0.0014 0.0925 ± 0.0061 0.1735 ± 0.0084 0.1218 ± 0.0112
AR-MOEA 0.0043 ± 0.0013 0.0237 ± 0.0011 0.0898 ± 0.0061 0.1675 ± 0.0080 0.1116 ± 0.0070
3DFCH-EMOA 0.0032 ± 0.0010 0.0246 ± 0.0009 0.0894 ± 0.0056 0.1657 ± 0.0061 0.1082 ± 0.0084

Methods
Datasets ds6 ds7 ds8 ds9 Average

MP 0.2796 ± 0.0328 0.1403 ± 0.0104 0.1625 ± 0.0138 0.4016 ± 0.0225 0.1731
KP 0.3815 ± 0.0636 0.2011 ± 0.0380 0.2015 ± 0.0309 0.4308 ± 0.0262 0.2143
SpaRSA 0.2445 ± 0.0260 0.1415 ± 0.0526 0.1348 ± 0.0235 0.3857 ± 0.0195 0.1497
OMP 0.2811 ± 0.0324 0.1403 ± 0.0104 0.1600 ± 0.0116 0.4016 ± 0.0225 0.1737
Two Arch2 0.2842 ± 0.0290 0.1140 ± 0.0068 0.1358 ± 0.0053 0.4286 ± 0.0182 0.1523
NSGA-III 0.2652 ± 0.0208 0.1157 ± 0.0052 0.1311 ± 0.0058 0.4149 ± 0.0173 0.1470
MOEA/DD 0.2709 ± 0.0201 0.1127 ± 0.0052 0.1356 ± 0.0058 0.4283 ± 0.0148 0.1495
RVEA 0.2925 ± 0.0176 0.1168 ± 0.0058 0.1383 ± 0.0050 0.4417 ± 0.0158 0.1563
AR-MOEA 0.2792 ± 0.0221 0.1151 ± 0.0069 0.1351 ± 0.0035 0.4264 ± 0.0140 0.1503
3DFCH-EMOA 0.2735 ± 0.0185 0.1127 ± 0.0054 0.1332 ± 0.0041 0.4288 ± 0.0185 0.1488

Table 7: Mean and standard deviation of non-zero ensemble weight for each method on MNIST datasets

Methods
Datasets ds1 ds2 ds3 ds4 ds5

MP 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00
KP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SpaRSA 19.70 ± 16.79 11.80 ± 11.30 20.20 ± 15.99 14.90 ± 14.95 24.40 ± 17.25
OMP 1.00 ± 0.00 1.00 ± 0.00 2.00 ± 0.00 1.60 ± 0.52 1.00 ± 0.00
Two Arch2 41.30 ± 5.68 42.30 ± 7.67 44.20 ± 4.83 41.50 ± 3.78 39.20 ± 5.22
NSGA-III 15.10 ± 3.41 19.30 ± 2.79 27.10 ± 3.90 25.70 ± 4.83 28.40 ± 2.41
MOEA/DD 13.20 ± 3.94 25.00 ± 5.58 34.50 ± 10.06 50.70 ± 15.56 33.30 ± 8.65
RVEA 67.40 ± 11.35 53.30 ± 10.98 45.20 ± 5.14 49.70 ± 8.12 48.70 ± 5.50
AR-MOEA 24.90 ± 4.48 24.00 ± 3.02 31.70 ± 4.81 30.50 ± 3.24 34.30 ± 4.92
3DFCH-EMOA 83.70 ± 20.23 58.50 ± 25.52 72.40 ± 24.09 64.10 ± 18.88 45.20 ± 8.61

Methods
Datasets ds6 ds7 ds8 ds9 Average

MP 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00
KP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00
SpaRSA 26.30 ± 15.30 21.30 ± 16.60 19.80 ± 16.42 28.30 ± 16.81 20.74
OMP 2.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 2.00 ± 0.00 1.40
Two Arch2 41.70 ± 6.72 41.50 ± 2.76 40.80 ± 2.86 38.80 ± 4.69 41.26
NSGA-III 27.00 ± 3.50 26.80 ± 3.79 27.30 ± 4.62 28.10 ± 3.28 24.98
MOEA/DD 34.00 ± 4.74 45.00 ± 11.85 41.00 ± 16.25 37.40 ± 9.36 34.90
RVEA 47.60 ± 6.22 50.40 ± 3.66 52.40 ± 7.32 49.20 ± 8.13 51.54
AR-MOEA 34.10 ± 3.81 31.70 ± 2.63 31.60 ± 4.95 32.80 ± 4.21 30.62
3DFCH-EMOA 45.70 ± 7.66 58.50 ± 25.10 48.60 ± 12.28 50.00 ± 9.09 58.52

perform poorly on other metrics. If all values in the table are considered, we can conclude that KP has

the best sparseness performance. However, the classification accuracy values of OMP and KP are lower

than those of MOSEL methods, as these two algorithms do not find good solutions that balance the perfor-275

mance between classification accuracy and ensemble sparsity. As the performance of sparsity and classifi-

cation performance are conflicting with each other, a good ensemble method should find the best trade-offs
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between them. From the performed experiments we demonstrate that EMOAs are suitable optimization

techniques to tackle sparse ensemble problems.

Table 8: Wilcoxon sum-rank test on MNIST datasets: each x − y− z in following table means 3DFCH-EMOA wins x times, losses
y times, draws z times

MP KP SpaRSA OMP NSGA-III Two Arch2 MOEA/DD RVEA AR-MOEA
accuracy 9-0-0 9-0-0 5-1-3 9-0-0 2-0-7 1-0-8 1-0-8 7-0-2 1-0-8
Kappa 9-0-0 9-0-0 5-1-3 9-0-0 2-0-7 1-0-8 1-0-8 6-0-3 1-0-8
fpr 9-0-0 9-0-0 7-0-2 9-0-0 0-0-9 1-0-8 1-0-8 2-0-7 0-0-9
fnr 7-1-1 8-0-1 1-3-5 7-1-1 0-0-9 1-0-8 1-0-8 4-0-5 0-0-9
non-zeros 0-9-0 0-9-0 0-9-0 0-9-0 0-4-5 0-9-0 0-6-3 0-3-6 0-9-0

As 3DFCH-EMOA has good performance on most of these datasets, a more comprehensive compari-280

son between 3DFCH-EMOA and other ensemble methods is presented in Table 8, which shows the corre-

sponding Wilcoxon sum-rank test [36] results. By comparing the results we can find that 3DFCH-EMOA

outperforms CS and pruning ensemble methods significantly on most of the metrics except the non-zeros

metric on most of the datasets.

3.4. Experimental results of image change detection285

Remote sensing image change detection is a real-world problem that aims to find out the change infor-

mation that has occurred between two images of the same area taken at different times [42]. It has been

applied in many areas, including disaster monitoring, changed target detection and supervision of country

resources [43]. Supervised methods have been widely used for remote sensing image change detection [44],

as a small amount of labeled data can be used for model training and then the built model can be applied for290

large-scale image change detection. The change detection problem is an unbalanced classification problem

as the proportion of the change area when compared to the total observed area is small. In this part, both

synthetic aperture radar (SAR) [45] and optical images are used for the proposed methods evaluation.

3.4.1. Datasets description

Six pairs of remote sensing images are used for classification performance evaluation, details are de-295

scribed in the following. The first dataset is the Ottawa dataset of two SAR images with a spatial resolution

of 10m × 10m and a spatial size of 290 × 350, acquired in July and August 1997, respectively. They were

acquired over the city of Ottawa by the Radarsar SAR sensor and were provided by the Defence Research

and Development Canada (DRDC)-Ottawa. Fig. 4(a) and (b) present the flood-afflicted areas and Fig. 4(c)
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shows the manually defined reference map. The sample patch for model training and validation is marked300

in blue with a spatial size 100 × 100 in the log ratio difference image, as shown in Fig. 4(d).

(a) (b) (c) (d)

Figure 4: Multitemporal images relating to Ottawa. (a) Image acquired in July 1997, during the summer flooding, (b) image
acquired in August 1997, after the summer flooding, (c) ground truth, (d) initial difference image obtained via the log ratio operator
and examples marked in blue extracted for model training and validation.

The second dataset is the Bern dataset of two SAR images with a spatial resolution of 10m × 10m and

a spatial size of 301× 301. They were acquired over the city of Bern, Switzerland by the European Remote

Sensing 2 satellite SAR sensor in April and May 1999, respectively. Fig. 5 shows the two images, manually

defined reference map and training image patch with a spatial size 100 × 100 in the log ratio difference305

image.

(a) (b) (c) (d)

Figure 5: Multitemporal images relating to the city of Bern. (a) Image acquired in April 1999, (b) image acquired in May 1999,
(c) ground truth and (d) examples extracted for model training and validation.

The third dataset is the Mexico dataset of two optical images acquired by Landsat-7 (US satellite) in

April 2000 and May 2002, respectively. These two images are extracted from Band 4 of the ETM+ images.

The sizes of both images are 512 × 512 pixels. This dataset shows the vegetation damage after the forest
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fire in urban Mexico. Fig. 6(a)-(d) show the two images, reference map and example patch with a spatial310

size 100 × 100, respectively.

(a) (b) (c) (d)

Figure 6: Multitemporal images relating to the city of Mexico. (a) Optical image acquired in 2000, (b) optical image acquired in
2002, (c) ground truth and (d) examples extracted for model training and validation.

(a) (b) (c) (d)

Figure 7: Multitemporal images relating to Farmland of Yellow River Estuary. (a) SAR image acquired in June 2008, (b) SAR
image acquired in June 2009, (c) ground truth and (d) examples extracted for model training and validation.

(a) (b) (c) (d)

Figure 8: Multitemporal images relating to Coastline of Yellow River Estuary. (a) SAR image acquired in June 2008, (b) SAR
image acquired in June 2009, (c) ground truth and (d) examples extracted for model training and validation.

The 4-6th datasets are the selected from the Yellow River in eastern China of two SAR images cap-

tured by Radarsat-2 (Canadian satellite) with a spatial resolution 8m × 8m in July 2008 and June 2009,

respectively. Note that the two SAR images are single-look and four-look, respectively, which increases the
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(a) (b) (c) (d)

Figure 9: Multitemporal images relating to Inland water of Yellow River Estuary. (a) SAR image acquired in June 2008, (b) SAR
image acquired in June 2009, (c) ground truth and (d) examples extracted for model training and validation.

difficulty of change detection. These datasets include different typical areas, including farmlands, coastline315

and inland water. Fig. 7 shows the changed areas that appear as newly reclaimed farmlands, with a spatial

size 306 × 291. Fig. 8 shows the coastline where the changed areas are relatively small, with a spatial size

450× 280. Inland water where the changed areas are concentrated on the borderline of the river is shown in

Fig. 9. The spatial size of Inland water is 291 × 444.

Table 9: The details of remote sensing datasets

Size
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water

Image spatial size 290 × 350 301 × 301 512 × 512 306 × 291 450 × 280 291 × 444
Sample patch size 100 × 100 100 × 100 100 × 100 80 × 80 80 × 80 100 × 100

The spatial and sample patch sizes of these remote sensing dataset are listed in Table 9. In this part,320

discrete wavelet transform [46], gray-level co-occurrence matrix (CLCM) [47] and Gabor filter bank [6]

are selected to extract features for each pixel of log difference images. The dimension of the feature is 38,

i.e., each pixel of the log difference image is represented by a 38 dimension vector. For each dataset, 2/3

samples from the training patch are randomly selected for model training and the remaining 1/3 samples are

selected for validation. The whole log difference images are used for testing.325
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3.4.2. Experimental results and discussion

The mean and standard deviation of the classification accuracy are shown in Table 10. By comparing

all the results we can conclude that: 1) OMP performs the best on Ottawa and Farmland datasets; 2) The

methods of MOSEL outperform CS and pruning ensemble methods on most of the datasets except Ottawa

and Farmland; 3) 3DFCH-EMOA can obtain the highest accuracy except for the Farmland dataset.330

Table 10: Mean and standard deviation of accuracy of ensemble methods on change detection datasets

Methods
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water Average

MP 0.9190±0.0069 0.9880±0.0020 0.9665±0.0043 0.9145±0.0149 0.9855±0.0062 0.9693±0.0027 0.9571
KP 0.8882±0.0657 0.9898±0.0014 0.9670±0.0059 0.9204±0.0154 0.9866±0.0054 0.9659±0.0078 0.9530
SpaRSA 0.9123±0.0235 0.9909±0.0031 0.9636±0.0071 0.9186±0.0108 0.9831±0.0086 0.9677±0.0079 0.9560
OMP 0.9276±0.0023 0.9887±0.0018 0.9682±0.0038 0.9239±0.0050 0.9855±0.0061 0.9694±0.0029 0.9605
Two Arch2 0.9263±0.0027 0.9931±0.0004 0.9725±0.0015 0.9205±0.0020 0.9908±0.0006 0.9731±0.0009 0.9627
NSGA-III 0.9267±0.0030 0.9930±0.0005 0.9723±0.0014 0.9227±0.0034 0.9907±0.0008 0.9735±0.0010 0.9632
MOEA/DD 0.9275±0.0018 0.9932±0.0004 0.9723±0.0014 0.9229±0.0030 0.9911±0.0006 0.9739±0.0010 0.9635
RVEA 0.9262±0.0012 0.9929±0.0004 0.9722±0.0013 0.9206±0.0028 0.9909±0.0006 0.9735±0.0009 0.9627
AR-MOEA 0.9268±0.0025 0.9929±0.0004 0.9716±0.0017 0.9214±0.0040 0.9906±0.0003 0.9734±0.0012 0.9628
3DFCH-EMOA 0.9276±0.0025 0.9934±0.0004 0.9729±0.0014 0.9227±0.0013 0.9911±0.0005 0.9741±0.0007 0.9637

The statistical results of Kappa are shown in Table 11. By comparing the results on the table, we

can conclude that: 1) OMP outperforms other CS and pruning ensemble methods; 2) 3DFCH-EMOA and

MOEA/DD perform better than other MOSEL methods on most of the datasets; 3) 3DFCH-EMOA can

obtain the best result on the average Kappa of the six remote sensing datasets.

Table 11: Mean and standard deviation of Kappa of ensemble methods on change detection datasets

Methods
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water Average

MP 0.6782±0.0224 0.5702±0.0442 0.7970±0.0315 0.4747±0.0530 0.3616±0.1256 0.5565±0.0216 0.5730
KP 0.6180±0.1322 0.5811±0.0584 0.8042±0.0383 0.4867±0.0651 0.3327±0.2237 0.5291±0.0736 0.5586
SpaRSA 0.6683±0.0700 0.6425±0.0694 0.7776±0.0448 0.5013±0.0498 0.3540±0.1189 0.5578±0.0632 0.5836
OMP 0.7170±0.0077 0.5858±0.0475 0.8072±0.0278 0.5239±0.0176 0.3464±0.0932 0.5620±0.0326 0.5904
Two Arch2 0.7177±0.0078 0.6798±0.0386 0.8376±0.0105 0.5204±0.0088 0.3463±0.1073 0.5970±0.0111 0.6165
NSGA-III 0.7179±0.0080 0.6885±0.0335 0.8360±0.0098 0.5273±0.0124 0.3679±0.1192 0.6017±0.0118 0.6232
MOEA/DD 0.7209±0.0054 0.6913±0.0330 0.8364±0.0097 0.5310±0.0131 0.3887±0.0859 0.6023±0.0101 0.6284
RVEA 0.7186±0.0035 0.6725±0.0298 0.8354±0.0091 0.5234±0.0107 0.3511±0.1072 0.5985±0.0083 0.6166
AR-MOEA 0.7187±0.0077 0.6814±0.0335 0.8309±0.0118 0.5222±0.0159 0.3322±0.0518 0.5981±0.0132 0.6139
3DFCH-EMOA 0.7211±0.0064 0.7020±0.0271 0.8407±0.0095 0.5279±0.0072 0.3873±0.0947 0.6064±0.0092 0.6309

The metrics of fpr and fnr are compared in Table 12 and Table 13, respectively. By comparing the335

results we can find out that: 1) 3DFCH-EMOA and MOEA/DD perform better than other methods and

obtaine lower average of fpr, which represents the percentage of unchanged pixels misclassified; 2) SpaRSA

and 3DFCH-EMOA can obtain lower average of fnr, which represents the percentage of changed pixels

misclassified. The two objectives, i.e., fpr and fnr are conflicting with each other. Generally, a method has a
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good performance on one objective will not have a good performance on another objective. 3DFCH-EMOA340

can find a good trade-off between these two objectives.

Table 12: Mean and standard deviation of fpr of ensemble methods on change detection datasets

Methods
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water Average

MP 0.0355±0.0098 0.0075±0.0023 0.0114±0.0016 0.0759±0.0152 0.0081±0.0064 0.0143±0.0034 0.0254
KP 0.0777±0.0772 0.0049±0.0017 0.0134±0.0031 0.0680±0.0154 0.0071±0.0068 0.0177±0.0090 0.0315
SpaRSA 0.0485±0.0246 0.0045±0.0034 0.0118±0.0047 0.0742±0.0092 0.0111±0.0101 0.0169±0.0082 0.0278
OMP 0.0339±0.0032 0.0068±0.0020 0.0104±0.0015 0.0696±0.0058 0.0076±0.0065 0.0146±0.0032 0.0238
Two Arch2 0.0391±0.0043 0.0018±0.0005 0.0104±0.0006 0.0750±0.0020 0.0011±0.0005 0.0109±0.0009 0.0230
NSGA-III 0.0381±0.0053 0.0022±0.0006 0.0102±0.0006 0.0725±0.0037 0.0015±0.0006 0.0106±0.0013 0.0225
MOEA/DD 0.0374±0.0033 0.0020±0.0005 0.0107±0.0005 0.0729±0.0029 0.0011±0.0004 0.0099±0.0015 0.0223
RVEA 0.0404±0.0026 0.0017±0.0005 0.0106±0.0004 0.0756±0.0031 0.0010±0.0006 0.0103±0.0011 0.0233
AR-MOEA 0.0382±0.0047 0.0021±0.0005 0.0102±0.0004 0.0737±0.0039 0.0011±0.0005 0.0106±0.0014 0.0226
3DFCH-EMOA 0.0371±0.0047 0.0018±0.0003 0.0107±0.0005 0.0726±0.0012 0.0012±0.0005 0.0099±0.0009 0.0222

Table 13: Mean and standard deviation of fnr of ensemble methods on change detection datasets

Methods
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water Average

MP 0.3237±0.0268 0.3642±0.0577 0.2383±0.0512 0.2381±0.0442 0.6117±0.1587 0.4521±0.0284 0.3713
KP 0.2931±0.0341 0.4250±0.1011 0.2139±0.0539 0.2646±0.0508 0.5984±0.2993 0.4560±0.0831 0.3752
SpaRSA 0.2962±0.0309 0.3648±0.0564 0.2636±0.0533 0.1950±0.0543 0.5576±0.2395 0.4291±0.0315 0.3511
OMP 0.2773±0.0090 0.3596±0.0620 0.2304±0.0450 0.1794±0.0186 0.6447±0.1034 0.4415±0.0418 0.3555
Two Arch2 0.2578±0.0115 0.4073±0.0667 0.1850±0.0203 0.1507±0.0102 0.7585±0.0954 0.4366±0.0117 0.3660
NSGA-III 0.2611±0.0131 0.3781±0.0605 0.1890±0.0189 0.1534±0.0088 0.7300±0.1220 0.4346±0.0174 0.3577
MOEA/DD 0.2595±0.0107 0.3851±0.0613 0.1849±0.0171 0.1437±0.0123 0.7260±0.0789 0.4416±0.0183 0.3568
RVEA 0.2516±0.0092 0.4196±0.0522 0.1869±0.0155 0.1412±0.0151 0.7562±0.1039 0.4418±0.0097 0.3662
AR-MOEA 0.2595±0.0154 0.3926±0.0565 0.1968±0.0200 0.1558±0.0088 0.7755±0.0492 0.4394±0.0144 0.3700
3DFCH-EMOA 0.2603±0.0115 0.3784±0.0431 0.1786±0.0173 0.1514±0.0117 0.7237±0.0923 0.4369±0.0146 0.3549

Table 14: Mean and standard deviation of non-zero ensemble weight for each method on change detection datasets

Methods
Datasets

Ottawa Bern Mexico Farmland Coastline Inland water Average

MP 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00 ± 0.00 26.00
KP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00
SpaRSA 19.10 ± 16.30 23.90 ± 17.11 14.60 ± 15.89 28.50 ± 15.79 12.10 ± 15.20 17.80 ± 16.84 19.33
OMP 21.80 ± 2.62 1.00 ± 0.00 2.70 ± 0.48 15.20 ± 9.37 1.00 ± 0.00 1.00 ± 0.00 7.12
Two Arch2 49.80 ± 6.16 48.00 ± 5.37 45.90 ± 4.46 50.80 ± 4.96 49.00 ± 7.12 49.10 ± 4.36 48.77
NSGA-III 37.60 ± 3.98 33.40 ± 4.55 35.50 ± 3.14 38.00 ± 5.64 27.50 ± 4.84 34.90 ± 5.45 34.48
MOEA/DD 46.60 ± 11.94 53.20 ± 13.60 50.40 ± 17.69 42.30 ± 5.03 53.20 ± 11.59 42.30 ± 11.66 48.00
RVEA 49.90 ± 8.09 60.20 ± 5.92 55.00 ± 7.59 45.70 ± 4.81 67.70 ± 7.26 56.40 ± 6.24 55.82
AR-MOEA 43.90 ± 4.77 39.60 ± 5.25 41.90 ± 5.78 45.70 ± 4.47 37.60 ± 3.57 41.50 ± 5.52 41.70
3DFCH-EMOA 71.40 ± 17.49 62.30 ± 10.63 85.60 ± 21.82 70.20 ± 16.25 63.00 ± 24.81 74.40 ± 23.98 71.15

Table 14 shows the mean value and standard deviation of non-zero classifiers of the ensemble weight.

By comparing the results we can conclude that KP and OMP have good performance on sparsity, however,

they perform poorly on accuracy and Kappa metrics.

As 3DFCH-EMOA has good performance on most of the compared metrics, we make a more compre-345

hensive comparison between 3DFCH-EMOA and other ensemble methods. The Wilcoxon sum-rank test
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Table 15: Wilcoxon sum-rank test on change detection datasets: each x − y − z in this table means that 3DFCH-EMOA wins x
times, losses y times, draws z times

MP KP SpaRSA OMP NSGA-III Two Arch2 MOEA/DD RVEA AR-MOEA
accuracy 5-0-1 5-0-1 5-0-1 4-0-2 2-0-4 0-0-6 0-0-6 2-0-4 1-0-5
Kappa 5-0-1 5-0-1 4-0-2 3-0-3 0-0-6 0-0-6 0-0-6 1-0-5 0-0-6
fpr 3-0-3 5-0-1 3-0-3 3-0-3 2-0-4 0-0-6 0-0-6 1-0-5 0-0-6
fnr 3-0-3 2-0-4 3-0-3 3-0-3 0-0-6 0-0-6 0-0-6 0-0-6 1-0-5
non-zeros 0-6-0 0-6-0 0-6-0 0-6-0 0-5-1 0-6-0 0-4-2 0-2-4 0-6-0

results are listed in Table 15. By comparing the results we can find out that 3DFCH-EMOA outperforms

CS and pruning ensemble methods significantly on accuracy and Kappa metrics for most of the datasets.

4. Conclusions

In this paper, we proposed the multiobjective sparse ensemble learning model and analyzed its proper-350

ties in the ADET space. Firstly, MOSEL is modeled as ADCH maximization problem, and the relationship

between the sparsity and the performance of ensemble classifiers on the ADET space is explained. Sec-

ondly, sparse real encoding is designed as a bridge between MOSEL and EMOAs, and six EMOAs were

used to find a sparse ensemble classifier with good performance. Thirdly, an adaptive MOSEL classifier

selection algorithm was proposed to select the most suitable ensemble classifier for a given dataset. Exper-355

imental results based on well-known MNIST and remote sensing change detection datasets show that the

proposed MOSEL performs significantly better than conventional ensemble learning methods. However,

the distribution of MOSEL solutions obtained by several EMOAs is not even. To find evenly distributed

solutions MOSEL must be studied further.
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