
October 18th – 19th, 2010

PA
C

IF
IC

 N
W

28TH ANNUAL
SOFTWARE

CONFERENCE
QUALITY

CONFERENCE
PROCEEDINGS

Conference Paper Excerpt
from the

Permission to copy, without fee, all or part of this material,
except copyrighted material as noted, is granted provided that

the copies are not made or distributed for commecial use.

__

Software Quality Management System
Omar Alshathry

Software Technology Research Lab

De Montfort University

The Gateway, Leicester LE1 9BH, UK

shathry@dmu.ac.uk

Abstract

In software development projects, the investment of quality improvements needs to be optimized
in a way that does not affect the cost and schedule aspects. However, as is currently practiced in
the industry, software’s artifacts are considered equal in their significance and risk to the software
life cycle with respect to quality improvement activities. The investment in activities concerning
the detection and removal of defects is distributed evenly on the software’s artifacts without taking
into consideration the risk and significance factors of such artifacts. Some software’s modules
hold risky and significant architectural components that need to be of a high quality and a low
defect density. On the other hand, other modules do not require a similar level of quality. Defects
originating from modules of high criticality may contribute to a project failure more so than less
significant modules. In this paper, we propose a model that helps the project managers to optimize
the investment given to the QA activities of their software on the basis of the risk associated with
the development process.

Keywords: CosQ, Software Quality, Cost of Quality, Return on Investment, Quality Management

1: Introduction

A well known phrase among software quality practitioners is, "too little is a crime, but too much

testing is a sin". This statement reflects the ongoing research problem in the Quality Assurance

(QA) area when project managers, at the start of or before the testing phase, should make informed

decisions to tune and control the triple constraints in a way to assure the success of their software

projects (Figure1).

Figure 1: Software Triple Constraints

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 1 of 18

__

In some cases, schedule becomes the most important aspect when cost of delay outweighs the

benefit of producing software of low defect density. In other cases, a limited budget assigned to the

quality plan hampers the quality assurance team from covering software work products sufficiently

to detect and remove defects, even those that are deemed to be of a high or moderate risk.

To tackle this issue, we propose a software quality management system that helps the project

manager and QA practitioners to make informative decisions on their QA activities in terms of their

cost effectiveness and to trade off alternatives of QA plans based on optimal solutions generated. We

propose a regression-based generic model that categorizes each each phase’s artifacts to different

work products according to pre-defined risk levels so as to prioritize investment given to the quality

assurance process.

The outline of our paper is as follows. In Section 2, we outline the cost of software quality

(CoSQ) principal and the cost percentage that cost of software quality consumes out of the total

software development budget. In Section 3, we outline our quality model informally. The formal

descriptions of the model then follows in Sections 4. A literature review of similar models is

discussed in Section 5. We conclude our paper with a critical review of our model in Section 6.

This paper is built upon our previous research on risk-based QA activities management [24][27].

2 Software Quality

2.1 Software Quality Perception

In our research, quality of software is intrinsically linked to the notion of software defects and

defect density. Software defects can be defined based on different views and perspectives [15][2].

However, it is commonly agreed that a software defect is any flaw present in the software that

prevents the normal software execution, causing software failure or nonconformance to software

specifications [18]. We chose the defect density metric as our perception of quality and it is calcu-

lated as follows :

Defect Density=
No. of defects in a code

Size of the code

2.2 Cost of Software Quality

The term cost of software quality (CoSQ) describes the trade-off between delivering high quality

software and the cost associated with it [1]. It is a metric that helps software project managers to

determine the accepted and affordable level of quality for their product.

It is generally accepted that during the software development process, the earlier a software

defect is fixed and removed, the more effort and time is saved for the whole project [37] [32].

Software quality researchers estimated that software defect that cost less than $1 to be fixed during

software coding phase may cost $100 if it propagated to the whole system and thousands of dollars

if it passed to the operational field [38]. This is also supported by Humphrey[23] who showed that

the rework cost of a defect found in the field is ten times greater than the cost to remove it during the

system testing phase. The rationale behind this escalation in the cost of defects is that to fix a defect

which was discovered relatively far from its origin entails not only the cost of fixing it but also the

needed re-working[8][10] of other modules impacted by this defect in previous stages (Figure2).

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 2 of 18

__

Figure 2: Escalation Cost in Software Defect

2.3 Software Quality and Profit

As shown in Figure 2.3, the relationship between software quality and profit is linear at the be-

ginning, as implementing practices and techniques removes defects and improves software quality.

However, this linear relationship reverses at one point during the software development process

with a decrease in expected profit and a continuous increase in quality. On the other hand, some

researches found that Pareto Law, known as the 80:20 rule, is applicable to software quality activ-

ities. It was found that 80% of software defects discovered in the system testing phase are related

to 20% of the software modules[7][12]. Those two concepts of profit of software quality and the

Figure 3: Relationship Between Quality and Profit [5]

Pareto Law are important in any software development project especially when it experiences a

shortage in budget assigned to quality or time to release constraints. However, what are the criteria

behind the decision of leaving work products uninspected to meet release time targets or re-using a

module to save testing cost; how the project manager can handle such issues with minimal risk. In

that context, there must be a mechanism that gives the project manager the ability to differentiate

between high-risk modules that require more investment in QA activities and low-risk modules.

3: Quality System Model

Our approach to the optimal use of quality assurance practices and performing the required trade-

off process between the software triple constraints is regression-based. In other words, we perform a

regression analysis on a pool of QA data which was grouped and channelled according to our model

specifications. The output of this analysis process will help determine the accurate effectiveness of

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 3 of 18

__

QA practices, their cost and time with respect to categorized software work products on the basis

of the risk level associated with them. The application of our model conforms to any software

development life cycle as long as it consists of phases. As shown in Figure 4 which describes the

work-flow steps of our model, each phase’s deliverable will go through a categorization process to

categorize each artifact to different work products.

Figure 4: Work-flow of our Quality Model

The next step after the categorization process is the constraint check, which is a decision-based

process conducted by either the system’s project manager or the system’s stakeholders who may

put some items and conditions to be considered in the system to be built. Once constraints have

been determined they go through the optimized solution determination process. In this process,

constraints are grouped together and processed using a suitable optimization technique which will

propose an optimal solution for QA plans. The optimal solutions found will be based on two or

more of the software triple constraints: cost, quality and schedule. In case there is no optimal

solution found, the constraints should be rediscussed between the software stakeholders and the

project manager and redesigned for better manipulation of the optimization process. Once optimal

solutions are found or in case there were no constraints determined, the QA team should start the QA

process using suitable practices. Data of any QA activity in terms of the number of defects found,

the duration of executing the QA activity, the average defect removal cost by the QA practice, etc.,

will be passed to the defect repository process where it is channeled and stored according to the

categorized work products.

3.1: Software Models Categorization

The project deliverable of each phase in the SDLC can be broken down into work products.

We assume that these work products can be assigned to a domain of specific type and risk cate-

gories. For a limited QA planning budget, the highest share of the budget should go to the most

critical work products rather than being distributed evenly. For example, in a software requirement

specification document requirements are typically ranked based on importance to the client. Here

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 4 of 18

__

more effort should be given to the verification of requirements that are important to the user than

to those that are in the "waiting room"[11]. Having the risk levels determined, each work product

of software development phases is categorized based on a defined set of risk levels derived from

the consideration of the risk associated with the software development process. The categorization

process is as follows:

Let C be a set of all categories that are used in the domain for which the software is being

developed. Every work product can be placed in one category. Let Wx be the set of work products

that are generated in phase x. The function type : Wx �→ C then assigns for every work product

a type category. Multiple categorization schemes can be modelled along these lines. Similarly

let esize : Wx �→ N be a function mapping from a work product to an estimated size in kLoC.

Although for early work products other size measures, such as object or function points, are more

suitable, it is well established to translate these into kLoC for the target language of the project [20].

The size sizex of the output of phasex is then

sizex =
∑

w∈Wx

esize(w)

The size of work-products of a specific type c ∈ C is then:

sizex,c =
∑

w∈Wx,c

esize(w)

where Wx,c = {w ∈ Wx|type(w) = c}.

The proportion of work products with that are in category c is then:

αx,c =
sizex,c
sizex

Figure 5: Phase Categorization Process

The categorization of a phase’s deliverable work products depends on the project manager insight

or the QA team consideration for the deliverable itself and for the type and prospective domain of

use for the software. Some deliverable would be given a full weight value αx,high of a high risk

rating out of the total deliverable size sizex. Conversely, others will be given full αx,low weight

of low-risk rating. An example of a mapping from work products to risk categories is shown in

Figure 5.

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 5 of 18

__

3.2: Categorization Scenarios

The process of categorizing software phases into work products is independent of the software

size and the risk levels defined. That is, having a set of risk levels does mean that each phase deliv-

erable need to be categorized according to these levels at once. The constraints experienced during

software development process and the project manger insight are the main determinant factors for

the way this categorization process is implemented. In the following subsections, we will show how

this methodology is applied to the software requirement specifications by giving some scenarios of

work products categorization.

3.3: 1st Scenario

As an example and as illustrated in Figure 6, it shows that a Software Requirements Specification

(SRS) document is divided according to our risk-based levels (high, medium, low) into three work

products of sizes 30%, 50%, 20%, which are inspected by QA practices P1, P2 and P3 respectively.

The result of this inspection process is the Defect Removal Efficiency (DRE) value for each QA

practice with respect to the type of the work product it is applie to. The DRE value will be known

to the QA team at the system testing phase when total defects originated from the work products

uncovered.

Figure 6: Work Product Categorization (a)

3.4 2nd Scenario

In another scenario, (Figure 7), the project manager may have no available budget to inspect

all the artifacts or some of the QA practices may only be available for a limited period of time.

Accordingly, the QA team manager chose to inspect the high and medium work products only,

which is weighted at 50% of the total artifact with the coverage values of 30% and 20% for QA

practices P1 and P2 respectively, and leave the left 50% of low-risk work product uninspected.

Figure 7: Work Product Categorization (b)

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 6 of 18

__

3.5 3rd Scenario

The Categorization process may continue to include the work product itself with respect to the

coverage weight given to the QA practices chosen. For example, in Figure 8 , the project manager

may not give practice P1 a full coverage on the work product of type high because P1’s availability

stopped all of a sudden in the middle of the testing or due to other constraint. Accordingly, the

project manager used practice P3 to inspect the remaining part of the work product.

Figure 8: Work Product Categorization (d)

Those three different scenarios mentioned above occur repetitively in software development en-

vironment without exploiting them for future use. Software organizations should have a compre-

hensive and solid background on their QA practices efficiency for each phase and should also have

a QA repository of previous projects.

3.6: Data Repository of QA activities

The application of this approach for many projects following the same software development

process enables the QA team to build up a data repository of defects reports. In this section, we will

show how data resulting from our model can be sorted and processed in a database so that it can be

utilized for making decisions for future usage.

After the work products categorisation process, the QA team stores in the data repository all

relative data related to each work product like its size out of the total phase size and its risk level

(Table 1).

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 7 of 18

__

Software Requirement Specification

Projectid Document size (FP) Type of work product Work product weight

1 Size1 Type1 α1%

1 Size1 Type2 α2%

1 Size1 Type3 α3%

... {100%}

2 Size2 Type2 α2%

2 Size2 Type3 α3%

3 Size3 Type3 α3%

4 Size4 Type4 α4%

5 Size5 Type5 α5%

. . . .

. . . .

. . . .

n Sizen Typen αn%

Table 1. Work Products Input Table

Having completed the data input process, the data analysis process starts by grouping the depen-

dent variables together for analyzing and determining the relationships between them. The mech-

anism on which our analysis process is based is the average values of variables and the regression

analysis. Our average values determination process will analyze all QA data of past projects that

are stored according to our model structure. This process will be applied on the following variables

and database tables:

• Each QA practice with respect to the phase and work product type.
The result of this table will determine the average DRE value for a specific QA practice with

respect to the work product and to the phase it is applied to.

Phase Work product QA practice ¯DRE

• The execution time for each QA practice with respect to the phase and work product
type.
The result of this analysis process is to determine the average time ¯time value needed by QA

practice p1 to run on a work product wx

Phase Work product QA practice ¯time

• Each QA defect removal cost with respect to the phase and work product type.
The result of this association will be:

Phase Work product QA practice ¯cost

To calibrate our model we require a defect injection rate (I) that links the number of defects

injected in every work product with its size. Given a positive correlation between the size of work

products of a specific type and the number of defects originating from that work product, we can

use linear regression to determine the injection rate Ic as the slope of number of defects originating

from work products of that type against the size of the work products (Figure 9).

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 8 of 18

__

Figure 9: Proposed Regression Analysis

4 Formal Model

Following the SDLC approach being used by the software development organization, our soft-

ware quality model consists of a sequence of phases: requirement, design and code which are

referred to as (r, d, c) respectively. Moreover, each phase consists of a number of work products

w1 → wn. On the other hand, there are a number of QA practices which are specifically used and

responsible for the defect detection and verification activities within each phase (Figure10).

4.1 Model cost aspects

Generally, the formal model of our system consists of three main components as follows:

1. Number of Defects (I)
This component refers to the estimated number of defects found by applying a specific QA

practice to a single work product (w) or to a whole phase in general. The number of defects

component of our model will be responsible for determining the DRE value with respect to

the QA practice used.

2. Execution Cost and Effort
The execution cost is the cost of performing the QA process using a specific QA practice. As

we aim in this research to optimize the cost of QA investment, we need to accurately quantify

this value to reduce the waste in effort introduced by any QA activity. In our model, the cost

of execution is divided into two blocks:

• Cost to run the QA practice.

• Cost to remove defects discovered.

The reason for this division is that during a QA activity, which comprises defect detection

and removal, the defects found or some of them may not get removed during the QA activity

even though they were discovered. the QA team may prefer to remove only part of the found

defects due to unexpected constraints or because of the fact that the defects found are not

necessary to be fixed.

3. Cost of Escaped Defects

In this component, we quantify the impact of defects escaped from the main development

phases of the SDLC: Requirement, Design, Coding, etc., with respect to the system testing

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 9 of 18

__

Figure 10: QA Practices and Phases Association

stage. An overview of this association is depicted in Figure 11.

The mechanism of our model works by associating QA activities carried out during the de-

velopment activities of the SDLC’s phases with the system testing phase, where the main

testing activities begin. This association mechanism should quantify the impact of all es-

caped defects in terms of the estimated cost associated with their defect removal activities at

the system testing phase.

As a result of this process, we will be able to measure the estimated cost introduced by a de-

fect escaped from a work product of a specific risk level and discovered in the system testing

phase. We refer to this value in our model as the escalation factor of a defect (Cescaped).

• Px denotes the set of all QA practices that can be applied in PhaseX .

Let p ∈ Px

Let w ∈ Wx

• Let Iw be the estimated injection rate of defects per kLOC in w of phaseX .

• Let βp refers to the coverage weight of a practice p during a QA activity.

• Let Cescaped refers to the escalation factor of an escaped defect with respect to the system

testing phase.

1. Estimated Number of Defects Injected

eDw = Iw ∗ esize(w) (1)

2. Estimated Number of Found Defects

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 10 of 18

__

Figure 11: Cost of Escaped Defect

NFound
p = βp ∗ eDw ∗DREp (2)

3. Estimated Number of Defects Escaped

NEscaped
p = βp ∗ eDw ∗ (1−DREp) (3)

4.2 Execution Time and Effort

4.2.1 Execution Time

The execution time is defined in our model as th time required to run a QA practice on a soft-

ware’s artifact in order to detect and remove its defects. As we mentioned earlier, we need to

quantify the cost of running the QA practice as a separate cost from the overall defects removal cost

as in many cases software quality practitioners may find defects but not remove them.

• Let tp be the average execution time of applying a QA practice p ∈ P on a specific work

product w ∈ W.

• Let sizew be the size of a work product measured based on the artifact’s unit of measurement.

Execution time for a single QA practice p

Extp = βp ∗ sizew ∗ tp (4)

4.2.2 Execution Effort

• Let Cescaped be the escalation factor of a defect removed at the system testing phase.

• Let Lr be the labour rate measured in any unit of money.

1. Execution cost for a single QA practice p

Exc = Lr ∗ Extp (5)

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 11 of 18

__

2. Cost of Defect Removal Rc

Rcp = βp ∗ eDw ∗DREp ∗ Cremoval
p ∗ Lr (6)

3. Cost of Escaped Defect Esc

Esp = βp ∗ eDw ∗ (1−DREp) ∗ Cescaped
p ∗ Lr (7)

4.3 Saved Cost of a QA Activity

During the process of applying a QA practice, QA practitioners usually do not quantify a major

important value that has a great influence in evaluating the current QA plan. This value is defined

in our model as the saved cost which refers to the saving in cost of applying a QA practice which is

expected to pay off later in the system testing phase.

Scp = βp ∗ eDw ∗DREp ∗ Cescaped
p (8)

4.4 Combination of QA Practices

In some cases and for software artifacts of a high significance, the project manager may like to

apply more than one QA practice at once in order to reduce the defects injection rate in later phases.

Figure 12: Combining QA practices

In order to clarify the notion of applying more than one QA practice, we give an example as

shown in Figure 12 that depicts a possible defect detection and removal scenario. As an example,

the testing team chose to apply QA practice p1 to a specific work product w that has an estimated

injection rate (Iw) of 1/FP, that is, 1 defect is injected into each functional point of the work product.

Assuming that the size of the work product is 10 FP, that means the work product is estimated

to be injected with 10 software defects. The QA practice p1 is known to have a defect removal

efficiency of DRE = 70% on the work product w relying on data of past projects retreived from the

model’s repository. The estimated result of this activity was a new tested work product w̄ which

had approximately 7 defects that were fixed out of the original injected 10 defects.

70% * 10 = 7 defects found.

On the other hand, 3 defects are still injected in the work product w̄ which will propagate to the

later phases.

(1-70%) * 10 = 3 defects escaped.

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 12 of 18

__

In order to reduce the impact of these 3 escaped defects, the testing team decided to retest the

same work product w̄ using another QA practice p2 which has a defect removal efficiency value

DRE = 50% with respect to such work product type. However, The defect injection rate of work

product w̄ needs to be redefined according to the result of the first QA activity. We assume that the

new injection rate of work product w̄ is 0.3 FP as follows:

Iw̄ =
Defect injected ≈ 3

Size : 10 FP
= 0.3

Based on the values of Iw̄ and the DRE of the QA practice p2 = 50%, the testing team would ex-

pect that the verification process would be estimated to reveal half of the injected defects. However,

this optimisitic view of the second re-testing process may not always be correct; re-testing the work

product with the QA practice p2 may find no defects despite its defect removal efficiency value of

DRE = 50%. The reason behind that is that in some cases the type of defects found by practice p1
are the same defects found by practice p2; therfore, applying practice p2 on a work product which

was already tested by practice p1 may consume effort and time without tangible benefits.

This potential scenario is well-thought about in our research and we tried to tackle it by devising

a new variable to calculate the probability that a QA practice p2 will find defects different to those

defects found by the preceding QA practice p1. We call this variable λ. An overview of this variable

is depicted in Figure 13.

Figure 13: Lambda Variable Association

Based on Figure 13, the combination variable of applying the practice p2 as a successor of p1 is

λ = 2/3. That is, QA practice QA2 is able to uncover 2/3(two-thirds) of the escaped defects from

practice QA1.

By utilising the λ variable, the number of found defects after applying two QA practices sequen-

tially is calculated by extending Equation 2 as follows:

NFound
w = βp1 ∗ eDw ∗DREp1 + βp2 ∗ eDw ∗ (1−DREp1) ∗ λp1−p2. (9)

p1, p2 ∈ P

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 13 of 18

__

4.5 Return on investment

Defect detection and removal activities are considered to be an investment especially for profit-

based software development organizations. This investment needs to be well-evaluated and studied

to determine its positive and negative implications on the development process. The overall cost of

any software development project is equal to the cost of the development activities and the cost of

quality assurance practices implemented during the software life cycle.

Total development cost= Production development(COCOMO)+ Cost of quality

As our focus in this research is mainly on the second aspect of cost, which is the cost of software

quality CoSQ, we will show how to evaluate the CoSQ in a feasible way by using a well-known

business measure, return on investment ROI . In our model, we express the ROI measure according

to a value to cost ratio as shown in the following:

ROI =
V alue

Cost
(10)

Value : equals the saving in costs resulting from fixing defects early in their phases of origin.

Cost : equals the effort of both executing the QA practice and fixing defects found.

First of all, we recall the functions that we used in our model and constitute our model components.

These functions are :

• Execution cost (Exc)

• Removal cost (Rc)

• Escaped cost (Esc)

• Saved cost (Sc)

In order to calculate the numerator for our ROI equation, (Value), we use the following expres-

sion :

Value = Sc - (Exc + Esc + Rc)

For each QA p applied to a piece of an artifact the estimated value is identified by subtracting the

estimated saved cost from the other three aspects of execution effort: execution cost, defect removal

cost and the escaped cost. The denominator in our ROI equation (Cost) can be defined as the sum

of the three aspects of execution effort:

Cost = Exc + Esc + Rc.

Accordingly, substituting the two values in our ROI equation yields :

ROI =
Sc− (Exc+ Esc+Rc)

Exc+ Esc+Rc
(11)

By generalizing the previous equation to the whole work product w, we can calculate the relative

ROI of all QA plans applied to work product w by summing all variables as shown below:

ROIw =

∑
p∈P Scp − (

∑
p∈P Excp +Rcp + Esp)∑

p∈P Excp +Rcp + Escp
(12)

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 14 of 18

__

5: Related Work

Work related to our research includes similar models that work as a decision-based system to help

project managers control the cost, schedule and quality of their software projects. One of the most

well known cost and quality estimation model is the COnstructive QUALity MOdel (COQUALMO)

[13] which is an extension to the COnstructive COst MOdel (COCOMO) [20]. It consists of two

sub-models: 1, defect introduction and 2, defect removal models which in turn integrate into CO-

COMO to help determine the cost of defects removal using the three QA practices: Automated
analysis, Reviews and Testing. However, In COQUALMO the effort to fix a defect introduced and

removed by each of the three practices is not quantified directly by the model, it is calculated as a

percentage of the total estimated effort by COCOMO model [6]. Also, along with the COCOMO,

COQUALMO are calibrated based on data manipulation of many previous software projects which

may incur difficulties for an organization to tailor any of those models to itself. Moreover, with

COQUALMO there are only three applicable practices without taking into account the diversity of

other techniques and the variations in their efficiency.

Capture recapture models is used in software engineering to predict the total number of defect in

an artifact based on a sample taken from a population of defects [30][25]. However, the accuracy of

defect estimations given by capture and recapture models is not stable and influenced by different

factors like the type of QA practice [28], number of people involved [26] etc.

With regards to software QA practices and their defect detection and removal efficiency, Juristo

et al [34] designed a classification schema for QA practices within software development life cycle

upon a 25 years of testing experience. However, they concluded that there is a little knowledge

related to QA practices and their applicable domain.

Gou et al [33] [16], analyzed data related to QA activities of historical projects and found that

based on these data industrial baselines can be established to estimate defect removal and detection

efficiency of current and future QA activities.

6: Conclusion

This paper is a part of ongoing research on a holistic model for software QA activities manage-

ment. We proposed an approach that optimizes software investment assigned to QA processes by

defining generic QA model whereby critical components within the software to be developed are

given more consideration and priority .

The mechanism that our model relies on is that each phase deliverable is categorized into differ-

ent work products according to predetermined risk rating levels introduced by software development

organization in a way that high effective practices be applied to high risk rating level work products.

We also proposed an adjustment to the defect containment matrix so as to make it able to determine

the DRE for any risk rating level and accordingly the efficiency of each practice assigned to it. We

presented set of mathematical equations that supports the theoretical model presented and to help

determine the interaction and communication of our model aspects. Our QA model can be utilized

as decision based QA system that helps software project manager make informative estimate on the

consequences of daily based decisions regarding QA processes.

The aim behind this project research on which this paper is based is to come up with a holistic

model to deal with software triple constraints schedule, cost and quality. There are many variables

that were overlooked in this paper in order to make the proposed approach less complex.

Future research will include integrating the time consideration into the model so as to enable

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 15 of 18

__

triple constraints trade-off process. Ongoing contacts are being made with leading software devel-

opment organizations to pilot the model for their software QA activities.

References

[1] Krasner.H, Using the Cost of Quality Approach for Software. CrossTalk. The Journal of De-

fense Software Engineering, pp11(11), 1998.

[2] Robert B., Practical Software Metrics for Project Management and Process Improvement,
Englewood Cliffs, NJ: Prentice Hall, 1992

[3] Boehm. B and Huang.L. Value-based software engineering: A case study. Computer, pages

33-41, March 2003.

[4] Price Waterhouse, Software Quality Standards: The Costs and Benefits, A review for the

Department of Trade and Industry. London: Price Waterhouse Management Consultants,1988.

[5] El Emam.K, The ROI from Software Quality, Boca Raton, Florida: Auerbach Publications,

2005.

[6] WANG,Q., GOU,L., JIANG,N., CHE,M., ZHANG,R., YANG,Y., LI,M. An Empirical Study
on Establishing Quantitative Management Model for Testing Process, JCSP 2007, Lecture

Notes on Computer Science 4470, 2007.

[7] Boehm.B, Industrial software metrics top 10 list, IEEE Software, September, pages 84-85,

1987.

[8] Jones.C,Applied Software Measurement, 3rd edition; McGraw-Hill, New York: 2008.

[9] Sower.V, Quarles.R, Cooper.S, Cost of Quality:Distribution and Quality System Maturity: An
Exploratory Study, ASQ’s 56th Annual Quality Congress Proceedings, ASQ, May, 2002.

[10] Fairley.R ,Willshire.M. , Iterative Rework: The Good, the Bad, and the Ugly. IEEE Computer

38 (9): 34-41, 2005

[11] ROBERTSON.S & ROBERTSON.R, Mastering the Requirements Process. Harlow, UK,

2006.

[12] LiGuo.H , Boehm.B, How Much Software Quality Investment Is Enough: A Value-Based Ap-
proach, IEEE SOFTWARE, 2006.

[13] Chulani.S, Boehm.B, Modeling Software Defect Introduction Removal: COQUALMO (COn-
structive QUALity MOdel), USC-CSE-99-510, The Center for software Engineering, Univer-

sity of Southern California, Los Angeles, CA, 1999.

[14] Votta.L, Does Every Inspection Need a Meeting, 1993.

[15] Florac, William, A., Software Quality Measurement: A Framework for Counting Problems
and Defects , CMU/SEI-92-TR-22, Software Engineering Institute -Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania, September 1992.

[16] Gou.L, Wang.Q, Yuan.J, Yang.Y, Li.M, Jiang.N, Quantitative defects management in iterative
development with BiDefect, Software Process: Improvement and Practice, 14,4, pp.227-241,

2008.

[17] Chrissis. M.B, Konard. M, Shrum.S, CMMI guidelines for process integration and product
improvement. Addison-Wesley,NJ, 2003.

[18] Boehm. B. and Basili, V. Software Defect Reduction Top 10 List, IEEE Computer, Vol. 34,

No. 1, January 2001.

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 16 of 18

__

[19] Henderson.C, Managing software defects: defect analysis and traceability, ACM SIGSOFT

Software Engineering Notes, 2008.

[20] Boehm B. W., Software Engineering Economics, Prentice-Hall, 1981.

[21] Chillarege.R, Bhandari.I.S, Chaar.J.K, Halliday.M.J, Moebus.D.S, Ray.B.K, and Wong.Y. Or-

thogonal Defect Classification-A Concept for In- Process Measurements, IEEE Transactions

on Software Engineering, vol. 18, pp. 943-956. 1992.

[22] NASA., NASA procedures and guidelines for mishap Reporting, Investigating and Record
keeping, Safety and Risk management Division, NASA Headquarters, USA, 2000.

[23] Humphrey.W.S, A Discipline for Software Engineering, Addison-Wesley Publishing Com-

pany,Massachusetts, 1995.

[24] Alshathry.O, Helge.J, Hussein.Z, Abdullah.A, Quantitative Quality Assurance Approach, niss,

pp.405-408, 2009 International Conference on New Trends in Information and Service Sci-

ence, 2009.

[25] Walia.G, Carver.J, Evaluation of capture-recapture models for estimating the abundance of
naturally-occurring defects,Proceedings of the Second ACM-IEEE international symposium

on Empirical software engineering and measurement, pp.158-167, 2008.

[26] El Emam.K, Laitenberger.O, Evaluating Capture-Recapture Models with Two Inspectors,

IEEE Trans. Software Eng., vol. 27, no. 9, pp. 851-864, 2001.

[27] Alshathry.O, janicke.H, Optimizing Software Quality Assurance, COMPSAC’10, The 34nd

Annual IEEE International Computer Software and Applications Conference, 2010.

[28] ISODA.S, A criticism on the capture-and-recapture method for software reliability assurance.

Journal of Systems and Software, 43, pp.3-10, 1998.

[29] L LAZIc, A KOLAcINAC, D AVDIC The Software Quality Economics Model for Soft-

ware Project Optimization, World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, USA, 2009.

[30] Briand.L, El Emam.K, Freimut.B, Comparison and Integration of Capture-Recapture Models
and the Detection Profile Method, Procs. Ninth International Conference on Software Relia-

bility Engineering, Paderborn, Germany, pp. 32-41, 1998.

[31] Tsai.W. H., Quality Cost Measurement Under Activity-Based Costing, International Journal

of Quality & Reliability Management, vol. 15, pp. 719-752, 1998.

[32] Capres.j, Estimating Software Costs: bringing realism to estimatingý, 2nd edition. McGraw-

Hill, New York, 2007.

[33] Gou.L, Wang.Q, Yuan.J, Yang.Y, Li.M, Jiang.N, Quantitatively managing defects for iterative
projects: An industrial experience report in China, Heidelberg, D-69121, Germany: Springer

Verlag,pp.369-380, 2008.

[34] Juristo.N, Moreno.A, Vegas.S, Reviewing 25 Years of Testing Technique Experiments, Empir-

ical Software Eng.,vol. 9, nos. 1Ű2, pp. 7Ű44, 2004.

[35] Driving Quality Throughout the Software Delivery Lifecycle, June 2007, Borland software

corp. www.borland.com

[36] Wood et al, Comparing and Combining Software Defect Detection Techniques: A Replicated
Empirical Study, Proceedings of the 6th European Software Engineering Conference, Zurich,

Switzerland, pp. 262-277, 1997.

[37] Boehm.B,Valerdi.R, The ROI of Systems Engineering: Some Quantitative Results, eq-

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 17 of 18

__

uity,IEEE International Conference on Exploring Quantifiable IT Yields, pp.79-86, 2007.

[38] Building a Better Bug Trap, The economist , June19,2003,http://www.economist.com/science/tq/

displayStory.cfm?Story_id=1841081 [accessed on] 16/oct/2009.

[39] Frost.A, Campo.M Advancing Defect Containment to Quantitative Defect Management,
CrossTalk Ű The Journal of Defense Software Engineering 12(20), 24Ű28, 2007

Excerpt from PNSQC 2010 Proceedings
PNSQC.ORG

Page 18 of 18

