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Abstract

Wireless communications and mobile computing have led to the enhancement of,

and improvement in, intelligent transportation systems (ITS) that focus on road

safety applications. As a promising technology and a core component of ITS, Vehi-

cle Ad hoc Networks (VANET) have emerged as an application of Mobile Ad hoc

Networks (MANET), which use Dedicated Short Range Communication (DSRC)

to allow vehicles in close proximity to communicate with one another, or to com-

municate with roadside equipment. These types of communication open up a wide

range of potential safety and non-safety applications, with the aim of providing an

intelligent driving environment that will offer road users more pleasant journeys.

VANET safety applications are considered to represent a vital step towards im-

proving road safety and enhancing traffic efficiency, as a consequence of their ca-

pacity to share information about the road between moving vehicles. This results

in decreasing numbers of accidents and increasing the opportunity to save people’s

lives. Many researchers from different disciplines have focused their research on the

development of vehicle safety applications. Designing an accurate and efficient driver

behaviour detection system that can detect the abnormal behaviours exhibited by

drivers (i.e. drunkenness and fatigue) and alert them may have an impact on the

prevention of road accidents. Moreover, using Context-aware systems in vehicles

can improve the driving by collecting and analysing contextual information about
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the driving environment, hence, increasing the awareness of the driver while driving

his/her car.

In this thesis, we propose a novel driver behaviour detection system in VANET

by utilising a context-aware system approach. The system is comprehensive, non-

intrusive and is able to detect four styles of driving behaviour: drunkenness, fatigue,

reckless and normal behaviour. The behaviour of the driver in this study is consid-

ered to be uncertain context and is defined as a dynamic interaction between the

driver, the vehicle and the environment; meaning it is affected by many factors and

develops over the time. Therefore, we have introduced a novel Dynamic Bayesian

Network (DBN) framework to perform reasoning about uncertainty and to deduce

the behaviour of drivers by combining information regarding the above mentioned

factors.

A novel On Board Unit (OBU) architecture for detecting the behaviour of the

driver has been introduced. The architecture has been built based on the concept

of context-awareness; it is divided into three phases that represent the three main

subsystems of context-aware system; sensing, reasoning and acting subsystems. The

proposed architecture explains how the system components interact in order to de-

tect abnormal behaviour that is being exhibited by driver; this is done to alert

the driver and prevent accidents from occurring. The implementation of the pro-

posed system has been carried out using GeNIe version 2.0 software to construct the

DBN model. The DBN model has been evaluated using synthetic data in order to

demonstrate the detection accuracy of the proposed model under uncertainty, and

the importance of including a large amount of contextual information within the

detection process.
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Chapter 1

Introduction

Objectives:

• Provide an introduction and explain the motivation for this research

• List the research questions

• Present the research methodology

• List the main contributions of the research

• Outline the thesis structure
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CHAPTER 1. INTRODUCTION

1.1 Motivations

At the present time cars and other private vehicles are used daily by many people.

The biggest problem resulting from the increased use of private transport is the

large number of fatalities that occur due to accidents on the roads. Related expense

and dangers have been recognised as a serious problem that needs confronting by

modern society. According to the UK department for transport (DFT) report for

road casualties in Great Britain in the first quarter of 2011, there were 24,770 people

killed or seriously injured due to road accidents. This number represents a decrease

of 5 per cent compared with the previous 12 months period [14]. Although the

number seems to have decreased, it remains high and explains why road safety is

such a concern for researchers and governments. There is a pressing need to improve

road safety and efficiency in order to prevent road crashes, decrease the number of

fatalities and save people’s lives.

Wireless communications and mobile computing have led to the enhancement

of, and improvement in, intelligent transportation systems (ITS) focused on road

safety applications [1, 15]. As a core component of ITS, Vehicle Ad hoc Network

(VANET) has emerged as an application of Mobile Ad hoc Networks (MANET),

that use Dedicated Short Range Communication (DSRC) to allow nearby vehicles

to communicate either with each other or with roadside equipment. These forms of

communication offer a wide range of safety applications to improve road safety and

improve traffic efficiency in order to save people’s lives. VANET safety applications

are considered to represent a vital step towards enhancing road safety and towards

improving traffic efficiency by preventing accidents from occurring; for example, in-

tersection collision avoidance, warning about violating traffic signal and approaching

emergency vehicle warning etc. [16, 17].
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CHAPTER 1. INTRODUCTION

Consequently, driver error is considered to be the main factor in most road acci-

dents [18]. According to a report by the UK department for transport [19], in 2011,

the number of accidents that occurred due to reckless, drunk and fatigued drivers

reached 26496. Therefore, detecting driver’s behaviour with the aid of sensing,

wireless and technological devices equipped within the vehicle may have a significant

impact on reducing the number of accidents and provide a safe driving environment.

As a result, it is anticipated that by designing a more flexible and accurate driver

behaviour detection system in VANET by utilising a context-aware system approach

to detect different styles of driver’s behaviour during driving it will be possible to

achieve the task of preventing road accidents and saving people’s lives.

1.2 Problem description and driver behaviour de-

tection solution

Current developments in cognitive science, which is a multidisciplinary science that

studies the mind and the way it performs its processes like reasoning, categorisa-

tion, etc. [20, 21], have shown that the human emotional state (i.e. that caused by

drunkenness or fatigue) plays a vital role in human behaviour [22, 23, 24]. Therefore,

many researchers have been working in the area of driver monitoring and detection

over recent decades, and multiple systems have been proposed to monitor and de-

tect the status of drivers. Some researchers [25, 26, 27, 28] have tried to monitor

the behaviour of the vehicle or the driver in isolation, while others have focused on

monitoring a combination of the driver and the vehicle or the driver and the envi-

ronment, so as to detect the status of the driver in an attempt to prevent accidents.

Road accidents result from three interconnected elements, which are: the driver, the

vehicle and the environment [29].
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However, there is still no comprehensive system that can both, effectively monitor

different types of driving behaviour (e.g. drunk, fatigue, reckless and normal be-

haviour) by capturing the driver’s and the vehicle’s state and environmental changes,

and perform effective reasoning regarding uncertain contextual information so as to

alert the driver and other vehicles on the road by disseminating a warning message

in time to relevant vehicles in the vicinity (including implementing practical correc-

tive action to prevent accidents from happening).

The main goal of this research is to develop a novel approach based on the concept

of context-awareness to detect abnormal behaviour of the driver in VANET by taking

into account many parameters. In other words, the system can accurately and pro-

actively detect four types of driving behaviour during driving: normal, fatigued,

drunken and reckless driving by taking into account context regarding the driver,

the vehicle and the environment; it will then alert the driver and other vehicles on

the road by operating in vehicle alarms and advising corrective action (in this thesis

we will focus on the behaviour detection algorithm, and generating the corrective

actions will be left for the future work). This will be carried out by proposing a novel

context aware architecture for VANET, based on driver behaviour detection, this

architecture explains how this operation is related to the OBU. The functionality of

the architecture is divided into three phases: the sensing, reasoning and acting phase;

these phases represent the three main subsystems of context-aware system: sensing,

reasoning and acting respectively. In the sensing phase, the system will collect

information about the driver, the vehicle state and environmental changes. The

reasoning phase is responsible for performing reasoning about uncertain contextual

information, to deduce the behaviour of the driver.
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The behaviour of the driver is considered as representing an uncertain context

(high level contextual information) and also develops over the course of driving;

therefore, effective reasoning techniques about uncertain contextual information

must be performed. We will propose a novel Dynamic Bayesian Network (DBN)

model to infer the behaviour of the driver. The proposed model will combine infor-

mation from different kinds of sensors to capture the static and temporal aspects of

behaviour and perform probabilistic inference to deduce the driver’s current driving

behaviour.

The acting phase is responsible for operating in vehicle alarms and for sending

corrective actions to other vehicles, via the wireless technology provided by VANET.

In this thesis we focus on a behaviour detection algorithm, while calculating correc-

tive actions for the other vehicles on the road is left for the future work.

1.3 Research Questions

We have analysed the driver behaviour detection systems currently available in the

literature and we have outlined the main research question as follows:

How can we detect abnormal behaviour exhibited by a driver in

VANET utilising a context-aware system approach?

The main aim of the work in this research is to address the question above efficiently.

However, partitioning the research question into sub-questions would make it easier

to tackle each one individually. These questions can be summarised as follows:

• What kind of information is needed to detect different styles of

driver behaviour accurately?
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• How can we design an effective driver behaviour detection system

architecture for VANET by utilising a context-aware system ap-

proach?

• How can we design an efficient driver behaviour detection model that

can perform reasoning over time (temporal reasoning) and under

uncertainty?

1.4 Research Methodology

The methodology used in this research is a scientific research method, which ex-

plains constructive research. The term ’constructive’ denotes the contribution in

knowledge developed in terms of new architecture, models, techniques, etc. How-

ever, it is hard to carry out scientific research in a definite field without thorough

knowledge of the field, and hence, acquiring this knowledge represents a component

of such research.

The scientific methodology for this research was carried out through five phases.

The first phase concerns the research literature review, and the second phase elab-

orates the uncertainty reasoning method on which the behaviour detection model

is based. The third phase deals with the proposed architecture. The fourth phase

illustrates in detail the proposed DBN driver’s behaviour detection model. The last

phase addresses the process of validating the work.

• Phase 1: Research background

Several resources have been used such as books, articles, digital libraries, etc.

in order to conduct a literature review in three stages; covering VANET,

context-aware system and an overview of current driver behaviour detection
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systems. The first stage provides an overview of VANET, VANET architec-

ture, wireless access technology in VANET and VANET applications. In the

second stage, an overview of context and context-aware system and several

proposed architectures was discussed. The third stage illustrates in detail

existing driver behaviour monitoring and detection systems and their main

drawbacks, as the aim of this research is to design a novel driver behaviour

detection system for VANET by utilising a context-aware systems approach

to prevent road accidents and save people’s lives.

• Phase 2: Reasoning techniques

Define the normal and abnormal behaviour of drivers and explore available

reasoning techniques, which can be used to infer behaviour, and then, illustrate

in detail the chosen technique on which our detection model will be based.

• Phase 3: Architecture

Design the OBU architecture in order to capture contextual information about

the driver, the vehicle and the environment, and then deduce the behaviour

of the driver.

• Phase 4: Driver behaviour detection model

Design the DBN driver behaviour detection model to combine information

from different kinds of sensors and then deduce the behaviour of the driver.

In particular, choosing network variables and specifying the conditional inde-

pendence between them, and parameterising the network.

• Phase 5: Implementation and Evaluation

Validate the performance of the proposed model using synthetic data and

present experiments to show the system’s ability for detection.
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1.5 Measure of Success

Success in regards to the reported work in this research will be evaluated as follows:

• The research questions set at section 1.3 have to be answered.

• A study presenting how our proposed architecture can be applied in VANET,

in order to detect the abnormal behaviours exhibited by drivers has to be

conducted.

• An analysis of why DBN was chosen from among other reasoning techniques,

and a determination of the advantages of this technique must be performed.

• A study showing how our proposed driver behaviour detection model is differ-

ent from others has to be carried out.

1.6 Thesis Contributions

The main contributions of the work reported in this thesis can be illustrated as

follows:

• On Board Unit Architecture for driver behaviour detection: An On

Board Unit architecture for detecting the behaviour of the driver in VANET

has been presented. The architecture collects information about the driver

(i.e. eyes movements), the vehicle (i.e. vehicle’s speed) and the environment

(i.e. temperature). The architecture has been designed based on aspects of a

context-aware system.

• DBN driver behaviour detection model: A novel DBN model for deduc-

ing the behaviour of the driver during driving has been introduced, this model

takes into account the static and the temporal aspects of the behaviour and is
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able to detect four styles of driver behaviour, which are: normal, drunk, reck-

less and fatigue behaviour. The model combines information from different

sources in order to detect the behaviour of the driver accurately. In addition

to current sensors readings, the state of the driver in the previous time instant

is taken into consideration when inferring the current state in order to model

the evolving system (driver’s behaviour). Network parameters were chosen

manually, following a critical analysis of a large number of reports published

by the UK department for transport and other transportation organizations,

as well as a set of published papers with similarities to the system.

• The system introduced in this thesis is the first driver behaviour detection

system that deduces four styles of driver behaviour (normal, drunk, reckless

and fatigue) by taking into account information about the driver, the vehicle

and the environment, performing reasoning over time and under uncertainty.

1.7 Thesis Outlines

This section describes the outline of the remaining chapters of this thesis:

Chapter 2: Literature Review

At first, this chapter presents an overview of VANET; explaining its architecture,

its communication domains and the types of applications provided by VANET. This

chapter then describes the context-aware system by defining context, how to cap-

ture context, what a context-aware system is, how to model context and how to

perform reasoning regarding uncertain context using diverse methods. After this,

it provides justification for the reasoning method used in this thesis. Finally, it

presents a critical review for the main work that has been carried out in the field

of driver behaviour monitoring and detection to show their weaknesses and how the
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proposed system will differ from previous work.

Chapter 3: Fundamental Principles of Bayesian Networks

This chapter is divided into three parts. The first part introduces an overview of

the behaviour of the driver, how normal and abnormal behaviour are defined in this

thesis from the perspective of a context-aware system. It also describes the assump-

tions made when designing a new driver behaviour detection system. The second

part of this chapter presents an overview of the reasoning method (DBN) that has

been used to combine information from several sensors and to infer the behaviour

of the driver. The last part demonstrates the main existing software that supports

the implementation of a DBNs with the main reasons for choosing the GeNIe as an

implementation tool in this thesis.

Chapter 4: On Board Unit Architecture Based on Context-aware Sys-

tem

This chapter describes the mechanism for detecting the behaviour of the driver in

VANET. Moreover, it presents On Board Unit architecture for driver behaviour de-

tection, which was designed based on the aspects of the context aware system and

divided into three phases based on the context-aware system. The three phases

are described in detail to show the functions and components of each phase in the

architecture and how these components interact with each other to deduce driver’s

behaviour efficiently.

Chapter 5: A Dynamic Bayesian Network Model for Driver’s Be-

haviour Detection

Using DBN, this chapter introduces the design and development of the new driver

behaviour detection model. It includes a detailed description of each step when
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designing the proposed behaviour detection model starting from choosing network

variables ending with inferring the hypothesis node.

Chapter 6: Evaluation and Experiments

This chapter illustrates the validity of the proposed system using synthetic data.

It explains how the system is able to detect four styles of driver’s behaviour (fa-

tigue, drunk, reckless and normal behaviour) applying all possible combinations of

evidence. Furthermore, it presents experiments with different scenarios in order to

show the ability of the proposed system to detect the above mentioned styles of

behaviour during driving.

Chapter 7: Conclusion and Future Work

This chapter demonstrates a summary of the work presented throughout the thesis.

It then draws some conclusions and provides suggestions for future work.
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Literature Review

Objectives:

• Present an overview of VANET

• Present literature on context, context-aware systems, context modelling and

reasoning

• Justify the use of DBN

• Investigate existing driver behaviour monitoring and detection systems
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2.1 Overview of MANET

Mobile ad hoc networks (MANET) composed of self-organised nodes communicates

with each other without the need for a pre-established infrastructure. The main

principle of an ad hoc networking is that it relies on multi-hop communication,

whereby each node can act as an end user or as a router simultaneously [30]. MANET

has become widespread and successful in the marketplace of wireless technology for

the future, as is evidenced by the increasing use of Wireless Local Area Networks

(WLANs) and Bluetooth technologies.

2.2 VANET Overview

Vehicle ad hoc Networks (VANET) is classified as an application of mobile ad hoc

networks (MANET) [31]. It provides a wireless communication between moving ve-

hicles, using a dedicated short range communication (DSRC). DSRC is essentially

IEEE 802.11a amended for low overhead operation to 802.11p; the IEEE then stan-

dardises the whole communication stack by the 1609 family of standards referring to

wireless access in vehicular environments (WAVE). A vehicle can communicate with

other vehicles directly forming vehicle to vehicle (V2V) communication or communi-

cate with a fixed equipment next to the road , referred to as Road Side Unit (RSU)

forming vehicle to infrastructure (V2I) communication. Each vehicle is equipped

with a wireless interface known as an On Board Unit (OBU), to allow it to commu-

nicate with other vehicles or with the RSU. These types of communications allow

vehicles to share information collected pertaining to safety issues; for the purpose

of accident prevention, post-accident investigation or traffic jams. The intention be-

hind distributing and sharing this information is to provide a safety message to warn

drivers about expected hazards in order to decrease the number of accidents and
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save people’s lives, or share other traveller related information (non-safety messages)

[1, 32, 33, 3].

2.2.1 VANET Architecture

The communication between vehicles, or between a vehicle and an RSU is achieved

through a wireless medium called WAVE. This method of communication provides a

wide range of information to drivers and travellers and enables safety applications to

enhance road safety and provide comfortable driving. The main system components

are the Application Unit (AU), OBU and RSU. Typically the RSU hosts an appli-

cation that provides services and the OBU is a peer device that uses the services

provided. The application may reside in the RSU or in the OBU; the device that

hosts the application is called the provider and the device using the application is

described as the user. Each vehicle is equipped with an OBU and a set of sensors to

collect and process the information then send it on as a message to other vehicles or

RSUs through the wireless medium; it also carries a single or multiple AU that use

the applications provided by the provider using OBU connection capabilities. The

RSU can also connect to the Internet or to another server which allows AU’s from

multiple vehicles to connect to the Internet [34, 35, 1, 17].

2.2.1.1 On board Unit (OBU)

An OBU is a WAVE device usually mounted on-board a vehicle used for exchanging

information with RSUs or with other OBUs. It consists of a Resource Command

Processor (RCP), and resources include a read/write memory used to store and re-

trieve information, a user interface, a specialised interface to connect to other OBUs

and a network device for short range wireless communication based on IEEE 802.11p

radio technology. It may additionally include another network device for non-safety

applications based on other radio technologies such as IEEE 802.11a/b/g/n. The
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OBU connects to the RSU or to other OBUs through a wireless link based on the

IEEE 802.11p radio frequency channel, and is responsible for the communications

with other OBUs or with RSUs; it also provides a communication services to the

AU and forwards data on behalf of other OBUs on the network. The main functions

of the OBU are wireless radio access, ad hoc and geographical routing, network con-

gestion control, reliable message transfer, data security and IP mobility [34, 35, 1].

2.2.1.2 Application unit (AU)

The AU is the device equipped within the vehicle that uses the applications provided

by the provider using the communication capabilities of the OBU. The AU can be a

dedicated device for safety applications or a normal device such as a Personal Digital

Assistant (PDA) to run the Internet, the AU can be connected to the OBU through

a wired or wireless connection and may reside with the OBU in a single physical

unit; the distinction between the AU and the OBU is logical. The AU communicates

with the network solely via the OBU which takes responsibility for all mobility and

networking functions [34, 1].

2.2.1.3 Roadside Unit (RSU)

The RSU is a WAVE device usually fixed along the road side or in dedicated lo-

cations, such as at junctions or near parking spaces. The RSU is a computer that

have sufficient processor and storage capability to run a gateway application and to

run additional safety software. It is equipped with one network device for a dedi-

cated short range communication based on IEEE 802.11p radio technology and an

antenna, it can also be equipped with other network devices so as to be used for

the purpose of communication within the infrastructural network. The RSU per-

forms three main functions which are extending the communication range of the ad

hoc network by re-distributing the information to other OBUs and by sending the
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information to other RSUs in order to forward it to other OBUs, Running safety

applications such as a low bridge warning and Providing Internet connectivity to

OBUs [34, 1].

2.2.2 VANET Communication Domains

As shown in Figure 2.1, the communication between vehicles and the RSU and the

infrastructure form three types of domains [17]:

Figure 2.1: Communication domains in VANET [1]

1. In-vehicle domain: This domain consists of an OBU and one or multiple

AUs. The connection could be wired or wireless using wireless universal serial

bus (WUSB) or ultra-wideband (UWB); an OBU and an AU can reside in a
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single device. The OBU provides a communication link to the AU in order

to execute one or more of a set of applications provided by the application

provider using the communication capabilities of the OBU [1, 34, 36].

2. Ad hoc domain: The ad hoc domain on VANET is composed of vehicles

equipped with OBUs and a station along the road side, the RSU. According

to [1, 34, 37, 36], two types of communications are available in the ad hoc

domain:

• As a component and concrete application of an ITS inter vehicle com-

munication gained attention from researchers, academics and industry

leaders, especially in the United States, Europe and Japan. Owing to

its ability to improve road traffic safety, driving efficiency and to extend

on board device horizons [38], vehicles communicate with other vehicles

through OBUs forming an ad hoc network, which allows communication

between vehicles in a fully distributed manner with decentralised coordi-

nation. Vehicle communicate with another vehicle directly if there is a

direct wireless connection available between them, forming a single hop

V2V communication; when there is no direct connection between them

a dedicated routing protocol is used to forward data from one vehicle to

another until it reaches the destination point, forming multi-hop V2V

communication.

• Vehicle communicate with an RSU in order to increase the range of com-

munication by sending, receiving and forwarding data from one node to

another or to benefit from the ability of the RSU to process special ap-

plications forming V2I communication.
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3. Infrastructural domain: The RSU can connect to the infrastructural net-

works or to the Internet, allowing the OBU to access the infrastructure net-

work; in this case it is possible that the AUs are registered with the OBU to

connect to any internet based host. OBU can also communicate with other

hosts for non-safety applications, using the communication of cellular radio

networks (GSM, GPRS, UMTS, HSDPA, WiMax and 4G) [1, 34, 36].

2.2.3 Wireless access technology in VANET

There are numerous wireless access technologies available today, which can be used

to provide the radio interface required by the vehicles in order to communicate

with each other, V2V communication, or to communicate with the RSUs, V2I com-

munication. These communication technologies intended to improve road safety,

traffic efficiency and to provide driver and passenger comfort by enabling a set

of safety and non-safety applications. The main technologies are Cellular systems

(2/2.5/2.75/3G), Wireless Local Area Network (WLAN) or Wireless Fidelity (Wi-

Fi), Mobile - WiMAX or IEEE 802.16e, Combined wireless access technologies

such as Continuous Air interface for Long and Medium range (CALM M5) and

the DSRC/WAVE technology which is allocated to be used specifically for VANET

safety applications as illustrated bellow.

DSRC is a 75MHz licensed spectrum at a 5.9GHz band allocated by the US Federal

Communications Commission (US FCC) in 1999, to be used solely for vehicle to ve-

hicle and vehicle to infrastructure communication in the United States. In Europe

and Japan the spectrum is allocated at 5.8 GHz [39]. DSRC radio technology is

based on IEEE 802.11p, which originated from IEEE 802.11a and was amended for

low overhead operation in the DSRC spectrum [33, 2, 32].
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As shown in Figure 2.2, the 75MHz spectrum is divided into seven channels

starting from channel number 172 ending with channel number 184; the capacity

of each channel is 10MHz. Channel 178 is the control channel (CCH), which is

used exclusively for safety communications; channels 172 and 184 are reserved for

safety applications, while the other service channels (SCH) have for both safety and

non-safety uses.

Figure 2.2: 75MHz DSRC spectrum [2]

The whole DSRC protocol stack including IEEE 802.11p (MAC and PHY lay-

ers) standardized by the IEEE 1609 working group and called Wireless Access in a

Vehicular Environment (WAVE) [33, 2, 32]. DSRC/WAVE support an environment

in which vehicles can be moving at speeds of up to 200Kmph, covering a commu-

nication range of 300m and reaching up to 1000m with a data rate of more than

27Mbps [40, 39].

2.2.4 VANET Applications

V2V and V2I communications allow the development of a large number of applica-

tions and can provide a wide range of information to drivers and travellers. Inte-

grating on-board devices with the network interface, different types of sensors and

Global Position System (GPS) receivers, grant vehicles the ability to collect, process

and disseminate information about itself and its environment to other vehicles in

close proximity to it. That has led to enhancement of road safety and the provision
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of passenger comfort [40, 41, 39]. As shown in Figure 2.3, VANET applications are

classified according to their primary purpose into [17]:

Figure 2.3: VANET applications
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• Comfort/Entertainment applications: This category of applications is

also referred to as non-safety applications, and aim to improve drivers and

passengers comfort levels (make the journey more pleasant) and enhance traffic

efficiency. They can provide drivers or passengers with weather and traffic

information and detail the location of the nearest restaurant, petrol station or

hotel and their prices. Passengers can play online games, access the internet

and send or receive instant messages while the vehicle is connected to the

infrastructure network.[40, 41, 32, 39].

• Safety applications: These applications use the wireless communication be-

tween vehicles or between vehicles and infrastructure, in order to improve

road safety and avoid accidents; the intention being to save people’s lives and

provide a clean environment. Appendix A provides a detailed description of

VANET safety applications.

Figure 2.4, depicts an example of VANET safety application using the DSRC/WAVE

access technology. Where, the vehicle at the curve can disseminate a message to

warn the vehicles approaching the blind spot about a traffic jam using vehicle to

vehicle or vehicle to infrastructure communications, to prevent them from colliding

with the traffic jam.

Figure 2.4: Avoid road accidents by using (V2V) and (V2I) communications [3]
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Safety applications use the DSRC as a basis for wireless communication, DSRC

supports V2V and V2I communications and operation at 5.9GHz in the United

States, and at 5.8GHz in both Europe and Japan [38]. Some of the safety applica-

tions depend on V2V to exchange messages while other require V2I. Safety appli-

cations have as an essential requirement the ability to gather information through

a vehicle’s sensors, from other vehicles or both, in order to process and dissemi-

nate information in the form of safety messages to other vehicles or infrastructures

depending on the application and its functions. Applying wireless communication

technology in vehicles in order to communicate with other vehicles, or with the in-

frastructure, enables a wide range of applications and leads to an increase in the

road safety level. According to [16], safety applications using V2V communication

or V2I communication, or both can be categorised as fellows:

1. Intersection collision avoidance.

2. Public safety.

3. Sign Extension.

4. Vehicle diagnostics and maintenance.

5. Information from other vehicles.

The goal of this work is to design a VANET safety application utilising a context-

aware system approach. The application has the potential to enhance road safety

and traffic efficiency, and to save people’s lives, by detecting abnormal behaviours

exhibited by the driver and issuing warning messages in order to prevent accidents

from happening.
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2.3 Context-aware systems overview

2.3.1 Context

Many researchers have tried to define ’context’; the word context itself is originally

derived from the Latin con (with or together) and texere (to weave), suggesting

context is an active process describing how humans give meaning to their whole

environment by weaving their experience into it [42].

The first definition of context introduced by [43], they referred to it as location

and the group of people and objects all over the place. In [44], context is defined as

location, weather, time and users’ identities. While [45] referred to it as users’ emo-

tional state (attention, location, objects, date, time and the people around the user).

Context can be defined using synonyms (user/application’s situation or environ-

ment). In [46], context is described as the information that the computer recognises

about its user environment. According to [47], context is the aspects of the current

situation. Salber [48] also defined a context as the information that can be sensed

by the application, about the user or the application’s environment

According to [49], the definition of context in the free on-line dictionary, it is

that: which surrounds, and gives meaning to something else. The authors in [50]

stated that, the important aspects of context are: where you are, who you are with

and what resources are available. Dey et al [45] described context as the physical,

social or informational state of the user.
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The most accurate and clear definition for the word context among all the def-

initions aforementioned above is given by [51], by defining it as: ” context is any

information that can be used to characterize the situation of an entity. An entity is

a person, or object that is considered relevant to the interaction between a user and

application, including the user and applications themselves”.

2.3.2 Context categories

Categorising context types helps the designers of the systems to determine what

type of context will be most appropriate for their applications. To this end context

can be categorised into four categories as follows:

• Identity: Person name.

• time: 3:00pm, day of the week, time zone and season of the year.

• location: Information about the location of the entity

• and activity: What is accruing in the situation

The aforementioned categories can be considered as a primary context types,

and acts as a source for secondary types of context. For example when we know

person’s identity we can acquire information related that person such as his/her

phone number, email address, birth date and address. Also by determining the

location of an entity we can reach a conclusion about what other objects or persons

in its local environment and what activities are occurring in close proximity to that

entity [51].

2.3.3 Context Attributes

According to [52], a single context atom can be described as having a known set of

attributes, the most observable two are:
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• Context type: Denoting the categories associated with the context, such as

temperature, time, speed etc..

• Context value: Meaning the raw data gathered by the sensors, such as miles

per hour.

These two attributes mentioned are nevertheless inadequate when seeking to

build a context-aware system. Other attributes should be captured such as:

• Time stamp: Containing the date and time of when the context was sensed.

• Source: Containing information about how the context was gathered (i.e. the

ID of the physical sensor).

• Confidence: Describing the accuracy level of the contextual information gath-

ered; some data sources (sensors) might provide in-accurate data (i.e. location

data).

2.3.4 Context sensing

Capture of contextual data is done using sensors; the word sensor refers to any source

of data that can provide valuable contextual information not only to the hardware

sensor[4]. According to [53], sensors can be categorised as follows:

1. Physical sensors: The hardware sensors are the generally used types of

sensors, that can capture any physical data related to an entity. [54, 55] list

different types of physical sensors as given below:

• Light sensor: A single optical sensors such as a photodiode, IR, or colour

sensor provides information about light density, reflection and concentra-

tion as well as the type of the light.
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• Camera: By applying a camera’s sensors, a wide range of information

about the visual environment can be acquired; for instance object recog-

nition.

• Audio sensors: Microphones can supply a remarkable information such as

noise level and type of the voice (e.g. speaking, music), and can provide

speech recognition by performing high level processing.

• Accelerometers: By applying this kind of sensing applications will be able

to acquire information about an object’s acceleration and movement.

• Location sensors: These kinds of sensors provide information about the

location of an entity, GPS and GSM can be used to provide an outdoor

location while indoor location can be captured by a system such as Active

Badge.

• Touch sensors: These are considered to be energy savers which operate

only when touched by the user, leading to reduced energy consumption.

• Temperature sensors: These provide information about the weather or

body heat, and are cheap and easy to use.

• Air pressure sensors: Provide information about altitude and pressure

that can indicate for example the door is closed.

• Motion detector (movement sensors): These activate only when there are

moving objects in their environment.

• Magnetic field: By applying this type of sensor a system can acquire

information about the device’s direction and movement.

• Biosensor: These provide valuable information pertaining to skin resis-

tance and blood pressure.

• Mechanical force sensors: These can acquire a useful information about

an object’s weight, the state of the user when sitting on the chair and
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the force of the human hand on that object (e.g. the force of the driver’s

hand on the steering wheel).

• Proximity sensors: Similar to the movement sensors, they activate only

when there is an object in their vicinity, in order to operate those applica-

tions that are in sleep mode; whereas no objects appear in the immediate

environment.

• Humidity: By applying these sensors the air humidity can be measured,

thus provide valuable information about the environment.

Several types of physical sensors can be used to capture contextual information

in context-aware systems. Beigl et al [55] mentioned that the most commonly

used types of sensors in ubiquitous and pervasive computing are as shown in

Table 2.1:

Sensor type Usage percentage

Object Movement 31%
Light 18%
Force 15%
Temperature 12%
Audio 12%
Humidity 6%
Proximity 6%

Table 2.1: Types of sensors used by pervasive computing

2. Virtual sensors: This category of sensors obtain contextual data via soft-

ware applications. The system can determine the user’s location by browsing

emails, examining a travel-booking system or by discovering the location of

the computer that the user is currently using.

3. Logical sensors: This category of sensors acquire information by combining

data from two sources (physical and virtual sensors) in order to solve compli-

cated problems; for example the exact location of a user in a company can
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be determined by combining data from physical sensors (GPS) and from the

location of the computer that he/she is currently using (virtual sensors).

Gathering contextual information is the basic level of any context-aware ap-

plication. The way context-aware systems acquire contextual data can be

categorised according to [4] as follows:

• Direct sensor access: In this approach the sensors built into the de-

vices, the software, can directly acquire information from the sensors

without any processing within the other layers, this method of sensing

data is unsuitable for applications because it does not allow concurrent

sensor accesses.

• Middle-ware infrastructure: This approach uses a method of encap-

sulation involving hiding low-level sensing details, thus introducing a lay-

ered architecture to a context-aware system; this approach eases the re

usability of hardware sensors and allows concurrent sensor accesses.

• Context server: In this approach multiple users have the permission to

access a remote data source. The context server is a remote component

responsible for gathering the contextual information and managing user’s

access to this information remotely.

2.3.5 Context-aware Systems (CAS)

Context-aware systems are those systems that are capable of adapting their op-

erations to the current context without user interaction, and are thus aimed at

augmenting usability and effectiveness by taking into account the environment’s

contextual information [4]. In 1994 [43] first defined context-aware computing as

the software that behave according to the information in its environment such as

(location and the group of people and object all over the place). In [56], the author
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referred to context-aware systems as those systems that are able to extract (sense),

interpret and respond to the current context. Dey [57] also defined context-aware

systems as those systems that use contextual information in the environment to

provide information and/or services to the user regarding their task.

The way a context-aware system provides information and services to users can

be classified into three categories according to [48, 51]:

• Presenting information and services to users: Providing information to

users or suggesting a selection of actions in order to perform services, GUIDE

[58] is an application that use this way to provide services to users.

• Automatically executing the service: Applications on behalf of user take

an action or reconfigure a system based on the current context, Teleport [59]

is an application that automatically executes services.

• Attaching context information for later retrieval: This describes ap-

plications that tag captured data with relevant context information, Class-

room2000 [60] is an application that uses tagging to provide services to users.

2.3.6 Context-aware system architecture

As mentioned above, context-aware systems provides information and services to

users depending on the environmental contextual information. Context-aware sys-

tems incorporate three main subsystems [49]:

• Sensing subsystem: Which is the phase for gathering contextual information

by sensors.
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• Reasoning (Thinking) subsystem: It is the phase for employing reason-

ing techniques to the contextual data in order to get high level contextual

information (e.g. user situation).

• Acting subsystem: Depending on the current situation, the systems provide

services to users.

Several system architectures have been suggested in order to ease the imple-

mentation and development of context-aware systems, as shown in Figure 2.5, a

conceptual layered architecture has been proposed by [9].

Figure 2.5: The five-layered context-aware systems Architecture [4]

The first layer (Sensors layer), consists of different types of sensors, such as

physical, logical and virtual sensors. The second layer (Raw data retrieval layer) is

responsible for retrieving the raw data. The third layer (Preproocessing layer) is not

applied in every context-aware system [4], and when incorporated it is responsible

for processing the data gathered by the sensors in order to get high level data that

is meaningful and useful. The fourth layer (Storage/ Management layer) is respon-

sible for storing and organising the data from the previous layer. Performing actual

actions depending on different events and situations is implemented in the fifth layer

(Application layer).
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A middleware architecture has been proposed by a Context-awareness Sub-

Structure project (CASS) [5], that supports the development of context-aware sys-

tems. The architecture of CASS as illustrated in Figure 2.6, is based on middleware

that contains an interpreter, Contextretriever, Rule Engine and Sensorlistener. The

sensorlistener stores the data gathered by the distributed sensors (Sensor nodes) in

a database, retrieving stored context data accomplished by the contextretriever. An

interpreter may support both the contextretriever and sensorlistenor, and a mobile

computer notified about the changes in a context via Changelistener, sensors and

the Locationfinder has built in communication capabilities.

Figure 2.6: The context-awareness sub-system architecture [5]

Another architecture intended for supporting the development of context-aware

mobile applications was introduced by [6], in the Service-Oriented Context-Aware

Middleware project (SOCAM). As shown in Figure 2.7, SOCAM architecture con-

sists of the following entities: context provider, context interpreter, service locating
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service, context database and context-aware mobile services. The central server

(context interpreter) acquires the context data via the context provider and the

database and provides this information to the clients.

Figure 2.7: The service-oriented context-aware middleware architecture [6]

In [7], a Context Broker Architecture (CoBrA) has been proposed, which is an

agent based architecture that supports the development of context-aware system in

alleged intelligent space. As depicted in Figure 2.8, CoBrA architecture is composed

of four components: context knowledge base, context reasoning engine, context

acquisition module and privacy management module. The intelligent context broker

is responsible for managing and maintaining the context model for a particular

domain.
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Figure 2.8: The context broker architecture [7]

The sentient object architecture, proposed by [8] was based on a Sentient Object

Model. This architecture was designed to support the development of context-

aware applications in an ad-hoc environment. As shown in Figure 2.9, the sentient

object comprised three main components: sensory capture, context hierarchy and

Inference engine. The sentient object can be both producer or consumer of other

sentient objects, while it can communicate with the producers of events (sensors) or

the consumers of events (actuators).

Figure 2.9: The sentient object architecture [8]
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Context Toolkit is another architecture that has been suggested by [9] in order

to ease the development of context-aware systems; the architecture as illustrated

in Figure 2.10, consists of six main components: Sensors, Widgets, Interpreters,

Aggregator and the Discoverer which is responsible for maintaining a register of

available components for use by applications.

Figure 2.10: The context toolkit architecture [9]

The hydrogen project [10] proposed another architecture specialised for mobile

devices and based on a five-layered conceptual model; the architecture contains

three layers as depicted in Figure 2.11. The adapter layer which is responsible for

retrieving context data; the management layer(the context server) responsible for

offering contextual data obtained from the adapter layer to applications; and the

application layer, which is responsible for implementing the appliance code.
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Figure 2.11: The hydrogen project architecture [10]

As described above, several context-aware systems architectures have been de-

veloped in different manners, in order to meet specific requirements. Some of them

were aimed at constructing secure context-aware systems, while others sought to

adapt the systems’ behaviour according to their environment. Reviewing the above

architectures revealed their similarity regarding the layers they incorporated (i.e.

sensing layer and reasoning layer). However, they have several limitations such as:

low performance processors, low storage capacities, a limited number of integrated

sensors and an inability to reason under uncertainty (driver’s behaviour), as no ar-

chitecture from the above incorporated a mechanism for uncertainty reasoning (i.e.

dynamic Bayesian network). Moreover, no architecture has been designed for the

vehicle’s OBU, which makes it impossible to use one of these in our system. Thus,

it is essential to design a new OBU architecture for the purpose of detecting the be-

haviour of the driver in VANET, as the available architectures do not satisfy system

requirements. Different kinds of sensors have to be integrated in order to capture

information about the driver, the vehicle and the environment. In addition, uncer-

tainty reasoning technique has to be incorporated in order to combine the collected

data and deduce driver’s behaviour accurately. The proposed architecture, which is

designed to achieve these tasks is described in chapter 4.
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2.3.7 Context Modelling and Reasoning

A context model is required to define and store the data gathered by sensors (con-

text) in machine executable form, context modelling approaches can be summarised

according to [52] into:

• Key-Value models: This approach is the simplest form involved in modelling

a context, using a simple pair (key-value) to define the attribute and its value

such as: location-in room 35, name-claudia, time-12:00 p.m.; key-value pairs

are easy to manage and frequently used but lack the potential for advanced

structuring in the form of an efficient context retrieval algorithm.

• Markup schemes models: A markup scheme is a hierarchical data struc-

ture that contains markup tags with attributes and contents. The content of

markup tags are recursively defined by other markup tags.

• Graphical models: The Unified Modelling Language (UML) has a powerful

graphical component, and is considered as a general purpose modelling tool.

Owing to its generic structure it is suitable for modelling the context. This

type of modelling approach is appropriate for sourcing an Entity Relationship

model ER-model, which is a very valuable as a structuring tool for a relational

database in system based context management architecture.

• Object oriented models: Using this approach to model a context offered

to provide the reusability and encapsulation to tackle the problem of context

dynamism. This approach encapsulates the details of context processing, and

accessing contextual information is done via identified interfaces only.

• Logical based models: Logical based models define their context as fact,

expression and rules. In logic concluding expressions are derived from a set of

36



CHAPTER 2. LITERATURE REVIEW

other expressions and across all logic based models there is a high degree of

formality.

• Ontology based models: Ontologies are powerful tools that can be used

to identify concepts and interrelations. Due to their high expressiveness and

the possibilities they are suitable for modelling a context. Context Broker

Architecture (CoBrA) system [7], is a superior example of an ontology being

used to model a context, the system provides a set of concepts to characterise

entities such as (places and persons).

Context data can be used directly by application (i.g. raw coordinates supplied

by the location sensor), while it can be raw data which is the data that has to be

processed prior to be used by application (i.g. identity of the building the user is

in) [61]. To model a context several requirements have to be taken into account in

the context model, these requirements according to [62] are as follows:

• Heterogeneity: Context models have to work with different types of sensors.

• Relationships and dependencies: Context models have to be able to capture

the relationships between the contextual information.

• Timeliness: Context histories have to be captured by the context model.

• Imperfection: Owing to the heterogeneous nature of the context, data acquired

by sensors can be inaccurate; context models have to resolve this problem.

• Reasoning: Context models have to support reasoning techniques that are able

to:

– Perform reasoning about certain contextual information, which is the

information that can be acquired directly from the sensors (e.g. entity

location).
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– Drive high level contextual information (uncertain contextual informa-

tion), such as user’s activity.

• Usability: Interpretation of the world concepts to modelling constructs and

the manipulation of context data must be done in a straightforward way by

the context model.

• Efficient context provisioning: The context model must provide efficient access

to contextual information.

The aforementioned context models do not support reasoning about uncertain

contextual information [63]; they are only able to define and store some types of con-

textual data which is the certain contextual information, such as the temperature of

the room, light, weight, etc. due to their reasoning limitations (i.g ontology based

model) [62, 64] or their inability to provide reasoning mechanism (i.g. graphical

model) [65].

High-level contextual information such as the activity of a person (e.g. the per-

son is sleeping, the driver is driving his/her vehicle normally) cannot be captured

directly by sensors and may be incomplete and inexact information (e.g. the system

cannot judge that the driver is driving his/her vehicle without being drowsy, affected

by fatigue or alcohol by only accessing simple information about the vehicle such as

steering angle, vehicle speed or vehicle direction) [66, 67, 68, 69]. For these reasons

this contextual information is prone to uncertainty [63, 70, 64].

Reasoning about uncertainty on the one hand, leads to improvements in the

quality of contextual information by performing information fusion to the sensed

information that refer to the same context in order to resolve the conflict and in-

crease the level of confidence. On the other hand, deducing high level contextual
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information by combining the low-level data that have sensed by different sensors.

Several types of reasoning techniques have been used to reason about uncertainty

such as [71, 62, 63, 72, 73]:

• Fuzzy Logic: As a form of data processing, Fuzzy Logic is employed by

advanced electronic computer systems. In less complex information processors,

the possibility that a particular event will occur is expressed as a certainty

(either false or true) and it is represented by the binary digits 0 or 1. Fuzzy

Logic systems, in contrast, one of its aims is the development of a methodology

for the formulation and solution of problems that are too complex or too-

ill defined to be analysed by conventional technique. Hence, it will breaks

down the chance of the occurrence into varying degrees of truthfulness or

falsehood (e.g. will occur, probably will occur, might occur, might not occur).

It is suitable for performing multi-sensor fusion and demonstrating subjective

context as well as for resolving conflicts between different context types. Two

or more fuzzy sets can be combined to acquire a new fuzzy set, with its own

individual membership function. The problem with fuzzy logic is its inability

to deal with inaccurate and incomplete data [74].

• Probabilistic Logic: This tool permits making a logical assertion that is

associated with a probability. It allows to make statements such as ” The

probability of C is more than 1/2” and ” The probability of A is at least triple

the probability of B” where C, A and B are random variables. Moreover, the

probabilistic logic provide the ability to write rules in order to reason about

the probabilities of an events in term of the probabilities of other events. These

rules can be used to deduce high-level probabilistic contextual information and

to improve the quality of contextual information. A prolog engine can be used

to reason on these rules [75]. However, it does not provide adequate expressive
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power to capture the uncertainties and dependencies between variables, and

to model the temporal aspects of the domain [76].

• Neural Networks: They are a network of interconnected constituents known

as neurons, they are designed to mimic the way in which human brain acts

and performs a tasks and functions. Neural networks perform a parallel and

a non-linear computing by using their processing units (neurons) capabilities

and they are sufficient in resolving the problems that needs mapping a large

number of input into small number of outputs [77, 78, 79]. However, there are

major problems with using this method, such as the fact that it is so hard to

decide which network architecture is suitable for this application. The predic-

tion capability of the network is less accurate than other types of reasoning

techniques, such as Bayesian networks [80], and the training of the network is

usually slow [73].

• Hidden Markov Models (HMM) It is a statistical model that represents a

series of states, and the system transition from one state to another according

to a transition probability. The states of the model are hidden and can not be

observed directly, each state produce a set of observations (signals) that can

be captured to observe the state. HMM is a subclass of Dynamic Bayesian

Networks (DBN) [81, 82]. The difference between them is that DBN represent

the hidden state in term of a set of random variables. While, the HMM

represent the hidden state in term of single random variable. Moreover, the

graph structure of DBN is more general comparing with the restricted topology

of HMM [83].
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• Bayesian Networks (BNs): They are directed acyclic graphs where the

nodes represent various random events and arrows represent the relationships

between the nodes (parent nodes and child node). They are efficient in repre-

senting and reasoning about uncertain contextual information and provides a

different kind of reasoning, such as deducing results from causes and vice versa

and they are considered as efficient tools for inferring low level information to

deduce high level context. Bayesian Networks work with evidence and beliefs

that represent a single time slice which means that it is not appropriate for

the systems that are changing over time (the random variables at the current

time are affected only by the variables at this time not by the variables at the

previous time slice) [63, 75, 76, 84, 22].

• Dynamic Bayesian Networks (DBNs): They are considered as a set of

Static Bayesian Networks interconnected by sequential time slices. The re-

lationships between two adjacent time slices can be modelled by a Hidden

Markov Model. DBNs are a general form of HMM, in which the particular

state is characterised by a set of random variables rather than using a single

discrete random variable. They are differ from static BNs in that they use the

previous time slice with corresponding sensors readings at the current time to

characterise the current state (the random variables at time slice t with the

state at time t-1 ) [24, 22, 85, 82].

Drivers’ behaviour is considered as a high-level context, so data from different

kinds of sensors has to be combined (inferred) in order to characterise this context.

At each time instance, the driver could be exhibiting a specific behaviour, so the sys-

tem has to be able to model the behaviour at different time instances. Furthermore,

uncertainty and randomness are the two main factors that appear while modelling

driver behaviour due to the inaccurate readings of some sensors, and the fact that
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different variables need to be combined. Several methods have been used to combine

the sensory data, each of which has its advantages and disadvantages. In the system

for this research, Dynamic Bayesian Networks were chosen to combine data from

different types of sensors to deduce the behaviour of the driver, for the following

reasons:

• They are able to model time series data by taking into account the static and

temporal aspects of the domain (e.g. modelling dynamic events, which are the

events that evolve over time) [76, 84, 86, 24, 87, 22].

• They provide a framework that is capable of inferring data with different

levels of abstraction (e.g. multiple context from different kinds of sensors)

[76, 22, 88].

• They are considered to be the most reliable method of dealing with inaccurate

data and unobservable physical values [62, 76, 73, 84, 86, 22].

• They are efficient for combining uncertain context from a wide range of sen-

sors in order to deduce high-level contextual information (they reason about

uncertain context) [62, 89, 84, 86].

• They are able to combine prior and current data [76, 73, 90, 84, 86].

• They have efficient algorithms for both inference and learning [89, 84, 86, 88].

• They provide algorithms for network structure learning [91, 89, 84].
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2.4 Driver Behaviour Monitoring and Detection

Systems

Several researchers have worked on the development of driver monitoring and detec-

tion systems using different methods. As shown in Figure 2.12, some have attempted

to measure the driver’s behaviour or that of the vehicle’s in isolation in order to de-

tect fatigued, drunk or drowsy drivers. Meanwhile, other researchers have tried to

monitor the driver, the vehicle and the environment all together in order to de-

tect the behaviour of the driver. Each category will be taken separately and their

advantages and disadvantages discussed below.

Figure 2.12: Driver Behaviour Monitoring and Detection Systems
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2.4.1 Monitoring the driver, the vehicle and the environ-

ment

Sun et al [25] focused on building a context-aware smart car by developing their

hierarchical model which is able to collect, reason about and react, according to

contextual information about the driver, vehicle and environment, in order to pro-

vide safe driving and a comfortable driving environment.

They proposed general architecture for the smart car to collect contextual infor-

mation about the situation with the traffic (e.g. relative velocity), driver situation

(e.g. driver’s gaze) and vehicle situation (e.g. operates normally). The smart car is

able to assess the risk after collecting this information and react upon the current

driving situation. Their context model classified contextual information according

to degree of abstraction and semantics into three layers; which are the sensor layer

(the source for contextual information), the context atom layer (is an abstraction

between the real world and the semantic world) and the situation layer (complex

situational information are deduced here by fusing multiple context atom).

They use the ontology in the context atom layer to interpret and share contextual

information about the environmental context (e.g. weather and road surface con-

ditions), vehicle context (e.g. engine status) and the driver’s context (e.g. driver’s

physiological conditions and blood pressure). While, high level contextual informa-

tion, such as the current state of the car is deduced in the situational layer using

Petri net. Deducing the state of the car includes two parts: an offline training

phase responsible for creating a pattern for each individual situation, and an online

recognition of the situation based on its pattern at the current time.

44



CHAPTER 2. LITERATURE REVIEW

They developed a software platform for the smart car as shown in Figure 2.13,

which consists of four layers:

Figure 2.13: Software platform for the smart car

• Network layer: Responsible for connecting all the devices.

• Broker layer: Which contains the sensors broker responsible for registering and

discovering any new sensors to be added to the model.

• Context infrastructure: The context infrastructure contains three parts: the

context wrapper, is responsible for transforming the data gathered by sen-

sors into semantic context atom; the context reasoner, which is responsible

for situational training and recognition; and context storage, where historical

contextual information is stored.

• Service layer: After recognising the situation a specific service should be trig-

gered by the system, such as slowing down the speed of the car where the

distance to the car in front car is detected as less than the safe limit.

45



CHAPTER 2. LITERATURE REVIEW

However, the state of the driver was treated as an uncertain context in this sys-

tem, and information fusion was carried out in the situation layer, but this did not

take into account the temporal aspects of the behaviour, which is considered to be

an event that evolves over the course of driving. Moreover, this system only capture

information about the driver’s eye movements in order to judge his or her state.

This leads to inaccurate and insufficient detection of the driver’s behaviour.

In [92], the authors designed their system TOlerant context-aware driver assis-

tance system (TOCADAS), intended to reduce the number of accidents and fatalities

by detecting the current driving situation and providing the driver with an appro-

priate service according to the detected situation.

Their contex model is similar to [25] which consist of three layers: a sensor layer,

which is the source of the contextual data, the context atom layer, which is an ab-

straction between the real world and the semantic world, and the situation layer

where the complex situational information is deduced by fusing two or more context

atoms.

In the context atom layer the context model uses ontology to represent the data

about the driving environment that includes static data (e.g. road signs and num-

ber of lanes), dynamic data (e.g. data that describes the motion of the vehicle) and

environmental data (e.g. wind speed and temperature).

Their system uses fuzzy membership functions to map the acquired contextual

information into linguistic variables and constructs a linguistic information system.

Then the association rules mining based on a rough set is used to extract control

rules for the system from a linguistic information system. After detecting the situa-
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tion by employing the temporal context situation pattern, which a way to describe

the behaviour of the vehicle that changing over time. The most appropriate service

for the driver will be triggered according to the current driving situation, based on

the degree of context pattern similarity.

However, this system focuses on providing the best services to the driver accord-

ing to the current driving situation. The driving situation is considered to be an

interaction between the vehicle and the environment only, where only information

such as wheel fraction, brake signal, vehicle acceleration and outside temperature

is captured, without taking into account the context related to the driver, such

as driver eye movements, which can decide the fatigue level of the driver. This

drawback in turn leads to inaccurate and insufficient detection of driver behaviour.

2.4.2 Monitoring the driver or the vehicle

Driver errors is considered as the main factor in most road accidents [18]. Therefore,

many researchers have tried to develop fatigue, drunk or drowsy driver detection sys-

tems. The following is a summary of the main researches in this field.

[26] designed a system that uses a video camera for fatigue detection. A video

camera is used to record the face of the driver, then the video is converted into

frames. After locating the eyes in each frame and determining that the eyes are

closed or opened for a defined period of time the system decides whether the driver

is affected by fatigue or not. If the driver is judged to be affected by fatigue the

system generates a warning signal to the driver.

In [93], the authors proposed a system that can predict the driver’s level of fa-

tigue and trigger a warning to the driver in real time. By acquiring more than one
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visual cue including eyelid movement, gaze movement, head movement and facial

expression and then using a probabilistic model to use the cues acquired to model

driver’s fatigue level.

Their system uses two cameras to extract visual cues from the driver. Their prob-

abilistic model uses a Bayesian network to predict the driver’s level of fatigue by

using previously acquired cues and contextual information that is relevant to the

driver, such as the health and history of sleep.

[94] designed a system to track the driver’s head movements, face and eyes us-

ing Unscented Kalman Filter in order to detect the driver fatigue and control the

vehicle using intelligent vehicle cruise control in an attempt reducing the number of

accidents on road. The system tracks the eyes of the driver and if they are closed

over 5 consecutive frames the cruise control is start-up to reduce the vehicle speed

to be below 5km/h, the intelligent vehicle breaking control is started up to avoid

accidents and the alarm will issue to the driver. The proposed system evaluated in

a vehicle equipped with a camera and computer for extracting the feature and the

accuracy in detecting the fatigue were 99.5%.

Dai et al [27] developed a program that works in a mobile phone and contains

an accelerometer and orientation sensors placed in the vehicle to detect a drunk

driver in real time. The program compares current accelerations with the typical

drunk driving patterns and when the program indicates that the driver is influenced

by alcohol it generates warning messages to alert the driver and send a message to

inform police.

The author categorised the cues related to the drunk drivers as follows:

• Problems in maintaining the lane position: weaving, drifting, swerving, turning
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illegally, turning with wide radius and turning abruptly.

• Problems in controlling speed: accelerating or decelerating unexpectedly, stop-

ping imperfectly and breaking irregularly.

• Judgement and vigilance problems: driving with tyres on lane markers, driving

on the wrong side of the road, driving at night without turning the front lights

on and takeing a long time to respond to traffic lights.

The probability of the driver being influenced by alcohol is 50.75%, when there

is a problem in maintaining lane position; 45.70% if there is a problem in control-

ling speed, and 40% for judgment and vigilance problems. If more than one cue is

observed then the probability of drunk driving is increased.

Their system focuses on cues such as maintaining lane position and speed control

to detect drunk drivers. They map the cues regarding maintaining lane and speed

control into lateral acceleration and longitudinal acceleration respectively. Using

mobile phone sensors provides the capture of acceleration information (lateral and

longitudinal acceleration) and the system processes this information and uses mul-

tiple round pattern matching to improve the accuracy of the system. If the system

detects a drunk driving it will generate an alert message to warn the driver and the

phone will automatically call the police.

[95] have developed a drunk and drowsy driver detection system combining

breath and alcohol sensors in a single device. This device is able to measure the

degree of alertness of the driver and detect the charged water clusters in the driver’s

breath to detect alcohol using breath and alcohol sensors.

49



CHAPTER 2. LITERATURE REVIEW

The system tests the expired gas in the breath, which includes positively or

negatively charged water clusters, by applying an electric field. Then breath and al-

cohol sensors are used to detect the breath and the alcohol in the breath of the driver.

Alcohol sensor is responsible for detecting alcohol in the driver’s breath, while,

detection of the drowsiness is done via a breath sensor when it detects that the

conscious breathing has become unconscious breathing.

Ueno et al [28] developed a non contact system to prevent the drowsiness of a

driver by detecting the eyes of the driver and checking whether they are opened

or closed using a CCD camera. The system is based on capturing the face of the

driver and using image processing techniques to check if the eyes are closed for long

intervals. If the eyes are closed then the driver is drowsy and the system will issue

a warning to the driver.

Garg et al [96] proposed a drowsiness detection and security system based on

image processing and pattern recognition, tracking the eyes of the driver and ex-

tracting the Iris image by using a single camera and a temperature sensor to measure

the heat from the driver’s body. Their system began by capturing the driver’s im-

age and recognising the iris of the eyes. Then engine will start only if the driver is

authentic. Then, the drowsiness system will start by checking if driver’s eyes are

opened or closed and if the heat of the body is normal or reduced. If the system

recognises that the driver is drowsy by discovering the eyes are closed and the heat

of the body is reduced a warning message is triggered and emitted for a 10 second

period. This system also provides an opportunity to call the police via GPS using

the eyes; if the driver opens one eye and closes the other the system will call the

police without revealing other people around the driver.
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In [97], a system for drowsy driver detection in real time driving by collecting

information about the vehicle’s behaviour; such as the speed of the vehicle, the

vehicle’s lateral position, yawing angle, steering wheel angle and the vehicle’s lane

position has been proposed. The system uses artificial neural networks in order to

combine different indications of drowsiness and to predict if a driver is drowsy or

not and issue a warning if required.

The authors in [98], used a 990nm wavelength infra-red light emitting diode and

a proximity sensor fixed on the steering wheel to collect information about human

pulse waves; human pulses are prone to change, especially when sleeping where it

becomes more monotonous than normal. Their system used the photoplethysmo-

grapgy (PPG) to analyse the data gathered by the sensors (the infra-red signals

reflected from driver finger) and to then compare it with a predefined user’s prefer-

ences to judge if the driver is drowsy or not.

The driver behaviour detection systems described above focus on the detection

of the driver’s status (e.g. drunk, affected by fatigue or drowsy) and the issuing

of a warning messages to the driver in order to prevent road accidents. Although

these systems have achieved good results in terms of improving road safety and en-

hancing traffic efficiency, we found that they have a number of drawbacks, such as

being limited to capturing contextual information about the driver or the vehicle

in isolation, without any consideration of the environmental contextual information.

The importance of including information about the driver, the vehicle and the

environment is that this improves the accuracy and efficiency of the detection pro-

cess; for example, capturing only information about the vehicle will fail to detect

a fatigued driver who is driving on a straight road with out changing the vehicle
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behaviour even if his or her eyes are closed and he/she is affected by fatigue. More-

over, these systems are limited to detecting only one type of driving behaviour (i.e.

fatigue), and some of them use intrusive sensing equipment to acquire the context,

and hence reduce the readiness of the driver to use the systems.

There is still no comprehensive and non-intrusive system that is able to monitor

the driver, the vehicle’s state and the environmental changes in order to detect dif-

ferent styles of driving behaviour (e.g. drunk, fatigued, reckless and normal driving)

by performing effective reasoning about uncertain context, and therefore accurately

detecting the current behaviour of the driver and alerting him or her in order to

prevent accidents from occurring.

This study is attempting to construct a comprehensive and non-intrusive driver

behaviour detection system from the view point of context awareness. The system

utilises a context-aware system approach to detect four types of driving behaviour:

drunk, fatigued, reckless and normal behaviour, by performing reasoning about cer-

tain and uncertain contextual information. Most of the context that can be used

to characterise the behaviour of the driver, including information about the driver,

the vehicle and the environment, will be collected and analysed. A probabilistic

reasoning technique (uncertainty reasoning), which is based on Dynamic Bayesian

Networks, will play an important role in deducing high-level context (the behaviour

of the driver), thus providing a flexible yet more accurate proactive driver behaviour

detection system.
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2.5 Summary

This chapter has presented an overview of VANET, context and context-aware sys-

tems, with an explanation of the main techniques that have been used to model and

reason about certain and uncertain context, including the reasons behind opting

DBN as the reasoning technique in this thesis.

A broad classification was then presented in order to illustrate the work that has

been carried out in the field of driver behaviour monitoring and detection systems.

This was discussed in order to explain the main idea and the mechanism of each

system, with an illustration of the main drawbacks associated with them. Finally,

the main differences between this work and previous work were explained.

These systems have tried to detect one type of driver behaviour (i.e. drunk),

without taking into consideration all the factors that are related to this behaviour,

which has the impact of reducing the accuracy and efficiency of the detection.

The next chapter (Chapter 3) will talk about the behaviour of the driver and

the Dynamic Bayesian Network, which is the reasoning technique used in the work

for this thesis.
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Chapter 3

Fundamental Principles of

Bayesian Networks

Objectives:

• Define the aim of the driver behaviour detection system

• Present an overview and definition of driver behaviour

• Describe the features and characteristics of Bayesian networks and dynamic

Bayesian networks

• Illustrate the currently available software which supports the implementation

of dynamic Bayesian networks

• Justify the use of GeNIe version 2.0 software
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3.1 Introduction

The key concept that has been introduced in this thesis is the detection of the abnor-

mal behaviour of the drivers in VANET, utilising a context-aware system approach,

by capturing information about the driver, the vehicle and the environment, then

performing reasoning about uncertain contextual information, so as to alert the

driver and prevent accidents from taking place. Most of the proposed driver be-

haviour detection systems have tried to detect the status of the driver (e.g. drunk

or fatigued) by capturing information related to the driver and the vehicle or the

driver and the environment by performing diverse reasoning methods. However, the

behaviour of the driver is a process that evolves over time, and this is considered to

be a complex interaction between the driver, the vehicle and the environment, which

means that considering the behaviour of the driver as a certain context, or captur-

ing information about the driver or the vehicle in isolation, will lead to inaccurate

and insufficient behaviour detection. Furthermore, there is still no comprehensive

system that is able to detect different kinds of abnormal driving behaviour.

In order to overcome these drawbacks, a novel driver behaviour detection tech-

nique has been developed in this thesis. This technique takes into consideration the

behaviour of the driver as an uncertain context, and allows the behaviour detec-

tion process to capture the static and temporal aspects related to the behaviour by

performing reasoning under uncertainty (probabilistic inference), using DBN as the

reasoning technique. The system is able to detect four styles of driving behaviour

(i.e. drunk, fatigued, reckless and normal behaviour). The context used to infer the

behaviour of the driver includes a combination of driver-related context (i.e. driver’s

eyes movements and level of alcohol in the driver’s blood), vehicle-related context

(i.e. position in lane, vehicle speed and acceleration) and environmental context
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(i.e. time, time zone, temperature and noise), which will lead to more accurate and

robust behaviour detection.

Based on the proposed technique, a novel OBU driver behaviour detection ar-

chitecture has been developed; this architecture has been designed and developed

based on the concept of context-awareness. The architecture comprises the three

main phases of context-aware system: sensing, reasoning and application. It illus-

trates how a vehicle in VANET can sense and reason about and react to information

related to the driver, the vehicle and the environment in order to detect the current

behaviour exhibited by the driver. Chapter four will explain this architecture in

detail. While, in this chapter, definitions of normal and abnormal driving behaviour

are given, and the circumstances and conditions that are required in order to imple-

ment the driver behaviour detection system are introduced. An overview of static

BNs and DBNs, with their mathematical notions, inference algorithms and the main

steps that have to be followed to create a DBN, is presented. Finally, an illustration

is given of the main software packages that can be used to implement and evaluate

DBNs.

3.2 Overview of Driver Behaviour

Several definitions of driver behaviour have been proposed in the literature. Before

defining the behaviour of the driver, it is necessary to clarify what driving is. Sev-

eral authors [99, 100, 101] have defined driving as the interaction between the driver,

the vehicle and the environment (surrounding road information and traffic). The

behaviour of the driver was defined by [102] as a sequence of actions, each of which

is associated with the specific state of the driver, the vehicle and the environment,

and characterised by a set of contextual information. Another definition was given
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by [103], who referred to driver behaviour as a sequence of internal states of the

driver, each of which can be observed through capturing a set of observable features

(contextual information) that is associated with it.

Yu et al [69] classified driving styles into two types: normal and abnormal, and

stated that the status of the driver changed from normal to abnormal due to him

or her being affected by fatigue or stress. They defined normal driving behaviour

as the status when the driver is sober, focused, making the right judgements on the

road and able to respond with accurate and quick reactions in case of an emergency

or accident. While, abnormal driving behaviour was defined as the status when

the driver is drowsy, vision is affected and the driver is making misjudgements and

unresponsive actions. In [104], an aggressive driver is defined as one who drives

with sudden acceleration and hard braking. In [105], aggressive driving is defined

as when the driver makes a combination of moving traffic offences that may cause a

danger to other drivers or property. They characterised an aggressive driver as one

who exceeds the speed limit, follows the vehicle ahead too closely, performs unsafe

lane changes and fails to obey traffic control rules (e.g. traffic signal).

In this study, the behaviour of the driver is defined from the perspective of context

awareness as follows:

Driver behaviour is a complex and dynamic interaction between three entities:

the driver, the vehicle and the environment. It is described as a transition between

a sequence of states (for example normal, affected by fatigue, drunk or reckless),

over the course of driving a driver will be in a particular state, which he or she

may remain in for a period of time and then potentially changing to a different

state. Each state can be characterised by capturing a large amount of contextual

57



CHAPTER 3. FUNDAMENTAL PRINCIPLES OF BAYESIAN NETWORKS

information of relevance to the interacting entities. The behaviour of the driver

is considered to be normal (safe) if his or her actions associated with the current

state will not lead to an accident; it is otherwise considered to be unsafe (abnormal).

The behaviour of the driver can be represented as follows:

B = {St=1, St=2, ......, St=n} (3.1)

Where (B) is the behaviour of the driver, (S ) is the state and (t) is the time.

The states of the driver were classified into four classes: normal (Sn), drunk (Sd),

fatigued (Sf ) and reckless (Sr). According to the above definition, each state may

be characterised by capturing a set of observable context (C ). Therefore, the state

can be represented as in the following equation:

St=i = {C1, C2, C3, ......, Ck} (3.2)

In conclusion, the behaviour of the driver is considered as the current unobserv-

able state (St=i) that can be characterised by capturing a set of observable context

(Cj), where (St=i) is the state at the time = i and (Cj) is the context that need to

be captured in order to characterise the state.

As shown in Table 3.1, a set of context and their possible values, which have

been used to characterise the behaviour of the driver, have been specified from the

previous published work. The context illustrated in this table do not constitute a

complete list of all possible features. In fact, additional context can be used and

analysed in order to detect the behaviour of the driver. The table presents the

context type, the sensors used to acquire this context, the possible values of the

context and the type of abnormality (e.g. fatigued, drunk or reckless).
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Information Sensors Values of Context Driver’s

Status

Reference

Speed Speed sensor Good control to the

speed, Bad control to

the speed

Fatigue,

Drunk,

Reckless

[27, 106,

107]

Vehicle

heading

Adaptive hello

messages

Same road direction,

Opposite to the road

direction

Drunk [27]

Driver head

position

Camera Straight, Frequent tilts Fatigue [108, 93,

28]

Driver eyes

state

Camera Eyes are opened, Eye

are 80% covered by

eyelids for 20 seconds

Fatigue [108, 93,

109, 110]

Position

over the lane

Camera Driving between the

lane marker, Changing

lane frequently, Driv-

ing with tyres on or our

the lane

Drunk,

Fatigue

[27, 106]

Intoxication Alcohol +

Breath sensors

No alcohol exist, Alco-

hol exist

Drunk [95]

Time of the

day

GPS (3-5 Am,3-5 Pm)

sleepy, (9-11 am, 9-11

pm)awake

Fatigue [76]

Acceleration Accelerometer Moderate acceleration,

Sudden acceleration/

deceleration

Fatigue,

Drunk,

Reckless

[27, 107]

Table 3.1: Contextual information used to detect the behaviour of the driver
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Based on Table 3.1 and the previous definitions of driving behaviour [103, 102, 111,

29, 100, 105, 99], four categories of driving behaviour have been defined, as follows:

1. Normal behaviour: The behaviour is considered to be normal when the

driver is concentrating on the driving task. This can be characterised by con-

trolling the speed of the vehicle, avoiding sudden acceleration, driving without

alcohol intoxication, maintaining a proper position between lane markers and

having eyes open while driving. When the driver matches these criteria, the

behaviour is considered to be normal.

2. Drunk behaviour: The behaviour is considered to be drunk when the driver

is driving while intoxicated by alcohol. This behaviour can be characterised

by a set of observable actions, such as sudden acceleration, driving without

maintaining the proper lane position, driving with out controlling the speed

etc, but is not limited to them.

3. Fatigued Behaviour: In [106], fatigue is defined as an evolving process that

increases during driving, which leads to reduced effectiveness in driving. In

[112, 106, 113], it is stated that a driver who is driving after a period of

17 hours without sleep behaves exactly the same as a driver who has 0.05%

intoxication with alcohol, and one who is driving after a period of 24 hours

without sleep behaves exactly the same as a driver who has 0.1% intoxication

with alcohol. Depending on this argument, fatigued driving has been defined

as driving that exhibits the same characteristics as drunk driving except that

there is no alcohol in the driver’s blood.

4. Reckless behaviour: In [107], the reckless driver is defined as a driver who

drives at high speed, with a high degree of acceleration, and puts other road

users at risk. A driver is classified as driving in this category when there is no

alcohol intoxication and the driver’s eyes are open, but the driver is exhibiting
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the following behaviours (although not limited to them): driving with sudden

acceleration, not maintaining the proper lane position, etc.

3.3 Assumptions

In order to attain the objectives behind developing the proposed driver behaviour

detection system, a number of assumptions have to be taken into account so as to

accomplish the requirements with which this thesis is concerned, as follows:

• Each vehicle is equipped with a set of sensors (the source of contextual data).

These include cameras, an alcohol sensor, a speed sensor and the an accelerom-

eter sensor.

• Each vehicle is equipped with a Navigation System (NS) and a preloaded

digital map.

• Each vehicle is equipped with a VANET-based On Board Unit (OBU).

• The roads are managed by the Traffic Management Centre (TMCs) enable

vehicles to collect information about the driving environment.

• Each vehicle collects information about its speed, position and direction using

devices it is equipped with.

3.4 Bayesian Networks Overview

In this section, an illustration of Bayesian networks and dynamic Bayesian networks,

on which the behaviour detection algorithm in this thesis will be based, is given in

detail. Bayesian networks, or the so-called Bayesian belief networks, are directed

acyclic graphs that represent the conditional independence between a set of random
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variables, and which deal with uncertain information and probabilistic inference

upon receiving evidence. They can represent different types of uncertain informa-

tion and the probabilistic relationship between them, then combine this information

into one inference system to describe the uncertain domain. These networks consist

of a set of nodes that represent the random variables and a set of arcs representing

the dependencies between them [63, 11, 22, 85, 114]. Bayesian networks have been

used in several expert systems and in the field of Artificial Intelligence (AI) in terms

of combining data from different sensors and inferring information from them using

diverse inference procedures [115, 116, 117]. Bayesian Networks have the ability to

capture the static aspect of the domain, which means that only the observation at

the current time slice will be taken into account during the inference process.

From the temporal perspective (the systems that evolve over time), Bayesian

networks brought a new approach to model both the static and dynamic aspects

of the domain, in order to characterise an event. These tools are called dynamic

Bayesian networks, and are able to model the time-series data. They are considered

as a set of static Bayesian Networks interconnected by sequential time slices. The

relationship between two neighbouring time slices can be modelled using the first-

order Markov model, which means that the event desired to infer at a time slice (t)

is affected by the random variables at time slice (t), and by the variables at time

slice (t-1 ) only [85, 118, 88]. The HMM can be considered a special case of DBNs,

where the difference is that DBNs represent the hidden state in term of a set of

random variables, while the HMM represent the hidden state in terms of a single

random variable. Moreover, the graph structure of DBNs is more general than the

restricted topology of HMM [83].
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3.4.1 Static Bayesian Networks

Bayesian networks are a special case of graphical model that describes the proba-

bilistic relationship between a set of random variables. They are Directed Acyclic

Graph (DAG), which contain a set of nodes, Xi, that represent the random variables,

and a set of arcs that represent the causal relationship between the variables. These

variables can either be discrete (i.e. the nodes that take the values {high, low}) or

continuous (i.e. speed and age which take real numbers {10, 20, 30 etc.} as its values

) [11, 119, 116]; only the discrete variables are used in this thesis. Each node in the

network has a finite set of mutually exclusive states. The node can be in one of its

states with a certain probability and depending on the state of its parents’ nodes;

a conditional probability table for each node presents the probability distributions

of the node. If node X has no parents, the table will represent the prior probability

of node X [11, 85, 120]. Figure 3.1 depicts a simple network which includes three

nodes (A, B, C).

Figure 3.1: Three-node Bayesian Network

As shown in the figure above, the directed arcs from node A to nodes B and C

reflect the direct influence of node A on both nodes B and C. In this case, node A

is considered a parent of nodes B and C, and is called a root node because it has no

parents. Nodes B and C are considered children of node A, and are called leaf nodes

because they have no children. The directed arc usually points from a node called a

parent node, which is the cause variable to the other, called child node, which is the

effect variable. The term ’conditional independence’ means that node B in Figure
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3.1 is only affected by node A.

3.4.1.1 Bayesian Networks Rules

The backbone of Bayesian networks probability calculations is Bayes’ theorem, which

was introduced by Thomas Bayes [119, 11], as follows:

P (H|E) =
P (E|H).P (H)

P (E)
(3.3)

P(H|E): The posterior probability of hypothesis H given new evidence E.

P(E|H): The likelihood of evidence E given hypothesis H.

P(H): The prior probability of hypothesis H (before receiving the evidence).

P(E): The prior probability of evidence E.

Bayesian networks are used to capture the conditional independence between a

set of random variables. They can be considered a knowledge base, which can infer

a belief or give a conclusion about an event in the system by propagating the beliefs

all over the network upon receiving evidence. In other words, the probability of the

hypothesis changes from prior to posterior probability when the system observes

new evidence [121, 119, 116].

Assuming Ai = {a1, a2,...., ai} to be a set of i random variables that represent

a specific domain, let P(a1, a2, ....., ai) be a joint probability distribution over the

domain. Without considering the conditional independence between the variables,

we can apply the chain rule for the basic probability theory, as shown in the following

equation [118]:

P (a1, ....., ai) = P (a1).P (a2|a1).......P (ai|ai, ...., a1) (3.4)
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However, by considering the conditional independence between the random vari-

ables, the chain or the product rule for calculating the joint probability distribution

in a Bayesian network can be written as follows [116, 11]:

P (a1, ..., an) =
n∏

i=1

P (ai|Pa(ai)) (3.5)

Where, Pa(ai) refers to the parents of ai. In other words, it is a set of nodes

which directly influences node ai.

As shown in Figure 3.2, the network consists of six nodes, which means that

there are six random variables and six conditional probability tables.

Figure 3.2: Six-node Bayesian Network

For example, node a4 is only affected by a3 and a5. This means that if the values

of a3 and a5 are known, a4 is conditionally independent from the rest of the network.

Therefore, the joint probability distribution of the network can be written as in the

following equation:

P (a1, a2, a3, a4, a5, a6) = P (a6|a5).P (a4|a5, a3).P (a3|a2).P (a2|a1).P (a5).P (a1)

(3.6)

In any simple network, the marginal probability or the likelihood of each node

being in one of its mutually exclusive states can be calculated using the chain rule

and Bayes’ theorem. This process is called marginalisation [122].
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3.4.1.2 Conditional Probability Table (CPT)

Each discrete variable (node) in Bayesian networks has a conditional probability

table associated with it. This table defines the probability distributions of the

node and quantifies the strength of the relationships between the variables. The

probability distribution is the probability of the node being in one of its states.

The main dilemma when using CPTs is the size of the tables. The size of any CPT

depends on the number of the node’s states and the number of its parents’ states. As

a result, for Boolean networks, the node with z parents requires 2z+1 probabilities

in its CPT. This means that reducing the number of parent nodes will lead to a

reduction in the size of CPTs [11, 119, 116]. The following two approaches may be

used to obtain the values (probabilities) of the conditional probability table for each

node in the network [76, 24, 123]:

1. Obtaining the values by performing statistical analysis on a huge amount of

training data. Training data is obtained by performing several tests in a

testbed specifically designed for the system, and collecting the output for each

test or collecting records containing different cases for the same problem. A

learning algorithm can then be used to learn (parameterise) the conditional

probability tables from this data, so the network can best represent the do-

main. Several learning algorithms are available in the software packages, such

as expectation maximisation (EM) [11].

2. Parameterising the network can be achieved by critically analysing a set of

previously published papers and researches that are related or similar to the

system. In other words, the conditional probabilities for each node can be

acquired manually by studying the relationship between causes and effects in

the network, with the help of work that has already been conducted in the

field.

66



CHAPTER 3. FUNDAMENTAL PRINCIPLES OF BAYESIAN NETWORKS

Due to the difficulties of acquiring a large amount of training data for this study, as

no testbed is equipped with all the sensors required for the model and no previous

studies have been done that provide all the data required to parameterise the system,

this thesis will use the second approach in order to determine the values of the

conditional probability tables for the network.

3.4.1.3 Reasoning with Bayesian Networks

Reasoning with Bayesian networks means calculating the posterior probability dis-

tributions for one or a set of variables (nodes) once the observations of some other

nodes are known. This is done by flowing the new information all around the net-

work without taking into account the arcs directions. This process is also called

inference, belief updating or probability propagation. As shown in Figure 3.3, there

are four types of reasoning in Bayesian networks, as follows [11, 124]:

Figure 3.3: Types of reasoning in Bayesian Networks [11]
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1. Diagnostic reasoning: This kind of reasoning occurs in the opposite direction

to the arcs, which means the new information flows from the effect nodes to

the cause nodes. Having knowledge of new information about node E increases

the belief about node C being in a specific state.

2. Predictive reasoning: This type of reasoning occurs in the same direction as

the network arcs, which means having new evidence about node B increases

the belief about node C being in a specific state.

3. Intercausal reasoning: This is a form of reasoning about the mutual causes for

a common effect. These common causes are independent in that having new

information about node A does not change the belief about node B. However,

having new information about node C leads to an increase in the belief about

both nodes A and B. If information is known about node B, this information

explains the observed node C and decreases the belief about node A. In other

words, having information about the effect and one of the mutual explanatory

causes will decrease the belief in the other cause. Explaining away is a special

form of intercausal reasoning.

4. Combined: In some systems, the reasoning does not fit tidily into one of the

above-mentioned reasoning types. In fact, a combination of them can be used

in any way (e.g. a combination of diagnostic and predictive reasoning can be

used). In this thesis, a combination of diagnostic and predictive reasoning will

be used, as the hypothesis node (the node desired to be inferred) has both

causes and effects.
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Bayesian networks can be singly connected where there is only one path be-

tween any pair of nodes in the network. They can also be multiply connected in

cases where more than one path between any pair of nodes exists [118, 85]. There

are two types of inference algorithms in Bayesian networks: approximate inference

algorithms (i.e. stochastic simulation algorithms, model simplification methods,

search based methods and loopy belief propagation) and exact inference algorithms

(i.e. polytree, clustering, conditioning, arc reversal, variable elimination, symbolic

probabilistic inference and the differential method), both of which involve a complex

computations. The exact inference is not sufficient when the network is large; hence,

an approximate inference can be used. The speed of the inference process relies on

several issues, such as the location of the hypothesis nodes, how highly connected

the network is and the number of undirected loops in the network.

One single inference algorithm that can be used for all problem domains does

not exist; different algorithms can be used for different problems. Therefore, it is

important to thoroughly study the relationship between the domain of the problem

and the domain of the inference algorithm in order to decide which algorithm is

most efficient for the problem [11, 116]. The network that has been designed in this

thesis is a singly connected network, as there is only one path between any pair

of nodes, and the hypothesis node has both parents and children. Therefore, the

polytree algorithm was selected to perform the inference process, because it is an

exact inference algorithm and works for a singly connected networks. Moreover, it

performs a combination of diagnostic and predictive reasoning. If the cross effects

of the nodes are considered in our model, to determine for example, the effect

of acceleration node on controlling the speed node, the network will be multiply

connected. In this case, an algorithm for multiply connected networks such as

clustering algorithm has to be used to perform the inference process.
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Pearl’s message passing algorithm (polytree)

This algorithm, also called the polytree algorithm, is used to perform the exact

inference in the singly-connected networks [125, 11, 117, 116, 126]. The algorithm

performs the inference using three parameters, which are: λ(X); π(X) and α.

Where:

λ(X) can be computed from the messages received from node X’s children.

π(X) can be computed from the messages received from node X’s parents.

α is a normalising constant which is equal to 1 / p(e).

Let e be a set of values for all evidence in a singly connected network. The net-

work contains a hypothesis node X, parents of node X, C={C1,....,Cm}, and children

of node X, O={O1,...., On}. Let xi, cm and on be a set of values taken by X, C

and O, respectively. For any hypothesis node X, e can be divided into two groups;

the first group, e−, denotes all the observed variable that are connected to node X

via its children (including node X itself if it is observed). The second group, e+,

denotes all the observed variables which are connected to node X via its parents.

The posterior probability of node X given the evidence e can be computed using the

following equation:

P (X|e) = α.λ(X).π(X) =
λ(X).π(X)∑

xi

λ(X).π(X)
(3.7)

Where:

λ(X) = P (e−|X)

π(X) = P (X|e+)
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As node X, is a discrete node, which means it has a finite set of states, the λ(X)

and π(X) have to be calculated for all the variables in the networks, and their val-

ues will be vectors whose values are associated with each of the discrete values for X.

Computing λ(X) has to be done for all children (Oi) of node X, as follows:

λ(X) = P (e−|X)

= P(eO1 , eO2 , ....., eOn|X)

= P(eO1|X).P (eO2|X).......P (eOn|X)

= λO1(X).λO2(X).....λOn(X)

The computation for each λOi
(X) is as follows:

λOi
(X) = P (eOi

|X)

=
∑
oi

P (eOi
, oi|X)

=
∑
oi

P (eOi
|oi).P (oi|X)

=
∑
oi

λ(oi).P (oi|X)

This indicates that to compute λ(X), we need both the conditional probabilities

and the λ’s for all children of node X. Therefore, λ(X) can be written as follows:

λ(X) =
n∏

i=1

λOi
(X) (3.8)

Computing π(X) has to be done for all parents of node X (Cj), as follows:

π(X) = P (X|e+)

= P(X|eC1 , eC2 , ....., eCm)
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=
∑

c1,...,cm

P (X|c1, ....., cm).P (c1, ..., cm|eC1 , ..., eCm)

=
∑

c1,...,cm

P (X|c1, ....., cm).P (c1|eC1).P (c2|eC2).....P (cm|eCm)

=
∑

c1,...,cm

P (X|c1, ....., cm).πX(c1).πX(c2).....πX(cm)

This indicates that to compute π(X), we need both the conditional probabilities

and the π’s for all parents of node X. Therefore, π(X) can be written as follows:

π(X) =
∑

c1,...cm

P (X|c1, ...., cm)
m∏
j=1

πX(cj) (3.9)

3.4.2 Dynamic Bayesian Networks

Dynamic Bayesian networks are directed acyclic graphs that represent the condi-

tional independence between a set of random variables, and which deal with uncer-

tain information and probabilistic inference upon receiving evidence. They consist

of a set of nodes that represent the random variables and a set of arcs that represent

the conditional independence between variables. DBNs take into account the static

and temporal aspects of the domain. In other words, they are used to model the

time-series data (e.g. the events that evolve over time which can not be modelled

by detecting an observation on a particular time instance only). The word dynamic

does not mean that the network structure or the nodes change automatically, but the

dynamic systems can be modelled. They can be viewed as a set of static Bayesian

networks that are interconnected by sequential time slices, each of which represents

a snapshot of the evolving process at a given point in time [127, 24, 88, 82, 118, 85].

Let [Z1, Z2, ..., Zt,..] be a semi-endless collection of random variables. Zt =

(Ct,Xt,Ot) represents the input, hidden and output variables of the model at a given

time. DBNs are used to model the probability distribution over the semi-endless
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collection of random variables. A DBN can be defined as a pair of (S,
−→
S ), where S

is a static Bayesian network that defines the prior state distribution P(Z1), and
−→
S

defines P(Zt|Zt−1), which is a two-slice temporal Bayesian network, as shown in the

following equation [83]:

P (Zt|Zt−1) =
N∏
i=1

P (Zi
t |Pa(Zi

t)) (3.10)

Where Zi
t is the i-th node at time slice (t) and could be a part of Ct, Xt or Ot, N

is the number of nodes in the network, and Pa(Zi
t) are the parents of Zi

t. The parents

may be in the previous or the same time slice only (the model is considered as a

first-order Markov process). The variables in the second time slice have parameters

associated with them (conditional probability distribution), while the variables in

the first time slice do not have parameters associated with them. In this case, the

process is stationary and the model can be explained by giving only the first two

time slices.

The author in [119], extended the above definition by allowing the DBN to model

Kth-order Markov processes; this is achieved by defining the DBN as follows:

P (Zt|Zt−1, Zt−2, ..., Zt−k) =
N∏
i=1

P (Zi
t |Pa(Zi

t)) (3.11)

In the above definition, the parents can either be in the previous time slice or

further in the past, the initial network can be defined implicitly in the unrolled

DBN, or may be defined explicitly using the anchor nodes.

3.4.2.1 Inference

There are two methods to achieve exact inference in DBN. The first is based on

the idea that the unrolled DBN can be considered the same as a static BN, so any
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exact BN inference algorithms can be applied. The second method is to convert the

DBN into an HMM, in which case the forward-backward algorithm can be applied

[119, 118, 88]. In this thesis, the first method has been selected; in terms of unrolling

the DBN and considering it the same as a static BN. Then the polytree algorithm has

been applied, which is illustrated in section (3.4.1.3.1), for performing the inference

process.

3.4.2.2 Creating a Dynamic Bayesian Network

In order to construct a DBN, four steps have to be followed in the following sequence:

1. Defining network variables (nodes) and their states; this includes specifying the

hypothesis node (e.g. the node desired to be inferred), the information nodes

(e.g. contextual variables that affect the hypothesis node) and the observable

nodes (e.g. contextual variables that result from the hypothesis node).

2. Drawing the causal relationships between random variables (drawing the net-

work graph).

3. Specifying the conditional probability distributions for each node.

4. Performing the inference process in order to infer the hypothesis node.

3.5 Dynamic Bayesian Networks software

In this section, a general overview of the software and modelling tools that can be

used for DBN modelling is given. The currently available software that supports

DBN functionality can be summarised as follows [11, 119]:

• The Bayes net toolbox (BNT) for Matlab: This tool was developed

during Murphy’s time [128, 83]; it is a free and open-source tool that can be
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used with Matlab only. This tool lacks a graphical user interface and is slow,

because Mathlab is slow. The DBN is represented in this tool as a first-order

Markov process only, and the conditional probabilities of the nodes can be

represented as either discrete or continuous. It supports different kinds of in-

ference algorithms, such as junction tree, variable elimination, polytree and

Gibbs sampling. Moreover, it provides both parameter and structural learning

algorithms. However, the BNT cannot be considered a general-purpose tool

because still more functionality needs to be added to the software (i.e. predic-

tion, support for non-directed acyclic graphical models). Furthermore, it does

not support the exporting and importing of other BN file formats from other

packages, and the script part, which is needed to implement the network, can

be very slow [11, 119].

• Netica: Netica was developed by Norsys [129]; it supports a DBN specification

and roll-out. A compilation for the designed network has to be carried out

before implementing the inference process, in terms of transferring the network

into junction tree representation, where the software uses the junction tree

inference algorithm. It provides parameter learning only, and has a graphical

user interface. A k-order Markov model DBN can be modelled in this software.

Moreover, the evidence can either be entered by hand or by importing it from

a data file. However, it is only commercially available [11, 119].

• Analytica: This software was developed by Lumina Deicion systems [130]; it

supports both BN and DBN by allowing users to choose the temporal nodes

and specify the time steps, and it uses the sampling method for the inference.

It additionally provides both the application program interface (API) and the

graphical user interface, as well as both kinds of variables: continuous and

discrete. However, it does not use the terminology of a DBN, which can make
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it difficult for the user to identify the features of its functionality. Analytica

does not support structural or parameter learning, and is only commercially

available [11, 119].

• The graphical model toolkit (GMTk): This tool [131] is written in C++

language and is open-source toolkit. It is specialised in DBN for automatic

speech recognition (ASR) systems, and has several features, such as different

inference techniques and the ability to deal with both continuous and discrete

nodes. Modelling a DBN with this tool gives more expressive power, but much

work is needed in order to specify the model due to the fact that it is specialised

for ASR systems and lacks more functionality, which can be useful for other

types of applications. Moreover, it is very hard for users who do not have

sufficient information about the GMTk software development to understand

the toolkit because the documentation is not complete [119].

• BayesiaLab: This software was developed by Bayesia company in France

[132]; it supports the discrete nodes, while the continuous nodes are supported

by discretisation. BayesiaLab works in two modes: modelling and validation.

The first mode allows users to add temporal arcs in order to create a first-order

Markov model DBN only. The inference is done in the validation mode, with

the junction tree inference algorithm. Gibbs sampling is also available in this

software. It supports both parameter and structural learning; however, it is

commercial rather than open-source software, and is not free to use [11, 119].

• Probabilistic network library (PNL): PNL is an open-source toolkit writ-

ten in C++ language, which was developed by Intel’s research group in Saint

Petersburg. It supports a DBN and diverse graphical models, and is consid-

ered to be a C++ implementation of BNT, but it does not support all the

functionality provided by the BNT. It can handle the discrete nodes only, and
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provides both parameter and structural learning. Moreover, it uses the junc-

tion tree algorithm for the inference process. However, although the API is

well-documented, which makes it a good choice for modelling a DBN, it does

not provide a graphical user interface, and still lacks in much functionality

compared with BNT [119].

• GeNIe: GeNIe was developed by Decision Systems Laboratory, at the Uni-

versity of Pittsburgh [133]. It is the graphical network interface of SMILE,

which is a library of functions for graphical probabilistic and decision net-

work models. In other words, GeNIe is an outer shell to SMILE. GeNIe is

implemented in C++ language and runs under the Windows operating sys-

tem. It supports both BN and DBN implementation by providing temporal

reasoning, and allows the construction of large and complex networks with a

user-friendly interface. It provides several inference algorithms for exact and

approximate inference, such as clustering, polytree, logic sampling, likelihood

sampling, self-importance etc. Moreover, it supports the discrete nodes and

has the ability to import and export other BN file formats. Furthermore, it

allows users to specify the nodes of interest as target nodes, which means that

during the inference process, only the nodes of interest are guaranteed to be

fully updated, which leads to a reduction in computation [11, 119].

In our conclusion, many software packages can be used for modelling and im-

plementing a DBN, each of which has its advantages and disadvantages. How-

ever, there is no suitable software for modelling a DBN. Slow implementation,

a lack of graphical user interface and complex programming to implement a

DBN are disadvantages that are associated with many of the software pack-

ages. GeNIe software version 2.0 has been used in this thesis to implement the
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DBN, for to the following reasons:

– It supports both BN and DBN implementation by providing temporal

reasoning so the first-order Markov DBN can be implemented.

– It provides a polytree inference algorithm, which is the algorithm that

has been chosen to perform the inference in this thesis.

– It provides bar charts for the nodes and shows probabilities of each state

graphically.

– It is easy to construct the network and define the temporal nodes using

graphical click and drop.

– The software is freely available.

– It provides a user-friendly interface.

– It supports a complete integration with Microsoft Excel; data can be

copied and pasted into an internal spreadsheet view of GeNIe.

The steps for creating our proposed DBN model using GeNIe software are

demonstrated in Appendix B.

3.6 Summary

This chapter presented an overview of new solution to accident prevention in VANET

by detecting abnormal behaviours exhibited by the driver. Moreover, it gave an

overview of the behaviour of the driver, with a new definition from the perspective

of context awareness. Four kinds of driver behaviour were classified: reckless, drunk,

fatigued and normal behaviour. The circumstances that are required in order to im-

plement the driver behaviour detection system were also described.
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An illustration of the main features and functionalities of BNs, such as implemen-

tation, reasoning and the available inference algorithms with a detailed description

of polytree algorithm, which will be used for inference in this work has been given.

Furthermore, a DBN has been illustrated as a temporal reasoning technique that

can handle uncertain information and perform a probabilistic inference to model

the system that evolves over time (e.g. driver’s behaviour), with an explanation

of its mathematical notion, inference and the way it can include evidence from the

different time slices. In addition, the main existing software packages, which sup-

port the implementation of a DBN, were demonstrated, and their advantages and

disadvantages outlined, with a description of the main reasons for choosing GeNIe

version 2.0 as the implementation tool in this thesis.

The next chapter (Chapter 4) will present a detailed description of the proposed

OBU driver behaviour detection architecture.
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Chapter 4

On Board Unit Architecture

Based on Context-aware System

Objectives:

• Propose a novel OBU driver behaviour detection architecture in VANET

• Explain the three phases of the architecture that have been designed based on

the concept of context-aware system

• Define the components of the proposed OBU architecture

• Describe the mechanism of driver behaviour detection
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4.1 Introduction

In this chapter, a novel OBU architecture in VANET based on a context-aware sys-

tem, with a detailed illustration of its components is presented. The mechanism for

detecting the abnormal behaviour of the driver, based on the proposed architecture,

is explained. The architecture is built on a new technique for detecting abnormal

behaviour exhibited by the driver. This is achieved by capturing information and

reasoning about the driver, the vehicle and the environment contextual information,

in order to prevent accidents from taking place by warning the driver upon detecting

abnormal behaviour.

The architecture comprises three main phases: sensing, reasoning and applica-

tion. These phases represent the three main subsystems of a context-aware system:

sensing, reasoning and acting, respectively. The five-layered conceptual framework

1 represents the fundamental base of our architecture, where the five layers of this

model are utilised to construct the components of our architecture.

As mentioned in Chapter two, the behaviour of the driver is considered to com-

prise an interaction between three entities: the driver, the vehicle and the environ-

ment, and is described as a high-level context (uncertain context), which means that

a reasoning technique for uncertain information is required to combine the collected

information and infer the current behaviour of the driver. Therefore, a DBN algo-

rithm is included in the architecture to perform probabilistic reasoning in terms of

combining the collected information and inferring the driver’s behaviour. Different

kinds of sensors (i.e. cameras, GPS, speed sensor, TMC etc.) are included in the ar-

1The figure and the illustration of the five-layered conceptual framework is depicted in Chapter
(2)
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chitecture in order to collect most of the available contextual information about the

three entities. This will result in more accurate and sufficient behaviour detection.

4.2 Driver Behaviour Detection Mechanism

This section presents the mechanism for detecting the behaviour of the driver. The

flowchart in Figure 4.1 depicts the process of driver behaviour detection. The vehicle

senses the contextual information about the vehicle, the driver and the environment

from sensors, including both physical and virtual sensors, such as speed sensor, ac-

celerometer, TMC, adaptive hello message, cameras, GPS, alcohol sensor etc, which

are connected to the OBU. After collecting this information from the sensors, the

interpreter translates the different kinds of data into a form that can be processed by

the processor of the OBU. Transforming the sensory data into a machine-processable

form can be carried out by applying one of the modelling techniques, such as ontol-

ogy modelling [7] (this will be out of the scope of this thesis).

After transforming the captured context into a machine-processable form, the

OBU processor performs a behaviour detection algorithm (DBN algorithm) in order

to reason about the uncertain context (driver behaviour) by combining the data

received from the interpreter using the probabilistic inference to deduce the current

behaviour of the driver. If the output of the inference is normal driving behaviour

that satisfies all normal driving criteria, no action will be taken by the processor and

the vehicle will sense new information. If the output of the inference is abnormal

driving behaviour, such as being drunk, fatigued or reckless, the processor will choose

the appropriate in-vehicle alarms and sends a signal to control unit 1 informing it

to operate in-vehicle alarms, and will performing the algorithm of calculating the

corrective action for other vehicles on the road according to their position, velocity
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and direction. After calculating the corrective action for other vehicles on the road,

the processor will send a signal to control unit 2 to send warning messages (the

corrective action algorithm will be out of the scope of this thesis). This process is

based on a context-aware system and is a self-organising process in which sensing,

reasoning and acting upon contextual information occurs instantly.

Figure 4.1: Driver behaviour detection system mechanism

4.3 OBU Architecture

This section describes all the components of the proposed OBU driver behaviour

detection architecture in VANET, as shown in Figure 4.2. This figure illustrates

in detail each component in the architecture, and reveals the function of each unit;

particularly the way in which these components cooperate with each other to achieve

the task of detecting the behaviour of the driver and warning the driver using the
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in-vehicle alarms. The green blocks in the architecture represent the new units that

have been added to the typical components of the OBU.

Figure 4.2: Driver behaviour detection system architecture
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As depicted in Figure 4.2, the architecture utilises the five layers of the con-

ceptual framework, and is divided into three main phases: the sensing phase, the

reasoning phase and the application phase, which represent the three main sub-

systems of a context-aware system: the sensing, reasoning and acting subsystems,

respectively. The in-vehicle alarms are operated in the third phase, which depends

upon the results of the second phase, which in turn depends on receiving the infor-

mation from the first phase.

The proposed architecture performs the behaviour detection process through the

processes carried out by the following components:

• Sensors

• Data acquisition unit

• Context interpreter

• Processor, which performs the behaviour detection algorithm based on the

DBN

• Database

• Control unit 1 and control unit 2

The sensors represent the sensors layer in the five-layered conceptual framework.

The data acquisition unit and the context interpreter make up the raw data retrieval

layer. The processor that performs the DBN algorithm, control unit 1 and control

unit 2 represent the preprocessing layer, and the database corresponds to the storage

and management layer. Finally, the in-vehicle alarms and the warning messages

characterise the application layer.
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4.3.1 Sensing phase

This section presents the way in which the context can be sensed, and explains the

types of sensors used in the architecture. The sensing phase represents the sensing

subsystem in the context-aware system, and is responsible for gathering the contex-

tual information about the driver, the vehicle and the environment, then transform-

ing the collected information into a machine-executable form to be processed in the

next phase (reasoning phase). It is divided into two layers, as follows:

• Sensors layer: This layer is responsible for acquiring the context data. It

consists of a set of sensors integrated into the vehicle and connected to the

vehicle’s OBU in which the system is operating. Different types of sensors

provide different types of information according to the system requirement.

As described earlier in Chapter 2, there are three types of sensors: physical,

virtual and logical. Two types of data sources (sensors) have been used in

this architecture in order to gather context. The internal data sources (phys-

ical sensors) refer to the set of sensors equipped within the vehicle, such as

cameras, speed sensor, GPS, alcohol and accelerometer sensor, which offer in-

formation about the state of the driver’s eyes, the vehicle’s speed, acceleration

information, lane position and level of alcohol in the driver’s blood.

External data sources (virtual sensors) are also incorporated in order to gather

external information, including the traffic management centres (TMCs), which

provide information relating to traffic, weather and road conditions, based

on the website, dynamic message signs and highway auditory radio data [1].

External data sources also include information about other vehicles (velocity,

current position and direction) collected through received hello messages [134].
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As shown in Figure 4.3, this layer transmits the captured context to the raw

data retrieval layer. The functionality of a context-aware system depends on

the functionality of each sensor, because a failure in any of the sensors will

result in the provision of inaccurate information to the system, hence leading

to faulty system performance.

Figure 4.3: Sensor layer

The following are descriptions of each of the sensors that has been used in this

system:

– Lane camera sensor: Camera can be used to capture and provide

information about the lane position, lane deviation and departures [135].
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– Global Positioning System (GPS): GPS provides information about

the speed limit of the road, current time and current speed, and helps to

provide the current position and direction of the vehicle [31, 27].

– Accelerometer sensor: The accelerometer sensor measures proper ac-

celeration and the rate of change of the vehicle’s velocity, so that it can

used to provide information about whether the acceleration is normal or

abnormal [136].

– Eye camera sensor: The vision system is used to capture informa-

tion about the driver’s eyes and decide whether they are open or closed.

PERCLOS is considered to be the perfect eyes measuring tool [76].

– Alcohol sensor: This sensor is used to detect the level of alcohol in

the driver’s blood by measuring the alcohol content in the driver’s breath

[95].

– Speed sensor: This sensor provides information about the current speed

of the vehicle [27, 136]

– Adaptive hello messages: Information about the vehicle position, di-

rection and velocity can be obtained from the periodic messages that are

disseminated in VANET [31].

– Traffic Management Centre (TMC): Different information can be

obtained from the TMC, such as information relating to traffic, weather

and road conditions, based on the website, dynamic message signs and

highway auditory radio data [1].

• Raw data retrieval layer: The purpose of applying this layer is to separate

low-level sensing details from the sensors for the upper layer of the system

as well as abstract contextual information that has been received from the

sensors layer. This layer contains two components, as follows:
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– Data acquisition unit: This is responsible for controlling and coordi-

nating all sensors in the sensors layer.

– Context interpreter: The modelling process is carried out in this unit,

in terms of transforming the data that has been received from the data

acquisition unit into a machine-executable form. Several types of mod-

elling algorithms can be applied to abstract the received sensory data (for

example ontology modelling). The received data may come from different

types of sensors such as camera, GPS, speed sensor etc. This component

transfers the data to a form which can be processed by the reasoner (the

modelling process by applying one of the available modelling technique

is out of the scope of this thesis).

4.3.2 Reasoning phase

This phase characterises the reasoning subsystem in the context-aware system; it is

responsible for inferring the behaviour of the driver and calculating the corrective

actions for other vehicles on the road. As mentioned in Chapter 2, there are two

types of contextual information: certain information, which is obtained from a single

sensor, and uncertain contextual information, which can not be acquired by a single

sensor, and may be incomplete or inexact. The behaviour of the driver is considered

to be uncertain contextual information (high-level contextual information). There-

fore, a behaviour detection algorithm based on a DBN is applied in order to perform

reasoning about uncertainty by combining the information received from the pre-

vious phase (sensing phase), in order to detect the behaviour of the driver during

real-time driving. The corrective action algorithm is responsible for calculating the

appropriate corrective action for other vehicles on the road. The reasoning phase

consists of two layers, as follows:
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• Reasoning layer: This layer is responsible for extracting the current be-

haviour of the driver (e.g. fatigued, drunk, normal or reckless) and choosing

the appropriate in-vehicle alarm to warn the driver and avoid road accidents.

This layer comprises the following components:

– Processor: The OBU processor is responsible for managing all the com-

ponents of the OBU and controlling all the tasks and activities it per-

forms. The processor performs two algorithms, as follows:

1. Behaviour detection algorithm: This algorithm is designed to

reason about uncertain contextual information in order to detect the

current behaviour of the driver, using a DBN to combine data col-

lected from the sensing phase, which includes information about the

driver, the vehicle and the environment, in order to detect the type of

behaviour being exhibited. If the behaviour of the driver is normal,

no action is needed. In the case of abnormal driving behaviour (e.g.

drunk, fatigued or reckless), the processor sends signals to control

unit 1 to operate the appropriate in-vehicle alarm, and performs the

corrective action algorithm. This thesis will focus only on the driver

behaviour detection algorithm, which will be explained in detail in

Chapter 5.

2. Corrective action algorithm: The aim of performing this algo-

rithm is to calculate the proactive corrective action for other vehicles

on the road according to their position, velocity and direction, with

the use of the preloaded digital road maps and the information col-

lected from the adaptive hello messages. After calculating the correc-

tive action, the processor sends a signal to control unit 2 in order to

send the warning message through the wireless technology provided
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by VANET (the corrective action algorithm will be out of the scope

of this thesis).

– Control unit 1: This unit is responsible for controlling in-vehicle alarms,

such as seat vibration and audio alarm, to attract the driver’s attention.

This unit receives the signal from the processor in the case of abnormal

driving behaviour occurring.

– Control unit 2: After receiving the signal from the processor indicating

abnormal driving behaviour, this unit sends signals to the DSRC/WAVE

device in order to transmit the corrective messages to other vehicles on

the road, or to the roadside unit.

– DSRC/WAVE network device: The OBU contains a DSRC/WAVE

network device based on IEEE 802.11p [31]. It is responsible for connect-

ing the vehicle to other vehicles’ OBUs or with the roadside unit through

the wireless radio frequency, based on IEEE 802.11p. The OBU can send

or receive messages via this network device.

– Power supply: The power supply is responsible for providing power to

the OBU. It is rechargeable and provides power to the OBU without any

constraints.

– User interface: This contains the audio and video interface that al-

lows the user to interact with the services provided by the OBU. It also

provides the driver with audio alarms in order to allow him or her to

concentrate on the road.

• Storage layer: In this layer, the data base stores digital maps of the road

and historical data (past driving situations).
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4.3.3 Application Phase

This phase represents the acting subsystem in the context-aware system, and is re-

sponsible for operating in-vehicle alarms to warn the driver. It is also responsible

for disseminating the warning messages, including corrective actions, to other vehi-

cles on the road in order to prevent the occurrence of accidents and to decrease the

number of potential fatalities.

4.4 Summary

This chapter introduced a novel OBU driver behaviour detection architecture in

VANET. The architecture has been designed based on the concept of a context-

aware system, which comprises three main phases: sensing, reasoning and applica-

tion phase, and utilises the five-layered conceptual framework layers. A DBN model

has been integrated into the architecture in order to reason about uncertain con-

textual information (driver’s behaviour). The motivation behind this architecture

was to detect abnormal behaviour exhibited by drivers by combining information

about the driver, the vehicle and the environment, and to warn the driver in order

to prevent accidents from taking place.

The next chapter (Chapter 5) will present a detailed illustration of a DBN model

for combining different context and inferring the behaviour of the driver by perform-

ing a probabilistic inference.
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Chapter 5

A Dynamic Bayesian Network

Model for Driver’s Behaviour

Detection

Objectives:

• Determine the objectives behind the development of our proposed DBN model

• Propose our novel DBN model for the detection of driver’s behaviour

• Define the steps for the creation of the proposed DBN model
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5.1 Introduction

In this chapter, a novel probabilistic framework for detecting different kinds of driver

behaviour in VANET using a DBN to combine information about the driving envi-

ronment and to infer the behaviour of the driver is introduced. The system is com-

prehensive and is able to detect four kinds of driver behaviour, which are: drunken,

fatigued, reckless and normal behaviour. The behaviour of the driver is a dynamic

process, which evolves over the course of driving. For example, the alcohol level

in the driver’s blood may be low at the beginning of the driving, but will become

higher when he or she is drinking during the driving process. The driver’s level of

fatigue may also increase during driving [106]. This fact indicates that, in addition

to the observable contextual information at the current time instant, the driver’s

state at the previous time instant is also considered an indicator for his or her state

at the current time.

However, designing an accurate and efficient driver behaviour detection system

can present several challenges. For example, the temporal aspects which are ex-

hibited by the driver’s behaviour have to be captured, the captured contextual

information may be incomplete or inexact due to the inaccurate reading of some

sensors; and the fact that different information needs to be combined in order to ob-

tain the high-level context (driver’s behaviour) [22, 88]. Several information fusion

techniques have been proposed such as Fuzzy logic, the Dampester-Shapher theory,

Neural Networks and the Kalman filter. These methods do not provide efficient

expressive capabilities for capturing incomplete data, uncertainties, dependencies

between the variables and the temporal aspect exhibited by the behaviour.
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To tackle these dilemmas, the model that has been designed in this chapter uses

a DBN technique to combine data from different types of sensors to infer the driver’s

behaviour due to the following reasons. Firstly, it is considered to be the most re-

liable method for dealing with inaccurate data and unobservable physical values.

Secondly, it is able to model time series data (systems, which evolve over time).

Thirdly, it is efficient at combining uncertain contextual information from a wide

range of sensors to deduce high level contextual information (reason about uncer-

tain context); and is able to combine prior data with current data [76, 84, 86, 24, 87].

As mentioned previously in Chapter 3, a DBN can be thought of as a set of

static Bayesian networks interconnected by sequential time slices. In this thesis, the

DBN has considered representing a first-order Markov process, which means that the

hypothesis node at time slice (t) depends on the variables at time slice (t) and the

hypothesis node at time slice (t-1) only. The information used to infer the behaviour

includes information about the driver (i.e. the state of the driver’s eyes), the vehicle

(i.e. position in the lane) and the environment (i.e. the temperature). In conclusion,

merging contextual information from different kinds of sensors and capturing the

temporal aspect of the behaviour via performing a probabilistic reasoning under

uncertainty using a DBN will lead to more efficient and accurate detection of four

kinds of driving behaviour.

5.2 Problem definition

The main objective for designing our DBN model is to infer the unobserved high-

level context (driver’s behaviour) from the observed context (sensory data). The

model is able to detect four styles of behaviour, which are: drunken, fatigued, reck-

less and normal behaviour. The behaviour of the driver in affected by many factors
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(information variables); whilst each behaviour reflects several observations (observ-

able variables). It is impossible to include all factors and observations in our model

and therefore, we have only chosen the most important variables, which can lead to

a more accurate detection of the hypothesis node than others, as will be shown in

Section (5.3.1).

As mentioned earlier in Chapter 3, the behaviour of the driver is described as

a transition between sequenced states, over the course of driving a driver will be

in a particular state, which he or she may remain in for a period of time and then

potentially changing to a different state. Each state can be inferred by capturing

and combining a large amount of context (information and observable variables) as

explained in Eq. (3.2). Therefore, the behaviour of the driver is considered as the

current unobservable state.

In our problem domain, assuming that [Z1, Z2, ..., Zt,..] is a semi-endless

collection of random variables, Zt = (Ct,Xt,Ot) and represents the input, hidden

and output variables of the driver’s behaviour detection model at a certain time t.

Ct and Ot components of Zt denote the information and the observable variables

respectively. Whilst, the Xt component of Zt corresponds to the state St, we used

a DBN to model the probability distribution over the semi-endless collection of

random variables and to infer the current state of the driver. In this thesis, we

consider the unrolled DBN as a static Bayesian network, and the hypothesis node at

time slice (t) depends on its immediate past on time (t-1) as well as on the random

variables at time (t) only as follows:

P (Zt|Zt−1) =
N∏
i=1

P (Zi
t |Pa(Zi

t))
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Where Zi
t is the i -th node at time slice t, N is the number of nodes in the network

and Pa(Zi
t) are the parents of Zi

t.

5.3 DBN-based driver’s behaviour detection model

This section presents the steps used for the creation of our DBN driver behaviour

detection model, which is able to capture the temporal aspects of the behaviour and

integrate the evidence over time. As mentioned earlier in Chapter 3, there are four

steps, which have to be undertaken in order to design a DBN, starting from the

choice of the network’s nodes to inferring the state of the hypothesis node. In the

following paragraphs, a detailed explanation for these steps will be provided.

5.3.1 Defining the network variables (nodes)

The first step in creating a DBN is specifying the nodes of the network and determin-

ing their states. A DBN can deal with both discrete and continuous nodes, we only

used discrete nodes in this model; this means that each node has a finite set of values.

The hypothesis node in our network is the state node which represents the current

state of the driver; whilst, the contextual variables have been divided into two

groups. The first group (the information nodes) represents the variables, which may

affect the state node; and the second group (the observable nodes) corresponds to

the information that results from the state node as follows:

• Group 1: This group includes the contextual variables, which affect the state

node such as circadian rhythm, and the driving environment, which represent

the environment related information.

– Circadian rhythm: This refers to the human sleep-awake cycle, which
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is considered a cause of driver fatigue. There are two periods during

the day (3-5 PM and 3-5 AM) during which humans reach their peak

level of fatigue [24, 76, 106]. The circadian rhythm was considered to

influence the hypothesis nodes. The circadian rhythm node is affected by

two nodes: time and the time zone nodes. Thus, the circadian rhythm,

time and the time zone nodes were taken as information nodes in our

DBN.

– Driving environment: Noise and temperature are considered to have a

significant influence on the driving environment, which can in turn cause

fatigue. Fatigue is more likely to occur when noise and high temperatures

occur inside or outside of the vehicle [24, 76]. As a result, the driving

environment, noise and temperature nodes were selected as information

nodes in our network.

• Group 2: This group denotes the contextual variables that result from the

state node. It includes vehicle related information such as (the vehicle speed,

position between the lane markers and acceleration) and driver-related infor-

mation (the state of the driver’s eyes and the level of alcohol in the blood).

– Controlling the speed: Drunk and fatigued drivers struggle to control

their speed due to their mental state. According to the definition of the

reckless driver used in this study, the driver may violate the speed limit

[27]. In consequence, this node was taken as an observable node in the

network.

– Position in the lane: According to [27], the drunk driver has a prob-

lem in maintaining the lane position (vehicle position between the lane

markers). Hence, this node has been selected as an observable node in

our DBN.
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– Acceleration: The driver is considered to exhibit normal behaviour

whilst driving with normal acceleration and is considered to exhibit ab-

normal behaviour, such as being drunk, fatigued or reckless while driving

with sudden acceleration [27]. Therefore, the acceleration node was opted

as one of the observable nodes in the network.

– Driver’s eyes movements: Eyes movements are considered as a visual

behaviour that reflects the person’s level of fatigue, and eyelid movements

can characterise eyes movements. The percentage of eyelid closure over

the pupil over time (PERCLOS) is considered as the most reliable method

for measuring a person’s level of fatigue. If the eye is 80% covered by

the eyelid for a period of time the person is considered fatigued. The

average eye closure and opening speed (AECS) is one more measure for

eyelid movements, where the fatigued person might open/close his or her

eyes slowly due to tired eye muscles [137, 138, 93, 76, 24]. Thus, the eye

movement, eyelid movements, PERCLOS and AECS were chosen as a set

of observable nodes in our DBN.

– Intoxication: This refers to the amount of alcohol in the driver’s blood.

The permitted level of alcohol in the driver blood is 0.05%. Thus, the

driver is considered to be drunk if there is alcohol intoxication of more

than 0.05% in the blood [127, 95]. This node is also taken as an observable

node in the network.

Having determined the hypothesis and the information and the observable nodes,

their discrete states must be specified before the value (probability) for each state

is chosen. Tables 5.1, 5.2 and 5.3 illustrate the possible discrete states for all nodes

in our DBN.
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Node name State 1 State 2

Lane maintenance Good Bad

Intoxication Less than limit More than limit

Acceleration Sudden Moderate

Controlling speed Good Bad

Eyes movements Normal Abnormal

Eyelid movements Normal Abnormal

PERCLOS Normal Abnormal

AECS Slow Normal

Table 5.1: Observable nodes and their states

Node name State 1 State 2

Time Fatigue Active

Time zone Change No change

Circadian Fatigue Awake

Noise High Normal

Temperature High Normal

Environment Good Bad

Table 5.2: Information nodes and their states

Hypothesis node State 1 State 2 State 3 State 4

State Fatigue Normal Reckless Drunk

Table 5.3: The states of the hypothesis node
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5.3.2 Drawing the Network graph

The second step in designing a DBN is specifying the causal relationship between

the random variables. This is carried out by drawing the network arcs. After speci-

fying the network variables and the causal relationships between them, the network

graph can be drawn in terms of the directed acyclic graph. Figure 5.1, depicts the

proposed DBN model for detecting the behaviour of the driver. The hypothesis

node in this network is the state node. The set of variables above the hypothesis

node denotes the information nodes; whilst the variables beneath the hypothesis

node represent the observable nodes. As shown in Figure 5.1, the network unrolled

for two time slices, the state node at time t depends on the variables at time t and

on the state node at time t-1. The network can be unrolled for T time slices, where

the same structure will be replicated at each time slice.

Figure 5.1: A DBN model for detecting the behaviour of the driver
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5.3.3 Parameterising the network

The third step in designing a DBN is parameterising the network, which means

choosing the values for the conditional probability tables for all nodes in the net-

work. It is the stage that determines the prior probability of the root nodes and the

conditional probabilities of the links in the network. Defining the probability of each

node in the network refers to the probability of the node being in one of its states

when the evidence is received. As mentioned in Chapter 3, specifying the values of

the CPTs can be done either by performing statistical analysis of a huge amount

of training data, or by critically analysing a set of previously published papers and

researches, which are related or similar to the system.

There were difficulties involved in acquiring a large amount of training data for

this study, as no testbed is equipped with all the sensors required for the model.

Network parameters and transition distributions between time slices in the model

were chosen manually. This was done according to critical analysis of a large number

of reports published by the UK department for transport (DFT) and other trans-

portation organisations, including the national highway traffic safety administration

(NHTSA), as well as published papers covering features that relate to the system.

Several studies and models regarding driver behaviour detection have been pro-

posed in the literature, no one of which have provided all the data required to

parameterise the system, due to the fact that, most have focused on detecting a

single style of driving behaviour, such as drunk, reckless or fatigued, using different

kinds of information regarding the driver, the vehicle and the environment. The

hypothesis node in this model includes four states, which are: normal, drunk, reck-

less and fatigued, and the contextual nodes cover information about the driver, the
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vehicle and the environment. A period of more than three months was spent thor-

oughly studying and analysing the following reports and published papers [112, 76,

27, 127, 22, 24, 97, 139, 106, 140], in order to determine the relationship between the

variables and to set the parameters for each node (variable) in the network. This fa-

cilitated attainment of all the probabilities required to parameterise the DBN model.

Tables 5.4 - 5.19 illustrate the prior probabilities and the conditional probabili-

ties for all the nodes in the network.

Time Probability

Fatigue 0.26

Active 0.74

Table 5.4: Prior probability for Time node

Time zone Probability

Change 0.17

No Change 0.83

Table 5.5: Prior probability for Time zone node

Noise Probability

High 0.15

Normal 0.85

Table 5.6: Prior probability for Noise node
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Temperature Probability

High 0.15

Normal 0.85

Table 5.7: Prior probability for Temperature node

Time / States Time zone Circadian Probability

Fatigue Change Awake 0.1

No Change Awake 0.4

Change Fatigue 0.9

No Change Fatigue 0.6

Active Change Awake 0.3

No Change Awake 0.95

Change Fatigue 0.7

No Change Fatigue 0.05

Table 5.8: Conditional probabilities for Circadian node given its parents

Noise / States Temperature Environment Probability

High High Good 0.06

Normal Good 0.2

High Bad 0.94

Normal Bad 0.8

Normal High Good 0.27

Normal Good 0.85

High Bad 0.73

Normal Bad 0.15

Table 5.9: Conditional probabilities for Environment node given its parents
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Circadian Environment State Probability

Awake Good Fatigue 0.05

Normal 0.31

Reckless 0.31

Drunk 0.33

Awake Bad Fatigue 0.27

Normal 0.25

Reckless 0.25

Drunk 0.23

Fatigue Good Fatigue 0.27

Normal 0.25

Reckless 0.25

Drunk 0.23

Fatigue Bad Fatigue 0.51

Normal 0.16

Reckless 0.16

Drunk 0.17

Table 5.10: Conditional probabilities for State node at time (t-1) given its parents

Lane maintenance /

States

Fatigue Normal Reckless Drunk

Good 0.49 0.975 0.41 0.49

Bad 0.51 0.025 0.59 0.51

Table 5.11: Conditional probabilities for Lane maintenance node given its parent
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Intoxication /

States

Fatigue Normal Reckless Drunk

Less than limit 0.99 1 0.975 0.1

More than limit 0.01 0 0.025 0.9

Table 5.12: Conditional probabilities for Intoxication node given its parent

Acceleration / States Fatigue Normal Reckless Drunk

Moderate 0.3 0.925 0.374 0.3

Sudden 0.7 0.075 0.626 0.7

Table 5.13: Conditional probabilities for Acceleration node given its parent

Controlling speed /

States

Fatigue Normal Reckless Drunk

Good 0.46 0.975 0.48 0.46

Bad 0.54 0.025 0.52 0.54

Table 5.14: Conditional probabilities for Controlling speed node given its parent

Eyes movements /

States

Fatigue Normal Reckless Drunk

Normal 0.05 0.99 0.99 0.05

Abnormal 0.95 0.01 0.01 0.95

Table 5.15: Conditional probabilities for Eyes movements node given its parent
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Circadian Environment State (t-1) Fatigue Normal Reckless Drunk

Awake Good Fatigue 0.7 0.1 0.1 0.1

Normal 0.1 0.7 0.1 0.1

Reckless 0.1 0.1 0.7 0.1

Drunk 0.1 0.1 0.1 0.7

Awake Bad Fatigue 0.8 0.1 0.05 0.05

Normal 0.4 0.4 0.1 0.1

Reckless 0.3 0.1 0.5 0.1

Drunk 0.2 0.1 0.1 0.6

Fatigue Good Fatigue 0.7 0.1 0.1 0.1

Normal 0.5 0.4 0.05 0.05

Reckless 0.4 0.1 0.4 0.1

Drunk 0.4 0.05 0.05 0.5

Fatigue Bad Fatigue 0.8 0.1 0.05 0.05

Normal 0.6 0.3 0.05 0.05

Reckless 0.4 0.1 0.4 0.1

Drunk 0.3 0.05 0.05 0.6

Table 5.16: Conditional probabilities for State node at time (t) given its parents

Eyelid movements /

Eyes movements

Normal Abnormal

Normal 0.95 0.01

Abnormal 0.05 0.99

Table 5.17: Conditional probabilities for Eyelid movements node given its parent
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AECS / Eye-

lid movements

Normal Abnormal

Slow 0.05 0.97

Normal 0.95 0.03

Table 5.18: Conditional probabilities for AECS node given its parent

PERCLOS / Eye-

lid movements

Normal Abnormal

Normal 0.95 0.02

Abnormal 0.05 0.98

Table 5.19: Conditional probabilities for PERCLOS node given its parent

5.3.4 Inferring the hypothesis node

Inferring the state of the hypothesis node is the final step in designing a DBN. The

behaviour of the driver is an evolving process which dynamically evolves over the

course of the time spent driving. Thus, the hypothesis node for a previous time slice

is considered as an information node, which can affect the hypothesis node at the

current time slice in addition to the information and observable nodes at the current

time slice.

As mentioned in chapter three, the inference in DBN can be carried out by either

converting the DBN to a HMM and then performing a forward backward algorithm

or unrolling the network and applying any exact static BN algorithm. In this thesis,

the inference process is carried out by unroll the DBN and perform an exact static

BN algorithm. Since the hypothesis node in our network depends on the evidence

received from both information nodes and observable nodes, a combination of diag-
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nostic and predictive reasoning is required to infer the hypothesis node (state node).

Therefore, we chose the polytree algorithm to perform the inference process, because

it includes evidence from both the parents and children of the hypothesis node [126].

Figure 5.2 depicts a fragment of a DBN unrolled for T time slices. As illustrated

in the figure, the hypothesis node at the previous time slice (xlt−1 where l = 1, 2,

3, 4), with its different states, is considered to be an information node used to infer

the hypothesis node at time t.

Let Xt be the hypothesis node (state) at time t. Cj
t (j = 1, 2, 3, 4, 5 or 6) rep-

resent the information variables at time t. While, Ok
t (k= 1, 2, 3, 4, 5, 6, 7 or 8)

signifies the observable variables at time t. Let xlt, cj,mt and ok,n
t (l = 1, 2, 3, 4 and

m, n = 1,2) represent the values taken by Xt, Cj
t and Ok

t respectively.

Let et = {e−t , e+t } be the evidence at time t, which consists of evidence from both

observable and information nodes, where e−t represents the evidence received from

node X’s children and e+t denotes the evidence received from node X’s parents. e−t

= {ei,jo,t} denotes the evidence of the ith observable node with jth states at time t.

While, e+t = {ei,jc,t} represents the evidence of ith information nodes with jth states

at time t. Calculating the conditional probability of the hypothesis node (X) at time

t, upon receiving the evidence et using a polytree algorithm can be carried out using

Eq. 3.7 as follows:

P (X = xlt|et) = α.λ(X).π(X) =
λ(X).π(X)∑

xl

λ(X).π(X)

l = 1, 2, 3, 4

(5.1)
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Figure 5.2: A fragment of the unrolled DBN

Where:

λ(X) = P (e−t |X) referring to the conditional probability of the evidence received

from the observable nodes given the occurrence of the hypothesis node at time t.

π(X) = P (X|e+t ) referring to the conditional probability of the hypothesis node

given the occurrence of the evidence received from the information nodes at time t.
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Therefore, Eq. (5.1) can be written as follows:

P (X = xlt|et) =
P (e−t |X = xlt).P (X = xlt|e+t )
4∑

j=1

P (e−t |X = xjt).P (X = xjt |e+t )

l = 1, 2, 3, 4

l is the number of states of the hypothesis node

(5.2)

With reference to Eq. (3.8), P(e−t |X = xlt) can be calculated as follows:

P (e−t |X = xlt) =
5∏

i=1

λOi
t
(X)

=

(
P (e1,jo,t |X = xlt)

)
×

(
P (e2,jo,t |X = xlt)

)
×

(
P (e3,jo,t |X = xlt)

)
×(

P (e4,jo,t |X = xlt)

)
×

(
P (e5,jo,t |X = xlt)

)

l = 1, 2, 3, 4j = 1, 2

l is the number of states of the hypothesis node

(5.3)

Using Eq. (3.9), P (X|e+t ) can be calculated as follows:

P (X = xlt|e+t ) =
∑

c1t ,c
2
t ,xt−1

P (X = xlt|c1t , c2t , xt−1)
3∏

j=1

πX(cjt)

=
2∑

i=1

2∑
m=1

4∑
n=1

P
(
X = xlt|c

1,i
t , c

2,m
t , xnt−1

)
.P
(
c1,it |e

1,i
c,t

)
.P
(
c2,mt |e

2,m
c,t

)
.P
(
xnt−1

)
l = 1, 2, 3, 4

l is the number of states of the hypothesis node

(5.4)
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Eqs. (5.2), (5.3) and (5.4) explain the method of computing the conditional

probability of the state node at time t. This was done by taking into account,

during the inference process the observation and the information nodes at time t, in

addition to considering the state node at time t-1 as an information node.

5.4 Summary

This chapter presented a novel DBN model for detecting four styles of driver be-

haviour, which are drunkenness, fatigue, reckless and normal behaviour as a step

towards improving road safety. It explained how the proposed model is able to rea-

son about uncertain contextual information by combining many variables related

to the driver, the vehicle and the environment (i.e. intoxication, position in the

lane and the circadian rhythm ... etc.) and performs a probabilistic inference for

deducing the behaviour.

The unrolled DBN is considered as a static BNs, where the hypothesis node at

the previous time slice is considered to be one of the information variables when

inferring the hypothesis node at the current time slice. After the network has been

parameterised, the polytree inference algorithm was applied to infer the hypothesis

node, which was found to be the most appropriate algorithm for our model. Using

a DBN and taking into account a large amount of contextual information will lead

to more accurate and efficient behaviour detection.

The next chapter (Chapter 6) will show the validation of the proposed behaviour

detection model using synthetic data. Moreover, experiments with different scenar-

ios will demonstrate the ability and the validity of our proposed model to detect

different kinds of behaviour during driving.
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Chapter 6

Evaluation and Experiments

Objectives:

• Show the validity and the performance of our DBN driver behaviour detection

model

• Illustrate the importance of including different context during the inference

process

• Present our DBN driver behaviour detection model with different scenarios
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6.1 Introduction

Detecting abnormal behaviours exhibited by drivers may result in enhanced road

safety and prevent accidents from happening, by alerting the driver. This chapter

introduces, the validation of our proposed DBN driver behaviour detection system

using synthetic data, concentrating on detection ability and validity. It explains the

accuracy and effectiveness of our model when detecting different styles of behaviour

(drunken, fatigue, reckless and normal).

Firstly the system has been validated by applying all possible combinations of

evidence (including information and observable nodes) in order to prove detection

accuracy, evaluate the effects of both types of nodes on the hypothesis node (state

node) and to illustrate the importance of including context from different sources

during the inference process.

In addition, three experiments have been introduced to reveal the validity and

performance of the proposed system during driving. The first experiment was con-

ducted following two scenarios to validate the system’s ability to detect fatigue

behaviour upon receiving evidence; the system was able to detect fatigue behaviour

in both scenarios using different combinations of evidence. The second experiment

illustrated the ability of the system to detect drunken behaviour during driving by

applying two different scenarios. The final experiment demonstrates how the system

can detect reckless behaviour, by applying several combinations of evidence in two

scenarios.

114



CHAPTER 6. EVALUATION AND EXPERIMENTS

6.2 Model verification using synthetic data

This section presents the validity of our model for detecting four styles of behaviour

(drunken, fatigue, reckless and normal behaviour) with all possible combinations of

evidence. Given the parameterised Dynamic Bayesian network, the driver behaviour

inference process starts upon the reception of evidence obtained from sensors. As

shown in Figure 5.2, the network consists of 10 evidence nodes (root nodes and

leaf nodes), each of which has two possible states. The total number of all possible

combinations of evidence is 210. As the circadian node is affected by the time and

time zone nodes, and the environment node is affected by the noise and tempera-

ture nodes, the circadian and environment nodes will be treated as evidence nodes

throughout this evaluation. The eyes movements’ node is treated as an evidence

node as it affects the eyelid movements’ node, which in turn affects the PERCLOS

and AECS nodes. After considering the circadian, environment and the eyes move-

ments as evidence nodes, the total number of all possible combinations of evidence

attained is 27; which is equal to 128 possible inputs. During the inference process,

the hypothesis node at time slice t will be influenced by information and observable

variables at time slice t, as well as by the hypothesis node at the previous time slice

t-1.

We have instantiated all the possible combinations of evidence as shown in Tables

6.1 - 6.4. In our evaluation, we have used two time slices in order to include the

state node at the previous time slice. Therefore, this evidence represents two time

slices given the same evidence. With the aim of simplicity, we will use the following

abbreviations; Eyes movements = EM, Controlling speed = CS, Acceleration = A,

Intoxication = I, Lane maintenance = LM, Circadian = C and Environment = E in

the tables.
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No. EM CS A I LM State Belief
1. abnormal bad sudden morethanlimit good Drunk 0.9983666
2. abnormal good sudden morethanlimit good Drunk 0.99836406
3. abnormal bad sudden morethanlimit bad Drunk 0.99835497
4. abnormal bad moderate morethanlimit good Drunk 0.99835462
5. abnormal good sudden morethanlimit bad Drunk 0.99835145
6. abnormal good moderate morethanlimit good Drunk 0.99835107
7. abnormal bad moderate morethanlimit bad Drunk 0.99833838
8. abnormal good moderate morethanlimit bad Drunk 0.99833347
9. normal bad sudden morethanlimit good Drunk 0.83613338
10. normal good sudden morethanlimit good Drunk 0.81700362
11. normal bad sudden morethanlimit bad Drunk 0.74741809
12. normal bad moderate morethanlimit good Drunk 0.74475582
13. normal good sudden morethanlimit bad Drunk 0.7206437
14. normal good moderate morethanlimit good Drunk 0.71779062
15. normal bad moderate morethanlimit bad Drunk 0.62553298
16. normal good moderate morethanlimit bad Drunk 0.59232894
17. abnormal bad sudden lessthanlimit good Fatigue 0.92870167
18. abnormal bad sudden lessthanlimit bad Fatigue 0.92789859
19. abnormal good sudden lessthanlimit bad Fatigue 0.92760968
20. abnormal good sudden lessthanlimit good Fatigue 0.92741532
21. abnormal bad moderate lessthanlimit good Fatigue 0.92717897
22. abnormal bad moderate lessthanlimit bad Fatigue 0.92658162
23. abnormal good moderate lessthanlimit bad Fatigue 0.92538233
24. abnormal good moderate lessthanlimit good Fatigue 0.82922436
25. normal bad moderate lessthanlimit bad Reckless 0.99319245
26. normal bad sudden lessthanlimit bad Reckless 0.99145328
27. normal good sudden lessthanlimit bad Reckless 0.99050194
28. normal bad sudden lessthanlimit good Reckless 0.98572
29. normal good moderate lessthanlimit bad Reckless 0.92319783
30. normal bad moderate lessthanlimit good Reckless 0.88396473
31. normal good sudden lessthanlimit good Reckless 0.70458318
32. normal good moderate lessthanlimit good Normal 0.98157912

Table 6.1: First set of combinations of evidence

Table 6.1 illustrates the states of the observable nodes (evidence), the inference

results (hypothesis node’s state) and the degree of belief, given that Circadian =

awake and Environment = good.
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No. EM CS A I LM State Belief
1. abnormal bad sudden morethanlimit good Drunk 0.9960862
2. abnormal good sudden morethanlimit good Drunk 0.99608317
3. abnormal bad sudden morethanlimit bad Drunk 0.99607234
4. abnormal bad moderate morethanlimit good Drunk 0.99607192
5. abnormal good sudden morethanlimit bad Drunk 0.99606815
6. abnormal good moderate morethanlimit good Drunk 0.9960677
7. abnormal bad moderate morethanlimit bad Drunk 0.99605258
8. abnormal good moderate morethanlimit bad Drunk 0.99604673
9. normal bad sudden morethanlimit good Drunk 0.8330337
10. normal good sudden morethanlimit good Drunk 0.81457968
11. normal bad sudden morethanlimit bad Drunk 0.74781225
12. normal bad moderate morethanlimit good Drunk 0.74526557
13. normal good sudden morethanlimit bad Drunk 0.7222166
14. normal good moderate morethanlimit good Drunk 0.71949096
15. normal bad moderate morethanlimit bad Drunk 0.63142033
16. normal good moderate morethanlimit bad Drunk 0.59970129
17. abnormal bad sudden lessthanlimit good Fatigue 0.98697633
18. abnormal bad sudden lessthanlimit bad Fatigue 0.98674408
19. abnormal good sudden lessthanlimit bad Fatigue 0.98665223
20. abnormal good sudden lessthanlimit good Fatigue 0.98627503
21. abnormal bad moderate lessthanlimit good Fatigue 0.98632166
22. abnormal bad moderate lessthanlimit bad Fatigue 0.98636925
23. abnormal good moderate lessthanlimit bad Fatigue 0.98579751
24. abnormal good moderate lessthanlimit good Fatigue 0.96163593
25. normal bad moderate lessthanlimit bad Reckless 0.97423789
26. normal bad sudden lessthanlimit bad Reckless 0.96479925
27. normal good sudden lessthanlimit bad Reckless 0.96530923
28. normal bad sudden lessthanlimit good Reckless 0.94648014
29. normal good moderate lessthanlimit bad Reckless 0.90277857
30. normal bad moderate lessthanlimit good Reckless 0.85726797
31. normal good sudden lessthanlimit good Reckless 0.69691923
32. normal good moderate lessthanlimit good Normal 0.96870979

Table 6.2: Second set of combinations of evidence

Table 6.2 illustrates the states of the observable nodes (evidence), the inference

results (hypothesis node’s state) and the degree of belief, given that Circadian =

awake and Environment = bad.
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No. EM CS A I LM State Belief
1. abnormal bad sudden morethanlimit good Drunk 0.99099056
2. abnormal good sudden morethanlimit good Drunk 0.99098865
3. abnormal bad sudden morethanlimit bad Drunk 0.99098182
4. abnormal bad moderate morethanlimit good Drunk 0.99098156
5. abnormal good sudden morethanlimit bad Drunk 0.99097917
6. abnormal good moderate morethanlimit good Drunk 0.99097889
7. abnormal bad moderate morethanlimit bad Drunk 0.99096935
8. abnormal good moderate morethanlimit bad Drunk 0.99096566
9. normal bad sudden morethanlimit good Drunk 0.8513111
10. normal good sudden morethanlimit good Drunk 0.834296
11. normal bad sudden morethanlimit bad Drunk 0.77178978
12. normal bad moderate morethanlimit good Drunk 0.76937932
13. normal good sudden morethanlimit bad Drunk 0.74748311
14. normal good moderate morethanlimit good Drunk 0.74488447
15. normal bad moderate morethanlimit bad Drunk 0.65993848
16. normal good moderate morethanlimit bad Drunk 0.62891076
17. abnormal bad sudden lessthanlimit good Fatigue 0.97963227
18. abnormal bad sudden lessthanlimit bad Fatigue 0.97922767
19. abnormal good sudden lessthanlimit bad Fatigue 0.979085
20. abnormal good sudden lessthanlimit good Fatigue 0.97891846
21. abnormal bad moderate lessthanlimit good Fatigue 0.97881735
22. abnormal bad moderate lessthanlimit bad Fatigue 0.97861226
23. abnormal good moderate lessthanlimit bad Fatigue 0.97799117
24. abnormal good moderate lessthanlimit good Fatigue 0.95463368
25. normal bad moderate lessthanlimit bad Reckless 0.95990795
26. normal bad sudden lessthanlimit bad Reckless 0.94573248
27. normal good sudden lessthanlimit bad Reckless 0.94699258
28. normal bad sudden lessthanlimit good Reckless 0.92032394
29. normal good moderate lessthanlimit bad Reckless 0.87286516
30. normal bad moderate lessthanlimit good Reckless 0.81588397
31. normal good sudden lessthanlimit good Reckless 0.63173878
32. normal good moderate lessthanlimit good Normal 0.97876995

Table 6.3: Third set of combinations of evidence

Table 6.3 illustrates the states of the observable nodes (evidence), the inference

results (hypothesis node’s state) and the degree of belief, given that Circadian =

fatigue and Environment = good.
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No. EM CS A I LM State Belief
1. abnormal bad sudden morethanlimit good Drunk 0.9939844
2. abnormal good sudden morethanlimit good Drunk 0.99398279
3. abnormal bad sudden morethanlimit bad Drunk 0.99397705
4. abnormal bad moderate morethanlimit good Drunk 0.99397683
5. abnormal good sudden morethanlimit bad Drunk 0.99397483
6. abnormal good moderate morethanlimit good Drunk 0.9939746
7. abnormal bad moderate morethanlimit bad Drunk 0.99396659
8. abnormal good moderate morethanlimit bad Drunk 0.99396349
9. normal bad sudden morethanlimit good Drunk 0.88272182
10. normal good sudden morethanlimit good Drunk 0.86870401
11. normal bad sudden morethanlimit bad Drunk 0.81603807
12. normal bad moderate morethanlimit good Drunk 0.81396919
13. normal good sudden morethanlimit bad Drunk 0.79504355
14. normal good moderate morethanlimit good Drunk 0.79278154
15. normal bad moderate morethanlimit bad Drunk 0.71693047
16. normal good moderate morethanlimit bad Drunk 0.68827736
17. abnormal bad sudden lessthanlimit good Fatigue 0.99081487
18. abnormal bad sudden lessthanlimit bad Fatigue 0.99063415
19. abnormal good sudden lessthanlimit bad Fatigue 0.99056101
20. abnormal good sudden lessthanlimit good Fatigue 0.99019162
21. abnormal bad moderate lessthanlimit good Fatigue 0.99025553
22. abnormal bad moderate lessthanlimit bad Fatigue 0.99034612
23. abnormal good moderate lessthanlimit bad Fatigue 0.98985086
24. abnormal good moderate lessthanlimit good Fatigue 0.97228152
25. normal bad moderate lessthanlimit bad Reckless 0.95443975
26. normal bad sudden lessthanlimit bad Reckless 0.93574734
27. normal good sudden lessthanlimit bad Reckless 0.93816031
28. normal bad sudden lessthanlimit good Reckless 0.90207112
29. normal good moderate lessthanlimit bad Reckless 0.87400552
30. normal bad moderate lessthanlimit good Reckless 0.81544095
31. normal good sudden lessthanlimit good Reckless 0.64784632
32. normal good moderate lessthanlimit good Normal 0.97085001

Table 6.4: Fourth set of combinations of evidence

Table 6.4 illustrates the states of the observable nodes (evidence), the results of

inference (hypothesis node’s state) and the degree of belief, given that Circadian

= fatigue and Environment = bad. The data illustrated by the aforementioned

tables were obtained automatically using polytree algorithm, which is provided by

Genie software. The process of belief updating was carried out by setting the nodes’
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states according to the required input and then performing ”update belief” function.

As shown by the above tables, the system is able to detect the state of the driver

(drunken, fatigue, reckless and normal) accurately over time, by applying all possible

combinations of evidence. This proves the validity and the accuracy of the system

for detecting different styles of behaviour, where different combinations of evidence

lead to different states with different degrees of belief.

6.2.1 Evaluation of the effects of information nodes

This section shows the effects of the circadian and environment nodes on the state

nodes, where the state node is directly affected by these nodes. As shown in Table

5.8, the circadian node may be in one of two mutually exclusive states depending

on the state of its parents time and time zone nodes. Similarly, Table 5.9 indicates

that the environment node may be in either one of its permitted states, according

to the states of its parents noise and temperature nodes.

Based on the proposed system design, different states of the circadian and envi-

ronment nodes lead to different degrees of belief in the state node. The system is

able to detect normal driving behaviour in all possible states of the circadian and

environment nodes given all possible combinations of all of the observable nodes’

states (ref no. 32 in table 6.1, ref no. 32 in table 6.2, ref no. 32 in table 6.3 and

ref no. 32 in table 6.4). As shown in these tables, the degree of belief in normal

behaviour reaches its highest level in case where Circadian = awake and Environ-

ment = good. This also validates the detection accuracy of the proposed system.

For fatigue, reckless and drunken behaviour, we have conducted several comparisons

to validate the effects of the above nodes on the state node, as illustrated in the

following paragraphs.
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Figure 6.1 depicts a comparison between all the possible combinations of evi-

dence, which leads to an assessment of fatigue behaviour. As seen in the figure, four

curves represent the level of fatigue for all possible states of the circadian and en-

vironment nodes, given all the possible combinations of all of the observable nodes’

states. The level of driver fatigue, in the case Circadian= awake and Environment=

good is the lowest level in the chart, while in the case Circadian= fatigue and Envi-

ronment = bad fatigue reaches its highest level. This demonstrates the effect of the

environment and the circadian rhythm on the driver’s level of fatigue. This further

validates our driver behaviour detection model.

Figure 6.1: A comparison between all possible evidence of fatigue behaviour

Figure 6.2 depicts a comparison between all the possible combinations of evi-

dence leading to an assessment of reckless behaviour. Four curves in the figure char-

acterise the belief in reckless behaviour in all possible states of the circadian and

environment nodes, given all possible combinations of all of the observable nodes’

states. Reckless behaviour is more likely to be present when Environment = good

and Circadian = awake, which again validates the driver behaviour detection model.
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Figure 6.2: A comparison between all possible evidence of reckless behaviour

Figure 6.3 illustrates a comparison between all the possible combinations of ev-

idence, which lead to an assessment of drunken behaviour. As shown in the figure,

there are four curves showing the belief in drunken behaviour for all possible states

of the circadian and environment nodes, given all possible combinations of all of the

observable nodes’ states. The belief in drunken behaviour is approximately the same

in all cases. It reaches its highest degree when Circadian = fatigue and Environment

= bad. This again proves the validity of our proposed model.

Figure 6.3: A comparison between all possible evidence of drunk behaviour
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6.2.2 Evaluation of the effects of observable nodes

In this thesis, the behaviour of the driver is considered as the current unobservable

state of the driver. The current state can be characterised by capturing a large

amount of context. This section presents the importance of including more than

one context during the inference process and shows the validity of our system in

terms of detection accuracy, using context related to the driver, the vehicle and the

environment.

As shown in Figure 6.4, drunken driving can be detected more accurately when

the eyes of the driver are closed, as this provides a combination of intoxication and

other evidence (ref nos. 1-8 in table 6.1), as compared with the case where the eyes

are open combined with intoxication and other evidence (ref nos. 9-16 in table 6.1).

Figure 6.4: Detecting the drunken behaviour given different evidence

As depicted in Figure 6.5, when we instantiated more than one evidence in

combination with eyes movements evidence (ref nos. 17-23 in table 6.1) the fatigue

level of the driver was found to be more accurate than when we instantiated a single

evidence regarding eyes movements (ref no. 24 in table 6.1).
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Figure 6.5: Detecting the fatigue behaviour given different evidence

As illustrated in Figure 6.6, in the case of reckless driving behaviour, when we

instantiated more than one evidence (ref nos. 25-28 in table 6.1), the detection ac-

curacy was more accurate than when we instantiated a single evidence such as bad

lane maintenance, bad controlling speed and sudden acceleration (ref nos. 29-31 in

table 6.1).

Figure 6.6: Detecting the reckless behaviour given different evidence
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The system has been able to detect drunken behaviour in the case where there

is only one evidence referring to this style of behaviour (intoxication more than the

limit) and all other evidence refers to normal behaviour (ref no. 14 in table 6.1),

for example, eyes are open, speed control is good, etc. This further demonstrates

the validity of our system because a drunk driver is expected to exhibit dangerous

behaviour at any time.

It can be seen from Table 6.1 that the system detected drunken behaviour in

(ref no. 14 in table 6.1) with a higher degree of belief than in (ref no. 16 in table

6.1); even though another evidence (bad lane maintenance) is present in the latter.

This has occurred for the following reason: this node can result from both drunken

and reckless behaviour but with higher probability in the case of reckless behaviour.

Therefore, the degree of belief in drunken behaviour is decreased and in reckless

behaviour is increased, but the system is still able to detect the drunken behaviour

because the intoxication is above the limit.

The above mentioned inference results reveal the fact that the presence of more

than one evidence guarantees the occurrence of a specific behaviour, and explain the

importance of combining different types of contextual information in order to deduce

the behaviour of a driver. These results show the utility of the proposed driver

behaviour detection system in detecting different styles of behaviour by combining

context from different sensors. In the above comparisons, we have used the data in

Table 6.1 where Circadian = awake and Environment = good since we have tried to

show the importance of including more than one context in the inference process.

This is because the situation is the same in Tables 6.2 - 6.4.
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6.3 Experiments

This section shows the validity and effectiveness of our proposed DBN model in de-

tecting different states of the driver while driving his/her car (detecting the driver’s

state over time). During driving, the driver might be in a particular state, which

he or she may remain in for a period of time and then potentially changing to a

different state. In this section, we will validate the ability of our system to detect

different styles of behaviour, which are fatigue, drunken and reckless behaviour.

After constructing a DBN for a specific domain, we can use it to represent knowl-

edge of the domain and to reason about the interpretation of certain input data. The

interpretation process includes instantiating a group of variables analogous with the

input data and then calculating their effects on the probability of other variables

referred to as hypothesis nodes [126]. In the inference process, the DBN will be

unrolled for t time slices, which is the time period that interests the decision maker.

Each time slice represents a snapshot of the evolving system (driver’s behaviour)

and this can be defined as a period of time in which the system receives sensor read-

ings, transfers them into a machine-processable form and then feeds them into the

system. Inference (filtering) is the process of calculating the probability of the state

node at time t given the evidence from the past until time t (calculating P(Xt|e1:t)).

The process is used to track the current state of the system continually, in order to

make decisions [119].

In the following experiments, we have assumed that each time slice represents

a period of one second, and during driving, the system will perform the inference

process every five seconds (five time slices) in order to continuously detect the state

of the driver and take the corresponding decision. If a testbed was available and
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equipped with the sensors required to acquire data for our proposed model, the pe-

riod of time for each time slice could be changed according to the real time needed to

do the sampling process and the period in which we infer the behaviour can change

in relation to real driving behaviours. Usually the real data are divided into two

parts; the first part is used to learn the parameters of the model, using one of the

available learning algorithms, and the second is used for testing the model.

Most road accidents occur due to driver error. In fact, fatigued, drunken and

reckless driving are considered the main causes, due to the dangerous actions that

are associated with these states. Detecting the above kinds of driving will lead to the

provision of a safe driving environment and will save people’s lives. Therefore, our

system concentrates on the mechanism for detecting abnormal driver behaviours.

The following sections present experiments to prove the validity of the proposed

model in detecting the above mentioned kinds of behaviours during driving.

The inputs used in the following scenarios might not reflect real life situations

(sensor readings), but we are trying to show the capability of the proposed system in

detecting the driver’s behaviour, by changing the system’s inputs to challenge and

make sure that the system is comprehensive enough to recognise each state correctly.

6.3.1 Experiment 1: Detecting the Fatigued Driver

In this study, the driver is considered to be fatigued if he/she exhibits abnormal eyes

movements and if one or all of the following criteria are satisfied in combination with

abnormal eyes movement evidence:

• The driver is driving without maintaining a proper lane position.

• The driver is performing sudden acceleration.
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• The speed of the vehicle exceeds the speed limit.

• There is no alcohol intoxication in the driver’s blood.

Two scenarios will present the case of changing from normal to fatigue behaviour.

The first scenario shows the validity of system detection in the case where eyes

movements are abnormal and the driver is driving without maintaining a proper

lane position. The second scenario illustrates the detection of a fatigued driver in

the case where eyes movements are abnormal and the driver does not control the

vehicle’s speed. As shown earlier in this chapter, the level of driver’s fatigue can

vary according to the states of the circadian and environment nodes. We have set

the states of the circadian and environment nodes to fatigue and bad respectively

in both scenarios.

Scenario 1: As shown in Figure 6.7, the vehicle is moving from point 1 to point

2 on a straight two-sided road. We have divided the period of driving in which

the vehicle is moving between these points into 15 equivalent time slices. Each

time slice represents a period of one second during which the vehicle collects new

information via sensors and feeds it to the system, the inference (filtering) process

being carried out every five seconds. During time slices 1-5, the driver is driving

while in the normal state. In time slices 6-10, the sensors indicate that the driver’s

eyes movements are abnormal which means that he/she has changed from the normal

to fatigue state. From time slice 11 to 15, another indication of fatigue is present in

addition to the abnormal eyes movements evidence, as the vehicle is not maintaining

the proper lane position, which increases the degree of belief in fatigue.

128



CHAPTER 6. EVALUATION AND EXPERIMENTS

Figure 6.7: Scenario 1

Modelling the above scenario using our proposed system can be carried out by

setting the states of the nodes according to the data provided by sensors. Table

6.5 illustrates the combination of evidence in time slices 1-5 where the behaviour is

normal, while Tables 6.6 and 6.7 present the combinations of evidence used in time

slices 6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.5: Evidence at time slices 1-5

Node EM CS A I LM

State abnormal good moderate lessthanlimit good

Table 6.6: Evidence at time slices 6-10

Node EM CS A I LM

State abnormal good moderate lessthanlimit bad

Table 6.7: Evidence at time slices 11-15

Figure 6.8 illustrates the inference results of the proposed DBN model upon re-

ceiving evidence in time slices 1-5, 6-10 and 11-15. It can be seen from the figure
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that there are four curves demonstrating the degrees of belief in the state node at

different time slices. The system has detected the normal driving behaviour at time

slice 5 with a belief of about 0.97. This is because all sensor readings from time slice

1 to 5 indicated normal driving behaviour. At time slice 10, the system was able to

infer the fatigue state with a belief of about 0.97 with the appearance of evidence

regarding fatigue (abnormal eyes movements) from time slice 6 to 10. The system

was able to deduce the fatigue state at time slice 15 with a degree of belief of about

0.99 due to the appearance of more than one evidence (abnormal eyes movements

and bad lane maintenance) from time slice 11 to 15.

Figure 6.8: Inference results at time slices 5, 10 and 15

The above scenario presents the system ability in detecting the fatigue state

during driving, using different sensor readings. Different degrees of belief can be

attained according to the evidence from the sensors. As shown in the above figure,

the probabilities of detection (the degrees of belief in the state node) are high which

caused the curves to fluctuate sharply. This is because we have used synthetic data

and we have entered hard evidence to the system. In other words, when we have

instantiated the evidence nodes, the probability of each evidence has been set to
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100%. For example, we have set the probability of abnormal eyes movements to

100% abnormal. The results would be different if real data were entered into the

system; for example eyes movements might be 75% abnormal and 25% normal. This

situation will be the same in all of the following scenarios, for the same reason.

Scenario 2: As shown in Figure 6.9, the vehicle is moving from point 1 to point

2 on a straight two-sided road. We have divided the period of driving in which the

vehicle is moving between these points into 15 equivalent time slices. Each time slice

represents a period of one second during which the vehicle gathers new information

via sensors and feeds it into the system. The inference process will be done every

five seconds. During time slices 1-5, the driver’s driving behaviour is normal. In

time slices 6-10, the sensors indicate that the driver’s eyes movements are abnormal

which means that the driver has changed from the normal to fatigue state. During

time slices 11 to 15, another indication of fatigue is presented as the vehicle’s speed

exceeds the road speed limit, which increases the belief of fatigue.

Figure 6.9: Scenario 2

Modelling the above scenario using our proposed system can be done by setting

the states of the nodes according to the data provided by sensors. Table 6.8 illus-

trates the combination of evidence in time slices 1-5 when the behaviour is normal,

while Tables 6.9 and 6.10 present the combinations of evidence used in time slices
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6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.8: Evidence at time slices 1-5

Node EM CS A I LM

State abnormal good moderate lessthanlimit good

Table 6.9: Evidence at time slices 6-10

Node EM CS A I LM

State abnormal bad moderate lessthanlimit good

Table 6.10: Evidence at time slices 11-15

Figure 6.10 depicts the inference results of the proposed DBN model upon receiv-

ing evidence in time slices 1-5, 6-10 and 11-15. As shown in the figure, there are four

curves representing the degrees of belief in the state node at different time slices.

The system detected the normal driving behaviour at time slice 5 with a belief of

about 0.97. This is because all sensor readings indicated normal driving behaviour

from time slice 1 to 5. The inference results at time slice 10 illustrate the degree of

belief of the system in the fatigue state, the system was able to detect the fatigue

state with a belief of about 0.97 when the evidence regarding fatigue appeared (ab-

normal eyes movements) from time slice 6 to 10. The belief in the fatigue state at

time slice 15 has reached about 0.99 due to the appearance of more than one fatigue

evidence (abnormal eyes movements and bad speed control) from time slice 11 to 15.
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Figure 6.10: Inference results at time slices 5, 10 and 15

6.3.2 Experiment 2: Detecting the Drunk Driver

In this study, the driver is considered to be drunk if he/she exhibits the same char-

acteristics as a fatigued driver, as illustrated in the previous experiment; but in

addition, there is alcohol intoxication in the driver’s blood.

In the following, two scenarios will describe the case of changing from normal to

drunken behaviour. The first scenario illustrates the validity of our proposed system

in detecting the drunk driver in the case where there is alcohol intoxication above

the limit, eyes movements are abnormal and the driver fails to maintain the proper

lane position. Meanwhile, the second scenario shows the ability of the system to de-

tect the drunk driver in the case where there is alcohol intoxication, eyes movements

are abnormal and the driver fails to control the vehicle’s speed. Different degrees

of belief can be achieved according to the states of the circadian and environment

nodes. In this experiment, we have set the states of the circadian and environment

nodes to fatigue and bad respectively in both scenarios.

133



CHAPTER 6. EVALUATION AND EXPERIMENTS

Scenario 1: In this scenario, we will consider the case depicted in Figure 6.7,

but with the following sensor readings: during time slices 1-5, the driver is driving

while in the normal state; in time slices 6-10, the sensors indicate that there is al-

cohol intoxication above the limit which means that the driver changed from the

normal to drunk state; from time slice 11 to 15, two other indications of drunkenness

have been presented since the vehicle is not maintaining the proper lane position and

the eyes movements are abnormal, which increases the degree of belief in drunken

behaviour.

Modelling the above scenario using our DBN model can be carried out by setting

the states of the nodes in each time slice according to sensor readings illustrated in

this scenario. Table 6.11 presents the combinations of evidences in time slices 1-5

where the behaviour is normal, while Tables 6.12 and 6.13 illustrate the combina-

tions of evidence used in time slices 6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.11: Evidence at time slices 1-5

Node EM CS A I LM

State normal good moderate morethanlimit good

Table 6.12: Evidence at time slices 6-10

Node EM CS A I LM

State abnormal good moderate morethanlimit bad

Table 6.13: Evidence at time slices 11-15
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Figure 6.11, illustrates the inference results of the proposed DBN model upon

receiving evidence in time slices 1-5, 6-10 and 11-15. As shown in the figure, there

are four curves signifying the inference results for all of the possible states of the

hypothesis node at different time slices. The system detected the normal driving

behaviour at time slice 5 with a belief of about 0.97. This is because all sensor

readings from time slice 1 to 5 correspond to normal driving behaviour.

It can be clearly seen from Figure 6.11 that at time slice 10 the system was able

to detect the drunken behaviour with a belief of about 0.91 when only one evidence

regarding drunken behaviour had appeared (intoxication is above the limit). Si-

multaneously, the curve that demonstrates reckless behaviour grew slightly to reach

about 0.10. This occurred due to the conditional probability distributions of the

intoxication node, as illustrated in Table 5.12: given that the intoxication evidence

above the limit, the probability of the state node being in its drunken state is 0.9

and the probability of being in its reckless state is 0.025. This led to the rise in the

curve of reckless behaviour and the lowering of the curve that represents drunken

behaviour.

Performing the inference at time slice 15 resulted in detection of drunken be-

haviour with a degree of belief of about 0.99. This happened due to the appearance

of more than one drunken behaviour evidence (abnormal eyes movements, intoxica-

tion is more than the limit and the driver fails to maintain the proper lane position)

from time slice 11 to 15 which highly increased the belief in drunken behaviour and

decreased the belief in other states.
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Figure 6.11: Inference results at time slices 5, 10 and 15

Scenario 2: In this scenario, we will consider the case illustrated in Figure 6.9,

but with the following sensor readings: during time slices 1-5, the driver is driving

while in the normal state; in time slices 6-10, the sensors indicate that there is alco-

hol intoxication over the limit and the eyes movements are abnormal, which means

that the driver changed from the normal to drunken state; from time slice 11 to 15,

another indication of drunkenness has been presented as the vehicle’s speed exceeds

the limit , which increases the degree of belief in drunken behaviour.

Modelling the above scenario using our DBN model is achieved by setting the

states of the nodes in each time slice according to sensor readings illustrated in this

scenario. Table 6.14 presents the combination of evidence in time slices 1-5 where

the behaviour is normal, while Tables 6.15 and 6.16 illustrate the combinations of

evidence used in time slices 6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.14: Evidence at time slices 1-5
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Node EM CS A I LM

State abnormal good moderate morethanlimit good

Table 6.15: Evidence at time slices 6-10

Node EM CS A I LM

State abnormal bad moderate morethanlimit good

Table 6.16: Evidence at time slices 11-15

As depicted in Figure 6.12, four curves categorise the degrees of belief in the

state node at different time slices. The figure illustrates the inference results of the

proposed DBN model upon receiving evidence in time slices 1-5, 6-10 and 11-15.

It can be seen from the figure that the system has detected the normal driving be-

haviour at time slice 5 with a belief of about 0.97. This is because all sensor readings

corresponded to normal driving behaviour from time slice 1 to 5. The system was

able to detect the drunken behaviour at time slice 10 with a belief of about 0.99

when the evidence regarding drunken behaviour had appeared (intoxication is above

the limit and eyes movements are abnormal) from time slice 6 to 10.

The inference results at time slice 15 correspond to detecting the drunken be-

haviour with a degree of belief of about 0.99, due to the appearance of more than

one drunken behaviour evidence (abnormal eyes movements, intoxication is above

the limit and the driver fails to control the vehicle’s speed) from time slice 11 to 15.
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Figure 6.12: Inference results at time slices 5, 10 and 15

The above scenarios present the system ability to detect drunken behaviour

during driving using different sensor readings. Different degrees of belief have been

reached according to the evidence received from sensors.

6.3.3 Experiment 3: Detecting the Reckless Driver

The driver is classified in this study as driving in this category if the eyes movements

of the driver are normal, there is no alcohol intoxication but if one or more than one

of the following criteria are satisfied:

• Driving with sudden acceleration.

• Driving with out maintaining the proper lane position.

• The speed of the vehicle exceeds the speed limit.

Two scenarios will present the case of changing from normal to reckless be-

haviour. The first scenario shows the validity of the system in detecting the reckless

driver when driving without maintaining the proper lane position and without con-

trolling the vehicle speed. Meanwhile, the second scenario illustrates detection of

138



CHAPTER 6. EVALUATION AND EXPERIMENTS

the reckless driver in the case where the driver is performing sudden acceleration and

does not maintain the proper lane position. We have set the states of the circadian

and environment nodes to awake and good respectively in both scenarios.

Scenario 1: As depicted in Figure 6.13, the vehicle is moving from point 1 to

point 2 on a straight two-sided road. The period of driving in which the vehicle

is moving between these points were divided into 15 equivalent time slices. Each

time slice represents a period of one second during which the vehicle collects new

information via sensors and feeds this information to the system. The inference

process is carried out every five time slices (five seconds). During time slices 1-5,

the driver is driving while in the normal state. In time slices 6-10, the sensors

indicate that the vehicle’s position in lane is bad, while eyes movements are normal

and intoxication is less than the limit. That means that the driver has changed from

the normal to reckless state. From time slice 11 to 15, another indication of reckless

behaviour appears as the driver fails to control the vehicle’s speed, which increases

the degree of belief in reckless behaviour.

Figure 6.13: Scenario 1

Modelling the above scenario using our DBN model can be carried out by setting

the states of the nodes in each time slice according to the sensor readings illustrated

in this scenario. Table 6.17 presents the combination of evidence in time slices 1-5

where the behaviour is normal, while Tables 6.18 and 6.19 illustrate the combinations
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of evidence used in time slices 6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.17: Evidence at time slices 1-5

Node EM CS A I LM

State normal good moderate lessthanlimit bad

Table 6.18: Evidence at time slices 6-10

Node EM CS A I LM

State normal bad moderate lessthanlimit bad

Table 6.19: Evidence at time slices 11-15

Figure 6.14 illustrates the inference results of the proposed DBN model upon

receiving evidence in time slices 1-5, 6-10 and 11-15 respectively. There are four

curves in the figure demonstrating the inference results at different time slices. As

illustrated in Figure 6.14, the system has detected the normal driving behaviour at

time slice 5 with a belief of about 0.98. This is because all sensor readings from time

slice 1 to 5 correspond to normal driving behaviour. At time slice 10, the system was

able to detect the reckless behaviour with a belief of about 0.95 when the evidence

(bad lane maintenance) regarding reckless behaviour appeared from time slice 6 to

10. The degree of belief in the reckless state at time slice 15 was about 0.99 due to

the appearance of more than one reckless behaviour evidence (bad lane maintenance

and the driver fails to control the vehicle’s speed) from time slice 11 to 15.

140



CHAPTER 6. EVALUATION AND EXPERIMENTS

Figure 6.14: Inference results at time slices 5, 10 and 15

Scenario 2: As depicted in Figure 6.15, the vehicle is moving from point 1 to

point 2 on a straight two-sided road. During time slices 1-5, the driver is driving

while in the normal state. In time slices 6-10, the sensors indicate that the driver is

performing sudden acceleration, while eyes movements are normal and intoxication

is less than the limit, which means that the driver has changed from the normal to

reckless state. From time slice 11 to 15, another indication of reckless behaviour

appears as the vehicle does not maintain the proper lane position. This increases

the degree of belief in reckless behaviour.

Figure 6.15: Scenario 1

Modelling the above scenario using our DBN model can be carried out by setting

the states of the nodes in each time slice according to the sensor readings illustrated
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in this scenario. Table 6.20 presents the combination of evidence in time slices 1-5

where the behaviour is normal, while Tables 6.21 and 6.22 illustrate the combina-

tions of evidence used in time slices 6-10 and 11-15 respectively.

Node EM CS A I LM

State normal good moderate lessthanlimit good

Table 6.20: Evidence at time slices 1-5

Node EM CS A I LM

State normal good sudden lessthanlimit good

Table 6.21: Evidence at time slices 6-10

Node EM CS A I LM

State normal good sudden lessthanlimit bad

Table 6.22: Evidence at time slices 11-15

Figure 6.16 illustrates the inference results of the proposed DBN model upon

receiving evidence in time slices 1-5, 6-10 and 11-15 respectively. As shown in the

figure, the system has detected the normal driving behaviour at time slice 5 with

a belief of about 0.98. This is because all sensor readings corresponded to normal

driving behaviour from time slice 1 to 5. It can be clearly seen from the figure that

at time slice 10 the system was able to detect the reckless behaviour with a belief of

about 0.80 when only one evidence regarding the reckless behaviour had appeared

from time slice 6 to 10 as the driver was performing sudden acceleration. At the same

time slice, the curve that represents normal driving behaviour dropped to about 0.18.
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The lowest degree of belief in reckless behaviour was reached when we entered

evidence regarding sudden acceleration only in time slices 6-10. If we compare the

belief in reckless behaviour with the previous scenario at time slice 6-10 when we

entered bad lane maintenance evidence, the belief in reckless behaviour was found

to be higher and the belief in normal behaviour was lower. This is due to the condi-

tional probability distributions of the acceleration and lane maintenance nodes. As

shown in Table 5.13, given sudden acceleration evidence, the probability of normal

behaviour is 0.075, while it can be seen from Table 5.11 that given bad lane mainte-

nance evidence, the probability of normal behaviour is 0.025. This has led to a lower

probability of reckless behaviour in the latter scenario and a higher probability in

the former.

Moreover, the figure illustrates the degree of belief in the state node at time

slice 15, when the degree of belief in reckless behaviour was about 0.99, due to the

appearance of more than one reckless behaviour evidence (bad lane maintenance

and the driver is performing sudden acceleration) from time slice 11 to 15, which

decreased the belief in normal and greatly increased the belief in reckless behaviour.

Figure 6.16: Inference results at time slices 5, 10 and 15
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These scenarios demonstrate the system ability in detecting reckless behaviour

during driving using different sensor readings. Different degrees of belief can be

reached according to the evidence received from sensors.

All the above experiments show the ability of our proposed system to detect

different styles of behaviour during driving. The system has been able to detect

normal driving behaviour in all scenarios. Fatigue, drunken and reckless behaviour

were detected using different combinations of evidence regarding these kinds of be-

haviours. Different combinations of evidence have led to different degrees of belief

in the state node, given different states for the circadian and environment nodes.

6.4 Summary

In this chapter, the validity of the proposed system in detecting different styles of

behaviour during driving has been presented. The importance of including context

from several sources has been shown.

Three experiments each with two scenarios have been introduced to validate the

system ability to detect different kinds of behaviour during driving (over time). The

first experiment demonstrated two scenarios to show the system ability in detecting

fatigue behaviour upon receiving evidence during driving. The second experiment

has illustrated the validity of the proposed system in detecting drunken behaviour

during driving using different sensor readings (different scenarios), while the last

experiment, has shown the validity of the system in detecting reckless behaviour

during driving, with two scenarios.

Monitoring and detecting the abnormal behaviours exhibited by drivers is im-
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portant for enhancing road safety and preventing accidents from happening. The

validation results of our proposed DBN model have shown the ability of the sys-

tem to detect four styles of behaviour during driving, which are normal, reckless,

fatigue and drunken behaviour. The results demonstrate the ability of the proposed

DBN model to deduce the driver’s behaviour by taking into account various sensor

readings over time. The importance of including more than one context during the

inference process was proven, the degrees of belief reaching their highest with the

presence of more than one context.
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Chapter 7

Conclusion and Future Work

Objectives:

• Summarise the work in this thesis

• Measure of success

• Propose future work that follows on from this thesis
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7.1 Conclusion

VANET is an emerging application of MANET; vehicles in VANET are the nodes in

the network and communicate with each other, or with the road side unit (RSU), us-

ing dedicated short range communication (DSRC). VANET forms of communication

have enabled the introduction of a wide range of safety and non-safety applications.

Safety applications have the potential to enhance the safety of passengers, and there-

fore represent a promising area of VANET; as such they are attracting the interests

of car manufacturers, researchers and governments. Monitoring and detecting the

behaviour of drivers is vital to ensuring road safety by alerting the driver and other

vehicles on the road of cases of abnormal driving behaviour. Driver’s behaviour is

affected by multiple factors related to the driver, the vehicle and the environment.

While driving, drivers may be in different states and it is therefore important to

capture the static and dynamic aspects of such behaviour and to take into account

contextual information related to that behaviour.

The goal of the work that was carried out in this thesis was to find a fundamen-

tal solution to improve road safety, prevent accidents from happening and provide a

safe driving environment by developing a robust driver behaviour detection system

in VANET by utilising a context-aware system approach. Developing such a sys-

tem could accomplish the goal of preventing road accidents and save people’s lives,

hence, enlarging the scope and effectiveness of VANET safety applications.

Through the research presented in this thesis, normal and abnormal driving

behaviours (i.e. fatigue, drunk and reckless) were defined in chapter 3 from the

perspective of a context-aware system. A five-layer context-aware architecture for

VANET was introduced in chapter 4; this can detect the behaviour of the driver
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by capturing information about the driver, the vehicle and the environment. The

architecture comprises three main phases, which are: the sensing, reasoning and

application phase, all of which represent the three main subsystems of the context-

aware system. In the sensing phase, the system senses information about the driver,

the vehicle and the environment. The reasoning phase is responsible for performing

reasoning under uncertainty and over time, in order to deduce the current behaviour

of the driver effectively. Finally, the application phase is responsible for operating

in-vehicle alarms and disseminating warning messages.

Performing reasoning over time and under uncertainty requires efficient reasoning

technique to combine information from different sensors and to deduce the driver’s

behaviour. Therefore, in chapter 5, a DBN model was presented in order to perform

this task. The DBN model was able to detect four styles of behaviour: fatigue,

drunk, reckless and normal behaviour. The behaviour of the driver is an evolving

process; developing over the course of driving, which means the driver state at a

previous time is considered an influential factor that affects the state at the current

time. The DBN model combines information from different sources and takes into

account the static and the temporal aspect (the driver’s state at the previous time)

of behaviour during the inference process.

The proposed model was validated in chapter 6 using synthetic data. The re-

sults from the validation have demonstrated the ability and the effectiveness of the

proposed model for detecting different kinds of behaviour while driving, using dif-

ferent sensor readings. Different degrees of belief were presented according to the

data inputted. Moreover, the results revealed the fact that including more than one

context when inferring behaviour guarantees the detection of specific behaviours.
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7.2 Measure of Success

The results in this thesis began with a set of aims labelled as the measure of success;

these were illustrated in chapter 1. This section concentrates on each of these criteria

to determine the degree to which the research has been successful, as shown below:

• The research questions specified in chapter one have been met as follows:

– What kind of information is needed to detect different styles of driver be-

haviour accurately?

Several factors (context) can be combined to deduce the behaviour of the

driver; the most significant contributory factors have been chosen and

explained in detail in chapter 5. This includes information about the

driver (i.e. eyes movements), the vehicle (i.e. position in lane) and the

environment (i.e. temperature).

– How can we design an effective driver behaviour detection system archi-

tecture for VANET by utilising a context-aware system approach?

A novel OBU architecture has been introduced in chapter 4, designed

based on the concept of a context-aware system and built utilising a

new technique for detecting the behaviour of drivers in VANET. The

architecture comprises three phases: the sensing, reasoning and applica-

tion phases. This process is based on a context-aware system and is a

self-organising process, in which sensing, reasoning and acting upon con-

textual information occurs instantly.
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– How can we design an efficient driver behaviour detection model that can

perform reasoning over time (temporal reasoning) and under uncertainty?

The target of detecting different styles of driving behaviours includes

normal, fatigue, drunk and reckless was accomplished by introducing a

novel DBN model in chapter 5. The proposed DBN model combined

contextual information about the driver, the vehicle and the environment

and performed reasoning over time and under uncertainty, in order to

deduce the above styles of a driver’s behaviour while driving effectively.

• A study presenting how our proposed architecture can be applied in VANET,

in order to detect the abnormal behaviours exhibited by drivers has to be con-

ducted.

An illustration is given in chapter 4 to show how the proposed OBU architec-

ture utilises the components of the OBU and how the newly added components

interact with original components in order to detect the behaviour of a driver.

• An analysis of why DBN was chosen from among other reasoning techniques,

and a determination of the advantages of this technique must be performed.

An extensive study has been carried out in chapter 2 to inspect available

reasoning techniques. As a result, the DBN was chosen from among these

techniques, and the reasons for this were demonstrated in that chapter. A

detailed description of this technique showing advantages and capabilities has

been illustrated in chapter 3.
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• A study showing how our proposed driver behaviour detection model is different

from others has to be carried out.

A thorough study was conducted in chapter 2 regarding currently available

driver’s behaviour detection systems in order to present their limitations and

illustrate the differences between these systems and our proposed system.

7.3 Future work

Vehicular ad hoc networks remains an interesting research area in the field of wire-

less communications and networking attracting a large number of researchers. Many

challenges in this field still need to be overcome; currently the focus of this is on

proposing appropriate solutions to diminish the problems that prevent development

in VANET.

In accordance with the work carried out in this thesis, future concerns needing

to be taken into consideration are as follows:

• Develop a context interpreter unit in order to transfer the data collected by

sensors into a machine processable format using one of the available modelling

techniques (i.e. ontology).

• Extend the model structure by adding more variables (information and ob-

servable variables) in order to increase the detection accuracy of the model

(i.e. driver’s age, weather conditions, etc.).

• The focus of the research presented in this thesis is not on designing a high-

fidelity driver behaviour detection model, but on introducing a theoretical

model that is able to deduce the behaviour of the driver in a principled way.
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Thus, more research is needed to enhance the parameters (conditional proba-

bility distributions) of the proposed DBN model.

• Technological devices such as sensors, high performance processors and mem-

ories that have a small size and high storage capacity are available in the

market, this makes it possible for the proposed system to be implemented in a

real vehicle. Therefore, more research is needed to examine the requirements

for implementing the model (i.e. the size and format of the database required

to store the information that gathered by sensors, the processor required to

perform the behaviour detection algorithm, etc.).

• One important future direction will involve designing a corrective action al-

gorithm, the aim of this algorithm would be to alert drivers and calculate

corresponding corrective actions for other vehicles on the road in cases where

a driver is driving in reckless, drunken or fatigued behaviour. Corrective ac-

tions can be disseminated using the wireless access technology provided by

VANET to prevent accidents from happening. Generating corrective actions

for other vehicles requires combining data about the current traffic situation.

This data can be collected from TMC, digital road maps and adaptive HELLO

messages that are periodically disseminated in VANET. This data includes in-

formation about the road structure, other vehicles’ positions, other vehicles’

direction, weather conditions, etc.

However, the process of designing a corrective action algorithm might face

several challenges as follows:

1. Timing: The warning messages have to reach the other vehicles in time

to allow them to implement corrective actions; e.g. so the driver can
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divert his/her car to a safe lane or on the hard shoulder in a timely

manner.

2. Relevancy: The warning message has to reach only those vehicles that

are on the same road or travelling in the same direction, but not vehicles

moving in the opposite direction.

3. Security: The warning message has to be authenticated and secured;

e.g. so only the unreliable vehicle can generate them.

4. Usability: The algorithm has to generate practical corrective actions to

allow other vehicles to avoid unreliable driver; e.g. the corrective action

would be to move to the left side or the right side.
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Appendix A

VANET Applications

This Appendix contains a full description of VANET applications, which comprises

safety and comfort applications.

V2V and V2I communications allow the development of a large number of ap-

plications and can provide a wide range of information to drivers and travellers.

Integrating on-board devices with the network interface, different types of sensors

and GPS receivers, grant vehicles the ability to collect, process and disseminate in-

formation about itself and its environment to other vehicles in close proximity to it.

That has led to enhancement of road safety and the provision of passenger comfort

[40, 41, 39].

VANET applications are classified according to their primary purpose into:

1. Comfort/Entertainment applications: This category of applications is

also referred to as non-safety applications, and aim to improve drivers and

passengers comfort levels (make the journey more pleasant) and enhance traffic

efficiency. They can provide drivers or passengers with weather and traffic

information and detail the location of the nearest restaurant, petrol station or
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hotel and their prices. Passengers can play online games, access the internet

and send or receive instant messages while the vehicle is connected to the

infrastructure network.[40, 41, 32, 39].

2. Safety applications: These applications use the wireless communication be-

tween vehicles or between vehicles and infrastructure, in order to improve

road safety and avoid accidents; the intention being to save people’s lives and

provide a clean environment.

Applying wireless communication technology in vehicles in order to communicate

with other vehicles, or with the infrastructure, enables a wide range of applications

and leads to an increase in the road safety level. According to [16], safety applica-

tions using V2V communication or V2I communication, or both can be categorised

as fellows:

1. Intersection collision avoidance

2. Public safety

3. Sign extension

4. Vehicle diagnostics and maintenance

5. Information from other vehicle

1. Intersection collision avoidance: Improving intersection collision avoid-

ance systems will lead to the avoidance of many road accidents; this system

is based on I2V or V2I communication. The sensors at infrastructure gather,

process and analyse the information from the vehicles moving close to the in-

tersection [141], depending on the analysis of data; if there is a probability of

an accident or a hazardous situation, a warning message is sent to the vehicles
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in the intersection area to warn them about the possibility of the accident so

that they can take appropriate action to avoid it.

There are many applications that fall under intersection collision avoidance

systems umbrella, all of them use a minimum frequency of 10Hz, relying on

I2V communication and using periodic safety messages with a communication

range of 200-300m, these applications are as follows:

• Warning about violating traffic signal: This application is designed to

send a warning messages to vehicles to warn the drivers about a dangerous

situation (accident) that would occur happen if the vehicle does not stop;

when the traffic signal is running and indicating a stop, the message

that is sent depends on several factors; such as traffic status, timing, the

vehicle’s speed, the vehicle’s position and the road surface [141, 1].

• Warning about violating stop sign: This application is designed to send

a warning messages to a vehicles to warn the driver about the current

distance between the vehicle and the stop sign and the speed required

to prevent the necessity of hard breaking, so as to prevent the vehicle

from violating of a stop sign, which will then lead to the prevention of a

hazardous situation [1, 16].

• Left turn assistant: The aim of this application is to help the driver

to make a left turn at an intersection in a safe way, as shown in figure

A.1 by sending the information collected about the traffic status on the

opposite side of the road to the vehicle wanting to make the left turn.

This information is collected by road sensors or by in-vehicle sensors and

is then sent to vehicles, either directly from roadside infrastructure, or

by the vehicles requesting the information via in-vehicle systems to allow

the driver to decide whether turn left or not.
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Figure A.1: Left turn driver assistant to avoid accidents [1]

• Stop sign movement assistant: The aim of this application is to warn

drivers about hazardous situations that may occur if thier vehicles pass

by an intersection. This is achieved by collecting data from road sensors

and in-vehicle sensors and sending this information to the vehicles trying

to pass the intersection; this means the driver will know if there are other

vehicles approaching the intersection at the same time, and should lead

to the prevention of accidents at intersections. This application relies on

both V2V and V2I types of communications.

• Intersection collision warning: This application collects the information

about the road intersection via sensors and in-vehicles sensors and anal-

yses this information, if there is a probability of an accident occurring

the system will generate and send a warning messages to all the vehicles

approaching the intersection. The data gathered by the sensors includes

vehicle velocity, position, acceleration and road surface information.

• Warning about blind merge detection: This application aims to prevent

a collision at the merge point where the visibility is poor. The system

will alert vehicles trying to merge if there is an unsafe situation, at the
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same time it will warn the remaining vehicles on the road. The system

collects and processes the data at the intersection and if there is an unsafe

situation detected it will generate a warning messages to vehicles.

• Pedestrian crossing information designated intersection: The main goal

of this application is to warn drivers if there is a pedestrian crossing the

road, by collecting information about the walkers via sensors installed in

the walk side. After collecting this information the sensors can send it

to the system; meanwhile at the same time the system has the ability

to collect data if somebody has pressed the walk button located at the

crossing signal, as shown in figureA.2, after the system has processed all

the data and there is a possibility of collision found it will send a warning

messages to the vehicles approaching the walk side area.

Figure A.2: Pedestrian crossing warning [12]

2. Public safety: Public safety applications aim to aid drivers when an accident

has occurred and to support emergency teams by minimising their travel time

and provide their services, most of the emergency vehicles response time are

wasted in their way to the destination. The average time for the emergency

vehicle to response is 6-7 minutes, while in some cases this can be as much as

25 minutes.

The frequency used by this applications is 1Hz relying on I2V communication,

V2V communication or both and useing event-driven safety messages with a

communication range of 300-1000m[1].
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The most familiar applications within this category are:

• Approaching emergency vehicle warning: This system is designed to sat-

isfy the requirements to provide a clear road to allow emergency vehicles

to reach their destinations without waiting in traffic, as shown in figure

A.3, the system accomplished this task by disseminating alert messages

relying on one way V2V communication between vehicles travelling on

the same route in an attempt to clear the road clear for the emergency

vehicle, this message contains information about the emergency vehicle’s

velocity, direction, lane information and path.

Figure A.3: Approaching emergency vehicle warning [13]

• Emergency vehicle signal preemption: Available infrastructures at each

intersection support emergency vehicles by sending messages to all traffic

lights on the route to the destination using V2I communication. this
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sets all the lights to green when the emergency vehicle arrives at the

traffic signals, minimising the response time for the emergency vehicle,

and reducing the possibility of an accident occurring involving it.

• SOS Services: The SOS system works in conditions where a life threat-

ening situation occurs; by sending SOS messages in the case of accidents.

The SOS signal can be trigged either automatically by the system or a

driver. Both types of communication (V2V and V2I) can be used to serve

the system, depending on the situation for instance, the signal could be

sent to the nearest infrastructure point directly, alternatively it depends

upon the vehicles in range repeating the signal and delivering it to the

nearest infrastructure.

• Post crash warning: This application aims to prevent potential accidents

before they happen; a vehicle which is disabled because of foggy weather

or due to an accident sends a warning messages to other vehicles com-

ing travelling in the same direction, or the opposite direction by using

both types of communications (V2I and V2V) to inform them about its

location, heading, direction and status information.

3. Sign Extension: The main goal of this application is to alert inattentive

drivers to signs that are placed on the side of the road while driving in order

to prevent accidents.

Most of the sign extension applications use a minimum frequency of 1Hz re-

lying on I2V communication and the use of periodic safety messages with

a communication range of 100-500m, these applications can be classified as

follows:

• In-vehicle signage: This application relies on the RSU being fixed in a

specific area; for example in a school zone, hospital zone or animal passing
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area to send alert messages to vehicles approaching the zone.

• Curve Speed Warning: This application relies on the RSU being fixed

before the curve to disseminate messages to approaching vehicles alerting

them about the location of the curve, the speed required to negotiate the

curve safely and the road conditions.

• Low Parking Structure and Bridge Warning: This application is designed

to alert the driver regarding the minimum height of the park they are

trying to enter, by sending a warning messages to the vehicle via an

RSU installed close to the parking facility, then the OBU can determine

whether it is safe to enter the structure.

• Low Bridge Warning: This application is designed to alert the driver to

the height of the bridge they are trying to pass under, by sending warning

messages to the vehicle via an RSU installed close to the bridge, then the

OBU can determine whether there is sufficient clearance.

• Wrong Way Driver Warning: This system is designed to alert a vehicle

if it is travelling in the wrong direction. By using V2V communication

a vehicle travelling the wrong way can alert the other vehicles around it

via warning messages to prevent accidents occurring.

• Work zone warning: This system relies on the RSU installed closed to

the work zone in order to warn approaching vehicles about the work zone

area, sending warning messages using I2V communication.

• In-Vehicle Amber Alert: This system depends on I2V communication and

send Amber warning messages (America’s missing: Broadcast emergency

response) to vehicles; this messages is disseminated when the police con-

firm that there is a vehicle involved in the crime and it is issued to all

vehicles in the area, except for the suspect vehicle.
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4. Vehicle diagnostics and maintenance: This application aims to send no-

tification messages to vehicles in order to remind drivers about safety defects

and that it is time for the vehicle to receive maintenance.

These applications rely on I2V communication and use event-driven safety

messages with a communication range of 400m, these applications can be

classified into:

• Safety recall notice: A message sent to vehicles to remind the drivers

when a recall is issued.

• Just-in-time repair notification: In this system if there is a fault within

the vehicles, the OBU will send a messages to the infrastructure using

V2I communication, the vehicles will receive a reply message containing

instructions from the support centre to tackle this problem using I2V

communication.

5. Information from other vehicles: This type of application relies on V2V

communication, I2V communication or both to perform applications functions

by a frequency of 2-50Hz and event-driven or periodic messages requiring a

communication range of 50-400m.

Information from other vehicles applications can be classified as follows:

• Cooperative forward collision warning: This system accomplishes the

goals necessary to assists a vehicle in avoiding becoming involved in an

accident with the vehicle travelling ahead of it. The system uses V2V

communication with a multi hop technique in order to send warning mes-

sages to a driver about the situation. These messages include information
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(position, direction, velocity and acceleration), each vehicle processes this

information after receiving it to decide on the danger level then forward

it to other vehicles.

• Vehicle-based road condition warning: This application is based on V2V

communication; the vehicle collects sufficient information about the road

status via the vehicle’s sensors, after collecting road information the in-

vehicle unit processed this data to determine the road situation in order

to initiate a warning to the driver or send a warning messages to other

vehicles.

• Emergency electronic brake lights (EEBL): This system aims to warn

other vehicles on the road if there is going to be a need for sudden hard

breaking or in case of foggy weather where visibility has become very poor

and break lights are not bright enough to be recognised by other drivers;

as shown in figure A.4, by using only V2V communication vehicles can

disseminate the message to other vehicles on the road and alert them to

the need for hard breaking ahead.

Figure A.4: Emergency electronic break light system [1]
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• Lane change warning: As shown in figure A.5, this application is designed

to avoid crashes that might occur due to unsafe lane changing decisions

being made by the driver. The system collects data about the vehicle and

the surrounding vehicles; such as speed, direction and vehicle position,

and when the driver decides to change his/her current lane the system

processes the data collected and evaluate whether the decision will lead

to an accident. The system then issues a warning to alert the driver

about the potentially dangerous situation and uses V2V communication

to alert other vehicles.

Figure A.5: Lane change warning system [12]

• Blind spot warning: This application alerts the driver if he/she decides

to change lane and there is a vehicle in the blind spot; it uses V2V

communication to send a warning messages to other vehicles on the road.

• Highway merge assistant: This application prevents accidents from oc-

curring when a vehicle is attempting to merge on the highway. If the

vehicles is moving on a ramp or there are other vehicles in the vehicle’s

blind spot then the system start to sends a warning messages to other
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vehicles informing them about the speed, position and direction of the

vehicle in order to take appropriate action to prevent the accident.

• Visibility enhancer: Bad weather conditions such as fog, rain and snow

lead to poor visibility for the drivers, and this system assists the driver by

sensing bad weather conditions and warn the driver about this conditions

and warning the driver and other vehicles on the road about them..

• Cooperative collision warning: The main goal of this application is to

warn the driver about any accidents that have been predicted, by relying

on V2V communication. The system exchange messages between vehi-

cles containing information about surrounding vehicles; describing their

direction, position, acceleration, yaw-rate and velocity. The in-vehicle

unit processes this information in combination with information about

the vehicle itself; if there is a possibility of an accident the system warns

the driver.

• Cooperative adaptive cruise control: This application adjusts the speed

of the vehicle depending on the speed of the vehicles ahead and those

behind; it uses V2V communication to exchange messages between the

vehicles detailing their position, direction, speed, yaw-rate and accelera-

tion. Meanwhile, the system utilises I2V communication to acquire the

speed limit of the road.

• Road condition warning: This system is concerned with alerting vehicles

about poor road conditions caused by ice or other substances causing the

road to be slippery, in order to prevent accidents. The road side sensors

on the system collect data regarding the road to determine if there are

any unsafe conditions, then disseminates warning messages to vehicles to

adjust, suggesting they adjust their speed to avoid accidents.
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• Pre-crash sensing: The main goal of this system is to predict a situation in

which an accident is about to happen, information can be collected from

sensors, and additional data that can be acquired from other vehicles

using V2V communication, this system increase the level of safety for

peoples inside vehicles.

• Highway/ rail collision warning: This application aims to prevent vehicles

from becoming involved in accidents with trains, by using RSUs placed

at intersections to notify approaching vehicles to prevent them colliding

with trains; another method is to receive messages directly from the train

to warn vehicles to take corrective action.

• Vehicle-to-Vehicle Road feature notification: This system is designed to

collect information about the road infrastructure using V2V communica-

tion and disseminating this information to other vehicles on the road to

be used by other VANET applications.

• Cooperative Vehicle-Highway Automation System: This system controls

the velocity and position of vehicles to travel on the highway as a pla-

toon, relying on V2V communication and using V2I communication. The

system collects information about the vehicle and merges the data with

information regarding its position and map data in order to control the

vehicle’s movements and enhance the traffic flow on the highway.

184



Appendix B

Using GeNIe 2.0 to implement our

DBN model

This Appendix contains a full description of how we use GeNIe 2.0 to implement

our DBN model.

GeNIe version 2.0 [133, 11, 119] is a development tool for implementing DBNs.

It was developed at the University of Pittsburgh, and it supports both BN and

DBN implementation by providing temporal reasoning as well as supporting many

inference algorithms such as the polytree algorithm, which we used to infer the

hypothesis node in our network. Figure B.1 depicts the working environment of

GeNIe software. The following sections will illustrate how we have used the GeNIe

software to implement our DBN.
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Figure B.1: Overview of GeNIe 2.0 environment

B.1 Creating network nodes

This section presents the steps for creating the nodes of the networks in GeNIe.

There are two types of node, which are static and temporal nodes. In this thesis, we

only use the temporal nodes which change their values or develop over time. Before

inserting the temporal nodes, the temporal plate has to be inserted in order to use

this type of nodes. As shown in Figure B.2, adding the plate will divide the working

environment into four parts that are as follows:

• Temporal plate: The temporal nodes of the network have to be inserted

in this part. It contains the number of time steps (time slices) which can be

changed by double-clicking on it to indicate the number of time slices involved

in the inference process.

186



APPENDIX B. USING GENIE 2.0 TO IMPLEMENT OUR DBN MODEL

• Contemporals: The nodes that do not change their values over time and

remain steady (i.e. the sex of the driver) have to be inserted in this part.

These nodes are also called static nodes.

• Initial conditions: Inserting the nodes required only in the first time slice

during the inference process.

• Terminal conditions: Inserting the nodes required only in the last time slice

during the inference process.

Figure B.2: Adding the temporal plate in GeNIe

Having inserted the temporal plate, the next step is to insert the nodes of a

DBN. Inserting a node can be done by clicking on Tools → Chance then clicking

inside the temporal plate’s temporal plate, as shown in Figure B.3. After inserting

the node, the node’s name, type and states have to be specified via the Identifier,

the Diagnostic type and the State name respectively as shown in Figure B.4.
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Figure B.3: Inserting a node in GeNIe

Figure B.4: Specifying the node’s properties in GeNIe

B.2 Network arcs and conditional probability ta-

bles

Network arcs represent the causal relationships between random variables. This

section shows the steps for adding network arcs between random variables. Two

types of arcs exist in GeNIe, which are normal arc, which denotes the effect of one
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variable to another in the same time slice; and the temporal arc, which represent

the relation between the variables within different time slices. Inserting a network

arc can be done by clicking on Tools → Arc then specifying the parent node and the

child node, which can be the same node. After selecting the child node, a menu will

appear to allow the network designer to specify the type of the arc, either normal

or temporal, with different orders. Setting the order to a specific number means

specifying the order of a DBN, for example, choosing order 1 indicates that the

node will depend on its past on the previous time slice only (first order Markov

process). As mentioned earlier in this chapter, the hypothesis node in our DBN

only depends on its immediate past. Therefore, we have set the temporal arc of the

hypothesis node in our network to order 1. Inserting normal and temporal arcs can

be carried out as depicted in Figure B.5.

Figure B.5: Adding network arcs in GeNIe

The step after drawing the network arcs is filling the conditional probability tables

for all nodes in the network. Setting the CPT for any node is done by double-

clicking on any node then selecting the definition tab and entering the conditional

probability distributions for the node as shown in Figure B.6.
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Figure B.6: Filling the conditional probability tables in GeNIe

The structure of our DBN, which is implemented using GeNIe version 2.0 software,

is shown in Figure B.7.

Figure B.7: DBN Structure Implemented using GeNIe
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B.3 Inference and Results

As mentioned earlier in Chapter 3, GeNIe 2.0 supports different kinds of inference

algorithms (i.e. the polytree algorithm). The designer has to select the appropriate

inference algorithm before performing the inference process, and the selection of the

algorithm depends on the problem requirements. Selecting the desired algorithm is

done by clicking on Network → Algorithm then selecting the desired one (we have

selected the polytree algorithm to perform the inference in our network). After

choosing the inference algorithm, the inference process can be carried out by right-

clicking on the network area and selecting ’Update Beliefs’. The updated beliefs of

the network can be gained by double-clicking on the hypothesis node then selecting

the value tab as shown in Figure B.8.

Figure B.8: The representation of the updated beliefs in GeNIe
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