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ABSTRACT 

Manufacturing systems have developed both physically and technologically, allowing 

production of innovative new products in a shorter lead time, to meet the 21
st
 century 

market demand. Flexible flow lines for instance use flexible entities to generate 

multiple product variants using the same routing. However, the variability within the 

flow line is asynchronous and stochastic, causing disruptions to the throughput rate. 

Current autonomous variability control approaches decentralise the autonomous 

decision allowing quick response in a dynamic environment. However, they have 

limitations, e.g., uncertainty that the decision is globally optimal and applicability to 

limited decisions. 

This research presents a novel formula-based autonomous control method centered on 

an empirical study of the effect of stochastic variability on the performance of flexible 

human-dependent serial flow lines. At the process level, normal distribution was used 

and generic nonlinear terms were then derived to represent the asynchronous 

variability at the flow line level. These terms were shortlisted based on their impact on 

the throughput rate and used to develop the formula using data mining techniques. 

The developed standalone formulas for the throughput rate of synchronous and 

asynchronous human-dependent flow lines gave steady and accurate results, higher 

than closest rivals, across a wide range of test data sets. Validation with continuous 

data from a real-world case study gave a mean absolute percentage error of 5%.  

The formula-based autonomous control method quantifies the impact of changes in 

decision variables, e.g., routing, arrival rate, etc., on the global delivery performance 

target, i.e., throughput, and recommends the optimal decisions independent of the 

performance measures of the current state. This approach gives robust decisions using 

pre-identified relationships and targets a wider range of decision variables.  

The performance of the developed autonomous control method was successfully 

validated for process, routing and product decisions using a standard 3x3 flexible flow 

line model and the real-world case study.  The method was able to consistently reach 

the optimal decisions that improve local and global performance targets, i.e., 

throughput, queues and utilisation efficiency, for static and dynamic situations. For 

the case of parallel processing which the formula cannot handle, a hybrid autonomous 

control method, integrating the formula-based and an existing autonomous control 

method, i.e., QLE, was developed and validated.   
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1 INTRODUCTION 

 

1.1 Motivation 

During the past decades, several manufacturing systems were developed to keep pace 

with the significant advancements in technology and telecommunications and tailor 

products and services to achieve the main strategic goal ‘to satisfy the customer 

requirements’ (Upton 1994). Customer requirements tend to be trending upwards in 

terms of complexity, which requires reshaping the manufacturing process to be 

flexible enough to handle a variety of complex products (He et al. 2014). 

Manufacturing systems developed significantly over the past years to become more 

lean, customer-oriented and intelligent (Jasti and Kodali 2015). To cope with the fast-

track market changes, flexibility has been built in every element of the manufacturing 

system (Jain et al. 2013). Flexible flow lines use multi-skilled process owners or 

flexible machines for human-dependent and machine-based flow lines respectively 

(Quadt and Kuhn 2005). Flexible flow lines are a cost-effective solution that 

integrates the benefits of both mass production and mass customisation strategies 

(Ambani 2011, Sankar et al. 1997). Such flow lines standardise the serial routing for 

all product variants while allowing manufacturing flexibility to take place at the 

process level (Quadt and Kuhn 2007). The flexible flow line can be synchronous if 

the variability across all processes is common and, more generally, asynchronous 

when inter-process variability exists (Li and Meerkov 2009). 

As a result, variability has increased, generating complexity in process and production 

planning. With the increased complexity of manufacturing systems, production and 

process planning to maintain the performance targets becomes a challenging task 

(Daniel and Guide 2000). Several autonomous control techniques have been 

developed to cope with performance fluctuations (Windt et al. 2010, Grundstein et al. 

2015). Deployment of autonomous control into the flexible flow line creates a real-

time representation of the current system state and decides the next step 

autonomously without human intervention. However, to reach to the right decision, 

the autonomous decision should evaluate the effect of changes in variability based on 

this decision on the performance of the flow line. The evaluation process should also 

be carried out in a time-efficient manner before a new status of the actual flow line or 

customer orders takes place (Stelson et al. 1996). 
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Evaluative modelling can give this competitive advantage by linking the variability to 

the performance targets of interest. Several mathematical, simulation and empirical 

models (Carrascosa 1995, He et al. 2007, Li et al. 2009, Papadopoulous et al. 2009, Li 

et al. 2013, Tan et al. 2015) were developed for different types of flow lines. 

However, for stochastic non-Markovian processes that follow a distribution other than 

the exponential or phase-type distribution, analytical methods do not exist (Meerkov 

and Yan 2014) and simulation and empirical approaches were the favourable 

solutions. 

While simulation is usually case-based, closed-form empirical formulas can be 

generic, simple, time efficient and relationships are easily understood (Blumenfeld 

1990, Papadopoulos et al. 2009, Li and Meerkov 2009, Hopp and Spearman 2011, 

Wang et al. 2014). Empirical formulas can also provide accurate estimations of the 

throughput rate for the process and production planners to use. Empirical formulas 

can also be integrated into the autonomous control system to assist in the evaluation 

process of autonomous decisions and allow for an improved resource efficiency and 

increased throughput rate.  

 

1.2 Problem Statement and Research Gap 

A flow line is a type of manufacturing system with a combination of processes and 

queues, where physical, e.g., raw materials, or virtual, e.g., orders, parts flow through 

in a standard routing to be transformed into a final product (Buzacott 2013). The 

process can be dependent on either machines or people or both. If the machine is the 

core driver, the process will be borne to interruptions such as setups, machine 

breakdowns and preventive maintenance. The process variability in this case can be 

medium to high, depending on the frequency and length of the interruptions (Hopp 

and Spearman 2011) which are usually unpredictable and assumed exponential (Li 

and Meerkov 2009). On the other hand, the processing time will tend to be more 

deterministic, especially in fully automated machines (Li et al. 2013). Flexible 

human-dependent processes have the advantage of producing a range of products 

while being less interrupted by setups and breakdowns at the cost of having more 

stochastic non-exponential processing times (Wang et al. 2014) due to flexibility of 

the human brain, cognitive functions, skills and emotions (OECD 2007).  
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This natural variability combined with the one due to product complexity and variety 

produce normally distributed process variability (Hopp and Spearman 2011) with a 

coefficient of variation that is typically less than 1. 

A simple serial flow line of N processes NiPi ,...,2,1,   and queues NiQi ,...,2,1,   

is presented in Figure 1.1. Variability of the throughput rate in the flow line is the 

combination of intra-variability of each individual process iP , due to the natural 

variability and product variety and inter-variability between one process and another 

due to the product complexity.  

 

 

Figure 1.1: Serial Flow Line 

 

The idea of prediction of the impact of variability on the performance of the 

manufacturing system is a major concern for building autonomous control systems. 

Decisions regarding process and production planning, e.g., the following processing 

step to take for a product, depend on the first place on evaluation of the current 

situation. Although decentralised autonomous control takes decision based on local 

information, understanding the impact of an autonomous decision on the system-level 

performance targets can increase the certainty that the decision is optimal (Scholz-

Reiter et al. 2009a). 

Research in the area of evaluative modelling focused on machine-based flow lines 

which are widely used in the manufacturing industry. Such models were developed 

primarily to include queue capacity and repair and failure rates, however, only assume 

deterministic, exponential or phase based distribution of the processing times (Li et al. 

2013), which is not applicable for human-dependent processes such as in the 

construction industry. Simulation and empirical methods were widely used for the 

analysis of stochastic non-exponential flow lines, where processes are non-

Markovian. Closed-form empirical formulas are usually simple to understand and 

apply and they can have the potential to model complex flow lines, under few 

assumptions, without compromising the accuracy of approximation (Papadopoulos 

1996). 
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Empirical formulas were developed (Barten 1962, Anderson and Moodie 1969, Knott 

1970, Buxey et al. 1973, Slack and Wild 1980, Muth 1987, Blumenfeld 1990, Medhi 

1991, Papadopoulos 1996, Khalil 2005, Blumenfeld and Li 2005, Li and Meerkov 

2009 and Hopp and Spearman 2011) for different performance measures, generally 

system loss and throughput rate of exponential and non-exponential synchronous and 

asynchronous flow lines. However, current empirical formulas for the throughput rate 

of non-exponential flow lines (Muth 1987, Blumenfeld 1990, Li and Meerkov 2009) 

were developed primarily for the synchronous case, i.e., no inter-variability in 

processing times across the flow line. An exception is an empirical formula developed 

by Li and Meerkov (2009) for asynchronous non-exponential flow lines, but the 

formula has a variable eTR  that represents the throughput rate of the exponential flow 

line, which still needs to be obtained using simulation so the formula cannot be 

applied on its own to non-exponential flow lines. Wang et al. (2014) and Kang et al. 

(2015) presented an interesting Markov chain-based analytical model to obtain eTR  

for short service-based flow lines with non-exponential processing times. This 

research opts for the benchmark, i.e., simulation, to determine eTR  and Li and 

Meerkov (2009) empirical formula was used for comparison purposes. 

The empirical work by Li and Meerkov (2005), Li and Meerkov (2009), Meerkov and 

Yan (2014) shows that the key parameters that play a part to differentiate between 

exponential and non-exponential flow lines are the maximum mean processing time 

and the coefficient of variation. This suggests that first principles modelling, based on 

the parameters of each individual process, is not the best solution and an empirical 

study is more appropriate. To the best of the author’s knowledge, no standalone 

closed-form empirical formula exists for the throughput rate of asynchronous flow 

lines with normally distributed process variability. 

This research presents an empirical study to determine a standalone closed-form 

formula of the throughput rate for human-dependent serial flow lines. The closed-

form formula is then used as a building block for the control mechanism of an 

autonomous control system of flexible flow lines. 
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1.3 Purpose of the Study 

The primary concern of this research is to assist production and process planners and 

engineers to understand and control the effect of process and production planning 

decisions on the intra- and inter-process variability and hence the system-level 

performance targets for flexible human-dependent serial flow lines. 

This quantitative research is based on an empirical study of the effect of process 

variability of the throughput rate of synchronous and asynchronous human-dependent 

serial flow lines. The study exploits data mining and simulation modelling. Synthetic 

data were used to develop and test the model and actual data, from a case study in 

construction industry, were used for validation purposes. 

   

1.4 Research Questions 

The research problem investigated here is an accurate evaluative model of flexible 

human-dependent serial flow lines that can be used to autonomously control the flow 

line based on variability. 

This problem raises the following research questions in the light of the existing state-

of-the-art: 

i. Which data pre-processing method performs the best in handling the bias 

caused by the simulation error and increases the reliability and confidence in 

the simulated throughput rate? 

ii. How the variability within a non-exponential serial flow line can be 

represented in a data mining-compatible generic form applicable to 

asynchronous flow lines with arbitrary length and scenario of intra- and inter-

process variability? 

iii. Can data mining models produce a simple closed-form formula to estimate the 

throughput rate of synchronous and asynchronous human-dependent serial 

flow lines? How accurate will this evaluative model perform for the real-world 

case study? 

iv. Can this formula-based evaluative model be utilised to control the variability 

within a flexible flow line? If yes, how does it compare to other existing 

methods in terms of performance and how can it be implemented in a real-

world setup? 
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1.5 Scope and Objectives of the Research 

1.5.1 Scope 

The scope of this empirical research is to develop an autonomous-decision-support 

closed-form formula through empirical evaluative models that can help to easily and 

quickly estimate the effect of each autonomous decision, based on the stochastic 

variability in process and production planning, on the system-level performance target 

and use this relationship to control flexible human-dependent serial flow lines. 

This research is concerned with closed-form formula-based empirical evaluative 

modelling of the steady state performance of serial flow lines with reliable machines 

(processes) and infinite queues using data mining techniques. Figure A.1 of Appendix 

A (P. A-2) illustrates the scope of the research in terms of evaluative modelling. 

 

1.5.2 Assumptions 

The research focuses on flexible flow lines with a standard serial flow line 

arrangement, infinite queues, if exist, and stochastic processes that follow the rules of 

normal distribution. This flow line representation primarily agrees with the industrial 

real-world case study of this research. However, occasionally parallel processing and 

closed-loops might take place in a real-world setup but they are not the main concern 

of this research. Furthermore, the research investigates a new method in the 

autonomous control and validates it with existing techniques. Hence, the research is 

not concerned at this stage with the actual integration of the research outcomes into 

current production planning systems. 

Hence, the following assumptions are made: 

i. The flow lines consist of N  serial processes. 

ii. The processing time for each process iP  is independent of the upstream and 

downstream processes 1iP and 1iP , i.e., the flow line is asynchronous. 

iii. The time for each process iP  is normally distributed with a mean processing 

time of Nii ,...,2,1,  and standard deviation of Nii ,...,2,1,  . 

iv. The human-dependent process iP  is reliable with a failure rate Nii ,...,2,1,  . 

v. Blocking of a process iP  can only occur when it completed processing a part 

while the downstream process 1iP  is still busy and no queue exists between 

them.  
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vi. A process iP  can get ‘starved’ when the upstream process 1iP  is not 

completed. 

vii. Required resources, i.e., machine, people, tools, etc. are always available at 

the respective process iP . 

viii. If the process iP  is not ‘blocked’ or ‘starved’, it is in ‘busy’ state, i.e., the 

process iP  is not allowed to be ‘idle’. 

ix. The flow line is saturated, i.e., the first process 1P  is never ‘starved’ for inputs, 

e.g., materials, orders, and the last process NP  is never ‘blocked’, i.e., it has 

infinite capacity of inventory. 

x. The travel time between processes is zero, i.e., transportation of materials and 

work in progress is modelled as a separate process. 

xi. The loss rate in throughput rate TR  is zero, i.e., there are no defective 

products. 

 

1.5.3 Objectives 

The research scope is realised through the following main objectives: 

i. Generate synthetic data for generic representation of the intra- and inter-

process variability within synchronous and asynchronous non-exponential 

serial flow lines and use Discrete Event Simulation modelling to obtain the 

steady state simulated throughput rate with high certainty. 

ii. Build a Data Mining Framework and use it to develop an empirical formula 

and perform goodness-of-fit analysis for the estimated throughput rate for 

synchronous and asynchronous human-dependent serial flow lines. 

iii. Build an Autonomous Control Framework for flexible flow lines based on the 

developed empirical formula. 

iv. Validate the developed empirical formula and autonomous control method 

using representative variability scenarios of flexible flow lines and a real-

world case study in the construction industry. 
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1.6 Structure of the Report 

Chapter 2 and 3 cover the literature survey: Chapter 2 starts with an overview of 

the manufacturing systems, their main milestones of evolution and the challenges they 

created along the way. The chapter then demonstrates the characteristic advantages of 

flexible flow lines over the other manufacturing systems and where they fit in the 

evolution hierarchy. It also explains why evaluative modelling can improve the 

performance of flexible flow lines to deal with the trending challenges in 

manufacturing systems. Finally, it gives an overview of the current state-of-the-art in 

evaluative modelling for flow lines. Chapter 3 gives more details about the control 

criteria of autonomous manufacturing systems and how they link to the variability 

parameters in process and production planning and the performance measures of the 

system. The chapter also covers the current development within these areas. 

 

Chapter 4 and 5 describe the methodology and methods of this research: 

Chapter 4 starts with the methodology which will be used during the research. It then 

covers the two main methodological frameworks of this research, namely Data 

Mining and Autonomous Control Frameworks, and the methods and steps in each. 

Chapter 5 then covers the specific case study used to validate the research outcomes 

and the methods and steps involved in this case study. 

 

Chapter 6 and 7 are devoted to the results and analysis: Chapter 6 gives the 

results of the implementation of Data Mining Framework and the outcomes of each 

step, more importantly the empirical formula for the throughput rate of synchronous 

and asynchronous serial flow lines with normally distributed process variability. It 

concludes with the validation of the empirical formula using the real-world case 

study. Chapter 7 covers the integration of the developed empirical formula into an 

autonomous control method and compares the performance of developed autonomous 

control methods with existing heuristic optimisation and autonomous control methods 

for flexible flow lines. The chapter concludes with the validation of formula-based 

autonomous control method within the real-world case study. 
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Chapter 8 gives the critical evaluation of the research outcomes. It covers the 

achievements and limitations of this research in pursue of answering the research 

questions outlined in Section 1.4. Each research outcome is examined in terms of 

contributions to knowledge over the current state-of-the-art, the precision and 

thoroughness of results and limitations. 

 

Chapter 9 concludes the research and lists the main points that can be investigated 

further in light of the outcomes and contributions of this research. 
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2 EVALUATIVE MODELLING OF FLEXIBLE FLOW LINES  

 

2.1 Introduction 

Manufacturing system is the umbrella that includes all facilities and operations within 

a manufacturing plant.  Flow line is the segment of the manufacturing system that 

deals with the transformation of raw materials to finished products (Oztemel 2010).  

During the past few decades, several manufacturing systems have been developed to 

keep pace with the significant improvements in technology and the major shifts in 

customer behaviour (Zhang 2009). 

A main challenge that originated as a result of the technological advancement and the 

changes in customer behaviour is the increased variability of the manufacturing 

system. Hopp and Spearman (2011) classified variability into good and bad 

variability. The ability of the manufacturing system to produce innovative products on 

short terms is the good variability. The bad variability is the bi-product of the good 

one represented by the increased variations within each stage of the manufacturing 

system. 

To analyse the effect of variability based on product complexity and time on the 

performance targets, researchers have investigated modelling the relationship between 

variability and performance targets using evaluative models (Papadopoulos 2009). 

Several mathematical, simulation and empirical methods were developed over the last 

60 years.   

This chapter gives an overview of the manufacturing systems and their development 

milestones. It then gives details on how variability affects the manufacturing system. 

The chapter then covers the state-of-the-art in terms of evaluative modelling of flow 

lines. 

 

2.2 Overview of Manufacturing Systems  

Oztemel (2010) defined manufacturing systems as the “integration of manufacturing 

functions such as design, process planning, production planning, quality assurance, 

storing and shipment, etc.”. 

Manufacturing system includes all operations from the design stage of a product to 

the shipment of the final product. It begins with orders received from and ends with 

delivery to the customer (Heilala 1999).  
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Manufacturing system can be divided into the following stages (Oztemel 2010): 

i. design; 

ii. process planning; 

iii. production planning; 

iv. manufacturing; 

v. quality control; and 

vi. storage and shipping. 

Figure 2.1 gives the inputs and outputs of each stage of the manufacturing system. 

The process and production planning are the main concern of this research. 
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Figure 2.1: Stages of Manufacturing System 

 
2.2.1 Process Planning 

Process planning is the translation of design drawings into manufacturing processes 

using the available resources (Groover 2010). 

Process planner will set the processes to be undertaken and their routing to produce 

each product in the customer’s order. An alternative routing for products should also 

be provided to address the issues due to unforeseen circumstances, e.g., machine 

breakdown (Chryssolouris 2006). The process planner starts with a routing sheet and 

uses it to build an operations list for a particular product (Scallan 2003).  
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The operations list document defines the following parameters (Singh 1995): 

i. sequence of processes; 

ii. machine or process where product is processed; 

iii. machine setup procedure and requirements; 

iv. tools to be used; and 

v. setup and processing times. 

The second to fourth parameters are usually described using the organisation standard 

terms while the first and last are numeric. In essence, both sequence and setup and 

processing times represent the variability of manufacturing process, as changes to 

other parameters will lead back to changes to these two generic parameters. Hence, 

these variability parameters can be scaled up or down in terms of number of processes 

and the processing and setup times to fit any process plan. 

The main characteristics of process planning are (Bauer et al. 1994, Scallan 2003): 

i. it provides the type of processes sequence, i.e., sequential, parallel, etc.; 

ii. process planning controls the uniqueness of the final product; 

iii. total system loss in operations, i.e., blocked and starved processes or queued 

work items, and the throughput rates during actual production cannot be 

determined since process planning is concerned with the operation processes 

for a single product only; 

iv. operations list is based on the available equipment and machines in the 

manufacturing plant, however, new equipment or machines can be suggested, 

if they are required or they will improve the quality of the product; and 

v. level of details varies based on the nature of the manufacturing or production 

environment. For example, standard metal-forming operations do not require 

detailed process planning, however, for highly customised products, high level 

of details is important for accurate process planning. 

Since throughput times of an actual manufacturing system cannot be obtained from 

the process planning alone, an accurate evaluation of the effect of process variability 

on the production performance targets is not possible with process planning only. 
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2.2.2 Production Planning 

Production planning is the scheduling of products in terms of quantity and time based 

on the available resources to meet the customer deadlines. Production planning 

translates the process plans of different products into a master schedule taking into 

account the product delivery dates and the availability of resources (Panneerselvam 

2012).  

Process planning can be used to estimate the required total processing time to 

complete a single product. On the other hand, production planning can be used to 

calculate the throughput times for a quantity of different products in an actual 

production setup. In general, process planning can be considered as a stage of the 

production planning (Scallan 2003). 

 

2.3 Evolution of Manufacturing Systems 

Shipp et al. (2012) highlighted that the trendline of manufacturing systems have seen 

an exponential increase over the last decades and it is expected to continue for the 

next 10 to 20 years. These changes were mainly influenced by two main factors; the 

technological progress and the changes in customer behaviours (Chituc and Restivo 

2009). Several other sub-factors were generated from these two main factors, such as 

the changes in manufacturing strategy, management and methods (Oztemel 2010). 

Customer behavior has played a major role over the last few decades to shape the 

manufacturing systems of today as follows: 

i. the production strategy has evolved greatly over the last decades to incline 

more towards the Make to Order (MTO) rather than the Make to Stock (MTS) 

strategy (Soman et al. 2004); 

ii. different technological approaches were developed to cope with the variability 

in the finished products without compromising quality and with minimal 

increase in the capital and operating costs (Pine 1993) (Shipp et al. 2012); and 

iii. management strategies have changed from mass production of a single 

product to more customer-oriented strategies that produce variety of finished 

products to suit customer needs, e.g., lean production (Paolucci and Sacile 

2004). 
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Jaikumar (1993), Mehrabi et al. (2000), Chituc and Restivo (2009) and Shipp et al. 

(2012) followed different approaches in identifying the main paradigms for 

manufacturing systems. In general, three main milestones played a major role in 

shaping today’s manufacturing systems as follows: 

i. customisation of products; 

ii. conversion to lean and agile; and 

iii. introduction of Artificial Intelligence (AI) and Autonomy. 

 

2.3.1 Mass Customisation Era 

According to Zhang (2009), mass customisation had replaced the traditional mass 

production and it is expected, on a large scale, to become the dominant manufacturing 

strategy for the 21st century. Mass customisation can be defined as a supply chain 

strategy where manufacturing plays a major role, where products are personalised 

according to the market needs which is emerged from the customer tendency 

(Chandra and Kamrani 2004). With the growing competition in industry, 

manufacturers become more concerned in offering varieties of each of their products 

in pursuit of satisfying customer needs. However, in order for this strategy to survive, 

the final customised product cost needs to be as close as possible to that of the mass 

production (Caster Concepts 2012).  

The idea of mass customisation strategy came after the development of new flexible 

approaches in manufacturing systems that took into consideration the product 

complexity and the ability to manufacture a variety of finished products. The design 

and layout of manufacturing system should be able to efficiently handle these 

challenges while maintaining quality and cost (Beaty 1996). Mass customisation is 

based on the integration of the global market concept of mass production and the 

build-to-order concept that was dominant in the pre-industrial revolution era (Davis 

1989). 

Mass customisation can follow two interpretations for customer needs. It can 

conservatively be defined as the production according to the requirements of a 

specific customer; hence, production volume is usually low to medium in this case. 

More generalised approach is that the customer needs refer to all customised options 

given to the customer according to a market research of the current customer tendency 

(Silveira et al. 2001).  



CHAPTER 2 – EVALUATIVE MODELLING OF FLEXIBLE FLOW LINES 

 
15 

 

In practice, mass customisation usually integrates both interpretations based on the 

nature of the product. Customer-specific production is applicable to some products, 

e.g., race cars, and large-volume multi-variety production is a better approach for 

other products, e.g., computers. The successful implementation of mass customisation 

is through a balanced integration of these two concepts while maintaining a 

standardised process and production planning (Silveira et al. 2001). 

Several manufacturing systems were developed to achieve this aim. To the extreme of 

low-volume customer-specific production, cellular or flexible manufacturing systems 

are the optimal solution, where a small quantity of customer-specific products can be 

efficiently managed within flexible work cells (Chryssolouris 2006). Each work cell 

consists of flexible machines applicable for a specific product family (Djassemi 

2005).  

For the more general case of higher volume production of complex multi-variety 

products, two approaches were taken. The first is to adapt the machines or processes 

to be flexible enough to produce multi-variety of products, i.e., groups of general-

purpose machines of a certain type, e.g., mill machines, compiled together in a 

workstation and the work items flow between the workstations (Mukhopadhyay 

2015). This type of manufacturing systems is called ‘Job Shop’. On the other hand, 

this comes at the cost of production planning standardisation since the routing of each 

product family is stochastic which increases the work in progress (WIP) and limits the 

production volume (Chryssolouris 2006). The other manufacturing system type, i.e., 

‘Flow Line’, emphasised the process and production planning standardisation by 

allowing all products to follow the same routing throughout the production. Hence, 

flow line are principally arranged in a one-direction flow of materials, i.e., serial flow 

line, however occasionally, parallel processing may be used and the flow line might 

have a reverse route for rework (Buzacott et al. 1993, Li et al. 2013). Since the 

Industrial Revolution and the tendency for mass production, serial flow lines have 

become widely used and increasingly replaced other types of manufacturing systems 

(Sennott et al. 2004). However, this manufacturing system is restricted in terms of the 

range of products it can handle (Mukhopadhyay 2015). 

A subtype of flow lines called ‘Flexible Flow Line’ was introduced to cope with this 

challenge as a trade-off between production standardisation and product-variation 

capability.  
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This manufacturing system allows flexible machines or processes to produce large-

volume medium-variety products without compromising the process and production 

planning standardisation, i.e., using the same processing sequence. Flexible flow lines 

have the flexibility to choose between flexible machines or processes in each 

processing step (Quadt and Kuhn 2007).  

In essence, flexible flow lines combine the advantages of both ‘Flow Line’ and ‘Job 

Shop’ (Sankar et al. 1997). Hence, flexible flow lines are the main subject of this 

research. However, variability in processing and setup time of complex multiple 

products still remains a challenge, especially with the added degree of freedom of 

flexible machines or processes.   

 

2.3.2 From Mass Customisation to Lean 

Lean production represents a prime milestone in the evolution of manufacturing 

systems (Cappozi and Sacco 2013). Introduction of lean in manufacturing plants had 

led to a great transformation in facilities layout, organisation structure, manufacturing 

strategy and process and production planning. These changes have led to a 

performance peak in terms of cost savings, quality of finished products and on-time 

delivery of products to customers (Industrial Technology Centre 2004). 

Taiichi Ohno, Founder of Toyota Production System (TPS) the cornerstone of lean, 

has summarised their management strategy as “All we are doing is looking at the 

timeline from the moment the customer gives us an order to the point when we collect 

the cash. And we are reducing that time line by removing the non-value-added 

wastes” (1988 cited in Liker 2004). Womack et al. (1991) defined lean accordingly as 

the elimination of non-value-added activities or wastes and Liker (2004) defined its 

aim is to “give the customers what they want, when they want it, at the highest quality 

and affordable cost”.  In general, lean is a customer-oriented manufacturing strategy 

that strives to ensure customer satisfaction of the final product in terms of value, cost, 

quality and delivery on time while reducing the capital and operational expenditures 

of the company by controlling the variability in production processes and efficient 

utilisation of the existing resources and assets. 
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Mass customisation introduced changes to the production and process planning of 

manufacturing systems from mass production with the increased variability. Although 

variability is important to produce customised products, it can, if inappropriately 

controlled, lead to an increase in non-value-added activities shown in Figure 2.2.  

Mass customisation concentrated on one type of operational waste or non-value-

added activity, i.e., overproduction, through customisation of the products according 

to the customer needs. Lean, on the other hand, extended this concept by relating 

customer needs to all activities within the manufacturing system, therefore, identified 

seven more sources of waste. Wastes, as identified in TPS and extended by Liker 

(2004), are as follow: 

i. Overproduction (Push System): producing products without a direct order 

from the customer or a reliable market research (Silveira et al. 2001); 

ii. Waiting: idle workers waiting for raw materials, tools, equipment repair, etc.; 

iii. Transportation: internal transportation of raw materials, unfinished products 

or finished products to and from queues or storage areas. Additionally, 

external transportation from suppliers to the production plant; 

iv. Overprocessing: taking longer time or effort than needed to process a 

product; 

v. Inventory: Storage of raw materials, queues for unfinished products (WIP) 

and storage of finished products; 

vi. Motion: movements of workers to do a task other than product processing, 

e.g., looking for tools, stacking parts, inspection, etc.; 

vii. Defects: production of defective finished products subjected to rework or 

scrap; and 

viii. Underutilisation: Employees’ unrevealed potential skills because of lack of 

motivation, inspiration or training. 

In summary, lean production tweaks the process and production planning so that 

production is a series of continuous value-added activities that starts from the 

customer order or potential justified need and ends with the delivery to the customer 

at the right time, quality and quantity.  
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Hence in practice, lean process and production planning mitigates the negative effects 

of increased intra- and inter-variability of the processing and setup times and 

maintains steady performance targets by limiting the risk of non-value-added 

activities (Figure 2.3). However, to reach to this objective, a link between the sources 

of non-value-added activities, i.e., the intra- and inter-process variability within the 

flexible flow line and the performance targets needs to be established. 

 

2.3.3 Intelligent and Autonomous Lean Enablers 

Lean production has emphasised the ‘controlled throughput rate’ system-level 

performance objective through ‘reduced system loss’ and ‘efficient process and 

resource utilisation’. Lean implementation can be done through simple solutions such 

as labeling and relocation of tools near the relevant process to reduce ‘motion’ waste 

(Basu 2009). However, full lean implementation requires monitoring the activities to 

determine if non-value-activities, e.g., waiting, starts to arise and perform lean 

assessment on the available options to mitigate this waste without creating a new 

waste, e.g., over production. 

In other words, lean provides controlled variability effect by decreasing non-value-

added activities at the process level as a standard for system-level performance 

improvement in manufacturing systems. This lean advantage can be enabled, 

especially in dynamic complex manufacturing setup, using advanced technology 

(Theuer et al. 2013). Ulrich and Probst (1988) defined complexity as “a system 

feature where the degree depends on the number of elements, their 

interconnectedness and the number of different system states”. The first two can be 

related to the system itself while the third one is more related to the dynamic nature of 

the inputs and outputs to and from the system (Scherer 1998). In general, complexity 

of manufacturing systems is a representation of the variability of parameters, in its 

general sense, including physical and non-physical elements associated with the 

manufacturing system.  

Intelligent and autonomous solutions can be used to control the value-adding and non-

value-adding effects of variability in manufacturing processes autonomously through 

a control mechanism. The ability of autonomous control systems to take lean 

decisions on their own allows the production to be in line with the customer 

requirements and needs (Gronau 2012).  
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Figure 2.2: Impact of Mass Customisation 
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Figure 2.3: Performance Improvements of Lean Process and Production 

Planning 

 
2.4 Variability in Flexible Flow Lines 

Variability can be defined as the change in the effective process and interarrival times 

at individual process as a result of their stochastic nature which might be related to 

normal causes, e.g., machine lubrication, age, and resource skills, level of attention, 

etc., or random events such as machine breakdowns (Hopp 2008, Etman and Rooda 

2000).  Interarrival time is the time between subsequent work items to arrive at a 

process. Effective process time is defined as the time the work item spend to and at a 

process to become ready to be sent to the succeeding process (Jacobs et al. 2003). In 

other words, the effective process time includes the value-added processing time, 

when the process is efficiently transforming the work item, and the non-value-added 

times, where the work item is waiting, being in-transit, overprocessed, etc.  
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Variability can be introduced in the flexible flow line due to: 

i. production of customisable products according to customers’ demand, where a 

single flow line produces different options and features of a product (Leu et al. 

1996); 

ii. sudden interruptions to the flow line itself such as breakdowns and the change 

from a product to another, i.e., setup time; 

iii. constraints and differences between related products, e.g., 8GB and 16GB 

flash memory, and their associated processes (Buhne et al. 2005); and 

iv. natural reasons, i.e., natural variability, such as friction between mechanical 

parts, wear, lubrication, etc. (Hopp and Spearman 2011).  

Hopp and Spearman (2011) categorised the variability of the flow line based on the 

coefficient of variation c as low )75.0( c , moderate )33.175.0(  c  and high 

)33.1( c . 

The classification here is based on the non-value-added activities such as setup and 

breakdowns. The first category is when no setup is needed and machines or processes 

are not interrupted by failures. The second for short and the third is for long non-

value-added activities at the process such as setups and breakdowns respectively. As 

mentioned in Section 2.3.1, flexible flow lines are aimed for mass production of 

moderately variable products, hence, variability will fall under category one and two. 

However for human-dependent processes category one is more relevant, thus, a good 

approximation is to consider 1c . Li et al. (2009) described the following 

distinguishing key parameters that describe the top level variability of the flow line: 

i. Reliable and Unreliable Machines: Processing elements with defined 

efficiency, e.g., 100% for reliable machines, based on the Mean Time to 

Repair (MTTR) and Mean Time to Failure (MTTF); 

ii. Finite and Infinite Queues: Storage area in between processes with a 

restricted or non-restricted capacity of WIP; 

iii. Constant and Variable Intra Processing Times: The time taken to process 

the work item can be fixed or not, usually described using a probability 

distribution profile in case of variable processing times; and 

iv. Homogenous and Inhomogeneous Inter Processing Times: The variability 

of processing time from one process to another along the flow line can be 

zero, i.e., homogenous, or changing, i.e., inhomogeneous. 
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It is evident that these four key parameters will generate changes to the main two 

parameters of variability, namely effective process and interarrival times. The 

research is focused on human-dependent processes. Hence, the machine reliability 

and setup and queue capacity are not of a concern as presented in Section 1.5.2. In 

this case, the non-value-added times activities, e.g., waiting, presented in the effective 

process time are primarily due to the parameter two and three, i.e., intra- and inter-

variability of processing times. 

The normal distribution tends to be the most applicable form of distribution pattern 

that represents the variability of human-dependent activities (Martin and Bridgmon 

2012). This distribution is also compatible with the case study used for validation, 

thus, this type of distribution was adapted in this research. However, Li and Meerkov 

(2009) demonstrated that for non-exponential flow lines with coefficient of variation 

  1, such as in the case of this research, the throughput rate is not as sensitive to the 

distribution type as the coefficient of variation c . 

The probability density function (pdf) for normal distribution is given by: 
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The pdf when applied to the flow line shown in Section 1.2, it represents the 

distribution of intra-variability of each process and is a function of the mean 

processing time   and the standard deviation . The variability at each process 

NiPi ,...,2,1,   is a function of these two parameters in addition to the length of the 

flow line N .  

Since for serial flow line, the arrival rate between a process and another equals the 

local throughput rate 1iTR  (Hopp and Spearman 2011), interarrival time adjustments 

can be considered as an additional process within the flow line (Wang et al. 2014). 

The additional process here can represent the demand rate at the entry source or 

relevant process, or infinite queue, given the assumption of saturated flow line. 

Processing times for the additional process resemble the interarrival times. 

Etman and Rooda (2000) highlighted a limitation with the normal distribution that its 

range is between minus to plus infinity and processing times cannot be negative. 

Therefore, they suggested using gamma or negative exponential distributions instead.  
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However from this research perspective, though normal distribution can go to 

negative infinity it has less probability to be negative if the coefficient of variation 

was defined accurately. On the other hand, exponential distribution does not have this 

privilege since it is defined by one parameter only, i.e., the mean processing time   

which makes it unsuitable to define processes with low or high variability since 

coefficient of variation is always 1. Furthermore, normal distribution gives the highest 

probability to the actual mean and distributes the rest of bell shaped probability 

equally based on c  which is a good approximation to human-dependent processes 

without outages (Hopp and Spearman 2011) than setting the highest probability to 

zero and distribute the probability exponentially towards plus infinity such as in 

gamma and negative exponential distributions. A solution for negative processing 

times can be done by changing the support to ),0(   enforcing the probability 

density to be zero when 0 . Furthermore, both gamma and negative exponential 

accepts two scenarios that are not realistic 0  and  , in fact both distributions 

give the highest probability density to 0  when 1c  for negative exponential and 

when 1c  in case of gamma distribution. 

 

2.5 Production Performance 

The intra- and inter-variability of the processing times within a flow line are 

transferred to disruptions of the performance targets of an organisation. Carrascosa 

(1995) stated that the production variability could fluctuate around 30% of the mean 

system production. Jacobs and Meerkov (1995) has defined a system control property 

for manufacturing processes called “property of improvability”. The property is a link 

between the controllable variability parameters in manufacturing processes and the 

performance measures targeted for improvement. Fry and Cox (1989) identified three 

global performance measures; throughput rate, raw material cost and operational cost 

while the performance measures related to an individual element of the flow line, e.g. 

process, department, location, resource, etc., are referred to as local. From the lean 

perspective, the main performance targets are related to three aspects; cost, quality 

and delivery of the product. Cost and quality are not aimed in this research while the 

delivery aspect is the main concern.  
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Windt and Becker (2009) identified four performance targets from the operations 

perspective in process and production planning as follows: 

i. due date compliance; 

ii. throughput; 

iii. resource utilisation; and 

iv. work in progress. 

From these two perspectives and restating the performance measures in more generic 

terms according to the research scope, the research primarily focused on the lean 

delivery performance target ‘throughput rate’ and secondarily on the following lean 

local performance improvement targets: 

i. queue time; and 

ii. resource utilisation efficiency. 

It is worth noting that these two local performance measures are related to the global 

performance target, throughput rate as described in the following sections. 

 

2.5.1 Throughput Rate 

Steady state throughput rate of the flow line received the most attention in the 

research concerning evaluative modelling of the performance of flow lines in 

comparison to other measures (Ambani 2011).  

Throughput is defined as the number of completed products, i.e., output. A commonly 

used performance measure to represent throughput at steady state is the throughput 

rate defined as (Li et al. 2009):  

                                                      
t

tT
TR
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                                                 (2.2) 

where 

)()( tT out  is the quantity of products out of the last process in time interval ),0( t ; and 

t  is time. 
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2.5.2 Queue Time 

Queues provide a kind of absorption to variability by reducing the blocking of 

processes (Muth 1987). 

At the process level, the relationship between the queue time and throughput rate can 

be implied from Kingman’s equation (Hopp and Spearman 2011, Jacobs et al. 2003): 
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where 

iQT  is the queue time at process i ; 

iu  is the utilisation of process i ; and 

ii c,  is the mean and coefficient of variation of the processing time at process i . 

It is clear that at a process level, an increase to the second and third terms, which 

represent the intra- and inter-variability of the process, will lead to a reduction of the 

throughput rate. Hence, the throughput rate and queue time are inversely related. 

 

2.5.3 Utilisation Efficiency 

This research focuses only on manufacturing systems with available resources at the 

respective process or fixed production where enough workforces are hired to fulfill 

customer orders, hence, no resources starvation (Section 1.5.2). 

This performance measure was targeted from the perspective of the efficient 

utilisation of these resources to perform the processes. 

Hopp and Spearman (2011) defined the resource efficiency as: 
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where 

u  is the utilisation efficiency; 

N  is the number of processes; 

)(iTR  is the local throughput rate of the process i ; and 

)(iTRideal  is the ideal throughput rate of the process i  excluding the variability 

effects. 

It can be observed from Equation 2.4 that the increase in the throughput rate TR  will 

improve the utilisation efficiency. 
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2.6 Current Evaluative Models of Flow Lines 

AI is similar to human intelligence; it develops over time before it can exhibit a form 

of intelligence. Autonomous machines or processes can have a training mechanism to 

learn the effect of variability based on local information and past performance and use 

this to control the system, which will be explained later in Chapter 3. However, 

building this relationship between local level process variability and system level 

performance targets in an evaluative model can be advantageous to the optimisation 

(Spinellis and Papadopoulos 2000) or autonomous control (Zeng et al. 2009). 

Therefore, researchers have proposed different approaches to model flow lines to 

analyse the impact of process variability on the performance measures (Carrascosa 

1995, He et al. 2007, Lagershausen and Tan 2015, Li et al. 2009, Papadopoulous et al. 

2009, Li et al. 2013, Tan et al. 2015). 

Research in flow line modelling dates back to the 1950s. Literature is divided into two 

main categories; evaluative and generative models (Spinellis and Papadopoulos 

2000). Evaluative models are developed primarily for flow line analysis while 

generative models determine the optimal settings of flow line to satisfy the objective 

given the constraints on the system (Papadopoulos et al. 2009). 

For evaluative models, the modelling approaches can be divided into two main 

categories; exact state-based Markov analysis for relatively small flow lines with 

small queue capacity (Papadopoulos et al., 2009) and approximation models for flow 

lines with an arbitrary number of processes and queue capacities.  

Markovian models were widely used by researchers to mathematically model the 

stochastic variability in flow lines. Markov analysis is a state space model which 

provides the exact solution as a transition from a state to another with an exponential 

or phase-based probability over a finite time interval (Norris 1997).  

Hunt (1956) was the first to develop an analytical technique for Markov process-

derived equations relating processing time with the throughput rate for a flow line 

with three processes.  Miltenburg (1987) used numerical approach to determine the 

variance in the throughput rate of a flow line with two processes a single finite queue 

due to interruptions in the flow line in infinite time. Gershwin (1993) used Markov 

chain to determine an accurate formula to correlate the variance of throughput rate, in 

a single process flow line, to the process interruptions, e.g., breakdowns.   
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Queues were represented in the developed analytical formulas by the probability of 

their effects. Carrascosa (1995) developed analytical formulas for the mean and 

variance of the throughput rate of a flow line with two processes in relation to the 

steady state probabilities of sudden interruptions, i.e., machines downtime, within the 

flow line and changes of the queue capacity. He et al. (2007) extended the approach to 

include arbitrary number of processes. Wang et al. (2014) and Kang et al. (2015) 

presented an interesting Markov chain-based analytical model to obtain a closed-form 

formula for the throughput rate of short exponential flow lines.   Lagershausen and 

Tan (2015) used continuous Markov chain to model the inter-dependencies between 

processes of a closed-loop flow line with phase-type distributed processes and finite 

queues to determine an exact solution of interarrival times using numerical iteration.  

The Markovian model gives the throughput of flow lines based on the following 

parameters; number of processes, queue capacity, number of up states at each process, 

number of down states at each process and the mean processing, repair and failure 

rates. It is worth mentioning that the processing, repair and failure rates have to 

follow the exponential distribution for the process to be Markovian and produce linear 

homogenous equations which can be solved either analytically or numerically. 

The main limitations of this approach, especially the first point which precludes the 

use of this method in this research, can be summarised in: 

i. limited to exponentially distributed processing times only;  

ii. computational intensive with growing number of states s  with the number of 

processes within the flow line. The number of states with N processes and 

1N  queues with a capacity C can be determined from (Carrascosa 1995): 
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e.g., 544,362s states for 6N  and 10C ; 

iii. suitable for small flow lines only. For long flow lines 6N , equations 

become very complex and cannot be solved using any analytical or numerical 

methods (Papadopoulos et al., 2009); 

iv. produces equations that are difficult to interpret and understand the causal 

relationships between variability and throughput rate they represent; and 

v. accuracy reduces significantly with increased C  (Carrascosa 1995). 
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Approximation methods based on queuing networks were the mainstream for analysis 

of larger flow lines. The three main approximation methods are Meerkov aggregation 

method (Jacobs and Meerkov 1995, Li and Meerkov 2003, Li and Meerkov 2009) and 

Gershwin decomposition method (Gershwin 1994). The first follows backward and 

then forward aggregation to approximately convert the long flow line into a two 

processes one queue flow line, where Markov analysis can be applied. The same 

concept applies to the decomposition method but instead of aggregation, the flow line 

is split into a combination of two processes one queue flow lines with an equation for 

each. Dallery-David-Die algorithms were developed by (Dallery et al. 1989) to solve 

the decomposition equations. Li et al. (2009), Papadopoulous et al. (2009), Li et al. 

(2013) and Tan et al. (2015) provide a comprehensive overview and illustrate the 

latest developments in the approximation methods for the throughput analysis of flow 

lines. These methods converge and usually produce accurate results, however, they 

assume deterministic, exponential or phase-based distributions of processing, repair 

and breakdowns (Enginarlar et al. 2006, Li et al. 2013).  

Simulation has been widely used to estimate the performance of a flow line that is 

complex or impossible to be modelled mathematically (Brandimarte and Villa 1999). 

It also allowed analysis of different distribution patterns other than exponential which 

allowed more flexibility in the representation of actual flow lines (Enginarlar et al. 

2006).  On the other hand, simulation evaluative models are case-specific and time-

consuming to build the simulation model. 

Another approach is to carry out an empirical and analytical study to produce closed-

form formulas to represent the performance of flow lines (Papadopoulous 1996). 

Simulation and data mining have been the main drivers for the empirical approach 

(Papadopoulos et al. 2009) while analytical formulas were derived using first 

principles modelling such as queuing theory (Hopp and Spearman 2011) and holding 

time model developed by Muth (1987). The developed formulas describe the effect of 

variability on several performance measures such as throughput rate, work-in-

progress, blocking, starvation, system delay, etc. Unlike Markov analysis, these 

formulas are not exact, however, they can give insights into the system behavior and 

help with process improvement. This approach gives more flexibility in the 

distribution used for the process variability, timesaving than simulation evaluative 

models and fast offline analysis without disruption to the actual flow line in study.  
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In general, the main advantages of this technique are: 

i. applicable to exponential and non-exponential distributions of process 

variability; 

ii. simple and relationships can be easily understood; 

iii. can be used to optimise the planning and operations of  flow lines; 

iv. if accurately tested, can provide a reliable model close to exact mathematical 

models, e.g., Blumenfeld (1990) generated an error of ±1-5% when compared 

to the exact solution using Markov analysis (Hillier and Boling 1967); 

v. computation easy and can be implemented with any programming language; 

and 

vi. time taken to process these simple formulas is less than processing complex 

numerical solutions or building simulation models. 

On the contrary, the main limitation of the empirical formula is that they are not 

mathematically proven. However, since the current first principles models to provide 

a standalone solution, require the process variability to follow deterministic, 

exponential or phase-based distributions (Slack and Wild 1980, Enginarlar et al. 2006, 

Li and Meerkov 2009, Meerkov and Yan 2014), the empirical approach offers, if 

carefully tested and validated, a good alternative route.  

 

2.6.1 Empirical Formulas for Synchronous Flow Line 

Barten (1962), Anderson and Moodie (1969), Knott (1970) Buxey et al. (1973), Slack 

and Wild (1980), Medhi (1991), Khalil (2005) and Hopp and Spearman (2011) used 

data mining combined with theoretical analysis or simulation data to investigate a 

formula for system loss-based performance measures such as mean system delay, 

work in progress, optimal queue capacity, queue time and blocking and starvation of 

each process.  

As for the evaluative modelling of the throughput rate of synchronous flow lines, 

Muth (1987) built a formula of the throughput rate using data mining and theoretical 

analysis. The formula was tested on a flow line with no queues and two to ten 

processes with exponential, Erlang, uniform and fixed distribution types of the intra-

variability of the individual process. Blumenfeld (1990) extended Muth (1987) 

formula using analytical analysis to include normal and binomial distributed 

processes, longer flow lines and with queue capacity up to 10 work items.  
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Blumenfeld and Li (2005) developed an analytical closed-form formula for the 

throughput of synchronous flow lines with deterministic processes and exponentially 

distributed failure and repair rates.  Blumenfeld (1990) formula is given by: 
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2.6.2 Empirical Formulas for Asynchronous Flow Line 

Papadopoulos (1996) used the holding time model (Muth 1973) to develop a formula 

for the throughput rate of synchronous flow lines with N exponentially distributed 

processes and no queues. The formula includes coefficients that need to be first 

solved numerically in order to obtain the throughput rate. 

It is evident from previous research (Li and Meerkov 2005, Li and Meerkov 2009, 

Meerkov and Yan 2014) that for asynchronous non-exponential flow lines, the 

process with maximum mean processing time max  plays a major role in determining 

the throughput rate of flow lines. Hence, modelling of TR  using the distribution 

parameters i  and Nii ,...,2,1,   across the flow line length N  is not an 

appropriate method. In fact, the throughput rate for a serial flow line with 

deterministic processing time of each process (i.e., dTR such that Nici ,...,2,1,0  ) 

can be obtained as a function of max  only using the following formula (Li and 

Meerkov 2009): 

                                                           
max

1


dTR                                                     (2.7) 

The formula implies that the process with the maximum processing time controls the 

throughput rate of the flow line. However, introduction of intra-variability at each 

process, presented by   or c , produces more complex changes in the throughput rate 

that cannot be solely presented by max .  
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Li and Meerkov (2009) expressed this relationship in the following form: 

                                  av
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eTR  is the throughput rate for exponential processes, i.e., Nici ,...,2,1,1  , and avc  

is the average coefficient of variation for all processes. Equation 2.8 shows that the 

intra-process variability reduces TR  than the deterministic case. The change, i.e., the 

second term, is proportional to the difference between TR  at 0c  and 1c . 

Although Equation 2.8 was developed with deterministic processing times and a non-

exponential distribution was used to represent the machine reliability only, the 

formula is still applicable to the opposite case, i.e., deterministic failure rates 

Nii ,...,2,1,0   and non-exponential distribution of processing times. However, 

the main source of variability, i.e., 1ic  , still requires the use of other methods, such 

as simulation, since as explained earlier in Section 2.6, the Markovian-based state-

space approaches to calculate eTR  are not applicable to this research. 

 

2.7 Summary 

In general, manufacturing systems become more flexible to produce a range of 

complex products to suit the customer needs. However, this flexibility, which is 

necessary to produce customer oriented products, led to an increased variability 

within the manufacturing system in terms of layout, job routing and processing and 

setup times of different products. Flexible flow lines present a suitable layout to limit 

these challenges with the standardised job sequencing. Variability is transformed to 

fluctuations in local performance measures, e.g., system delay, and subsequently 

global performance target, i.e., throughput rate. The lean and AI advantage in this 

aspect is the use of intelligent solutions to control the effect of increased variability 

through reduction of the non-value-added activities in flexible flow lines. Evaluative 

modelling is a key part of the control mechanism. Analytical models are not 

applicable for non-exponential flow lines, hence, the empirical route is a good 

alternative. Closed-form empirical formulas give extra advantages over simulation 

such as they are time-efficient, easy to interpret and simple to apply. Next chapter 

dives into the existing autonomous and optimisation solutions that were developed to 

control the variability effects on the performance targets specific to research. 



 

 
32 

 

3 AUTONOMY IN FLEXIBLE FLOW LINE 

 

3.1 Introduction 

Fast paced changes in customer behaviour over the last decades and dynamic pace of 

today’s market has generated the need for flexibility in manufacturing systems to 

cope with the frequent changes in customer specifications and demand. As shown in 

Figure 3.1, to cope with these changes, flexibility was built in manufacturing systems, 

which increased process variability and complexity and challenges in process and 

production planning. This opened the doors for development of new techniques and 

methods, e.g., autonomous control, evolutionary algorithms, etc., to deal with the 

arising challenging in order to achieve performance targets.  

However, to maintain the performance targets of the systems, the impact of variability 

on the performance of the manufacturing system needs to be analysed. Autonomous 

systems have used different AI techniques and approaches for the implementation of 

the ‘controlled variability effects’ rule that was also stressed by lean production. 
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Figure 3.1: Development Cycle of Autonomous Variability Control 

 
In this chapter, a brief outline of the translation of intra- and inter-process variability 

into flexibility within the autonomous control is explained. Afterwards, an overview 

of the existing autonomous control methods and techniques for flexible flow lines to 

manage this flexibility is covered. 
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3.2 Manufacturing Flexibility 

Flexibility in manufacturing systems is a measure of the capability of processes to 

adapt and the control system to take a different decision in response to changes within 

the manufacturing system (Baykasoglu and Gocken 2011). To achieve these goals, 

flexibility in flow lines and planning is one of the key solutions (Heilala 1999). 

Flexibility is translated in autonomous manufacturing to the ability of the actual 

processes and assembly lines to adapt to the changes in customer order or market 

need (Heilala 1999). Additionally, flexibility provides the capability of the hardware, 

i.e., processes and assembly lines, to be integrated with the adaptive autonomous 

control software (Windt and Jeken 2010). This area has influenced the provision of 

some concepts such as Flexible Manufacturing and Reconfigurable Manufacturing 

Systems (Scholz-Reiter and Freitag 2007). Existing autonomous control systems have 

been developed for every stage of manufacturing system, listed in Section 2.2, to help 

in communication between these stages and to automate the tasks in each stage 

(Oztemel 2010).  

Flexibility in manufacturing systems has evolved greatly over the past decades. 

However, flexibility of current autonomous systems still does not reach to the 

flexibility achieved by humans and a study suggests that the human involvement in 

some manufacturing operations, e.g., assembly, is necessary to reach to the optimal 

level of flexibility and adapt to changes in customer specifications (Bley at al. 2004). 

The design and choice of autonomous system is a tradeoff between incurred cost and 

required flexibility, since highly autonomous control will not be cost-effective for 

simple flow lines with low degrees of flexibility. At the same time, increasing the 

level of autonomy over a certain level, even for complex systems, can lead to a chaos 

which will eventually lead to a dip in the performance indicators (Windt et al. 2008). 

The degree of autonomy incorporated in the system has to take into consideration the 

degree of complexity and flexibility of the flow line to decide on the optimum cost-

effective solution. 

Sethi and Sethi (1990) identified three levels of flexibility; component, system and 

aggregated. Wiendahl et al. (2007) has identified three perspectives to classify 

manufacturing flexibility; order, product and resource. Windt and Jeken (2009) 

combined the two concepts and added another sub-category, i.e., allocation flexibility, 

as shown in Figure 3.2. 
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Figure 3.2: Classification of Flexibility (based on Windt and Jeken, 2009) 

 

In general, it can be concluded that the flexibility within a manufacturing system will 

have multiple processing options or decisions, in terms of product variants and job 

allocations, for each process which will be accumulated to generate the process and 

product planning. However, at any point of time the flexibility will generate different 

possible schedules with various degrees of intra- and inter-variability of the 

processing times which will eventually transfer to the performance targets. The main 

task of autonomous control is to use the decision flexibility to control the system 

variability for the purpose of achieving the required performance targets. 

 

3.3 Manufacturing Intelligence and Autonomy 

3.3.1 Conceptual Background 

Introduction of Artificial Intelligence (AI) and autonomy in manufacturing systems 

was one of the major milestones that transformed manufacturing systems. Dagli 

(1994) suggested that the first integration of AI in manufacturing systems goes back 

to the late 1980s.  
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AI is a section of computer science based on the replication of human reflexes and 

reactions to an input (Nath 2009). Humans behave in an intelligent way to different 

situations they are facing on daily basis. This human intelligence is mainly based on 

the accumulation of expertise and knowledge gained during the course of life. 

Meystel and Albus (2001) defined intelligence “is to perceive the environment in 

which the system is operating, to relate events taking place around the system, to 

make decision about the events, to perform problem solving and generate the 

respective actions and control them”. Human brain does not very often perform 

mathematical calculation to reach to a decision. Instead, human depends on their 

stored knowledge of similar situation or set of situations to decide what to do in a new 

situation, if full knowledge of it does not exist. 

Manufacturing intelligence is defined as the integration of primarily AI with other 

non-AI techniques, e.g., clustering, into the manufacturing stages, discussed in 

Section 2.2, for the purpose of increasing their intelligence level (Zhou et al. 2010). 

Scholz-Reiter and Freitag (2007) defined autonomy as the “independence of a system 

in making decisions by itself without external instructions and performing actions by 

itself without external forces”. Windt et al. (2008) defined autonomous control as the 

ability of “single entities (e.g. parts, pallets, orders or work-station) to render 

information and to make decisions on their own... by decentralised decision-making 

in heterachical systems”. Autonomous manufacturing system can be defined as the 

manufacturing system, where processes self-optimise, by means of manufacturing 

intelligence, their decision flexibility to adapt with the dynamic and variable nature of 

modern manufacturing environment. 

AI techniques were widely used in the process and production planning of intelligent 

and autonomous systems to (Oztemel 2010): 

i. adapt to upstream changes in preceding design stage; and 

ii. allow flexible flow lines to adapt to downstream changes in customer 

demand.  

Complexity of flexible flow lines is proportionally related to the increase of product 

complexity. Failure to match the production cycle to the market needs and in sync 

with the customer demand rates can cause the performance of the organisation to drop 

significantly and accordingly reduce the customers’ satisfaction (Hitt et al. 1998).  
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Optimisation of flow lines according to the changes from the customers end requires 

the autonomous system to take the right decision at the right time. To achieve this, the 

autonomous system has to collect the required information and match it with the 

required output and take decision accordingly in a very short time (Raol and Gopal 

2013). Figure 3.3 represents the autonomous control loop based on that concept.  

 

 

Figure 3.3: Autonomous Control Loop for Process and Production Planning 

 
3.3.2 Intelligent Agents 

Intelligent agents is a branch of manufacturing intelligence which is common in large 

flow lines with high flexibility that requires quick adaptability of hardware and 

software and direct control of the physical components (Dashkovskiy 2011). In such a 

system, the manufacturing entities, i.e., machines or processes, within the autonomous 

control system are referred to as intelligent agents. Intelligent agents control the 

autonomous flexible components, of each machine, to perform the local goals based 

on the local information (Oztemel 2010). In essence, intelligent agents represent a 

combination of manufacturing intelligence and autonomy. 

The agent based system was introduced to enable manufacturing systems and 

assembly lines to handle frequent changes in customer orders more efficiently and to 

overcome the complexity in centralised control system in earlier manufacturing 

systems (Scholz-Reiter and Freitag 2007). Intelligent agents based systems are more 

concerned with decentralising the control of manufacturing systems by dividing the 

flow line into subsystems containing autonomous entities (Scholz-Reiter and Freitag 

2007).  
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The relationships between manufacturing entities are also constructed between 

intelligent agents to enable communication and flow of information between them in 

their local environment (Windt and Jeken 2010). Intelligent agents represent the 

autonomy, from the software side, for holonic reconfigurable manufacturing systems 

(Scholz-Reiter and Freitag 2007). Intelligent agents can have a direct interaction with 

the physical system for update of information.  

Artificial Neural Network (NN) and Evolutionary Computation, e.g., Genetic 

Algorithm (GA), are commonly used computational intelligence methods to provide 

AI within each holon, i.e., intelligent agent, of the autonomous control system 

(Oztemel 2010) (Zhou et al. 2010). 

The NN predicts future, or possible events, based on historical data. The NN learns by 

associating measured inputs to immeasurable outputs and then predicts, after a 

learning phase, the values of immeasurable outputs at any condition of inputs (Fu et 

al. 2006). This type of AI is based on weighted estimation of the nonlinear 

relationship between dependent, i.e., output, and independent, i.e., input, variables 

(Benitez et al. 1997). Rippel et al. (2010) integrated NN into an existing autonomous 

control decision to help with the job routing decision. 

However, the NN has the following limitations: 

i. requires training to exhibit intelligence; knowledge is acquired from 

interaction with the system so it becomes more intelligent with time; 

ii. on the long run, NN is subjected to ‘catastrophic forgetting’ since the trained 

decisions based on collected data are getting contradicted by the new data 

(Date and Kurata 2008); 

iii. intelligent as the information fed to it, therefore, it has to be trained properly 

with sufficient scenarios of the situation to give accurate predictions 

(Rajkumar and Bardina 2003); 

iv. black-box method of control (Benitez et al. 1997) since the training logic 

behind the NN is not presented to the user; and 

v. the nonlinear relationship between inputs and outputs is formulated by hidden 

nodes (Benitez et al. 1997) and therefore reproduction of results requires 

implementation of the NN itself. 
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GA is one of the most popular evolutionary algorithms used in intelligent and 

autonomous manufacturing systems (Zhou et al. 2010).  GA is an optimisation 

method which follows the following procedure to obtain the best solution for a 

problem (Oztemel 2010): 

i. starts with a set of random possible solutions,  i.e., chromosomes; 

ii. examines solutions against the problem using a fitness function; 

iii. population evolves using genetic operators (mainly crossovers and mutation) 

to produce a better solution to the problem, i.e., better fitness; and 

iv. when no better solution, i.e., fitness, can be produced, it is considered the 

optimal solution. 

GA shares some similarities with NN since both of them become more intelligent 

over time though with different approaches. GA mostly starts with a population of 

random solutions and starts to optimise it to get the best fit to the exact solution. NN, 

instead, does not define random solutions and instead considers these random 

solutions as input independent variables to the output dependent variable, i.e., 

objective, and determines the correlations, i.e., weights, between these input and 

output variables.  

Therefore, although GA can start from nothing and reach to an optimum solution, 

learning period for GA can be long since more complex, i.e., mutated, solutions are 

generated and examined at each reproduction process. 

 

3.4 System Stability 

As mentioned in the introduction, maintenance of the performance measures 

regardless of the flow line variability is a main concern for any organisation.  Stability 

is an importance performance measure of the system ability to handle dynamic 

fluctuations in the inputs to the system which will lead to an increase of the mean 

interarrival rate beyond the stability limit, e.g., seasonal product demand. To reach to 

the stability state, the arrival rate at a process i  has to be less than or equal to the 

throughput rate of this process (Scholz-Reiter et al. 2005): 

                                                       )()1( iTRiTR                                                   (3.1) 

Stability remains a challenge to autonomous systems because decisions are taken at 

the process level. Evaluation of other performance measures should always be 

restricted to the stability boundaries (Scholz-Reiter et al. 2005). 
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3.5 Existing Autonomous Control Techniques 

Scholz-Reiter et al. (2010) defined autonomous control as the “shift of decision-

making capabilities from the system layer to its elements”. The elements refer to 

physical entities in the manufacturing system, e.g., process, product, etc., and non-

physical attributes such as local information at each entity, e.g., processing time 

(Dashkovskiy et al. 2011). One of the main aspects of autonomous control is the 

degree of freedom of the elements to take process and production planning decisions 

on their own based on the current state at each moment of decision making instead of 

depending on a pre-determined schedule (Scholz-Reiter et al. 2009b). 

Autonomous elements can take decision based on local information only or they can 

seek necessary information from other elements in the system (Scholz-Reiter et al. 

2010). Regardless, autonomous control should be incorporated into the system to 

assist in process and production planning without causing any changes to the way the 

product is processed (Windt and Becker 2009). Therefore, the cycle time of processes 

will remain the same but the order and process sequences will differ autonomously. 

The autonomous control methods can be categorised into rational and bounded 

rational methods. The first is based on rules that an expert can take with a specific 

performance-based target in mind, e.g., reduce waiting time; improve due date 

delivery; etc. (Scholz-Reiter et al. 2005, Scholz-Reiter et al. 2006, Zozom et al. 2003). 

Another rational method designed for complex and dynamic production environment 

is called Distributed Logistics Routing Protocol (DLRP) (Rekersbrink 2012). In this 

method, the orders investigate possible routing alternatives at the beginning of the 

flow line and then update the routing continuously after each processing step based on 

the available local information such as processing and setup times, deadlines, etc. 

The bounded rational methods are a set of algorithms that replicate the behavioural 

intelligence of some biological orders, e.g., ants, bees, etc. These methods follow the 

concept of depending on the past instead of future events to learn and adapt the best 

routing to be followed depending on stored pervious performance measures of 

production elements, e.g., waiting, travel, processing times, etc. Different techniques 

following different biological creatures were developed such as Pheromone Based, 

Honey Bee Algorithm and Chemotaxis policies (Cirirello and Smith 2001, Tsutsui 

and Liu 2007, Armbruster et al. 2006, Scholz-Reiter et al. 2008a, Scholz-Reiter et al. 

2008b, Scholz-Reiter et al. 2010).  
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In terms of performance of the autonomous control method, Windt et al. (2010) 

carried out an interesting study to classify the autonomous control methods based on 

their performance. The results of this study show two distinctive behavioural classes; 

one is high and the other is low in performance. Queue Length Estimator falls under 

the first category and it had shown superior performance over the other autonomous 

control methods. As for the second category, Past Events Based method showed a 

poor performance. Both methods fall under the rational category. 

The main distinctive characteristics of autonomous control method are (Windt et al. 

2010): 

i. Information Source: the element that shares information rendered in the 

decision making; 

ii. Information Type: past, future (predicted) or both; 

iii. Decision Variables: factors that need to be controlled to reach performance 

targets; 

iv. Decision Steps: number of decisions to be taken; and 

v. Algorithm: the control logic. 

 

3.5.1 Heuristics and Autonomous Control 

Use of autonomous control has been associated to the sequencing and assignment of 

products to processes which is a core challenge in scheduling of flexible flow lines. 

Grundstein et al. (2015) investigated another flexibility decision that is also important 

to scheduling, i.e., order release methods, to be integrated with autonomous control 

and studied the effect of such on the performance targets. Predictive scheduling has 

been always associated with static deterministic flow lines, where a production plan 

can easily be decided prior to commencement of the work (van Brackel 2009) so 

autonomous control application here is limited. With the introduction of variability to 

this system, autonomous control methods deal with the dynamics of such a system by 

handing over the decision to the elements to decide based on local information, i.e., 

reactive scheduling (Kang et al. 2014).  
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For routing optimisation problem, Scholz-Reiter et al. (2010) investigated the 

performance of decentralised autonomous control against the centralised heuristic 

methods. The first control method takes decision based on the current system state, 

hence, handles dynamic situations more appropriately. The second performs better in 

a static environment. One of the widely used optimisation package in research and 

industry is OptQuest (Laguna and Marklun 2013). OptQuest is a meta-heuristic and 

mathematical optimisation tool that runs under various simulation environments. The 

metaheuristic search methodology used in OptQuest to optimise the decision variables 

is based on scatter and tabu methods.  Other supplementary methods, e.g., NN and 

linear and mixed integer programming, are also used to assist the search process 

(Shortle at al. 2014).  

The difference between the heuristics and autonomous control methodologies is how 

the control system deals with the variability imposed by the dynamic nature of the 

input, i.e., arrival rate. Autonomous control handles it by measuring the local effects 

of variability on individual element, e.g., queue length for queue length estimator, 

while scheduling heuristics targets the system level performance level, e.g., 

makespan. 

Both techniques have different approaches to reach to the best solution with 

advantages and limitations for each, however, there is always an uncertainty that the 

best solution is the optimal one. One way to deal with such a problem is to know the 

effect of each decision on the performance targets prior to taking the control decision. 

This requires an accurate evaluative model relating variability of the flow line to the 

performance targets and association of the autonomous control decision to the model. 

 

3.5.2 Queue Length Estimator (QLE) 

This method evaluates the waiting and processing times, i.e., workload, of each 

possible route for the product and follows the shortest route, i.e., shortest throughput 

time per product per stage. The evaluation process will depend on the queuing parts 

and the changes in processing time of the same product from one machine or process 

to another. The evaluation is repeated each time a part leaves a machine or process 

and before it goes to the succeeding machine or process (Scholz-Reiter et al. 2005). 

Figure 3.4 shows a demonstration of the evaluation process. 



CHAPTER 3 – AUTONOMY IN FLEXIBLE FLOW LINES  

 
42 

 

As described, this concept is not different than the DLRP except that DLRP is 

computational intensive since more information, e.g., customer deadlines, are 

collected at the process level and used as part of the autonomous decision. 

Complexity of DLRP, due to the large amount of information used to reach a 

decision, is one of the main limitations of the technique. The less complex 

autonomous controls ‘QLE’ provided better performance during implementation for 

flexible flow lines (Windt et al. 2010).  

 

3.5.3 Past Events Based (PEB) 

This method is also used to determine the optimal routing for multiple products within 

flexible flow lines. The method is based on the previous events rather than future 

predictions. Recorded performance measures, i.e., waiting and processing time, 

during simulation are used to make a decision on the job routing. At the exit of a 

completed processing stage, the product goes to process with minimal historical 

average throughput time for the respective product type (Scholz-Reiter et al. 2006). 
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Figure 3.4: Queue Length Estimator Method 
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3.6 Summary 

Practical implementation of the ‘controlled throughput rate’ rule, introduced in 

Chapter 2, is achieved through increasing the degree of intelligence and autonomy 

within the manufacturing system and improving the autonomous decision flexibility 

to control the variability within the flexible flow line. Intelligent agents represent an 

example of the software of such implementation, where the autonomous control 

decision is in the hands of each individual process instead of a centralised system. 

This decentralisation of autonomous decision usually leads to better process and 

production planning decisions, e.g., scheduling, in a dynamic situation than heuristic 

optimisation methods, however, the latter is better in static situations. From all 

autonomous control methods, QLE is one of the best while PEB is among the worst 

(Scholz-Reiter et al. 2006, Windt et al. 2010). 

The following chapter explains the methodology implemented in this research to build 

the evaluative model and produce its own implementation method of the ‘controlled 

throughput rate’ rule.  
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4 METHODOLOGY 

 
4.1 Introduction 

This chapter gives a detailed description of the methodology used to build an 

evaluative model of the throughput rate for synchronous and asynchronous human-

dependent serial flow lines and apply it for development and validation of an 

autonomous control method for flexible flow lines.  

The research aim is to build a simple and quick autonomous-decision-support 

mechanism that accurately predetermine the effect of stochastic variability on the 

system-level performance target of synchronous and asynchronous human-dependent 

serial flow lines. This empirical research investigated realisation of this aim through 

two methodological frameworks:  

i. Data Mining Framework: a standardised framework that investigates the 

degrees of freedom in each stage of the mining process to: 

a. generate representative data sets for the intra- and inter-stochastic process 

variability and use simulation to determine the steady state throughput 

rate for the variability scenarios with high certainty; 

b. apply statistical analysis to build a generic representation of non-

exponential serial flow lines based on the impact of variability on the 

throughput rate; and 

c. use supervised machine learning methods to examine and select a 

regression data mining model for the throughput rate of: 

• synchronous human-dependent serial flow lines; and 

• asynchronous human-dependent serial flow lines. 

ii. Autonomous Control Framework: uses the empirical formula for autonomous 

control and examines the performance of this method against other 

autonomous control and optimisation methods for flexible flow lines. 

The chapter starts with an overview of the methodology and frameworks used to 

approach the research questions stated in Section 1.4. The research problem is then 

identified in terms of the variables used to build the evaluative model. Afterwards, the 

chapter gives an overview of the tools used in the investigation. It then moves to the 

detailed data collection, pre-processing and analysis steps that were undertaken to 

implement the frameworks. Finally the methods and steps applied to validate the 

evaluative model and the autonomous control method are stated. 
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4.2 Research Methodology 

The research methodology implemented for this study is presented in the research 

onion, developed by Saunders et al (2009), as shown in the highlighted green 

fractions on Figure 4.1. The following two sections will elaborate on the selections for 

layer 2 and 3, namely research choice and strategy, as selections for other layers are 

self-explanatory given the aim of this research. Section 4.2.3 is devoted to the 

methodological frameworks that govern this study. 

 

1 is the Time Horizon layer; 

2 is the Choice layer; 

3 is the Strategy layer; 

4 is the Approach layer; and 

5 is the Philosophy layer 

Figure 4.1: Research Methodology using Saunders et al (2009) Research Onion 
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4.2.1 Research Strategy 

Research strategy is the “the general plan of how the researcher will go about 

answering the research questions” (Sauders et al. 2009).  

In this research, the strategy is to carry out ‘experiments’ to determine the 

relationships between the independent variables and the dependent variable based on 

the research design. A ‘case study’ is then used to examine and validate the identified 

relationships. Figure 4.2 gives an illustration of the research strategy. 

Two methodological frameworks in pursuit were established, as detailed in section 

4.2.3, in pursue of answering the research questions in a systematic manner to create 

the research outcomes. 

 
4.2.2 Research Choice 

Sauders et al. (2009) classified the research choices into qualitative, quantitative, 

mixed-methods and multi-methods. Clearly, pure qualitative approach does not apply 

to this research. Multi-method and mixed-methods share the advantage of combining 

different methods in a single research step, however with multi-method, these 

methods have to be either quantitative or qualitative (Sauders et al. 2009). Hence, 

quantitative, mixed-methods and multi-method quantitative choices can apply to this 

research. 

4.2.2.1 Quantitative Research 

Quantitative research is concerned with analysing measurable results of variables 

related to the area of research and reproducibility of the obtained results (King 1994). 

This strategy fits well with the research problem as measurability and reproducibility 

are two important aspects to build and analyse the performance of the evaluative 

model and the autonomous control method.  

The number of case studies associated with this research strategy is usually large in 

order to validate the results and the obtained relationships between variables 

(Tewksbury 2009). 

Advantages of quantitative research include (Tewksbury 2009): 

i. production of reliable results based on quantified variables and experiments; 

ii. results can be verified and validated by other researchers; 

iii. replicable results; and 

iv. future works can be identified and carried out by other researchers. 
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Serial Flow Lines

Empirical Formula for the Throughput 
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Formula-based Autonomous Control 
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Figure 4.2: Research Strategy 
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The main drawback of quantitative research is that some variables are not fully 

measurable or subject to human judgment. Therefore, their relationship with other 

variables is changeable which questions the reliability of the research outcomes.  

Another disadvantage is that the quantitative research cannot be completely detached 

from the author qualitative values since the research is the outcome of the author’s 

observations based on the search results and the related literature which can include 

some reasonable assumptions at the time of research (King 1994).  

As a result, mixed-methods study is a more appropriate choice for this research than 

multi-method quantitative as it gives the flexibility of qualitatively and quantitatively 

evaluate a single research step. 

4.2.2.2 Mixed-methods Study 

Mixed-methods or triangulation of quantitative and qualitative methods can be an 

effective way to validate the results obtained using one method by undertaking the 

same experiment using another method and reach to the same or close results 

(Thurmond 2001).  

Kennedy (2009) suggested that bias can be reduced using triangulation through: 

i. Measurement bias: caused by the circumstances and setup involved with the 

data collection, e.g., traffic condition. Triangulation can minimise the 

measurement bias by recollecting the data under different circumstances and 

compare between them, e.g. different traffic conditions; 

ii. Sampling bias: concerned with the quantity of the collected data and whether 

it is sufficient for the research scope. Triangulation can help researcher collect 

and generate data to ensure that sufficient sampling of data to represent the 

research problem is achieved; and 

iii. Procedural bias: focuses on the quality of the collected results. The method 

can have a direct effect on the reliability of results, e.g., uncertainty and errors 

in simulation. Triangulation can reduce procedural errors in the obtained 

results by combining methods of different procedures, e.g., smoothing and 

replication of simulation results. 

This research adapts the mixed-methods or triangulation choice. Quantitative methods 

count for the majority of the work, while qualitative aspects of the research were 

taken into consideration to reduce bias in the collected data and obtained results and 

increase the validation efficiency. 
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The quantitative methodology was implemented in the following order: 

i. identify variables to be investigated; 

ii. define research methods to be used to analyse the variables; and 

iii. carry out experiments on the variables and interpret the results. 

This research applied, in addition to the quantitative methods, qualitative evaluations 

to deal with the limitations of quantitative research mentioned in 4.2.2.1 and reduce 

the bias related to the qualitative aspects and nature of the variables and the author 

interpretations. 

The research addressed the bias aspects during the data collection, pre-processing and 

analysis stages of the study. Furthermore from the validation perspective, the 

developed autonomous control method was validated using both a flow line model 

developed by other researcher (Scholz-Reiter et al. 2005) and a real-world case study.  

 

4.2.3 Methodological Framework 

4.2.3.1 Data Mining Framework 

The Data Mining Framework used in the development of the evaluative model is 

based on a developed search approach referred to as the ‘Degree of Freedom (DOF)’. 

The DOF approach was developed to standardise the implementation process of data 

mining and helps to choose the suitable methods which can reduce bias for each 

research step. The approach investigated the degrees of freedom imposed at each step 

of the evaluative model development and decided the data mining methods to be 

applied. The search steps based on the DOF approach were broken down into three 

phases: 

i. Phase I – Data Pre-processing; 

ii. Phase II – Feature Selection; and 

iii. Phase III – Model Building. 

Implementation of the DOF approach within these phases is elaborated in the 

corresponding research methods and steps, i.e., Section 4.5.2, 4.5.3.1 and 4.5.3.2 

respectively. 

The framework is validated using the real-world case study as described in Section 

4.5.4.1.  
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4.2.3.2 Autonomous Control Framework 

The developed empirical formula evaluative model was used here as the foundation 

for building an autonomous control method for flexible flow lines. The formula-based 

autonomous control used the built-in formulated relationship to evaluative the impact 

of the decision step on the throughput rate and determine the optimal decision. 

The developed autonomous control method starts by estimating the throughput rate of 

the variability scenario according to the decision variables and the constraints 

imposed on the system. Then the decision step is undertaken to optimise the 

throughput rate of each product type, while considering the system stability for each 

decision variable and that there is no overlap between executed decisions for multiple 

product types, e.g., two products sent to the same process at the same instance. Details 

of the research methods and steps involved are given in Section 4.5.3.3. 

The framework is tested, in a simulation environment, using representative variability 

scenarios of processing times and arrival rates for a 3x3 flow line model developed by 

Scholz-Reiter et al. (2005) and a real-world case study as described in Section 4.5.4.2.  

 

4.3 Research Design 

Variables can be independent, dependent or control variables. The research outcome, 

in its core, is to accurately estimate and formulate the degree of dependence and 

correlation between the investigated variables and use them to control the variability 

in human-dependent serial flow lines.  

From the model building perspective, the three main process-based parameters that 

represent the flow line, i , ic  and N , remain constant for synchronous flow lines, 

hence, use of these terms as predictors is appropriate. However, use of these variable 

parameters as predictors for asynchronous flow lines lacks the potential of being 

generic representation of a flow line. Furthermore, since it is a case-by-case form, it 

will require an enormous number of scenarios to represent long flow lines. Finally, 

the use of discrete processing times and locations as predictors is not appropriate, as 

discussed in Section 1.2 and 2.6.2. Hence, a new set of generic parameters are 

investigated in this study to represent the variability of both i , ic  within the flow line 

with minimal number of variables. The degree of dependency between these variables 

and their relationship to the dependent variable TR  is part of the investigation.  
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As shown earlier in Section 2.6.1, the maximum processing time plays an important 

role in the throughput rate of non-exponential flow lines. In fact, the bottleneck, i.e., 

the process with the maximum actual processing time, governs the throughput rate for 

deterministic processing times (First term in Equation 1). However for non-

deterministic flow lines (Second term in Equation 1), such as the case in this research, 

the process with the maximum mean and maximum actual processing time do not 

always match. The bottleneck can constantly move based on the mean processing 

times along the flow line and the average coefficient of variation, i.e., when the actual 

processing time of a process exceeds the maximum mean processing time.  

Furthermore, the use of processing times of each process, in addition to what was 

explained earlier in Section 2.6.1, will require an enormous number of independent 

variables to represent long flow lines. Hence, additional generic data mining-

compatible parameters, i.e., the minimum, average and coefficient of variation of 

mean processing times within the flow line, can explain the discrepancy due to the 

potential movement of the bottleneck for asynchronous non-exponential flow lines. 

They essentially represent the proximity of the processing times in respect to the flow 

line, hence, the potential movement of the bottleneck.  

Furthermore, researchers did not investigate the effect of the location of the process 

with the maximum mean processing time within the flow line, i.e., the ratio between 

the process with the maximum mean processing time and the length of the flow line.  

Hence, these four parameters were added along with the ones from Li and Meerkov 

(2009) formula (Equation 2.8) as follows: 

i. Minimum Mean Processing Time within Flow Line  min : 

                                                        i
i
 minmin                                                 (4.1) 

ii. Average Mean Processing Time within Flow Line   : 
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1
                                                (4.2) 

iii. Maximum Mean Processing Time within Flow Line  max : 

                                                        i
i
 maxmax                                                 (4.3) 

iv. Coefficient of Variation of Mean Processing Times within Flow Line  c : 
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v. Average Coefficient of Variation  avc :  

                                                        



N

i

iav c
N

c
12

1
                                            (4.5) 

vi. Location Ratio of the Process with Maximum Mean Processing Time  l : 

                                                
N

il   such that max i                                    (4.6) 

vii. Length  N  

Furthermore, the investigation includes the direct and multiplicative inverse of linear 

and nonlinear terms of each variability parameter, i.e., variable. The general criteria 

for election of parameter terms as model predictors were set as:  

i. Only terms with highly strong relationships to TR  were considered, i.e., 

correlation coefficient equals or higher than 0.8 (Baird 2010); and 

ii. Relationship is considered insignificant and the predictor terms excluded if the 

p-value is higher than 0.1 with the following levels (Mendenhall et al. 2012) 

used for evaluation of the significance: 

a. Highly significant: p-value is less than 0.01; 

b. Statistically significant: p-value is higher than 0.01 but less than 0.05; 

c. Possibly significant: p-value falls between 0.05 and 0.1; and 

d. Insignificant: p-value is higher than 0.1. 

The regression covariates in stepwise regression were also elected, or de-elected, 

using the same criteria. 

 

4.4 Tools  

4.4.1 Discrete Event Simulation Package 

Modern simulation modelling software provides high flexibility to represent complex 

flow lines and a visualisation platform (Haik and Aomar 2006). It is also a helpful 

tool for verification and comparison of analytical modelling results. If the process was 

considered as a simulation modelling element, the changes to it are not continuous in 

respect of time, instead go through step changes such as receive product, process, 

dispatch, etc. and different states, e.g., busy, blocked, stopped, etc. Discrete Event 

Simulation (DES) modelling is “based on a discrete internal representation of model 

variables” (Haik and Aomar 2006). Therefore, DES model is a preferable simulation 

modelling option of operations within flow lines (Papadopoulos et al. 2009). 
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As discussed in Section 1.2 and 2.6.2, the theoretical route to obtain the throughput 

rate for non-exponential flow lines is currently not possible and real-world 

observations are constrained to specific variability cases. Hence, simulation is an 

appropriate tool to determine the throughput rate for a wide range of generic 

representative variability scenarios of non-exponential flow lines. Furthermore, 

simulation has been the standard benchmark for performance evaluation of empirical 

and theoretical evaluative models of flow lines, e.g., Blumenfeld (1990), Li and 

Meerkov (2009) and Wang et al. (2014). 

The main advantages of simulation modelling are as follows: 

i. Repeatability: Experiment using simulation models with similar parameters 

will lead to the same results (Nehmzow 2009); 

ii. Reliability: Simulation models developed significantly and the accuracy of 

obtained results becomes high and close to actual systems; despite the fact that 

all models are inherently not similar to actual system (Box and Draper 1987); 

iii. Design Support: Allow different scenarios of operations to be investigated 

during the design stage before real-world implementation (Nehmzow 2009); 

iv. Adaptability to any Operations: Flexible enough to model operations of 

service or production-based sectors (Haik and Aomar 2006); and 

v. Virtual Analysis: Provide virtual environment to experiment the operations 

without the incurring cost of real implementation (Nehmzow 2009). 

Simulation modelling has also drawbacks such as (Haik and Aomar 2006): 

i. The capital cost of acquiring the simulation software and operational cost in 

terms of man-hours and overheads; 

ii. Development time to build simulation model can be long; 

iii. Extensive data collection and validation are usually required to ensure the 

simulation model reflects the real-world scenario. 

The advantages of simulation model outweigh the disadvantage from the research and 

the InnovateUK project perspectives. Therefore, a DES package, Simul8, was used in 

this research to model the variability within a generic representation of human-

dependent serial flow lines, Scholz-Reiter (2005) 3x3 flow line model and the real-

world case study. It was then used to obtain the throughput rate for each individual 

variability scenario. Simul8 was also used as a comparison platform for the 

autonomous control and simulation-based optimisation, i.e., OptQuest, techniques. 



CHAPTER 4 – METHODOLOGY  

 
54 

 

4.4.2 MATLAB 

MATLAB was mainly used in this research for model building of the evaluative 

regression machine learning models for synchronous and asynchronous human-

dependent serial flow lines and to compare these models against classification 

machine learning models and existing formulas from the literature. Statistics and 

Machine Learning and Neural Network toolboxes of MATLAB provide a wide range 

of classification and regression machine learning algorithms. They were used in this 

research to build and examine the following supervised machine learning models: 

i. Regression: 

a. Multiple Linear Regression: 

• Robust Regression; 

• Stepwise Regression;  and   

• Generalised Regularisation Linear Models; and 

ii. Classification: 

a. Feedforward Neural Network: 

• Levenberg-Marquardt backpropagation; and 

b. Decision Tree: 

• Bootstrap Aggregating; and 

• Boosting. 

 

4.5 Research Methods and Steps 

This section describes the generic methods and steps related to the research. The 

research steps related to the case study used for validation is described in Chapter 5. 

Figure 4.3 shows the research steps and the type of methods used in each.   

 
4.5.1 Data Generation 

Synthetic data were generated to ensure that the developed methods can be applied 

outside the specific case study of this research. Complexity was introduced gradually 

to the data set to cover a wide range of variability scenarios that can occur in a 

synchronous and asynchronous human-dependent serial flow line. Synthetic discrete 

data were used throughout the development phases while the actual continuous data 

were applied to the validation stage. 
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Figure 4.3: Research Steps 
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4.5.2 Data Pre-processing 

Sampling of data represents the first challenge for data mining modelling of any real-

world system especially when large data and inter-dependent variables are involved 

(Yang and Wu 2006). Accuracy of the model tends to be directly related to the 

sampling size used. Furthermore, large sampling size helps the predictive model to be 

more representative of the actual system and reduces the chances of overfitting 

(Weiss 1998). The drawback is that the algorithm used to build the model can become 

computationally extensive and the model itself tends to be more complex with 

insignificant improvement to accuracy (Oates and Jansen 1998). Therefore, the data 

sets were chosen to be large enough to represent real-world flow lines with arbitrary 

scenarios of variability. 

The process of sampling divides the data into three classes; Class I (the training set), 

Class II (the test set) and Class III (the validation set). Class I and II are used during 

model building to discover and generalise the patterns to the population while Class 

III is applied to another set of data for validation (Hastie et al. 2009).  

4.5.2.1 Data Sampling 

4.5.2.1.1 Synchronous Non-exponential Serial Flow Line 

Data sets were generated to represent the intra-variability of synchronous non-

exponential serial flow lines. The stochastic nature of such flow lines exists within the 

individual process only and no inter-process variability exists across the flow line. 

Hence, the data sets were created to represent the intra-variability of processing times, 

  and c   of an individual process P  and the length N of the synchronous flow line. 

Four discrete data sets were used for training and testing of the evaluative models of 

synchronous flow lines (Class I and II).  

The data sets 1/  SIII  to 3/  SIII  are generated to fully represent the 

processing time variability up to a scale of 10, 101   , from a short 2N  to a 

relatively long flow line, 21N  with the three parameters  , c  and N . The first and 

second data sets 1/(  SIII  and )2/  SIII  included all scenarios for a single and 

two parameters respectively and selective level for the remaining parameter(s) 

1/(  SIII  is shown in Appendix B (P. A-4)).  
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Full factorial Design of Experiments (DOE) was applied to generate all variability 

scenarios for the data set 3/  SIII . Finally, the scaled-up data set, 4/  SIII  

was generated using full factorial with higher mean processing time variability,

101   , and longer flow lines }30,23{N .  

The variability range of generated data sets is: 

1/  SIII , 3/  SIII : }21,...,2,1{},10,...,2,1{  N , 

2/  SIII : }21,20,18,16,14,12,10,8,6,4,3,2{},9,7,5,3,1{  N , and 

4/  SIII : }30,23{},15,...,2,1{  N , 

and }1,45.0,15.0,05.0,0{c   for data set 2/  SIII  and

}1,75.0,5.0,25.0,1.0,075.0,05.0,025.0,01.0,0{c  for data sets 1/  SIII , 3/  SIII  

and 4/  SIII . 

4.5.2.1.2 Asynchronous Non-exponential Serial Flow Line 

Eight discrete data sets were sampled. Representative data sets were defined for 

training and testing of the intra- and inter-variability of processing times iP  and 

length N  within asynchronous non-exponential flow lines. The first two data sets 

1/(  AIII  and )2/  AIII  were chosen to fully represent the processing time 

variability up to a scale of 10, 101  i , for a relatively small flow line, 5N . Data 

set 1/  AIII  is for flow lines with lengths of one and two processes while three 

and four processes are covered in the data set 2/  AIII .   

For flow lines with one to four processes, full factorial DOE was used to generate all 

scenarios in the data set, where mean processing times varies between 1-10 time units. 

This was considered since full coverage of this domain of flow lines should be 

applicable for scaling-up to cover flow lines with arbitrary i , ic  and N  variations. 

For longer flow lines, i  was selected randomly and equiprobably for the second six 

data sets as follows: 

3/  AIII : }5,4,3,2,1{},10,...,2,1{  Ni , 

4/  AIII : }5,4,3,2,1{},60,...,2,1{  Ni , 

5/  AIII : }5,4,3,2,1{},100,...,2,1{  Ni , 

6/  AIII : }30,...,2,1{},60,...,2,1{  Ni , 
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7/  AIII : }30,...,2,1{},100,...,2,1{  Ni , and  

8/  AIII : }30,...,2,1{},500,...,2,1{  Ni , 

and }1,75.0,5.0,25.0,1.0,075.0,05.0,025.0,01.0,0{avc  for all data sets, i.e., 

1/  AIII  to 8/  AIII . 

4.5.2.2 Data Output – Simulated Throughput Rate 

In this step, the output of the synthetic data was obtained using simulation. Simulation 

models were developed based on the variability scenarios represented by the synthetic 

discrete data sets 1/(  SIII  to 4/  SIII  and 1/  AIII to )8/  AIII  using 

Simul8 simulation package. 

The simulation model was programmed to loop through the scenarios and determine 

the steady state simulated throughput rate for each variability scenario. 

For a given simulation model, steady state analysis can be based on: 

i. Known Initial Conditions: i.e., the modelling elements are set with initial 

conditions that satisfy the steady state. For example, the queues and machines 

will have some work items and uncompleted jobs respectively. The model 

here replicates the conditions at the start of a normal day in the actual flow 

line; and 

ii. Unknown Initial Conditions: either initial conditions are not known or are 

difficult to predict (Hoad et al. 2008): 

a. Warm up: Run model for a long period of time until the performance 

measures reach the saturation state and delete this period (warm-up 

period) from collected results; 

b. MLE: Use the Maximum Likelihood Estimator (MLE) method to 

determine the steady state performance measures even when the system 

might still be in the transient state (Sheth-Voss et al. 2005); and 

c. Infinity: Set the simulation time to be long enough simt   to reduce 

the effect of transient period. 

Since warm-up period changes from one experiment to another based on the 

variability of the system and incurred cost of running the model for a long period of 

time is not an issue, the ‘Infinity’ method was chosen in this study to obtain the steady 

state throughput rate. 
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4.5.2.3 Data Cleaning 

This step is concerned with reducing the noise of the output data, i.e., simulated 

throughput rate, to prepare the data for the data mining analysis. Traditionally, 

replication of simulation runs is used to increase the confidence interval (CI) of a 

certain performance measure of interest (Law and McComas 1990, Robinson 2004, 

Banks et al. 2005, Law 2007).  

Two data cleaning methods were examined; Robinson (2004) confidence interval 

method to determine the number of simulation replications required for the desired CI 

and the second is smoothing of the output data. The investigated DOFs during this 

phase are (Figure 4.4): 

i. DOF-I-1 Simulation Replication: repetition of the simulation runs to obtain 

an average value of each output value with higher confidence interval; and 

ii. DOF-I-2 Smoothing: application of a smoothing method to the complete 

simulation outputs in a single data set to reduce the noise and detect outliers 

In DOF-I-1, the models were configured to import the data set, loop through the 

scenarios within each data set and obtain the steady state throughput rate with the 

number of runs that satisfy the conditions of 0 and 95% confidence intervals for each 

scenario, i.e., single and multiple runs respectively. 

The optimal number of iterations to give a CI of 95% for each experiment was 

determined using the method proposed by Robinson (2004). Afterwards, a 

comparison between the steady state throughput rate with 0% and 95% CI, i.e., single 

and multiple runs respectively, was carried out using the data set 1/  AIII  to obtain 

the main source of error. The Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) of the steady state simulated throughput rate were 

determined and the correlation of this error to the parameters of the flow lines was 

investigated. 

Data Pre-processing

Data Sampling

Data Cleaning

Robinson Method

Smoothing

0% Confidence 

Interval

95% Confidence 

Interval

 

Figure 4.4: DOF of Phase I 
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In addition to the Robinson (2004) replication method, DOF-I-2, i.e., smoothing, was 

applied to the simulation output to reduce noise for comparison reasons. The 

smoothing method is a widely acceptable approach for data cleaning (Jeffery et al. 

2006).  

Smoothing was applied to the data sets 1/  AIII  and 2/  AIII only since these 

two sets were arranged in a coherent order from the least to the highest variability 

scenario, hence, smoothing is applicable. Other sets, apart from 3/  SIII  for 

synchronous flow lines which has considerably smaller number of scenarios, are 

randomly selected, i.e., the neighboring data points within the defined span are not 

correlated since the x-axis here is the experiment number which moves from one 

random scenario to another. Hence, smoothing of the output data for these data sets is 

not feasible. The following smoothing techniques were applied using MATLAB: 

i. Moving Average; 

ii. Savitzky-Golay Filter. 

iii. Local Regression:  

a. 1st degree polynomial; and 

b. 2nd degree polynomial model; and 

iv. Robust Regression:  

a. 1st degree polynomial; and 

b. 2nd degree polynomial model. 

This step investigates if the error generated by the simulation software can be 

mitigated by smoothing of the simulation output data for ordered data, though this 

imposes a major limitation on this data cleaning technique regardless of the 

performance of the method. Results are reported in Appendix C (P. A-6). 

 

4.5.3 Data Analysis 

After the synthetic data were prepared in the data-preprocessing stage, analysis was 

carried out on the data according to the frameworks described in section 4.2.3 to build 

the relationship between variables into a formula-based evaluative model and use the 

model to develop an autonomous control method. 
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4.5.3.1 Feature Selection 

This phase provides a new representation of asynchronous non-exponential serial 

flow lines using selected linear and nonlinear terms of line-based parameters based on 

their impact on the throughput rateTR . The investigation includes impact and stability 

analysis of each prediction line-based parameter on TR  using statistical analysis. 

The relationship between each parameter, including its linear and nonlinear terms, and 

TR  was studied to determine whether or not a relationship exists and to what extent 

this relationship is significant. Removal of line-based parameter terms with no effect 

on the throughput rate as predictors from the model is an acceptable approach to 

improve prediction accuracy since they do not represent features of the modelled 

dependent variable, i.e., TR . Furthermore, the multiplicative inverse of linear and 

nonlinear terms of each parameter was included in the analysis since TR  can be 

directly related to one or both of them, i.e., exists in both the nominator and 

denominator of the formula.  

It is worth mentioning that the study of the effect of each parameter on TR  

individually is not always possible since the change in some parameters automatically 

disturbs the others due to the inter-dependency between these variables, e.g., max  

and  . Therefore, for each parameter, a data set (Class IV) was created with the 

smallest number of factorial changes for each sub-set. 

Statistical analysis was carried out to determine the strength and significance of the 

relationship between parameters and TR . Correlation analysis was applied to examine 

the strength of the relationship. However, to determine the significance of this 

relationship, Analysis of Variance (ANOVA) was performed on the data set; f- and p-

value of regression coefficients and f-value of regression model were examined to 

determine if the parameter term is statistically significant. Finally, best sub-set 

regression was applied to verify the results and determine if a parameter term can be 

excluded from the model building stage. 

It is worth noting here that the variability within synchronous flow lines is generated 

inside the process only, i.e., intra-variability, hence, the process-based and line-based 

parameters are the same. Therefore, the selected line-based parameter terms were then 

translated to process-based parameter terms for the special case of synchronous flow 

lines to be used as predictors in the model building phase.  
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This phase includes the following DOFs (Figure 4.5): 

i. DOF-II-1 Representation Type: the parameters used to represent the 

variability within each individual process or the flow line; and 

ii. DOF-II-2 Parameters Terms: the data mining models are trained with the 

direct linear term of the parameters or the direct and multiplicative inverse of 

the linear and nonlinear terms. 

 

Asynchronous 

Line

Process-Based

Line-Based

Direct Terms

Non-linear Terms

Direct Terms

Non-linear Terms

Feature Selection

DOF-II-1

DOF-II-2

 

Figure 4.5: DOF of Phase II 

 

4.5.3.2 Model Building 

A new set of line-based parameters to represent the variability within the stochastic 

asynchronous flow lines were defined. The line-based parameter terms were then 

shortlisted in Phase II based on their influence on the throughput rate for 

asynchronous flow line and redefined in terms of process-based parameter terms for 

synchronous flow lines. In this phase, the selected predictors with the highest impact 

on TR  were used to formulate the relationship between the variability in the flow line 

and the throughput rate. Data mining techniques were used to generate and validate 

the formula-based evaluative model.  

The derivation of the empirical formulas includes the following main steps: 

i. Development of a MATLAB program to analyse the performance of a set of 

data mining models based on supervised machine learning techniques and 

current formulas from the literature; and 
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ii. Determination of the optimal standalone empirical formulas of the throughput 

rate of synchronous and asynchronous flow lines as a function of the process- 

based and line-based parameters, respectively, with the highest impact on the 

throughput rate. 

Two evaluative models were built during this phase for synchronous and 

asynchronous flow lines. The two models used different cross validation partitioning 

criteria and DOE techniques to suit the nature of the data sets and for comparison 

reasons. The DOFs during this phase can be classified in general into the following 

categories (Figure 4.6): 

i. DOF-III-1 Supporting Predictors: selection of the supporting predictors to 

be included in the training of the data mining model; 

ii. DOF-III-2 Cross Validation Partitioning: data sets assignment to the 

training and test sets; and 

iii. DOF-III-3 Modelling Method: supervised machine learning regression to 

build the formula-based evaluative model of the throughput rate: 

a. DOF-III-3a Stepwise Regression – Model Type: The following forms of 

regression are considered: 

• Interaction: covariates can be a single or multiplication of two linear 

(1
st
 degree polynomial) predictor term(s); 

• Purequadratic: linear and squared (2
nd

 degree polynomial) terms are 

included in this model; 

• Quadratic: comprises linear and squared (2
nd

 degree polynomial) 

predictor terms and multiplications of two linear terms; 

• Polynomial: includes multiplication of linear predictor terms up to 

the 6
th

 polynomial degree; 

b. DOF-III-3b Stepwise Regression – Bounded and Unbounded Steps: In 

unbounded steps, the model starts with the full regression model and 

removes covariates from it or adds ones from lower regression forms, e.g., 

interaction for purequadratic model. In bounded steps, however, the 

model is built in forward iteration inclusively from the specified 

regression model; 

c. DOF-III-3c Robust Regression: the use of different fitting techniques for 

the least squares; and 
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d. DOF-III-3d Regularisation Algorithms: three algorithms for 

regularisation of the least squares. 

The Ordinary Least Squares (OLS) regression was excluded from the set of regression 

machine learning models since it lacks robustness or adjustments to the squares error 

to restrict the covariates to the significant variables and variable relationships. 

Furthermore, two types of stepwise regression models were also not considered, 

namely ‘Constant’ and ‘Linear’ models, since predictor terms were chosen based on 

significance and strength of their relationship to the throughput rate as described in 

Phase II ‘Feature Selection’, hence, removal of all of them is not a DOF. As for 

‘Linear’ regression model, it was substituted by Regularisation Algorithms as they 

perform the same function.   

4.5.3.2.1 Derivation of Empirical Formula 

- Synchronous Flow Line 

A MATLAB program was built to examine the evaluative models. The program was 

configured to read the data, build the supervised machine learning models and 

perform statistical analysis on the results to evaluate the model performance.  

The model building process as shown in Appendix D (P. A-8) (Figure D.1) runs 

through the different degrees of freedom in model building. It starts by importing all 

the data sets D  to the MATLAB program. The individual data set 1/  SIII  to 

4/  SIII  are segregated to xD , }4,3,2,1{x . The process-based parameter terms as 

selected in Phase II, are then identified as the model predictors }5,4,3,2,1{, ypy
 such 

as the predictors set DP  .  A counter of the training set number }4,3,2,1{, ww  is 

then started. The training and test sets, S  and T  respectively, for the current 

experiment are then defined before starting to run through the regression and 

classification machine learning models. The models were trained and tested using the 

cross validation technique with step partitioning of the training and test sets, i.e., 

iterative selection from the data set D . 
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Figure 4.6: DOF of Phase III 
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The data sets used for training were excluded from the main test set oT  but included 

in the supporting test set uT  to examine the models for overfitting. The following 

machine learning methods were used for data mining and model building: 

i. Regression: 

a. Multiple Linear Regression; 

• Robust (M-estimators) Regression: 

- Hinch and Talwar (1975) method; 

- Andrews (1974) method; 

- Tukey’s Bisquare (1960) method; 

- Holland and Welsch (1977) method; 

- Cauchy M-estimators by Moore (1977); 

- Huber (1981) method; 

- Fair method by Rey (1983); and 

- Logistic regression; 

• Stepwise Regression: 

- Interaction; 

- Purequadratic; 

- Quadratic; and 

- Polynomial: 

o 3rd to 6th degree; and 

• Regularisation Algorithms: 

- Lasso; 

- Ridge Regression; and 

- Elastic Nets; and 

ii. Classification: 

a. Feedforward Neural Network: 

• Levenberg-Marquardt Backpropagation; and 

b. Decision Tree: 

• Bootstrap Aggregating; and 

• Boosting. 

Also, the following formula from the literature was added for comparison purposes: 

iii. Blumenfeld (1990). 
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The Levenberg-Marquardt Backpropagation Neural Network, used in this research, 

had one input layer with number of neurons equals to the number of predictors, 20 

hidden layers and one output layer with a single node. Performance of the Neural 

Network is determined using the Mean Absolute Errors. As for the Decision Trees, 

Bootstrap Aggregating and Boosting Decision Trees were configured to have 100 and 

1000 ensemble learning cycles respectively. 

The program runs through each method m  and calculates the MAPE for each test set

aT : 

                                                 



sim

a

pred

ma

sim

a

T

ma

a
q

e
TR

TRTR100                                    (4.7) 

where 

mae  is the absolute %error of method m for the data set a  within the test set T ; 

aTq is the number of variability scenarios within the test set aT ; 

sim

aTR is the simulated TR of the scenarios within the test set aT ; and 

pred

maTR is the predicted TR using method m of the scenarios within the test set aT . 

The results for each training experiment wR  are then collated to the set E . The mean 

and standard deviation of the errors of each method m  and data set a  within the test 

set T , i.e., e and ec , are calculated for the set E  to determine which method 

outperforms the others for the particular training set wR . 

The error percentages are then rounded to the nearest hundredth and Score , cScore  

of each method m  within the set E  of the training experiment wR  are determined and 

compared to obtain the method(s) that performed the best with minimal errors 

according to the scoring criteria shown in Table 4.1.  

Subsequently, the program re-runs through the same steps but with another data set 

xD used for the training of models. After the program runs through all the possible 

data sets, the data set xS  of the training set wR  which includes the best performing 

method for all xD , }4,3,2,1{x  is elected and saved. 
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Finally, the model parameters, i.e., the covariates V  and regression coefficientsβ , of 

the best performing method are extracted and performance plots are generated. The 

following plots are generated to visualise the goodness of fit: 

i. predicted TR  vs. actual (simulated) TR ; 

ii. predicted TR  vs. residuals in TR ; 

iii. correlation between residuals in predicted TR ; 

iv. histogram of errors; and 

v. normal probability plots of residuals in predicted TR . 

Furthermore, the contribution of the predictors to the changes in TR  were also 

obtained by extracting the ‘major effects of factors’ for the best performing model. 

 

Table 4.1: Scoring Criteria for μScore and cScore 

Rounded e , ec  to 

Hundredth 

Score ,

cScore  

>=100% 0 

20-99% 1 

10-19% 2 

9% 3 
8% 4 
7% 5 
6% 6 
5% 7 

4% 9 

3% 11 

2% 13 

1% 15 

0% 20 
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- Asynchronous Flow Line 

The eight data sets 1/(  AIII and )8/  AIII  were modified to include the 

shortlisted main predictors 
1

max


 , avc , avc

e  and N , and also the supporting 

predictors 
1

min



e ,  , 1  , log , 

1e , c , 1c  and clog .  

In terms of the TR , it was obtained two times using the simulation model, once at 

the actual avc  and the other with avc  equals to 1, for each variability scenario within 

the eight data sets. The simulated TR  at 1avc  was obtained to be used during the 

modelling stage to feed the empirical formula developed by Li and Meerkov (2009) 

which is one of the comparison models. 

To carry out the model building process, an extended version of the MATLAB 

program for the synchronous flow line was developed (Figure D.2). The models used 

with the asynchronous flow line case for data mining and model building are the same 

as for the synchronous case listed in Section 4.5.3.2.1. 

In addition, the following formulas were used for comparison purposes: 

iii. Deterministic throughput rate 
dTR that satisfies the condition 

Nici ,....,2,1,0  , i.e.,
max

1


; and 

iv. Li and Meerkov (2009). 

The program runs in the same manner as for the synchronous flow line case but with 

more DOFs. For instance, there is an additional DOF related to the ability to use 

multiple data sets nS , }8,...,2,1{n  for training of the models. The data set here is 

defined as xD , },...,2,1{ Xx , where the variable X  determines the number of data 

sets within xD  that can be used for training when n  increases, after exclusion of the 

best performing data set nS  from the data set pool xD , 18  nX . This DOF 

requires that the program checks that the addition of a new data set is feasible by 

checking that the μScoremax  at elected nS  is greater than at elected 1nS , otherwise 

the program will stop training and compile elected 1nS  into the optimal wR .  
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Another DOF is the existence of supporting predictors }8,...,3,2,1{, jp j
. Iterative 

inclusion of the supporting predictors to reach the optimal set of supporting 

predictor(s) jS is also applicable using the same procedure as described for the 

training data sets. The supporting predictors’ procedure is commenced after the 

optimal training data set(s) nS  are reached.  

The elected set(s) jS  including the elected data set(s) used for training nS  are 

compiled into the optimal training set wR  and the covariates and regression 

coefficients of the best performing method within this set are extracted and results are 

plotted. 

4.5.3.3 Development of Formula-Based Autonomous Control Method  

In a simulation-based flow line modelling, optimisation and autonomous control are 

driven by the simulated local information of performance measures at the process 

level or system information of the entire flow line. The objective function for 

optimisation in this case is the simulated local- or system-level performance 

measures. This research presents a formula-based autonomous control method that 

can suggest the optimum solution independent of the simulation model.  

The formula-based autonomous control logic for routing decisions works by; 

i. setting decision steps equal to the number of processing steps;  

ii. evaluates the throughput rate for possible decisions;  

iii. chooses job sequence for each product that produces highest TR  and minimal 

queue times, i.e., no overlap between routes for different products; and  

iv. adjusts the routing decision based on sudden changes within the flow line, 

e.g., breakdown. 

For decisions on variability factors, the logic is as follows;  

i. chooses one random decision variable; 

ii. gets the optimal setting for it, where throughput rate starts to stabilise, i.e., 

increases of less than 1% between sequential steps;  

iii. adds the next variability factor; 

iv. gets the corresponding optimal settings at the verge of stability of the 

throughput rate and so on. 

Figure 4.7 shows a visual representation of the second general case.  
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Figure 4.7: Formula-Based Autonomous Control Logic  
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4.5.4 Validation 

4.5.4.1 Empirical Formula 

In terms of testing the regression empirical formula, the model was compared in 

Phase III with other classification machine learning models and existing formulas 

from the literature. However, these models were trained and tested using synthetic 

discrete data. In this section, the formula was validated with continuous actual data 

from a real-world industrial case study. This step is concerned with testing the 

prediction accuracy of the empirical formula and its validity to real-world scenarios. 

The simulated throughput rate was compared against the calculated throughput rate 

using the empirical formula and the average, minimum and maximum mean absolute 

percentage errors, MAPE, MINAPE and MAXAPE, were determined. Correlation 

analysis was then applied to investigate the variability factor(s) and the predictor 

term(s) that contribute the most to the residuals.  

4.5.4.2 Autonomous Control Method 

The performance of the developed formula-based autonomous control method was 

compared to existing simulation-based optimisation and autonomous control methods 

within a DES modelling environment to study its strengths and limitations. 

The formula-based autonomous control logic can be applied for a routing decision in 

a flexible manufacturing system. For instance, a 3x3 flexible flow line with three 

different products was chosen for the validation. 

 

4.6 Summary 

This chapter covered the methodology and generic research data generation, pre-

processing, and analysis and validation methods and steps. It also gave details 

regarding the two methodological frameworks. Mixed-methods were chosen as they 

give the best of both worlds; apply to a quantitative research, and multi methods 

including qualitative methods can be used in a single step. This enabled development 

of a search approach that governed the Data Mining framework which was extended 

to the Autonomous Control Framework. The research strategy combines this generic 

research and experiments with a real-world case study. 

The next chapter describes the specific research methods and steps related to the real-

world case study. Chapter 6 and 7 present the results related to research methods and 

steps within the two methodological frameworks respectively.  
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5 PILOT STUDY 

 
5.1 Overview 

This chapter covers the steps and methods of the real-world case study used in this 

research to represent an industrial example of flexible flow lines.  

  

5.2 Case Study 

This research is part of a collaborative research project between De Montfort 

University and industrial partners funded by Innovate UK (InnovateUK Grant No. 

18834-132285 ‘Development of an innovative Autonomous Model Development Tool 

(AMDT) for boosting manufacturing process competencies’). The project aim is to 

develop a new ‘Autonomous Process Model Development APMD’ approach capable 

of precisely identifying where and when business-orientated process innovation is 

necessary, what aspects of processes need innovating and how successful are the new 

process competences. This is achieved through: 

- Process mapping and identification of process variability of specific case 

studies from the industrial partners where business-orientated process 

innovation is required.  

- Analysis of the causal relationships between the controllable and 

uncontrollable variability factors and performance measures of interest for the 

industrial partner. 

- Manipulate the controllable factor(s), i.e., decision variables, in order to reach 

the optimal performance measures of the system using the defined causal 

relationships. 

Figure 5.1 shows where the research outcomes lie within the InnovateUK-funded 

project objectives. The case study reported here is done collaboratively with Costain 

Group plc. Costain is a British engineering company, and the investigation is focused 

on a major motorway development project. 
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Figure 5.1: Research Relationship to the InnovateUK-funded project  
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The project runs on M1 motorway to transform it into a ‘smart motorway’ and it 

involves construction of a central reservation barrier (CRB) project between junction 

28 and 31 (Figure 5.2). Motorways in the UK are divided into junctions, and the 

junction is a set of links. The area between Junction 28 and 31 consists of four links. 

The concrete deliveries are the core driver for this construction project. The concrete 

supplier batches concrete to the construction site from two concrete plants at different 

locations. The concrete trucks drive to the construction site through the motorway. 

Once they reach the site, they undergo some site delays due to other site works. At the 

site, the concrete slump test is done and based on results, three possibilities can occur:  

i. water is added to the load; 

ii. truck is placed in a queue while waiting for the load to dry; or  

iii. the truck proceeds to the discharge process if the extruder machine is free.  

Once the load is discharged, the operation is considered complete. A saw cut process 

of the barrier takes place after the discharge process, however, it happens 

independently, so it does not affect the completed barrier length. 

The real-world case study resembles a flexible flow line with large-volume steady 

production of medium-variety products, i.e., six sizes of concrete load batched from 

two plants. The flexibility here is generated mainly from human-dependent processes 

instead of flexible machines. The industrial partner of this project depends on the 

normal distribution to represent the process variability. Multiple variables within this 

project were identified that cause disruption to the concrete deliveries and accordingly 

the completed barrier length, i.e., throughput rate. This research is concerned with the 

variability within the part of the supply chain between concrete plants and the project 

site, where waste is usually anticipated, as a result of the lack of synchronisation of 

concrete deliveries. The waste in this construction site can be identified as either the 

number of trucks arriving on the construction site at same time, which can affect the 

concrete quality and causes unnecessary queues or no truck arrived, i.e., time lost 

while waiting for the concrete. 
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Figure 5.2: Model Representation of the Real-world Case Study 

 

The research concern is to accurately estimate the anticipated throughput rate using 

the developed formula evaluative model, taking into consideration the variability 

factors that play a part in the construction operations and the different constraints and 

operational conditions during the working day, e.g., traffic congestion. The developed 

formula-based autonomous control method was then validated with this case study by 

using it to decide the arrival rates of the trucks and the operational setting for the 

other decision variables to synchronise the dispatch timing of trucks and minimise 

queues at the project site. 
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5.3 Research Methods and Steps 

5.3.1 Data Collection 

Collection of data related to the research from the industrial partner within the 

InnovateUK (Grant No. 18834-132285) research project. Data were collected through 

several on-site meetings and conference calls with the industrial partner and their sub-

contractors. The data included the following: 

i. detailed mapping of processes; 

ii. operational constrains; 

iii. resources, i.e., people, machines, equipment, vehicles, tools, etc.; 

iv. current planning strategy; and 

v. performance reports and records. 

The performance report, i.e., concrete pour records, included the following 

information: 

i. Date; 

ii. Concrete Plant ID; 

iii. Delivery Number; 

iv. Concrete Load Size; 

v. Batch Time; 

vi. Time on Site; 

vii. Start Discharge Time; and 

viii. Finish Discharge Time. 

 
5.3.2 Data Pre-processing 

5.3.2.1 Data Sampling 

The first four categories of collected data in Section 5.3.1 were used to define the 

underlying logic within the simulation model to replicate the actual operations at the 

construction project. The fifth category, i.e., Performance Reports, was used as the 

primary source of data to define the variability within the construction project. The 

processed performance reports are ‘concrete pour records’ for M1 (Junction 28 to 31) 

CRB construction project by Costain, from 05
th

 February 2014 to 02
nd

 April 2014. 

To minimise measurement or sampling bias, which can be caused by hidden 

variability parameters or insufficient data, the deterministic and stochastic factors and 

their levels of variability, as identified from these reports, were verified with the 

industrial partner.  



CHAPTER 5 – PILOT STUDY 

 
78 

 

As a result, another factor, the ‘traffic congestion’ was identified. This factor has a 

direct effect on the delivery time of concrete truck which can be variable based on the 

time-of-the-day. 

5.3.2.2 Data Transformation 

The collected concrete pour records were transformed to define normally-distributed 

processing times that represent variability within the construction project: 

i. Concrete batch time; 

ii. Delivery time; 

iii. Load conditioning time; and 

iv. Discharge Time. 

The mean and coefficient of variation of the time taken to batch the concrete to the 

truck was provided as 3min/2 mb   and 25.0bc  by the industrial partner and 

verified during a meeting with the process owner, i.e., contractor. The delivery, load 

conditioning and discharge times were calculated from the concrete pour records as 

follows: 

i. 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒_𝑜𝑛_𝑆𝑖𝑡𝑒 − 𝐵𝑎𝑡𝑐ℎ_𝑇𝑖𝑚𝑒; 

𝐿𝑜𝑎𝑑_𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔_𝑇𝑖𝑚𝑒 = 𝑆𝑡𝑎𝑟𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑇𝑖𝑚𝑒 − 𝑇𝑖𝑚𝑒_𝑜𝑛_𝑆𝑖𝑡𝑒;  

(Condition: Waiting time is not due to queuing); and 

ii. 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑖𝑠ℎ_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑇𝑖𝑚𝑒. 

For the delivery time, the normal distribution, i.e., average and standard deviation of 

the truck delivery times del  and del , from the two concrete plants, P1 and P2, were 

determined based on: 

i. time-of-the-day; 

ii. segmented times-of-the-day; and 

iii. overall. 

The data variations 
del

v and 
del

v for each category were then examined to determine 

the suitable delivery time distribution. Based on the results shown in Table 5.1, the 

segmented times-of-the-day gave the minimal data variations, hence, it was chosen to 

define the truck delivery time distribution based on the time-of-the-day, as shown in 

Table 5.2. 

  



CHAPTER 5 – PILOT STUDY 

 
79 

 

In terms of load conditioning, three load conditions are used: 

i. Suitable load: ready to be discharged when the extruder machine is available; 

ii. High slump: the truck needs to wait for the concrete load with high water 

content to dry min)20_( timewaiting ; and 

iii.  Low slump: water is added to the load to adjust concrete properties

min)20_( timewaiting . 

The instances of each load condition were extracted from the concrete pour records 

according to the waiting and queuing times, where a load can be clearly assigned to a 

specified category. Results were then plotted as shown in Figure 5.3. 

 

 

Figure 5.3: Histogram of Load Condition 

 

Table 5.1: Data Variation for Three Categories of Delivery Time Distributions 

 

P1 P2 

 
del

v  
del

v  
del

v  
del

v  

Time-of-the-day 7.29 6.99 15.39 22.35 

Segmented times-of-the-day 1.87 5.89 6.90 3.85 

Overall 16.37 14.09 33.57 12.37 

 

Table 5.2: Delivery Time Distribution based on the Segmented Time-of-the-day 

 P1 P2 

Time-of the-day del  (min) del  (min) del  (min) del  (min) 

07:00 34.10 8.86 51.80 26.68 

08:00 38.03 14.00 50.27 11.90 

09:00-15:00 30.55 8.69 48.96 11.79 

16:00 29.44 7.23 39.00 13.53 
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Normal distribution patterns of the load conditioning time c and c  were then 

generated for the waiting time to condition the ‘Low Slump’ and ‘High Slump’ 

concrete loads (Table 5.3). 

 

Table 5.3: Load Conditioning Time Distribution 

Load Condition c  (min) c  (min) 

Low Slump 11.14 5.45 

High Slump 36.47 11.24 

 

Finally, average and standard deviation of discharge time dis  and dis , of each load 

size were determined, as shown in Table 5.4, and then the distribution per 3m  of 

concrete load was calculated as min39.43 m
dis

 and min53.13 m
dis

. 

Table 5.4: Discharge Time Distribution for each Load Size 

Load Size dis  (min) dis  (min) 

5.5 23.00 8.47 

6.0 24.85 9.60 

7.5 32.57 11.04 

8.0 39.30 12.10 

 
5.3.2.3 Data Output – Simulated Throughput Rate 

The output of the historical data for the real-world case study was obtained using 

simulation. Simulation models were developed based on the variability scenarios 

represented by the real-world case study using Simul8 simulation package (Figure 

5.2). 

The main elements of the model are: 

i. Work Entry Point: where trucks enter the system before any processing 

operation is initiated; 

ii. Batch and Load Queue (Q1): the queue of concrete trucks waiting to be 

batched; 

iii. Batch and Load Process: the first process at the contractor concrete plant sites, 

where trucks are batched and loaded with concrete; 
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iv. Drive to Site Process: the second process, where trucks are delivering concrete 

to the construction site; 

v. Site Access Delay Queue (Q2): delay to the concrete deliveries at the site 

access. 

vi. Site Queue (Q3): trucks waiting to be load tested at the site. 

vii. Slump Test Process: the slump test is applied to the concrete load to determine 

its suitability; 

viii. Add Water Process: in case of dry load; 

ix. High Slump Load Queue (HSLQ): where trucks wait for the high slump load 

to dry; 

x. Discharge and Extrude Process: the only value-added process, where the load 

is being discharged at site;  

xi. Saw Cut Process: a supplementary process that occur after the barrier is 

extruded; and 

xii. Work Exit Point: where items leave the system. 

Rules were defined in the simulation model to identify the variability and constraints 

of the operations.  

The simulation model was programmed to loop through the scenarios and determine 

the steady state simulated throughput rate for each variability scenario using the 

‘Infinity’ method described in Section 4.5.2.2. 

5.3.2.4 Data Cleaning 

To reduce the noise generated by simulation modelling, Robinson (2004) confidence 

interval method was applied to the simulation models to determine the steady state 

simulated throughput rate with a confidence interval of 95%. 

 

5.4 Summary 

This chapter covered the specific research methods and steps of the real-world case 

study with the construction industry as part of the InnovateUK (Grant No. 18834-

132285) research project. The collected data feed the validation sections of the Data 

Mining and Autonomous Control Frameworks as demonstrated with results in 

Chapter 6 and 7. 
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6 DATA MINING FRAMEWORK 

 
6.1 Introduction 

Chapter 4 presented the research methodology including the research design and an 

established Data Mining Framework for the different phases that were investigated 

during this study to relate the identified variables to the dependent variable of interest, 

i.e., throughput rate. It also presented the detailed methods and steps of data 

collection, pre-processing and analysis for the purpose of development of the formula 

evaluative model presenting the relationships between variables.  

This chapter gives the results of these development phases and analyses the findings 

and implications that can be derived from the results. 

 

6.2 Phase I – Data Pre-processing 

Figure 6.1 shows the simulation output with a single run and multiple runs that satisfy 

the 95% confidence interval condition, according to Robinson (2004) method for a 

randomly selected scenario from the data set 6/  AIII . Apparently, the 

confidence interval stabilised the simulation output as shown in Figure 6.1a. However 

as shown in Table 6.1, the Mean Absolute Percentage Error (MAPE) does not 

necessary mean that there will always be an error in the throughput rate when running 

the simulation model with 0% CI since at some scenarios the error was zero, i.e., 

when Minimum Absolute Error (MINAE) equals zero. It implies only that that the 

multi runs will produce more robust and stable figures of the throughput rate which is 

backed by the visual results (Figure 6.1a). From the correlation analysis between the 

main parameters of the flow line and the error with a single run, i.e., 0% CI, in Table 

6.2, it can be observed that the avc  plays a major role in this error.  

The effect of warm-up (transient) state on the average throughput rate was then 

investigated. Figure 6.1b shows that for the selected scenario from the data set

6/  AIII , the increase in throughput rate over time becomes insignificant after 

100,000 simulation time units especially with multiple iterations, i.e., less than 1010 ; 

hence, simt ; this period can be called the ‘Saturation Period’.  
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The results suggest that after a saturation period, though the throughput rate in the 

case of not defining a warm-up period is still marginally increasing (Figure 6.2a), the 

difference between throughput rate with and without a pre-defined warm-up period 

becomes negligible, i.e., < 810*5.1   (Figure 6.2b). Based on time series graphical 

inspection and variance plots of several experiments over the range of the eight data 

sets 1/(  AIII and )8/  AIII , the steady state response after the defined 

‘Saturation Period’ of any serial flow line that follows the rules of normal distribution 

can be approximated to: 

                                                   max55)(lim Ntf
simt




                                             (6.1) 

 

Table 6.1: Error in the Throughput Rate due to the Confidence Interval 

Statistical Measure Value Statistical Measure Value 

Mean Absolute Percentage Error 

(MAPE) 

0.6% Mean Absolute Error 

(MAE) 

0.0005 

Minimum Absolute Percentage 

Error (MINAPE) 

0% Minimum Absolute 

Error (MINAE) 

0 

Maximum Absolute Percentage 

Error (MAXAPE) 

7% Maximum Absolute 

Error (MAXAE) 

0.009 

 

Table 6.2: Correlation Analysis between the Flow Line-based Parameters the 

MAPE due to Confidence Interval 

 
min    

max  c  
avc  N  

MAPE -0.0961 -0.1514 -0.1047 0.0135 0.6566 -0.0425 
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(a) 

 

(b) 

Figure 6.1: Time Series Graphical Inspection of (a) Throughput Rate and (b) 

Step Variance in Throughput Rate without Predefined Warm-up (Transient) 
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(a) 

 

(b) 

Figure 6.2: Time Series Graphical Inspection of (a) Throughput Rate and (b) 

Variance in Throughput Rate after Saturation Period with and without Pre-

defined Warm-up (Transient) Period 
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6.3 Phase II – Feature Selection 

The line-based parameter terms identified in the research design (Section 4.3) are 

examined here to select the predictors (features) to be used in the formula evaluative 

model building phase, Phase III, for asynchronous and the special case of 

synchronous flow lines. The results start with the general case, i.e., line based 

parameters for asynchronous flow lines, before converting the selected parameter 

terms to process-based for the synchronous flow line case. 

 

6.3.1 Average Coefficient of Variation  avc  

As mentioned in Section 2.6.2, avc  is the root cause of disturbance in TR . Therefore, 

the data set used for this parameter was constructed of three sub-sets used to test and 

validate the relationship with the throughput rates, 321 ,, TRTRTR for the three sub-

sets, respectively, as follows: 

i. 1 avcIV : 

},15,...,10,9{

,8

},7,...,2,1{

1

10

1

















N

N

N

for

for

for

i   7,15},1,75.0,5.0,25.0,1.0,075.0,05.0,025.0,01.0,0{  lNci  

ii. 2 avcIV : 

},15,...,10,9{

,8

},7,...,2,1{

5

10

5

















N

N

N

for

for

for

i   7,15},1,75.0,5.0,25.0,1.0,075.0,05.0,025.0,01.0,0{  lNci  

iii. 3 avcIV : 

7,15},1,75.0,5.0,25.0,1.0,075.0,05.0,025.0,01.0,0{},60,...,2,1{  lNcii  

TR  exhibited very high negative correlation with average coefficient of variation  

avc  and the exponential term of coefficient of variation  avc
e  for the three sub-sets 

(Table 6.3 and Figure 6.3). Figure 6.7a shows the effect of the change in the 

throughput rate due to the change of the individual variability factor, i.e., avc , only.  

The throughput rate was normalised to the throughput rate of the initial value of the 

variability factor inTR  for illustration purposes: 

                                                          
in

hss

hssnorm

,

,

TR

TR
TR                                               (6.2) 

where in  stands for initial, ss  for the sub-set and h  is the sub-set number. 
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Though the exponential term has the highest correlation with TR , avc  shares almost 

the same significance with it which suggests that the throughput formula might 

include both terms of avc . There was close consistency along the sub-sets, however, 

the relationship becomes stronger with the increase in randomness and mean 

processing time. 

The significance analysis showed that the two terms of coefficient of variation are 

strong enough to represent the variability of the dependent response perfectly (p-

value=0). The exponential term of coefficient of variation is highly correlated to the 

change in TR  when all the other parameters are constant.  

Finally, to determine if these terms can solely represent TR , the correlation 

coefficient of these two terms and TR  was calculated for the whole data set IV , 

including sub-sets for all parameters. The results showed very weak relationships 

suggesting that these terms cannot solely represent TR . 

 

Table 6.3: (i) Correlation and (ii) ANOVA Analysis of the Relationship between 

Coefficient of Variation Terms and the Throughput Rate 

6.3.2 Location Ratio of the Process with Maximum Mean Processing Time 

)(l  

The data set used for the location ratio of the process with maximum mean processing 

time was chosen to examine each individual location of the flow line as follows: 

lIV  :
,

,

,10

,1

li

li

for

for
i









 }15,...,2,1{,15,1.0  lNci   

As shown in Table 6.4 and Figures 6.4 and 6.7b, the location and number of the 

processes with maximum mean processing time has no correlation with TR .  

 
(i)  (ii) 

Term  1TR  2TR  3TR   
Source DF Adj SS Adj MS f-value p-value 

avc  -0.90 -0.97 -0.99  Regression 2 0.000001 0 1256.59 0 

1

avc  0.33 0.41 0.45 
 

avc  1 0 0 253.38 0 

avclog  -0.66 -0.78 -0.83  avc
e  1 0 0 468.27 0 

avc
1log  0.66 0.78 0.83 

 
Error 5 0 0   

avc
e  -0.95 -0.99 -0.99  Total 7 0.000001    

1
avc

e  0.17 0.22 0.25  
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Since there is no dependency between the location of the process with maximum 

mean processing time and TR , this parameter is of no use to the prediction model. 

 

TR

Very High Relationship

Low Relationship

C stands for Correlation and S is Significance

exp cav
-1

exp cav

log cav
-1

C Slog cav

cav
-1

cav

 

Figure 6.3: Relationship Diagram for Coefficient of Variation Terms 

 

Table 6.4: Correlation Analysis of the Relationship between Location Ratio of 

the Process with Maximum Mean Processing Time Terms and the Throughput 

Rate 

Term 1TR  

l  -0.06 
1l  -0.12 

llog  0.00 

l
1log  -0.00 

le  -0.07 
1le  -0.21 
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TR

Low Relationship

C stands for Correlation and S is Significance

exp iB
-1

exp iB

log iB
-1

log iB

iB
-1

iB

 
Figure 6.4: Relationship Diagram for Location Ratio of the Process with 

Maximum Mean Processing Time Terms 

6.3.3 Maximum Mean Processing Time within Flow Line  max  

As for the maximum mean processing time which is the sole representative of 

variability in the throughput rate when 0avc , it is not always the only defining line-

based parameter. When avc  increases, several parameters start to affect TR .  

The data set for this parameter included the following two sub-sets for flow lines with 

different lengths: 

1max  IV :
,3

},2,1{

,

,1

max 








i

i

for

for
i


 3,3,1.0},10,...,3,2{max  lNci   

2max  IV : 

},15,...,10,9{

},8,...,2,1{

,

,1

max 








i

i

for

for
i


 }15,...,10,9{,15,1.0},10,...,3,2{max  lNci  

All terms apart from exponential term showed a high correlation to TR  (Table 6.5). 

However the multiplicative inverse  1

max


  is still the predominant in terms of 

correlation and significance as shown in Figure 6.5 (f-value=4640 and p-value=0).  
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1

max


  is strong enough to represent the variability of the dependent response TR  

perfectly for the two sub-sets. Subsequently, this term also exhibits very high 

correlation across Class IV data set for all parameters (Figure 6.7c). 

 

Table 6.5: (i) Correlation and (ii) ANOVA Analysis of the Relationship between 

Maximum Mean Processing Time Terms and the Throughput Rate 

 

TR

Very High Relationship

Low Relationship

C stands for Correlation and S is Significance

exp μmax
-1

exp μmax

log μmax
-1

log μmax

μmax
-1

μmax

 

Figure 6.5: Relationship Diagram for Maximum Mean Processing Time Terms 

 

 

(i)  (ii) 

 Terms 1TR  2TR  
 

Source DF Adj SS 

Adj 

MS f-value 

p-

value 

max  -0.90 -0.90  Regression 1 0.1364 0.1364 21533270 0 

1

max


  1.00 1.00  1

max


  1 0.1364 0.1364 21533270 0 

maxlog  -0.97 -0.97  Error 7 0 0   

max

1log


 0.97 0.97 
 

Total 8 0.1364    

max
e  -0.49 -0.49        

1
max




e  1.00 1.00        
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6.3.4 Length  N  

For the length, the sub-sets were designed, as mentioned in 4.5.3.1, to keep other 

parameters constant and   and c  as stable as possible. Nine sub-sets were used with 

variable max  of the flow line as follows: 

iNIV 1 :
,5.0

,5.0

,

,1

max Ni

Ni

for

for
i












 }12,10,8,6,4{,1.0,2max  Nci  

iiNIV 1 : 

,538.0

,538.0

,

,1

max Ni

Ni

for

for
i












 }29,27,25,23,21,19,17,15,13{,1.0,2max  Nci  

iNIV 2 :
,5.0

,5.0

,

,1

max Ni

Ni

for

for
i












 }12,10,8,6,4{,1.0,3max  Nci  

iiNIV 2 : 

,538.0

,538.0

,

,1

max Ni

Ni

for

for
i












 }29,27,25,23,21,19,17,15,13{,1.0,3max  Nci  

… 

iNIV 10 :
,5.0

,5.0

,

,1

max Ni

Ni

for

for
i












 }12,10,8,6,4{,1.0,10max  Nci  

iiNIV 10 : 

,538.0

,538.0

,

,1

max Ni

Ni

for

for
i












 }29,27,25,23,21,19,17,15,13{,1.0,10max  Nci  

Results for the nine sub-sets are in close agreement, hence, only the first four sub-sets 

are shown in Table 6.6 and Figures 6.6 and 6.7d. The length terms, except for the 

exponential term, are highly correlated to TR . 1N exhibits the highest correlation; 

however N  explains some of the variability in TR and the two terms together are 

strong enough to fully represent, at different degrees of significance, the variability in 

TRdue to the change in length (f-value=4925.5 and p-value=0).  
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Table 6.6: (i) Correlation and (ii) ANOVA Analysis of the Relationship between 

Length Terms and the Throughput Rate 

 

(i)  (ii) 

Terms  1TR  2TR  3TR  
4TR  

 

Source DF Adj SS Adj MS 

f-

value 

p-

value 

N  -0.87 -0.88 -0.88 -0.89  Regression 3 0.0034 0.0011 4925.5 0 

1N  1.00 1.00 1.00 1.00  N  1 0.000002 0.000002 8.24 0.017 

Nlog  -0.97 -0.97 -0.97 -0.98  1N  1 0.00004 0.00004 149.8 0 

N
1log  0.97 0.97 0.97 0.98 

 

N
1log  1 0.000001 0.000001 3.59 0.087 

Ne  -0.30 -0.30 -0.32 -0.33  Error 10 0.000002 0   

1Ne  1.00 0.99 0.99 0.99  Total 13 0.003443    

 

TR

Very High Relationship

High Relationship

Low Relationship

C stands for Correlation and S is Significance

exp N

exp N-1

log N-1

log N

N-1

N

 

Figure 6.6: Relationship Diagram for Length Terms 
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6.3.5 Minimum, Average and Coefficient of Variation of Mean Processing 

Time within Flow Line ),,( min c  

Finally, for the minimum, average and coefficient of variation of mean processing 

time, and due to the inter-dependency of these parameters, two data sets were 

generated. The first data set has a constant min  while the other has a steady max .  

The two data sets were then divided into sub-sets as follows: 

i.  and c  

1,  cIV  :

},15,...,10,9{

,8

},7,...,2,1{

1

1

max

















N

N

N

for

for

for

i  15,75.0},60,...,3,2{max  Nci  

2,  cIV  :
,5.0

,5.0

,1

,max

Ni

Ni

for

for
i












 15,75.0},60,...,3,2{max  Nci  

3,  cIV  :
,538.0

,538.0

,

,1

max Ni

Ni

for

for
i












 15,75.0},60,...,3,2{max  Nci  

4,  cIV  :

},15,...,10,9{

,8

},7,...,2,1{

1

max

max

















N

N

N

for

for

for

i





 15,75.0},60,...,3,2{max  Nci  

i. min ,   and c  

1,,min  cIV  :

},15,9{

,8

},7,...,2,1{

60

min

min

















N

N

N

for

for

for

i





 15,75.0},59,...,3,2{min  Nci  

2,,min  cIV  :
,5.0

,5.0

,

,60

min Ni

Ni

for

for
i












 15,75.0},59,...,3,2{min  Nci  

3,,min  cIV  :
,538.0

,538.0

,60

,min

Ni

Ni

for

for
i












 15,75.0},59,...,3,2{min  Nci  

4,,min  cIV  :

},15,....,10,9{

,8

},7,...,2,1{

60

60

min

















N

N

N

for

for

for

i  15,75.0},59,...,3,2{min  Nci  

The correlation and significance of these terms is ambiguous and complex. Results for 

these parameters change from one experiment to another as shown in Appendix E (P. 

A-11) for the subsets 1,,min  cIV   to 4,,min  cIV  .  
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Hence, it is more difficult to associate the change in TR  with specific terms of these 

three parameters. Therefore, to deal with the discrepancy and avoid neglecting any 

important relationships, only the terms with weak strength and did not show 

significance for a single data set were removed. 

Each parameter term was given a score based on its relationship with TR  with more 

emphasis given to significance over strength. Table 6.7 shows the correlation 

coefficient for each sub-set. As shown, the correlation is strong, i.e., higher than 0.8 

(Section 4.3), for two sub-sets out of 8. Hence, the score given to this parameter term 

was 2/8. The same criterion was applied to the significance of the parameter term but 

the score was doubled. The total weighted score was then calculated and the pass 

score was set low, i.e., 25% or 6/24 (Table 6.8). 

Hence, the removed terms were 
min

min

1

minmin
1log,log,,,,,

1


 cc eee  and min

e . 

Table 6.7: Relationship Score and Inclusion or Exclusion Decision for Minimum, 

Average and Coefficient of Variation of Mean Processing Time Terms 

Predictor 

Terms  

Score -  

Strength (out of 8) 

Score -  

Significance (out of 16) 

Total Score 

(out of 24) 

Decision 

  2 4 6 Include 
1  5 2 8 Include 

log  6 2 8 Include 


1log  

6 0 6 Include 

e  3 0 3 Exclude 

1e  5 6 11 Include 

min  4 0 4 Exclude 

1

min


  0 0 0 Exclude 

minlog  2 0 2 Exclude 

min

1log


 
2 0 2 Exclude 

min
e  0 0 0 Exclude 

1
min




e  0 8 8 Include 

c  5 4 9 Include 
1c  6 8 14 Include 

clog  8 4 12 Include 

c
1log  8 2 10 Include 

ce  1 0 1 Exclude 

1ce  
0 0 0 Exclude 
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Table 6.8: Correlation Coefficient between the Direct Term of Average Mean 

Processing Time and the Throughput Rate of each Sub-set 

 

1,ssTR  2,ssTR  3,ssTR  4,ssTR  5,ssTR  6,ssTR  7,ssTR  8,ssTR  

  -0.99 -0.75 -0.76 -0.93 -0.70 -0.67 -0.67 -0.67 

 

 

(a) Coefficient of Variation 

     

           (b) Location Ratio                         (c) Maximum Mean Processing Time 

 

 

         (d) Length 

Figure 6.7: Change of Throughput Rate with the Most Important Terms of each 

Line-based Parameter 
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6.3.6 Best Sub-set Regression 

To determine if the discrepant parameter terms are important to be included in the 

modelling step, the parameter terms will need to be examined if they add value to the 

model. Best sub-sets regression is a method that can initially be used to do this 

validation in one step since it will provide statistical measures for the best single-

variable model, 2-variables and so on. 

Best sub-set regression was applied to the full original data sets ( 1/  AIII to 

)8/  AIII  described in Section 4.5.2.1.2 with two conditions; one with the certain 

parameter terms that have an agreement throughout the different sub-sets and the 

second with the uncertain parameter terms that are inconsistent.   

Results were analysed using the following statistical measures: 

i. R
2
; 

ii. Adjusted R
2
; 

iii. Predicted R
2
; 

iv. Mallows’s Cp; and 

v. Standard error. 

For the first condition that includes the following terms 
1

max


 , avc , avc

e , N  and 
1N , 

results show that the five terms are important and they can give an accurate model 

with R
2
 of 96.7% even without interactions and higher polynomial orders.  

The results shown in Table 6.9a suggested that all these terms are needed to define the 

throughput rate using linear terms only; exclusion of any one has a significant effect 

on Mallows’s Cp, which describes the prediction accuracy of the model with the 

selected predictors. Ideally, Mallows’s Cp has to be equal the number of predictors 

plus one (for the constant); this condition was met when all predictors are included. 

However, variability is still not fully defined (R
2
 of 96.7%). Improvements can be 

approached statistically by investigating if; 

i. there are more parameter terms that can be added; or 

ii. determine the right term and order of the existing predictors. 
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In the second regression, the predictor terms from first condition were used as main 

predictors (included in all models) and the remaining following predictor terms were 

set as free predictors. Adding these predictors with complex relationship with TR  

(i.e.,  ,min  and c ) has improved the accuracy and significance of the model (Table 

6.9b), however, the terms that did not show effect on the model and can be excluded 

from the forthcoming stages are 


1log  and 
c

1log . 

Hence, free predictors, for use as supporting predictors during the model building 

stage, were reduced to 
1

min



e ,  , 1 , log , 

1e  ,  c , 
1c  and clog . 

These terms were converted from line-based to process-based for the synchronous 

flow line case by including the matching parameters, c , N and the dominant mean 

processing time which in this case is max . Hence, the selected main predictors for the 

asynchronous flow line model translated in process-based parameter terms are c , 
ce , 

1 , N  and 
1N  with no supporting (free) predictors. 

The results with the asynchronous case showed improvements in the explained 

relationship through statistical measures which reach the maximum when all the free 

predictors are included. However, the best sub-set regression model did not explain 

the relationship perfectly since the degrees of freedom in modelling using normal best 

sub-set regression technique are limited, i.e., linear, which was investigated during the 

model building stage. 



CHAPTER 6 – DATA MINING FRAMEWORK 
 

 
98 

 

Table 6.9: Best Sub-set Regression Analysis for (a) Main Predictors only and (b) Main and Free Predictors 

(a) 

Vars R
2
 R

2
(adj) Mallows Cp S 

1

max


  c  avc

e  N  1N  

1 89.2 89.2 262821 0.0149 X     

2 96.7 96.7 1646.1 0.0083 X  X   

3 96.7 96.7 748.2 0.0082 X X X   

4 96.7 96.7 100 0.008 X X X  X 

5 96.7 96.7 81.1 0.008 X X X  X 

6 96.7 96.7 6 0.0082 X X X X X 

 

 (b) 

Vars R
2
 R

2
(adj) 

Mallows 

Cp 
S 

1
min




e    1  log  
1e  c  1c  clog  

1 97.3 97.3 2991 0.007   X      

2 97.3 97.3 2064 0.007   X   X   

3 97.3 97.3 908 0.007   X   X  X 

4 97.3 97.3 727 0.007   X  X X  X 

5 97.3 97.3 200 0.007   X X X X  X 

6 97.3 97.3 149 0.007   X X X X X X 

7 97.3 97.3 103 0.007 X  X X X X X X 

8 97.3 97.3 58 0.007 X X X X X X  X 

9 97.3 97.3 14 0.007 X X X X X X X X 

X indicates the predictor is included in the regression model 



CHAPTER 6 – DATA MINING FRAMEWORK 
 

 
99 

 

6.4 Phase III – Model Building 

Closed-form formulas were developed for the throughput rate of synchronous and 

asynchronous serial flow lines that follow the rules of normal distribution. The 

formulas are based on an empirical study using an integration of DES modelling and 

supervised machine learning techniques. 

 

6.4.1 Synchronous Flow Line 

The MATLAB program was run through the variability scenarios to build the 

classification and regression data mining models for each test set and iterative training 

step w . Regression machine learning models were used to derive the formula while 

classification models were applied for comparison reasons along with the empirical 

formulas from the literature. Table 6.11 shows the score of the average and coefficient 

of variation of MAPE of each model, mScore  and mcScore , for the iterative steps of 

the data set(s) used for training xS  and scoring criteria described in Section 4.5.3.2.1.  

Bold numbers indicate the methods with highest Score  which are shortlisted based 

on top cScore  (shown in bold with light grey shading) for the iterative steps of train 

set. The elected method and train set (bold and dark grey shading) were chosen from 

the shortlisted methods of each individual test set as described in Section 4.5.3.2.1. 

The MAPE of the individual test data set mae within the training iterative step is 

shown in Appendix G (P. A-14). 

In terms of the data set xD , }4,3,2,1{x  used as a training data set xS  for the data 

mining models, the data sets xD , 1x  and 2x  , which include variability scenarios 

designed based on the number of factorial changes per experiment, performed poorly 

as training sets for the regression models. On the other hand, training the regression 

model with the full factorial DOE-based data sets of the same variability range of   

and c  as xD , 3x  and 4x  gave better results in accuracy error presented by 

Score  and stability across the test sets as measured by cScore  of the training set

wR . As a result, for modelling of asynchronous flow lines, full factorial DOE only 

was used to define the variability scenarios. Furthermore, the data set xD , 3x  

performed better as a training set than the scaled-up data set xD , 4x . 



CHAPTER 6 – DATA MINING FRAMEWORK 

 
100 

 

As expected testing with the same data sets used for training, i.e., supporting test set

uT , normally gave less accuracy errors when compared with the main test set oT . 

However, for some experiments, the error was higher with the supporting test set uT  

especially with the larger size data sets (Table G.3 and G.4) which suggests over-

fitting of the data mining model. Hence, it is equally important to test the model 

prediction accuracy and stability over the full range of data sets including the training 

data sets. 

Finally, for the modelling method DOF, The best performing comparison model 

across all iterative training steps w  is the Blumenfeld (1990) formula followed by the 

Feedforward Neural Network. These models while trained with the data set xD , 3x  

scored 11 and 9 in terms of e , respectively, and 1 in ec  .   

As for the regression models, linear regression models based on robust fitting and 

regularisation algorithms to adjust the squared errors, which both exclude the 

interactions and higher orders of the selected predictor terms, performed the least in 

comparison to the stepwise regression. Additionally, regression models with bounded 

steps appear to be more accurate than unbounded regression, though in some cases 

both produce the same model. Purequadratic regression models are an exception since 

in this model only the bounded regression model has more limitations on covariate 

terms than unbounded. The regression steps for bounded purequadratic regression 

model include linear and squared terms only while unbounded regression model can 

add terms of a lower model form outside its boundary, e.g., multiplication of linear 

terms. In general, from the operational point of view of the stepwise regression, 

forward iteration in bounded regression performed better than backward iteration in 

unbounded regression when both have the same DOF in the covariate terms.  

The polynomial stepwise regression model with bounded steps trained with data set 

3, xxD  gave the minimal prediction percentage error  e  of 0.2% with a stability 

over the range of test data sets, i.e., 11.0ec . This model surpasses the performance 

of Blumenfeld (1990) formula (Figure 6.8-11) which gave for the same test data sets 

an average and coefficient of variation of MAPE, e  and ec , of 2.63% and 0.74 

respectively.  
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The multiple regression model of the throughput rate of synchronous flow line 

s y n cTR  for this regression model is given by: 

                                                         εVβTRs y n c                                                 (6.3) 

where V  is a 19j  matrix, β  is a 19 -dimensional vector and   is a j -dimensional 

vector (see Table 6.10). 

As shown in Equation 6.3 (Table 6.10), the stepwise regression model excluded 

predictor terms
ce ,  N  and depended only on c , 1  and 

1N  to formulate the 

relationship between variability within the synchronous flow line and TR .  

Figure 6.12 shows the predicted against residuals plot using the optimal model for 

each test data set which suggests that the residuals are significantly small and stable 

over the full range of test data sets.  This was also verified with the histogram plots 

shown in Appendix I (P. A-153). The residuals are generated primarily by an increase 

in c  followed by a decline in   and then shorter N  (Figure I-5-7 in Appendix).   
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Table 6.10: Regression Model of the Throughput Rate for Synchronous Flow Lines 
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Table 6.11: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Synchronous Flow Lines including Elected Training Set (Sn) and Method (m) 

 

 

 

 

 

 

        
Train Set Rw at x=1 Train Set Rw at x=2 Train Set Rw at x=3 Train Set Rw at x=4 

        
I-II-S-1 I-II-S-2 I-II-S-3 I-II-S-4 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 0 1 0 1 1 2 1 

2 
Bootstrap 
Aggregating 0 1 0 0 1 1 1 1 

3 
Neural 
Network 

Feedforward 
0 1 0 0 9 1 0 0 

4 
Blumenfeld 
(1990) 

  
Current 
Formula 
(Literature) 

N/A 
11 1 11 1 11 1 11 1 

5 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

0 0 0 0 2 1 2 1 

6 Andrews 0 0 0 0 2 1 2 1 

7 
Cauchy M-
estimators by 
Moore 1 0 0 0 2 1 2 1 

8 Fair by Rey 1 0 0 1 2 1 2 2 

9 Huber 1 0 0 1 2 1 2 2 

10 
Logistic 
Regression 1 0 0 1 2 1 2 2 

11 Hinch and Talwar 0 0 0 0 2 1 2 2 

12 
Holland and 
Welsch 1 0 0 0 2 1 2 1 

13 

Regularisation 

Lasso 1 1 1 1 2 1 2 1 

14 Ridge Regression 1 0 1 1 2 1 2 1 

15 Elastic Nets 1 1 1 1 2 1 2 1 

16 

Stepwise 

Interaction 

Bounded 
Steps 1 0 1 0 13 1 11 1 

17 
Unbounded 
Steps 1 0 1 0 13 1 11 1 

18 
Purequadratic 

Bounded 
Steps 1 0 1 1 2 1 2 1 

19 
Unbounded 
Steps 1 0 1 0 13 1 11 1 

20 

Quadratic 

Bounded 
Steps 1 0 1 0 13 1 11 1 

21 Unbounded 
Steps 1 0 1 0 13 1 11 1 

22 
Polynomial 

Bounded 
Steps 1 0 1 0 20 2 20 1 

23 
Unbounded 
Steps 1 0 1 0 13 1 13 1 
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Figure 6.8: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 1 SIII  
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Figure 6.9: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 2 SIII  



CHAPTER 6 – DATA MINING FRAMEWORK 

 
106 

 

 
Figure 6.10: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 3 SIII  
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Figure 6.11: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 4 SIII  



CHAPTER 6 – DATA MINING FRAMEWORK 

 
108 

 

 

 
Figure 6.12: Predicted against Residuals Plots using the Optimal Regression Model for Test Data Sets 1 SIII  to 4 SIII  
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6.4.2 Asynchronous Flow Line 

The data mining model for asynchronous flow line was built by running through the 

same DOFs as reported in Section 6.4.1 in addition to the two DOFs which were not 

applicable to the synchronous flow lines case, i.e., training set size and the addition of 

supporting predictor terms. 

6.4.2.1 Training Set Size 

The training set size represents the number of data sets xD  that are included as 

training data sets nS  within the training set wR . The size here can vary from a single, 

i.e., 1n to the total number of data sets 8 xn . Decision on the number of data 

sets to consider was based on the improvements achieved from each iterative step 

within this DOF. When no further improvement could be achieved, the number of the 

best performing training set was maintained. 

6.4.2.1.1 Single Data Set )1( n  

The classification and regression data mining models were built using the developed 

MATLAB program for each test set and iterative training step  with a single data 

set within the training set, i.e., . Table 6.12 shows the score of the average and 

coefficient of variation of MAPE of each model, mScore  and mcScore , for the 

iterative steps of the data sets used for training nS . The blank cells indicate a 

hardware or software limitation to perform modelling for these particular cases. 

Among all data sets xD , }8,...,2,1{x  looped within the training data set nS  for the 

data mining models, the data set
 xD , 8x  performed the best with the highest 

 and .Three regression models with the same score were elected in this 

case; interaction, quadratic and polynomial regression, all with bounded steps.  

In terms of methods and models performance, the deterministic throughput rate 

formula performed poorly for all test sets with  and of 2 and 1, 

respectively, which suggests that variability was well introduced within the data sets.  

The robust fitting and regularisation algorithms of regression models were still 

generating high errors. Furthermore, bounded purequadratic regression without the 

multiplication of terms remains the worst among all stepwise regression along with 

polynomial regression with unbounded steps, i.e., backward iteration. 

w

1n

Score cScore

Score cScore
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In general, Li and Meerkov (2009) formula performed the best among comparison 

and regression models including the elected three models, hence, double training data 

sets were examined to improve regression models prediction performance. 

6.4.2.1.2 Double Data Sets )2( n  

The best performing data set
 xD ,  as a training data set at index was kept 

the same while the index 2n was examined with the remaining seven data sets 

(Table 6.13).  

Data set
 xD , 3x with the same three regression models; interaction, quadratic and 

polynomial regression, was the best performer. The statements in Section 6.4.2.1.1 

regarding the performance of other models still hold true for this iterative step. The 

 now increased from 9 to 11 with the added training data set
 xD , . 

However, it is still below  for Li and Meerkov (2009) formula, i.e., 13. 

6.4.2.1.3 Triple Data Sets )3( n  

An additional data set was added to the training set at index 3n  and looped over the 

data sets xD , }7,6,5,4,3,2,1{x  (Table 6.14). Polynomial regression model with 

bounded steps using the training set xD , 4x improved the  to 2 which is 

higher than Li and Meerkov (2009) formula. However, the  of Li and 

Meerkov (2009) formula still surpasses the polynomial model. 

It is worth noting that addition of the wrong data set to the training set can reduce the 

performance such as in the case of xD , 6x  and 7x . 

6.4.2.1.4 Quadruple Data Sets )4( n  

Four indexed data sets }4,3,2,1{n  were included in the training set in this case 

(Table 6.15). In the indexes }4,3,2,1{n , the elected training data sets were added 

and the remaining data sets were examined at index 4n .  

No improvements were evident in this step, hence, the triple training data sets as 

elected in step 6.4.2.1.3 were used in the next DOF iterative steps, i.e., addition of 

supporting predictors. 

The full results for the individual test set within this training iterative step are shown 

in Appendix H (P. A-23). 

8x 1n

Score 3x

Score

cScore

Score
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6.4.2.2 Supporting Predictor Terms 

The training set was set from this step forward to always include the elected triple 

training data sets as outlined in Section 6.4.2.1 for the DOF related to the supporting 

predictors to commence. In this step, the supporting predictor terms were iteratively 

added to the training of machine learning models.   The nine supporting predictors

}8,...,2,1{, jp j  are 
1

min



e ,  , 1 , log , 

1e  ,  c , 
1c  and clog . 

6.4.2.2.1 Single Supporting Predictor Term (i=1) 

As shown in Table 6.17, in terms of regression models performance, robust fitting 

performance improved with the addition of a single supporting predictor term

}8,...,2,1{, jp j  to become comparable to that of the stepwise regression, excluding 

polynomial bounded regression, while regularisation of squared errors remained poor 

performer with no difference between the three algorithms with different penalties. 

The supporting predictor 
1e improved the prediction accuracy such that  

with the bounded steps polynomial regression model reached the same as the non-

standalone Li and Meerkov (2009) formula while maintaining the cScore  at its higher 

value, i.e., 2. The best performing standalone regression model gave e  and ec  of 2% 

and 0.19 against 2% and 0.45 for Li and Meerkov (2009) formula. 

Figure 6.13-20 show the predicted throughput rate of the optimal model against the 

simulated throughput rate while comparing it with Li and Meerkov (2009) formula 

and the best performing classification machine learning model for each individual test 

set. Due to the large size of data set xD , 2x , only a sample of 1,100 variability 

scenarios are shown in Figure 6.14. 

Score
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Table 6.12: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Single Data Set 

 

 

 

 

        
Train Set Rw at n=1,x=1 Train Set Rw at n=1,x=2 Train Set Rw at n=1,x=3 Train Set Rw at n=1,x=4 

        
I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

0 0 0 0 0 0 0 0 

2 
Bootstrap 
Aggregating 0 0 0 0 0 0 0 0 

3 
Neural 
Network 

Feedforward 
0 0   0 0 0 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5  
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

0 0 1 0 0 0 2 0 

7 Andrews 0 0 1 0 0 0 2 0 

8 
Cauchy M-
estimators by 
Moore 0 0 1 0 0 0 2 0 

9 Fair by Rey 0 0 0 0 0 0 1 0 

10 Huber 0 0 0 0 0 0 1 0 

11 
Logistic 
Regression 0 0 0 0 0 0 1 0 

12 Hinch and Talwar 0 0 1 0 0 0 2 0 

13 
Holland and 
Welsch 0 0 1 0 0 0 2 0 

14 

Regularisation 

Lasso 0 0   0 0 2 0 

15 Ridge Regression 0 0   0 0 2 0 

16 Elastic Nets 0 0   0 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 0 0 1 0 1 0 2 0 

18 
Unbounded 
Steps 0 0 1 0 1 0 0 0 

19 

Purequadratic 

Bounded 
Steps 0 0 0 0 0 0 2 0 

20 
Unbounded 
Steps 0 0 1 0 1 0 3 1 

21 

Quadratic 

Bounded 
Steps 0 0 1 0 1 0 2 0 

22 Unbounded 
Steps 0 0 1 0 1 0 0 0 

23 

Polynomial 

Bounded 
Steps 0 0 1 0 1 0 2 0 

24 
Unbounded 
Steps 0 0   1 0 0 0 

max

1
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Table 6.12: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Single Data Set 

(cont.) 
 

 
 
 

        
Train Set Rw at n=1,x=5 Train Set Rw at n=1,x=6 Train Set Rw at n=1,x=7 Train Set Rw at n=1,x=8 

        
I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 0 0 0 1 0 1 1 

2 
Bootstrap 
Aggregating 0 0 0 0 1 0 1 1 

3 
Neural 
Network 

Feedforward 
1 0 0 0 1 0 1 1 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

0 0 1 0 2 0 4 1 

7 Andrews 0 0 1 0 2 0 4 1 

8 
Cauchy M-
estimators by 
Moore 0 0 1 0 2 0 4 1 

9 Fair by Rey 1 0 1 0 2 0 3 1 

10 Huber 0 0 1 0 2 0 3 1 

11 
Logistic 
Regression 0 0 1 0 2 0 3 1 

12 Hinch and Talwar 0 0 1 0 2 0 4 1 

13 
Holland and 
Welsch 0 0 1 0 2 0 4 1 

14 

Regularisation 

Lasso 2 0 2 0 2 0 1 1 

15 Ridge Regression 2 0 2 0 2 0 1 1 

16 Elastic Nets 2 0 2 0 2 0 1 1 

17 

Stepwise 

Interaction 

Bounded 
Steps 7 1 2 0 7 1 9 1 

18 
Unbounded 
Steps 7 1 1 0 2 0 2 1 

19 

Purequadratic 

Bounded 
Steps 1 1 2 0 2 0 2 1 

20 
Unbounded 
Steps 7 1 0 0 2 0 2 1 

21 

Quadratic 

Bounded 
Steps 7 1 2 0 7 1 9 1 

22 Unbounded 
Steps 7 1 1 0 2 0 2 1 

23 

Polynomial 

Bounded 
Steps 7 1 2 0 7 1 9 1 

24 
Unbounded 
Steps 2 1 2 0 2 0 2 1 
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Table 6.13: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Double Data Sets 

 

 

 

  

        
Train Set Rw at n=2,x=1 Train Set Rw at n=2,x=2 Train Set Rw at n=2,x=3 Train Set Rw at n=2,x=4 

        
I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

0 1 0 0 0 0 1 1 

2 
Bootstrap 
Aggregating 0 0   0 0 1 1 

3 
Neural 
Network 

Feedforward 
0 0   1 0 4 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

1 0 1 0 2 1 4 1 

7 Andrews 1 0 1 0 2 1 4 1 

8 
Cauchy M-
estimators by 
Moore 2 0 1 0 1 0 4 1 

9 Fair by Rey 1 0 0 0 1 0 3 1 

10 Huber 1 0 0 0 1 0 4 1 

11 
Logistic 
Regression 1 0 0 0 1 0 4 1 

12 Hinch and Talwar 4 1 1 0 1 0 4 1 

13 
Holland and 
Welsch 1 0 1 0 2 1 4 1 

14 

Regularisation 

Lasso 1 0   1 0 2 0 

15 Ridge Regression 1 0   1 0 2 0 

16 Elastic Nets 1 0   1 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 2 0 2 0 11 1 2 0 

18 
Unbounded 
Steps 2 0 2 0 2 0 5 1 

19 

Purequadratic 

Bounded 
Steps 1 0 0 0 0 0 2 0 

20 
Unbounded 
Steps 1 0 2 0 1 0 6 1 

21 

Quadratic 

Bounded 
Steps 2 0 2 0 11 1 6 1 

22 Unbounded 
Steps 2 0 2 0 1 0 6 1 

23 

Polynomial 

Bounded 
Steps 9 2 2 0 11 1 2 0 

24 
Unbounded 
Steps 3 0   0 0 0 0 
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Table 6.13: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Double Data Sets 

(cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
Train Set Rw at n=2,x=5 Train Set Rw at n=2,x=6 Train Set Rw at n=2,x=7 

        
I-II-A-5 I-II-A-6 I-II-A-7 

 
Method Model Specifications Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 1 1 1 1 1 

2 
Bootstrap 
Aggregating 1 1 1 1 1 1 

3 
Neural 
Network 

Feedforward 
1 1 1 1 1 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

4 1 4 1 2 1 

7 Andrews 4 1 4 1 2 1 

8 
Cauchy M-
estimators by 
Moore 4 1 4 1 2 1 

9 Fair by Rey 3 1 4 1 2 1 

10 Huber 3 1 4 1 2 1 

11 
Logistic 
Regression 3 1 4 1 2 1 

12 Hinch and Talwar 4 1 4 1 2 1 

13 
Holland and 
Welsch 4 1 4 1 2 1 

14 

Regularisation 

Lasso 2 1 2 1 2 1 

15 Ridge Regression 2 1 2 1 2 1 

16 Elastic Nets 2 1 2 1 2 1 

17 

Stepwise 

Interaction 

Bounded 
Steps 9 1 9 1 9 1 

18 
Unbounded 
Steps 9 1 9 1 9 1 

19 

Purequadratic 

Bounded 
Steps 2 1 0 0 2 1 

20 
Unbounded 
Steps 9 1 9 1 9 1 

21 

Quadratic 

Bounded 
Steps 9 1 9 1 9 1 

22 Unbounded 
Steps 9 1 9 1 9 1 

23 

Polynomial 

Bounded 
Steps 9 1 9 1 9 1 

24 
Unbounded 
Steps 2 0 9 1 1 0 
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Table 6.14: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Triple Data Sets 

 

 

 

 

        
Train Set Rw at n=3,x=1 Train Set Rw at n=3,x=2 Train Set Rw at n=3,x=4 Train Set Rw at n=3,x=5 

        
I-II-A-1 I-II-A-2 I-II-A-4 I-II-A-5 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

0 0 0 0 1 1 1 1 

2 
Bootstrap 
Aggregating 0 0   1 1 1 1 

3 
Neural 
Network 

Feedforward 
1 1   2 0 0 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

1 0 1 0 4 1 3 1 

7 Andrews 1 0 1 0 4 1 3 1 

8 
Cauchy M-
estimators by 
Moore 1 0 1 0 4 1 4 1 

9 Fair by Rey 1 0 0 0 2 1 2 1 

10 Huber 1 0 0 0 3 1 2 1 

11 
Logistic 
Regression 1 0 0 0 3 1 2 1 

12 Hinch and Talwar 1 0 1 0 4 1 2 1 

13 
Holland and 
Welsch 1 0 1 0 4 1 3 1 

14 

Regularisation 

Lasso 1 0   2 0 2 0 

15 Ridge Regression 1 0   2 0 2 0 

16 Elastic Nets 1 0   2 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 2 0 2 0 2 0 11 1 

18 
Unbounded 
Steps 2 0 2 1 5 1 11 1 

19 

Purequadratic 

Bounded 
Steps 1 0 0 0 2 0 2 0 

20 
Unbounded 
Steps 2 0 2 0 5 1 9 1 

21 

Quadratic 

Bounded 
Steps 2 0 2 0 3 0 11 1 

22 Unbounded 
Steps 2 0 2 0 5 1 9 1 

23 

Polynomial 

Bounded 
Steps 9 1 2 0 11 2 11 1 

24 
Unbounded 
Steps 2 1   1 0 1 0 
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Table 6.14: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Triple Data Sets 

(cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
Train Set Rw at n=3,x=6 Train Set Rw at n=3,x=7 

        
I-II-A-6 I-II-A-7 

 
Method Model Specifications Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

0 0 0 0 

2 
Bootstrap 
Aggregating 0 0 0 0 

3 
Neural 
Network 

Feedforward 
1 0 1 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 

5 
max

1


 
2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

4 1 1 0 

7 Andrews 4 1 1 0 

8 
Cauchy M-
estimators by 
Moore 4 1 2 0 

9 Fair by Rey 2 1 1 0 

10 Huber 3 1 1 0 

11 
Logistic 
Regression 3 1 2 0 

12 Hinch and Talwar 4 1 2 1 

13 
Holland and 
Welsch 4 1 2 0 

14 

Regularisation 

Lasso 1 0 1 0 

15 Ridge Regression 1 0 1 0 

16 Elastic Nets 1 0 1 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 2 0 2 0 

18 
Unbounded 
Steps 2 0 2 0 

19 

Purequadratic 

Bounded 
Steps 1 0 1 0 

20 
Unbounded 
Steps 1 0 1 0 

21 

Quadratic 

Bounded 
Steps 2 0 2 0 

22 Unbounded 
Steps 1 0 1 0 

23 

Polynomial 

Bounded 
Steps 0 0 0 0 

24 
Unbounded 
Steps 0 0 0 0 
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Table 6.15: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Quadruple Data Sets 

 

 

 

 

        
Train Set Rw at n=4,x=1 Train Set Rw at n=4,x=2 Train Set Rw at n=4,x=5 Train Set Rw at n=4,x=6 

        
I-II-A-1 I-II-A-2 I-II-A-5 I-II-A-6 

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 0 1 1 1 0 1 0 

2 
Bootstrap 
Aggregating 1 1   1 0 1 0 

3 
Neural 
Network 

Feedforward 
1 0   2 0 11 1 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

2 0 1 0 2 0 4 1 

7 Andrews 2 0 1 0 2 0 4 1 

8 
Cauchy M-
estimators by 
Moore 4 1 1 0 3 1 4 1 

9 Fair by Rey 1 0 0 0 2 0 2 0 

10 Huber 1 0 0 0 2 0 3 1 

11 
Logistic 
Regression 1 0 0 0 2 0 3 1 

12 Hinch and Talwar 4 1 1 0 2 0 2 0 

13 
Holland and 
Welsch 2 0 1 0 3 1 4 1 

14 

Regularisation 

Lasso 1 0   2 0 2 0 

15 Ridge Regression 1 0   2 0 2 0 

16 Elastic Nets 1 0   2 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 3 1 1 0 1 0 5 1 

18 
Unbounded 
Steps 2 1 1 0 7 1 4 1 

19 

Purequadratic 

Bounded 
Steps 1 0 0 0 2 0 2 0 

20 
Unbounded 
Steps 2 0 2 0 7 1 5 1 

21 

Quadratic 

Bounded 
Steps 2 1 1 1 3 0 5 1 

22 Unbounded 
Steps 2 0 2 1 7 1 5 1 

23 

Polynomial 

Bounded 
Steps 9 1 2 0 11 2 11 1 

24 
Unbounded 
Steps 7 1   2 0 2 0 
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Table 6.15: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Quadruple Data Sets 

(cont.) 

 

         
Train Set Rw at n=4,x=7 

        
I-II-A-7 

 
Method Model Specifications Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 0 

2 
Bootstrap 
Aggregating 1 0 

3 
Neural 
Network 

Feedforward 
9 1 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 

5 
max

1


 
2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

2 0 

7 Andrews 2 0 

8 
Cauchy M-
estimators by 
Moore 2 0 

9 Fair by Rey 2 0 

10 Huber 2 0 

11 
Logistic 
Regression 2 0 

12 Hinch and Talwar 2 0 

13 
Holland and 
Welsch 2 0 

14 

Regularisation 

Lasso 2 0 

15 Ridge Regression 2 0 

16 Elastic Nets 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 4 1 

18 
Unbounded 
Steps 3 1 

19 

Purequadratic 

Bounded 
Steps 2 0 

20 
Unbounded 
Steps 4 1 

21 

Quadratic 

Bounded 
Steps 5 1 

22 Unbounded 
Steps 4 1 

23 

Polynomial 

Bounded 
Steps 11 1 

24 
Unbounded 
Steps 2 0 
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The multiple regression model of the throughput rate of asynchronous flow line 

as y n cTR  for this polynomial regression model is expressed as: 

                                                         εVβTRas y n c                                                              (6.4) 

where V  is a 15j  matrix, β  is a 15 -dimensional vector and   is a j -dimensional 

vector (see Table 10). 1

max


 , avc

e  and 
1N  

The polynomial regression model (Equation 6.4 and Table 6.16) shows that the 

stepwise model excluded the following main predictor terms avc  and   while used

1

max


 , avc

e  and 
1N  along with the supporting predictor to formulate the 

relationship between process variability within the asynchronous flow line and TR .  

The predicted against residuals plot using the optimal model for each test data set are 

shown in Figure 6.21. The residuals here are minor and stable, to a large extent, 

across the full range of test data sets which agrees with the histogram plots as shown 

in Appendix J (P. A-161). It is still evident that the errors are proportionally related to 

avc  while the relationship between errors and max  is not steady and due to the nature 

of the data sets, the relationship with  cannot be examined (Figure J-9-11 in 

Appendix).  

6.4.2.2.2 Double Supporting Predictor Terms (i=2) 

Addition of another supporting predictor term to the training data sets failed to show 

any improvement to the prediction performance as shown in Table 6.18. Hence, the 

additional supporting predictor terms were kept to only. 

The full results for the individual test set within this training iterative step are shown 

in Appendix H (P. A-23). 

 

 

 

N

1e

N

1e
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Table 6.16: Regression Model of the Throughput Rate for Asynchronous Flow Lines 
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Table 6.17: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Single Supp. 

Predictor 

 
 
 

        
Train Set Rw at n=3,i=1 Train Set Rw at n=3,i=2 Train Set Rw at n=3,i=3 Train Set Rw at n=3,i=4 

        

1
min




e    
1  log  

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 1 1 1 1 1 1 1 

2 
Bootstrap 
Aggregating 1 0 1 0 1 0 1 0 

3 
Neural 
Network 

Feedforward 
2 0 0 0 2 0 1 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

4 1 4 1 4 1 4 1 

7 Andrews 4 1 4 1 4 1 4 1 

8 
Cauchy M-
estimators by 
Moore 4 1 4 1 4 1 4 1 

9 Fair by Rey 2 1 2 1 2 1 2 1 

10 Huber 3 1 2 1 3 1 2 1 

11 
Logistic 
Regression 3 1 2 1 3 1 2 1 

12 Hinch and Talwar 4 1 4 1 4 1 4 1 

13 
Holland and 
Welsch 4 1 4 1 4 1 4 1 

14 

Regularisation 

Lasso 2 0 2 0 2 0 2 0 

15 Ridge Regression 2 0 2 0 2 0 2 0 

16 Elastic Nets 2 0 2 0 2 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 2 1 2 0 7 1 2 1 

18 
Unbounded 
Steps 5 1 2 1 7 1 2 0 

19 

Purequadratic 

Bounded 
Steps 2 0 2 0 2 0 1 0 

20 
Unbounded 
Steps 5 1 2 1 7 1 1 0 

21 

Quadratic 

Bounded 
Steps 3 0 3 1 2 0 5 1 

22 Unbounded 
Steps 5 1 2 1 2 0 2 0 

23 

Polynomial 

Bounded 
Steps 2 0 11 2 13 1 9 1 

24 
Unbounded 
Steps 1 1 0 0     
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Table 6.17: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Single Supp. 

Predictor (cont.) 

 
 
 

        
Train Set Rw at n=3,i=5 Train Set Rw at n=3,i=6 Train Set Rw at n=3,i=7 Train Set Rw at n=3,i=8 

        

1e  c  1c  clog  

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 1 1 1 1 1 1 1 

2 
Bootstrap 
Aggregating 1 0 1 1 1 1 1 1 

3 
Neural 
Network 

Feedforward 
7 1 2 1 1 0 1 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

4 1 1 1 1 1 1 1 

7 Andrews 4 1 1 1 1 1 1 1 

8 
Cauchy M-
estimators by 
Moore 4 1 1 1 1 1 1 1 

9 Fair by Rey 2 1 1 1 1 1 1 1 

10 Huber 3 1 1 1 1 1 1 1 

11 
Logistic 
Regression 3 1 1 1 1 1 1 1 

12 Hinch and Talwar 4 1 1 1 1 1 1 1 

13 
Holland and 
Welsch 4 1 1 1 1 1 1 1 

14 

Regularisation 

Lasso 2 0 0 0 0 0 0 0 

15 Ridge Regression 2 0 0 0 0 0 0 0 

16 Elastic Nets 2 0 0 0 0 0 0 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 6 1 2 0 2 0 2 0 

18 
Unbounded 
Steps 7 1 0 0 0 0 0 0 

19 

Purequadratic 

Bounded 
Steps 2 0 2 0 2 0 2 0 

20 
Unbounded 
Steps 6 1 0 1 0 1 0 1 

21 

Quadratic 

Bounded 
Steps 6 1 3 0 3 0 3 0 

22 Unbounded 
Steps 2 0 0 1 0 1 0 1 

23 

Polynomial 

Bounded 
Steps 13 2 11 2 11 2 11 2 

24 
Unbounded 
Steps         

        
Train Set Rw at n=3,i=1 Train Set Rw at n=3,i=2 Train Set Rw at n=3,i=3 Train Set Rw at n=3,i=4 
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Table 6.18: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Double Supp. 

Predictors 

 
 
 

        

1
min




e    
1  log  

 
Method Model Specifications Score Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 1 1 1 1 1 1 1 

2 
Bootstrap 
Aggregating 1 0 2 0 1 0 2 0 

3 
Neural 
Network 

Feedforward 
2 1 1 0 2 0 2 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

4 1 4 1 4 1 4 1 

7 Andrews 4 1 4 1 4 1 4 1 

8 
Cauchy M-
estimators by 
Moore 4 1 4 1 4 1 4 1 

9 Fair by Rey 2 1 2 1 2 1 2 1 

10 Huber 3 1 2 1 3 1 2 1 

11 
Logistic 
Regression 3 1 2 1 3 1 2 1 

12 Hinch and Talwar 4 1 4 1 4 1 4 1 

13 
Holland and 
Welsch 4 1 4 1 4 1 4 1 

14 

Regularisation 

Lasso 2 0 2 0 2 0 2 0 

15 Ridge Regression 2 0 2 0 2 0 2 0 

16 Elastic Nets 2 0 2 0 2 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 6 1 6 1 7 1 2 0 

18 
Unbounded 
Steps 4 1 6 1 1 0 2 0 

19 

Purequadratic 

Bounded 
Steps 2 0 2 0 2 0 2 0 

20 
Unbounded 
Steps 6 1 5 1 5 1 2 1 

21 

Quadratic 

Bounded 
Steps 6 1 6 1 6 1 6 1 

22 Unbounded 
Steps 2 0 4 1 1 0 2 1 

23 

Polynomial 

Bounded 
Steps 13 1 13 2 7 1 13 2 

24 
Unbounded 
Steps         



CHAPTER 6 – DATA MINING FRAMEWORK 

 
125 

 

Table 6.18: Score Table of the Average and Coefficient of Variation of the MAPE of Data Mining Models for Asynchronous Flow Lines including Elected Training Set (Sn) and Method (m) – Double Supp. 

Predictors (cont.) 

 
 
 
 

        
Train Set Rw at n=3,i=5 Train Set Rw at n=3,i=7 Train Set Rw at n=3,i=8 

        

c  1c  clog  

 
Method Model Specifications Score Score Score 

Number 
(m) Class I Class II Class III Class IV 

Data Mining 
Type 

Learning 
Technique Purpose μScorem cScorem μScorem cScorem μScorem cScorem 

1 

Decision Tree 

Boosting 

  

  

Supervised 
Machine 
Learning 

Classification 

Comparison 

1 1 1 1 1 1 

2 
Bootstrap 
Aggregating 1 0 1 0 1 0 

3 
Neural 
Network 

Feedforward 
1 0 1 0 2 0 

4 
Li and 
Meerkov 
(2009)   

Current 
Formula 
(Literature) 

N/A 13 1 13 1 13 1 

5 
max

1


 
2 1 2 1 2 1 

6 

Multiple 
Linear 

Regression 

Robust 

Tukey’s Bisquare 

Supervised 
Machine 
Learning 

Regression 
Formula 
Derivation 

1 1 1 1 5 1 

7 Andrews 1 1 1 1 5 1 

8 
Cauchy M-
estimators by 
Moore 1 1 1 1 5 1 

9 Fair by Rey 1 1 1 1 2 1 

10 Huber 1 1 1 1 3 1 

11 
Logistic 
Regression 1 1 1 1 3 1 

12 Hinch and Talwar 1 1 1 1 5 1 

13 
Holland and 
Welsch 1 1 1 1 5 1 

14 

Regularisation 

Lasso 0 0 0 0 2 0 

15 Ridge Regression 2 0 2 0 2 0 

16 Elastic Nets 0 0 0 0 2 0 

17 

Stepwise 

Interaction 

Bounded 
Steps 6 1 6 1 7 1 

18 
Unbounded 
Steps 0 0   2 0 

19 

Purequadratic 

Bounded 
Steps 2 0 2 0 2 0 

20 
Unbounded 
Steps 1 1   6 1 

21 

Quadratic 

Bounded 
Steps 6 1 6 1 7 1 

22 Unbounded 
Steps 1 1 1 1 2 0 

23 

Polynomial 

Bounded 
Steps 13 2 13 2 13 1 

24 
Unbounded 
Steps       
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Figure 6.13: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 1 AIII  
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Figure 6.14: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 2 AIII  
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Figure 6.15: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 3 AIII  
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Figure 6.16: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 4 AIII  
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Figure 6.17: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 5 AIII  
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Figure 6.18: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 6 AIII  
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Figure 6.19: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 7 AIII  
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Figure 6.20: Predicted Throughput Rate of the Optimal Regression Model against Simulated Throughput Rate and Comparison Models for Test Data Set 8 AIII  
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Figure 6.21: Predicted against Residuals Plots using the Optimal Regression Model for Test Data Sets 1 AIII  to 8 AIII  
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Figure 6.21: Predicted against Residuals Plots using the Optimal Regression Model for Test Data Sets 1 AIII  to 8 AIII  (cont.) 
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6.5 Empirical Formula Validation 

The empirical formula was applied to the real-world case study to determine the 

calculated throughput rate for variability scenarios. The stochastic nature of this 

construction project is presented in terms of 6 variability factors. The controllability 

of these factors changes based on their nature and the process owner. Factors related 

to processes owned by Costain can be fully controlled while for the processes owned 

by their contractors require co-ordination between process owners, hence, semi 

controllable. Factors outside the control of process owners, e.g., the traffic 

congestions, are referred to as uncontrollable. In terms of optimisation, the first two 

categories of variability factors, i.e., controllable and semi-controllable factors, fall 

under the ‘decision variables’ while the third is constraints. Table 6.17 lists the 

variability factors and the conditions and range of each factor.  

 

Table 6.19: Decision Variables and Constraints for the Real-world Case Study 

Decision Variables 

Factor Lower 

Bound 

Upper 

Bound 

Type Step 

Arrival Rate 

(1/min) 

Mean 5 80 Discrete 1 

Standard 

Deviation 

0 80 Discrete 0.1 

Load Size (m3) 6 8 Discrete 0.5 

Concrete Plant 1 3* Discrete 1 

No. of Deliveries from the Same 

Concrete Plant 

1 2 Discrete 1 

Mean Site Delay (min) 0 10 Discrete 1 

Constraints 

Process/ Queue Description 

Batch and Load i. Max. two trucks can be batched at the same time, i.e., 

two lanes; and 

ii. Max. queue time at concrete plant is 10 min. 

Drive to Site Delivery time changes throughput the day based on traffic 

congestions. 

Site Access The site access allows only one truck to pass through at a 

time. 

Add Water/  

High Slump Load Queue 

Trucks route out to these processes/queue based on pre-

determined pattern based on historical data. 

Discharge and Extrude A 30 minutes break for refuelling at a specific time is 

enforced; during that time the extruder machine will complete 

any hold trucks before block routing in until refuelling is 

complete. 

*3 indicates that both concrete plants are used 
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Subsequently, the number of decision variables was increased gradually to cover all 

possible combination of decisions that need to be taken at a particular day (Table 

6.18). In terms of pre-processing of the decision variables, the arrival rate and site 

delay factors are straightforward as they are presented by the processing time. The 

load size, however, affects the batch and discharge processing times as outlined in 

Section 5.3.2.2. Likewise, concrete plant decides on the delivery time. Finally, the 

number of deliveries from the same concrete plant determines if a parallel processing 

of the ‘Drive to Site’ process is allowed. The predictor terms 1

max


 , avc

e , 
1N  and 

 were then obtained for each variability scenario to feed the formula and the 

throughput rate was calculated. Figure 6.22 shows the calculated against the simulated 

throughput rate for the variability scenarios of one of the decision combination 

scenarios, i.e., Number 6. The results show that the calculated TR  follows closely the 

simulated TR . However, there are few oscillations in the calculated TR  which are not 

present in the simulated TR . The presence of such oscillations can be due to the 

introduction of continuous data in the validation case study which were not present in 

the test sets 1/(  AIII to )8/  AIII . The prediction accuracy, presented by 

MAPE, MINAPE and MAXAPE, for the same scenario is shown in Table 6.19. The 

correlation analysis between variability of the main activities and the residuals is 

presented in Table 6.20.  

 

Table 6.20: Scenarios of all Possible Decision Combinations 

Scenario No. Arrival Rate Load Size Concrete Plant No. of Deliver. Site Delay 

1 √ X X X X 

2 √ √ X X X 

3 √ X √ X X 

4 √ X X √ X 

5 √ X X X √ 

6 √ √ √ X X 

7 √ √ X  X 

8 √ √ X X √ 

9 √ X √ √ X 

10 √ X √ X √ 

11 √ X X √ √ 

12 √ √ √ √ X 

13 √ √ √ X √ 

14 √ √ X √ √ 

15 √ X √ √ √ 

16 √ √ √ √ √ 
      

√           Decision Variable    

1e
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Figure 6.22: Predicted Throughput Rate using Formula against Simulated Throughput Rate for Decision Combination Scenario No. 6 of the 

Real-world Case Study 
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The slowest process, i.e., truck delivery, followed by the arrival rates, which are 

highly variable, are the closest to explain the prediction error of the empirical 

formula, however, the correlation coefficients for them are still low.  

The correlation between the range of variation in mean processing time and 

coefficient of variation and the throughput rate was also tested to investigate if the 

formula will remain competent for other continuous data. This was done using the 

regression formula covariates in Equation 6.4, expect 
1N  since the length is 

constant, as they represent the mean processing time and coefficient of variation terms 

with highest relationship to the throughput rate. The correlation analysis (Table 6.21) 

showed that the change in MAPE of the throughput rate is not highly related to 

changes in the mean processing time and coefficient of variation terms. This suggests 

that the formula performance remains valid to other case studies with different 

continuous data, however, a slight decay in performance might occur since all 

correlation coefficients are negative. Figure 6.23 shows the change in prediction error 

across the range of avc,max  and  . 

 

Table 6.21: Prediction Accuracy of the Empirical Formula 

 Empirical Formula 

Mean Absolute Error Percentage (MAPE) 4.470% 

Minimum Absolute Error Percentage (MINAPE) 0.035% 

Maximum Absolute Error Percentage (MAXAPE) 9.449% 

 

Table 6.22: Correlation Coefficient between Residuals and the Main Activities 

  

Arrival 

Station 

Batch 

Station 

Truck 

Delivery 

Load 

Condition  Discharge 

Residuals 0.16 0.06 0.25 0 0.06 

 

Table 6.23: Correlation Coefficient between Residuals and the Mean Processing 

Time and Coefficient of Variation Terms 

 
1

max


  avc

e  
1e  

Residuals -0.25 -0.15 -0.31 



CHAPTER 6 – DATA MINING FRAMEWORK 

 
140 

 

 

 

Figure 6.23: MAPE for the Range of avc,max  and   of the Variability Scenarios 

of the Real-world Case Study 

 

6.6 Summary 

In conclusion, statistical analysis showed that for asynchronous flow lines, 
1

max


 , 

avc , avc
e , N  and 

1N  are significant and 
1

min



e ,  , 1 , log , 

1e  ,  c , 
1c  and 

clog are potentially significant, hence, classified as main and free predictions, 

respectively, for model building. These reduced to the equivalent parameter terms, 

i.e., c , 
ce , 1 , N  and 

1N , for synchronous flow lines. 

For model building of synchronous flow lines, one full factorial DOE-based training 

data set was sufficient to reach to an optimal regression model. Whereas, 

asynchronous flow lines required three data sets, each includes the main predictors 

and .  
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Polynomial regression with bounded steps was the best performer among all 

classification and regression models and it provided both less prediction errors and 

stability across the range of test data sets. Stepwise regression outperformed the 

robust and regularisation algorithms, which suggests that not only the ability to add 

and remove predictor terms is important, as in regularisation algorithms, but also 

multiplication and higher order terms can improve the model performance. 

Furthermore, forward iteration of stepwise regression usually leads to better 

prediction accuracy and smaller model size than backward iteration, if both have the 

same freedom in covariate terms.  

Developed regression models for the throughput rate of synchronous and 

asynchronous flow lines surpass the performance of the best comparison models, i.e., 

Blumenfeld and Li and Meerkov formula, respectively. For the asynchronous flow 

lines, MAPE increased from 2% with discrete data to 5% with continuous data from 

the real-world case-study. Next chapter investigates the use of this regression model 

to build an autonomous control method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
142 

 

7 AUTONOMOUS CONTROL FRAMEWORK 

 
7.1 Introduction 

This chapter presents the results related to the second methodological framework of 

this research, i.e., Autonomous Control Framework. The empirical formula (Equation 

6.4) formulates the relationship between the asynchronous flow line variability, 

represented by line-based predictor terms derived from the normal distribution 

parameters, and the throughput rate. The formula was used within the Autonomous 

Control Framework, according to the logic explained in Section 4.5.3.3, to examine 

the future state of the system under different variability scenarios and autonomously 

control the decision variables of the system to optimise the throughput rate.  

Two asynchronous flow lines were investigated. The first is a 3x3 flexible flow line 

model developed by Scholz-Reiter (2005) with representative examples of variability. 

The second is the real-world case study described in Section 5. Throughout these case 

studies, the model was compared with existing autonomous and optimisation 

techniques for validation reasons. 

 
7.2 3x3 Flexible Flow Line 

The Queue Length Estimator (QLE) method was applied to the 3x3 flexible flow line 

described in Scholz-Reiter et al. (2005) with seasonal fluctuation of orders to 

reproduce the results and ensure that the model is accurately represented and the 

method is applied correctly (Figure 7.1). As shown in Table 7.1, apart from the 

standard deviation of the throughput time, the original and reproduced results match 

to a good accuracy. 

The formula-based autonomous control method was then compared against the QLE 

and Past Events Based (PEB) autonomous control and OptQuest optimisation 

techniques. The same 3x3 flow line model was used but with different representative 

scenarios of variability as shown in Table 7.2.  

The first set ‘Stochastic Process’ consists of several scenarios of processing times 

variability. In synchronous flow lines (sync), the mean processing times are kept 

constant across all processing stages for each product type. The coefficient of 

variation is the same for all product types across the whole flow line. As for 

asynchronous lines (async), the mean processing time  , coefficient of variation c  or 

both change from one processing stage to another for each individual product.  
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In this case c  is process dependent, apart from; scenario nine, where c  is constant for 

all product types and scenario ten with independent c . The system was overloaded 

with arrival rates of the input source significantly lower than the processing times to 

test how the autonomous methods will handle such a dynamic situation. Through all 

scenarios, each individual process is optimised, in terms of mean processing times, to 

a single product. 

 

 

Figure 7.1: Reproduction of Throughput Time with QLE Autonomous Control 

on Scholz-Reiter et al. (2005) model 

 

Table 7.1: Comparison of the Original and Reproduced Throughput Time with 

QLE Autonomous Control 

Parameter Original 

Results  

Reproduced Results Deviation 

Min Throughput 

Time (Hours) 

6 6 0 0% 

Mean Throughput 

Time (Hours) 

6.77 7.51 +0.74 +11% 

Max Throughput 

Time (Hours) 

12.28 11.99 -0.29 -2% 

Standard Deviation 

of Throughput Time 

(Hours) 

1.12 1.99 +0.87 +78% 
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Table 7.2: Representative Scenarios used for Performance Analysis 

Stochastic Process 

No. Flow line Type Processing Time (unit) Arrival Rate 

(1/unit) 

µ c µa ca 

S-1 Synchronous 

(Intra-process 

variability) 

6-10 

(sync) 

0 

(sync) 

1 0 

S-2 6-10 

(sync) 

0.025 

(sync) 

1 0 

S-3 6-10 

(sync) 

0.5 

(sync) 

1 0 

S-4 6-10 

(sync) 

1 

(sync) 

1 0 

S-5 Asynchronous 

(Intra- and inter-process 

variability) 

2-10 (async) 0.5 

(sync) 

1 0 

S-6 6-10 

(sync) 

0.4-0.8 

(async) 

1 0 

S-7 2-10 

(async) 

0.4-0.8 

(async) 

1 0 

S-8 2-10 

(async) 

0.3-0.9 

(async) 

1 0 

S-9 2-10 

(async) 

0.1-0.8 

(async) 

1 0 

S-10 2-10 

(async) 

0.02-1 

(async) 

1 0 

Arrival Rate 

No. Flow line Type Processing Time (unit) Arrival Rate 

(1/unit) 

µ c µa ca 

S-7/A-1 Asynchronous 

(Intra- and inter-process 

variability) 

2-10 

(async) 

0.4-0.8 

(async) 

1 0 

A-2 2-10 

(async) 

0.4-0.8 

(async) 

5 0 

A-3 2-10 

(async) 

0.4-0.8 

(async) 

50 0 

A-4 2-10 

(async) 

0.4-0.8 

(async) 

1 0.5 

A-5 2-10 

(async) 

0.4-0.8 

(async) 

5 0.5 

A-6 2-10 

(async) 

0.4-0.8 

(async) 

50 1 
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The arrival rates in the second set of Table 7.2 were investigated but as normally 

distributed arrival rates to match the developed empirical formula. The mean arrival 

rates a  were set extremely low, 80% of average of   to replicate actual static flow 

lines as suggested by Scholz-Reiter et al. (2005), and significantly high in comparison 

to   for dynamic situation covering both underloaded and overloaded systems, with 

coefficient of variations ac  changing in the same manner. 

Windt and Becker (2009) identified four performance measures for autonomous 

control (Section 2.5). These performance measures were analysed, apart from the Due 

Date which is outside the research scope. As for the simulation-based optimisation 

using OptQuest, maximising the average throughput was set the optimisation 

objective. 

Figure 7.2-7 shows a comparison of autonomous control and optimisation techniques 

based on the DES modelling results.  

The left column ‘Stochastic Process’ scenarios show the effect of processing times 

variability of individual process on the performance measures. As expected, the queue 

and throughput times have direct relationship with the change in c. Utilisation on the 

other hand is inversely related to c but the change is not significant. Reduction of 

processing times decreases the accumulated queues and throughput time regardless of 

c even in the case of asynchronous flow line.  

The developed technique performed well on all the synchronous and asynchronous 

flow line scenarios, followed by QLE autonomous control logic for synchronous flow 

lines. Autonomous control based on past events (PEB) performed poorly for these 

scenarios and a simple circulation of products (Nil) gave better results. PEB 

performance improved to reach almost the same levels as QLE, for both mean queue 

and throughput queue times, when the inter-variability of the mean processing time is 

introduced into the system. It is worth mentioning that the same does not apply with 

introduction of inter-variability of the coefficient of variation solely (‘Stochastic 

Process’ Scenario S-6). Performance curves for standard deviation of queue and 

throughput times follow closely the ones of mean apart from the PEB autonomous 

control; its performance still directly related to inter-variability of mean processing 

time but it did not reach the same levels as QLE.  
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Figure 7.2: Performance Analysis on Representative Scenarios - Utilisation 
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Figure 7.3: Performance Analysis on Representative Scenarios – Mean Queue Time 
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Figure 7.4: Performance Analysis on Representative Scenarios – Standard Deviation of Queue Time 
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Figure 7.5: Performance Analysis on Representative Scenarios – Throughput Rate 
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Figure 7.6: Performance Analysis on Representative Scenarios – Mean Throughput Time 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

M
e

a
n

 T
h

ro
u

g
h

p
u

t 
T

im
e

 (
T

im
e

 U
n

it
) 

'Stochastic Process'Scenario 

Nil

QLE

PEB

Formula-Based

OptQuest

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6

M
e

a
n

 T
h

ro
u

g
h

p
u

t 
T

im
e

 (
T

im
e

 U
n

it
) 

'Arrival Rate' Scenario 

Nil

QLE

PEB

Formula-Based

OptQuest



CHAPTER 7 – AUTONOMOUS CONTROL FRAMEWORK  

 
151 

 

 
Figure 7.7: Performance Analysis on Representative Scenarios – Standard Deviation of Throughput Time 
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The arrival rates play a major role in the performance as shown in the right column of 

Figure 7.2-7. The relationship manifests itself clearly when the system is overloaded 

(scenarios S-7 and A-4) due to the long queue and throughput times which makes any 

savings crucial. Similar here, the developed method handled overloaded systems 

better than other methods even when ac increased from 0 to 0.5.  

As for balanced and underloaded systems (Table 7.3), queue times are very small 

even when the arrival rates are highly variable. In terms of the throughput rates, for 

balanced lines, the developed method is still recommended as it performs well, 

especially for the case when the intra-variability of the arrivals increases. However, 

with underloaded system, any of the three autonomous control methods, i.e., Formula-

Based, QLE and PEB, can be used as they are all give almost the same improvement 

in the throughput rate. 

 As for simulation-based optimisation, OptQuest found the optimal solution that 

improves throughput and queues, as the formula-based autonomous control, on four 

out of the fifteen scenarios only. For these scenarios, OptQuest converged after 

different times (Figure 7.8). 

 In terms of utilisation for all scenarios, the developed formula-based autonomous 

control improved the utilisation efficiency rather than solely focus on increasing the 

utilisation. This can be seen clearly in scenarios 7, 8 and 9, where OptQuest has an 

increased utilisation over the developed method but the throughput and queue time 

remained the same for both methods and even, in some cases, lower with the 

developed formula-based autonomous control. 
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Table 7.3: Mean Queue Time and Throughput Time for Balanced and 

Underloaded Scenarios 

  

 

Figure 7.8: Convergence Time of Best Solution for Four Scenarios 
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A2 
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Mean TT  15.74 12.38 12.99 13.58 12.57 

A3 

Mean QT  0 0 0 0 0 

Mean TT  14.89 11.16 11.14 15.58 11.17 

A5 

Mean QT  0.45 1.42 0.94 0.76 0.61 

Mean TT  16.21 21.03 14.14 15 13 

A6 

Mean QT  0.05 0.14 0.22 0.26 0.16 

Mean TT  15.03 11.59 11.85 17.87 11.63 
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7.3 Real-world Assessment 

The idea of autonomous control of the real-world case study can be broken down into: 

i. Planning Optimisation (Planning and Scheduling): 

a. Obtain the optimal arrival rate of trucks i.e. concrete delivery schedule; 

and 

b. Determine the expected completed barrier length and queue times based 

on the decision combination scenario (Table 6.18); and 

ii. Operations Optimisation (React): 

a. Determine a solution, i.e., change of decision variables, to a new situation, 

modified decision variables or constraints, that will give the optimum 

impact in terms of performance. Autonomous control reacts to a change in 

semi-controllable factors by manipulating other factors based on the 

impact on the performance measure(s) of interest. 

The developed autonomous control method was used to improve the process and 

production planning and operations of the concrete central reservation barrier (CRB) 

construction project for the real-world case study.  

From the operational point of view, the whole idea of the CRB project improvement 

is to achieve a synchronous waste-free flow of material which is an essential aspect of 

lean operations (Dirgo 2006). The main operational objective for the industrial partner 

is a seamless flow of concrete loads at the construction site, i.e., maximisation of 

completed barrier length, i.e., throughput, and minimisation of the queues at the 

construction site. To achieve this goal, the arrival rate has to be adjusted to an optimal 

level based on the work load imposed by the variability of the system to reach to the 

two objectives i.e. maximum throughput and minimal queues. In other words, the 

production plan at the concrete plants, i.e., schedule of concrete deliveries, needs to 

be optimised for continuous and waste-free operation of the extruder on the other end. 

Furthermore, the production plan has to include decisions regarding the controllable 

variability factors which changes during the day or from one particular day to another.  

Hence, the following performance measures were measured at the end of each 

optimisation or autonomous control run: 

i. Completed Barrier Length; 

ii. Average Queue Time at the Construction Site; and 

iii. Standard Deviation of Queue Time at the Construction Site. 
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iv. Average Queue Time at the Concrete Plant Sites; and 

v. Standard Deviation of Queue Time at the Concrete Plant Sites. 

In terms of the queues at the construction site, they were measured in terms of the 

trucks with suitable load waiting to be discharged, since the waiting generated by the 

load conditioning process is of the same rate from one scenario to another.  

The search space of the optimisation problem was kept the same for all methods and it 

was limited to the realistic levels of variability that can exist for each factor as 

outlined in Table 6.17. The logic of the formula-based autonomous control operation 

is described in section 4.5.3.3. The completed barrier length, i.e., throughput, was 

normalised to the average current daily throughput, which need to be improved, 

according to the industrial partner.  

Figure 7.9 shows the calculated normalised completed barrier length using the 

developed empirical formula, as discussed in Section 6.5, for each variability scenario 

with the decision combination scenario number 1 (Table 6.18). As shown, the 

throughput is stable with slight fluctuations up to the variability scenario number 

E441. After this scenario, the throughput starts to decline. Hence, the stability point 

E441 represents the optimal arrival rate, where to the left, queues start to accumulate 

and to the right, the throughput descends. This stability behaviour repeats itself for 

each individual decision variable. The formula-based autonomous control method 

used the arrival rates of the highest stability point, among all decision variables, to 

control the CRB project. The optimal settings from this point are then used to run the 

simulation model and generate the optimal delivery schedule (Appendix Q (P. A-176) 

gives the optimal delivery schedule for decision combination scenario number 1). 

OptQuest was set with an objective to increase the completed barrier length while 

arrival rates were limited such that they will not produce queues at the concrete plant 

sites beyond the limit, i.e., 10min. Lower arrival rates were excluded from the 

OptQuest optimisation steps. 

The previous validation step (Section 7.2) dealt with the decision problem of routing 

of multi products but it was limited to the case when the number of products is equal 

to the parallel routing. This step includes this autonomous control challenge with 

parallel processing that is higher than the number of products. It also deals with the 

challenge presented by the arrival rate equals, lower and higher than the capacity of 

the system. 
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Figure 7.9: Stability (Optimal) Point for Decision Combination Scenario 1 

 

Since the current autonomous control methods are concerned with the routing 

decisions in a flexible flow line setup, they could not be implemented in this case 

study. However, the best performing autonomous control method in the previous 

validation step (Section 7.2), i.e., QLE, was used here as a supplementary method to 

assist the formula-based autonomous control, where decisions regarding parallel 

processing are required, e.g., multiple concrete plant usage for batching.  

The decisions here are primarily decided by the formula-based autonomous control 

apart from the case, where the number of parallel routes does not equal the number of 

products, QLE was used to take this decision.  

The arrival rates for such scenarios are adjusted as follows: 

i. Multiple concrete plants usage: the formula was used to calculate the optimal 

arrival rate for each concrete plant and the average of both was taken; 

ii. Number of deliveries from the same concrete plant: if increased from one to 

two, the arrival rates were doubled to cope with the increased degrees of 

freedom in load delivery; and 

iii. Both multiple concrete plants usage and double deliveries from each plant: 

here the arrival rate was set to the lowest optimal arrival rate, i.e., stability 

point, due to the increased work load on the system. 
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Figure 7.10-12 compares the performance of the OptQuest optimisation, formula-

based autonomous control and the hybrid method of formula-based integrated with 

QLE autonomous control. Appendix M (P. A-178) lists the chosen operational 

settings for each method with the 16 decision combination scenarios.   

For the decision variables not related to parallel processing, the formula-based 

autonomous control performed the best among the three methods with the highest 

throughput and minimal queues that are close to zero. However, the formula handles 

the parallel processing by adjusting the arrival rate to synchronise the flow of 

materials so that there is no need for parallel processes to reduce the work load. 

However, this approach does not always work since the variability of the system can 

generate gaps in the flow which cannot be measured by the formula since it is not 

applicable to parallel processes. A solution to this problem is to fill this gap with a 

parallel process using another autonomous control method, e.g., QLE. This side by 

side with the adjusted arrival rates by the formula can fill the performance gap with 

minimal generated queues as a result. This is evident in scenarios 3, 4 and 9 where 

throughput was improved with the hybrid method while queues increase, as a result, 

was still low. 

 

7.4 Summary 

The developed autonomous control method exhibited superior performance to the 

other autonomous control and simulation-based optimisation methods for static and 

dynamic situations and multi-complexity of products, i.e., inter-variability of 

processing times. Though the formula is only based on throughput rate, this was 

enough to optimise other local performance measures. However, since the formula 

was developed for serial flow lines only, it performed poorly in situations of parallel 

processing. However, this was mitigated with the integration of QLE method in to the 

autonomous control. The hybrid method performed well for all the variability 

scenarios of the real-world case study (Figure 7.10-12). 

Next chapter gives a critical assessment of all the research outcomes from the Data 

Mining and Autonomous Control Frameworks in terms of contributions and 

limitations. 
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Figure 7.10: Performance Analysis on Real-world Case Study – Throughput 
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Figure 7.11: Performance Analysis on Real-world Case Study – Queue Time at Construction Site 
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Figure 7.12: Performance Analysis on Real-world Case Study – Queue Time at Concrete Plant Sites 
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8 CRITICAL ASSESSMENT 

 
8.1 Introduction 

With the advancement of technology, flow lines have evolved into more intelligent 

and flexible structures. Flexibility represents first that the flow line is stochastic, but 

also that that there is a degree of controllability in the variable parameters which can 

be the key to control this stochasticity. Flexible flow lines have been introduced to 

deal with a market demand for product complexity and variety. Flexibility is a key 

solution to adapt with changes to the production processes. However, variable 

products translate to an increased variability within and across production processes, 

i.e., intra- and inter-process variability, which subsequently affect the performance 

targets. Understanding the underlying relationships between the variability within the 

flow line and the performance measures can be advantageous to efficiently control the 

variability of flexible flow lines. Fast pace of today’s industrial environment requires 

simple and straightforward intelligent solutions to understand and act based on these 

relationships. This research main concern was to fulfill this requirement from both the 

variability modelling and control perspective for flexible flow lines.  

This empirical research firstly delivered a simple standalone closed-form formula that 

can be used to determine the first order performance target, i.e., throughput rate, for 

serial flow lines with arbitrary length and stochastic normally-distributed process 

variability. Outcome was then used to build and validate an autonomous control 

method allowing for an increased throughput, improved resource efficiency and 

minimised queues within flexible flow lines.  

The critical assessment is divided into the three main outcomes of this research: 

iii. Data Mining Framework: 

a. Flow Line Representation; 

b. Empirical Formula For the Throughput Rate of: 

• Synchronous Human-dependent Serial Flow Lines; and 

• Asynchronous Human-dependent Serial Flow Lines; 

iv. Autonomous Control Framework: 

a. Formula-based Autonomous Control Method; and 

v. Practical Implementation. 
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This chapter discusses the research outcome in light of the main objectives and the 

research questions of each to: 

i. examine the precision and efficiency of the results within each objective; 

ii. demonstrate the contributions based on the results against the current state-of-

the-art; and 

iii. state the limitations. 

 

8.2 Data Mining Framework 

Data mining at its core is a toolbox of methods which can be applied to analyse pre-

processed data and extract knowledge which can serve a particular research problem. 

A choice of which methods to pick, in the knowledge discovery, depends primarily 

on: suitability to the research domain, problem in hand and the step where the 

methods will be applied. 

The main limitation of the empirical approach is that the results are not theoretically 

proven. This was mitigated during the definitions of data sets, testing the empirical 

formula and validation with a real-world case study. 

 

8.2.1 Representation of Non-exponential Serial Flow Lines 

Data are the distinguishing element of an empirical form a theoretical research 

(Gratton and Jones 2004). Data collection and generation were the two routes used in 

this research.  

In terms of data collection, the study is part of a research project (InnovateUK Grant 

No. 18834-132285 ‘Development of an innovative Autonomous Model Development 

Tool (AMDT) for boosting manufacturing process competencies’), where findings of 

research were applied within the construction industry. Actual data were collected and 

validated from a concrete reservation barrier construction project on UK M1 

motorway. The real-world case study resembles a flexible flow line with large-

volume steady production of medium-variety products, i.e., six sizes of concrete 

batched from two plants.  
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As for the data generation, the objective here was to generate synthetic data for 

generic representation of the intra- and inter-process variability within synchronous 

and asynchronous non-exponential serial flow lines and use Discrete Event 

Simulation modelling to obtain the steady state simulated throughput rate with high 

certainty. 

Several research questions were answered during the course of addressing this 

objective. 

8.1-Q1: Which data pre-processing method performs the best in handling the bias 

caused by the simulation error and increases the reliability and confidence in the 

simulated throughput rate? 

This research question raises an important concern regarding the reliability of the 

simulation results and to what extent they can be reproduced by other research to 

obtain the same results. Two decisions are required at this stage; one concerning how 

to ensure the model results are reflecting the steady state of the performance measure 

of interest and the second is the number of replications required to obtain the 

simulated throughput rate with high certainty.  

For the first decision, the infinity method was chosen to reach the steady state as 

described in Section 4.5.2.2. Results (Section 6.2.1) show an empirical evidence that 

the simulation time required to reach to the state where simt  for non-exponential 

serial flow lines is a function of two main factors; flow line length N  and maximum 

mean processing time max . This led to derivation of an approximation formula 

(Equation 6.1) for the steady state response after the defined ‘Saturation Period’. This 

relationship was formulated based on several experiments which showed a negligible 

effect of the warm-up period, i.e., variance in TR < 810*5.1  , suggesting that the 

simulation reached to the state, where simt . This formula is limited to: 

i. serial flow lines;  

ii. normally distributed processes; and 

iii. simulated throughput rate with 95% confidence interval. 

As for the certainty, two methods were studied: Robinson (2004) algorithm to 

determine the number of replications required to reach a certain precision, i.e., 95% 

confidence interval, and smoothing of the simulated throughput rate from a single run 

(Section 4.5.2.3).  
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Results as shown in Section 6.2.1 indicate that Robinson (2004) method can increase 

confidence in the determined results of the throughput rate up to 7%, for the data sets 

used in this research. Smoothing of the simulation results, on the other hand, as 

demonstrated in Appendix C (P. A-6), is not a recommended approach to improve the 

reliability and confidence in simulated results.  

 

8.1-Q2: How the variability within a non-exponential serial flow line can be 

represented in a data mining-compatible generic form applicable to synchronous and 

asynchronous flow lines with arbitrary length and scenario of intra- and inter-process 

variability? 

The representation of the intra- and inter-process variability is an important topic 

since it relates to the transformation of the actual data into a meaningful generic form 

that is specific enough to represent the actual data yet still is generic to be applied 

outside the specific case study. This question was approached in this research 

differently from several perspectives: 

i. the non-exponential distribution type that fits more for intra- and inter-human-

dependent process variability within a serial flow line; 

ii. representative size of the data sets, i.e., data sampling; 

iii. process-based predictors, i.e., the distribution parameters used at each process 

i  against line-based predictors, i.e., derived from the distribution parameters 

to represent the complete flow line; and 

iv. linearity of the relationship between predictors representing the intra- and 

inter-process variability and the  and the dependent variables, i.e., the 

performance target. 

As described in Section 2.4, two defining parameters; effective process time and 

interarrival time, are generally used to describe the variability (Hopp and Spearman 

2011, Hopp 2008, Etman and Rooda 2000, Jacobs et al. 2003). The effective process 

time includes the value-added processing time, when the process is efficiently 

transforming the work item, and the non-value-added times, where the work item is 

waiting, being in-transit, overprocessed, etc. and the interarrival time is the time 

between subsequent work items to arrive at a process i . 
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Variability can be generated within the flow line due to the following (Leu et al., 

1996, Buhne et al. 2005, Hopp and Spearman 2011, Li et al. 2009): 

i. machine reliability; 

ii. queue capacity; 

iii. natural variability leading to variations in the intra-processing time; and 

iv. product complexity causing inter-processing time variation. 

For human-dependent processes, the non-value-added time activities, e.g., waiting, 

presented in the effective process time are primarily due to the parameters three and 

four, i.e., intra- and inter-variability of processing times. According to Hopp and 

Spearman (2011) and Martin and Bridgmon (2012) variability within these two 

categories can be represented using the normal distribution. This agrees with the real-

world industrial case study used in this research, where the industrial partner depends 

on the normal distribution to represent the process variability. 

The data sets were generated to be representative enough for real-world synchronous 

and asynchronous non-exponential serial flow lines with normally distributed 

processes as discussed in Section 4.5.1. The data provides a wide range of flexibility 

for training and testing the data mining model of processing time and length 

variability, i.e., 1:500 units and 1:30 respectively, and continuous data (Section 5.3.1) 

for validation. 

The third point can also be viewed from a different perspective, i.e., analytical against 

empirical approach to solve the research problem. From Li and Meerkov (2009), 

Papadopoulous et al. (2009), Li et al. (2013), Meerkov and Yan 2014, Wang et al. 

(2014), Kang et al. (2015) and Tan et al. (2015) it is clear that a mathematical solution 

requires the stochastic process to be Markovian which translates to deterministic, 

exponential or phase-based distributions of processing time. The attempt to solve non-

Markovian process analytically (Li and Meerkov 2009, Wang et al. 2014, Kang et al. 

2015) was an extension to the exponential solution which was derived through the 

empirical route. Looking closely at Li and Meerkov (2009) empirical formula for the 

throughput rate (Equation 2.8), it is a function of the minimum capacity, or the 

maximum mean processing time. This conclusion cannot be implied from 

mathematical representation of the flow line problem since this requires segmentation 

of the problem with a step i , i.e., mathematical solution treats each process 

individually despite their inter relationship to the following process.  
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Hence, this research opted for the empirical approach to determine the throughput rate 

as a function of the line-based parameters. Papadopoulos et al. (2009) suggested that 

future analysis of flow lines will be driven by an integration of both analytical and 

simulation modelling. This study proposes the combination of simulation modelling 

and data mining-based methods as a potential alternative.   

This research used the main line-based parameters that distinguish the throughput rate 

of exponential from non-exponential asynchronous flow lines, i.e., the maximum 

mean processing time max , the average coefficient of variation avc  and length N .  

It also added there new predictors inspired from these parameters for investigation 

purpose: 

i. minimum mean processing time min ; 

ii. average mean processing time ; and 

iii. coefficient of variation of mean processing time c . 

Furthermore, due to the fact that the process with the maximum mean processing time 

plays a major role, it was worth investigating if its location within the flow line has 

any effect on the throughput rate. 

Hence, for a more generic representation of the asynchronous non-exponential flow 

line, the following flow line-based parameters were investigated during this empirical 

research:  

i. Minimum Mean Processing Time min ; 

ii. Average Mean Processing Time  ; 

iii. Maximum Mean Processing Time max ; 

iv. Coefficient of Variation of Mean Processing Time c ; 

v. Average Coefficient of Variation avc ; 

vi. Location Ratio of the Process with Maximum Mean Processing Time l ; and 

vii. Length N . 

These reduce down to the main process-based parameters, i , ic  and N , for 

synchronous flow lines. 

  



CHAPTER 8 – CRITICAL ASSESSMENT 

 
167 

 

Furthermore, looking at the closed-form formulas for synchronous flow lines built by 

Muth (1987) and Blumenfeld (1990), the data mining models were based on multiple 

linear regression of linear terms. Blumenfeld and Li (2005) used the analytical 

approach to produce a closed-form formula for the throughput rate of synchronous 

flow lines, however, as discussed this required the processing times to be 

deterministic and exponentially distributed interruptions. Li and Meerkov (2009), 

Wang et al. (2014), Meerkov and Yan (2014) and Kang et al. (2015), on the other 

hand, applied approximation methods to Markovian analysis of an asynchronous flow 

line with stochastic Markovian processes. Afterwards, they extended the analysis to 

include the non-Markovian case using the empirical approach. However, in this 

extension, they also depended on the linear terms of the line-based parameters. It is 

clear in Li and Meerkov (2009) formula that the process variability, represented by 

the maximum mean processing time max , the average coefficient of variation avc  and 

length N , reduces the throughput rate from the exponential case. However, the 

linearity assumption can cause the relationship between the variability parameters and 

the performance targets to not be fully established. This research targeted this issue by 

investigating if a nonlinear relationship between the variability parameters, i.e., 

predictors, and the performance target, i.e., dependent variable, exists. 

Statistical analysis on the relationship between these parameters including their 

nonlinear terms and the throughput rate was carried out as discussed in Section 6.3. 

Based on the results, new nonlinear relationships between the following set of flow 

line-based variability parameter terms and the throughput rate were confirmed to a 

high certainty as follows: 

i. The inverse of maximum mean processing time
1

max


 , the coefficient of 

variation avc  and N  in agreement with the literature; 

ii. Additionally, a nonlinear term related to the coefficient of variation, namely 

avc
e ; and 

iii. Furthermore, one term for the length, i.e., 
1N , was also identified. 
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Results also showed that although the process with maximum mean processing time 

has a significant effect on the throughput rate, the location of such process is 

irrelevant. Furthermore, parameter terms
1

min



e ,  , 1 , log , 

1e  ,  c , 
1c  and 

clog  with inconsistent relationship with the throughput rate but an acceptable 

statistical importance suggesting that a relationship might exist. 

Best regression technique was applied to verify the findings. Linear regression model 

with the first set of parameter terms was accurate to a standard error of 0.0082 and R
2 

of 96.7%. Accuracy was slightly improved with the second set were added to R
2
 of 

97.3% and 0.00686 standard error. 

Identification of the parameter terms in this manner allows for implementation of 

multiple nonlinear regression without prior knowledge of the model expression by 

using multiple linear regression of nonlinear terms. 

In conclusion, the main contribution of this section is a generic representation of 

synchronous and asynchronous non-exponential flow lines with arbitrary length and 

intra- and inter-process variability. Generic flow line-based, instead of process-based 

parameters, were used to target the parameters with impact on the throughput rate and 

allow for a simple closed-form formula to be developed for the relationship between 

variability parameters and the throughput rate. Results show that the parameters can 

be categorised into two categories. The first one consists of the main nonlinear 

parameter terms with clear impact on the throughput rate are 
1

max


 , avc , avc

e , N  and 

1N . The second category includes parameter terms with less statistically proven 

relationship with throughput rate. These terms were included as free predictors with 

the intention of using them to improve the accuracy of the model; these free 

predictors are 
1

min



e ,  , 1 , log , 

1e  ,  c , 
1c  and clog .  
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8.2.2 Empirical Closed-form Formula for the Throughput Rate of Human-

dependent Serial Flow lines 

Several flow line models were developed using different techniques. Earlier models 

gave exact mathematical models but were limited to short flow lines. Recent models 

used approximate analytical solutions, such as decomposition and aggregation 

methods, to model arbitrary length flow lines. However, these models still require the 

process to be Markovian, hence, they cannot be applied to human-dependent 

processes with normally distributed variability patterns.  

Simulation modelling of flow lines has developed significantly giving an accurate 

approximation of actual flow lines. However, simulation models do not formulate the 

relationships within the system and is usually used to represent a specific case study 

with limited applicability for other case studies without major modifications to the 

simulation model itself.  

Several researchers have investigated development of closed-form formulas for quick 

analysis of a wider range of case studies of exponential and non-exponential flow 

lines at the cost of applying some simplifications or assumptions to the flow line. 

closed-form formula also gives an added advantage to the analysis related to process 

and production planning since it can be easily interpreted and implemented in 

industry. Closed-form formulas provide an easy and time-efficient approach to 

evaluate variability which is advantageous for a quick autonomous decision. The 

objective here was to build a Data Mining Framework and use it to develop a 

standalone empirical formula and perform goodness-of-fit analysis for the estimated 

throughput rate for synchronous and asynchronous human-dependent serial flow 

lines.  

Development in this area started by building a standardised supervised machine 

learning data mining approach ‘Degree of Freedom (DOF)’ based on the degrees of 

freedom at each step of the Data Mining Framework to build the empirical formula. 

This was then translated into a MATLAB program following the procedure shown in 

Figure D.1 and D.2 for synchronous and asynchronous flow lines respectively. 
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Throughout the performance analysis stage, cross validation was applied to each 

individual data set xT  within the test set T  and to determine the goodness of each 

individual set using the method m . The mechanism of partitioning during the cross 

validation is sequential forward selection of the training sets. The cross validation was 

applied here to ensure that the no under- or over-fitting take place and that the pattern 

of the relationship between the predictor terms and the throughput rate is accurately 

modelled.  

During the first step, the best performing data set is elected to the second step, where 

the remaining data sets are compared to elect a data set based on goodness of fit of 

each individual data set within the test set and so on. In each modelling step, the best 

regression model was extracted based on the minimal Mean Absolute Percentage 

Error (MAPE) and the stability of error across the different data sets included within 

both the training and test sets.  

8.2.2.1 Synchronous Flow Lines 

8.1-Q3a: Can data mining models produce a simple closed-form formula to estimate 

the throughput rate of synchronous human-dependent serial flow lines? How accurate 

will this evaluative model perform for the real-world case study? 

Several analytical and empirical-based evaluative models were developed for the 

exponential and non-exponential synchronous flow lines covering wide range of 

performance measures. A closed-form formula for the steady state throughput rate of 

synchronous serial flow lines with normal-distributed processes was developed by 

Blumenfeld (1990). The ‘Degree of Freedom (DOF)’ approach was implemented here 

to investigate if the accuracy of this formula can be improved. 

The contribution of this section is the development of a simple standalone fifth-degree 

polynomial empirical formula for the steady state throughput rate of synchronous 

human-dependent serial flow line with arbitrary length and intra-process variability, 

with improved estimation accuracy over the latest development in this area, i.e.,  e  

of 0.2% with a stability over the range of test data sets, i.e., 11.0ec  over e  and ec

, of 2.63% and 0.74 for Blumenfeld (1990) formula. The limitation here that this 

formula was not validated outside the defined synthetic discrete data sets since the 

continuous data of the case study represents an asynchronous flexible flow line. 
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8.2.2.2 Asynchronous Flow Lines 

8.1-Q3b: Can data mining models produce a simple closed-form formula to estimate 

the throughput rate of asynchronous human-dependent serial flow lines? How 

accurate will this evaluative model perform for the real-world case study? 

Papadopoulos (1996) investigated a generalisation of a closed-form formula that can 

fit arbitrary asynchronous flow line length of exponential distributed processes with 

only one distribution parameter, i.e.,  . However, the resulting formula included 

coefficients that need to be numerically obtained. Empirical approach, centered on 

simulation modelling, was the most popular for the non-exponential case, where, at 

present, theoretical proof is not possible (Li and Meerkov 2005, Li and Meerkov 

2009, Wang et al. 2014, Kang et al. 2015).  

Li and Meerkov (2009) developed an empirical formula as an extension to the 

exponential case which has been the cornerstone for several other implementations 

including service based flow lines (Wang et al. 2014).  

Current published work on this subject gives good insights and ideas, however, the 

formula still remains linked to the exponential case. An interesting implementation of 

the Markovian analysis presented in Wang et al. (2014) and Kang et al. (2015) led to 

a closed-form expression for the exponentially-distributed throughput that does not 

require numerical iteration. In Wang et al. (2014), the state space was used to 

represent the number of patients in each treatment stage, where resources, e.g., nurse, 

are allocated based on their availability. The processing time of each resource is 

exponentially distributed and it was considered the same for all resources of the same 

resource group. The results of Wang et al. (2014) are then adjusted using the 

empirical formula of Li and Meerkov (2009) for non-exponential processes. In this 

research, due to the limitations of the Markovian analysis listed in Section 2.6, which 

are still applicable to this case, and also for improved accuracy, the main benchmark, 

i.e., simulation, was used to determine the throughput rate of the exponential case, 

i.e., 1avc , and then used to feed Li and Meerkov (2009) formula.  
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The contribution of this section is the development of a simple standalone third-

degree polynomial empirical formula for the steady state throughput rate of human-

dependent asynchronous serial flow line with arbitrary length and intra- and inter-

process variability, with improved estimation accuracy over the latest development in 

this area, i.e.,  e of 2% with a stability over the range of test data sets, i.e., 19.0ec  

over e and ec , of 2% and 0.45 for Li and Meerkov (2009) formula with simulation 

used to determine eTR . The developed closed-form formula also removes the 

dependency of the formula on external inputs, e.g., from simulation or analytical 

solution, by producing a higher order formula that includes all generic variability 

parameters contributing to the throughput rate. 

It is worth noting that a single nonlinear predictor term from each variability 

parameter, i.e., 1

max


 , avc

e , 
1N   and , was sufficient to form the relationship 

with the performance target, i.e., throughput rate. 
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8.3 Autonomous Control Framework 

Autonomous systems, in its general concept, are designed to process available and up-

to-date information at the autonomous entity level about current state, including local 

performance measures, and use them to tweak the decision variables to achieve a 

specific objective. This approach addresses decentralisation of decision and 

responsiveness in a dynamic environment. Optimisation, instead of depending on the 

performance measures of the current state, gradually learns how variability of the 

system affects the objective system-level performance measure(s) and adjusts the 

decision variables accordingly. The objective here is to build an Autonomous Control 

Framework for flexible flow lines based on the developed empirical formula and 

compare it with current autonomous control and simulation-based optimisation 

methods using representative variability scenarios of flexible flow lines. 

 
8.3.1 Formula-Based Autonomous Control Method 

8.2-Q1: Can this formula-based evaluative model be utilised to control the variability 

within a flexible flow line? 

Yes, the developed formula was used as an autonomous-decision-support system by 

investigating the link between autonomous decisions according to the manufacturing 

flexibility and the overall performance targets. The empirical formula estimates the 

throughput rate at the current state and chooses the autonomous decision step(s) that 

increases the throughput rate. 

 

8.2-Q2: If yes, how does it compare to other existing methods in terms of 

performance? 

Intelligent and autonomous systems rely solely or partially on autonomous control 

and scheduling optimisation heuristics for a rapid response to the daily challenges 

faced by production and process planners. Autonomous methods respond quicker to 

sudden changes in the system while optimisation usually requires more time to learn 

from past events. However, since optimisation can target system-level performance 

measures, such as in this case, it can theoretically reach to a better solution than QLE 

and PEB autonomous control methods. Hence, in Scholz-Reiter et al. (2010), 

autonomous control usually outperformed optimisation in a dynamic environment 

while scheduling heuristics were most of the time the best option during static 

scenarios.  
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This research presented a predictive autonomous control, where the decision is still in 

the hands of each individual process as in the autonomous control. However, instead 

of depending only on local information at one or more processes, the production 

planning decision here, and accordingly scheduling, is rendered based on a closed-

form formula that predicts the outcome of variability on the system-level performance 

targets, hence, increased optimisation certainty. 

Scholz-Reiter et al. (2005) model of flexible flow line was the basis for 

implementation of many of the autonomous control methods (Scholz-Reiter et al. 

2006, Scholz-Reiter et al. 2008a, Scholz-Reiter et al. 2008b, de Beer 2008, Scholz-

Reiter et al. 2010, Windt et al. 2010, Grundstein et al. 2015). The model was 

reproduced here and compared with the reported results for QLE method in Scholz-

Reiter et al. (2005) to ensure that the model and method are implemented correctly. 

As discussed in Section 7.2, the developed formula-based autonomous control 

reached to the optimum solution with static and dynamic scenarios. In a dynamic 

setup, QLE autonomous control logic followed the developed autonomous control 

method for overloaded system scenarios with synchronous change in coefficient of 

variation c  of the processing times in agreement with the literature. However, as 

expected since QLE does not take c  into consideration, QLE method performance 

degrades with the increase in the synchronous change in coefficient of variation 

giving an advantage to the optimisation to exceed the QLE performance. For the 

asynchronous scenarios, QLE performance drops further to reach a performance 

slightly higher than the PEB method. On the other hand, all autonomous control 

methods including the developed formula-based performed nearly the same in 

underloaded dynamic situations. 

As for the balanced static scenario, OptQuest optimisation was the best performing 

after the developed formula-based autonomous control.    
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The QLE method provides quick response and adaptability to sudden changes in 

customer order frequency in the flexible flow line. However, it also has some 

limitations as follows: 

i. it cannot handle the changes in coefficient of variation of processing times; 

ii. queue length has to be known beforehand to apply the control logic; 

iii. suitable for flow lines with queues only, i.e., if no queue exists within the flow 

line, or part of it, the technique will choose the routing with smaller processing 

time regardless of any blocking or starvation that might occur as a result; and 

iv. inter-relationship between processes are not determined; therefore, it cannot 

detect problems in the flow line due to unsynchronised processing times from 

one process to the succeeding one. 

The contribution of the Autonomous Control Framework is a formula-based 

autonomous control method for production planners to determine the optimal 

operational settings based on the constraints imposed on the system by relating the 

variability factors to the corresponding process parameters of the flow line and using 

the formula to obtain the optimal decision with higher certainty than current 

autonomous control and simulation-based optimisation methods. The formula-based 

autonomous control method developed here has a built-in formulated relationship 

between the independent variable and system-level performance target, i.e., 

throughput rate. Hence, this improves the reliability and certainty of the autonomous 

decision while providing faster reaction to changes in the system at the same pace as 

the autonomous control. The main limitations of the technique that it can handle flow 

lines with normally distributed processing and interarrival times only. For routing 

decision, it is also limited to the case that the number of products matches the number 

of available flexible processes at each decision step, however, this was accounted for 

as reported in section 7.3. 
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8.4 Industrial Implementation 

This research is part of the Innovate-UK project (Grant No. 18834-132285 

‘Development of an innovative Autonomous Model Development Tool (AMDT) for 

boosting manufacturing process competencies’). This gave the research the privilege 

to validate the research outcomes and findings on a real-world case study. The 

objective here was to validate the developed empirical formula and autonomous 

control method using a real-world case study in the construction industry. 

 

8.3-Q1 How accurate the developed empirical formula evaluative model performs for 

the real-world case study? 

The formula was developed using discrete synthetic data sets. The real-world case 

study allowed testing the formula on continuous data. 

The results described in Section 6.5 show that the error increased from MAPE of 2% 

with discrete data to 5% when tested on continuous data, and the relationship between 

the changes in errors and the variations in mean processing time and coefficient of 

variation is insignificant. Hence, the formula still remains competent and it is 

expected to still provide accurate estimations of the throughput rate when applied for 

other case studies with different continuous data. 

 

8.3-Q2 How developed formula-based autonomous control method compares to other 

existing methods in terms of performance in a real-world setup? 

The real-world case study allowed testing the formula-based autonomous control 

method for other autonomous decisions apart from routing, such as in the 3x3 flexible 

flow line model case. On the other hand, this added a limitation on the methods that 

can be used in the validation. While the formula-based autonomous control and 

optimisation are capable to perform a decision on several dimensions of the 

manufacturing flexibility mentioned in Section 3.2, autonomous methods are 

primarily dedicated to the routing problem. 

Hence, results as reported in Section 7.3, compare the developed autonomous control 

method to the OptQuest optimisation. The decision variables cover a wide range of 

flexibility including process, routing and product decisions.  
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The main objective here was to determine primarily the normal distribution 

parameters of the interarrival time and secondly optimisation decisions on the 

variability parameters that can balance the system and provide the optimum 

throughput with minimal queues. The secondary decisions handle a standard 

optimisation problem, where an optimal setting of variability factors is pursued. This 

includes the case, where the number of routes is higher than the number of products, 

i.e., parallel processing. The developed method outperforms OptQuest on many levels 

apart from the parallel processing scenarios. Hence, QLE autonomous control 

method, giving its high performance as reported in Section 3.5.2 and 7.2, was 

investigated here as a supplementary method to the developed formula-based 

autonomous control method. This subsequently led to another contribution presented 

by the development of a hybrid autonomous control method integrating the developed 

autonomous control method and QLE. The hybrid autonomous control method was 

able to perform and give the optimal solution where the formula-based autonomous 

control failed alone to achieve. Specifically, in parallel processing, the hybrid 

autonomous control method allowed releasing the pressure on overloaded processes 

which subsequently increased the throughput rate, where the formula cannot predict 

this since it is not designed for parallel processing. 

A real-world trial was carried out as part of the Innovate-UK project (Grant No. 

18834-132285 ‘Development of an innovative Autonomous Model Development Tool 

(AMDT) for boosting manufacturing process competencies’), where Full factorial 

DOE combined with Discrete Event Simulation (DOE-DES) was used to obtain the 

best operational settings that will maximise the throughput rate and minimise queues 

at the construction site. The DOE-DES was used to run through all the possible 

scenarios and then the optimum scenario was chosen. The primary objective was 

maximising the throughput, i.e., completed barrier length, and as a secondary 

objective to minimise queues at the construction site with a margin of 10%. The same 

range of decision variables, as shown in Table 6.17, was used with the DOE-DES 

apart from the mean and coefficient of variation of the arrival rate to reduce the 

number of scenarios. The range of the mean arrival rate in DOE-DES was kept at 10, 

40 and 80 trucks per min while the coefficient of variation was set to 0. Another 

difference in the model is that with DOE-DES the trucks were allowed to return back 

to the concrete plant in a closed loop to reduce the overall truck rental cost.  
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This produces disruptions to the arrival rate, which was not taken into account in this 

research to investigate the optimum arrival rate more accurately. The trial followed 

the E14 scenario presented in Table 6.18 and the results of the DOE-DES 

implemented during the real-world case study compared to the methods reported here 

is shown in Table 8.1. Results clearly shows that both DOE-DES and the optimal 

method, i.e., developed hybrid autonomous control method, gave the same decisions 

for all decision variables except the arrival rate, where the DOE-DES is limited to 

three levels only.  DOE-DES, however, chose the closest value to the optimum from 

its range, i.e., 40/min. It has to be noted that the arrival rates for DOE-DES are 

ambiguous due to the feedback from the construction site to the concrete plants. The 

hybrid method took advantage of its wider range to adjust the arrival range to increase 

the throughput and reduce queues at the construction site.  The hybrid method gave a 

performance increase of 20% in the throughput in comparison to DOE-DES. 

Additionally, mean queue times were minimised by 23min, however, more variable, 

i.e., ,standard deviation of queue times increased by 7min in total, due to the increased 

number of trucks within the system.  

The findings from Section 7.2 and 7.3 reveal the potential of the developed hybrid 

autonomous control as a competitive autonomous control method that can 

accommodate for several manufacturing flexibility levels and provides more 

optimisation certainty. The main limitation of the method is that it requires the 

processes of the flow line to be normally distributed. It was also not tested for the 

decision problem case, where the number of products exceeds the number of routes. 

 

8.5 Summary 

The outcomes of this research showed contributions to the current state-of-the-art in 

the field of evaluative modelling and autonomous control of flow lines. The research 

benefited also from being part of an InnovateUK research project, to validate the 

outcome on a real-world industrial case study which showed promising results. Next 

chapter summarises this research and gives recommendations on potential future 

steps. 
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Table 8.1: Comparison of the Trial Results to the Developed Formula-based and Hybrid Autonomous Control (AC) Methods and OptQuest 

Optimisation 

Method No of Deliveries 

from the Same 

Concrete Plant 

Concrete 

Plant 

Load 

Size 

(m3) 

Multiple 

Concrete 

Plant Usage 

Arrival Rate 

(1/min) 

Mean Site 

Delay (min) 

Throughput 

(normalised) 

QT at Construction 

Site (min) 

     Mean Standard 

Deviation 

  Mean Standard 

Deviation 

DOE-DES (Trial) 2 2 8 S 40 0 0 0.974 31.94 4.59 

Formula-based AC 1 2 8 S 49 0 0 0.855 1.37 1.45 

Hybrid  AC 2 2 8 S 25 0 0 1.164 8.73 11.31 

OptQuest  1 2 8 S 28 2.6 0 0.888 50.42 40.03 

        

   

Decision Variable       
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9 CONCLUSIONS AND FUTURE WORK 

 
9.1 Conclusions 

The 21st Century competitive market demanded for changes in the manufacturing and 

production culture to become more flexible and lean to satisfy the 21st Century 

customer needs. Customised complex innovative products enter the market on short 

intervals to meet the market demand. This comes at the price of increasing the 

variability within the process and production planning and scheduling of the flexible 

flow lines producing these products. In lean production, control of the effects of 

variability within the process and production planning and scheduling on performance 

targets is a strategic goal. 

Autonomous control systems decentralise the control strategy of flow lines by 

handing over the process and production planning and scheduling decision to the 

intelligent entities, i.e., processes. This approach usually outperforms centralised 

heuristic scheduling in a dynamic setup while the first works better for static 

situations. Autonomous systems can make use of the development within evaluative 

modelling for a more stable performance regardless of the system dynamics. 

This research investigated development of an autonomous-decision-support closed-

form formula through empirical evaluative modelling that can help to easily and 

quickly estimate the effect of each autonomous decision, based on the stochastic 

variability in process and production planning, on the system-level performance of 

flexible human-dependent serial flow lines.  

Through this investigation, the following main contributions to knowledge were 

achieved: 

i. Generic representation of arbitrary length non-exponential serial flow line 

using nonlinear terms (Section 4.3). New nonlinear relationships between the 

normal distribution-based variability parameters and the throughput rate were 

identified with p-values less than 0.01 and correlation coefficients higher than 

0.8. Namely, 
1

max


 , avc , avc

e , N  and 
1N  (Section 6.3); and 

ii. Simple standalone closed-form empirical formulas that estimate the 

throughput rate of synchronous and asynchronous flow lines with normally 

distributed process variability to a higher accuracy and independency than 

currently available formulas.  
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The polynomial stepwise regression model with bounded steps for 

synchronous flow lines (Equation 6.3) gave an average prediction percentage 

error e  of 0.2% with a stability over the range of test data sets, i.e., 11.0ec

. This model surpasses the performance of Blumenfeld (1990) formula which 

gave, for the same training data set, an average and coefficient of variation of 

the prediction percentage errors, e and ec , of 2.63% and 0.74 respectively. 

As for asynchronous flow lines, the best performing standalone regression 

model with the optimum training set (Equation 6.4) was able to give the same 

e  of 2% as the non-standalone Li and Meerkov (2009) formula with an 

improved ec  of 0.19 against 0.45 for Li and Meerkov (2009) formula.  

iii. Formula-based autonomous control method and a hybrid formula-based and 

QLE autonomous control method for production planners to determine the 

optimal operational settings based on the constraints imposed on the system by 

relating the variability factors to the corresponding process parameters of the 

flexible flow line and using the formula to obtain the optimal decision with 

higher certainty than current autonomous control and simulation-based 

optimisation methods. For the 3x3 flexible flow line described in Scholz-

Reiter et al. (2005), the developed technique outperformed QLE, PEB 

autonomous control and OptQuest optimisation in terms of throughput rate, 

queue time and utilisation efficiency against all the identified synchronous and 

asynchronous flow line scenarios and underloaded, balanced and overloaded 

systems (Section 7.2). As for the real-world case study, for the decision 

variables not related to parallel processing, the formula-based autonomous 

control performed the best among the three methods, i.e., formula-based and 

hybrid formula-based and QLE autonomous control and OptQuest 

optimisation, with the highest throughput and minimal queues that are close to 

zero (Section 7.3). For parallel processing scenarios, the hybrid formula-based 

and QLE autonomous control managed to bring the throughput to the optimal 

levels, however, this came at the cost of increased queues but within limits. 
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9.2 Future Work 

The contribution of this research is represented into three main research outcomes: a 

generic representation of the variability of non-exponential serial flow lines, an 

empirical closed-form formulas for the throughput rate of synchronous and 

asynchronous human-dependent serial flow lines and a formula-based and hybrid 

autonomous control methods for human-dependent flexible flow lines. Research in 

these areas can be extended through the following future work: 

i. Development of a graphical user interface that can be used for end-users to 

estimate the throughput rate based on data entry of process information. The 

user interface can be linked to simulation model for direct control of the 

flexible flow line.  

ii. Expand the generic representation of flow lines to take into account the 

parallel processing which might occur at one or more processing stages 

throughout the flow line; 

iii. Investigate how the developed empirical formula for asynchronous serial flow 

lines with normally distribution process variability performs for other 

exponential and non-exponential distributions such as Erlang, gamma, 

uniform, triangular, binomial and lognormal distributions and what extensions 

or improvements are required in this matter; 

iv. The Data Mining Framework presented in this thesis can be applied to 

generate a generic representation and an empirical formula for the throughput 

rate of machine-dependent flow lines with medium to high Markovian process 

variability, i.e., short and long interruptions due to machine setup, failure and 

repairs. This would be particularly useful given the amount of interest in this 

area and the several exact mathematical solutions and approximation methods 

developed for this type of flow lines which can serve as benchmarks for the 

outcome; 

v. Study the use of the developed Data Mining Framework for inclusion of finite 

queues into the human- and machine-dependent flow lines and generate a data 

mining model of the throughput rate that adds the queue capacity and its 

nonlinear terms as independent variables. This study can target both 

synchronous and asynchronous flow lines; 
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vi. An interesting point of research is to extend the Data Mining Framework to 

handle a flow line with mixed Markovian and non-Markovian processes. This 

can be useful to a supply chain, where manufacturing is a stage of the chain 

that also includes other human-dependent processes, e.g., paper work, 

delivery, etc.; 

vii. Study the performance of the developed Autonomous Control Framework and 

the effectiveness of integration of more methods to handle increased 

production planning and scheduling constraints, e.g., due date, and higher 

degrees of process complexity, e.g., dynamic variability; and 

viii. Investigate the application of both data mining and Autonomous Control 

Frameworks into more specialised versions of flow lines, than the general 

serial open-loop flow line case, such as assembly lines, flow line with rework 

or closed-loop systems. This can be particularly useful for the case study of 

this research, where concrete trucks can run in a closed loop by returning to 

the concrete plant for re-batch, i.e., multiple deliveries per a concrete truck, 

instead of using a new truck per delivery. This can reduce the number of work 

items inside the flow line which might help to improve the system 

performance. 
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Figure A.1: Scope of the Research in Evaluative Modelling 
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APPENDIX B – Synthetic Data Set 1/  SIII  for Asynchronous Flow Line 

 

Refer to Section 4.5.2.1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



APPENDICES 

  

 
A-4 

 

Table B.1: Data Set 1/  SIII  

 

 

Set Length Mean Processing Time Coefficient of Variation       

1 2 1 0.01 

S
in

g
le
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Processing Time Included 

1 2 2 0.01 Coefficient of Variation Not Included 

1 2 3 0.01 Length Not Included 

1 2 4 0.01 
 

  

1 2 5 0.01 
 

  

1 2 6 0.01 
 

  

1 2 7 0.01 
 

  

1 2 8 0.01 
 

  

1 2 9 0.01 
 

  

1 2 10 0.01     
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1 2 4 0 
 

  

1 2 5 0 
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1 2 7 0 
 

  

1 2 8 0 
 

  

1 2 9 0 
 

  

1 2 10 0     
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1 2 1 0.05 Coefficient of Variation Included 
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APPENDIX C – Data Cleaning – Smoothing Results 

 

Refer to Section 4.5.2.3 
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Smoothing of the data output, i.e., simulated TR performed poorly with all methods.  

Local and robust regression models of weighted linear least squares of the 2
nd

 degree 

polynomial and Savitzky-Golay filter performed nearly the same and they gave better 

accuracy than other models for a flow line model of one process only. This has not 

been the case when the flow line length increased to 2 processes, and all methods 

rounded up to fairly the same errors. Table C.1 gives the Minimum, Average and 

Maximum Absolute Percentage Errors (MINAPE), (MAPE) and (MAXAPE), 

respectively, between the smoothed and simulated throughput rate for the variability 

scenarios in data set 1/  SIII  and 2/  SIII . 

 

Table C.1: Smoothing Errors for Data Set 1/  SIII  and 2/  SIII  

 

1/  SIII  

 Moving 

Average 

Local 

Regres. 

1st_D 

Robust 

Regres. 

1st_D 

Local 

Regres. 

2nd_D 

Robust 

Regres. 

2nd_D 

Savitzky-

Golay 

filter 

MINAPE 0% 6.38% 0% 0% 0% 0% 

MAPE 502% 928% 654% 458% 459% 458% 

MAXAPE 1046% 2714% 1534% 984% 984% 984% 

2/  SIII  

 Moving 

Average 

Local 

Regres. 

1st_D 

Robust 

Regres. 

1st_D 

Local 

Regres. 

2nd_D 

Robust 

Regres. 

2nd_D 

Savitzky-

Golay 

filter 

MINAPE 60.20% 51% 78% 99% 99% 99% 

MAPE 830% 829% 830% 830% 830% 830% 

MAXAPE 1826% 2657% 2315% 1823% 1823% 1823% 

Overall 

 Moving 

Average 

Local 

Regres. 

1st_D 

Robust 

Regres. 

1st_D 

Local 

Regres. 

2nd_D 

Robust 

Regres. 

2nd_D 

Savitzky-

Golay 

filter 

MINAPE 0% 6.38% 0% 0% 0% 0% 

MAPE 830% 829% 829% 830% 830% 830% 

MAXAPE 1826% 2714% 2315% 1823% 1823% 1823% 
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APPENDIX D – Phase III Model Building Flowchart 

 

Refer to Section 4.5.3.2.1 
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Figure D.1: Model Building Flowchart – Synchronous Flow Line  
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Figure D.2: Model Building Flowchart – Asynchronous Flow Line 
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APPENDIX E – Phase II – Correlation and ANOVA Analysis of the Relationship 

between Minimum, Average and Coefficient of Variation of Mean Processing 

Time Terms and the Throughput Rate 

 

Refer to Section 6.3.5 
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Table E.1: Correlation Analysis of the Relationship between Minimum, Average 

and Coefficient of Variation of Mean Processing Time Terms and the 

Throughput Rate 

 

 

  

Parameter Term  1TR  2TR  3TR  
4TR  

  -0.99 -0.75 -0.76 -0.93 
1  0.72 0.65 0.66 0.92 

log  -0.90 -0.71 -0.72 -0.92 


1log  

0.90 0.71 0.72 0.92 
e  -0.37 -0.85 -0.85 -1.00 

1e  0.71 0.65 0.66 0.92 

min  -0.99 -0.75 -0.76 -0.93 
1

min


  0.46 0.26 0.27 0.38 

minlog  -0.84 -0.55 -0.56 -0.73 

min

1log


 
0.84 0.55 0.56 0.73 

min
e  -0.36 -0.71 -0.72 -0.50 

1
min




e  0.38 0.21 0.22 0.32 
c  0.72 0.65 0.66 0.92 

1c  -0.59 -0.90 -0.90 -0.74 

clog  0.97 0.93 0.94 0.99 

c
1log  

-0.97 -0.93 -0.94 -0.99 
ce  0.46 0.58 0.59 0.91 

1ce  -0.24 -0.53 -0.54 -0.35 
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Table E.2: ANOVA Analysis of the Relationship between Minimum, Average 

and Coefficient of Variation of Mean Processing Time Terms and the 

Throughput Rate 

 

 

 

Experiment 1 

Source DF Adj SS Adj MS f-value p-value 

Regression 5 509104 101821 1.12E06 0 

log  1 212 212 2341.23 0 
1e  1 5 5 51.97 0 

c  1 6 6 69.59 0 
1c  1 126 126 1388.46 0 

clog  1 374 374 4127.49 0 

Error 34 3 0   

Total 39 509107    

Experiment 2 

Source DF Adj SS Adj MS f-value p-value 

Regression 1 6.82754 6.82754 1.87E+03 0 

c  1 6.82754 6.82754 1868.9 0 

Error 23 0.08402 0.00365   

Total 24 6.91156    

Experiment 3 

Source DF Adj SS Adj MS f-value p-value 

Regression 4 7.34273 1.83568 4.12E+02 0 

  1 0.16199 1.62E-01 36.34 0 
1

min



e  1 0.06923 6.92E-02 15.53 0.001 

Error 20 0.08914 0.00446   

Total 24 7.43188    

Experiment 4 

Source DF Adj SS Adj MS f-value p-value 

Regression 3 150.423 50.141 1.14E+04 0 
1

min



e  1 0.013 0.013 2.96 0.094 

1c  1 0.712 0.7116 162.22 0 

c
1log  

1 0.723 0.7233 164.88 0 

Error 37 0.162 0.0044   

Total 40 150.585    
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APPENDIX G – Phase III – MAPE of the Individual Test Set of Data Mining 

Models for Synchronous Flow Lines  

 

Refer to Section 6.4.1 
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Table G.1: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-1 

 

  ema   

 
Method Test Set Tu,u=1 Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 

  Number 
(m) Class I Class II Class III Class IV I-II-S-1 I-II-S-2 I-II-S-3 I-II-S-4 μe ce 

1 

Decision Tree 

Boosting 

  

  

0.00% 23.47% 0.00% 138.45% 40.48% 1.64 

2 
Bootstrap 
Aggregating 23.42% 229.56% 573.69% 796.78% 405.86% 0.85 

3 Neural Network Feedforward 0.16% 179.76% 368.27% 240.18% 197.09% 0.78 

4 
Blumenfeld 
(1990) 

  
0.37% 1.73% 3.73% 4.67% 2.63% 0.74 

5 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 1.59% 28.88% 167.74% 220.44% 104.66% 1.01 

6 Andrews 1.59% 28.89% 167.74% 220.44% 104.67% 1.01 

7 
Cauchy M-
estimators by Moore 0.13% 23.27% 107.19% 145.98% 69.14% 1.00 

8 Fair by Rey 0.09% 22.86% 106.18% 144.31% 68.36% 1.00 

9 Huber 0.12% 23.11% 106.71% 145.22% 68.79% 1.00 

10 Logistic Regression 0.12% 23.10% 106.70% 145.21% 68.78% 1.00 

11 Hinch and Talwar 1.59% 28.86% 167.58% 220.27% 104.58% 1.01 

12 Holland and Welsch 0.15% 23.29% 107.12% 145.91% 69.12% 1.00 

13 

Regularisation 

Lasso 0.57% 22.74% 91.79% 125.06% 60.04% 0.97 

14 Ridge Regression 0.09% 22.63% 105.81% 143.41% 67.99% 1.00 

15 Elastic Nets 0.57% 22.74% 91.79% 125.06% 60.04% 0.97 

16 

Stepwise 

Linear with 
Interactions of 
Linear Terms 

Bounded Steps 0.05% 23.24% 108.75% 148.11% 70.04% 1.00 

17 
Unbounded 
Steps 0.05% 23.29% 108.99% 148.01% 70.09% 1.00 

18 
Linear and Squared 
Terms 

Bounded Steps 0.02% 23.68% 110.92% 150.70% 71.33% 1.00 

19 
Unbounded 
Steps 0.02% 23.68% 110.92% 150.70% 71.33% 1.00 

20 Linear and Squared 
Terms including 
Interactions 

Bounded Steps 0.02% 23.68% 110.92% 150.70% 71.33% 1.00 

21 
Unbounded 
Steps 0.02% 23.68% 110.92% 150.70% 71.33% 1.00 

22 

Polynomial 

Bounded Steps 0.01% 23.43% 109.70% 149.14% 70.57% 1.00 

23 
Unbounded 
Steps 0.05% 23.22% 108.67% 147.66% 69.90% 1.00 
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Figure G.1: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-1 
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Table G.2: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-2 
 

  ema   

 
Method Test Set To,o=1 Test Set Tu,u=1 Test Set To,o=2 Test Set To,o=3 

  Number 
(m) Class I Class II Class III Class IV I-II-S-1 I-II-S-2 I-II-S-3 I-II-S-4 μe ce 

1 

Decision Tree 

Boosting 

  

  

14.02% 17.93% 14.02% 112.51% 39.62% 1.23 

2 
Bootstrap 
Aggregating 39.18% 10.68% 287.51% 374.82% 178.05% 1.02 

3 Neural Network Feedforward 0.63% 0.12% 188.32% 239.85% 107.23% 1.17 

4 
Blumenfeld 
(1990) 

  
0.37% 1.73% 3.73% 4.67% 2.63% 0.74 

5 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.42% 26.26% 180.38% 243.08% 114.04% 1.02 

6 Andrews 6.38% 26.31% 180.51% 243.09% 114.07% 1.02 

7 
Cauchy M-
estimators by Moore 8.36% 24.70% 175.83% 238.43% 111.83% 1.01 

8 Fair by Rey 18.77% 20.69% 147.06% 213.57% 100.02% 0.97 

9 Huber 13.06% 22.35% 162.06% 225.65% 105.78% 0.99 

10 Logistic Regression 13.99% 21.99% 158.76% 221.65% 104.10% 0.99 

11 Hinch and Talwar 9.00% 24.91% 179.98% 249.28% 115.79% 1.02 

12 Holland and Welsch 7.11% 25.71% 179.38% 242.91% 113.78% 1.02 

13 

Regularisation 

Lasso 18.75% 19.97% 96.09% 137.84% 68.16% 0.86 

14 Ridge Regression 22.19% 18.89% 113.93% 178.92% 83.48% 0.93 

15 Elastic Nets 19.49% 19.42% 97.37% 123.34% 64.91% 0.82 

16 

Stepwise 

Linear with 
Interactions of 
Linear Terms 

Bounded Steps 1.42% 0.88% 59.12% 88.12% 37.39% 1.16 

17 
Unbounded 
Steps 1.41% 0.88% 61.31% 90.59% 38.55% 1.16 

18 
Linear and Squared 
Terms 

Bounded Steps 22.58% 18.62% 116.30% 152.89% 77.60% 0.87 

19 
Unbounded 
Steps 1.56% 0.77% 61.62% 91.40% 38.84% 1.16 

20 Linear and Squared 
Terms including 
Interactions 

Bounded Steps 1.57% 0.77% 61.63% 91.44% 38.85% 1.16 

21 
Unbounded 
Steps 1.59% 0.76% 64.01% 97.93% 41.07% 1.17 

22 

Polynomial 

Bounded Steps 0.17% 0.08% 62.35% 93.35% 38.99% 1.20 

23 
Unbounded 
Steps 0.15% 0.09% 64.35% 100.84% 41.36% 1.21 
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Figure G.2: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-2 
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Table G.3: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-3 
 

  ema   

 
Method Test Set Tu,u=1 Test Set Tu,u=2 Test Set Tu,u=3 Test Set To,o=1 

  Number 
(m) Class I Class II Class III Class IV I-II-S-1 I-II-S-2 I-II-S-3 I-II-S-4 μe ce 

1 

Decision Tree 

Boosting 

  

  

45.50% 25.64% 45.50% 26.01% 35.66% 0.32 

2 
Bootstrap 
Aggregating 45.36% 25.73% 7.70% 32.16% 27.74% 0.56 

3 Neural Network Feedforward 7.21% 5.66% 0.21% 1.87% 3.74% 0.87 

4 
Blumenfeld 
(1990) 

  
0.37% 1.73% 3.73% 4.67% 2.63% 0.74 

5 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.96% 12.27% 10.26% 14.26% 10.94% 0.28 

6 Andrews 6.94% 12.27% 10.28% 14.22% 10.93% 0.28 

7 
Cauchy M-
estimators by Moore 10.90% 12.73% 10.34% 17.76% 12.93% 0.26 

8 Fair by Rey 14.23% 13.50% 11.09% 19.87% 14.67% 0.25 

9 Huber 13.51% 13.36% 10.68% 19.03% 14.15% 0.25 

10 Logistic Regression 13.58% 13.31% 10.75% 19.20% 14.21% 0.25 

11 Hinch and Talwar 7.01% 12.25% 10.22% 13.92% 10.85% 0.27 

12 Holland and Welsch 7.11% 12.24% 10.16% 14.55% 11.02% 0.29 

13 

Regularisation 

Lasso 16.13% 14.69% 13.24% 23.67% 16.93% 0.27 

14 Ridge Regression 16.14% 14.69% 13.24% 23.67% 16.94% 0.27 

15 Elastic Nets 16.13% 14.69% 13.24% 23.67% 16.93% 0.27 

16 

Stepwise 

Linear with 
Interactions of 
Linear Terms 

Bounded Steps 2.72% 1.30% 0.83% 1.63% 1.62% 0.50 

17 
Unbounded 
Steps 2.72% 1.30% 0.83% 1.63% 1.62% 0.50 

18 
Linear and Squared 
Terms 

Bounded Steps 16.18% 14.79% 13.16% 23.62% 16.94% 0.27 

19 
Unbounded 
Steps 2.65% 1.36% 0.79% 1.61% 1.60% 0.49 

20 Linear and Squared 
Terms including 
Interactions 

Bounded Steps 2.65% 1.37% 0.79% 1.61% 1.61% 0.48 

21 
Unbounded 
Steps 2.65% 1.36% 0.79% 1.61% 1.60% 0.49 

22 

Polynomial 

Bounded Steps 0.23% 0.19% 0.21% 0.18% 0.20% 0.11 

23 
Unbounded 
Steps 3.51% 3.97% 0.21% 1.18% 2.22% 0.82 



APPENDICES 

 
A-19 

 

 
Figure G.3: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-3 
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Table G.4: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-4 

 

  ema   

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-S-1 I-II-S-2 I-II-S-3 I-II-S-4 μe ce 

1 

Decision Tree 

Boosting 

  

  

14.01% 15.94% 14.01% 26.88% 17.71% 0.35 

2 
Bootstrap 
Aggregating 24.44% 15.28% 12.36% 30.33% 20.60% 0.40 

3 Neural Network Feedforward 159.04% 364.11% 730.29% 0.20% 313.41% 1.01 

4 
Blumenfeld 
(1990) 

  
0.37% 1.73% 3.73% 4.67% 2.63% 0.74 

5 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 12.10% 18.93% 20.08% 12.27% 15.85% 0.27 

6 Andrews 12.08% 18.82% 19.98% 12.24% 15.78% 0.27 

7 
Cauchy M-
estimators by Moore 13.22% 19.42% 18.44% 12.75% 15.96% 0.22 

8 Fair by Rey 15.58% 17.50% 13.35% 16.40% 15.71% 0.11 

9 Huber 14.50% 18.29% 14.97% 14.58% 15.59% 0.12 

10 Logistic Regression 14.59% 18.08% 14.53% 14.83% 15.51% 0.11 

11 Hinch and Talwar 17.18% 16.77% 13.17% 12.92% 15.01% 0.15 

12 Holland and Welsch 12.40% 19.19% 19.92% 12.31% 15.96% 0.26 

13 

Regularisation 

Lasso 13.70% 14.45% 15.58% 26.62% 17.59% 0.35 

14 Ridge Regression 13.87% 15.40% 15.50% 26.96% 17.93% 0.34 

15 Elastic Nets 13.70% 14.45% 15.58% 26.62% 17.59% 0.35 

16 

Stepwise 

Linear with 
Interactions of 
Linear Terms 

Bounded Steps 3.64% 3.57% 2.57% 1.28% 2.77% 0.40 

17 
Unbounded 
Steps 3.64% 3.57% 2.57% 1.28% 2.77% 0.40 

18 
Linear and Squared 
Terms 

Bounded Steps 13.91% 15.54% 15.47% 26.87% 17.95% 0.33 

19 
Unbounded 
Steps 3.60% 3.63% 2.56% 1.25% 2.76% 0.41 

20 Linear and Squared 
Terms including 
Interactions 

Bounded Steps 3.60% 3.63% 2.56% 1.25% 2.76% 0.41 

21 
Unbounded 
Steps 3.60% 3.63% 2.56% 1.25% 2.76% 0.41 

22 

Polynomial 

Bounded Steps 0.60% 0.55% 0.41% 0.16% 0.43% 0.46 

23 
Unbounded 
Steps 2.59% 2.55% 1.38% 0.18% 1.68% 0.68 
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Figure G.4: MAPE of the Individual Test Set of Data Mining Models for Synchronous Flow Lines with the Training Set I-II-S-4 
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APPENDIX H – Phase III – MAPE of the Individual Test Set of Data Mining 

Models for Asynchronous Flow Lines  

 

Refer to Section 6.4.2.1.4 and 6.4.2.2.2 

 



APPENDICES 

 
A-23 

 

Table H.1: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-1 
 

 

  
  ema 

 
Method Test Set Tu,u=1 Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

4.61% 363.29% 3.61% 352.28% 

2 
Bootstrap 
Aggregating 19.34% 23.96% 28.88% 543.59% 

3 Neural Network Feedforward 2.84% 241.25% 221.85% 1005.53% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.45% 25.53% 43.53% 78.93% 

7 Andrews 3.45% 25.54% 43.55% 78.95% 

8 
Cauchy M-estimators 
by Moore 3.49% 20.47% 33.12% 56.16% 

9 Fair by Rey 3.54% 12.00% 19.92% 43.82% 

10 Huber 3.41% 17.52% 29.35% 54.37% 

11 Logistic Regression 3.42% 16.51% 27.60% 51.56% 

12 Hinch and Talwar 3.45% 25.73% 43.88% 79.55% 

13 Holland and Welsch 3.45% 25.43% 43.34% 78.55% 

14 

Regularisation 

Lasso 4.78% 5.09% 4.33% 47.52% 

15 Ridge Regression 4.81% 5.03% 6.95% 53.62% 

16 Elastic Nets 4.81% 5.03% 6.95% 53.62% 

17 

Stepwise 

Interaction 
Bounded Steps 3.79% 22.09% 40.29% 124.39% 

18 Unbounded Steps 3.77% 11.20% 18.29% 70.94% 

19 
Purequadratic 

Bounded Steps 4.62% 24.13% 42.27% 121.87% 

20 Unbounded Steps 3.37% 22.63% 39.96% 106.65% 

21 
Quadratic 

Bounded Steps 3.41% 22.90% 42.27% 126.87% 

22 Unbounded Steps 3.45% 11.66% 19.24% 65.94% 

23 
Polynomial 

Bounded Steps 2.94% 7.72% 13.99% 35.35% 

24 Unbounded Steps 2.82% 3.94% 5.22% 18.02% 
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Table H.1: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-1 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

758.87% 521.22% 925.60% 5013.43% 992.86% 1.67 

2 
Bootstrap 
Aggregating 1070.62% 736.93% 1305.15% 6901.48% 1328.74% 1.73 

3 Neural Network Feedforward 2854.79% 177.95% 371.06% 2246.42% 890.21% 1.21 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 326.37% 3054.48% 5145.77% 25577.17% 4281.90% 2.06 

7 Andrews 326.48% 3055.38% 5147.29% 25584.75% 4283.17% 2.06 

8 
Cauchy M-estimators 
by Moore 230.92% 2177.65% 3666.66% 18208.46% 3049.62% 2.06 

9 Fair by Rey 139.08% 1492.66% 2503.18% 12420.87% 2079.38% 2.06 

10 Huber 200.92% 2078.31% 3494.49% 17354.26% 2904.08% 2.06 

11 Logistic Regression 186.96% 1962.39% 3298.35% 16377.69% 2740.56% 2.06 

12 Hinch and Talwar 329.56% 3079.40% 5187.97% 25787.37% 4317.11% 2.06 

13 Holland and Welsch 324.55% 3040.21% 5121.65% 25457.02% 4261.78% 2.06 

14 

Regularisation 

Lasso 96.88% 58.17% 119.28% 646.79% 122.86% 1.76 

15 Ridge Regression 110.10% 890.90% 1482.40% 7360.92% 1239.34% 2.04 

16 Elastic Nets 110.10% 890.90% 1482.40% 7360.92% 1239.34% 2.04 

17 

Stepwise 

Interaction 
Bounded Steps 455.28% 2696.23% 5067.29% 25453.85% 4232.90% 2.07 

18 Unbounded Steps 213.85% 403.84% 737.45% 3727.06% 648.30% 1.96 

19 
Purequadratic 

Bounded Steps 424.75% 2685.53% 4580.83% 22850.81% 3841.85% 2.05 

20 Unbounded Steps 387.54% 2278.94% 4636.30% 22982.92% 3807.29% 2.08 

21 
Quadratic 

Bounded Steps 484.28% 3059.77% 5587.57% 28401.78% 4716.11% 2.07 

22 Unbounded Steps 209.32% 442.09% 774.00% 3914.45% 680.02% 1.96 

23 
Polynomial 

Bounded Steps 125.84% 624.97% 1210.87% 5973.31% 999.37% 2.06 

24 Unbounded Steps 58.26% 107.88% 199.55% 1024.61% 177.54% 1.97 
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Figure H.1: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-1 
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Table H.2: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-2 
 

 

  
  ema 

 
Method Test Set  To,o=1 Test Set  Tu,u=1 Test Set To,o=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

4.95% 349.93% 3.17% 339.61% 

2 
Bootstrap 
Aggregating 9.32% 7.01% 6.45% 390.22% 

3 Neural Network Feedforward         

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.61% 4.04% 2.60% 32.10% 

7 Andrews 3.61% 4.05% 2.60% 32.10% 

8 
Cauchy M-estimators 
by Moore 3.80% 3.77% 2.37% 35.93% 

9 Fair by Rey 4.10% 3.80% 2.58% 39.05% 

10 Huber 3.99% 3.77% 2.51% 37.92% 

11 Logistic Regression 4.00% 3.77% 2.52% 37.98% 

12 Hinch and Talwar 3.64% 4.05% 2.59% 32.76% 

13 Holland and Welsch 3.60% 4.01% 2.55% 32.24% 

14 

Regularisation 

Lasso         

15 Ridge Regression         

16 Elastic Nets         

17 

Stepwise 

Interaction 
Bounded Steps 3.54% 3.32% 2.33% 20.60% 

18 Unbounded Steps 3.47% 3.32% 2.42% 16.35% 

19 
Purequadratic 

Bounded Steps 5.09% 3.96% 2.97% 48.05% 

20 Unbounded Steps 3.63% 3.33% 2.44% 15.31% 

21 
Quadratic 

Bounded Steps 3.60% 3.33% 2.25% 20.76% 

22 Unbounded Steps 3.57% 3.33% 2.38% 15.86% 

23 
Polynomial 

Bounded Steps 3.09% 3.28% 2.22% 10.01% 

24 Unbounded Steps         
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Table H.2: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-2 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

746.56% 511.98% 910.84% 4939.76% 975.85% 1.67 

2 
Bootstrap 
Aggregating 827.20% 566.21% 1010.10% 5432.97% 1031.19% 1.77 

3 Neural Network Feedforward             

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 63.60% 42.69% 94.72% 515.13% 94.81% 1.82 

7 Andrews 63.58% 42.82% 94.86% 515.59% 94.90% 1.82 

8 
Cauchy M-estimators 
by Moore 74.18% 37.82% 94.10% 519.53% 96.44% 1.81 

9 Fair by Rey 80.24% 60.84% 132.30% 700.09% 127.88% 1.84 

10 Huber 78.30% 48.40% 112.15% 604.21% 111.41% 1.82 

11 Logistic Regression 78.41% 48.34% 111.94% 602.65% 111.20% 1.82 

12 Hinch and Talwar 64.93% 42.93% 96.24% 523.12% 96.28% 1.82 

13 Holland and Welsch 64.12% 41.32% 93.63% 511.29% 94.10% 1.82 

14 

Regularisation 

Lasso             

15 Ridge Regression             

16 Elastic Nets             

17 

Stepwise 

Interaction 
Bounded Steps 15.49% 8.18% 18.10% 101.27% 21.60% 1.53 

18 Unbounded Steps 13.08% 48.15% 99.20% 510.80% 87.10% 2.00 

19 
Purequadratic 

Bounded Steps 91.38% 49.33% 109.78% 598.32% 113.61% 1.76 

20 Unbounded Steps 9.71% 59.09% 101.88% 515.28% 88.83% 1.98 

21 
Quadratic 

Bounded Steps 11.55% 13.83% 24.05% 123.30% 25.33% 1.60 

22 Unbounded Steps 9.73% 56.63% 100.23% 513.61% 88.17% 1.99 

23 
Polynomial 

Bounded Steps 8.32% 13.41% 23.99% 115.26% 22.45% 1.70 

24 Unbounded Steps             
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Figure H.2: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-2  
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Table H.3: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-3 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=1 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

11.03% 388.59% 1.79% 337.20% 

2 
Bootstrap 
Aggregating 22.51% 11.74% 5.89% 368.71% 

3 Neural Network Feedforward 16.78% 8.05% 2.36% 174.26% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 25.82% 10.93% 2.43% 127.40% 

7 Andrews 25.84% 10.94% 2.43% 127.45% 

8 
Cauchy M-estimators 
by Moore 21.39% 9.45% 2.20% 108.23% 

9 Fair by Rey 18.17% 8.15% 2.24% 74.94% 

10 Huber 18.06% 8.13% 2.22% 81.67% 

11 Logistic Regression 18.11% 8.15% 2.22% 80.54% 

12 Hinch and Talwar 24.42% 10.55% 2.35% 125.86% 

13 Holland and Welsch 25.68% 10.89% 2.42% 127.11% 

14 

Regularisation 

Lasso 5.02% 4.15% 2.42% 40.27% 

15 Ridge Regression 5.06% 4.19% 2.37% 40.44% 

16 Elastic Nets 5.02% 4.15% 2.42% 40.27% 

17 

Stepwise 

Interaction 
Bounded Steps 4.17% 3.55% 2.02% 17.93% 

18 Unbounded Steps 4.56% 3.69% 2.06% 23.11% 

19 
Purequadratic 

Bounded Steps 5.02% 4.15% 2.42% 40.27% 

20 Unbounded Steps 4.46% 3.67% 1.98% 18.80% 

21 
Quadratic 

Bounded Steps 4.17% 3.55% 2.02% 17.93% 

22 Unbounded Steps 4.46% 3.67% 1.98% 18.80% 

23 
Polynomial 

Bounded Steps 4.17% 3.55% 2.02% 17.93% 

24 Unbounded Steps 4.56% 3.69% 2.06% 23.11% 
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Table H.3: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-3 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

746.24% 512.55% 911.41% 4942.30% 981.39% 1.66 

2 
Bootstrap 
Aggregating 806.67% 547.31% 988.36% 5323.05% 1009.28% 1.77 

3 Neural Network Feedforward 427.73% 286.69% 536.54% 3010.94% 557.92% 1.81 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 69.47% 1827.22% 3062.08% 15196.90% 2540.28% 2.06 

7 Andrews 69.40% 1828.97% 3065.05% 15211.72% 2542.73% 2.06 

8 
Cauchy M-estimators 
by Moore 69.90% 1443.33% 2412.80% 11966.65% 2004.24% 2.06 

9 Fair by Rey 73.67% 1143.35% 1911.91% 9495.91% 1591.04% 2.06 

10 Huber 70.34% 1159.09% 1936.47% 9609.53% 1610.69% 2.06 

11 Logistic Regression 70.60% 1157.74% 1934.58% 9601.65% 1609.20% 2.06 

12 Hinch and Talwar 78.87% 1702.66% 2850.08% 14138.42% 2366.65% 2.06 

13 Holland and Welsch 70.07% 1815.46% 3042.10% 15097.26% 2523.87% 2.06 

14 

Regularisation 

Lasso 83.40% 49.37% 102.41% 567.30% 106.79% 1.78 

15 Ridge Regression 83.40% 49.59% 102.49% 567.03% 106.82% 1.78 

16 Elastic Nets 83.40% 49.37% 102.41% 567.30% 106.79% 1.78 

17 

Stepwise 

Interaction 
Bounded Steps 40.08% 26.20% 54.34% 269.15% 52.18% 1.72 

18 Unbounded Steps 51.85% 35.97% 67.45% 341.33% 66.25% 1.72 

19 
Purequadratic 

Bounded Steps 83.40% 49.37% 102.41% 567.30% 106.79% 1.78 

20 Unbounded Steps 41.37% 30.41% 53.60% 271.04% 53.17% 1.69 

21 
Quadratic 

Bounded Steps 40.08% 26.20% 54.34% 269.15% 52.18% 1.72 

22 Unbounded Steps 41.37% 30.41% 53.60% 271.04% 53.17% 1.69 

23 
Polynomial 

Bounded Steps 40.08% 26.20% 54.34% 269.15% 52.18% 1.72 

24 Unbounded Steps 51.85% 35.97% 67.45% 341.33% 66.25% 1.72 
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Figure H.3: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-3  
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Table H.4: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-4 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set Tu,u=1 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

5.98% 30.03% 6.85% 3.54% 

2 
Bootstrap 
Aggregating 40.31% 41.63% 39.35% 19.77% 

3 Neural Network Feedforward 7.32% 5.25% 2.72% 3.31% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.28% 8.37% 7.70% 3.21% 

7 Andrews 5.28% 8.37% 7.70% 3.21% 

8 
Cauchy M-estimators 
by Moore 5.28% 8.37% 7.69% 3.19% 

9 Fair by Rey 5.18% 8.24% 7.27% 3.34% 

10 Huber 5.01% 8.20% 7.21% 3.20% 

11 Logistic Regression 5.01% 8.19% 7.21% 3.21% 

12 Hinch and Talwar 5.28% 8.37% 7.69% 3.20% 

13 Holland and Welsch 5.29% 8.38% 7.70% 3.21% 

14 

Regularisation 

Lasso 5.31% 8.15% 7.12% 3.76% 

15 Ridge Regression 5.34% 8.26% 7.28% 3.63% 

16 Elastic Nets 5.31% 8.15% 7.12% 3.76% 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 6.99% 5.79% 2.87% 

18 Unbounded Steps 4.12% 7.27% 6.18% 2.81% 

19 
Purequadratic 

Bounded Steps 5.33% 8.24% 7.25% 3.67% 

20 Unbounded Steps 4.19% 6.93% 5.85% 2.75% 

21 
Quadratic 

Bounded Steps 4.27% 6.80% 5.59% 2.78% 

22 Unbounded Steps 4.09% 7.16% 6.06% 2.79% 

23 
Polynomial 

Bounded Steps 3.30% 4.08% 4.23% 2.52% 

24 Unbounded Steps 376.42% 260.09% 135.97% 2.12% 
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Table H.4: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-4 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

40.64% 3.63% 65.74% 726.35% 110.35% 2.26 

2 
Bootstrap 
Aggregating 55.14% 10.72% 83.96% 817.01% 138.49% 1.99 

3 Neural Network Feedforward 5.96% 6115.20% 10262.86% 51451.52% 8481.77% 2.10 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.56% 4.31% 7.05% 80.79% 15.28% 1.74 

7 Andrews 5.56% 4.31% 7.12% 81.44% 15.37% 1.74 

8 
Cauchy M-estimators 
by Moore 5.52% 4.28% 6.81% 79.30% 15.06% 1.73 

9 Fair by Rey 4.98% 38.44% 72.90% 413.22% 69.20% 2.04 

10 Huber 5.36% 24.62% 50.57% 307.37% 51.44% 2.03 

11 Logistic Regression 5.28% 25.39% 51.77% 312.91% 52.37% 2.03 

12 Hinch and Talwar 5.57% 4.26% 6.83% 78.93% 15.02% 1.72 

13 Holland and Welsch 5.56% 4.33% 6.80% 77.92% 14.90% 1.71 

14 

Regularisation 

Lasso 6.93% 4.88% 7.52% 82.12% 15.72% 1.71 

15 Ridge Regression 5.88% 3.32% 7.67% 82.39% 15.47% 1.75 

16 Elastic Nets 6.93% 4.88% 7.52% 82.12% 15.72% 1.71 

17 

Stepwise 

Interaction 
Bounded Steps 6.59% 2.93% 9.58% 90.21% 16.16% 1.86 

18 Unbounded Steps 6.70% 171.58% 269.07% 1357.57% 228.16% 2.05 

19 
Purequadratic 

Bounded Steps 6.02% 3.06% 7.53% 83.63% 15.59% 1.77 

20 Unbounded Steps 5.59% 8.73% 9.16% 28.90% 9.01% 0.92 

21 
Quadratic 

Bounded Steps 6.42% 2.47% 9.30% 88.21% 15.73% 1.87 

22 Unbounded Steps 6.58% 176.65% 277.49% 1392.50% 234.17% 2.05 

23 
Polynomial 

Bounded Steps 4.77% 3.49% 8.09% 52.12% 10.33% 1.64 

24 Unbounded Steps 16.14% 143.66% 949.16% 14509.31% 2049.11% 2.46 
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Figure H.4: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-4  
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Table H.5: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-5 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

66.99% 49.54% 55.49% 9.74% 

2 
Bootstrap 
Aggregating 85.61% 82.23% 80.59% 25.80% 

3 Neural Network Feedforward 46.83% 35.11% 30.29% 8.38% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.88% 8.68% 8.19% 10.55% 

7 Andrews 5.88% 8.68% 8.19% 10.57% 

8 
Cauchy M-estimators 
by Moore 5.49% 8.57% 8.05% 7.27% 

9 Fair by Rey 5.50% 8.53% 7.55% 6.01% 

10 Huber 5.45% 8.53% 7.65% 6.12% 

11 Logistic Regression 5.45% 8.53% 7.65% 6.15% 

12 Hinch and Talwar 5.88% 8.68% 8.18% 10.55% 

13 Holland and Welsch 5.87% 8.68% 8.19% 10.50% 

14 

Regularisation 

Lasso 6.07% 8.83% 7.84% 4.39% 

15 Ridge Regression 6.07% 8.83% 7.84% 4.39% 

16 Elastic Nets 6.07% 8.83% 7.84% 4.39% 

17 

Stepwise 

Interaction 
Bounded Steps 3.49% 3.91% 2.69% 3.40% 

18 Unbounded Steps 3.49% 3.91% 2.69% 3.40% 

19 
Purequadratic 

Bounded Steps 40.41% 29.52% 24.88% 6.63% 

20 Unbounded Steps 3.53% 3.88% 2.65% 3.39% 

21 
Quadratic 

Bounded Steps 3.50% 3.90% 2.68% 3.40% 

22 Unbounded Steps 3.53% 3.88% 2.65% 3.39% 

23 
Polynomial 

Bounded Steps 3.51% 3.89% 2.69% 3.39% 

24 Unbounded Steps 36.70% 25.49% 22.03% 6.09% 
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Table H.5: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-5 (cont.) 
 

 

  ema   

 
Method Test Set Tu,u=1 Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

3.22% 6.04% 3.70% 396.63% 73.92% 1.80 

2 
Bootstrap 
Aggregating 9.48% 13.05% 17.53% 483.92% 99.78% 1.59 

3 Neural Network Feedforward 2.88% 3.49% 4.33% 214.35% 43.21% 1.65 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.83% 197.30% 326.58% 1568.44% 266.18% 2.03 

7 Andrews 3.83% 197.73% 327.29% 1572.00% 266.77% 2.03 

8 
Cauchy M-estimators 
by Moore 3.39% 111.93% 182.03% 848.37% 146.89% 1.98 

9 Fair by Rey 3.38% 72.04% 115.08% 518.10% 92.02% 1.92 

10 Huber 3.38% 77.82% 124.64% 564.31% 99.74% 1.93 

11 Logistic Regression 3.38% 78.31% 125.47% 568.53% 100.43% 1.94 

12 Hinch and Talwar 3.83% 197.30% 326.57% 1568.41% 266.18% 2.03 

13 Holland and Welsch 3.82% 196.04% 324.44% 1557.76% 264.41% 2.03 

14 

Regularisation 

Lasso 3.57% 4.95% 3.26% 51.12% 11.25% 1.44 

15 Ridge Regression 3.57% 4.95% 3.26% 51.12% 11.25% 1.44 

16 Elastic Nets 3.57% 4.95% 3.26% 51.12% 11.25% 1.44 

17 

Stepwise 

Interaction 
Bounded Steps 2.85% 3.94% 3.73% 14.74% 4.84% 0.83 

18 Unbounded Steps 2.85% 3.94% 3.73% 14.74% 4.84% 0.83 

19 
Purequadratic 

Bounded Steps 3.31% 5.27% 3.33% 56.38% 21.22% 0.94 

20 Unbounded Steps 2.80% 3.89% 3.69% 14.17% 4.75% 0.81 

21 
Quadratic 

Bounded Steps 2.83% 3.93% 3.70% 14.69% 4.83% 0.83 

22 Unbounded Steps 2.80% 3.89% 3.69% 14.17% 4.75% 0.81 

23 
Polynomial 

Bounded Steps 2.81% 3.90% 3.70% 14.25% 4.77% 0.81 

24 Unbounded Steps 2.80% 3.63% 3.78% 10.70% 13.90% 0.91 
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Figure H.5: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-5  
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Table H.6: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-6 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

87.80% 48.30% 83.59% 24.13% 

2 
Bootstrap 
Aggregating 88.37% 85.64% 84.34% 26.72% 

3 Neural Network Feedforward 94.07% 92.64% 92.00% 34.74% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 8.03% 9.67% 8.49% 19.68% 

7 Andrews 8.10% 9.72% 8.54% 19.89% 

8 
Cauchy M-estimators 
by Moore 7.57% 9.37% 8.19% 17.79% 

9 Fair by Rey 7.20% 9.13% 8.00% 16.72% 

10 Huber 8.10% 9.71% 8.51% 18.35% 

11 Logistic Regression 7.46% 9.30% 8.13% 17.37% 

12 Hinch and Talwar 7.53% 9.32% 8.13% 16.90% 

13 Holland and Welsch 7.80% 9.52% 8.34% 18.95% 

14 

Regularisation 

Lasso 6.00% 8.33% 7.20% 4.73% 

15 Ridge Regression 6.00% 8.33% 7.20% 4.73% 

16 Elastic Nets 6.00% 8.33% 7.20% 4.73% 

17 

Stepwise 

Interaction 
Bounded Steps 5.28% 7.96% 6.91% 4.24% 

18 Unbounded Steps 31.83% 32.53% 33.12% 12.31% 

19 
Purequadratic 

Bounded Steps 4.87% 7.78% 6.73% 3.97% 

20 Unbounded Steps 4227.10% 2741.21% 2294.17% 335.43% 

21 
Quadratic 

Bounded Steps 4.89% 7.79% 6.74% 3.98% 

22 Unbounded Steps 34.56% 35.37% 35.97% 13.01% 

23 
Polynomial 

Bounded Steps 4.94% 7.80% 6.74% 4.01% 

24 Unbounded Steps 5.28% 7.96% 6.91% 4.24% 
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Table H.6: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-6 (cont.) 
 

 

  ema   

 
Method Test Set To,o=5 Test Set Tu,u=1 Test Set To,o=6 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

39.28% 1.26% 62.42% 709.84% 132.08% 1.78 

2 
Bootstrap 
Aggregating 42.14% 4.10% 66.90% 731.82% 141.25% 1.70 

3 Neural Network Feedforward 33.47% 1.32% 49.38% 702.67% 137.54% 1.68 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 34.16% 1.66% 9.67% 102.84% 24.28% 1.37 

7 Andrews 34.45% 1.66% 9.67% 102.83% 24.36% 1.37 

8 
Cauchy M-estimators 
by Moore 31.21% 1.65% 9.51% 102.02% 23.41% 1.41 

9 Fair by Rey 29.79% 1.65% 9.41% 101.34% 22.91% 1.43 

10 Huber 31.37% 1.65% 9.58% 102.58% 23.73% 1.39 

11 Logistic Regression 30.58% 1.65% 9.46% 101.74% 23.21% 1.42 

12 Hinch and Talwar 29.50% 1.70% 9.87% 104.05% 23.38% 1.44 

13 Holland and Welsch 33.11% 1.65% 9.61% 102.57% 23.94% 1.39 

14 

Regularisation 

Lasso 8.77% 1.70% 9.39% 101.23% 18.42% 1.82 

15 Ridge Regression 8.77% 1.70% 9.39% 101.23% 18.42% 1.82 

16 Elastic Nets 8.77% 1.70% 9.39% 101.23% 18.42% 1.82 

17 

Stepwise 

Interaction 
Bounded Steps 8.48% 1.58% 9.09% 98.42% 17.75% 1.84 

18 Unbounded Steps 15.68% 1.49% 26.09% 288.60% 55.21% 1.72 

19 
Purequadratic 

Bounded Steps 8.56% 1.32% 9.27% 100.14% 17.83% 1.87 

20 Unbounded Steps 76.88% 1.32% 134.84% 3303.94% 1639.36% 1.04 

21 
Quadratic 

Bounded Steps 8.54% 1.31% 9.26% 99.97% 17.81% 1.87 

22 Unbounded Steps 17.02% 1.22% 28.32% 314.09% 59.95% 1.73 

23 
Polynomial 

Bounded Steps 8.52% 1.29% 9.23% 99.80% 17.79% 1.87 

24 Unbounded Steps 8.48% 1.58% 9.09% 98.42% 17.75% 1.84 
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Figure H.6: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-6  
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Table H.7: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-7 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

91.69% 46.97% 88.81% 46.97% 

2 
Bootstrap 
Aggregating 92.79% 91.11% 90.29% 53.97% 

3 Neural Network Feedforward 96.46% 95.59% 95.20% 53.42% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.59% 8.56% 7.62% 6.23% 

7 Andrews 5.57% 8.55% 7.61% 6.21% 

8 
Cauchy M-estimators 
by Moore 6.95% 9.01% 8.01% 7.13% 

9 Fair by Rey 6.95% 9.34% 8.26% 7.78% 

10 Huber 6.58% 9.11% 8.08% 7.29% 

11 Logistic Regression 6.64% 9.15% 8.11% 7.39% 

12 Hinch and Talwar 6.52% 9.08% 8.06% 7.59% 

13 Holland and Welsch 5.93% 8.74% 7.78% 6.58% 

14 

Regularisation 

Lasso 8.79% 10.48% 9.15% 6.67% 

15 Ridge Regression 8.79% 10.48% 9.15% 6.67% 

16 Elastic Nets 8.79% 10.48% 9.15% 6.67% 

17 

Stepwise 

Interaction 
Bounded Steps 5.82% 4.44% 3.68% 5.47% 

18 Unbounded Steps 10.40% 9.97% 10.69% 7.78% 

19 
Purequadratic 

Bounded Steps 8.73% 10.44% 9.11% 6.64% 

20 Unbounded Steps 9.68% 9.21% 9.84% 7.28% 

21 
Quadratic 

Bounded Steps 5.82% 4.44% 3.68% 5.47% 

22 Unbounded Steps 9.68% 9.21% 9.84% 7.28% 

23 
Polynomial 

Bounded Steps 5.82% 4.44% 3.68% 5.47% 

24 Unbounded Steps 9.67% 9.20% 9.83% 7.28% 
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Table H.7: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-7 (cont.) 
 

 

  ema   

 
Method Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 Test Set To,o=7 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

8.34% 25.68% 1.96% 384.90% 86.92% 1.44 

2 
Bootstrap 
Aggregating 13.50% 35.69% 4.34% 397.38% 97.38% 1.30 

3 Neural Network Feedforward 8.08% 24.92% 1.98% 383.66% 94.91% 1.30 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 9.09% 4.62% 2.42% 56.30% 12.55% 1.42 

7 Andrews 9.11% 4.63% 2.42% 56.36% 12.56% 1.42 

8 
Cauchy M-estimators 
by Moore 9.28% 4.72% 2.41% 55.07% 12.82% 1.34 

9 Fair by Rey 9.74% 4.86% 2.41% 55.28% 13.08% 1.32 

10 Huber 9.30% 4.74% 2.42% 55.31% 12.85% 1.35 

11 Logistic Regression 9.44% 4.78% 2.41% 55.16% 12.89% 1.34 

12 Hinch and Talwar 10.29% 4.69% 2.42% 55.71% 13.05% 1.34 

13 Holland and Welsch 9.04% 4.60% 2.42% 55.35% 12.56% 1.39 

14 

Regularisation 

Lasso 4.08% 5.29% 2.43% 57.28% 13.02% 1.39 

15 Ridge Regression 4.08% 5.29% 2.43% 57.28% 13.02% 1.39 

16 Elastic Nets 4.08% 5.29% 2.43% 57.28% 13.02% 1.39 

17 

Stepwise 

Interaction 
Bounded Steps 4.03% 2.02% 2.43% 12.69% 5.07% 0.66 

18 Unbounded Steps 4.17% 3.81% 2.08% 41.18% 11.26% 1.11 

19 
Purequadratic 

Bounded Steps 4.07% 5.26% 2.43% 57.28% 13.00% 1.39 

20 Unbounded Steps 3.94% 3.37% 1.91% 38.96% 10.52% 1.13 

21 
Quadratic 

Bounded Steps 4.03% 2.02% 2.43% 12.69% 5.07% 0.66 

22 Unbounded Steps 3.94% 3.37% 1.91% 38.96% 10.52% 1.13 

23 
Polynomial 

Bounded Steps 4.03% 2.02% 2.43% 12.69% 5.07% 0.66 

24 Unbounded Steps 3.95% 3.37% 1.92% 38.88% 10.51% 1.13 
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Figure H.7: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-7  
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Table H.8: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

98.21% 88.12% 97.59% 88.57% 

2 
Bootstrap 
Aggregating 98.57% 98.24% 98.08% 90.89% 

3 Neural Network Feedforward 98.43% 98.05% 97.88% 89.95% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.09% 9.33% 8.44% 6.65% 

7 Andrews 6.07% 9.32% 8.43% 6.63% 

8 
Cauchy M-estimators 
by Moore 7.07% 9.89% 8.94% 7.72% 

9 Fair by Rey 8.03% 10.50% 9.39% 8.76% 

10 Huber 7.46% 10.13% 9.13% 8.14% 

11 Logistic Regression 7.52% 10.16% 9.15% 8.21% 

12 Hinch and Talwar 5.97% 9.27% 8.37% 6.44% 

13 Holland and Welsch 6.33% 9.45% 8.57% 6.90% 

14 

Regularisation 

Lasso 98.64% 98.32% 98.17% 91.33% 

15 Ridge Regression 98.64% 98.32% 98.17% 91.33% 

16 Elastic Nets 98.64% 98.32% 98.17% 91.33% 

17 

Stepwise 

Interaction 
Bounded Steps 5.22% 4.10% 3.11% 4.96% 

18 Unbounded Steps 12.97% 13.10% 14.02% 12.34% 

19 
Purequadratic 

Bounded Steps 10.41% 12.07% 10.79% 10.58% 

20 Unbounded Steps 13.54% 13.69% 14.64% 12.86% 

21 
Quadratic 

Bounded Steps 5.22% 4.10% 3.11% 4.96% 

22 Unbounded Steps 13.54% 13.69% 14.64% 12.86% 

23 
Polynomial 

Bounded Steps 5.22% 4.10% 3.11% 4.96% 

24 Unbounded Steps 13.55% 13.70% 14.65% 12.86% 
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Table H.8: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8 (cont.) 
 

 

  ema   

 
Method Test Set To,o=5 Test Set To,o=6 Test Set To,o=7 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

77.78% 84.00% 73.43% 1.87% 76.20% 0.41 

2 
Bootstrap 
Aggregating 82.31% 87.30% 78.82% 5.24% 79.93% 0.39 

3 Neural Network Feedforward 81.59% 86.11% 78.42% 6.48% 79.61% 0.38 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 8.26% 9.68% 11.34% 2.30% 7.76% 0.36 

7 Andrews 8.25% 9.67% 11.35% 2.30% 7.75% 0.36 

8 
Cauchy M-estimators 
by Moore 8.96% 10.14% 11.51% 2.29% 8.32% 0.34 

9 Fair by Rey 9.63% 10.58% 11.77% 2.29% 8.87% 0.33 

10 Huber 9.23% 10.30% 11.60% 2.30% 8.54% 0.33 

11 Logistic Regression 9.28% 10.33% 11.62% 2.29% 8.57% 0.33 

12 Hinch and Talwar 8.07% 9.63% 11.33% 2.30% 7.67% 0.36 

13 Holland and Welsch 8.42% 9.78% 11.36% 2.29% 7.89% 0.35 

14 

Regularisation 

Lasso 83.15% 87.81% 79.89% 3.51% 80.10% 0.40 

15 Ridge Regression 83.15% 87.81% 79.89% 3.51% 80.10% 0.40 

16 Elastic Nets 83.15% 87.81% 79.89% 3.51% 80.10% 0.40 

17 

Stepwise 

Interaction 
Bounded Steps 3.44% 2.90% 3.59% 2.30% 3.70% 0.27 

18 Unbounded Steps 11.05% 9.62% 10.88% 2.02% 10.75% 0.35 

19 
Purequadratic 

Bounded Steps 10.38% 11.80% 12.48% 2.33% 10.11% 0.32 

20 Unbounded Steps 11.52% 10.22% 11.36% 1.91% 11.22% 0.36 

21 
Quadratic 

Bounded Steps 3.44% 2.90% 3.59% 2.30% 3.70% 0.27 

22 Unbounded Steps 11.52% 10.22% 11.36% 1.91% 11.22% 0.36 

23 
Polynomial 

Bounded Steps 3.44% 2.90% 3.59% 2.30% 3.70% 0.27 

24 Unbounded Steps 11.53% 10.23% 11.36% 1.91% 11.22% 0.36 
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Figure H.8: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8 
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Table H.9: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,1 
 

 

  
  ema 

 
Method Test Set Tu,u=2 Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

4.08% 469.19% 14.00% 383.16% 

2 
Bootstrap 
Aggregating 16.26% 19.28% 14.14% 378.93% 

3 Neural Network Feedforward 2.93% 81.94% 134.25% 147.76% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.94% 6.49% 5.40% 12.25% 

7 Andrews 3.94% 6.49% 5.39% 12.25% 

8 
Cauchy M-estimators 
by Moore 4.76% 7.89% 6.94% 5.81% 

9 Fair by Rey 3.79% 6.36% 5.45% 24.47% 

10 Huber 3.78% 6.18% 5.12% 18.27% 

11 Logistic Regression 3.77% 6.17% 5.11% 18.29% 

12 Hinch and Talwar 5.77% 9.23% 8.34% 6.46% 

13 Holland and Welsch 3.94% 6.50% 5.41% 12.20% 

14 

Regularisation 

Lasso 4.02% 4.57% 3.28% 30.03% 

15 Ridge Regression 4.26% 4.51% 2.70% 33.44% 

16 Elastic Nets 4.26% 4.51% 2.70% 33.44% 

17 

Stepwise 

Interaction 
Bounded Steps 3.79% 4.29% 4.01% 35.52% 

18 Unbounded Steps 3.80% 4.41% 4.36% 36.41% 

19 
Purequadratic 

Bounded Steps 4.10% 4.67% 2.74% 31.83% 

20 Unbounded Steps 3.38% 7.20% 8.78% 50.90% 

21 
Quadratic 

Bounded Steps 3.41% 4.25% 4.03% 27.94% 

22 Unbounded Steps 3.43% 4.40% 4.36% 28.91% 

23 
Polynomial 

Bounded Steps 2.96% 3.78% 2.34% 3.82% 

24 Unbounded Steps 2.85% 3.43% 3.18% 11.42% 
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Table H.9: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,1 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

878.38% 121.82% 156.20% 414.25% 305.14% 0.96 

2 
Bootstrap 
Aggregating 585.45% 87.32% 77.88% 14.96% 149.28% 1.44 

3 Neural Network Feedforward 560.14% 18.67% 17.13% 10.74% 121.70% 1.53 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 28.36% 8.12% 27.87% 186.85% 34.91% 1.78 

7 Andrews 28.37% 8.13% 27.88% 186.93% 34.92% 1.78 

8 
Cauchy M-estimators 
by Moore 14.61% 4.62% 10.43% 89.79% 18.11% 1.61 

9 Fair by Rey 64.79% 15.96% 42.80% 261.53% 53.14% 1.63 

10 Huber 46.31% 11.85% 35.67% 224.60% 43.97% 1.70 

11 Logistic Regression 46.49% 11.81% 35.86% 225.62% 44.14% 1.70 

12 Hinch and Talwar 9.47% 10.08% 11.84% 2.29% 7.94% 0.38 

13 Holland and Welsch 28.29% 8.06% 27.67% 185.85% 34.74% 1.78 

14 

Regularisation 

Lasso 62.96% 36.02% 77.44% 438.76% 82.14% 1.79 

15 Ridge Regression 61.19% 29.71% 70.74% 405.04% 76.45% 1.77 

16 Elastic Nets 61.19% 29.71% 70.74% 405.04% 76.45% 1.77 

17 

Stepwise 

Interaction 
Bounded Steps 70.88% 8.42% 7.93% 2.54% 17.17% 1.41 

18 Unbounded Steps 69.86% 8.40% 8.02% 4.43% 17.46% 1.36 

19 
Purequadratic 

Bounded Steps 56.19% 34.01% 75.05% 425.30% 79.24% 1.80 

20 Unbounded Steps 151.42% 32.70% 29.25% 17.17% 37.60% 1.29 

21 
Quadratic 

Bounded Steps 53.65% 6.33% 6.42% 2.52% 13.57% 1.34 

22 Unbounded Steps 53.48% 5.89% 6.22% 4.42% 13.89% 1.30 

23 
Polynomial 

Bounded Steps 3.42% 3.96% 4.13% 4.00% 3.55% 0.17 

24 Unbounded Steps 29.15% 8.63% 8.97% 2.94% 8.82% 1.01 
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Figure H.9: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,1  

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
A

P
E

 (
e

m
a
) 

Method Number (m) 

I-II-A-1 I-II-A-2

I-II-A-3 I-II-A-4

I-II-A-5 I-II-A-6

I-II-A-7 I-II-A-8



APPENDICES 

 
A-50 

 

Table H.10: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,2 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set Tu,u=2 Test Set To,o=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.19% 5.45% 4.58% 345.95% 

2 
Bootstrap 
Aggregating         

3 Neural Network Feedforward         

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.66% 4.05% 2.56% 32.48% 

7 Andrews 3.66% 4.05% 2.56% 32.48% 

8 
Cauchy M-estimators 
by Moore 3.80% 3.77% 2.36% 35.88% 

9 Fair by Rey 4.08% 3.80% 2.57% 39.04% 

10 Huber 3.98% 3.77% 2.51% 37.84% 

11 Logistic Regression 3.99% 3.77% 2.52% 37.94% 

12 Hinch and Talwar 3.69% 4.06% 2.57% 32.78% 

13 Holland and Welsch 3.65% 4.02% 2.52% 32.59% 

14 

Regularisation 

Lasso         

15 Ridge Regression         

16 Elastic Nets         

17 

Stepwise 

Interaction 
Bounded Steps 3.57% 3.32% 2.31% 21.54% 

18 Unbounded Steps 3.46% 3.32% 2.32% 21.77% 

19 
Purequadratic 

Bounded Steps 6.37% 3.96% 3.06% 61.63% 

20 Unbounded Steps 3.97% 3.33% 2.29% 21.03% 

21 
Quadratic 

Bounded Steps 3.88% 3.33% 2.19% 22.72% 

22 Unbounded Steps 4.09% 3.33% 2.20% 22.87% 

23 
Polynomial 

Bounded Steps 4.12% 3.28% 2.22% 20.41% 

24 Unbounded Steps         
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Table H.10: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,2 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

749.22% 83.12% 71.65% 45.61% 164.10% 1.60 

2 
Bootstrap 
Aggregating             

3 Neural Network Feedforward             

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 63.59% 29.23% 82.02% 458.65% 84.53% 1.82 

7 Andrews 63.56% 29.22% 82.01% 458.58% 84.52% 1.82 

8 
Cauchy M-estimators 
by Moore 74.07% 37.26% 93.83% 518.67% 96.21% 1.81 

9 Fair by Rey 80.02% 43.10% 101.13% 555.47% 103.65% 1.80 

10 Huber 78.05% 40.93% 98.97% 544.25% 101.29% 1.80 

11 Logistic Regression 78.22% 41.24% 99.19% 545.44% 101.54% 1.80 

12 Hinch and Talwar 64.01% 29.48% 82.74% 462.12% 85.18% 1.82 

13 Holland and Welsch 64.09% 29.52% 82.43% 460.95% 84.97% 1.82 

14 

Regularisation 

Lasso             

15 Ridge Regression             

16 Elastic Nets             

17 

Stepwise 

Interaction 
Bounded Steps 16.01% 4.14% 7.40% 35.86% 11.77% 1.02 

18 Unbounded Steps 16.06% 4.48% 7.73% 35.86% 11.88% 1.01 

19 
Purequadratic 

Bounded Steps 91.89% 57.61% 118.45% 641.06% 123.00% 1.74 

20 Unbounded Steps 12.29% 4.29% 7.52% 37.31% 11.50% 1.06 

21 
Quadratic 

Bounded Steps 12.79% 7.47% 14.02% 77.16% 17.95% 1.39 

22 Unbounded Steps 12.06% 6.06% 7.81% 37.32% 11.97% 1.02 

23 
Polynomial 

Bounded Steps 7.78% 4.32% 7.35% 36.75% 10.78% 1.11 

24 Unbounded Steps             
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Figure H.10: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,2  
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Table H.11: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

13.94% 460.54% 6.69% 354.64% 

2 
Bootstrap 
Aggregating 22.56% 11.90% 5.92% 287.79% 

3 Neural Network Feedforward 76.10% 23.21% 1.91% 453.70% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 13.40% 13.07% 11.19% 13.02% 

7 Andrews 13.40% 13.07% 11.19% 13.02% 

8 
Cauchy M-estimators 
by Moore 24.65% 12.22% 7.54% 108.98% 

9 Fair by Rey 24.43% 12.20% 7.51% 107.67% 

10 Huber 24.52% 12.21% 7.52% 108.23% 

11 Logistic Regression 24.52% 12.21% 7.52% 108.22% 

12 Hinch and Talwar 9.05% 9.70% 8.10% 31.48% 

13 Holland and Welsch 6.61% 9.33% 8.26% 13.38% 

14 

Regularisation 

Lasso 8.84% 9.59% 7.37% 72.05% 

15 Ridge Regression 17.25% 10.81% 7.37% 48.18% 

16 Elastic Nets 17.25% 10.81% 7.37% 48.18% 

17 

Stepwise 

Interaction 
Bounded Steps 3.82% 3.48% 2.09% 3.74% 

18 Unbounded Steps 4.43% 3.87% 2.06% 31.41% 

19 
Purequadratic 

Bounded Steps 58.78% 15.90% 7.01% 532.76% 

20 Unbounded Steps 7.86% 4.12% 2.01% 55.44% 

21 
Quadratic 

Bounded Steps 3.82% 3.48% 2.09% 3.74% 

22 Unbounded Steps 10.18% 4.71% 2.01% 72.04% 

23 
Polynomial 

Bounded Steps 3.82% 3.48% 2.09% 3.74% 

24 Unbounded Steps 297.86% 46.02% 1.86% 673.67% 
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Table H.11: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

780.69% 91.78% 90.41% 74.17% 234.11% 1.18 

2 
Bootstrap 
Aggregating 646.07% 87.04% 78.42% 4.94% 143.08% 1.56 

3 Neural Network Feedforward 172.21% 19.35% 20.94% 2.19% 96.20% 1.61 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 32.51% 13.74% 13.79% 2.32% 14.13% 0.59 

7 Andrews 32.51% 13.74% 13.79% 2.32% 14.13% 0.59 

8 
Cauchy M-estimators 
by Moore 326.22% 28.89% 24.89% 2.48% 66.98% 1.64 

9 Fair by Rey 322.26% 28.62% 24.66% 2.76% 66.26% 1.64 

10 Huber 323.95% 28.73% 24.75% 2.59% 66.56% 1.64 

11 Logistic Regression 323.91% 28.73% 24.76% 2.59% 66.56% 1.64 

12 Hinch and Talwar 88.57% 11.83% 12.50% 2.31% 21.69% 1.31 

13 Holland and Welsch 32.60% 10.06% 11.46% 2.30% 11.75% 0.77 

14 

Regularisation 

Lasso 146.96% 12.81% 13.37% 82.61% 44.20% 1.16 

15 Ridge Regression 146.96% 12.81% 13.37% 82.61% 42.42% 1.17 

16 Elastic Nets 146.96% 12.81% 13.37% 82.61% 42.42% 1.17 

17 

Stepwise 

Interaction 
Bounded Steps 3.21% 4.02% 4.57% 2.60% 3.44% 0.23 

18 Unbounded Steps 51.84% 4.42% 4.60% 2.29% 13.12% 1.41 

19 
Purequadratic 

Bounded Steps 866.48% 148.95% 144.01% 76.07% 231.25% 1.33 

20 Unbounded Steps 123.71% 20.65% 19.66% 7.35% 30.10% 1.38 

21 
Quadratic 

Bounded Steps 3.21% 4.02% 4.57% 2.60% 3.44% 0.23 

22 Unbounded Steps 123.71% 20.65% 19.66% 7.35% 32.54% 1.33 

23 
Polynomial 

Bounded Steps 3.21% 4.02% 4.57% 2.60% 3.44% 0.23 

24 Unbounded Steps 1323.30% 103.07% 94.76% 5.72% 318.28% 1.46 
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Figure H.11: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3  
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Table H.12: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,4 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set Tu,u=2 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.24% 42.37% 7.52% 4.48% 

2 
Bootstrap 
Aggregating 35.32% 39.82% 39.48% 16.56% 

3 Neural Network Feedforward 4.48% 4.82% 4.53% 2.31% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.06% 9.40% 8.77% 6.04% 

7 Andrews 6.06% 9.40% 8.77% 6.04% 

8 
Cauchy M-estimators 
by Moore 6.05% 9.39% 8.76% 6.01% 

9 Fair by Rey 5.73% 9.01% 8.10% 5.03% 

10 Huber 5.71% 9.13% 8.24% 5.44% 

11 Logistic Regression 5.70% 9.12% 8.21% 5.41% 

12 Hinch and Talwar 6.05% 9.40% 8.77% 6.03% 

13 Holland and Welsch 6.06% 9.40% 8.77% 6.04% 

14 

Regularisation 

Lasso 5.82% 8.79% 7.84% 4.20% 

15 Ridge Regression 5.82% 8.83% 7.87% 4.08% 

16 Elastic Nets 5.82% 8.79% 7.84% 4.20% 

17 

Stepwise 

Interaction 
Bounded Steps 4.03% 7.42% 6.74% 3.78% 

18 Unbounded Steps 4.13% 7.21% 6.25% 2.81% 

19 
Purequadratic 

Bounded Steps 5.87% 8.91% 7.97% 4.71% 

20 Unbounded Steps 4.20% 6.94% 5.86% 2.76% 

21 
Quadratic 

Bounded Steps 4.24% 6.78% 5.60% 2.77% 

22 Unbounded Steps 4.11% 7.12% 6.15% 2.83% 

23 
Polynomial 

Bounded Steps 4.73% 4.61% 3.80% 2.51% 

24 Unbounded Steps 20.40% 22.98% 115.02% 2.17% 
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Table H.12: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,4 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

43.23% 87.12% 83.68% 39.18% 39.23% 0.84 

2 
Bootstrap 
Aggregating 54.97% 77.39% 62.60% 5.21% 41.42% 0.57 

3 Neural Network Feedforward 3.74% 22.02% 21.75% 2.25% 8.24% 1.03 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.89% 10.12% 11.89% 2.33% 7.81% 0.38 

7 Andrews 7.89% 10.13% 11.89% 2.33% 7.81% 0.38 

8 
Cauchy M-estimators 
by Moore 7.84% 10.09% 11.84% 2.33% 7.79% 0.38 

9 Fair by Rey 5.80% 8.05% 8.30% 18.93% 8.62% 0.51 

10 Huber 6.76% 9.47% 10.53% 8.73% 8.00% 0.23 

11 Logistic Regression 6.73% 9.41% 10.42% 9.09% 8.01% 0.23 

12 Hinch and Talwar 7.86% 10.11% 11.87% 2.31% 7.80% 0.38 

13 Holland and Welsch 7.89% 10.12% 11.88% 2.32% 7.81% 0.38 

14 

Regularisation 

Lasso 4.12% 6.31% 5.37% 41.71% 10.52% 1.21 

15 Ridge Regression 4.01% 6.10% 4.21% 40.31% 10.15% 1.21 

16 Elastic Nets 4.12% 6.31% 5.37% 41.71% 10.52% 1.21 

17 

Stepwise 

Interaction 
Bounded Steps 3.98% 34.13% 30.04% 3.08% 11.65% 1.09 

18 Unbounded Steps 5.89% 10.97% 11.10% 3.65% 6.50% 0.48 

19 
Purequadratic 

Bounded Steps 4.99% 7.17% 7.15% 43.78% 11.32% 1.17 

20 Unbounded Steps 5.63% 8.92% 9.82% 3.61% 5.97% 0.42 

21 
Quadratic 

Bounded Steps 6.08% 8.53% 9.60% 2.56% 5.77% 0.44 

22 Unbounded Steps 5.81% 10.77% 10.94% 3.70% 6.43% 0.48 

23 
Polynomial 

Bounded Steps 3.23% 44.39% 53.07% 3.21% 14.94% 1.40 

24 Unbounded Steps 10.64% 691.25% 468.35% 2.55% 166.67% 1.59 
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Figure H.12: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,4  
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Table H.13: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,5 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

66.67% 55.56% 55.05% 11.39% 

2 
Bootstrap 
Aggregating 86.15% 82.91% 81.29% 27.05% 

3 Neural Network Feedforward 72.14% 32.77% 15.13% 55.78% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.93% 9.36% 8.74% 6.14% 

7 Andrews 5.93% 9.36% 8.74% 6.14% 

8 
Cauchy M-estimators 
by Moore 5.98% 9.37% 8.75% 6.02% 

9 Fair by Rey 5.64% 8.92% 7.98% 6.17% 

10 Huber 5.63% 9.00% 8.24% 6.23% 

11 Logistic Regression 5.62% 8.99% 8.22% 6.24% 

12 Hinch and Talwar 5.92% 9.35% 8.72% 6.13% 

13 Holland and Welsch 5.94% 9.37% 8.75% 6.13% 

14 

Regularisation 

Lasso 7.43% 9.86% 8.75% 6.39% 

15 Ridge Regression 7.42% 9.86% 8.76% 6.39% 

16 Elastic Nets 7.43% 9.86% 8.75% 6.39% 

17 

Stepwise 

Interaction 
Bounded Steps 3.47% 3.88% 2.66% 3.49% 

18 Unbounded Steps 3.47% 3.87% 2.66% 3.63% 

19 
Purequadratic 

Bounded Steps 32.34% 24.65% 20.95% 7.27% 

20 Unbounded Steps 3.64% 3.90% 2.58% 3.67% 

21 
Quadratic 

Bounded Steps 3.49% 3.86% 2.63% 3.46% 

22 Unbounded Steps 3.49% 3.85% 2.63% 3.60% 

23 
Polynomial 

Bounded Steps 3.56% 3.92% 2.74% 4.21% 

24 Unbounded Steps 36.88% 25.58% 22.13% 6.10% 
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Table H.13: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,5 (cont.) 
 

  ema   

 
Method Test Set Tu,u=2 Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

4.82% 51.62% 86.86% 26.70% 44.83% 0.63 

2 
Bootstrap 
Aggregating 9.50% 63.95% 49.66% 4.62% 50.64% 0.66 

3 Neural Network Feedforward 2.80% 20.05% 23.93% 2.34% 28.12% 0.88 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.92% 10.05% 11.82% 2.31% 7.78% 0.38 

7 Andrews 7.92% 10.05% 11.82% 2.31% 7.78% 0.38 

8 
Cauchy M-estimators 
by Moore 7.80% 10.04% 11.77% 2.38% 7.76% 0.38 

9 Fair by Rey 5.30% 8.87% 9.12% 21.15% 9.14% 0.56 

10 Huber 5.75% 9.40% 9.91% 16.68% 8.86% 0.40 

11 Logistic Regression 5.67% 9.28% 9.69% 17.14% 8.86% 0.42 

12 Hinch and Talwar 7.91% 10.03% 11.80% 2.31% 7.77% 0.38 

13 Holland and Welsch 7.91% 10.05% 11.82% 2.31% 7.79% 0.38 

14 

Regularisation 

Lasso 5.02% 7.54% 6.10% 28.17% 9.91% 0.76 

15 Ridge Regression 5.06% 7.66% 6.19% 27.70% 9.88% 0.74 

16 Elastic Nets 5.02% 7.54% 6.10% 28.17% 9.91% 0.76 

17 

Stepwise 

Linear with 
Interactions of Linear 
Terms 

Bounded Steps 2.97% 5.55% 5.68% 2.93% 3.83% 0.31 

18 
Unbounded Steps 2.97% 5.55% 5.68% 2.93% 3.85% 0.30 

19 Linear and Squared 
Terms 

Bounded Steps 5.20% 7.60% 6.32% 28.77% 16.64% 0.68 

20 Unbounded Steps 2.91% 5.10% 5.68% 3.35% 3.85% 0.27 

21 Linear and Squared 
Terms including 
Interactions 

Bounded Steps 2.90% 5.52% 5.67% 3.18% 3.84% 0.30 

22 
Unbounded Steps 2.90% 5.52% 5.67% 3.18% 3.86% 0.30 

23 
Polynomial 

Bounded Steps 2.84% 5.52% 5.75% 1.98% 3.82% 0.35 

24 Unbounded Steps 2.81% 3.40% 3.93% 2.10% 12.87% 1.04 
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Figure H.13: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,5  
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Table H.14: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,6 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

87.26% 56.00% 82.83% 23.98% 

2 
Bootstrap 
Aggregating 92.22% 90.41% 89.50% 50.54% 

3 Neural Network Feedforward 85.21% 81.83% 80.19% 22.75% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.77% 9.23% 8.32% 6.23% 

7 Andrews 5.77% 9.23% 8.32% 6.24% 

8 
Cauchy M-estimators 
by Moore 5.77% 9.23% 8.32% 6.15% 

9 Fair by Rey 5.92% 9.24% 8.32% 6.10% 

10 Huber 5.81% 9.21% 8.30% 6.06% 

11 Logistic Regression 5.82% 9.21% 8.30% 6.07% 

12 Hinch and Talwar 5.77% 9.23% 8.32% 6.22% 

13 Holland and Welsch 5.77% 9.23% 8.32% 6.20% 

14 

Regularisation 

Lasso 8.56% 10.72% 9.48% 8.18% 

15 Ridge Regression 8.56% 10.72% 9.48% 8.18% 

16 Elastic Nets 8.56% 10.72% 9.48% 8.18% 

17 

Stepwise 

Interaction 
Bounded Steps 6.70% 4.78% 4.85% 6.01% 

18 Unbounded Steps 6.70% 4.78% 4.85% 6.01% 

19 
Purequadratic 

Bounded Steps 489.89% 333.87% 284.90% 47.83% 

20 Unbounded Steps 6.72% 4.79% 4.86% 5.99% 

21 
Quadratic 

Bounded Steps 6.71% 4.79% 4.85% 5.98% 

22 Unbounded Steps 6.72% 4.79% 4.86% 5.99% 

23 
Polynomial 

Bounded Steps 6.32% 4.50% 4.47% 5.73% 

24 Unbounded Steps 6.47% 4.57% 4.65% 5.78% 
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Table H.14: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,6 (cont.) 
 

 

  ema   

 
Method Test Set To,o=5 Test Set Tu,u=2 Test Set To,o=6 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

42.93% 8.52% 68.76% 13.81% 48.01% 0.64 

2 
Bootstrap 
Aggregating 13.11% 31.06% 12.79% 55.01% 54.33% 0.62 

3 Neural Network Feedforward 50.10% 1.26% 62.64% 2.70% 48.34% 0.73 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 8.00% 9.69% 11.52% 2.31% 7.63% 0.37 

7 Andrews 8.00% 9.70% 11.52% 2.31% 7.64% 0.37 

8 
Cauchy M-estimators 
by Moore 7.89% 9.64% 11.46% 2.30% 7.60% 0.37 

9 Fair by Rey 7.75% 9.47% 11.08% 2.56% 7.56% 0.35 

10 Huber 7.78% 9.50% 11.21% 2.43% 7.54% 0.36 

11 Logistic Regression 7.77% 9.50% 11.20% 2.43% 7.54% 0.36 

12 Hinch and Talwar 7.98% 9.70% 11.52% 2.31% 7.63% 0.37 

13 Holland and Welsch 7.96% 9.68% 11.50% 2.30% 7.62% 0.37 

14 

Regularisation 

Lasso 7.47% 9.48% 9.19% 13.92% 9.63% 0.21 

15 Ridge Regression 7.47% 9.48% 9.19% 13.92% 9.63% 0.21 

16 Elastic Nets 7.47% 9.48% 9.19% 13.92% 9.63% 0.21 

17 

Stepwise 

Interaction 
Bounded Steps 4.19% 1.61% 2.33% 2.04% 4.06% 0.47 

18 Unbounded Steps 4.19% 1.61% 2.33% 2.04% 4.06% 0.47 

19 
Purequadratic 

Bounded Steps 15.01% 9.12% 15.89% 14.62% 151.39% 1.25 

20 Unbounded Steps 4.14% 1.54% 2.25% 2.20% 4.06% 0.47 

21 
Quadratic 

Bounded Steps 4.11% 1.51% 2.20% 2.41% 4.07% 0.46 

22 Unbounded Steps 4.14% 1.54% 2.25% 2.20% 4.06% 0.47 

23 
Polynomial 

Bounded Steps 3.87% 1.23% 1.99% 1.89% 3.75% 0.50 

24 Unbounded Steps 3.97% 1.50% 2.13% 2.02% 3.89% 0.47 
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Figure H.14: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,6  
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Table H.15: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,7 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

91.42% 48.11% 88.44% 45.16% 

2 
Bootstrap 
Aggregating 94.05% 92.65% 91.98% 61.98% 

3 Neural Network Feedforward 87.60% 84.24% 82.37% 21.43% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.45% 9.27% 8.46% 21.24% 

7 Andrews 6.45% 9.27% 8.46% 21.24% 

8 
Cauchy M-estimators 
by Moore 6.50% 9.29% 8.48% 21.23% 

9 Fair by Rey 8.10% 10.31% 9.15% 10.23% 

10 Huber 8.41% 10.51% 9.35% 12.72% 

11 Logistic Regression 8.03% 10.27% 9.14% 11.92% 

12 Hinch and Talwar 9.71% 11.36% 10.08% 10.35% 

13 Holland and Welsch 6.45% 9.27% 8.46% 21.20% 

14 

Regularisation 

Lasso 9.38% 11.11% 9.80% 8.19% 

15 Ridge Regression 9.38% 11.11% 9.80% 8.19% 

16 Elastic Nets 9.38% 11.11% 9.80% 8.19% 

17 

Stepwise 

Interaction 
Bounded Steps 6.70% 4.75% 4.86% 6.03% 

18 Unbounded Steps 6.69% 4.74% 4.84% 5.92% 

19 
Purequadratic 

Bounded Steps 9.38% 11.11% 9.80% 8.19% 

20 Unbounded Steps 6.68% 4.73% 4.82% 5.88% 

21 
Quadratic 

Bounded Steps 6.70% 4.75% 4.86% 6.03% 

22 Unbounded Steps 6.68% 4.73% 4.82% 5.88% 

23 
Polynomial 

Bounded Steps 6.70% 4.75% 4.86% 6.03% 

24 Unbounded Steps 82.81% 58.87% 49.97% 12.99% 
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Table H.15: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,7 (cont.) 
 

 

  ema   

 
Method Test Set To,o=5 Test Set To,o=6 Test Set Tu,u=2 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

9.03% 23.53% 5.92% 30.01% 42.70% 0.77 

2 
Bootstrap 
Aggregating 27.49% 46.92% 15.59% 91.72% 65.30% 0.49 

3 Neural Network Feedforward 5.73% 8.70% 1.96% 2.35% 36.80% 1.09 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 41.00% 6.72% 4.34% 37.18% 16.83% 0.87 

7 Andrews 41.00% 6.72% 4.34% 37.18% 16.83% 0.87 

8 
Cauchy M-estimators 
by Moore 40.87% 6.67% 4.28% 37.42% 16.84% 0.87 

9 Fair by Rey 11.92% 7.65% 5.84% 29.65% 11.61% 0.65 

10 Huber 17.99% 7.50% 5.32% 32.28% 13.01% 0.67 

11 Logistic Regression 16.56% 7.46% 5.44% 31.20% 12.50% 0.66 

12 Hinch and Talwar 9.64% 8.24% 6.23% 30.45% 12.01% 0.63 

13 Holland and Welsch 40.92% 6.72% 4.33% 37.20% 16.82% 0.87 

14 

Regularisation 

Lasso 5.97% 8.23% 6.22% 30.51% 11.18% 0.72 

15 Ridge Regression 5.97% 8.23% 6.22% 30.51% 11.18% 0.72 

16 Elastic Nets 5.97% 8.23% 6.22% 30.51% 11.18% 0.72 

17 

Stepwise 

Interaction 
Bounded Steps 4.23% 1.81% 2.44% 2.31% 4.14% 0.43 

18 Unbounded Steps 4.05% 1.71% 2.23% 2.75% 4.12% 0.43 

19 
Purequadratic 

Bounded Steps 5.97% 8.23% 6.22% 30.51% 11.18% 0.72 

20 Unbounded Steps 3.96% 1.61% 2.11% 3.10% 4.11% 0.43 

21 
Quadratic 

Bounded Steps 4.23% 1.81% 2.44% 2.31% 4.14% 0.43 

22 Unbounded Steps 3.96% 1.61% 2.11% 3.10% 4.11% 0.43 

23 
Polynomial 

Bounded Steps 4.23% 1.81% 2.44% 2.31% 4.14% 0.43 

24 Unbounded Steps 3.91% 3.31% 2.02% 2.24% 27.02% 1.19 
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Figure H.15: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,7  
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Table H.16: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,1 
 

 

  
  ema 

 
Method Test Set Tu,u=3 Test Set To,o12 Test Set Tu,u=2 Test Set To,o=2 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

4.10% 181.67% 2.77% 388.57% 

2 
Bootstrap 
Aggregating 11.58% 8.91% 4.74% 404.28% 

3 Neural Network Feedforward 2.93% 21.98% 2.87% 83.04% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.70% 5.93% 4.76% 14.76% 

7 Andrews 3.70% 5.93% 4.76% 14.76% 

8 
Cauchy M-estimators 
by Moore 4.43% 7.42% 6.43% 7.13% 

9 Fair by Rey 3.70% 5.61% 4.28% 19.81% 

10 Huber 3.70% 5.77% 4.52% 18.25% 

11 Logistic Regression 3.68% 5.73% 4.47% 18.10% 

12 Hinch and Talwar 3.51% 5.25% 3.88% 19.27% 

13 Holland and Welsch 3.71% 5.94% 4.77% 14.75% 

14 

Regularisation 

Lasso 4.02% 4.51% 3.18% 30.35% 

15 Ridge Regression 4.17% 5.83% 4.95% 33.58% 

16 Elastic Nets 4.27% 4.46% 2.66% 33.97% 

17 

Stepwise 

Interaction 
Bounded Steps 3.62% 4.52% 4.53% 35.76% 

18 Unbounded Steps 3.79% 4.00% 2.44% 36.08% 

19 
Purequadratic 

Bounded Steps 4.10% 4.63% 2.71% 32.54% 

20 Unbounded Steps 3.41% 3.80% 2.47% 22.59% 

21 
Quadratic 

Bounded Steps 3.34% 3.97% 3.35% 25.31% 

22 Unbounded Steps 3.42% 3.76% 2.36% 22.68% 

23 
Polynomial 

Bounded Steps 2.96% 3.59% 2.07% 4.91% 

24 Unbounded Steps 2.82% 3.45% 2.07% 9.27% 
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Table H.16: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,1 (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

825.09% 122.92% 158.51% 420.52% 263.02% 1.04 

2 
Bootstrap 
Aggregating 757.92% 87.68% 79.38% 6.69% 170.15% 1.60 

3 Neural Network Feedforward 95.50% 64.55% 54.34% 50.65% 46.98% 0.74 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 31.91% 10.90% 36.33% 229.36% 42.21% 1.82 

7 Andrews 31.91% 10.91% 36.34% 229.40% 42.21% 1.82 

8 
Cauchy M-estimators 
by Moore 16.10% 4.56% 15.97% 121.85% 22.99% 1.75 

9 Fair by Rey 42.10% 18.29% 47.86% 286.72% 53.55% 1.79 

10 Huber 41.09% 14.66% 41.79% 255.16% 48.12% 1.77 

11 Logistic Regression 40.74% 14.59% 42.05% 256.51% 48.23% 1.77 

12 Hinch and Talwar 41.14% 15.30% 48.29% 288.55% 53.15% 1.82 

13 Holland and Welsch 31.90% 10.87% 36.23% 228.87% 42.13% 1.81 

14 

Regularisation 

Lasso 63.65% 36.32% 78.40% 443.46% 82.99% 1.79 

15 Ridge Regression 55.58% 34.33% 76.33% 434.15% 81.12% 1.79 

16 Elastic Nets 62.13% 30.20% 71.89% 410.69% 77.53% 1.77 

17 

Stepwise 

Interaction 
Bounded Steps 80.92% 8.66% 8.51% 5.18% 18.96% 1.43 

18 Unbounded Steps 70.14% 8.28% 7.81% 2.68% 16.90% 1.43 

19 
Purequadratic 

Bounded Steps 57.31% 34.51% 76.25% 431.41% 80.43% 1.79 

20 Unbounded Steps 30.96% 6.01% 6.27% 3.37% 9.86% 1.09 

21 
Quadratic 

Bounded Steps 47.30% 7.10% 7.87% 8.74% 13.37% 1.16 

22 Unbounded Steps 31.22% 5.95% 6.19% 2.53% 9.76% 1.12 

23 
Polynomial 

Bounded Steps 5.00% 3.67% 3.93% 4.97% 3.89% 0.27 

24 Unbounded Steps 25.88% 17.80% 19.54% 4.50% 10.67% 0.86 
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Figure H.16: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,1  
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Table H.17: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,2 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set Tu,u=3 Test Set Tu,u=2 Test Set To,o=2 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.79% 5.13% 3.46% 342.23% 

2 
Bootstrap 
Aggregating         

3 Neural Network Feedforward         

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.37% 4.05% 2.31% 45.36% 

7 Andrews 5.38% 4.05% 2.31% 45.40% 

8 
Cauchy M-estimators 
by Moore 4.28% 3.77% 2.32% 39.99% 

9 Fair by Rey 4.09% 3.80% 2.57% 38.94% 

10 Huber 4.01% 3.77% 2.50% 37.66% 

11 Logistic Regression 4.07% 3.77% 2.50% 37.72% 

12 Hinch and Talwar 5.27% 4.06% 2.32% 44.75% 

13 Holland and Welsch 5.31% 4.02% 2.29% 45.08% 

14 

Regularisation 

Lasso         

15 Ridge Regression         

16 Elastic Nets         

17 

Stepwise 

Interaction 
Bounded Steps 3.57% 3.32% 2.31% 21.51% 

18 Unbounded Steps 6.04% 3.32% 2.11% 41.08% 

19 
Purequadratic 

Bounded Steps 6.37% 3.95% 3.06% 61.63% 

20 Unbounded Steps 5.99% 3.33% 2.04% 41.91% 

21 
Quadratic 

Bounded Steps 3.63% 3.33% 2.24% 21.17% 

22 Unbounded Steps 5.83% 3.33% 2.05% 40.16% 

23 
Polynomial 

Bounded Steps 3.16% 3.28% 2.25% 10.53% 

24 Unbounded Steps         
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Table H.17: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,2 (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

724.21% 85.72% 76.10% 23.30% 158.49% 1.61 

2 
Bootstrap 
Aggregating         #DIV/0!   

3 Neural Network Feedforward         #DIV/0!   

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 68.02% 29.25% 82.05% 458.78% 86.90% 1.76 

7 Andrews 68.01% 29.23% 82.03% 458.71% 86.89% 1.76 

8 
Cauchy M-estimators 
by Moore 74.53% 37.24% 93.80% 518.54% 96.81% 1.79 

9 Fair by Rey 80.00% 43.09% 101.11% 555.40% 103.63% 1.80 

10 Huber 78.00% 40.92% 98.95% 544.17% 101.25% 1.80 

11 Logistic Regression 78.15% 41.23% 99.18% 545.35% 101.50% 1.80 

12 Hinch and Talwar 68.13% 29.48% 82.75% 462.13% 87.36% 1.77 

13 Holland and Welsch 68.36% 29.53% 82.45% 461.05% 87.26% 1.77 

14 

Regularisation 

Lasso             

15 Ridge Regression             

16 Elastic Nets             

17 

Stepwise 

Interaction 
Bounded Steps 16.06% 4.16% 7.45% 36.15% 11.82% 1.02 

18 Unbounded Steps 24.90% 10.71% 11.47% 35.91% 16.94% 0.89 

19 
Purequadratic 

Bounded Steps 91.87% 57.60% 118.44% 640.99% 122.99% 1.74 

20 Unbounded Steps 20.87% 4.30% 7.51% 37.10% 15.38% 1.04 

21 
Quadratic 

Bounded Steps 11.78% 4.29% 7.50% 37.07% 11.38% 1.07 

22 Unbounded Steps 20.73% 6.08% 7.90% 38.84% 15.62% 1.01 

23 
Polynomial 

Bounded Steps 7.94% 4.37% 7.43% 37.11% 9.51% 1.21 

24 Unbounded Steps             



APPENDICES 

 
A-73 

 

 
Figure H.17: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,2  
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Table H.18: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.04% 37.50% 6.85% 4.17% 

2 
Bootstrap 
Aggregating 20.39% 20.69% 6.24% 18.04% 

3 Neural Network Feedforward 5.19% 3.98% 1.90% 2.50% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.81% 9.26% 8.40% 6.05% 

7 Andrews 5.81% 9.26% 8.40% 6.05% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 6.00% 

9 Fair by Rey 5.62% 8.82% 7.90% 4.45% 

10 Huber 5.58% 8.97% 8.05% 5.03% 

11 Logistic Regression 5.58% 8.96% 8.04% 4.98% 

12 Hinch and Talwar 5.81% 9.26% 8.39% 6.05% 

13 Holland and Welsch 5.81% 9.26% 8.40% 6.05% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.77% 8.62% 7.61% 5.00% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 3.61% 5.38% 3.58% 5.40% 

18 Unbounded Steps 3.91% 5.39% 3.51% 5.63% 

19 
Purequadratic 

Bounded Steps 6.17% 8.88% 7.80% 4.39% 

20 Unbounded Steps 3.83% 5.17% 3.37% 5.10% 

21 
Quadratic 

Bounded Steps 3.50% 5.47% 4.19% 3.49% 

22 Unbounded Steps 3.86% 5.20% 3.37% 5.29% 

23 
Polynomial 

Bounded Steps 3.14% 3.56% 2.08% 2.69% 

24 Unbounded Steps 67.14% 16.38% 1.99% 2.31% 
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Table H.18: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4 (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

39.10% 28.06% 109.85% 80.14% 39.09% 0.97 

2 
Bootstrap 
Aggregating 115.22% 75.96% 59.93% 7.36% 40.48% 0.97 

3 Neural Network Feedforward 3.72% 37.66% 32.81% 2.82% 11.32% 1.31 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.90% 9.75% 11.57% 2.31% 7.63% 0.38 

7 Andrews 7.90% 9.75% 11.57% 2.31% 7.63% 0.38 

8 
Cauchy M-estimators 
by Moore 7.79% 9.74% 11.53% 2.36% 7.61% 0.37 

9 Fair by Rey 4.29% 7.24% 6.73% 32.49% 9.69% 0.96 

10 Huber 5.86% 9.01% 9.65% 17.30% 8.68% 0.45 

11 Logistic Regression 5.73% 8.77% 9.22% 17.89% 8.65% 0.47 

12 Hinch and Talwar 7.89% 9.74% 11.55% 2.30% 7.62% 0.38 

13 Holland and Welsch 7.89% 9.75% 11.57% 2.30% 7.63% 0.38 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 10.05% 5.98% 8.91% 86.47% 17.30% 1.62 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 17.03% 38.48% 37.56% 2.88% 14.24% 1.08 

18 Unbounded Steps 20.33% 8.19% 8.70% 4.12% 7.47% 0.74 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.66% 1.73 

20 Unbounded Steps 17.68% 7.37% 8.00% 4.80% 6.92% 0.67 

21 
Quadratic 

Bounded Steps 3.29% 2.69% 4.05% 44.95% 8.95% 1.63 

22 Unbounded Steps 18.64% 7.73% 8.32% 4.62% 7.13% 0.70 

23 
Polynomial 

Bounded Steps 3.23% 3.16% 3.45% 3.55% 3.11% 0.16 

24 Unbounded Steps 7.32% 64.04% 80.68% 4.91% 30.60% 1.10 
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Figure H.18: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4  
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Table H.19: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,5 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

14.06% 34.35% 6.91% 7.03% 

2 
Bootstrap 
Aggregating 35.14% 23.13% 17.74% 16.73% 

3 Neural Network Feedforward 242.19% 65.62% 1.84% 787.60% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.90% 8.93% 8.07% 8.75% 

7 Andrews 5.86% 8.99% 8.14% 8.19% 

8 
Cauchy M-estimators 
by Moore 5.76% 9.23% 8.35% 6.04% 

9 Fair by Rey 5.81% 8.85% 7.90% 6.14% 

10 Huber 5.71% 8.85% 7.91% 6.70% 

11 Logistic Regression 5.71% 8.85% 7.91% 6.56% 

12 Hinch and Talwar 6.31% 8.92% 7.93% 10.13% 

13 Holland and Welsch 5.90% 8.93% 8.07% 8.76% 

14 

Regularisation 

Lasso 7.65% 9.62% 8.36% 4.68% 

15 Ridge Regression 8.66% 9.79% 8.37% 9.64% 

16 Elastic Nets 7.65% 9.62% 8.36% 4.68% 

17 

Stepwise 

Interaction 
Bounded Steps 3.83% 3.48% 2.10% 3.80% 

18 Unbounded Steps 3.83% 3.48% 2.10% 3.80% 

19 
Purequadratic 

Bounded Steps 12.40% 10.09% 7.91% 7.59% 

20 Unbounded Steps 3.80% 3.45% 2.05% 3.66% 

21 
Quadratic 

Bounded Steps 3.83% 3.47% 2.10% 3.79% 

22 Unbounded Steps 3.80% 3.45% 2.05% 3.66% 

23 
Polynomial 

Bounded Steps 3.83% 3.47% 2.10% 3.79% 

24 Unbounded Steps 140.63% 7.47% 2.02% 16.02% 
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Table H.19: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,5 (cont.) 
 

 

  ema   

 
Method Test Set Tu,u=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

4.38% 56.46% 96.48% 62.76% 35.30% 0.96 

2 
Bootstrap 
Aggregating 33.71% 83.31% 72.82% 4.57% 35.89% 0.78 

3 Neural Network Feedforward 2.95% 12.10% 15.24% 3.10% 141.33% 1.94 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.13% 8.20% 7.48% 20.50% 9.12% 0.53 

7 Andrews 5.64% 8.52% 8.31% 16.46% 8.76% 0.38 

8 
Cauchy M-estimators 
by Moore 7.78% 9.66% 11.44% 2.42% 7.59% 0.37 

9 Fair by Rey 4.38% 7.59% 7.41% 29.79% 9.73% 0.84 

10 Huber 4.70% 8.39% 8.16% 26.08% 9.56% 0.71 

11 Logistic Regression 4.67% 8.25% 8.01% 26.17% 9.52% 0.72 

12 Hinch and Talwar 4.57% 7.76% 6.27% 26.07% 9.75% 0.70 

13 Holland and Welsch 5.15% 8.21% 7.52% 20.38% 9.12% 0.52 

14 

Regularisation 

Lasso 4.95% 3.76% 5.14% 72.34% 14.56% 1.61 

15 Ridge Regression 5.20% 3.77% 4.62% 71.22% 15.16% 1.50 

16 Elastic Nets 4.95% 3.76% 5.14% 72.34% 14.56% 1.61 

17 

Stepwise 

Interaction 
Bounded Steps 3.21% 3.85% 4.40% 2.84% 3.44% 0.21 

18 Unbounded Steps 3.21% 3.85% 4.40% 2.84% 3.44% 0.21 

19 
Purequadratic 

Bounded Steps 4.63% 11.07% 10.63% 69.17% 16.69% 1.28 

20 Unbounded Steps 2.99% 3.60% 4.20% 5.55% 3.66% 0.27 

21 
Quadratic 

Bounded Steps 3.17% 3.82% 4.37% 2.81% 3.42% 0.21 

22 Unbounded Steps 2.99% 3.60% 4.20% 5.55% 3.66% 0.27 

23 
Polynomial 

Bounded Steps 3.17% 3.82% 4.37% 2.81% 3.42% 0.21 

24 Unbounded Steps 2.91% 3.95% 4.94% 4.63% 22.82% 2.09 
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Figure H.19: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,5  
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Table H.20: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,6 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

13.90% 464.80% 6.65% 361.25% 

2 
Bootstrap 
Aggregating 22.07% 11.50% 5.70% 274.57% 

3 Neural Network Feedforward 75.60% 16.64% 1.75% 257.09% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.76% 9.24% 8.37% 6.14% 

7 Andrews 5.76% 9.24% 8.37% 6.15% 

8 
Cauchy M-estimators 
by Moore 5.76% 9.24% 8.36% 6.12% 

9 Fair by Rey 6.64% 9.22% 8.08% 16.47% 

10 Huber 5.86% 9.18% 8.24% 8.30% 

11 Logistic Regression 5.89% 9.18% 8.24% 8.70% 

12 Hinch and Talwar 5.76% 9.24% 8.36% 6.14% 

13 Holland and Welsch 5.77% 9.24% 8.37% 6.14% 

14 

Regularisation 

Lasso 8.21% 9.38% 7.48% 47.46% 

15 Ridge Regression 13.99% 10.24% 7.48% 32.95% 

16 Elastic Nets 13.99% 10.24% 7.48% 32.95% 

17 

Stepwise 

Interaction 
Bounded Steps 6.52% 4.07% 2.02% 41.06% 

18 Unbounded Steps 4.06% 3.82% 2.06% 27.46% 

19 
Purequadratic 

Bounded Steps 13.32% 8.96% 7.41% 96.16% 

20 Unbounded Steps 31.04% 7.57% 2.01% 156.05% 

21 
Quadratic 

Bounded Steps 5.33% 4.04% 2.02% 38.72% 

22 Unbounded Steps 7.98% 4.23% 2.01% 60.83% 

23 
Polynomial 

Bounded Steps 17788.59% 359.52% 1.90% 3619.94% 

24 Unbounded Steps 156.43% 19.27% 1.85% 692.02% 



APPENDICES 

 
A-81 

 

Table H.20: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,6 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set Tu,u=3 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

784.43% 3.64% 63.11% 77.95% 221.97% 1.29 

2 
Bootstrap 
Aggregating 619.88% 30.23% 14.21% 54.58% 129.09% 1.68 

3 Neural Network Feedforward 409.28% 1.43% 3.83% 3.77% 96.17% 1.60 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.87% 9.73% 11.54% 2.28% 7.62% 0.38 

7 Andrews 7.87% 9.73% 11.54% 2.28% 7.62% 0.38 

8 
Cauchy M-estimators 
by Moore 7.86% 9.71% 11.52% 2.28% 7.61% 0.38 

9 Fair by Rey 41.46% 9.26% 9.92% 8.47% 13.69% 0.85 

10 Huber 15.61% 9.33% 10.83% 3.28% 8.83% 0.41 

11 Logistic Regression 16.91% 9.33% 10.82% 3.30% 9.05% 0.44 

12 Hinch and Talwar 7.88% 9.74% 11.55% 2.29% 7.62% 0.38 

13 Holland and Welsch 7.87% 9.73% 11.54% 2.28% 7.62% 0.38 

14 

Regularisation 

Lasso 97.79% 6.51% 6.85% 91.60% 34.41% 1.15 

15 Ridge Regression 97.79% 6.51% 6.85% 91.60% 33.43% 1.16 

16 Elastic Nets 97.79% 6.51% 6.85% 91.60% 33.43% 1.16 

17 

Stepwise 

Interaction 
Bounded Steps 40.39% 1.76% 2.75% 2.50% 12.63% 1.38 

18 Unbounded Steps 46.52% 1.83% 2.49% 2.34% 11.32% 1.47 

19 
Purequadratic 

Bounded Steps 86.25% 4.05% 6.04% 89.05% 38.91% 1.10 

20 Unbounded Steps 113.85% 1.93% 2.25% 7.76% 40.31% 1.49 

21 
Quadratic 

Bounded Steps 38.81% 1.76% 2.76% 2.48% 11.99% 1.38 

22 Unbounded Steps 113.85% 1.93% 2.25% 7.76% 25.11% 1.63 

23 
Polynomial 

Bounded Steps 2076.79% 1.75% 2.78% 2.56% 2981.73% 2.06 

24 Unbounded Steps 1338.78% 1.37% 3.37% 4.65% 277.22% 1.77 
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Figure H.20: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,6  
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Table H.21: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,7 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set To,o=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

14.02% 49.72% 6.87% 404.69% 

2 
Bootstrap 
Aggregating 22.58% 11.80% 6.07% 291.79% 

3 Neural Network Feedforward 20.68% 18.03% 1.84% 302.19% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 6.83% 9.97% 9.30% 31.09% 

7 Andrews 6.86% 10.04% 9.39% 32.01% 

8 
Cauchy M-estimators 
by Moore 6.01% 8.67% 7.77% 10.43% 

9 Fair by Rey 8.18% 9.08% 7.56% 23.96% 

10 Huber 7.90% 8.98% 7.56% 23.06% 

11 Logistic Regression 7.70% 8.96% 7.57% 21.84% 

12 Hinch and Talwar 9.33% 10.63% 9.13% 8.25% 

13 Holland and Welsch 5.99% 8.68% 7.79% 10.49% 

14 

Regularisation 

Lasso 13.71% 10.44% 7.74% 34.03% 

15 Ridge Regression 13.71% 10.44% 7.74% 34.03% 

16 Elastic Nets 13.71% 10.44% 7.74% 34.03% 

17 

Stepwise 

Interaction 
Bounded Steps 4.04% 3.80% 2.06% 26.70% 

18 Unbounded Steps 4.04% 3.80% 2.06% 26.70% 

19 
Purequadratic 

Bounded Steps 9.80% 9.81% 7.68% 45.42% 

20 Unbounded Steps 6.89% 3.96% 2.01% 50.41% 

21 
Quadratic 

Bounded Steps 5.90% 3.93% 2.04% 47.34% 

22 Unbounded Steps 8.22% 4.27% 2.01% 61.21% 

23 
Polynomial 

Bounded Steps 16915.68% 298.36% 1.85% 2813.65% 

24 Unbounded Steps 144.03% 16.87% 1.86% 691.51% 
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Table H.21: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,7 (cont.) 
 

 

  ema   

 
Method Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=3 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

873.93% 30.62% 3.73% 65.27% 181.11% 1.71 

2 
Bootstrap 
Aggregating 654.30% 43.19% 10.23% 60.82% 137.60% 1.67 

3 Neural Network Feedforward 66.39% 3.49% 1.97% 2.80% 52.17% 1.98 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 70.06% 6.71% 4.33% 37.13% 21.93% 1.05 

7 Andrews 72.78% 6.71% 4.33% 37.12% 22.41% 1.06 

8 
Cauchy M-estimators 
by Moore 4.36% 6.67% 4.27% 37.50% 10.71% 1.03 

9 Fair by Rey 67.16% 7.27% 4.54% 38.90% 20.83% 1.06 

10 Huber 64.41% 7.32% 4.68% 37.23% 20.14% 1.04 

11 Logistic Regression 60.54% 7.24% 4.69% 36.78% 19.42% 1.02 

12 Hinch and Talwar 15.53% 8.26% 6.24% 30.45% 12.23% 0.64 

13 Holland and Welsch 3.79% 6.74% 4.35% 37.32% 10.64% 1.03 

14 

Regularisation 

Lasso 102.37% 6.81% 4.64% 76.88% 32.08% 1.16 

15 Ridge Regression 102.37% 6.81% 4.64% 76.88% 32.08% 1.16 

16 Elastic Nets 102.37% 6.81% 4.64% 76.88% 32.08% 1.16 

17 

Stepwise 

Interaction 
Bounded Steps 45.32% 1.83% 2.46% 2.61% 11.10% 1.46 

18 Unbounded Steps 45.32% 1.83% 2.46% 2.61% 11.10% 1.46 

19 
Purequadratic 

Bounded Steps 91.23% 5.38% 3.75% 73.10% 30.77% 1.13 

20 Unbounded Steps 114.86% 1.98% 2.17% 6.29% 23.57% 1.71 

21 
Quadratic 

Bounded Steps 86.62% 1.68% 2.37% 4.77% 19.33% 1.62 

22 Unbounded Steps 114.86% 1.98% 2.17% 6.29% 25.13% 1.65 

23 
Polynomial 

Bounded Steps 1969.30% 2.63% 2.38% 4.21% 2751.01% 2.12 

24 Unbounded Steps 1342.01% 2.34% 1.98% 3.99% 275.57% 1.78 
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Figure H.21: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,7 
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Table H.22: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,1 
 

 

  
  ema 

 
Method Test Set Tu,u=4 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

4.15% 42.78% 3.35% 24.18% 

2 
Bootstrap 
Aggregating 12.63% 27.39% 7.51% 95.10% 

3 Neural Network Feedforward 3.87% 4.26% 2.41% 6.66% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.12% 8.38% 7.63% 3.64% 

7 Andrews 5.12% 8.38% 7.63% 3.64% 

8 
Cauchy M-estimators 
by Moore 5.66% 9.10% 8.32% 5.63% 

9 Fair by Rey 4.12% 6.57% 5.36% 10.16% 

10 Huber 4.27% 7.03% 5.95% 7.37% 

11 Logistic Regression 4.25% 7.00% 5.91% 7.46% 

12 Hinch and Talwar 5.79% 9.27% 8.58% 6.07% 

13 Holland and Welsch 5.13% 8.40% 7.63% 3.65% 

14 

Regularisation 

Lasso 4.14% 5.01% 3.51% 23.32% 

15 Ridge Regression 4.10% 5.66% 4.14% 24.10% 

16 Elastic Nets 4.14% 5.01% 3.51% 23.32% 

17 

Stepwise 

Interaction 
Bounded Steps 3.52% 4.79% 2.75% 11.79% 

18 Unbounded Steps 3.55% 4.71% 2.69% 12.10% 

19 
Purequadratic 

Bounded Steps 4.16% 5.20% 3.49% 23.27% 

20 Unbounded Steps 3.36% 4.01% 2.69% 9.91% 

21 
Quadratic 

Bounded Steps 3.24% 3.60% 2.17% 11.88% 

22 Unbounded Steps 3.36% 4.01% 2.69% 9.91% 

23 
Polynomial 

Bounded Steps 2.94% 3.63% 2.13% 2.78% 

24 Unbounded Steps 2.82% 3.47% 2.06% 2.55% 
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Table H.22: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,1 (cont.) 
 

 

  ema   

 
Method Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

57.51% 23.30% 67.74% 345.44% 71.06% 1.59 

2 
Bootstrap 
Aggregating 123.08% 76.77% 61.27% 7.42% 51.40% 0.86 

3 Neural Network Feedforward 5.39% 91.79% 123.47% 390.80% 78.58% 1.71 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.79% 5.75% 6.55% 60.14% 12.88% 1.49 

7 Andrews 5.80% 5.75% 6.56% 60.20% 12.89% 1.49 

8 
Cauchy M-estimators 
by Moore 6.80% 9.89% 11.26% 10.82% 8.44% 0.26 

9 Fair by Rey 21.92% 9.93% 28.26% 189.82% 34.52% 1.83 

10 Huber 15.93% 7.21% 21.28% 152.08% 27.64% 1.83 

11 Logistic Regression 16.29% 6.88% 21.22% 152.72% 27.72% 1.83 

12 Hinch and Talwar 7.82% 10.02% 11.75% 2.47% 7.72% 0.38 

13 Holland and Welsch 5.70% 5.85% 6.42% 59.01% 12.72% 1.47 

14 

Regularisation 

Lasso 49.83% 27.49% 61.23% 358.07% 66.58% 1.80 

15 Ridge Regression 44.69% 26.33% 59.94% 352.15% 65.14% 1.81 

16 Elastic Nets 49.83% 27.49% 61.23% 358.07% 66.58% 1.80 

17 

Stepwise 

Interaction 
Bounded Steps 7.13% 20.76% 20.47% 2.63% 9.23% 0.83 

18 Unbounded Steps 7.21% 21.16% 20.59% 14.20% 10.78% 0.69 

19 
Purequadratic 

Bounded Steps 45.02% 26.88% 60.23% 351.36% 64.95% 1.81 

20 Unbounded Steps 4.81% 43.55% 41.65% 12.90% 15.36% 1.12 

21 
Quadratic 

Bounded Steps 20.74% 13.82% 14.59% 13.99% 10.50% 0.64 

22 Unbounded Steps 4.81% 43.55% 41.65% 12.90% 15.36% 1.12 

23 
Polynomial 

Bounded Steps 3.34% 3.07% 3.19% 7.13% 3.53% 0.43 

24 Unbounded Steps 3.60% 11.95% 13.41% 3.02% 5.36% 0.85 
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Figure H.22: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,1  
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Table H.23: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,2 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set Tu,u=4 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

26.65% 4.98% 8.45% 102.62% 

2 
Bootstrap 
Aggregating         

3 Neural Network Feedforward         

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.55% 4.05% 2.58% 31.44% 

7 Andrews 3.55% 4.05% 2.59% 31.43% 

8 
Cauchy M-estimators 
by Moore 3.76% 3.77% 2.36% 35.68% 

9 Fair by Rey 4.07% 3.80% 2.56% 38.86% 

10 Huber 3.97% 3.77% 2.50% 37.65% 

11 Logistic Regression 3.98% 3.77% 2.51% 37.77% 

12 Hinch and Talwar 3.57% 4.06% 2.59% 31.69% 

13 Holland and Welsch 3.54% 4.02% 2.54% 31.56% 

14 

Regularisation 

Lasso         

15 Ridge Regression         

16 Elastic Nets         

17 

Stepwise 

Interaction 
Bounded Steps 3.92% 3.32% 2.43% 13.00% 

18 Unbounded Steps 3.91% 3.32% 2.44% 13.12% 

19 
Purequadratic 

Bounded Steps 4.98% 3.95% 2.93% 46.90% 

20 Unbounded Steps 5.38% 3.32% 2.45% 14.24% 

21 
Quadratic 

Bounded Steps 5.42% 3.32% 2.58% 14.27% 

22 Unbounded Steps 5.36% 3.32% 2.75% 12.62% 

23 
Polynomial 

Bounded Steps 2.92% 3.28% 2.18% 5.37% 

24 Unbounded Steps         
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Table H.23: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,2 (cont.) 
 

 

  ema   

 
Method Test Set To,o=2 Test Set To,o=3 Test Set To,o=4 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

175.96% 75.60% 59.59% 19.65% 59.19% 0.99 

2 
Bootstrap 
Aggregating             

3 Neural Network Feedforward             

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 63.49% 29.20% 81.97% 458.42% 84.34% 1.83 

7 Andrews 63.46% 29.19% 81.96% 458.33% 84.32% 1.83 

8 
Cauchy M-estimators 
by Moore 73.72% 37.03% 93.48% 516.91% 95.84% 1.81 

9 Fair by Rey 79.72% 42.92% 100.76% 553.66% 103.29% 1.80 

10 Huber 77.75% 40.75% 98.62% 542.49% 100.94% 1.80 

11 Logistic Regression 77.93% 41.06% 98.84% 543.68% 101.19% 1.80 

12 Hinch and Talwar 63.90% 29.42% 82.64% 461.61% 84.94% 1.83 

13 Holland and Welsch 63.90% 29.44% 82.31% 460.31% 84.70% 1.82 

14 

Regularisation 

Lasso             

15 Ridge Regression             

16 Elastic Nets             

17 

Stepwise 

Interaction 
Bounded Steps 10.41% 206.25% 194.30% 35.59% 58.65% 1.50 

18 Unbounded Steps 10.23% 206.21% 194.10% 35.71% 58.63% 1.50 

19 
Purequadratic 

Bounded Steps 90.87% 57.23% 117.84% 638.29% 120.37% 1.77 

20 Unbounded Steps 12.66% 12.79% 12.43% 54.69% 14.75% 1.14 

21 
Quadratic 

Bounded Steps 12.66% 42.16% 38.54% 54.54% 21.69% 0.94 

22 Unbounded Steps 9.76% 13.23% 13.37% 38.01% 12.30% 0.92 

23 
Polynomial 

Bounded Steps 8.08% 4.76% 7.57% 43.16% 9.67% 1.42 

24 Unbounded Steps             
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Figure H.23: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,2  
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Table H.24: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,5 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=4 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.22% 29.73% 7.00% 4.09% 

2 
Bootstrap 
Aggregating 25.15% 14.74% 5.39% 14.42% 

3 Neural Network Feedforward 4.20% 4.09% 1.85% 2.52% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.39% 8.71% 7.83% 3.95% 

7 Andrews 5.39% 8.71% 7.82% 3.95% 

8 
Cauchy M-estimators 
by Moore 5.54% 8.89% 8.02% 4.49% 

9 Fair by Rey 5.55% 8.70% 7.75% 4.07% 

10 Huber 5.39% 8.67% 7.73% 4.10% 

11 Logistic Regression 5.40% 8.67% 7.72% 4.08% 

12 Hinch and Talwar 5.38% 8.70% 7.81% 3.93% 

13 Holland and Welsch 5.56% 8.93% 8.06% 4.63% 

14 

Regularisation 

Lasso 6.01% 8.61% 7.57% 3.77% 

15 Ridge Regression 5.90% 8.73% 7.71% 4.09% 

16 Elastic Nets 6.01% 8.61% 7.57% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 3.83% 5.88% 4.11% 3.57% 

18 Unbounded Steps 3.39% 5.50% 4.23% 3.57% 

19 
Purequadratic 

Bounded Steps 6.37% 9.07% 7.98% 4.15% 

20 Unbounded Steps 3.40% 5.22% 3.93% 3.40% 

21 
Quadratic 

Bounded Steps 3.50% 5.46% 4.18% 3.52% 

22 Unbounded Steps 3.40% 5.22% 3.93% 3.40% 

23 
Polynomial 

Bounded Steps 3.17% 3.54% 2.07% 2.68% 

24 Unbounded Steps 46.66% 15.52% 2.05% 2.36% 
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Table H.24: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,5 (cont.) 
 

 

  ema   

 
Method Test Set Tu,u=4 Test Set To,o=3 Test Set To,o=4 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

4.90% 53.69% 88.66% 70.10% 33.17% 1.01 

2 
Bootstrap 
Aggregating 14.02% 71.16% 72.75% 4.84% 27.81% 1.01 

3 Neural Network Feedforward 3.21% 70.98% 62.65% 4.85% 19.29% 1.53 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.86% 6.88% 4.55% 36.44% 9.70% 1.13 

7 Andrews 3.85% 6.86% 4.52% 36.66% 9.72% 1.14 

8 
Cauchy M-estimators 
by Moore 4.61% 8.00% 6.83% 24.63% 8.88% 0.74 

9 Fair by Rey 3.50% 6.69% 5.58% 41.62% 10.43% 1.22 

10 Huber 3.77% 7.68% 6.45% 37.75% 10.19% 1.11 

11 Logistic Regression 3.70% 7.43% 6.09% 37.89% 10.12% 1.12 

12 Hinch and Talwar 3.83% 6.81% 4.45% 37.08% 9.75% 1.15 

13 Holland and Welsch 4.92% 8.11% 7.17% 22.36% 8.72% 0.66 

14 

Regularisation 

Lasso 5.37% 4.28% 5.51% 72.02% 14.14% 1.66 

15 Ridge Regression 5.05% 5.77% 7.09% 74.91% 14.91% 1.63 

16 Elastic Nets 5.37% 4.28% 5.51% 72.02% 14.14% 1.66 

17 

Stepwise 

Interaction 
Bounded Steps 6.53% 76.65% 73.26% 3.61% 22.18% 1.47 

18 Unbounded Steps 6.14% 7.47% 8.00% 3.76% 5.26% 0.34 

19 
Purequadratic 

Bounded Steps 4.97% 3.95% 6.02% 75.33% 14.73% 1.67 

20 Unbounded Steps 5.80% 7.11% 7.66% 5.68% 5.28% 0.31 

21 
Quadratic 

Bounded Steps 3.29% 2.74% 3.98% 44.19% 8.86% 1.61 

22 Unbounded Steps 5.80% 7.11% 7.66% 5.68% 5.28% 0.31 

23 
Polynomial 

Bounded Steps 3.22% 3.16% 3.41% 3.89% 3.14% 0.18 

24 Unbounded Steps 2.92% 26.66% 18.27% 3.77% 14.78% 1.07 
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Figure H.24: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,5  
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Table H.25: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,6 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.02% 28.71% 6.82% 4.18% 

2 
Bootstrap 
Aggregating 23.74% 23.30% 9.02% 23.45% 

3 Neural Network Feedforward 4.08% 3.73% 2.02% 2.93% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.81% 9.26% 8.40% 6.06% 

7 Andrews 5.81% 9.26% 8.40% 6.06% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 6.00% 

9 Fair by Rey 5.61% 8.76% 7.82% 4.21% 

10 Huber 5.54% 8.89% 7.97% 4.73% 

11 Logistic Regression 5.54% 8.87% 7.94% 4.66% 

12 Hinch and Talwar 5.30% 8.58% 7.68% 3.64% 

13 Holland and Welsch 5.81% 9.26% 8.40% 6.05% 

14 

Regularisation 

Lasso 5.87% 8.41% 7.35% 3.77% 

15 Ridge Regression 5.77% 8.61% 7.59% 4.98% 

16 Elastic Nets 5.87% 8.41% 7.35% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 3.58% 5.08% 3.59% 5.32% 

18 Unbounded Steps 3.87% 5.35% 3.49% 5.56% 

19 
Purequadratic 

Bounded Steps 6.18% 8.88% 7.79% 4.39% 

20 Unbounded Steps 3.81% 5.11% 3.31% 5.21% 

21 
Quadratic 

Bounded Steps 3.42% 4.99% 3.53% 4.96% 

22 Unbounded Steps 3.81% 5.11% 3.31% 5.21% 

23 
Polynomial 

Bounded Steps 3.13% 3.55% 2.08% 2.66% 

24 Unbounded Steps 67.25% 18.23% 2.00% 2.39% 
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Table H.25: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,6 (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set Tu,u=4 Test Set To,o=4 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

38.83% 3.02% 63.30% 81.92% 29.23% 1.03 

2 
Bootstrap 
Aggregating 153.29% 29.60% 15.10% 52.23% 41.22% 1.14 

3 Neural Network Feedforward 6.19% 2.19% 2.45% 4.31% 3.49% 0.40 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.91% 9.74% 11.56% 2.31% 7.63% 0.37 

7 Andrews 7.91% 9.74% 11.56% 2.31% 7.63% 0.37 

8 
Cauchy M-estimators 
by Moore 7.80% 9.71% 11.49% 2.33% 7.60% 0.37 

9 Fair by Rey 3.69% 6.40% 5.00% 37.36% 9.86% 1.14 

10 Huber 5.05% 8.09% 7.85% 22.19% 8.79% 0.64 

11 Logistic Regression 4.86% 7.83% 7.43% 23.99% 8.89% 0.71 

12 Hinch and Talwar 3.98% 6.18% 4.50% 45.11% 10.62% 1.32 

13 Holland and Welsch 7.90% 9.74% 11.56% 2.31% 7.63% 0.38 

14 

Regularisation 

Lasso 6.88% 3.97% 7.38% 84.62% 16.03% 1.73 

15 Ridge Regression 9.99% 5.00% 8.09% 85.68% 16.96% 1.64 

16 Elastic Nets 6.88% 3.97% 7.38% 84.62% 16.03% 1.73 

17 

Stepwise 

Interaction 
Bounded Steps 16.39% 6.87% 6.62% 8.97% 7.05% 0.59 

18 Unbounded Steps 19.85% 6.71% 6.49% 11.93% 7.91% 0.69 

19 
Purequadratic 

Bounded Steps 6.37% 3.47% 7.60% 87.31% 16.50% 1.74 

20 Unbounded Steps 18.06% 6.41% 6.29% 10.82% 7.38% 0.66 

21 
Quadratic 

Bounded Steps 13.17% 6.24% 5.98% 10.69% 6.62% 0.53 

22 Unbounded Steps 18.06% 6.41% 6.29% 10.82% 7.38% 0.66 

23 
Polynomial 

Bounded Steps 3.19% 2.92% 3.11% 4.58% 3.15% 0.23 

24 Unbounded Steps 6.81% 1.65% 23.26% 4.67% 15.78% 1.41 
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Figure H.25: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,6 
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Table H.26: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,7 
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=2 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.10% 26.25% 6.97% 4.31% 

2 
Bootstrap 
Aggregating 23.33% 22.83% 8.31% 21.27% 

3 Neural Network Feedforward 5.53% 5.11% 2.07% 3.11% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.34% 8.63% 7.74% 3.76% 

7 Andrews 5.34% 8.63% 7.74% 3.76% 

8 
Cauchy M-estimators 
by Moore 5.38% 8.68% 7.78% 3.87% 

9 Fair by Rey 5.50% 8.62% 7.66% 3.86% 

10 Huber 5.31% 8.55% 7.59% 3.74% 

11 Logistic Regression 5.32% 8.55% 7.59% 3.76% 

12 Hinch and Talwar 5.34% 8.64% 7.74% 3.77% 

13 Holland and Welsch 5.35% 8.65% 7.76% 3.81% 

14 

Regularisation 

Lasso 5.99% 8.58% 7.54% 3.79% 

15 Ridge Regression 5.90% 8.77% 7.77% 5.00% 

16 Elastic Nets 5.99% 8.58% 7.54% 3.79% 

17 

Stepwise 

Interaction 
Bounded Steps 3.42% 5.14% 3.60% 5.45% 

18 Unbounded Steps 3.88% 5.35% 3.49% 5.61% 

19 
Purequadratic 

Bounded Steps 6.30% 9.05% 7.99% 4.41% 

20 Unbounded Steps 3.82% 5.16% 3.34% 5.26% 

21 
Quadratic 

Bounded Steps 3.43% 5.00% 3.53% 4.96% 

22 Unbounded Steps 3.82% 5.16% 3.35% 5.26% 

23 
Polynomial 

Bounded Steps 2.91% 3.51% 2.09% 2.39% 

24 Unbounded Steps 36.08% 15.01% 2.00% 2.51% 
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Table H.26: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,7 (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set Tu,u=4 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

18.16% 17.75% 4.04% 71.95% 19.57% 1.16 

2 
Bootstrap 
Aggregating 135.58% 41.96% 14.17% 83.65% 43.89% 1.00 

3 Neural Network Feedforward 5.76% 1.98% 2.24% 5.50% 3.91% 0.44 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 3.81% 6.42% 4.17% 41.48% 10.17% 1.26 

7 Andrews 3.81% 6.42% 4.18% 41.48% 10.17% 1.26 

8 
Cauchy M-estimators 
by Moore 3.78% 6.64% 4.22% 38.46% 9.85% 1.19 

9 Fair by Rey 3.40% 5.52% 3.06% 45.85% 10.43% 1.38 

10 Huber 3.39% 5.69% 3.18% 45.82% 10.41% 1.39 

11 Logistic Regression 3.38% 5.65% 3.15% 45.73% 10.39% 1.39 

12 Hinch and Talwar 3.81% 6.43% 4.19% 41.32% 10.16% 1.25 

13 Holland and Welsch 3.81% 6.52% 4.22% 40.28% 10.05% 1.23 

14 

Regularisation 

Lasso 5.40% 3.90% 5.38% 73.73% 14.29% 1.68 

15 Ridge Regression 9.80% 4.31% 5.73% 73.57% 15.11% 1.57 

16 Elastic Nets 5.40% 3.90% 5.38% 73.73% 14.29% 1.68 

17 

Stepwise 

Interaction 
Bounded Steps 17.90% 5.90% 4.56% 21.93% 8.49% 0.85 

18 Unbounded Steps 20.06% 5.89% 4.58% 21.78% 8.83% 0.85 

19 
Purequadratic 

Bounded Steps 5.56% 3.44% 5.45% 74.80% 14.63% 1.67 

20 Unbounded Steps 18.33% 5.53% 4.40% 21.54% 8.42% 0.85 

21 
Quadratic 

Bounded Steps 13.20% 5.34% 4.21% 20.05% 7.47% 0.80 

22 Unbounded Steps 18.26% 5.52% 4.39% 21.54% 8.41% 0.85 

23 
Polynomial 

Bounded Steps 2.85% 2.04% 2.36% 8.09% 3.28% 0.61 

24 Unbounded Steps 8.98% 14.76% 2.12% 3.06% 10.57% 1.11 
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Figure H.26: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Training Set I-II-A-8,3,4,7 
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Table H.27: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor  
1

min



e  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.97% 33.20% 6.77% 4.02% 

2 
Bootstrap 
Aggregating 15.60% 18.41% 3.53% 5.64% 

3 Neural Network Feedforward 4.61% 3.87% 2.16% 2.91% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.81% 9.26% 8.40% 6.05% 

7 Andrews 5.81% 9.26% 8.40% 6.05% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 5.99% 

9 Fair by Rey 5.62% 8.81% 7.89% 4.43% 

10 Huber 5.58% 8.98% 8.05% 5.03% 

11 Logistic Regression 5.57% 8.95% 8.02% 4.95% 

12 Hinch and Talwar 5.81% 9.26% 8.39% 6.05% 

13 Holland and Welsch 5.81% 9.26% 8.40% 6.05% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.79% 8.65% 7.66% 4.89% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 3.65% 5.27% 3.28% 4.90% 

18 Unbounded Steps 3.66% 5.54% 3.22% 4.93% 

19 
Purequadratic 

Bounded Steps 6.17% 8.88% 7.80% 4.39% 

20 Unbounded Steps 3.67% 5.16% 3.30% 4.81% 

21 
Quadratic 

Bounded Steps 3.65% 5.44% 3.79% 4.21% 

22 Unbounded Steps 3.66% 5.54% 3.22% 4.93% 

23 
Polynomial 

Bounded Steps 34.98% 8.78% 1.89% 2.37% 

24 Unbounded Steps         
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Table H.27: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1

min



e  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

40.95% 24.75% 104.70% 79.94% 37.66% 0.98 

2 
Bootstrap 
Aggregating 61.35% 78.81% 64.82% 3.86% 31.50% 1.00 

3 Neural Network Feedforward 5.12% 28.20% 30.48% 7.50% 10.61% 1.10 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.89% 9.78% 11.59% 2.31% 7.64% 0.38 

7 Andrews 7.89% 9.78% 11.59% 2.31% 7.64% 0.38 

8 
Cauchy M-estimators 
by Moore 7.79% 9.77% 11.55% 2.36% 7.61% 0.37 

9 Fair by Rey 4.31% 8.03% 7.42% 32.80% 9.91% 0.95 

10 Huber 5.85% 9.35% 9.89% 16.76% 8.69% 0.43 

11 Logistic Regression 5.66% 9.20% 9.58% 18.61% 8.82% 0.49 

12 Hinch and Talwar 7.89% 9.77% 11.58% 2.30% 7.63% 0.38 

13 Holland and Welsch 7.88% 9.78% 11.59% 2.30% 7.63% 0.38 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 9.21% 3.90% 7.85% 87.34% 16.91% 1.69 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 15.04% 27.60% 26.27% 9.99% 12.00% 0.83 

18 Unbounded Steps 15.63% 5.20% 7.55% 11.51% 7.16% 0.60 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.66% 1.73 

20 Unbounded Steps 14.66% 3.75% 6.62% 10.76% 6.59% 0.62 

21 
Quadratic 

Bounded Steps 4.88% 5.49% 8.42% 39.95% 9.48% 1.31 

22 Unbounded Steps 15.63% 5.20% 7.55% 11.51% 7.16% 0.60 

23 
Polynomial 

Bounded Steps 5.15% 26.45% 37.56% 3.02% 15.03% 1.02 

24 Unbounded Steps             
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Figure H.27: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1

min
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Table H.28: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor   
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.31% 73.08% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 8.20% 7.61% 2.74% 3.93% 

3 Neural Network Feedforward 14.34% 7.47% 1.48% 1.57% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.81% 9.26% 8.40% 6.04% 

7 Andrews 5.81% 9.26% 8.40% 6.04% 

8 
Cauchy M-estimators 
by Moore 5.82% 9.25% 8.39% 5.99% 

9 Fair by Rey 5.64% 8.82% 7.88% 4.37% 

10 Huber 5.58% 8.96% 8.04% 5.01% 

11 Logistic Regression 5.57% 8.94% 8.01% 4.91% 

12 Hinch and Talwar 5.81% 9.26% 8.40% 6.04% 

13 Holland and Welsch 5.81% 9.26% 8.40% 6.04% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.77% 8.62% 7.61% 5.00% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 3.49% 4.80% 3.48% 4.44% 

18 Unbounded Steps 3.71% 5.26% 3.34% 5.11% 

19 
Purequadratic 

Bounded Steps 6.17% 8.88% 7.80% 4.39% 

20 Unbounded Steps 3.64% 5.02% 3.31% 5.00% 

21 
Quadratic 

Bounded Steps 3.28% 4.88% 3.48% 4.72% 

22 Unbounded Steps 3.71% 5.17% 3.28% 4.98% 

23 
Polynomial 

Bounded Steps 3.14% 3.56% 2.08% 2.69% 

24 Unbounded Steps 53.23% 27.51% 16.01% 54.46% 
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Table H.28: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor   (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 19.51% 79.58% 73.86% 37.35% 0.89 

2 
Bootstrap 
Aggregating 55.20% 68.16% 49.11% 3.61% 24.82% 1.11 

3 Neural Network Feedforward 7.41% 503.01% 734.64% 2.85% 159.10% 1.83 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.86% 10.68% 13.00% 2.30% 7.92% 0.41 

7 Andrews 7.86% 10.68% 13.00% 2.30% 7.92% 0.41 

8 
Cauchy M-estimators 
by Moore 7.79% 10.69% 12.98% 2.30% 7.90% 0.41 

9 Fair by Rey 4.32% 12.88% 15.55% 34.46% 11.74% 0.85 

10 Huber 5.84% 11.53% 13.58% 18.10% 9.58% 0.48 

11 Logistic Regression 5.62% 11.43% 13.36% 19.68% 9.69% 0.52 

12 Hinch and Talwar 7.85% 10.72% 13.06% 2.30% 7.93% 0.42 

13 Holland and Welsch 7.86% 10.69% 13.01% 2.30% 7.92% 0.41 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 10.05% 5.98% 8.91% 86.47% 17.30% 1.62 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 11.92% 21.45% 48.15% 32.33% 16.26% 1.02 

18 Unbounded Steps 16.93% 22.81% 23.72% 15.16% 12.01% 0.72 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.66% 1.73 

20 Unbounded Steps 16.55% 11.64% 22.26% 15.33% 10.34% 0.69 

21 
Quadratic 

Bounded Steps 11.64% 9.54% 20.78% 15.43% 9.22% 0.69 

22 Unbounded Steps 16.22% 22.92% 21.93% 14.14% 11.54% 0.72 

23 
Polynomial 

Bounded Steps 3.23% 3.16% 3.45% 3.55% 3.11% 0.16 

24 Unbounded Steps 710.68% 2867.92% 6270.16% 193.91% 1274.24% 1.76 
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Figure H.28: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor   
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Table H.29: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.86% 52.51% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 8.94% 8.45% 3.31% 2.76% 

3 Neural Network Feedforward 5.16% 2.90% 1.66% 1.81% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.76% 9.23% 8.38% 6.04% 

7 Andrews 5.76% 9.23% 8.38% 6.04% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 6.00% 

9 Fair by Rey 5.59% 8.73% 7.90% 4.39% 

10 Huber 5.56% 8.92% 8.05% 4.98% 

11 Logistic Regression 5.56% 8.89% 8.03% 4.90% 

12 Hinch and Talwar 5.76% 9.23% 8.38% 6.04% 

13 Holland and Welsch 5.77% 9.23% 8.38% 6.04% 

14 

Regularisation 

Lasso 5.81% 8.50% 7.45% 4.02% 

15 Ridge Regression 6.23% 9.30% 7.83% 4.53% 

16 Elastic Nets 5.81% 8.50% 7.45% 4.02% 

17 

Stepwise 

Interaction 
Bounded Steps 4.11% 5.22% 3.15% 3.86% 

18 Unbounded Steps 3.95% 5.08% 3.00% 3.82% 

19 
Purequadratic 

Bounded Steps 6.27% 9.32% 7.81% 4.68% 

20 Unbounded Steps 3.87% 5.01% 2.94% 3.79% 

21 
Quadratic 

Bounded Steps 4.07% 5.18% 2.92% 3.68% 

22 Unbounded Steps 4.05% 5.17% 2.91% 3.83% 

23 
Polynomial 

Bounded Steps 2.24% 2.27% 1.58% 1.56% 

24 Unbounded Steps         
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Table H.29: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 33.00% 102.44% 73.86% 39.27% 0.90 

2 
Bootstrap 
Aggregating 45.70% 60.63% 36.85% 3.64% 21.29% 1.08 

3 Neural Network Feedforward 3.31% 31.38% 27.10% 5.33% 9.83% 1.23 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.88% 9.77% 11.58% 2.29% 7.62% 0.38 

7 Andrews 7.88% 9.77% 11.58% 2.29% 7.62% 0.38 

8 
Cauchy M-estimators 
by Moore 7.79% 9.74% 11.53% 2.36% 7.61% 0.37 

9 Fair by Rey 4.39% 7.83% 7.27% 32.60% 9.84% 0.95 

10 Huber 5.78% 9.20% 9.76% 17.85% 8.76% 0.47 

11 Logistic Regression 5.59% 8.98% 9.34% 19.20% 8.81% 0.52 

12 Hinch and Talwar 7.86% 9.76% 11.58% 2.29% 7.61% 0.38 

13 Holland and Welsch 7.87% 9.76% 11.58% 2.29% 7.62% 0.38 

14 

Regularisation 

Lasso 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

15 Ridge Regression 6.94% 3.09% 7.28% 86.92% 16.52% 1.73 

16 Elastic Nets 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

17 

Stepwise 

Interaction 
Bounded Steps 4.45% 2.85% 3.14% 14.42% 5.15% 0.74 

18 Unbounded Steps 8.13% 4.62% 5.12% 3.30% 4.63% 0.35 

19 
Purequadratic 

Bounded Steps 7.54% 2.83% 6.78% 86.36% 16.45% 1.72 

20 Unbounded Steps 8.02% 4.52% 5.05% 5.50% 4.84% 0.32 

21 
Quadratic 

Bounded Steps 6.27% 39.96% 38.27% 3.19% 12.94% 1.25 

22 Unbounded Steps 8.21% 30.58% 29.51% 5.35% 11.20% 1.05 

23 
Polynomial 

Bounded Steps 2.10% 3.25% 3.15% 2.67% 2.35% 0.27 

24 Unbounded Steps             
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Figure H.29: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
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Table H.30: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor log  
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.31% 69.93% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 7.78% 7.44% 2.75% 3.12% 

3 Neural Network Feedforward 4.55% 3.30% 1.93% 2.67% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare   9.25% 8.39% 6.02% 

7 Andrews 5.99% 9.25% 8.39% 6.02% 

8 
Cauchy M-estimators 
by Moore 3.48% 9.24% 8.39% 5.97% 

9 Fair by Rey 5.79% 8.76% 7.83% 4.32% 

10 Huber 5.79% 8.91% 8.00% 4.89% 

11 Logistic Regression 5.80% 8.88% 7.96% 4.78% 

12 Hinch and Talwar 5.59% 9.24% 8.37% 6.02% 

13 Holland and Welsch 5.60% 9.25% 8.39% 6.01% 

14 

Regularisation 

Lasso 5.60% 8.50% 7.45% 4.02% 

15 Ridge Regression 5.78% 8.83% 7.83% 5.02% 

16 Elastic Nets 5.79% 8.50% 7.45% 4.02% 

17 

Stepwise 

Interaction 
Bounded Steps 3.31% 4.40% 2.63% 4.75% 

18 Unbounded Steps 3.46% 4.85% 2.57% 4.78% 

19 
Purequadratic 

Bounded Steps 2.94% 8.88% 7.80% 4.39% 

20 Unbounded Steps 3.43% 4.44% 2.65% 4.75% 

21 
Quadratic 

Bounded Steps 3.31% 4.48% 2.87% 4.79% 

22 Unbounded Steps 3.46% 4.58% 2.64% 4.79% 

23 
Polynomial 

Bounded Steps 2.94% 3.34% 2.07% 2.81% 

24 Unbounded Steps         
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Table H.30: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor log  (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 19.51% 79.58% 73.86% 36.96% 0.88 

2 
Bootstrap 
Aggregating 50.07% 62.37% 39.40% 3.58% 22.06% 1.11 

3 Neural Network Feedforward 7.86% 136.04% 103.47% 4.79% 33.08% 1.64 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.85% 11.53% 13.95% 2.29% 8.47% 0.44 

7 Andrews 7.85% 11.52% 13.94% 2.29% 8.16% 0.44 

8 
Cauchy M-estimators 
by Moore 7.79% 11.26% 13.55% 2.27% 7.74% 0.49 

9 Fair by Rey 5.93% 18.52% 21.74% 34.21% 13.39% 0.79 

10 Huber 6.09% 17.40% 20.94% 19.96% 11.50% 0.59 

11 Logistic Regression 5.96% 18.26% 21.97% 22.30% 11.99% 0.63 

12 Hinch and Talwar 7.84% 11.81% 14.35% 2.32% 8.19% 0.46 

13 Holland and Welsch 7.84% 11.51% 13.92% 2.29% 8.10% 0.45 

14 

Regularisation 

Lasso 6.70% 2.70% 6.01% 80.53% 15.19% 1.74 

15 Ridge Regression 7.36% 12.46% 20.27% 87.85% 19.43% 1.45 

16 Elastic Nets 6.70% 2.70% 6.01% 80.53% 15.21% 1.74 

17 

Stepwise 

Interaction 
Bounded Steps 6.67% 19.69% 34.58% 12.79% 11.10% 1.00 

18 Unbounded Steps 8.29% 58.27% 57.95% 12.67% 19.11% 1.27 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 57.95% 87.67% 22.50% 1.43 

20 Unbounded Steps 6.29% 20.36% 34.39% 13.78% 11.26% 0.99 

21 
Quadratic 

Bounded Steps 7.88% 9.06% 15.89% 10.06% 7.29% 0.60 

22 Unbounded Steps 6.40% 47.26% 51.08% 13.19% 16.68% 1.22 

23 
Polynomial 

Bounded Steps 3.43% 3.67% 3.93% 3.12% 3.16% 0.18 

24 Unbounded Steps             
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Figure H.30: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor log   
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Table H.31: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.86% 35.95% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 8.94% 8.45% 3.31% 2.76% 

3 Neural Network Feedforward 4.47% 2.69% 1.71% 1.99% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.76% 9.23% 8.37% 6.04% 

7 Andrews 5.76% 9.23% 8.37% 6.05% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 6.00% 

9 Fair by Rey 5.63% 8.86% 7.90% 4.48% 

10 Huber 5.57% 8.96% 8.05% 5.02% 

11 Logistic Regression 5.57% 8.96% 8.04% 4.97% 

12 Hinch and Talwar 5.76% 9.23% 8.38% 6.05% 

13 Holland and Welsch 5.77% 9.24% 8.38% 6.04% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.91% 9.01% 7.61% 4.57% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 4.35% 5.60% 3.37% 3.93% 

18 Unbounded Steps 4.14% 5.18% 3.04% 4.03% 

19 
Purequadratic 

Bounded Steps 6.37% 9.36% 7.84% 4.58% 

20 Unbounded Steps 4.14% 5.29% 3.06% 3.84% 

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 4.24% 5.40% 3.03% 4.02% 

23 
Polynomial 

Bounded Steps 1.48% 2.32% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.31: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 33.00% 102.44% 73.86% 37.20% 0.94 

2 
Bootstrap 
Aggregating 45.70% 60.63% 36.85% 3.64% 21.29% 1.08 

3 Neural Network Feedforward 3.87% 9.44% 9.50% 4.17% 4.73% 0.65 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.89% 9.73% 11.55% 2.29% 7.61% 0.38 

7 Andrews 7.89% 9.73% 11.55% 2.29% 7.61% 0.38 

8 
Cauchy M-estimators 
by Moore 7.79% 9.74% 11.53% 2.36% 7.61% 0.37 

9 Fair by Rey 4.35% 7.17% 6.68% 32.17% 9.66% 0.96 

10 Huber 5.85% 9.06% 9.68% 17.39% 8.70% 0.45 

11 Logistic Regression 5.73% 8.81% 9.25% 17.87% 8.65% 0.47 

12 Hinch and Talwar 7.89% 9.73% 11.54% 2.30% 7.61% 0.38 

13 Holland and Welsch 7.88% 9.74% 11.55% 2.29% 7.61% 0.38 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 7.43% 4.75% 8.36% 86.05% 16.71% 1.68 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 3.53% 3.27% 17.50% 5.74% 0.84 

18 Unbounded Steps 11.13% 6.39% 6.79% 2.60% 5.41% 0.51 

19 
Purequadratic 

Bounded Steps 7.58% 2.79% 6.89% 86.49% 16.49% 1.72 

20 Unbounded Steps 9.74% 7.37% 8.20% 5.61% 5.91% 0.39 

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 10.94% 32.12% 31.36% 3.03% 11.77% 1.07 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.12% 0.19 

24 Unbounded Steps             
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Figure H.31: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
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Table H.32: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor c  
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.82% 34.78% 6.24% 4.33% 

2 
Bootstrap 
Aggregating 18.67% 17.39% 3.74% 9.67% 

3 Neural Network Feedforward 4.31% 3.73% 1.96% 3.40% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 84.61% 83.84% 82.75% 38.05% 

7 Andrews 84.60% 83.84% 82.75% 38.05% 

8 
Cauchy M-estimators 
by Moore 85.74% 83.47% 82.63% 22.00% 

9 Fair by Rey 84.56% 78.89% 76.47% 32.79% 

10 Huber 84.67% 81.24% 79.76% 26.47% 

11 Logistic Regression 84.59% 80.98% 79.42% 27.05% 

12 Hinch and Talwar 84.78% 83.90% 82.76% 38.19% 

13 Holland and Welsch 84.57% 83.82% 82.74% 38.01% 

14 

Regularisation 

Lasso 82.49% 81.60% 80.03% 48.04% 

15 Ridge Regression 65.55% 75.40% 77.46% 80.38% 

16 Elastic Nets 82.49% 81.60% 80.03% 48.04% 

17 

Stepwise 

Interaction 
Bounded Steps 3.61% 5.38% 3.58% 5.40% 

18 Unbounded Steps 43.61% 17.92% 5.52% 12.87% 

19 
Purequadratic 

Bounded Steps 6.17% 8.88% 7.80% 4.39% 

20 Unbounded Steps 85.34% 61.92% 51.28% 109.63% 

21 
Quadratic 

Bounded Steps 3.50% 5.47% 4.19% 3.49% 

22 Unbounded Steps 85.37% 61.92% 51.28% 109.50% 

23 
Polynomial 

Bounded Steps 3.14% 3.56% 2.08% 2.69% 

24 Unbounded Steps         
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Table H.32: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor c  (cont.) 
 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

43.20% 23.83% 104.72% 76.33% 37.53% 0.97 

2 
Bootstrap 
Aggregating 74.24% 75.47% 59.30% 3.78% 32.78% 0.96 

3 Neural Network Feedforward 5.17% 25.34% 24.07% 12.35% 10.04% 0.95 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 61.16% 87.78% 79.92% 3.70% 65.23% 0.46 

7 Andrews 61.14% 87.78% 79.92% 3.69% 65.22% 0.46 

8 
Cauchy M-estimators 
by Moore 62.20% 87.78% 80.15% 6.36% 63.79% 0.50 

9 Fair by Rey 117.97% 87.79% 80.48% 12.41% 71.42% 0.47 

10 Huber 87.94% 87.74% 80.35% 11.70% 67.48% 0.45 

11 Logistic Regression 91.04% 87.75% 80.40% 12.24% 67.93% 0.45 

12 Hinch and Talwar 61.10% 87.77% 79.90% 3.63% 65.25% 0.46 

13 Holland and Welsch 61.25% 87.78% 79.94% 3.81% 65.24% 0.46 

14 

Regularisation 

Lasso 86.16% 30.44% 123.48% 1012.78% 193.13% 1.72 

15 Ridge Regression 109.44% 35.31% 24.63% 478.40% 118.32% 1.25 

16 Elastic Nets 86.16% 30.44% 123.48% 1012.78% 193.13% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 17.03% 38.48% 37.56% 2.88% 14.24% 1.08 

18 Unbounded Steps 28.52% 462.65% 435.84% 13.40% 127.54% 1.56 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.66% 1.73 

20 Unbounded Steps 350.07% 87.25% 82.40% 89.28% 114.65% 0.84 

21 
Quadratic 

Bounded Steps 3.29% 2.69% 4.05% 44.95% 8.95% 1.63 

22 Unbounded Steps 350.07% 87.02% 82.51% 88.34% 114.50% 0.85 

23 
Polynomial 

Bounded Steps 3.23% 3.16% 3.45% 3.55% 3.11% 0.16 

24 Unbounded Steps             
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Figure H.32: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor c  
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Table H.33: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 1c  
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.82% 35.75% 6.26% 4.29% 

2 
Bootstrap 
Aggregating 20.02% 17.17% 3.70% 9.60% 

3 Neural Network Feedforward 18.47% 4.21% 1.83% 2.35% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 81.99% 83.78% 82.75% 38.05% 

7 Andrews 81.98% 83.78% 82.75% 38.05% 

8 
Cauchy M-estimators 
by Moore 85.56% 83.47% 82.63% 22.00% 

9 Fair by Rey 83.52% 78.87% 76.47% 32.79% 

10 Huber 83.88% 81.23% 79.76% 26.47% 

11 Logistic Regression 83.80% 80.96% 79.42% 27.05% 

12 Hinch and Talwar 82.14% 83.84% 82.76% 38.19% 

13 Holland and Welsch 81.95% 83.76% 82.74% 38.01% 

14 

Regularisation 

Lasso 79.44% 81.54% 80.03% 48.04% 

15 Ridge Regression 65.98% 75.41% 77.46% 80.38% 

16 Elastic Nets 79.44% 81.54% 80.03% 48.04% 

17 

Stepwise 

Interaction 
Bounded Steps 3.61% 5.38% 3.58% 5.40% 

18 Unbounded Steps         

19 
Purequadratic 

Bounded Steps 6.17% 8.88% 7.80% 4.39% 

20 Unbounded Steps 81.83% 61.88% 51.28% 109.63% 

21 
Quadratic 

Bounded Steps 3.50% 5.47% 4.19% 3.49% 

22 Unbounded Steps 81.81% 61.88% 51.28% 109.50% 

23 
Polynomial 

Bounded Steps 3.14% 3.56% 2.08% 2.69% 

24 Unbounded Steps         
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Table H.33: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 1c  (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

42.27% 26.68% 109.91% 78.20% 38.77% 0.98 

2 
Bootstrap 
Aggregating 77.10% 78.25% 63.88% 3.66% 34.17% 0.97 

3 Neural Network Feedforward 4.37% 68.58% 66.14% 3.02% 21.12% 1.38 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 61.16% 87.78% 79.92% 3.70% 64.89% 0.46 

7 Andrews 61.14% 87.78% 79.92% 3.69% 64.89% 0.46 

8 
Cauchy M-estimators 
by Moore 62.20% 87.78% 80.15% 6.36% 63.77% 0.50 

9 Fair by Rey 117.97% 87.79% 80.48% 12.41% 71.29% 0.47 

10 Huber 87.94% 87.74% 80.35% 11.70% 67.38% 0.45 

11 Logistic Regression 91.04% 87.75% 80.40% 12.24% 67.83% 0.45 

12 Hinch and Talwar 61.10% 87.77% 79.90% 3.63% 64.92% 0.46 

13 Holland and Welsch 61.25% 87.78% 79.94% 3.81% 64.91% 0.46 

14 

Regularisation 

Lasso 86.16% 30.44% 123.48% 1012.78% 192.74% 1.73 

15 Ridge Regression 109.44% 35.31% 24.63% 478.40% 118.38% 1.25 

16 Elastic Nets 86.16% 30.44% 123.48% 1012.78% 192.74% 1.73 

17 

Stepwise 

Interaction 
Bounded Steps 17.03% 38.48% 37.56% 2.88% 14.24% 1.08 

18 Unbounded Steps             

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.66% 1.73 

20 Unbounded Steps 350.07% 87.25% 82.40% 89.28% 114.20% 0.85 

21 
Quadratic 

Bounded Steps 3.29% 2.69% 4.05% 44.95% 8.95% 1.63 

22 Unbounded Steps 350.07% 87.02% 82.51% 88.34% 114.05% 0.85 

23 
Polynomial 

Bounded Steps 3.23% 3.16% 3.45% 3.55% 3.11% 0.16 

24 Unbounded Steps             
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Figure H.33: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 1c  
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Table H.34: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor clog  
 

 

  
  ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.23% 35.45% 6.23% 4.41% 

2 
Bootstrap 
Aggregating 14.76% 12.69% 3.77% 9.72% 

3 Neural Network Feedforward 5.35% 4.47% 1.91% 2.39% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 84.20% 83.83% 82.75% 38.05% 

7 Andrews 84.19% 83.83% 82.75% 38.05% 

8 
Cauchy M-estimators 
by Moore 85.52% 83.46% 82.63% 22.00% 

9 Fair by Rey 84.28% 78.88% 76.47% 32.79% 

10 Huber 84.40% 81.24% 79.76% 26.47% 

11 Logistic Regression 84.32% 80.97% 79.42% 27.05% 

12 Hinch and Talwar 84.38% 83.89% 82.76% 38.19% 

13 Holland and Welsch 84.15% 83.81% 82.74% 38.01% 

14 

Regularisation 

Lasso 82.02% 81.60% 80.03% 48.04% 

15 Ridge Regression 64.95% 75.39% 77.46% 80.38% 

16 Elastic Nets 82.02% 81.60% 80.03% 48.04% 

17 

Stepwise 

Interaction 
Bounded Steps 2.94% 5.36% 3.58% 5.40% 

18 Unbounded Steps 43.34% 17.91% 5.52% 12.87% 

19 
Purequadratic 

Bounded Steps 5.56% 8.86% 7.80% 4.39% 

20 Unbounded Steps 84.89% 61.89% 51.28% 109.63% 

21 
Quadratic 

Bounded Steps 2.78% 5.45% 4.19% 3.49% 

22 Unbounded Steps 84.92% 61.90% 51.28% 109.50% 

23 
Polynomial 

Bounded Steps 2.48% 3.54% 2.08% 2.69% 

24 Unbounded Steps         
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Table H.34: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor clog  (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

43.85% 24.17% 105.62% 76.02% 37.75% 0.97 

2 
Bootstrap 
Aggregating 77.09% 81.06% 68.55% 3.89% 33.94% 1.03 

3 Neural Network Feedforward 5.41% 69.37% 60.06% 2.99% 18.99% 1.49 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 61.16% 87.78% 79.92% 3.70% 65.17% 0.46 

7 Andrews 61.14% 87.78% 79.92% 3.69% 65.17% 0.46 

8 
Cauchy M-estimators 
by Moore 62.20% 87.78% 80.15% 6.36% 63.76% 0.50 

9 Fair by Rey 117.97% 87.79% 80.48% 12.41% 71.38% 0.47 

10 Huber 87.94% 87.74% 80.35% 11.70% 67.45% 0.45 

11 Logistic Regression 91.04% 87.75% 80.40% 12.24% 67.90% 0.45 

12 Hinch and Talwar 61.10% 87.77% 79.90% 3.63% 65.20% 0.46 

13 Holland and Welsch 61.25% 87.78% 79.94% 3.81% 65.19% 0.46 

14 

Regularisation 

Lasso 86.16% 30.44% 123.48% 1012.78% 193.07% 1.72 

15 Ridge Regression 109.44% 35.31% 24.63% 478.40% 118.25% 1.25 

16 Elastic Nets 86.16% 30.44% 123.48% 1012.78% 193.07% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 17.03% 38.48% 37.56% 2.88% 14.15% 1.09 

18 Unbounded Steps 28.52% 462.65% 435.84% 13.40% 127.51% 1.56 

19 
Purequadratic 

Bounded Steps 6.32% 4.05% 7.98% 87.67% 16.58% 1.74 

20 Unbounded Steps 350.07% 87.25% 82.40% 89.28% 114.59% 0.84 

21 
Quadratic 

Bounded Steps 3.29% 2.69% 4.05% 44.95% 8.86% 1.65 

22 Unbounded Steps 350.07% 87.02% 82.51% 88.34% 114.44% 0.85 

23 
Polynomial 

Bounded Steps 3.23% 3.16% 3.45% 3.55% 3.02% 0.18 

24 Unbounded Steps            
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Figure H.34: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor clog  
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Table H.35: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 

1
min




e  
 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.87% 38.17% 6.39% 3.79% 

2 
Bootstrap 
Aggregating 9.05% 8.20% 3.19% 2.96% 

3 Neural Network Feedforward 7.53% 8.66% 5.59% 11.73% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.76% 9.23% 8.37% 6.04% 

7 Andrews 5.76% 9.23% 8.37% 6.05% 

8 
Cauchy M-estimators 
by Moore 5.81% 9.25% 8.39% 6.00% 

9 Fair by Rey 5.65% 8.89% 7.88% 4.48% 

10 Huber 5.58% 8.97% 8.05% 5.03% 

11 Logistic Regression 5.57% 8.95% 8.03% 4.95% 

12 Hinch and Talwar 5.76% 9.23% 8.37% 6.05% 

13 Holland and Welsch 5.77% 9.24% 8.38% 6.04% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.91% 9.02% 7.60% 4.57% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 4.35% 5.60% 3.37% 3.93% 

18 Unbounded Steps 4.30% 5.22% 3.04% 3.94% 

19 
Purequadratic 

Bounded Steps 6.43% 9.44% 7.80% 4.54% 

20 Unbounded Steps 4.14% 5.29% 3.06% 3.84% 

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 4.38% 5.43% 3.03% 3.99% 

23 
Polynomial 

Bounded Steps 1.51% 2.33% 1.74% 1.74% 

24 Unbounded Steps         
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Table H.35: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  , 

1
min




e  (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

38.85% 34.65% 107.49% 74.58% 38.85% 0.94 

2 
Bootstrap 
Aggregating 46.61% 66.17% 45.65% 3.62% 23.18% 1.10 

3 Neural Network Feedforward 32.43% 12.82% 16.62% 52.36% 18.47% 0.87 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.89% 9.75% 11.56% 2.29% 7.61% 0.38 

7 Andrews 7.89% 9.75% 11.56% 2.29% 7.61% 0.38 

8 
Cauchy M-estimators 
by Moore 7.79% 9.77% 11.55% 2.36% 7.62% 0.37 

9 Fair by Rey 4.40% 8.10% 7.50% 32.45% 9.92% 0.93 

10 Huber 5.86% 9.38% 9.94% 16.93% 8.72% 0.44 

11 Logistic Regression 5.69% 9.21% 9.61% 18.43% 8.81% 0.49 

12 Hinch and Talwar 7.88% 9.74% 11.56% 2.29% 7.61% 0.38 

13 Holland and Welsch 7.88% 9.75% 11.56% 2.29% 7.61% 0.38 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 7.49% 5.24% 8.59% 85.90% 16.79% 1.67 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 3.53% 3.27% 17.50% 5.74% 0.84 

18 Unbounded Steps 10.61% 16.81% 17.04% 3.53% 8.06% 0.74 

19 
Purequadratic 

Bounded Steps 7.49% 6.11% 8.97% 86.25% 17.13% 1.63 

20 Unbounded Steps 9.74% 7.37% 8.20% 5.61% 5.91% 0.39 

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 11.23% 41.46% 40.34% 6.06% 14.49% 1.14 

23 
Polynomial 

Bounded Steps 2.53% 2.44% 3.02% 2.90% 2.28% 0.25 

24 Unbounded Steps           
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Figure H.35: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,

1
min




e   
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Table H.36: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,   

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.37% 74.62% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 9.00% 8.74% 3.49% 3.02% 

3 Neural Network Feedforward 3.97% 2.65% 1.62% 1.93% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.77% 9.23% 8.38% 6.04% 

7 Andrews 5.77% 9.23% 8.38% 6.04% 

8 
Cauchy M-estimators 
by Moore 5.82% 9.25% 8.39% 5.99% 

9 Fair by Rey 5.66% 8.88% 7.88% 4.41% 

10 Huber 5.57% 8.95% 8.04% 5.00% 

11 Logistic Regression 5.57% 8.93% 8.01% 4.91% 

12 Hinch and Talwar 5.77% 9.24% 8.38% 6.04% 

13 Holland and Welsch 5.77% 9.24% 8.38% 6.04% 

14 

Regularisation 

Lasso 5.87% 8.42% 7.37% 3.77% 

15 Ridge Regression 5.91% 9.01% 7.61% 4.57% 

16 Elastic Nets 5.87% 8.42% 7.37% 3.77% 

17 

Stepwise 

Interaction 
Bounded Steps 4.35% 5.60% 3.37% 3.93% 

18 Unbounded Steps 4.17% 5.21% 3.00% 3.99% 

19 
Purequadratic 

Bounded Steps 6.37% 9.36% 7.84% 4.58% 

20 Unbounded Steps 4.02% 5.19% 3.03% 3.91% 

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 4.26% 5.41% 3.02% 4.02% 

23 
Polynomial 

Bounded Steps 1.48% 2.32% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.36: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,   (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 16.98% 75.28% 73.86% 36.70% 0.90 

2 
Bootstrap 
Aggregating 44.64% 52.29% 25.28% 3.67% 18.77% 1.05 

3 Neural Network Feedforward 5.36% 271.77% 320.85% 5.44% 76.70% 1.78 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.85% 10.61% 12.90% 2.30% 7.89% 0.41 

7 Andrews 7.85% 10.61% 12.89% 2.30% 7.88% 0.41 

8 
Cauchy M-estimators 
by Moore 7.79% 10.69% 12.99% 2.30% 7.90% 0.41 

9 Fair by Rey 4.36% 12.91% 15.74% 33.94% 11.72% 0.84 

10 Huber 5.84% 11.48% 13.45% 18.22% 9.57% 0.48 

11 Logistic Regression 5.63% 11.38% 13.26% 19.62% 9.66% 0.52 

12 Hinch and Talwar 7.84% 10.69% 13.02% 2.31% 7.91% 0.41 

13 Holland and Welsch 7.85% 10.64% 12.93% 2.29% 7.89% 0.41 

14 

Regularisation 

Lasso 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

15 Ridge Regression 7.43% 4.75% 8.36% 86.05% 16.71% 1.68 

16 Elastic Nets 6.89% 4.31% 7.51% 84.10% 16.03% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 3.53% 3.27% 17.50% 5.74% 0.84 

18 Unbounded Steps 10.68% 8.01% 8.94% 2.85% 5.86% 0.51 

19 
Purequadratic 

Bounded Steps 7.58% 2.79% 6.89% 86.49% 16.49% 1.72 

20 Unbounded Steps 7.37% 7.20% 12.97% 12.35% 7.01% 0.54 

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 9.83% 11.65% 17.15% 8.76% 8.01% 0.60 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.12% 0.19 

24 Unbounded Steps           
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Figure H.36: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,   
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Table H.37: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 

1  
 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.86% 52.51% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 9.15% 9.09% 3.59% 2.91% 

3 Neural Network Feedforward 11.57% 9.37% 1.48% 1.81% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.90% 9.30% 8.46% 6.01% 

7 Andrews 6.05% 9.39% 8.25% 6.03% 

8 
Cauchy M-estimators 
by Moore 5.83% 9.26% 8.41% 5.99% 

9 Fair by Rey 5.61% 8.86% 7.82% 4.47% 

10 Huber 5.62% 8.99% 8.04% 5.02% 

11 Logistic Regression 5.63% 8.99% 8.02% 4.97% 

12 Hinch and Talwar 5.78% 9.24% 8.37% 6.02% 

13 Holland and Welsch 5.89% 9.30% 8.45% 6.01% 

14 

Regularisation 

Lasso 5.81% 8.50% 7.45% 4.02% 

15 Ridge Regression 6.25% 9.28% 7.85% 4.54% 

16 Elastic Nets 5.81% 8.50% 7.45% 4.02% 

17 

Stepwise 

Interaction 
Bounded Steps 4.11% 5.22% 3.15% 3.86% 

18 Unbounded Steps 4.52% 4.87% 2.34% 3.86% 

19 
Purequadratic 

Bounded Steps 6.27% 9.32% 7.81% 4.68% 

20 Unbounded Steps 4.37% 4.36% 2.36% 3.80% 

21 
Quadratic 

Bounded Steps 4.34% 4.32% 2.36% 3.79% 

22 Unbounded Steps 4.52% 4.89% 2.33% 3.82% 

23 
Polynomial 

Bounded Steps 16.38% 4.98% 1.45% 1.42% 

24 Unbounded Steps         
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Table H.37: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 

1  (cont.) 
 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 33.00% 102.44% 73.86% 39.27% 0.90 

2 
Bootstrap 
Aggregating 44.82% 55.11% 29.86% 3.70% 19.78% 1.05 

3 Neural Network Feedforward 8.59% 29.42% 35.24% 3.43% 12.61% 1.01 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.87% 10.44% 12.21% 2.30% 7.81% 0.39 

7 Andrews 7.86% 11.00% 12.83% 2.28% 7.96% 0.41 

8 
Cauchy M-estimators 
by Moore 7.80% 9.84% 11.62% 2.35% 7.64% 0.38 

9 Fair by Rey 5.16% 9.20% 8.71% 31.03% 10.11% 0.86 

10 Huber 6.06% 10.01% 10.60% 16.59% 8.87% 0.42 

11 Logistic Regression 5.98% 9.94% 10.38% 17.07% 8.87% 0.44 

12 Hinch and Talwar 7.84% 10.11% 11.88% 2.28% 7.69% 0.39 

13 Holland and Welsch 7.86% 10.40% 12.18% 2.30% 7.80% 0.39 

14 

Regularisation 

Lasso 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

15 Ridge Regression 6.96% 3.01% 7.23% 87.07% 16.52% 1.73 

16 Elastic Nets 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

17 

Stepwise 

Interaction 
Bounded Steps 4.45% 2.85% 3.14% 14.42% 5.15% 0.74 

18 Unbounded Steps 5.56% 103.03% 97.72% 4.33% 28.28% 1.57 

19 
Purequadratic 

Bounded Steps 7.54% 2.83% 6.78% 86.36% 16.45% 1.72 

20 Unbounded Steps 4.60% 15.93% 15.85% 6.01% 7.16% 0.77 

21 
Quadratic 

Bounded Steps 4.18% 14.34% 14.13% 3.15% 6.33% 0.78 

22 Unbounded Steps 5.91% 104.15% 98.88% 6.25% 28.84% 1.56 

23 
Polynomial 

Bounded Steps 3.41% 4.88% 6.35% 2.46% 5.17% 0.94 

24 Unbounded Steps           
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Figure H.37: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,
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Table H.38: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , log  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

7.37% 71.46% 6.49% 3.76% 

2 
Bootstrap 
Aggregating 9.00% 8.74% 3.49% 3.01% 

3 Neural Network Feedforward 2.65% 2.66% 1.53% 1.43% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 5.78% 9.24% 8.38% 6.02% 

7 Andrews 5.78% 9.24% 8.38% 6.02% 

8 
Cauchy M-estimators 
by Moore 5.83% 9.26% 8.40% 5.97% 

9 Fair by Rey 5.61% 8.86% 7.82% 4.37% 

10 Huber 5.62% 8.95% 7.99% 4.92% 

11 Logistic Regression 5.63% 8.94% 7.96% 4.81% 

12 Hinch and Talwar 5.82% 9.26% 8.41% 6.02% 

13 Holland and Welsch 5.78% 9.24% 8.38% 6.01% 

14 

Regularisation 

Lasso 5.81% 8.50% 7.45% 4.02% 

15 Ridge Regression 6.04% 9.08% 7.77% 4.84% 

16 Elastic Nets 5.81% 8.50% 7.45% 4.02% 

17 

Stepwise 

Interaction 
Bounded Steps 4.49% 4.77% 2.89% 4.57% 

18 Unbounded Steps 3.80% 4.69% 2.68% 4.51% 

19 
Purequadratic 

Bounded Steps 6.37% 9.36% 7.84% 4.58% 

20 Unbounded Steps 3.78% 4.87% 2.72% 4.51% 

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 4.18% 4.88% 2.72% 4.49% 

23 
Polynomial 

Bounded Steps 1.48% 2.32% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.38: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  , log  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

35.21% 16.98% 75.28% 73.86% 36.30% 0.89 

2 
Bootstrap 
Aggregating 44.64% 52.29% 25.28% 3.67% 18.77% 1.05 

3 Neural Network Feedforward 5.10% 67.10% 62.91% 2.62% 18.25% 1.58 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.84% 11.40% 13.78% 2.28% 8.09% 0.44 

7 Andrews 7.84% 11.39% 13.77% 2.28% 8.09% 0.44 

8 
Cauchy M-estimators 
by Moore 7.80% 11.35% 13.68% 2.27% 8.07% 0.44 

9 Fair by Rey 5.88% 18.75% 22.21% 33.19% 13.34% 0.78 

10 Huber 6.18% 17.79% 21.55% 19.74% 11.59% 0.60 

11 Logistic Regression 6.05% 18.76% 22.76% 21.88% 12.10% 0.63 

12 Hinch and Talwar 7.85% 11.78% 14.28% 2.31% 8.22% 0.45 

13 Holland and Welsch 7.84% 11.43% 13.82% 2.28% 8.10% 0.44 

14 

Regularisation 

Lasso 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

15 Ridge Regression 7.58% 8.93% 15.04% 87.12% 18.30% 1.53 

16 Elastic Nets 6.70% 2.70% 6.01% 80.53% 15.22% 1.74 

17 

Stepwise 

Interaction 
Bounded Steps 8.45% 49.53% 54.40% 12.23% 17.67% 1.21 

18 Unbounded Steps 6.06% 26.78% 35.55% 10.62% 11.84% 1.05 

19 
Purequadratic 

Bounded Steps 7.58% 2.79% 6.89% 86.49% 16.49% 1.72 

20 Unbounded Steps 5.85% 20.00% 29.53% 11.72% 10.37% 0.93 

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 7.47% 28.49% 32.13% 11.74% 12.01% 0.97 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.12% 0.19 

24 Unbounded Steps             
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Figure H.38: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , log  
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Table H.39: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , c  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.78% 37.50% 6.01% 4.22% 

2 
Bootstrap 
Aggregating 8.89% 7.90% 2.77% 3.56% 

3 Neural Network Feedforward 4.45% 3.24% 1.88% 1.77% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 83.58% 80.82% 79.50% 23.57% 

7 Andrews 83.58% 80.82% 79.50% 23.56% 

8 
Cauchy M-estimators 
by Moore 82.80% 80.09% 79.03% 21.34% 

9 Fair by Rey 76.29% 73.74% 72.66% 33.88% 

10 Huber 78.45% 76.55% 75.73% 25.93% 

11 Logistic Regression 78.22% 76.34% 75.54% 26.56% 

12 Hinch and Talwar 83.40% 81.15% 79.77% 29.00% 

13 Holland and Welsch 83.48% 80.77% 79.46% 23.54% 

14 

Regularisation 

Lasso 82.49% 81.60% 80.03% 48.04% 

15 Ridge Regression 5.91% 9.01% 7.61% 4.57% 

16 Elastic Nets 82.49% 81.60% 80.03% 48.04% 

17 

Stepwise 

Interaction 
Bounded Steps 4.35% 5.60% 3.37% 3.93% 

18 Unbounded Steps 48.54% 23.79% 11.54% 16.52% 

19 
Purequadratic 

Bounded Steps 6.37% 9.36% 7.84% 4.58% 

20 Unbounded Steps 26.42% 16.92% 13.17% 23.61% 

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 29.57% 18.36% 13.58% 26.16% 

23 
Polynomial 

Bounded Steps 1.48% 2.32% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.39: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  , c  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

44.74% 20.17% 94.97% 71.64% 35.75% 0.94 

2 
Bootstrap 
Aggregating 51.47% 59.54% 35.32% 3.84% 21.66% 1.08 

3 Neural Network Feedforward 2.62% 91.89% 81.01% 3.60% 23.81% 1.63 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 59.54% 84.22% 76.63% 3.68% 61.44% 0.50 

7 Andrews 59.55% 84.22% 76.63% 3.65% 61.44% 0.50 

8 
Cauchy M-estimators 
by Moore 59.27% 83.71% 76.38% 6.59% 61.15% 0.50 

9 Fair by Rey 99.00% 82.06% 77.25% 51.99% 70.86% 0.28 

10 Huber 75.78% 82.10% 76.42% 42.26% 66.65% 0.31 

11 Logistic Regression 77.30% 82.22% 76.42% 36.79% 66.17% 0.33 

12 Hinch and Talwar 58.39% 84.36% 76.74% 3.58% 62.05% 0.49 

13 Holland and Welsch 59.50% 84.18% 76.62% 3.94% 61.44% 0.50 

14 

Regularisation 

Lasso 86.16% 30.44% 123.48% 1012.78% 193.13% 1.72 

15 Ridge Regression 7.43% 4.75% 8.36% 86.05% 16.71% 1.68 

16 Elastic Nets 86.16% 30.44% 123.48% 1012.78% 193.13% 1.72 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 3.53% 3.27% 17.50% 5.74% 0.84 

18 Unbounded Steps 38.92% 425.60% 396.61% 64.70% 128.28% 1.37 

19 
Purequadratic 

Bounded Steps 7.58% 2.79% 6.89% 86.49% 16.49% 1.72 

20 Unbounded Steps 28.67% 90.58% 84.60% 82.02% 45.75% 0.73 

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 45.72% 60.32% 56.80% 15.45% 33.25% 0.56 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.12% 0.19 

24 Unbounded Steps           



APPENDICES 

 
A-139 

 

 

Figure H.39: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e ,c   
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Table H.40: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 1c  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.90% 39.81% 6.02% 4.26% 

2 
Bootstrap 
Aggregating 9.39% 8.17% 2.92% 3.42% 

3 Neural Network Feedforward 33.45% 3.54% 1.62% 1.77% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 82.68% 80.80% 79.50% 23.57% 

7 Andrews 82.68% 80.80% 79.50% 23.56% 

8 
Cauchy M-estimators 
by Moore 82.65% 80.09% 79.03% 21.34% 

9 Fair by Rey 75.96% 73.73% 72.66% 33.88% 

10 Huber 78.14% 76.54% 75.73% 25.93% 

11 Logistic Regression 77.93% 76.34% 75.54% 26.56% 

12 Hinch and Talwar 81.75% 81.12% 79.77% 29.00% 

13 Holland and Welsch 82.58% 80.75% 79.46% 23.54% 

14 

Regularisation 

Lasso 79.44% 81.54% 80.03% 48.04% 

15 Ridge Regression 5.91% 9.01% 7.61% 4.57% 

16 Elastic Nets 79.44% 81.54% 80.03% 48.04% 

17 

Stepwise 

Interaction 
Bounded Steps 4.35% 5.60% 3.37% 3.93% 

18 Unbounded Steps         

19 
Purequadratic 

Bounded Steps 6.37% 9.36% 7.84% 4.58% 

20 Unbounded Steps         

21 
Quadratic 

Bounded Steps 4.40% 5.63% 3.38% 3.93% 

22 Unbounded Steps 28.32% 18.35% 13.58% 26.16% 

23 
Polynomial 

Bounded Steps 1.48% 2.32% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.40: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 1c  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

43.53% 29.65% 110.70% 72.26% 39.14% 0.95 

2 
Bootstrap 
Aggregating 47.84% 65.28% 44.49% 3.67% 23.15% 1.09 

3 Neural Network Feedforward 5.44% 58.45% 50.89% 2.92% 19.76% 1.22 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 59.54% 84.22% 76.63% 3.68% 61.33% 0.50 

7 Andrews 59.55% 84.22% 76.63% 3.65% 61.32% 0.50 

8 
Cauchy M-estimators 
by Moore 59.27% 83.71% 76.38% 6.59% 61.13% 0.50 

9 Fair by Rey 99.00% 82.06% 77.25% 51.99% 70.82% 0.28 

10 Huber 75.78% 82.10% 76.42% 42.26% 66.61% 0.31 

11 Logistic Regression 77.30% 82.22% 76.42% 36.79% 66.14% 0.33 

12 Hinch and Talwar 58.39% 84.36% 76.74% 3.58% 61.84% 0.49 

13 Holland and Welsch 59.50% 84.18% 76.62% 3.94% 61.32% 0.50 

14 

Regularisation 

Lasso 86.16% 30.44% 123.48% 1012.78% 192.74% 1.73 

15 Ridge Regression 7.43% 4.75% 8.36% 86.05% 16.71% 1.68 

16 Elastic Nets 86.16% 30.44% 123.48% 1012.78% 192.74% 1.73 

17 

Stepwise 

Interaction 
Bounded Steps 4.34% 3.53% 3.27% 17.50% 5.74% 0.84 

18 Unbounded Steps           

19 
Purequadratic 

Bounded Steps 7.58% 2.79% 6.89% 86.49% 16.49% 1.72 

20 Unbounded Steps           

21 
Quadratic 

Bounded Steps 4.34% 3.53% 3.27% 17.75% 5.78% 0.85 

22 Unbounded Steps 45.72% 60.32% 56.80% 15.45% 33.09% 0.56 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.12% 0.19 

24 Unbounded Steps           
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Figure H.40: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , 1c   
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Table H.41: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , clog  

 

 

    ema 

 
Method Test Set To,o=1 Test Set To,o=1 Test Set Tu,u=2 Test Set Tu,u=3 

Number 
(m) Class I Class II Class III Class IV I-II-A-1 I-II-A-2 I-II-A-3 I-II-A-4 

1 

Decision Tree 

Boosting 

  

  

6.37% 41.02% 6.03% 4.20% 

2 
Bootstrap 
Aggregating 8.05% 8.39% 2.80% 3.50% 

3 Neural Network Feedforward 4.00% 3.28% 1.80% 2.44% 

4 
Li and Meerkov 
(2009) 

  
1.30% 1.69% 1.39% 1.32% 

5 
max

1


 

6.24% 9.64% 9.07% 7.23% 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 4.80% 9.21% 8.38% 6.04% 

7 Andrews 4.80% 9.21% 8.38% 6.04% 

8 
Cauchy M-estimators 
by Moore 4.83% 9.23% 8.38% 5.99% 

9 Fair by Rey 4.77% 8.84% 7.90% 4.44% 

10 Huber 4.61% 8.94% 8.05% 4.99% 

11 Logistic Regression 4.61% 8.93% 8.04% 4.94% 

12 Hinch and Talwar 4.80% 9.21% 8.38% 6.04% 

13 Holland and Welsch 4.80% 9.22% 8.38% 6.04% 

14 

Regularisation 

Lasso 5.33% 8.54% 7.50% 3.93% 

15 Ridge Regression 5.17% 8.99% 7.61% 4.57% 

16 Elastic Nets 5.33% 8.54% 7.50% 3.93% 

17 

Stepwise 

Interaction 
Bounded Steps 3.65% 5.27% 3.21% 3.67% 

18 Unbounded Steps 3.29% 5.75% 2.90% 4.10% 

19 
Purequadratic 

Bounded Steps 5.71% 9.36% 7.85% 4.10% 

20 Unbounded Steps 3.31% 5.34% 2.91% 4.01% 

21 
Quadratic 

Bounded Steps 3.67% 5.31% 3.21% 3.70% 

22 Unbounded Steps 3.33% 6.00% 2.89% 3.99% 

23 
Polynomial 

Bounded Steps 1.13% 2.31% 1.81% 1.73% 

24 Unbounded Steps         
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Table H.41: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e  , clog  (cont.) 

 

  ema   

 
Method Test Set To,o=3 Test Set To,o=4 Test Set To,o=5 Test Set Tu,u=1 

  Number 
(m) Class I Class II Class III Class IV I-II-A-5 I-II-A-6 I-II-A-7 I-II-A-8 μe ce 

1 

Decision Tree 

Boosting 

  

  

43.83% 21.18% 97.12% 71.88% 36.45% 0.93 

2 
Bootstrap 
Aggregating 48.13% 69.15% 50.41% 3.67% 24.26% 1.11 

3 Neural Network Feedforward 4.76% 40.09% 38.62% 9.79% 13.10% 1.25 

4 
Li and Meerkov 
(2009) 

  
1.46% 3.55% 1.51% 1.39% 1.70% 0.45 

5 
max

1


   
10.36% 11.48% 14.76% 14.60% 10.42% 0.30 

6 

Multiple Linear 
Regression 

Robust 

Tukey’s Bisquare 7.86% 9.74% 11.56% 2.29% 7.49% 0.40 

7 Andrews 7.86% 9.74% 11.56% 2.29% 7.49% 0.40 

8 
Cauchy M-estimators 
by Moore 7.80% 9.75% 11.54% 2.35% 7.48% 0.40 

9 Fair by Rey 4.63% 7.18% 6.69% 32.24% 9.59% 0.97 

10 Huber 5.94% 9.07% 9.65% 17.37% 8.58% 0.47 

11 Logistic Regression 5.85% 8.83% 9.26% 18.08% 8.57% 0.50 

12 Hinch and Talwar 7.85% 9.74% 11.55% 2.29% 7.48% 0.40 

13 Holland and Welsch 7.85% 9.74% 11.56% 2.29% 7.49% 0.40 

14 

Regularisation 

Lasso 6.25% 3.31% 6.67% 81.26% 15.35% 1.74 

15 Ridge Regression 7.43% 4.75% 8.36% 86.05% 16.62% 1.69 

16 Elastic Nets 6.25% 3.31% 6.67% 81.26% 15.35% 1.74 

17 

Stepwise 

Interaction 
Bounded Steps 3.95% 4.68% 4.48% 9.10% 4.75% 0.40 

18 Unbounded Steps 15.41% 31.93% 31.20% 3.69% 12.28% 1.02 

19 
Purequadratic 

Bounded Steps 7.31% 3.21% 7.90% 89.27% 16.84% 1.74 

20 Unbounded Steps 15.09% 6.52% 6.90% 5.64% 6.22% 0.62 

21 
Quadratic 

Bounded Steps 3.95% 4.66% 4.51% 8.77% 4.72% 0.37 

22 Unbounded Steps 15.02% 47.87% 46.10% 5.75% 16.37% 1.18 

23 
Polynomial 

Bounded Steps 2.26% 2.31% 2.70% 2.34% 2.07% 0.24 

24 Unbounded Steps           
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Figure H.41: MAPE of the Individual Test Set of Data Mining Models for Asynchronous Flow Lines with the Supp. Predictor 
1e , clog  
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APPENDIX I – Phase III – Residual Plots for the Optimal Regression Model for the 

Throughput Rate of Synchronous Flow Lines  

 

Refer to Section 6.4.1 
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Figure I.1: Histogram of Errors using the Optimal Regression Model for Test Data Set 1 SIII  
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Figure I.2: Histogram of Errors using the Optimal Regression Model for Test Data Set 2 SIII  
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Figure I.3: Histogram of Errors using the Optimal Regression Model for Test Data Set 3 SIII  
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Figure I.4: Histogram of Errors using the Optimal Regression Model for Test Data Set 4 SIII  
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Figure I.5: Breakdown of Errors by 
1 using the Optimal Regression Model for all Data Sets   
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Figure I.6: Breakdown of Errors by c using the Optimal Regression Model for all Data Sets 
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Figure I.7: Breakdown of Errors by 1N using the Optimal Regression Model for all Data Sets 
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APPENDIX J – Phase III – Residual Plots for the Optimal Regression Model for the 

Throughput Rate of Asynchronous Flow Lines  

 

Refer to Section 6.4.2.2.1 
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Figure J.1: Histogram of Errors using the Optimal Regression Model for Test Data Set 1 AIII  
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Figure J.2: Histogram of Errors using the Optimal Regression Model for Test Data Set 2 AIII  
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Figure J.3: Histogram of Errors using the Optimal Regression Model for Test Data Set 3 AIII  
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Figure J.4: Histogram of Errors using the Optimal Regression Model for Test Data Set 4 AIII  
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Figure J.5: Histogram of Errors using the Optimal Regression Model for Test Data Set 5 AIII  
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Figure J.6: Histogram of Errors using the Optimal Regression Model for Test Data Set 6 AIII  
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Figure J.7: Histogram of Errors using the Optimal Regression Model for Test Data Set 7 AIII  
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Figure J.8: Histogram of Errors using the Optimal Regression Model for Test Data Set 8 AIII  
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Figure J.9: Breakdown of Errors by avc

e using the Optimal Regression Model for all Data Sets   
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Figure J.9: Breakdown of Errors by avc

e using the Optimal Regression Model for all Data Sets (cont.)  
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Figure J.10: Breakdown of Errors by 
1

max


 using the Optimal Regression Model for all Data Sets   
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Figure J.10: Breakdown of Errors by 
1

max


 using the Optimal Regression Model for all Data Sets (cont.)   
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Figure J.11: Breakdown of Errors by 1N using the Optimal Regression Model for all Data Sets 
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Figure J.11: Breakdown of Errors by 1N using the Optimal Regression Model for all Data Sets (cont.) 
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APPENDIX Q – Autonomous Control Framework – Optimum Delivery Schedule 

for Decision Combination Scenario Number 1 of the Real-world Case Study 

 

Refer to Section 7.3 
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Table Q.1: Optimum Delivery Schedule for Decision Combination Scenario Number 1 of the Real-world Case Study 

Time 

P1 P2   Total 

Batch and 

Load (In) 

Arrival on 

Site Discharged 

Batch and 

Load (In) 

Arrival on 

Site Discharged   

Batch and Load 

(In) Arrival on Site Discharged 

  6m3 8m3 6m3 8m3 6m3 8m3 6m3 8m3 6m3 8m3 6m3 8m3 

 

6m3 8m3 Total 6m3 8m3 Total 6m3 8m3 Total 

                          

 

                  

07:00 0 0 0 0 0 0 0 0 0 0 0 0 

 

0 0 0 0 0 0 0 0 0 

07:30 0 1 0 0 0 0 0 0 0 0 0 0 

 

0 1 1 0 0 0 0 0 0 

08:00 0 2 0 1 0 0 0 0 0 0 0 0 

 

0 2 2 0 1 1 0 0 0 

08:30 0 2 0 1 0 0 0 0 0 0 0 0 

 

0 2 2 0 1 1 0 0 0 

09:00 0 3 0 1 0 1 0 0 0 0 0 0 

 

0 3 3 0 1 1 0 1 1 

09:30 0 4 0 2 0 1 0 0 0 0 0 0 

 

0 4 4 0 2 2 0 1 1 

10:00 0 4 0 3 0 2 0 0 0 0 0 0 

 

0 4 4 0 3 3 0 2 2 

10:30 0 5 0 3 0 2 0 0 0 0 0 0 

 

0 5 5 0 3 3 0 2 2 

11:00 0 5 0 4 0 3 0 0 0 0 0 0 

 

0 5 5 0 4 4 0 3 3 

11:30 0 6 0 5 0 3 0 0 0 0 0 0 

 

0 6 6 0 5 5 0 3 3 

12:00 0 7 0 5 0 4 0 0 0 0 0 0 

 

0 7 7 0 5 5 0 4 4 

12:30 0 7 0 6 0 5 0 0 0 0 0 0 

 

0 7 7 0 6 6 0 5 5 

13:00 0 8 0 7 0 5 0 0 0 0 0 0 

 

0 8 8 0 7 7 0 5 5 

13:30 0 8 0 7 0 5 0 0 0 0 0 0 

 

0 8 8 0 7 7 0 5 5 

14:00 0 9 0 8 0 7 0 0 0 0 0 0 

 

0 9 9 0 8 8 0 7 7 

14:30 0 10 0 9 0 7 0 0 0 0 0 0 

 

0 10 10 0 9 9 0 7 7 

15:00 0 10 0 9 0 8 0 0 0 0 0 0 

 

0 10 10 0 9 9 0 8 8 

15:30 0 11 0 10 0 9 0 0 0 0 0 0 

 

0 11 11 0 10 10 0 9 9 

16:00 0 12 0 10 0 9 0 0 0 0 0 0 

 

0 12 12 0 10 10 0 9 9 

16:30 0 12 0 12 0 10 0 0 0 0 0 0 

 

0 12 12 0 12 12 0 10 10 

17:00 0 13 0 12 0 10 0 0 0 0 0 0 

 

0 13 13 0 12 12 0 10 10 

                          

 

                  

Total 0 13 0 12 0 10 0 0 0 0 0 0 Total 0 13 13 0 12 12 0 10 10 
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APPENDIX M – Autonomous Control Framework – Chosen Best Operational 

Settings for the Autonomous Control and Optimisation Methods with the 16 Decision 

Combination Scenarios of the Real-world Case Study 

 

Refer to Section 7.3 
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Table M.1: Chosen Best Operational Settings for the Developed Formula-based Autonomous Control Method with the 16 Decision 

Combination Scenarios of the Real-world Case Study 

Experiment Number No of Deliveries 

from the Same 

Concrete Plant 

Concrete 

Plant 

Load 

Size (m3) 

Multiple 

Concrete Plant 

Usage 

Arrival Rate (1/min) Mean Site 

Delay (min) 

     Mean Standard Deviation  

E1 1 2 8 S 49 0 0 

E2 1 2 8 S 49 0 0 

E3 1 1 8 S 35 0 0 

E4 1 2 8 S 49 0 0 

E5 1 2 8 S 49 0 0 

E6 1 1 8 S 35 0 0 

E7 1 2 8 S 49 0 0 

E8 1 2 8 S 49 0 0 

E9 1 1 8 S 35 0 0 

E10 1 1 8 S 35 0 0 

E11 1 2 8 S 49 0 0 

E12 1 1 8 S 35 0 0 

E13 1 1 8 S 35 0 0 

E14 1 2 8 S 49 0 0 

E15 1 1 8 S 35 0 0 

E16 1 1 8 S 35 0 0 

        

Decision Variable       
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Table M.2: Chosen Best Operational Settings for the Developed Hybrid Autonomous Control Method with the 16 Decision Combination 

Scenarios of the Real-world Case Study 

Experiment Number No of Deliveries 

from the Same 

Concrete Plant 

Concrete 

Plant 

Load 

Size (m3) 

Multiple 

Concrete Plant 

Usage 

Arrival Rate (1/min) Mean Site 

Delay (min) 

     Mean Standard Deviation  

E1 1 2 8 S 49 0 0 

E2 1 2 8 S 49 0 0 

E3 1 1 8 M 42 0 0 

E4 2 2 8 S 25 0 0 

E5 1 2 8 S 49 0 0 

E6 1 1 8 M 42 0 0 

E7 2 2 8 S 25 0 0 

E8 1 2 8 S 49 0 0 

E9 2 1 8 M 49 0 0 

E10 1 1 8 M 42 0 0 

E11 2 2 8 S 25 0 0 

E12 2 1 8 M 49 0 0 

E13 1 1 8 M 42 0 0 

E14 2 2 8 S 25 0 0 

E15 2 1 8 M 49 0 0 

E16 2 1 8 M 49 0 0 

        

Decision Variable       
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Table M.3: Chosen Best Operational Settings for the Simulation-based Optimisation Method with the 16 Decision Combination Scenarios of 

the Real-world Case Study 

Experiment Number No of Deliveries 

from the Same 

Concrete Plant 

Concrete 

Plant 

Load 

Size (m3) 

Multiple 

Concrete Plant 

Usage 

Arrival Rate (1/min) Mean Site 

Delay (min) 

     Mean Standard Deviation  

E1 1 2 8 S 53 1.8 0 

E2 1 2 7 S 62 7.3 0 

E3 1 1 8 S 48 3.1 0 

E4 2 2 8 S 40 2.9 0 

E5 1 2 8 S 56 0 9 

E6 1 1 8 S 54 5.4 0 

E7 2 2 7.5 S 40 4.8 0 

E8 1 2 8 S 66 13.4 9 

E9 1 1 8 S 63 6.3 0 

E10 1 1 8 M 52 7.6 9 

E11 1 2 8 S 50 1.9 2 

E12 1 1 8 M 66 9.6 0 

E13 1 2 7.5 S 54 4.7 2 

E14 1 2 8 S 28 2.6 0 

E15 1 1 8 S 64 0 10 

E16 1 1 6 S 53 0.5 8 

        

Decision Variable       

 


