
Using PVS for Interval Temporal Logic Proofs∗

Part 1: The Syntactic and Semantic Encoding

Antonio Cau
Science and Engineering Research Centre

Department of Computer Science
De Montfort University

The Gateway
Leicester LE1 9BH, UK
E-mail: cau@dmu.ac.uk

Ben Moszkowski
Department of Electrical and Electronic Engineering

University of Newcastle upon Tyne
Newcastle NE1 7RU, UK

E-mail: Ben.Moszkowski@newcastle.ac.uk

12 May 2005

Abstract

Interval temporal logic (ITL) is a logic that is used to specify and reason about systems. The logic
has a powerful proof system but rather than doing proofs by hand, which is tedious and error prone, we
want a tool that can check each proof step. Instead of developing a new tool we will use the existing
prototype verification system (PVS) as basic tool. The specification language of PVS is used to encode
interval temporal logic semantically and syntactically. With this we can encode the ITL proof system
within PVS. Several examples of proofs in ITL that are done per hand are checked with PVS.

1 Introduction

Interval temporal logic (ITL) is a very convenient formalism for the description of hardware and software
systems [4]. It describes these systems in terms of intervals which are sequences of states wherein a
systems can be. Also an executable subset of ITL has been defined the so called Tempura language.
A system is first specified in this language and then this specification is “executed” by the Tempura
simulator, i.e., it tries to construct the sequence states of the system corresponding to this specification.
This simulator is a very helpful tool for constructing a specification for a system. The correctness, with
respect to certain properties of, can not be shown by this simulator (although for very simple systems it
is possible). The correctness of systems is therefore shown with help of apowerful proof system[5, 6].
Experience with this proof system shows that a whole range of propertiescan be proven. Currently ITL
is used to specify and verify a general purpose multi-threaded data-flowprocessor EP/3[1].

One drawback is that all these proofs are done “by hand”, i.e., there is no tool that checks that a
particular application of a proof rule is right. For simple systems the proof taskis still manageable but

∗Funded by EPSRC Research Grant GR/K25922

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228186375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1: Syntax of ITL

Expressions
exp::= µ | a | A | g(exp1, . . . ,expn) | ıa: f

Formulas
f ::= p(exp1, . . . ,expn) | ¬ f | f1 ∧ f2 | ∀v q f | skip | f1 ; f2 | f ∗

for complex systems, like the EP/3, it is nearly impossible. So we decided to construct a proof assistant
for ITL. Rather than constructing it from scratch we took an existing proof tool and embed ITL within it.
We took as proof tool the prototype verification system (PVS)[7] since it has an excellent reputation and
it is easy to use. This proof tool was already used for the embedding of theduration calculus[8] which
is a descendant of ITL. This embedding was a semantical one, an extra interface was constructed to deal
with the syntax of the duration calculus. We didn’t want to proceed this way because it means an extra
interface to be built. So we tried to embed ITL semantically and syntactically within PVS.

In section 2 we give a brief introduction of ITL. In section 3 we discuss theembedding of ITL within
PVS. In section 4 we give an evaluation and discuss related work.

2 ITL

We first give the syntax and semantics of ITL and then give some axioms andproof rules plus an example
proof.

2.1 Syntax and semantics of ITL

An interval is considered to be a (in)finite sequence of states, where a state is a mapping from variables to
their values. The length of an interval is equal to one less than the number ofstates in the interval (i.e., a
one state interval has length 0).

The syntax of ITL is defined in Table 1 whereµ is an integer value,a is a static variable (doesn’t
change within an interval),A is a state variable (can change within an interval),v a static or state variable,
g is a function symbol,p is a predicate symbol.

The informal semantics of the most interesting constructs are as follows:

• ıa: f : the value ofa such thatf holds.

• ∀v q f : for all v such thatf holds.

• skip: unit interval (length 1).

• f1 ; f2: holds if the interval can be decomposed (“chopped”) into a prefix and suffix interval, such
that f1 holds over the prefix andf2 over the suffix or if the interval is infinitef1 holds for the whole
interval.

• f ∗: holds if the interval is decomposable into a (in)finite number of intervals suchthat for each of
them f holds.

The formal semantics is as follows: Letχ be a choice function which maps any nonempty set to some
element in the set. We writeσ ∼v σ′ if the intervalsσ andσ′ are identical with the possible exception of
their mappings for the variablev.

2

• M σ[[v]] = σ0(v).

• M σ[[g(exp1, . . . ,expn)]] = ĝ(M σ[[exp1]], . . . ,M σ[[expn]]).

• M σ[[ıa: f]] =

{

χ(u) if u 6= {}
χ(a) otherwise

whereu = {σ′(a) | σ ∼a σ′∧M σ[[f]] = tt}

• M σ[[p(exp1, . . . ,expn)]] = tt iff p̂(M σ[[exp1]], . . . ,M σ[[expn]]).

• M σ[[¬ f]] = tt iff M σ[[f]] = ff.

• M σ[[f1 ∧ f2]] = tt iff M σ[[f1]] = tt andM σ[[f2]] = tt.

• M σ[[∀v q f]] = tt iff for all σ′ s.t. σ ∼v σ′ ,M σ′ [[f]] = tt.

• M σ[[skip]] = tt iff |σ| = 1.

• M σ[[f1 ; f2]] = tt iff
(exists ak, s.t.M σ0...σk[[f1]] = tt and

((σ is infinite andM σk...[[f2]] = tt) or
(σ is finite andk≤ |σ| andM σk...σ|σ| [[f2]] = tt)))

or (σ is infinite andM σ[[f1]]).

• M σ[[f ∗]] = tt iff
if σ is infinite then

(exist l0, . . . , ln s.t. l0 = 0 and
M σln...[[f]] = tt and
for all 0≤ i < n, l i < l i+1 andM σli ...σli+1

[[f]] = tt.)
or
(exist an infinite number ofl i s.t. l0 = 0 and

for all 0≤ i, l i < l i+1 andM σli ...σli+1
[[f]] = tt.)

else
(exist l0, . . . , ln s.t. l0 = 0 andln = |σ| and

for all 0≤ i < n, l i < l i+1 andM σli ...σli+1
[[f]] = tt.)

Frequently used abbreviations are listed in table 2.

2.2 Proof system of ITL

First we discuss the propositional case and then the first order case. Rather than giving a full listing of the
propositional axioms and proof rules we present some basic ones and give some example proofs.

ChopOrImp ⊢ f0;(f1 ∨ f2) ⊃ (f0; f1) ∨ (f0; f2)
BiBoxChopImpChop ⊢ 2i (f0 ⊃ f1) ∧ 2(f2 ⊃ f3) ⊃ (f0; f2) ⊃ (f1; f3)
MP ⊢ f0 ⊃ f1, ⊢ f0 ⇒ ⊢ f1
BoxGen ⊢ f0 ⇒ ⊢ 2 f0
BiGen ⊢ f0 ⇒ ⊢ 2i f0

We now give a few sample theorems and their proofs:

BoxChopImpChop ⊢ 2(f0 ⊃ f1) ⊃ (f2; f0) ⊃ (f2; f1)

3

Table 2: Frequently used abbreviations

true
def
≡ 0 = 0 true value

f1 ∨ f2
def
≡ ¬(¬ f1 ∧ ¬ f2) f1 or f2

f1 ⊃ f2
def
≡ ¬ f1 ∨ f2) f1 implies f2

f1 ≡ f2
def
≡ (f1 ⊃ f2)∧ (f1 ⊃ f2) f1 equivalentf2

∃v q f
def
≡ ¬∀v q ¬ f there exists av s.t. f

© f
def
≡ skip ; f next f

inf
def
≡ true; false infinite interval

finite
def
≡ ¬inf finite interval

3 f
def
≡ finite; f (sometimesf)

2 f
def
≡ ¬3¬ f always f

J

f
def
≡ ¬©¬ f weak nextf

3i f
def
≡ f ; true some initial subinterval

2i f
def
≡ ¬(3i ¬ f) all initial subintervals

if f0 then f1 else f2
def
≡ (f0 ∧ f1) ∨ (¬ f0 ∧ f2) if then else

©exp
def
≡ ıa:©(exp= a) next value

fin exp
def
≡ ıa:fin(exp= a) end value

A := exp
def
≡ ©A = exp assignment

more
def
≡ ©true non-empty interval

empty
def
≡ ¬more empty interval

fin f
def
≡ 2(empty ⊃ f) final state

while f0 do f1
def
≡ (f0 ∧ f1)∗ ∧ fin¬ f0 while loop

Proof:

1 f2 ⊃ f2 Prop
2 2i (f2 ⊃ f2) 1,BiGen
3 2i (f2 ⊃ f2) ∧ 2(f0 ⊃ f1) ⊃ (f2; f0) ⊃ (f2; f1) BiBoxChopImpChop
4 2(f0 ⊃ f1) ⊃ (f2; f0) ⊃ (f2; f1) 2,3,Prop

RightChopImpChop ⊢ f0 ⊃ f1 ⇒ ⊢ f2; f0 ⊃ f2; f1

Proof:

1 f0 ⊃ f1 given
2 2(f0 ⊃ f1) BoxGen
3 2(f0 ⊃ f1) ⊃ (f2; f0) ⊃ (f2; f1) BoxChopImpChop
4 f2; f0 ⊃ f2; f1 2,3,MP

ChopOrEqv ⊢ f0;(f1 ∨ f2) ≡ f0; f1 ∨ f0; f2

4

The proof for⊂ is immediate from axiom ChopOrImp. Here is the proof for the converse:

1 f1 ⊃ f1 ∨ f2 Prop
2 f0; f1 ⊃ f0;(f1 ∨ f2) 1,RightChopImpChop
3 f2 ⊃ f1 ∨ f2 Prop
4 f0; f2 ⊃ f0;(f1 ∨ f2) 3,RightChopImpChop
5 f0; f1 ∨ f0; f2 ⊃ f0;(f1 ∨ f2) 2,4,Prop

Some axioms for the first order case are shown below. We letv andv′ refer to both static and location
variables. We denote byf e

v that in formulaf expressione is substituted for variablev.

ForallElim ⊢ ∀v q f ⊃ f e
v ,

where the expressionehas the same data and tem-
poral type as the variablev and is free forv in f .

ExistsChopRight ⊢ ∃v q (f1; f2) ⊃ (∃v q f1); f2,
wherev doesn’t occur freely inf2.

ForallGen ⊢ f ⇒ ⊢ ∀v q f ,
for any variablev.

3 Embedding of ITL within PVS

In this section we first give the syntactic embedding followed by the embeddingsof the semantics and the
proof system of ITL.

3.1 Syntactic encoding

In table 1 the syntactic definition of expressions is given. As such we can’t encode this in PVS the
problematic construct isıa: f . Before we can encode this,f (formulae) have to be encoded but for the
latter we need the encoding of expressions. We have a chicken and egg problem here. But luckily this
is not really a problem because theıa: f construct is mainly used to encode the value of an expression
in the next state and the value of an expression at the end of the interval. Wewill use©exp instead of
ıa:©(exp= a) andfin expinstead ofıa:fin(exp= a). In table 1 we also useg(exp1, . . . ,expn) whereg is
a function instead of a generalg we will only use the integer+,− and∗ functions.

The syntactic encoding of expressions is then as follows using the abstract data-type construct:

%%%% definition of datatype expression
exp : DATATYPE

BEGIN
const(n: int) : cst? : exp
svariable(sv: nat) : svr? : exp
variable(v: nat) : vr? : exp
nx(nxexp : exp) : nx? : exp
fin(finexp : exp) : fin? : exp
+(aex1: exp, aex2: exp) : plus? : exp
-(sex1: exp, sex2: exp) : min? : exp
*(mex1: exp, mex2: exp) : mult? : exp

END exp

Thesvandv are the identifier of respectively a static and a state variable. Since these identifiers are
natural numbers we have an unbounded number of static and state variables. This is exactly what we want.
With subtype declaration likez: (vr?) we can express thatz ranges over the state variables.

5

For the encoding of formulae we need the encoding of expressions so thisis imported. Again, in
table 1 we used a general relationp on expressions, we will only use< and= relations. The syntactic
encoding is then as follows:

%%%% definition of datatype formula
form : DATATYPE

BEGIN
importing exp
FA (v1: (vr?), f1: form) : fa? : form
FAs (v3: (svr?), f1fas : form) : fas? : form
skip : skip? : form
=(eqxp1: exp, eqxp2: exp) : eqi? : form
<(lexp1: exp, lexp2: exp) : les? : form
-(fn1: form) : inot? : form
/\(fa1: form, fa2: form) : iand? : form
ˆ(fc1: form, fc2: form) : chop? : form
chopstar(fcs1: form) : chopstar? : form

END form

The abbreviations listed in table 2 can now be encoded as follows:

%%%% frequently used abbreviations
T : form = (const(0)=const(0));
\/(f1,f2) : form = -((-f1) /\ (-f2));
=>(f1,f2) : form = (-f1) \/ f2;
==(f1,f2) : form = (f1 => f2) /\ (f2 => f1);
TE(va,f1) : form = -FA(va,-f1);
TEs(sva,f1) : form = -FAs(sva,-f1);
O(f1) : form = skipˆf1;
inf : form = TˆF;
finite : form = -inf;
<>(f1) : form = finiteˆf1;
[](f1) : form = -(<>(-f1));
wO(f1) : form = -(O(-f1));
Di(f1) : form = f1ˆT;
Bi(f1) : form = -(Di(-f1));
ife(f0, f1, f2) : form = (f0 /\ f1) \/ (-f0 /\ f2);
as(exp1,exp2) : form = nx(exp1) = exp2;
more : form = O(T);
empty : form = -more;
fin(f1) : form = [](empty => f1);
while(f0, f1) : form = chopstar(f0 /\ f1) /\ fin(-f0)

3.2 Semantic encoding

Before we can give the semantics of the above syntactic constructs we mustdefine intervals (i.e., (in)finite
sequences of states). First we will encode (in)finite sequences. We denote a(n) (in)finite sequence as a
record of three fields, the first field is a boolean indicating if the sequenceis infinite, the second field is
a natural number indicating the length of the sequence and the third field is an array whose indices are
bounded if the sequence is finite. For the encoding off ∗ and∀v q f we need definitions of respectively
sequences of natural numbers and sequences of values. So we will give a general definition of sequences
in that the sequence elements are of general typeT.

%%%% definition of an (in)finite sequence
Sequ: TYPE =

6

[# infinite : bool,
len: nat,
seq: ARRAY[{i:nat | infinite or i<=len} -> T] #]

The infinite and finite subtypes are defined as follows:

%%%% definition of an infinite sequence
Infsequ: TYPE = { tau0: Sequ | infinite(tau0) }

%%%% definition of a finite sequence
Finsequ: TYPE = { tau0: Sequ | not infinite(tau0) }

We also define the notions of subsequence and suffix of a sequence. They are straight forward:

%%%% sequ is the same as Sequ
sequ: TYPE = Sequ

tau : VAR sequence

%%%% definition of subsequence
sub(tau0: sequ,

m0: {i:nat | infinite(tau0) or i<=len(tau0)},
n0: {i:nat | m0<=i AND (infinite(tau0) OR i<=len(tau0))})

: Finsequ =
LET lsum = n0-m0 IN
(# infinite:=false,

len := lsum,
seq := (LAMBDA (x: {i:nat|i<=lsum}) : seq(tau0)(x + m0))

#)

%%%% definition of suffix of a sequence
suf(tau0 : Infsequ, m0 : nat) : Infsequ =

(# infinite:= infinite(tau0),
len := len(tau0),
seq := (LAMBDA (x: {i:nat|true}): seq(tau0)(x + m0))

#)

Next is the definition of state. In section 2.1 a state was a mapping from both the static and state
variables to their values. In PVS, however, we will have two kinds of states; one is a mapping from static
variables to their values and the other one is a mapping from state variables to their values. This makes
reasoning about them easier in PVS. The variables are identified by a natural number and the values are
just integers. So the encoding is as follows:

%%%% state variables are of the sort integers
Value: TYPE = int

%%%% static variables are of the sort integers
SValue: TYPE = int

%%%% Vars the indices of state variables (infinite number)
Vars: TYPE = nat

%%%% SVars the indices of static variables (infinite number)

7

SVars: TYPE = nat

%%%% State(i): the ith state variable

State: TYPE = [Vars -> Value]

%%%% SState(i): the ith static variable
SState: TYPE = [SVars -> SValue]

Now we are able to define the semantics of the syntactic constructs. Since we have split the state the
semantics is a little bit different than in section 2.1. Instead of interpreting oversequences of states, we
will interpret over a pair(env,sigma) whereenv is a mapping form static variables to their values and
sigmais a sequence of mappings from state variables to their values. With this we enforce that the static
variables don’t change in an interval because they do not depend on intervals.

First the semantics of expressions. This is mapping from the syntactic constructs to integer values.
Since we defined expressions recursively we give a denotational semantics. This is straight forward, only
the semantics of©expandfin expis interesting. But first the uninteresting part:

We need a definition of sequence of states, the following imports the generaltheory for sequences and
instantiate it for states.

%%%% importing the theory of sequences instantiated for sta tes
importing sequ[State]

Interval : TYPE = sequ[State]

env : VAR SState
sigma : VAR Interval

%%%% semantics of expression
E(e : exp)(env,sigma) : RECURSIVE Value =

CASES e OF
const(v) : v,
variable(n) : seq(sigma)(0)(n),
svariable(n) : env(n),
nx(exp1) : semnx(E(exp1))(env,sigma),
fin(exp1) : semfin(E(exp1))(env,sigma),
+(exp1, exp2) : E(exp1)(env,sigma) + E(exp2)(env,sigma),
-(exp1, exp2) : E(exp1)(env,sigma) - E(exp2)(env,sigma),
*(exp1, exp2) : E(exp1)(env,sigma) * E(exp2)(env,sigma)
ENDCASES

MEASURE sizeexp(e)

The semantics of©expis problematic because it is undefined for intervals of length 0. How to encode
that an expression has an undefined value? If we look at the semantics given in section 2.1 we see that
we use there the choice operator, i.e., an undefined value is just any value! In PVS there is also such a
construct: it is the epsilon construct. The semantics of©expandfin exp(undefined for infinite intervals)
are as follows:

IValue : TYPE = [SState,Interval -> Value]
E1 : VAR IValue;

%%%% semantics of O(expression)
semnx(E1)(env,sigma) : Value =

epsilon(lambda x1 : if infinite(sigma) then
E1(env,suf(sigma,1))=x1 elsif

len(sigma)>0 then

8

E1(env,sub(sigma,1,len(sigma)))=x1
else false endif)

%%%% semantics of fin(expression)
semfin(E1)(env,sigma) : Value =

epsilon(lambda x1 : if infinite(sigma) then
false else

E1(env,sub(sigma,len(sigma),len(sigma)))=x1
endif)

If one uses recursion in PVS one has to give a function so that can be determined that the “definition”
terminates. In this case this function (the length of an expression) is as follows:

%%%% lenght of an expression (needed for recursive definiti on)
sizeexp(e:exp) : nat =

reduce_nat(
(LAMBDA (i : int): 1 + abs(i)), %const(n)
(LAMBDA (i : nat): 1 + i), %svariable(sv)
(LAMBDA (i : nat): 1 + i), %variable(v)
(LAMBDA (i : nat) : 1 + i), %nx(exp1)
(LAMBDA (i : nat) : 1 + i), %fin(exp2)
(LAMBDA (i, j : nat): 1 + i + j), %+(exp1, exp2)
(LAMBDA (i, j : nat): 1 + i + j), %-(exp1, exp2)
(LAMBDA (i, j : nat): 1 + i + j) %*(exp1, exp2)

)(e)

The semantics of formulae is a bit more complicated as seen in section 2.1. Especially the∀v q f and
f ∗ constructs. The rest is straight forward as seen below: The semantics of a formula is a mapping from
the syntactic constructs to the boolean values.

Iform : TYPE = [SState,Interval -> bool]
F1,F2 : VAR Iform;

%%%% semantics of -f
semnot(F1)(env,sigma) : bool = not F1(env,sigma)

%%%% semantics of f1 /\ f2
semand(F1,F2)(env,sigma) : bool = F1(env,sigma) and F2(en v,sigma)

%%%% semantics of f1ˆf2
semchop(F1,F2)(env,sigma) : bool =

(EXISTS (m: nat):
((infinite(sigma) and F2(env,suf(sigma,m))) or

(not infinite(sigma) and m <= len(sigma) and
F2(env,sub(sigma, m, len(sigma)))

)
)
and F1(env,sub(sigma, 0, m))

)
or (infinite(sigma) and F1(env,sigma))

%%%% semantics of formulae
M(f:form)(env,sigma) : RECURSIVE bool =

CASES f OF
FA(v,f1) : semforall(M(f1),v)(env,sigma),
FAs(v,f1) : semsforall(M(f1),v)(env,sigma),

9

skip : (len(sigma) = 1 and not infinite(sigma)),
-(f1) : semnot(M(f1))(env,sigma),
=(exp1,exp2) : E(exp1)(env,sigma) = E(exp2)(env,sigma),
<(exp1,exp2) : E(exp1)(env,sigma) < E(exp2)(env,sigma),
ˆ(f1,f2) : semchop(M(f1),M(f2))(env,sigma),
/\(f1,f2) : semand(M(f1),M(f2))(env,sigma),
chopstar(f1) : semchopstar(M(f1))(env,sigma)

ENDCASES
MEASURE sizeform(f)

We first discuss the semantics off ∗. As seen in section 2.1 we need a (in)finite list of chopping points
in an interval. These chopping points are natural numbers. Since we already defined (in)finite sequences
of any type we can use that to define this list of chopping points. The semantics of f ∗ is now straight
forward as shown belown:

%%%% importing theory of sequences instantiated for natura l numbers
importing sequ[nat]

%%%% definition of infinite list of chopping points
ininterval : TYPE = Infsequ[nat]

%%%% definiton of finite list of chopping points
fninterval : TYPE = Finsequ[nat]

il : VAR ininterval
fl : VAR fninterval

%%%% semantics of chopstar(f)
semchopstar(F1)(env,sigma) : bool =

(IF infinite(sigma) THEN
(EXISTS fl :

seq(fl)(0) = 0 and
F1(env,suf(sigma, seq(fl)(len(fl)))) and
(FORALL (i: below[len(fl)]):

seq(fl)(i) < seq(fl)(i + 1) and
F1(env,sub(sigma, seq(fl)(i), seq(fl)(i + 1)))

)
)
OR
(EXISTS il:

seq(il)(0) = 0 and
(FORALL (i: nat):

seq(il)(i) < seq(il)(i + 1) and
F1(env,sub(sigma, seq(il)(i), seq(il)(i + 1)))

)
)

ELSE
(EXISTS fl :

seq(fl)(0) = 0 and
seq(fl)(len(fl)) = len(sigma) and
(FORALL (i: below[len(fl)]):

seq(fl)(i+1) <= len(sigma) and
seq(fl)(i) < seq(fl)(i + 1) and
F1(env,sub(sigma, seq(fl)(i), seq(fl)(i + 1)))

)

10

)
ENDIF)

At last we discuss the semantics of∀v q f . Because we have split the state the semantics of∀v q f is
also split into two cases. The first and easy case is ifv is a static variable. The semantics is as follows:

semsforall(F1:Iform,sva)(env,sigma) : bool =
(FORALL x1 : F1(env with [(sv(sva)) := x1],sigma))

The second case is ifv is a state variable. As seen in section 2.1 we have to encode theσ ∼v σ′ relation
that denotes thatsigmaandσ′ are the same except for the behavior ofv. Instead of encoding this relation
directly in PVS we encode this in a similar way as the static case. In the latter case the semantics of∀v q f
was encoded as for all values assigned tov, f should hold. The analogon for the state case is that for
all values assigned tov (in the interval),f should hold. For this we need a (in)finite sequence of values.
Because we have this type already defined the semantics is then as follows:

%%%% importing theory of sequences instantiated for values
importing sequ[Value]

%%%% definition of infinite list of values
InfIIValue : TYPE = Infsequ[Value]

%%%% definition of finite list of values
FinIIValue : TYPE = Finsequ[Value]

ival : VAR InfIIValue
fval : VAR FinIIValue

%%%% semantics of FA(va,f)
semforall(F1,va)(env,sigma) : bool =

if infinite(sigma) then
(FORALL ival :

F1(env,
(# infinite:=infinite(sigma),

len:=len(sigma),
seq:=(lambda (i: {j:nat|true}) :

seq(sigma)(i) with [(v(va)):=seq(ival)(i)]) #)))
else

(FORALL fval : len(fval)=len(sigma) implies
F1(env,

(# infinite:=infinite(sigma),
len:=len(sigma),
seq:=(lambda (i : {j:nat|j<=len(sigma)}) :

seq(sigma)(i) with [(v(va)):=seq(fval)(i)]) #)))
endif

3.3 Proof system encoding

The propositional axioms and rules presented in section 2.2 are encoded as follows (noteV(f) is a predi-
cate that denotes thatf holds for all intervals and interpretations of static intervals; this is needed in order
to express the rules):

%%%% definition of validity of formulae
V: pred[form] =

(LAMBDA f1: (FORALL env: (FORALL sigma: M(f1)(env,sigma))))

11

CONVERSION V

%%%% the axioms
ChopOrImp: LEMMA (f0ˆ(f1 \/ f2)) => ((f0ˆf1) \/ (f0ˆf2))

BiBoxChopImpChop: LEMMA
(Bi(f0 => f1) /\ [](f2 => f3)) => ((f0ˆf2) => (f1ˆf3))

%%%% the rules
MP: LEMMA V(f0 => f1) AND V(f0) IMPLIES V(f1)

BoxGen: LEMMA V(f0) IMPLIES V([](f0))

BiGen: LEMMA V(f0) IMPLIES V(Bi(f0))

The following example is a PVS proof session of the second proof in section2.2:

• This is what we should prove:

RightChopImpChop :

|-------
{1} (FORALL (f0: form, f1: form, f2: form):

((V(((f0 => f1))))) IMPLIES (V(((f2 ˆ f0) => (f2 ˆ f1)))))

• With skolimization we eliminate the for all quantor.

Rule? (SKOSIMP)
Skolemizing and flattening,
this simplifies to:
RightChopImpChop :

{-1} ((V(((f0!1 => f1!1)))))
|-------

{1} (V(((f2!1 ˆ f0!1) => (f2!1 ˆ f1!1))))

• Apply proof ruleBoxGen.

Rule? (FORWARD-CHAIN "BoxGen")
Forward chaining on BoxGen,
this simplifies to:
RightChopImpChop :

{-1} V([](((f0!1 => f1!1))))
[-2] ((V(((f0!1 => f1!1)))))

|-------
[1] (V(((f2!1 ˆ f0!1) => (f2!1 ˆ f1!1))))

• Add an instance of lemmaBoxChopImpChop .

Rule?
(LEMMA "BoxChopImpChop" ("f0" "f0!1" "f1" "f1!1" "f2" "f2! 1"))

12

Applying BoxChopImpChop where
f0 gets f0!1,
f1 gets f1!1,
f2 gets f2!1,

this simplifies to:
RightChopImpChop :

{-1} V([]((f0!1 => f1!1)) => (f2!1 ˆ f0!1) => (f2!1 ˆ f1!1))
[-2] V([](((f0!1 => f1!1))))
[-3] ((V(((f0!1 => f1!1)))))

|-------
[1] (V(((f2!1 ˆ f0!1) => (f2!1 ˆ f1!1))))

• Apply proof ruleMP.

Rule? (FORWARD-CHAIN "MP")
Forward chaining on MP,
Q.E.D.

Run time = 2.67 secs.
Real time = 16.34 secs.

The example shows that the PVS proof follows the same pattern as the “by hand” proof.
The encoding of the first order axioms is a bit more complicated because onehas to encode “f e

v ”
(substitution), “where the expressione has the same data and temporal type as the variablev and is free
for v in f ” and “wherev doesn’t occur freely inf2”. The latter is easy to encode. Assumev is a state
variable (the static case is analogous). Because the syntax of expression and formulae are encoded as
abstract datatypes the following will do the job:

%%%% set of free state variables in an expresion
freeexp(e:exp) : RECURSIVE setof[(vr?)] =

CASES e OF
const(n) : emptyset,
variable(v) : singleton(variable(v)),
svariable(sv) : emptyset,
nx(exp1) : freeexp(exp1),
fin(exp1) : freeexp(exp1),
+(aexp1, aexp2) : union(freeexp(aexp1), freeexp(aexp2)) ,
-(sexp1, sexp2) : union(freeexp(sexp1), freeexp(sexp2)) ,
*(mexp1, mexp2) : union(freeexp(mexp1), freeexp(mexp2))
ENDCASES

MEASURE sizeexp(e)

%%%% set of free state variables in a formula
freeform(f:form) : RECURSIVE setof[(vr?)] =

CASES f OF
FA(v1,f1) : difference(freeform(f1), singleton(v1)),
FAs(v3,f1) : freeform(f1),
skip : emptyset,
=(eqxp1,eqxp2) : union(freeexp(eqxp1), freeexp(eqxp2)) ,
<(lexp1,lexp2) : union(freeexp(lexp1), freeexp(lexp2)) ,
-(f1) : freeform(f1),
ˆ(f1,f2) : union(freeform(f1), freeform(f2)),

13

/\(f1,f2) : union(freeform(f1), freeform(f2)),
chopstar(f1) : freeform(f1)
ENDCASES

MEASURE sizeform(f)

Encoding of substitution is also relatively easy. In order to assure that expressione has the “same
temporal datatype” as variablev whene is substituted forv we take the convention thate is an expression
that contains no temporal operators, i.e., no© andfin operators. This kind of subtype can be encoded as
follows:

%%%% definition of expressions containing no temporal cons tructs
pexp : TYPE =

{ e: exp | forall (exp1: exp) :
not subterm(nx(exp1), e) and
not subterm(fin(exp1),e)}

Substitution is then encoded as follows:

%%%% definition of syntactic substitution of state variabl e by
%%%% an expression containing no temporal constructs
su(exp1, x, pexp2) : RECURSIVE exp =

CASES exp1 OF
const(n) : const(n),
variable(v) : if variable(v) = x then

pexp2 else variable(v) endif,
svariable(sv) : svariable(sv),
nx(nxexp1) : nx(su(nxexp1,x,pexp2)),
fin(finexp1) : fin(su(finexp1,x,pexp2)),
+(aexp1, aexp2) : su(aexp1,x,pexp2) + su(aexp2,x,pexp2),
-(sexp1, sexp2) : su(sexp1,x,pexp2) - su(sexp2,x,pexp2),
*(mexp1, mexp2) : su(mexp1,x,pexp2) * su(mexp2,x,pexp2)
ENDCASES

MEASURE sizeexp(exp1)

%%%% definition of syntactic substitution of a state variab le by
%%%% an expression containing no temporal constructs
suform(f1, x, pexp2) : RECURSIVE form =

CASES f1 OF
FA(v1,f1) : FA(v1,suform(f1,x,pexp2)),
FAs(v3,f1) : FAs(v3,suform(f1,x,pexp2)),
skip : skip,
=(eqxp1,eqxp2) : su(eqxp1,x,pexp2) = su(eqxp2,x,pexp2),
<(lexp1,lexp2) : su(lexp1,x,pexp2) < su(lexp2,x,pexp2),
-(f1) : -(suform(f1,x,pexp2)),
ˆ(f1,f2) : suform(f1,x,pexp2)ˆsuform(f2,x,pexp2),
/\(f1,f2) : suform(f1,x,pexp2) /\ suform(f2,x,pexp2),
chopstar(f1) : chopstar(suform(f1,x,pexp2))
ENDCASES

MEASURE sizeform(f1)

If one defines substitution has to take care that variables occurring in the substited expression doesn’t
become bound. To check that one can define functions that on expressions and formulae that give the
bound variables. These functions are defined analogous as the “freevariables” functions.

The encoding of the first order axioms of section 2.2 is the as follows:

14

%%%%%%%% first order
ForallSub: LEMMA not member(v1,bound(f1)) and

(forall (z:(vr?)):
member(z,freeexp(pexp1)) implies not member(z,bound(f1))) and

(forall (z:(svr?)):
member(z,sfreeexp(pexp1)) implies not member(z,sbound(f1)))

implies
V(FA(v1,f1) => suform(f1,v1,pexp1))

ExistsChopRight : LEMMA not member(v1,freeform(f2)) impl ies
V(TE(v1,f1ˆf2) => (TE(v1,f1)ˆf2))

% the rules
ForallGen: LEMMA V(f0) implies V(FA(v1,f0))

4 Conclusion

We have used the ITL proof assistant to verify a list of more than 100 theorems. Experience shows that
proofs within the tool almost follow the pattern as the “by hand” case. This ensures that people who
are used to the proofs by hand can easily switch to the proofs by the tool. The next step will be the
verification of a large example. This example will be the EP/3 example[1] for which already an ITL
specification exist (a large ITL formula of about 3500 lines). This examplewill probably require the
definition of proof strategies (tactics). These strategies can be defined inPVS to semi-automatically prove
certain theorems. Besides proof strategies also compositional proof rulesare needed to tackle the EP/3
example. These proof rules are discussed in [5, 6]. Because the basicITL formalism is now encoded the
encoding of these proof rules is straight forward.

For ITL we also defined constructs to reason about message-passing communication and timing (delay
and time-out) using the work on temporal agent model (TAM) [9]. The latter has also a refinement calculus
which can be easily ported to ITL[2]. These constructs and refinement rules will also be included in the
proof assistant.

Related work is done in Macau where Mao Xiaoguang, Xu Qiwen and Wang Ji are working on a proof
assistant for interval logics. They have embedded the neighbourhood calculus within PVS[3]. This calcu-
lus can express a whole range of interval logics like the duration calculus and ITL. We have exchanged
ideas, they have, on our suggestion, also used abstract datatypes to syntactically encode their calculus. We
didn’t want to follow their idea of one general interval logic but merely wanted a practical proof assistant
for checking ITL proofs.

References

[1] A. Cau, H. Zedan, N. Coleman and B. Moszkowski. Using ITL and Tempura for Large Scale Specifi-
cation and Simulation, in proc. of fourth euromicro workshop on parallel and distributed processing,
IEEE, 1996, Braga, Portugal, 493–500.

[2] A. Cau and H. Zedan. Communication and Time in ITL, in preparation.

[3] X. Mao, Q. Xu and J. Wang. Towards a proof assistant for interval logics, in preparation.

[4] B. Moszkowski. Executing temporal logic programs, Cambridge Univ.Press, UK, 1986.

15

[5] B. Moszkowski. Some very compositional temporal properties, in: Programming Concepts, Methods
and Calculi, Ernst-R̈udiger Olderog (ed.), IFIP Transactions, Vol. A-56, North-Holland, 1994, 307-
326.

[6] B. Moszkowski. Using temporal fixpoints to compositionally reason about liveness, in proc. of the
7th BCS FACS Refinement Workshop, He Jifeng (ed.), Bath, UK, 1996.

[7] John Rushby. A tutorial on specification and verification using PVS. In proc. of the First
International Symposium of Formal Methods Europe FME ’93: Industrial-Strength Formal
Methods, Peter Gorm Larsen (ed.), 1993, Odense, Denmark, 357–406. Check home-page:
http://www.csl.sri.com/pvs.html

[8] J.U. Skakkebæk and N. Shankar. Towards a Duration Calculus Proof Assistant in PVS, in proc. of the
3rd International Symposium Formal Techniques in Real-Time and Fault-Tolerant Systems FTRTFT
’94, Hans Langmaack, Willem-Paul de Roever and Jan Vytopil (eds.), 1994, Lübeck, Germany, 660–
679.

[9] D. Scholefield, H. Zedan and J. He. A specification oriented semanticsfor the refinement of real-time
systems.Theoretical Computer Science, 130, August 1994.

16

