-

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by De Montfort University Open Research Archive

Using PVS for Interval Temporal Logic Proofs
Part 1. The Syntactic and Semantic Encoding

Antonio Cau
Science and Engineering Research Centre
Department of Computer Science
De Montfort University
The Gateway
Leicester LE1 9BH, UK
E-mail: cau@dmu.ac.uk

Ben Moszkowski
Department of Electrical and Electronic Engineering
University of Newcastle upon Tyne
Newcastle NE1 7RU, UK
E-mail: Ben.Moszkowski@newcastle.ac.uk

12 May 2005

Abstract

Interval temporal logic (ITL) is a logic that is used to sgga@nd reason about systems. The logic
has a powerful proof system but rather than doing proofs bghahich is tedious and error prone, we
want a tool that can check each proof step. Instead of dewvgj@new tool we will use the existing
prototype verification system (PVS) as basic tool. The $jpation language of PVS is used to encode
interval temporal logic semantically and syntacticallyitiithis we can encode the ITL proof system
within PVS. Several examples of proofs in ITL that are donehaand are checked with PVS.

1 Introduction

Interval temporal logic (ITL) is a very convenient formalism for the dggon of hardware and software
systems [4]. It describes these systems in terms of intervals which arerseguof states wherein a
systems can be. Also an executable subset of ITL has been defined tladles Tempura language.
A system is first specified in this language and then this specification is Uw@dcby the Tempura
simulator, i.e., it tries to construct the sequence states of the system oowlegpto this specification.
This simulator is a very helpful tool for constructing a specification forstesy. The correctness, with
respect to certain properties of, can not be shown by this simulator (ghhfou very simple systems it
is possible). The correctness of systems is therefore shown with helpaferful proof system[5, 6].
Experience with this proof system shows that a whole range of propediebe proven. Currently ITL
is used to specify and verify a general purpose multi-threaded datgftmsessor EP/3[1].

One drawback is that all these proofs are done “by hand”, i.e., there ieat that checks that a
particular application of a proof rule is right. For simple systems the proofisastil manageable but

*Funded by EPSRC Research Grant GR/K25922

https://core.ac.uk/display/228186375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1: Syntax of ITL

Expressions
exp:= p|alAlglexp,...,exm) | 1af
Formulas
fi= plexp,....,exm) || fiafa |V f|skip]| f1; fa| f*

for complex systems, like the EP/3, it is nearly impossible. So we decided ttrectns proof assistant
for ITL. Rather than constructing it from scratch we took an existing fi@al and embed ITL within it.
We took as proof tool the prototype verification system (PVS)[7] sincastdn excellent reputation and
it is easy to use. This proof tool was already used for the embedding adlutiagion calculus[8] which
is a descendant of ITL. This embedding was a semantical one, an extfadeteas constructed to deal
with the syntax of the duration calculus. We didn’t want to proceed this vegplse it means an extra
interface to be built. So we tried to embed ITL semantically and syntactically withi. PV

In section 2 we give a brief introduction of ITL. In section 3 we discusstindedding of ITL within
PVS. In section 4 we give an evaluation and discuss related work.

2 ITL

We first give the syntax and semantics of ITL and then give some axiomgrantlrules plus an example
proof.

2.1 Syntax and semanticsof ITL

An interval is considered to be a (in)finite sequence of states, wherteasstamapping from variables to
their values. The length of an interval is equal to one less than the numbertes in the interval (i.e., a
one state interval has length 0).

The syntax of ITL is defined in Table 1 whepeis an integer valuea is a static variable (doesn’t
change within an intervalA is a state variable (can change within an interwad) static or state variable,
gis a function symbolp is a predicate symbol.

The informal semantics of the maost interesting constructs are as follows:

e |a: f: the value ofa such thatf holds.
e Vv . f: for all vsuch thatf holds.
e skip: unit interval (length 1).

e f1; f2: holds if the interval can be decomposed (“chopped”) into a prefix affck snterval, such
that f1 holds over the prefix ané, over the suffix or if the interval is infinitdé; holds for the whole
interval.

e f*: holds if the interval is decomposable into a (in)finite number of intervals thatifor each of
themf holds.

The formal semantics is as follows: Lebe a choice function which maps any nonempty set to some
element in the set. We write ~, @’ if the intervalso ando’ are identical with the possible exception of
their mappings for the variable

o 91[] = Go(v)
o Molg(ex .. exm)] = G(3Volexpl,... olexp).
o sfia f] :{ () ifuz{}

x(a) otherwise
whereu = {0’(a) | 0 ~a 0’ A Mo[[f] = tt}

o Mo[p(exp,....exm)] =ttiff p(as[expl,.... Mo[exml).
o Mo~ 1] =ttiff 2] 1] =f.

o Mg[[f1n fol] =ttiff ag[f1]] = ttandas[2] = tt.

o MgV f]] =ttiffforall o’st.o~, 0, M o [f] =tt.

o WM q[skip] =ttiff |o] = 1.

° Mc[[fl; fz]] = ttiff
(exists &k, s.t. M g, g [f1]] =ttand
((ois infinite anda/ ¢, [[f2]] = tt) or
(ois finite andk < |o] and#/ g, o, [f2]] = 1))
or (o is infinite anda g [[f1])).

o Mo[f*] =ttiff
if o is infinite then
(existly,...,lIys.t.lg=0and
Mg, . [f] =ttand
forall0<i<n,lj <li; 1 andam 0.0 4 [f] =tt.)
or
(exist an infinite number df s.t.Ig = 0 and
forall0<i,lj <ljiq andM(,lim(j|i+1 [f] =tt.)
else
(existlo,...,In s.t.1o=0 andl, = |o| and
forall0<i<n,lj <li 1 andm 00, 4 [f] =tt)

Frequently used abbreviations are listed in table 2.

2.2 Proof systemof ITL

First we discuss the propositional case and then the first order cagerighan giving a full listing of the
propositional axioms and proof rules we present some basic onesvansbgne example proofs.

ChopOrimp F o fo;(fav f2) D (fo; f1) v (fo; f2)
BiBoxChoplmpChop - @(fg D f1) AO(fy D f3) D (fo; f2) D (f1; fa)
MP F fo D fl, H fo = F f1

BoxGen F fo = F 0Ofg

BiGen F fp = B Ofg

We now give a few sample theorems and their proofs:
BoxChoplmpChop = O(fo D f1) D (f2;fo) D (f2; f1)
3

Proof:

Proof:

A OWDNPRP

RightChoplmpChop + fg D f;

A OWDNPRP

ChopOrEqv +

Table 2: Frequently used abbreviations

def

true =0=0 true value
f1v o (~fyn =) f1 or f,
f1of, Lty) f, implies
o= £ E o)A (o f2) fiequivalentf
v f % Vv . -f there exists & s.t. f
Of dEefSkip; f next f
inf dEE](true; false infinite interval
finite L' inf finite interval
Of dzeffinite; f (sometimed)
Of Lot alwaysf
Of L O-f weak nextf
& f % f;true some initial subinterval
mf L (o-f) all initial subintervals
if fo then frelse £ = (fon f1) v (—fon f2) if then else
Oexp ©a O(exp=a) next value
fin exp a fin(exp=a) end value
A:=exp & OA=exp assignment
more dEE](Qtrue non-empty interval
empty dzef —more empty interval
fin f O (empty > f) final state
while fodo f1 = (for f1)* afin=fo while loop
fo D 1 Prop
@(fy O fo) 1,BiGen
@(fy D f2) aO(fo D f1) D (f2; fo) D (f2; f1) BiBoxChoplmpChop

O(fo D f1) D (f2; fo) D (f2; f1)

fo D
D(fo

O(fo D f1) D (f2;fo) D (f2; f1)

f
D fl)

fo;fo D fo f1

fo; (fl \Y fz) =

given
BoxGen

2,3, MP

fo; f1 v fo; f2

4

2,3,Prop

= fz;fo D fz;fl

BoxChoplmpChop

The proof forC is immediate from axiom ChopOrimp. Here is the proof for the converse:

1 fy D fivf Prop

2 fo;fy D fo;(fyv fo) 1, RightChoplmpChop
3 f,ofivh Prop

4 fo;fy D fo;(frv fa) 3, RightChoplmpChop
5 fo;f1v fo; f2 O fo; (fl \Y fz) 2,4, Prop

Some axioms for the first order case are shown below. WedatlV' refer to both static and location
variables. We denote bff that in formulaf expressiore is substituted for variable.

ForallElim FooWwef D 1
where the expressiahas the same data and tem-
poral type as the variabkeand is free fow in f.
ExistsChopRight - 3v . (f1;fz) D (Fv - f1); fo,

wherev doesn’t occur freely irf.
ForallGen F f= F W-f,

for any variablev.

3 Embeddingof ITL within PVS

In this section we first give the syntactic embedding followed by the embeddirlge semantics and the
proof system of ITL.

3.1 Syntactic encoding

In table 1 the syntactic definition of expressions is given. As such we eagbde this in PVS the
problematic construct isa: f. Before we can encode thi§, (formulae) have to be encoded but for the
latter we need the encoding of expressions. We have a chicken andaidgnp here. But luckily this

is not really a problem because tree f construct is mainly used to encode the value of an expression
in the next state and the value of an expression at the end of the intervakilMise Oexpinstead of

1a: O(exp= a) andfin expinstead ofia: fin(exp= a). In table 1 we also usg(exp,...,exp) whereg is

a function instead of a genemlve will only use the intege#, — andx functions.
The syntactic encoding of expressions is then as follows using the atdtaetype construct:

%%%% definition of datatype expression
exp : DATATYPE
BEGIN

const(n: int) : cst? D exp
svariable(sv: nat) osvr? D exp
variable(v: nat) D vr? . exp
nx(nxexp : exp) : nx? . exp
fin(finexp : exp) . fin? L exp
+(aexl: exp, aex2: exp) . plus? S exp
-(sex1: exp, sex2: exp) : min? D exp
*(mex1: exp, mex2: exp) ;. mult? . exp

END exp

The svandyv are the identifier of respectively a static and a state variable. Since thesifiede are
natural numbers we have an unbounded number of static and state \artikeis exactly what we want.
With subtype declaration like (vr?) we can express thatranges over the state variables.

For the encoding of formulae we need the encoding of expressions sis imported. Again, in
table 1 we used a general relatipron expressions, we will only use and= relations. The syntactic
encoding is then as follows:

%%%% definition of datatype formula
form : DATATYPE

BEGIN

importing exp

FA (vl (vr?), f1: form) . fa? . form
FAs (v3: (svr?), fifas : form) : fas? . form
skip . skip? ; form
=(eqxpl: exp, eqxp2: exp) . eqi? . form
<(lexpl: exp, lexp2: exp) : les? . form
-(fn1: form) . inot? . form
N(fal: form, fa2: form) . iand? . form
“(fcl: form, fc2: form) . chop? . form
chopstar(fcs1: form) . chopstar? : form
END form

The abbreviations listed in table 2 can now be encoded as follows:

%%%% frequently used abbreviations

T . form = (const(0)=const(0));
V(f1,f2) : form = -((-f1) N (-f2));
=>(f1,f2) . form = (-f1) V f2;

==(f1,f2) : form = (f1 => f2) A (f2 => f1);
TE(va,f1) . form = -FA(va,-fl);
TEs(sva,f1) . form = -FAs(sva,-f1);

O(f1) . form = skip™fl;

inf : form = T°F;

finite : form = -inf;

<>(f1) . form = finite™f1;

[1(f1) D form = -(<>(f1));

wO(f1) . form = -(O(-f1));

Di(f1) . form = f1°T;

Bi(f1) : form = -(Di(-f1));

ife(fo, f1, f2) : form = (f0 A f1) V (-f0 A f2);
as(explexp2) : form = nx(expl) = exp2;
more . form = O(T);

empty . form = -more;

fin(f1) . form = [J(empty => f1);

while(f0, f1) : form = chopstar(fo0 A f1) A fin(-f0)

3.2 Semantic encoding

Before we can give the semantics of the above syntactic constructs we@fingtintervals (i.e., (in)finite
sequences of states). First we will encode (in)finite sequences. kdégeda(n) (in)finite sequence as a
record of three fields, the first field is a boolean indicating if the sequisnoénite, the second field is
a natural number indicating the length of the sequence and the third field isagrvehose indices are
bounded if the sequence is finite. For the encoding*ondVv - f we need definitions of respectively
sequences of natural numbers and sequences of values. So wevavdl general definition of sequences
in that the sequence elements are of general Type

%%%% definition of an (in)finite sequence
Sequ: TYPE =

[# infinite : bool,
len: nat,
seq: ARRAY[{i:nat | infinite or i<=len} -> T] #]

The infinite and finite subtypes are defined as follows:

%%%% definition of an infinite sequence
Infsequ: TYPE = { tau0: Sequ | infinite(tau0) }

%%%% definition of a finite sequence
Finsequ: TYPE = { tau0: Sequ | not infinite(tau0) }

We also define the notions of subsequence and suffix of a sequdmeare straight forward:

%%%% sequ is the same as Sequ
sequ: TYPE = Sequ

tau : VAR sequence

%%%% definition of subsequence
sub(tau0: sequ,
mO: {i:nat | infinite(tau0) or i<=len(tau0)},
n0: {i:nat | mO<=i AND (infinite(tau0) OR i<=len(tau0))})
. Finsequ =
LET Isum = n0O-mQ IN
(# infinite:=false,
len := Isum,
seq := (LAMBDA (x: {i:nat|i<=Isum}) : seq(tau0)(x + m0))
#)

%%%% definition of suffix of a sequence
suf(tau0 : Infsequ, mO : nat) : Infsequ =
(# infinite:= infinite(tau0),
len := len(tau0),
seq = (LAMBDA (x: {i:nat|true}): seq(tauQ)(x + mQ))
#)

Next is the definition of state. In section 2.1 a state was a mapping from both tleeastd state
variables to their values. In PVS, however, we will have two kinds of statesis a mapping from static
variables to their values and the other one is a mapping from state variablesrteailnes. This makes
reasoning about them easier in PVS. The variables are identified byralnaimber and the values are
just integers. So the encoding is as follows:

%%%% state variables are of the sort integers
Value: TYPE = int

%%%% static variables are of the sort integers
SValue: TYPE = int

%%%% Vars the indices of state variables (infinite number)
Vars: TYPE = nat

%%%% SVars the indices of static variables (infinite number)

7

SVars: TYPE = nat
%%%% State(i): the ith state variable
State: TYPE = [Vars -> Valug]

%%%% SState(i): the ith static variable
SState: TYPE = [SVars -> SValue]

Now we are able to define the semantics of the syntactic constructs. Sin@vevsiit the state the
semantics is a little bit different than in section 2.1. Instead of interpretingsmaurences of states, we
will interpret over a pairenysigmg whereenvis a mapping form static variables to their values and
sigmais a sequence of mappings from state variables to their values. With this areetifiat the static
variables don't change in an interval because they do not dependeowails.

First the semantics of expressions. This is mapping from the syntactic ectissto integer values.
Since we defined expressions recursively we give a denotationahiemd his is straight forward, only

the semantics of)ex pandfin expis interesting. But first the uninteresting part:
We need a definition of sequence of states, the following imports the g¢heoay for sequences and
instantiate it for states.

%%%% importing the theory of sequences instantiated for sta tes
importing sequ[State]

Interval . TYPE = sequ[State]
env : VAR SState
sigma . VAR Interval

%%%% semantics of expression
E(e : exp)(env,sigma) : RECURSIVE Value =

CASES e OF

const(v) DV,

variable(n) : seq(sigma)(0)(n),

svariable(n) : env(n),

nx(expl) : semnx(E(expl))(env,sigma),

fin(expl) . semfin(E(expl))(env,sigma),

+(expl, exp2) . E(expl)(env,sigma) + E(exp2)(env,sigma),
-(expl, exp2) . E(expl)(env,sigma) - E(exp2)(env,sigma),
*(expl, exp2) . E(expl)(env,sigma) * E(exp2)(env,sigma)
ENDCASES

MEASURE sizeexp(e)

The semantics af)expis problematic because it is undefined for intervals of length 0. How to encod
that an expression has an undefined value? If we look at the semanBesiigisection 2.1 we see that
we use there the choice operator, i.e., an undefined value is just any WalB¥'S there is also such a
construct: it is the epsilon construct. The semanticSek pandfin exp(undefined for infinite intervals)
are as follows:

IValue . TYPE = [SState,Interval -> Valug]
El : VAR IValue;
%%%% semantics of O(expression)
semnx(E1)(env,sigma) : Value =
epsilon(lambda x1 : if infinite(sigma) then
El(env,suf(sigma,1))=x1 elsif
len(sigma)>0 then

E1(env,sub(sigma,l1,len(sigma)))=x1
else false endif)

%%%% semantics of fin(expression)
semfin(E1)(env,sigma) : Value =
epsilon(lambda x1 : if infinite(sigma) then
false else
E1(env,sub(sigma,len(sigma),len(sigma)))=x1
endif)

If one uses recursion in PVS one has to give a function so that cartérieed that the “definition”
terminates. In this case this function (the length of an expression) is as $ollow

%%%% lenght of an expression (needed for recursive definiti on)
sizeexp(e:exp) : nat =

reduce_nat(
(LAMBDA (i : int): 1 + abs(i)), %const(n)
(LAMBDA (i : nat): 1 + i), Y%svariable(sv)
(LAMBDA (i : nat): 1 + i), Y%variable(v)
(LAMBDA (i : nat) : 1 + i), %nx(expl)
(LAMBDA (i : nat) : 1 + i), %fin(exp2)
(LAMBDA (i, j : nat): 1 + i + j), %+(expl, exp2)
(LAMBDA (i, j : nat): 1 + i + j), %-(expl, exp2)
(LAMBDA (i, j : nat): 1 + i +j) %*(expl, exp2)
)(e)

The semantics of formulae is a bit more complicated as seen in section 2.lidllgpke Vv - f and
f* constructs. The rest is straight forward as seen below: The semahéideronula is a mapping from
the syntactic constructs to the boolean values.

Iform . TYPE = [SState,Interval -> bool]
F1,F2 . VAR Iform;

%%%% semantics of -f

semnot(F1)(env,sigma) : bool = not F1(env,sigma)

%%%% semantics of f1 N f2
semand(F1,F2)(env,sigma) : bool = Fl(env,sigma) and F2(en V,Sigma)

%%%% semantics of f1°f2
semchop(F1,F2)(env,sigma) : bool =
(EXISTS (m: nat):
((infinite(sigma) and F2(env,suf(sigma,m))) or
(not infinite(sigma) and m <= len(sigma) and
F2(env,sub(sigma, m, len(sigma)))
)
)
and Fl(env,sub(sigma, 0, m))

)

or (infinite(sigma) and F1(env,sigma))

%%%% semantics of formulae
M(f:form)(env,sigma) : RECURSIVE bool =

CASES f OF
FA(v,f1) . semforall(M(f1),v)(env,sigma),
FAs(v,f1) . semsforall(M(f1),v)(env,sigma),

skip . (len(sigma) = 1 and not infinite(sigma)),
-(f1) . semnot(M(f1))(env,sigma),
=(expl,exp2) : E(expl)(env,sigma) = E(exp2)(env,sigma),
<(expl,exp2) : E(expl)(env,sigma) < E(exp2)(env,sigma),
"(f1,f2) : semchop(M(f1),M(f2))(env,sigma),
N\(fL1,f2) . semand(M(f1),M(f2))(env,sigma),
chopstar(fl) : semchopstar(M(f1))(env,sigma)
ENDCASES
MEASURE sizeform(f)

We first discuss the semantics 0f. As seen in section 2.1 we need a (in)finite list of chopping points
in an interval. These chopping points are natural numbers. Since weabletined (in)finite sequences
of any type we can use that to define this list of chopping points. The semanftf¢ is now straight
forward as shown belown:

%%%% importing theory of sequences instantiated for natura | numbers
importing sequ[nat]

%%%% definition of infinite list of chopping points
ininterval : TYPE = Infsequ[nat]

%%%% definiton of finite list of chopping points
fninterval : TYPE = Finsequ[nat]

il : VAR ininterval
fl : VAR fninterval

%%%% semantics of chopstar(f)
semchopstar(F1)(env,sigma) : bool =
(IF infinite(sigma) THEN
(EXISTS 1l :
seq(f)(0) = 0 and
F1(env,suf(sigma, seq(fl)(len(fl)))) and
(FORALL (i: below(len(fl)]):
seq(fl)(i) < seq(fl)(i + 1) and
F1(env,sub(sigma, seq(fl)(i), seq(f)(i + 1))
)

)
OR

(EXISTS il:
seq(il)(0) = 0 and
(FORALL (i: nat):
seq(il)(i) < seq(ih(i + 1) and
F1(env,sub(sigma, seq(il)(i), seq(i)(i + 1))
)

)
ELSE

(EXISTS fl :
seq(fl)(0) = 0 and
seq(fl)(len(fl)) = len(sigma) and
(FORALL (i: below[len(fl)]):
seq(fl)(i+1) <= len(sigma) and
seq(fl)(i) < seq(fl)(i + 1) and
F1(env,sub(sigma, seq(fl)(i), seq(f)(i + 1))

10

)
ENDIF)

At last we discuss the semanticsyof - f. Because we have split the state the semantits off is
also split into two cases. The first and easy caseuvssifa static variable. The semantics is as follows:

semsforall(F1:Iform,sva)(env,sigma) : bool =
(FORALL x1 : Fl(env with [(sv(sva)) := x1],sigma))

The second case is\fis a state variable. As seen in section 2.1 we have to encodethe’ relation
that denotes thatigmaanda’ are the same except for the behaviowofnstead of encoding this relation
directly in PVS we encode this in a similar way as the static case. In the latter easentlantics ofv - f
was encoded as for all values assigned,td should hold. The analogon for the state case is that for
all values assigned to(in the interval),f should hold. For this we need a (in)finite sequence of values.
Because we have this type already defined the semantics is then as follows:

%%%% importing theory of sequences instantiated for values
importing sequ[Value]

%%%% definition of infinite list of values
InfliValue : TYPE = Infsequ[Valug]

%%%% definition of finite list of values
FinllValue : TYPE = Finsequ[Value]

ival . VAR InfllValue
fval : VAR FinllValue

%%%% semantics of FA(va,f)
semforall(F1,va)(env,sigma) : bool =
if infinite(sigma) then
(FORALL ival :
Fl(env,
(# infinite:=infinite(sigma),
len:=len(sigma),
seq:=(lambda (i {j:nat|true}) :
seq(sigma)(i) with [(v(va)):=seq(ival)(i)]) #)))
else
(FORALL fval : len(fval)=len(sigma) implies
Fl(env,
(# infinite:=infinite(sigma),
len:=len(sigma),
seq:=(lambda (i : {j:nat|j<=len(sigma)}) :
seq(sigma)(i) with [(v(va)):=seq(fval)(i)]) #)))
endif

3.3 Proof system encoding

The propositional axioms and rules presented in section 2.2 are encotigbas (noteV(f) is a predi-
cate that denotes thatholds for all intervals and interpretations of static intervals; this is neededier o
to express the rules):

%%%% definition of validity of formulae
V: pred[form] =
(LAMBDA f1: (FORALL env: (FORALL sigma: M(f1)(env,sigma)))

11

CONVERSION V

%%%% the axioms
ChopOrimp: LEMMA (f0"(f1 V 2)) => ((f0"f1) V (f0f2))

BiBoxChoplmpChop: LEMMA
(Bi(fo => f1) N\ [J(f2 => f3)) => ((f0°f2) => (f113))

%%%% the rules
MP: LEMMA V(f0 => f1) AND V(f0) IMPLIES V(f1)

BoxGen: LEMMA V(f0) IMPLIES V([(f0))

BiGen: LEMMA V/(f0) IMPLIES V(Bi(f0))

The following example is a PVS proof session of the second proof in seZtton
e This is what we should prove:

RightChoplmpChop :

{1} (FORALL (f0: form, f1: form, f2: form):

((V(((fo => f1))))) IMPLIES (V(((f2 = f0) => (f2 = f1)))))

o With skolimization we eliminate the for all quantor.

Rule? (SKOSIMP)

Skolemizing and flattening,

this simplifies to:

RightChoplmpChop :

{1 ((v(((for1 => f111))))

{1} (V((f211 " f0l1) => (f211 " f111))))
e Apply proof ruleBoxGen.

Rule? (FORWARD-CHAIN "BoxGen")

Forward chaining on BoxGen,

this simplifies to:

RightChoplmpChop :

{1 V(oL => f11)y)
(2 ((v(((for1 => f1l1))))

1 (V11 " for) => (f2i1 "~ 1))
¢ Add an instance of lemmBoxChopimpChop .

Rule?
(LEMMA "BoxChoplmpChop" ("f0" "fo11" “f1" "f111" "f2" "f2! 1)

12

Applying BoxChoplmpChop where
f0 gets fO!1,
fl gets f1l1,
f2 gets f2!1,
this simplifies to:
RightChoplmpChop :

(1} V(o => fu1)) => (211 " o) => (211 © f1I1))
2] V(oL => f111)))
3] ((v(((forr => f1i1)))

1 (V211 " forr) => (f211 1))
e Apply proof ruleMP.

Rule? (FORWARD-CHAIN "MP")
Forward chaining on MP,
Q.E.D.

Run time = 2.67 secs.
Real time = 16.34 secs.

The example shows that the PVS proof follows the same pattern as the “6Y raof.

The encoding of the first order axioms is a bit more complicated becauskasn® encode f¢”
(substitution), “where the expressierhas the same data and temporal type as the vancde is free
for vin f” and “wherev doesn’t occur freely inf,”. The latter is easy to encode. Assumés a state
variable (the static case is analogous). Because the syntax of exprassidormulae are encoded as
abstract datatypes the following will do the job:

%%%% set of free state variables in an expresion
freeexp(e:exp) : RECURSIVE setof[(vr?)] =

CASES e OF

const(n) : emptyset,

variable(v) . singleton(variable(v)),

svariable(sv) . emptyset,

nx(expl) . freeexp(expl),

fin(expl) . freeexp(expl),

+(aexpl, aexp2) : union(freeexp(aexpl), freeexp(aexp2)) ,
-(sexpl, sexp2) : union(freeexp(sexpl), freeexp(sexp2)) ,
*(mexpl, mexp2) : union(freeexp(mexpl), freeexp(mexp2))
ENDCASES

MEASURE sizeexp(e)

%%%% set of free state variables in a formula
freeform(f:form) : RECURSIVE setof](vr?)] =

CASES f OF

FA(v1,f1) . difference(freeform(f1), singleton(v1)),
FAs(v3,f1) . freeform(f1),

skip . emptyset,

=(egxpl,eqxp2) : union(freeexp(egqxpl), freeexp(egxp2)) ,
<(lexpl,lexp2) : union(freeexp(lexpl), freeexp(lexp2)) ,
-(f1) . freeform(f1),

"(f1,f2) . union(freeform(f1), freeform(f2)),

13

N(f1,f2) . union(freeform(fl), freeform(f2)),
chopstar(f1) . freeform(f1)
ENDCASES

MEASURE sizeform(f)

Encoding of substitution is also relatively easy. In order to assure tipregsione has the “same
temporal datatype” as variablevheneis substituted for we take the convention thats an expression
that contains no temporal operators, i.e.(p@ndfin operators. This kind of subtype can be encoded as
follows:

%%%% definition of expressions containing no temporal cons tructs
pexp : TYPE =
{ e: exp | forall (expl: exp) :
not subterm(nx(expl), €) and
not subterm(fin(expl),e)}

Substitution is then encoded as follows:

%%%% definition of syntactic substitution of state variabl e by
%%%% an expression containing no temporal constructs
su(expl, x, pexp2) : RECURSIVE exp =

CASES expl OF

const(n) : const(n),
variable(v) . if variable(v) = x then

pexp2 else variable(v) endif,
svariable(sv) . svariable(sv),
nx(nxexpl) : nx(su(nxexpl,x,pexp2)),
fin(finexpl) . fin(su(finexpl,x,pexp2)),

+(aexpl, aexp2) : su(aexpl,x,pexp2) + su(aexp2,x,pexp2),
-(sexpl, sexp2) : su(sexplx,pexp2) - su(sexp2,x,pexp2),
*(mexpl, mexp2) : su(mexplx,pexp2) * su(mexp2,x,pexp2)
ENDCASES

MEASURE sizeexp(expl)

%%%% definition of syntactic substitution of a state variab le by
%%%% an expression containing no temporal constructs
suform(fl, x, pexp2) : RECURSIVE form =

CASES f1 OF
FA(v1,f1) . FA(v1,suform(f1,x,pexp2)),
FAs(v3,f1) . FAs(v3,suform(f1,x,pexp2)),
skip . skip,

=(eqxpl,eqxp2) : su(egxplx,pexp2) = su(egxp2x,pexp2),
<(lexpl,lexp2) : su(lexplxx,pexp2) < su(lexp2x,pexp2),

-(f1) . -(suform(f1,x,pexp2)),

"(f1,f2) . suform(f1,x,pexp2)"suform(f2,x,pexp2),
N(fL,12) . suform(fl,x,pexp2) N suform(f2,x,pexp2),
chopstar(fl) . chopstar(suform(f1,x,pexp2))
ENDCASES

MEASURE sizeform(f1)

If one defines substitution has to take care that variables occurring inliséted expression doesn’t
become bound. To check that one can define functions that on exmessd formulae that give the

bound variables. These functions are defined analogous as the&fiables” functions.
The encoding of the first order axioms of section 2.2 is the as follows:

14

%%%%%%%% first order
ForallSub: LEMMA not member(vl,bound(fl)) and
(forall (z:(vr?)):

member(z,freeexp(pexpl)) implies not member(z,bound(fl))) and
(forall (z:(svr?)):

member(z,sfreeexp(pexpl)) implies not member(z,shound(f1)))
implies

V(FA(v1,f1) => suform(fl,v1l,pexpl))

ExistsChopRight : LEMMA not member(v1,freeform(f2)) impl ies
V(TE(v1,f12) => (TE(v1,f1)f2))

% the rules
ForallGen: LEMMA V(f0) implies V(FA(v1,f0))

4 Conclusion

We have used the ITL proof assistant to verify a list of more than 100 ¢hesar Experience shows that
proofs within the tool almost follow the pattern as the “by hand” case. Thssirels that people who
are used to the proofs by hand can easily switch to the proofs by the toel.n&tt step will be the
verification of a large example. This example will be the EP/3 example[1] foclwélready an ITL
specification exist (a large ITL formula of about 3500 lines). This examlleprobably require the
definition of proof strategies (tactics). These strategies can be defimatEo semi-automatically prove
certain theorems. Besides proof strategies also compositional proofaneleseded to tackle the EP/3
example. These proof rules are discussed in [5, 6]. Because thdDadarmalism is now encoded the
encoding of these proof rules is straight forward.

For ITL we also defined constructs to reason about message-passingunication and timing (delay
and time-out) using the work on temporal agent model (TAM) [9]. The latistaiso a refinement calculus
which can be easily ported to ITL[2]. These constructs and refinemésg will also be included in the
proof assistant.

Related work is done in Macau where Mao Xiaoguang, Xu Qiwen and Waang Wworking on a proof
assistant for interval logics. They have embedded the neighbourladadus within PVS[3]. This calcu-
lus can express a whole range of interval logics like the duration calcoth$Ta. We have exchanged
ideas, they have, on our suggestion, also used abstract datatypetatdisglly encode their calculus. We
didn’t want to follow their idea of one general interval logic but merely tedra practical proof assistant
for checking ITL proofs.

References

[1] A.Cau, H. Zedan, N. Coleman and B. Moszkowski. Using ITL anchppara for Large Scale Specifi-
cation and Simulation, in proc. of fourth euromicro workshop on paraligldastributed processing,
IEEE, 1996, Braga, Portugal, 493-500.

[2] A. Cau and H. Zedan. Communication and Time in ITL, in preparation.
[3] X. Mao, Q. Xu and J. Wang. Towards a proof assistant for infdogacs, in preparation.

[4] B. Moszkowski. Executing temporal logic programs, Cambridge Upress, UK, 1986.

15

[5] B. Moszkowski. Some very compositional temporal properties, ingRnmming Concepts, Methods
and Calculi, Ernst-Rdiger Olderog (ed.), IFIP Transactions, Vol. A-56, North-Hollar@R4, 307-
326.

[6] B. Moszkowski. Using temporal fixpoints to compositionally reason akieeness, in proc. of the
7th BCS FACS Refinement Workshop, He Jifeng (ed.), Bath, UK, 1996.

[7] John Rushby. A tutorial on specification and verification using PM8.ptoc. of the First
International Symposium of Formal Methods Europe FME '93: IndusBtadéngth Formal
Methods, Peter Gorm Larsen (ed.), 1993, Odense, Denmark, 367-cteck home-page:
http:/iwww.csl.sri.com/pvs.html

[8] J.U. Skakkebaek and N. Shankar. Towards a Duration Calculud Bssistant in PVS, in proc. of the
3rd International Symposium Formal Techniques in Real-Time and Faultafnl8ystems FTRTFT
'94, Hans Langmaack, Willem-Paul de Roever and Jan Vytopil (ed9},19beck, Germany, 660—
679.

[9] D. Scholefield, H. Zedan and J. He. A specification oriented semdatitse refinement of real-time
systemsTheoretical Computer SciencE30, August 1994.

16

