
De Montfort University

FPGA Neural Controller for

Three-Phase Sensorless

Induction Motor Drive Systems

Andrei Dinu

June 2000

A thesis submitted in partialfuUi'lment of the requirements of
De Monffiort University

for the degree of Doctor of Philosophy

ABSTRACT

This thesis presents the research work carried out in the area of design, simulation

and implementation of sensorless induction motor drive systems. State-of-the-art control

strategies for induction motors are reviewed and the neural network concept is discussed

with a view to its application to control systems.
The control strategy includes an improved current control algorithm and a novel

sensorless speed control algorithm. The strategy is based on an equivalent three-phase

circuit of the induction motor that contains a resistor R, an inductor L and an internal

voltage source 'e' on each phase. The circuit is considered symmetrical so the

resistances and the inductances on the three phases are equal. The current control

method is enhanced by an original on-line induction estimation algorithm, which

determines the inductance in the equivalent R-L-e circuit. This information allows the

optimisation of the switching process of the PWM inverter in order to miqimise the

current ripple and to maximise the transient response speed. The current control method

is first algebraically analysed and then expressed in geometrical terms using space

vectors in the two-dimensional complex plane. The geometrical form of the algorithm is

suitable for hardware implementation using neural networks and the corresponding

implementation approach turns out to be superior to the implementation methodology

that involves only classical digital circuits.
The new sensorless speed control algorithm uses space vectors expressed in polar

co-ordinates instead of rectangular co-ordinates in order to reduce the amount of

algebraic calculations compared with the classical space vector control method. The

implementation strategy developed leads to a reduced hardware complexity controller

by transferring part of the control tasks to neural networks performing trigonometric

calculations.
A new algorithm for neural network hardware implementation is developed which

uses only basic logic gates. It is mathematically analysed and proven superior to other

relevant algorithms for a certain class of applications. The algorithm converts the

network neurone by neurone and then minimises the gate count by eliminating the

redundant logic structures. The implementation process has been automated by means of

a set of C++ programs that transforms the matrix description of a feed-forward neural

network into a VHDL model of the corresponding logic gate implementation.

11

T'he controller model is developed using VHDL in such a manner that it can be

easily rescaled according to the size of the FPGA devices available and to the

accuracy/performance requirements of the electrical drive application. Practical test

results on a 0.5 kW electrical drive that includes an XC4010XL FPGA controller are

presented and discussed.

The outcome is a novel FPGA controller is developed for a VSI-PWM power
inverter system for induction motors variable speed drive system. The new approach
involves an original control algorithm and uses hardware implemented feed forward

neural networks in conjunction with classical digital structures.

III

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr. Marcian Cirstea for his invaluable

guidance and constant support both as my first supervisor and as a friend. This work

would not have been possible without him. I am also greatly indebted to my second

supervisor, Prof Malcolm McCormick for his excellent advice throughout the course of

my research.
Special thanks are due to Dr. Antonio Ometto and Prof. Nicola Rotondale from

the Department of Electrical Engineering at L'Aquila University in Italy. The

collaboration with them and their feedback on this research are highly appreciated.
I must acknowledge the stimulating e-mail contacts I have enjoyed with Dr.

Valeriu Beiu, researcher at Los Alamos National Laboratory, USA. He generously

offered up-to-date information in the field of hardware implemented neural networks. I

will always be grateful to my colleague Dr. J. G. Khor for his help with information and

advice concerning the practical experiments. Many thanks are due to others academics

at DMU and to the technical support and administrative staff, especially Dilip Chauhan,

Tim O'Mara and Sheila Hayto.

I also wish to thank my parents Mr. and Mrs. Dinu for their unfailing support and

encouragement. Last, but not in any way least, I am particularly grateful to my wife
Arica for her faith in me and her patience during all these years.

IV

CONTENTS
Title Page .. I

Abstract .. 11

Acknowledgments .. IV

Contents ... V

1 INTRODUCTION .. I

1.1 THE RESEARCH AREA .. 1

1.2 THESIS OVERVIEW .. 3

1.3 ORIGINAL CONTRIBUTIONS OF THE THESIS .. 5

2 THE OPERATION AND CONTROL OF

INDUCTION MOTORS - REVIEW .. 7

2.1 THE SPACE VECTOR CONCEPT IN ELECTRICAL POWER SYSTEMS 7

2.2 THE SPACE VECTOR MODEL OF THE THREE-PHASE

INDUCTION MOTOR ... 9

2.3 INDUCTION MOTOR CONTROL STRATEGIES .. 17

2.3.1 SCALAR CONTROL ..
20

2.3.2 VECTOR CONTROL ...
25

2.3.2.1 Rotor Flux Orientation ... 26

2.3.2.2 Stator and Air-Gap Flux Orientation ... 30

2.3.2.3 Direct Torque Control .. 32

2.3.2.4 Sensorless Vector Control Schemes .. 33

2.4 COMMON CURRENT CONTROL SOLUTIONS REVIEW 37

2.5 IMPLEMENTATION SOLUTIONS FOR ELECTRICAL DRIVE CONTROL

STRATEGIES ...
42

2.5.1 GENERAL HARDWARE RESOURCES ..
42

2.5.2 IMPLEMENTATION SOLUTIONS FOR INDUCTION MOTOR DRIVES
46

2.5.3 MODERN ASIC/FPGA DESIGN METHODOLOGIES ...
47

3 ELEMENTS OF NEURAL CONTROL ... 51

3.1 NEURONE TYPES ...
52

3.2 ARCHITECTURES OF ARTIFICIAL NEURAL NETWORKS
...

55

3.3 TRAINING ALGORITHMS ..
58

3.3.1 THE ERROR BACK-PROPAGATION ALGORITHM
...

59

3.3.2 ALGORITHMS DERIVED FROM THE BACK-PROPAGATION METHOD
62

3.3.3 TRAINING ALGORITHMS FOR NEuRoNEs WITH STEP ACTIVATION FUNCTIONS
64

3.3.4 THE VoRoNoi DIAGRAM ALGORITHM
...

64

3.4 CONTROL APPLicATioNs OF ANNS
..

66

V

3.5 NEURAL NETWORK IMPLEMENTATION METHODS ... 69

3.5.1 ANALOGUE HARDWARE INeLEmENTAnoN ... 69

3.5.2 DiGrrAL HARDWARE INPLEwNTAnoN .. 72

3.5.3 HYBRiD ImPLENENTAnoN TEcuNiQuEs ... 74

3.5.4 SOFTWARE VERSUS HARDWARE IMPLEIýIENTATIONS
.. 75

4 DEVELOPMENT OF A NOVEL INDUCTION MOTOR

SENSORLESS, CONTROL STRATEGY ... 77

4.1 THE INDUCTION MOTOR EQUIVALENT CIRCUIT ... 77

4.2 THE CURRENT CONTROL ALGORITHM .. 80

4.2.1 THE SWITCHNG STRATEGY ... 80

4.2.2 TBE ON-Lm INDUCTANCE EsnmAnm .. 87

4.2.3 THE CoNDmoNs FOR ACCURATE CURRENT CONTROL
.. 89

4.2.3.1 The Accurate Non-Inductive Voltage Calculation .. 90

4.2.3.2 The Mathematical Conditions for Accurate Induction Estimation 94

4.2.4 CURRENT CONTROL IMPLEMENTATION METHODS .. 98

4.2.5 CURRENT CONTROL SHVIULATION ... 103

4.3 TIIE NEW SENSORLESS INDUCTION MOTOR CONTROL STRATEGY 107

4.3.1 SPEED Esnmnw ALGoRmims .. 109

4.3.1.1 Steady-State Analysis ... III

4.3.1.1.1 Slip Estimation Methods Based on Vector Amplitude 113

4.3.1.1.2 Slip Estimation Methods Based on Phase Shift 114

4.3.1.2 The Transient Analysis of the Slip Estimation Process 117

4.3.1.2.1 The Effects of Altering the Stator Current Frequency 118

4.3.1.2.2 The Effects of Altering the Stator Current Amplitude 124

4.3.1.2.3 General Transient Effects ... 128

4.3.2 7111E NOVEL SPEED CONMOL ALGORITHM ... 132

4.3.2.1 The Slip Control Loop .. 132

4.3.2.2 The Speed Control Loop ... 137

4.3.2.3 Alternative Sensorless Speed Control Strategies .. 138

4.4 THE CONTLETE CONTROL SCHEME ... 146

5 THE FPGA NEURAL CONTROL APPROACH ... 148

5.1 THE NEURAL NETWORK DESIGN AND RvIPLEMENTATION STRATEGY 148

5.1.1 GENERAL ImPLENENTATTON PRiNcIPLEs
... 149

5.1.2 MODEL DIGITISAnON ... 151

5.1.2.1 Conversion Stage One .. 152

5.1.2.2 Conversion Stage Two .. 154

5.1.3 DIGITAL MODEL IWLEMENTATION USING LOGIC GATES ..
157

vi

5.1.3.1 Preliminary Considerations .. 158

5.1.3.2 The Implementation Process - Detailed Description 161

5.1.3.3 Neurone Implementation Example ... 168

5.2 UNIVERSAL PROGRAMS FOR FFANN HARDWARE IMPLEMENTATION 170

5.3 THE HARDWARE IMPLEMENTATION COMPLEXITY ANALYSIS 174

5.3.1 RESULTS PREviousLy REPORTED IN THE LITERATURE .. 175

5.3.2 THE ANALYSIS OF THE NEW IwI. EuENTATIoN METTIOD
.. 180

5.3.2.1 Implementation Without Optimisation ... 181

5.3.2.2 Optimised Implementations .. 186

5.4 THE NEURAL PWM GENERATOR ... 191

5.4.1 DESIGN GUIDELINES .. 191

5.4.2 GENERAL DESCRIPTION OF THE ADOPTED NEURAL ARCHITECTURE
....................... 193

5.4.3 THE ANGLE SUBNETWORK .. 194

5.4.4 THE POSITION SUBNETWORK .. 195

5.4.5 THE CONTROL SIGNAL SUBNETWORK .. 197

5.4.6 THE AUTOMATED DESIGN PROCESS ... 198

5.4.7 SwuLAnoN AND PHYSICAL IMPLoviENTATION RESULTS .. 200

6 THE INDUCTION MOTOR CONTROLLER VHDL DESIGN 205

6.1 THE SINEWAVE GENERATOR ... 207

6.2 THE STRUCTURE OF TIERI .. 220

6.3 THE PWM GENERATION AND THE ON-LINE INDUCTANCE ESTIMATION. 228

6.4 THE IMPLEMENTATION OF THE SPEED CONTROL STRATEGY 233

6.5 THE COMPLETE MOTOR CONTROLLER SIMULATIONS 235

7 EXPERIMENTAL RESULTS .. 237

7.1 TIHE DRIVE SYSTEM .. 237

7.2 CURRENT AND VOLTAGE CONTROL TESTS ... 242

7.3 SPEED CONTROL TESTS ... 245

8 CONCLUSIONS AND FURTHER WORK .. 250

8.1 DISCUSSION AND CONCLUSIONS .. 250

8.2 FURTHER WORK .. 252

REFERENCES .. 255

LIST OF PUBLICATIONS .. 267

APPENDIX A- UNIVERSAL C++ PROGRAMS FOR NEURAL

NETWORK HARDWARE IM[PLEMENTATION Al

APPENDIX A. I- CONV-NET. CPP .. Al

APPENDIX A. 2 - OPTIM. CPP .. A9

APPENDIX A. 3 - VHDL_TKCPP ... A17

vu

APPENDIX A. 4 - NEMNIANAG. H ... A23

APPENDIX A. 5 - NIATRIKH .. A24

APPENDIX B- THE VHDL MODELS OF THE ANGLE SUBNETWORK

AND OF POSITION SUBNETWORK .. Ill

APPENDIX B. I- TBE POSITION SUBNETWORK ... BI

APPENDIX B. 2 - TIHE ANGLE SUBNETWORK .. B5

APPENDIX C- SIN_ROM. CPP ... cl

Vill

I INTRODUCTION

1.1 THE RESEARCH AREA
Electric motors are major users of electricity in industrial plants and commercial

premises. Motive power accounts for almost half of the total electrical energy used in

the UK and nearly two-thirds of industrial electricity use. It is estimated that over ten

million motors, with a total capacity of 70 GW, are installed in UK industry alone [10].

Although many motor types are currently in use (synchronous motors, PM synchronous

motors, DC motors, DC-brushless motors, switched reluctance motors, stepping

motors), most of the industrial drives are powered by three-phase induction motors. The

majority of them is rated up to 300 kW and can be classified as illustrated by Fig. 1-1.

Fig. 1-1 - Energy consumption by induction motors up to 300 kW in industry

The large industrial use of induction motors has been stimulated over the years by

their low prices and reliability. Although initially used as fixed speed motors, the

advanced control strategies developed in the last four decades made it possible to use

induction motors for high performance variable speed drives (VSD), replacing many of

the more expensive and less reliable DC motors previously used. Moreover, induction

motor-based VSDs are now used for applications that traditionally involved fixed speed

Chapter i. INTRODUCTION

drives. For instance, VSDs replace the old solution of using adjustable nozzles in

applications involving fans or pumps. An adjustable nozzle can ensure a variable flow

of fluid, but at the cost of decreasing the motor efficiency. A VSD is capable of

performing the same task while maintaining the motor efficiency at high levels. 'Ibis is

an essential factor because the price of the electricity consumed by the motor is much
larger than its purchase price. For instance, a modest-sized 11 kW induction motor costs

as little as E300 to buy, but it can accumulate running costs of over E30,000 in ten years
[10]. Tberefore, even small efficiency improvements may produce impressive cost

savings. In addition to the potential for saving energy, the he use of VSDs has several
important benefits including:

" improved process control and hence enhanced productivity

" soft starting, soft stopping and regenerative braking

" unity power factor

" wide range of speed, torque and power

" good dynamic response (comparable with DC drives)

The successful implementation of the sophisticated non-linear control algorithms

required by the induction motor based VSDs, has been made possible by the remarkable

advances made in both power electronics and digital technology. The power electronic
devices improved their performance simultaneously with a continuous price reduction,

so the voltage inverters became an increasingly cost effective supply of variable
frequency voltage. The ongoing progress in the field of digital circuits allows ever more

complex control strategies to be implemented at low price thereby generating

competitive products on the electrical drive market.
An important amount of research effort is currently concentrated in the

development of sensorless control strategies for induction motor drive systems. The

term 'sensorless' refers in this context to the absence of the speed and/or position

sensors but it does not imply the absence of the current sensors. The information

normally supplied by the speed sensor is in this situation replaced by the result of

calculations based on the value of the stator currents and voltages. The sensorless

control approach increases the difficulty of the control task but in some practical

situations, there are strong reasons to eliminate the speed sensor due to both economical

and technical reasons. For example, the pumps used in oilrigs to pump out the oil have

to work under the surface of the sea, sometimes at depths of 50 meters. Obtaining the

speed measurement data up to the surface means extra cables, which is extremely

2

Chapter 1. INTRODUCTION

expensive, therefore reducing the number sensors and measurement cables provides a

major cost reduction [12].

One of the most promising approaches for the control of complex and non-linear

systems is the use of artificial neural networks (ANN). Neural networks are information

processing systems that are composed of a large number of interconnected basic units

named neurones. The operation and the structure of the constituent neurones are
inspired from their biological counterparts. The neural paradigm has two main

advantages:

" flexibility and the adaptability of the control system, generated by the learning

capability of the neural networks.

" tremendous data processing speed, made possible by the massive parallel structure

of the neural networks.

Most of the current control applications involve software implementations and exploit
the learning capability of the neural networks, but only the hardware implementations

are capable to take advantage of the parallel data processing advantage of the neural

networks [74].

1.2 THESIS OVERVIEW
The aim of the research presented in this thesis is to develop a controller that

implements an improved current control strategy and a simple but efficient sensorless

speed control algorithm for induction motors. Hardware implemented feed forward

neural networks are used in order to maximise the operation speed of the controller and

avoiding the use of external look-up tables which unnecessarily increase the complexity

of the controller. The main objectives to be achieved within the stated aim of this

research work are:

" The theoretical development of the new current and speed control strategies in a

manner that allows efficient hardware implementation.

" The identification of a new optimal methodology for neural network implementation

into digital circuits.

" The hardware design of the neural controller implementing the two control

strategies.

" The controller performance assessment by simulations and practical experiments.
The new controller is included in a typical sensorless induction motor drive

system (Fig. 1-2). The three-phase motor is supplied with variable frequency and

3

Chapter i. INTRODUCTION

variable amplitude voltage by a three-phase VSI-PWM inverter, which is fed with DC

voltage generated by an controlled rectifier via a low-pass gamma filter. The controller

receives the reference speed information, calculates the necessary stator currents of the

motor and generates the appropriate control signals to the PWM inverter, so that the

required currents are achieved. The stator currents are calculated in a manner that

ensures that the actual speed of the rotor follows the reference value as closely as

possible.

Ra La
e.

0-
PWM R Lb

eb
0- Inverter
0-

RC Lc
ec

Induction
Motor

ia ib

reference Motor i A/D

speed ControHer ersion

Fig. 1-2 - The block diagram of the drive system that includes novel motor controller

The control principles implemented by the new motor controller rely on an

equivalent R-L-e circuit of the induction motor that contains a resistor P, an inductor L,

and an internal voltage source on each phase. The controller uses the information

regarding the voltage across the motor and the currents through the stator windings to

perform an on-line estimation of the equivalent inductance L. The equivalent resistance
R is considered a known quantity. The estimated value of the inductance is used both to

optimise the control of the stator current and to calculate the internal voltages e., eb and

e, These voltages are used to determine the motor speed, thereby eliminating the need
for a speed sensor.

The content of the thesis is divided in 8 chapters. While this chapter introduces the

subject of the research work, chapter 2 presents the space-vector model of the three-

phase induction motors and the most important speed control strategies developed so
far. It also demonstrates that many of these strategies need to include stator current

control algorithms, and reviews the most important of them. The chapter ends with a

presentation of the hardware implementation techniques for electrical drive control

4

Chapter 1. INTRODUCTION

strategies and their relation to the design methodologies. Chapter 3 introduces basic

elements concerning neural networks and their application to control systems, and
discusses the hardware implementation methods available nowadays. Chapter 4

describes in detail the improved current control strategy and the new sensorless speed

control method. The description contains thorough mathematical demonstrations and
highlights the importance of each parameter of the two control algorithms. A new FPGA

implementation method for neural networks is presented in chapter 5. The method is

compared with other relevant implementation algorithms from the hardware complexity

perspective and its superiority for a certain class of applications is demonstrated. This

chapter also describes the design and the implementation of the neural network that is

used by the induction motor controller. Chapter 6 presents the architecture and the

operation of the motor controller and shows the place of the neural network among the

other digital structures included in the controller. The practical test results are presented

and discussed in chapter 7, while chapter 8 formulates a list of conclusions and shows

possible ftuther developments of this research work.

1.3 ORIGINAL CONTRIBUTIONS OF THE THESIS
The original achievements of the present research work can be surnmarised as

follows:

41 The development of a neural network hardware implementation algorithm that uses

only AND, OR and NOT logic gates and minimises the generated hardware

structure.

" The automation of the implementation algorithm by means of C++ programs that

start with the mathematical description of the neural network and generate the

optimised VHDL model of the corresponding logic architecture.

" The development of a flexible current control strategy that is suitable for neural

network implementation and which allows good control over the ratio between the

operation precision and the complexity of the hardware implementation. This ratio

can be modified by altering the number of neurones in the corresponding neural

network. This strategy can be applied to a large range of three-phase power systems
including induction motors.

The design of an original on-line inductance estimation algorithm that can be

combined with the current control strategy to generate an universal current control

5

Chapter 1. INTRODUCTION

structure that automatically adjusts the PWM switching process to the parameters of

the load.

* The optimal implementation of the induction estimation algorithm using a feed-

forward neural network implemented into digital hardware.

9 The development of a new speed estimation algorithm for induction motors, using

space vectors defined in polar co-ordinates instead of rectangular co-ordinates. The

new approach requires a smaller amount of calculations than other algorithms and it

is appropriate for implementation into low complexity hardware by using neural

networks. The neural network approach allows the modification of the

implementation complexity in accordance with the hardware resources available.

The development of a sensorless induction motor control strategy that uses the polar

co-ordinate approach and includes the previously mentioned speed estimation

algorithm.
The design of a digital sinewave generator with adjustable frequency that uses the

differential modulation technique to minimise the size of the associated look-up

table.

9 The VHDL design of numerous other digital structures that are included in the novel

motor controller.

6

2 THE OPERATION AND CONTROL OF
INDUCTION MOTORS - RIE-7, MIEW

The replacement of DC motors with induction motors in many industrial plants

has stimulated the research in modelling and control of induction motors since 1960s.

This chapter presents the space vector model of the induction motor, which is the most

appropriate mathematical model for drive system design. Based on this model, the main

speed control methods available today are classified and analysed. The chapter also

discusses different current control algorithms that can be used in conjunction with the

speed control methods, underlining their advantages and disadvantages. In the end, the

implementation solutions for motor control applications are presented and compared in

terms of speed and price.

2.1 THE SPACE VECTOR CONCEPT IN
ELECTRICAL POWER SYSTEMS

The space vector concept originated in the study of Y-connected induction motors

but it can be extended to describe all three-phase electric system regardless of their exact

nature: electrical generators, electrical motors, transformers etc. The basic principle is to

transform the scalar electromagnetic quantities describing the system (currents, voltages

and magnetic fluxes) into two-dimensional vectors named space vectors. One single

space vector replaces a set of three scalar quantities of the same type, thereby generating

a more compact notation for the mathematical equations. Therefore, space vectors are
largely used to analyse the operation of three-phase electrical machines [93], [109],

[132], [134].

If 'A' is an electromagnetic quantity then A., Ab and A, are the three values

corresponding to the three system phases. They are initially associated with two-

dimensional vectors situated on three directions 1200 apart in a plane: As, Tkb, and Xc

as illustrated in Fig. 2-1. Adding the three vectors together, a single two-dimensional

vector is obtained according to equation (2-1). X is the space vector associated with

7

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

scalar quantities Aa, Ab and Ac. The vector components on the real axis (axis V) and on

the imaginary axis (axis 'q') are given in (2-2).

Imag
(q axis)

Ac Ac

Xb
0

Ab

Aa a Real
(d axis)

c

Fig. 2-1 -The relation between phase quantities and the corresponding space vector

A=A, +Ab+Ac

Ad = A. - cos(0) + Ab ' COS(27Z) + Ac . cc)S(4n) =Aa-'Ab-'Ac 3322

Aq= Aa - sin(0) +Ab, sin
27r

+ Ac - sin
41t)

= %F3 Ab
- 2ýý3 Ac

(2-2) (ý3, n)(322

In practical calculations, the space vectors are represented either by 2xI matrices

or by complex quantities. Using matrix notation, equation (2-2) becomes (2-3) while
(2-4) describes the complex number approach to space vector calculation (2-1). Two-

dimensional vectors like the one in (2-1) are distinguished from the equivalent complex

numbers by means of notation. Underlined symbols stand for complex values while

vectors are represented by symbols placed under an arrow. Thus, A is a complex number

while X is a vector.

(1-i-1 Aa
Ad

=22- Ab
(Aq)

0
V3

_
V3

A 22

(2-3)

8

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

A=Aa+S'Ab+e 2 -Ac

6= COS
27c

+j- sin(27c)
(3)3 (24)

The transformation of the set of three scalar variables into a space vector is

equivalent to a transformation from a three-phase system into a two-phase system. The

inverse transformation can be calculated based on the property that the algebraic sum of

the three scalar values is always null. This property is shared by all electromagnetic

quantities related to individual phases (currents, voltages and magnetic fluxes) if the

power supply generates symmetric voltages and the load is symmetric and Y-connected.

Aa +Ab +A«2 = (2-5)

Combining (2-5) with equation (2-2), the system (2-6) is generated from which
(2-7) is derived. The system (2-7) describes the inverse transformation of a space vector

into the corresponding set of three scalar phase quantities.

Ad
«, 2Aa -'Ab -1A

1-22'

Aq= %F3 Ab- %F3 A
122

Ag +Ab+Ac =O

2 Aa =- .
Ad

3
I Ab =-

3.
Ad + T3 .

Aq

Ac =- 3.
Ad - T3 .

Aq

2.2 THE SPACE VECTOR MODEL OF THE
THREE-PHASE INDUCTION MOTOR

(2-6)

(2-7)

The mathematical models of the electrical machines are classified as lumped-

parameter circuit models and distributed-parameter models. The latter are more complex
but more accurate than the former. The distributed-parameter models are used for very

precise calculations necessary for optimal machine design. They allow an exact

calculation of the electromagnetic field and heat distribution inside the machine. The

lumped-parameter models can be obtained as a simplification of the distributed-

parameter models. They are used for control system design where only global quantities

9

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

like currents, torque and speed are important. Their internal distribution inside the

machine is not relevant when designing controllers to govern the evolution of speed,

torque and power consumption according to the particular application requirements.
Furthermore, the lumped-parameter circuit model is simpler and therefore more

convenient to use in the study of electric drives. The space-vector model of the

induction motor is the lumped-parameter model with the largest use in the study and
design of electrical drive applications.

It is common to consider as a first approximation that the rotor windings and the

stator windings have a sinusoidal distribution inside the motor and no magnetic

saturation is present [32], [93]. Therefore, the magneto-motive force (mmf) space
harmonics and slot harmonics are neglected. Although saturation is not taken into

account, the model is considered to yield acceptable results for the study of common

electric drive applications [32], [93], [132].

The induction motor sPace vector model is derived from the basic electrical

equations describing each of the stator windings and each of the rotor windings. The

stator windings equations are given in (2-8) where u., Ubs and u,,,, are the phase voltages,

iasq ibs and ics are the phase currents, while T. 9 Tbs and Tcs are the phase magnetic
fluxes.

uas = Rsias +
d%,
dt

Ubs = Rs'bs +
dTb!

l

dt

u., = Rsics +
dTý,
dt

(2-8)

The associated space vectors (expressed as complex numbers) are obtained by

multiplying the second equation in (2-8) with E and the third with e2, after which all the

three equations are added together. The complex number s is defined in (2-4). The

conversion of the three scalar equations into one space vector equation is illustrated by

(2-9) and (2-10).

u., = Rsias +
dT.,
dt

CU bs= Rs 'E'bs +CdTbs (2-9)
dt

62u., = Rs -c2i cs
+s 2d'pcs

dt

10

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

U as
+ S'Ubs +S2. ucs

s
2. i=: >us =RiS+

dT
(2-10) 'as +6*'bs +E

cs s S-3

! E: =T +E. Ts+62. Ts
dt

as bc

Different reference frames (still or rotating) can be used to calculate the co-

ordinates of the electromagnetic space vectors [32]. Equations (2-10) are written in the

stator reference frame. Any rotating reference frame is defmed by the electrical angle
fimction O(t) that indicates the relative position to the still reference frame.

Alternatively, it can be defmed by the electrical rotation speed co, (t) and the initial

electrical angle 0(0). For a general rotating frame (illustrated by Fig. 2-2) the equations
(2-10) are transformed into (2-11).

M., = us - e-jo
i' = is - Cio

Ys - e-jo
d

M., - ei' = Rjo, - ei' +-
LT�o

- eio)

1

dt

Fig. 2-2 - The fixed stator reference frame and the general mobile 0 reference frame

The fourth equation in (2-11) can be rewritten as (2-12). Equation (2-13) is

eventually obtained by dividing (2-12) with do.

d0
(2-12) j!. - ei' = R, ie ei' + -' - ei' + Te -ei dt

0 dTe
IFO R. ie + l` +

dt

11

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

A similar complex equation describes the rotor circuit with the difference that the

reference frame rotation speed relative to the rotor is (Oe-(Oer instead Of We (coý, is the

electrical rotor angular speed). Moreover, the rotor voltage is always zero for squirrel

cage induction motors.

0
l! 0=R., io + -f + j(coe - cüc,)- T' = (2-14)

Equations (2-15) describe the relation between the electrical stator angular

frequency coe, and the stator current frequency f, on the one hand, and the relationship

between the rotor angular speed coe , and the rotor mechanical speed co, on the other hand.

The variable 'p' is the number of pairs of stator poles.

co� =p- o). =p -27rf,
l(Oer

=P *cor
(2-15)

The individual phase fluxes that are used to calculate the magnetic flux vectors,

are each composed of six components. The flux components are generated by the

electromagnetic interaction between the three rotor windings and the three stator

windings.

Tu = llsasa + lysasb + Ipsase + qI
sara

+ tpsarb + Tsarc

1 Ij. 1Fx1 ly,
b = Tsbsa +

sbsb
+

sbsc
+TAra + Psbrb + Psbrc

Y. = 'Fcsa + 'Fcsb + Xpscsc + lyscra + Tscrb +x pscrc
(2-16)

Ipla = Tirasa + Ij
msb

+ tyrasc + Xyrara + lyrarb + 11
mrc

Trb = kprbsa + 11
rbsb

+ lprbsc + tprbra + qI
rbrb

+ Trbrc

Yr. = 'prcsa + Trcsb + Xljrcsc + tyrcra + %prcrb + ty,..

In equation (2-16) each flux component is identified by four indices: the first two

indicate the winding where the magnetic flux is measured while the last two indicate the

winding that generates it. For instance, Tab is the flux generated into stator winding 'a'

by rotor winding V.

The flux components related to stator phase 'a' are described by (2-17). The

names and the significance of the symbols are as follows:

1) L. - the mutual inductance between stator and rotor. It is proportional to the
flux created by one rotor phase into one stator phase.

2) m,., - the stator mutual leakage inductance between two stator phases. It is

proportional to the flux produced by one stator phase into another stator phase

12

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

without influencing the rotor. It therefore models the magnetic field lines that

intersect two stator windings without intersecting the rotor.

3) 1., - the mutual inductance between stator phases. It is proportional to the flux

created by one stator phase into another stator phase through the rotor. It

models the magnetic field lines that are created by one stator phase but

intersect both the rotor and the other stator winding.

1, - the stator phase leakage inductance. It is proportional to the stator phase

own leakage magnetic flux. The corresponding magnetic field lines do not
intersect any winding other than the stator winding which produces them.

a- the angle between the stator d-axis and the rotor d-axis.

Tsasa (lcrs + lms)' 'sa

mcls + Ims * COS(27u)] * 'sb Ts
.. asb 3

7C
m +I. S. COS(4Fn)]. i Tsasc

cys sc 3
Tura

msr *cos(x)-ira

Tsarb lmsr COS (X +
27c).

'rb
ý3

47c
IMST COS Cc+ irc T.

arc 3)

(2-17)

The magnetic coupling between different windings is influenced by their relative

position. The coupling is maximal when the angle between the two windings is zero and
it is null at 900. This geometric factor can be expressed by simple cosine functions due

to the assumption that the magnetic field has a sinusoidal distribution. Adding the six

components from (2-17) the result is:

Tla 103
- MCFS +31 'sa +31

insr *COS CC
ra

+ NF3 l.
sr * sin cc - (im -'rb)

222

Equation (2-18) is obtained based on the property that the sum of the three phase

currents is zero. Similar results are obtained for stator phases V and V:

+3 +3 . ý, Cos cc. i
31 T,

b as -M crs - lms 'sb
rb + ýE

msr , sin a- (ira
- ij

222
(2-19)

TI.
C _M"ý +21ms). jý', +3 Ims.. Cos(x. i. +ýE3 I. sr -sin a- Orb

222

13

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Eventually the stator flux space vector is calculated multiplying equations (2-18)

and (2-19) with 1, s and s2 and adding them together. 'Me flux has two components: one
depends on the stator currents and the other depends on the rotor currents.

+ T',

T. = 103 - mas +3 ims - i: (2-20)
2)

Tsr
31

msr COS (X "r+ ýE3 I msr
S'll CC

rb
+'

rc
+ F"

ra - F-i rc -E
2i

ra
+e 2irb

22

The expression describing the flux component T., can be ftirther transformed

using the mathematical properties (2-2 1). The results are presented in (2-22), (2-23) and

(2-24). Equation (2-24) becomes (2-25) in a general reference frame given by angle 0.

6-6
2

=j- 3
+ 62

j. 43 E2

(2-21)

3 l. sr COS (X - ir +ýE3 1 msr sin a- JJ -
(ra

+ f; 'rb +6 2i (2-22)
22

=33 ir =3r. j,, =3 ! E: r I coscc - i" +j-1. sin cc I *i eI ir (2-23) 2 msr r2 Sr _r 2 msr -r 2 mSr -

- MOS + .,. ý).
j: + .1

(1133

22 msr
(2-24)

3.3
.1 je

.
).

io msr
! E. ' =

(ICFS
M(n + 1.

.+2
(2-25)

The rotor flux expression is similar to the stator flux expression but each stator
inductance is replaced by the corresponding rotor inductance. Thus, induction motor

equations, formulated for a reference frame defmed by the angle O(t) and the rotation

speed co(t), are:

14

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

di, 0
0 u0, = R., io, + dt + Y,

00 d10
r u= RT i, + l'-I + i(co. - CD

- dt
3.3.

(2-26)
im- m os +-1. i. +-

I.
sr

.
ZT 1,.) =(2

T= im -MM +
3.1 io +

3.1
2 -) _r 2 nisr

i, 0

The magnetic flux expressions in (2-26) are complicated because seven different

inductances are involved. The mathematical technique of referring the rotor quantities to

the stator is usually applied to the equations given in (2-26) in order to simplify the flux

equations. The basic principle of referring the rotor quantities to the stator is to multiply

rotor quantities with constant values in such a manner that the power transfer between

stator and rotor is not altered. Ibus, if the rotor current is multiplied by constant k then

the rotor voltage and the rotor flux are multiplied by I/k. On the other hand, the rotor

resistance and the rotor inductance are multiplied by 1/0. The constant k that generates

the simplest transformation of system (2-26) is given by (2-27) while the corresponding

referred rotor quantities are (2-28). The equation linking all the referred quantities is

(2-29).

(2-27)
ims

io =k- io =
Imsr

- -0 T _r ims
ir

'0
10 Ims

0
!!

r
=-. u =-. U

(2-28)
qi

r,.
YO =

Irns
-Y0

k -' linsr f

R',
1.

Rr =
12m,

R
12 r
msr

10
RT ++ (2-29)

-rt

The referred rotor flux can be expressed as a function of the stator current and the

referred rotor current vector (see (2-30)).

'0 =
Ims 0= 11. (1 3) .o+31 Tr
Imsr

Tr
12 m -mar +2r2 ms ,

i. 0 (2-30)

msr

15

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

The inductances I.,, I., and I.,, are always related by equation (2-3 1). This relationship

allows the rewriting of equation (2-30) as (2-32) and (2-33).

Ims 'Imr = 12
msr

0=I,.,, (I - "r
)0+303 T'r

ff m i'l -1. -ir +-IMS 'iýo (2-32)
12 r
msr

22

i, " + L. - i'ý'= lýr - i"' + Lm ,0 iýO (2-33)
r

The significance of the symbols in the previous equations is:

I:

cT=

"-2 (Im
- m.)

- the total referred rotor leakage inductance
12
msr

3
2) Lm =21 ms -the resulting stator-rotor mutual inductance

3) tr =
fOT

+Lm- the total referred rotor inductance

Substituting the first equation (2-28) in (2-25), the stator flux can be written as:

0+3.1
s) .

je +3.1. s .
j, o 1., =

(I"s
- MUS 2 -s 2 _r

(2-34)

0 1., =
(L,

+ L.).
+ L. - iýO = Ls - i.

0, + L. - i'o (2-35)

The significance of the symbols is:

1) - the total stator leakage inductance

L, =L,, +L. - the total stator inductance

Thus, (2-36) is the compact format of the induction motor equations initially

presented in (2-26). This system of equations expresses the space vector model of the

induction motor [93].

Rýi, " +
dT, '

+ jcoFO
dt -s

R, fo ++ j(co. - cor -36) r. t
L. i, 0 + L. i'o

f
i'o +L i0

r_r M-S

NOTE: Usually, to simplify the notation, the apostrophe symbols are not included

in the equations. Yet, the rotor quantities are implicitly referred to the stator. No

16

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

apostrophe symbol is used in the rest of this thesis but they are implied whenever a rotor

equation or a rotor parameter is mentioned.

2.3 INDUCTION MOTOR CONTROL STRATEGIES
During the first one hundred years after its invention, the induction motor was

known as a constant speed electrical machine. The advent of electrical power converters
in the 1960's made possible the use of the induction motor as a variable speed machine.
The recent development of the digital technology created the possibility of
implementing complex control algorithms yielding high dynamic performance [134].

Correct control over the motor torque is a prerequisite of all the speed control

strategies. The torque equation can be derived from power-based considerations and can
be expressed as a fiinction of the current and voltage space vectors. The total power

consumed by the motor has three components: the power dissipated by the winding

resistances PR, the power stored in the internal magnetic fields P,, and the mechanical

power PM. The motor torque is proportional to the mechanical power and inversely

proportional to the rotor speed (2-37). The total motor power is the power consumed by

all six stator and rotor windings so it can be calculated as in equation (2-38). Elementary

algebraic calculations show that the rotor power and the stator power can be calculated

as indicated by (2-39). The calculations can be performed in any reference frame defined

by the time function O(t).

Now as

Pý- PR +pp +PM

T=pm =p,
pm

cor Co er

and therefore

(2-37)

p ý- ps + pr -`ý Usa'sa + Usb'sb + Usc'sc + Ura'ra + Urb'sb + Urc'sc (2-38)

where

i=2 Reýu: - i:
* J= 2 Re ýuo

-i
*) e ps Usa'sa + Usb'sb + Usc

se 33.1 (2-39) 2 r. ir* 2 O. iO* pr = uraira + urbirb + urcirc =3 Reýur
-r

J=
3

Reýur
-r

I

The equations (2-40) are obtained by substituting general equations (2-36) into

(2-3 9). Thus, the three power components are calculated according to (2-4 1).

17

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

2 .0 dT 00
P. = Re R. i. ++ jcoe TS - is*

31 dt

1

(240)

").
10 P, =2 Re R, io +

d'Po
+ j(co coe 3 dt r -r

20 o* io io PR

3
ReýJ, +R,

0 2 dj,
+

dl', ' 1
pp

3
Rel

dt dt

1
(241)

Pm =-Reý z, -iý
J

3

The imaginary number J' in the expression of the mechanical power component

Pm can be eliminated using the general algebraic property (2-42).

Rejj - zj = -Imjzj (242)

Thus, the equation defining Pm is simplified as

.0i (2-43) PM
3

IMý. + (Co.
- Co.) ir

-r
)

The two components of the imaginary part in (2-43) can be rewritten as in (2-44),

so that the mechanical power equation becomes (2-45).

Ihn

(�� - s.
0. io* o* (2-44)

Im - CD) T, L.
er -, c er

)

PM =-2L.
[ü). Iniý. ' . _iro*l]

(245)

Based on the mathematical property (2-46) the equation (2-45) is fin-ther

transformed into (2-47).

Imýx. zol+lMLY. X*1=0 (246)

=2 o) L Imý. o je.)= 2
po), L. (2-47) PM

3 er m* _r

Therefore, the motor torque may be expressed by (2-48). It is seen that the motor

torque depends only on the rotor current vector and on the stator current vector.

T=
2

pLm -Imý, '. i ()* (248)

18

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Alternatively, the torque can be expressed as equivalent functions of the stator

magnetic flux and/or the rotor magnetic flux as shown in (2-49), where 8 is the angle

between the stator flux and the rotor flux.

20 iO* T=
3p-

(a)

2
P. T3 xljý (b) (249)

2 L. o.)= 2p. L 01.1 T=-p. . lmý-. o .! Er - -.
J! Eý Tio I- sin 8 (C)

3 LsLr - 0.3 LsL, - 0. r

Relations (2-48) and (2-49) directly or indirectly underlie all induction motor

control strategies. They can be classified as scalar control and vector control strategies

(Fig. 2-3). The scalar control operates utilising simplified equations derived from the

general space vector model (2-36). This approach involves only the space vector

amplitudes and their corresponding frequencies and the simplified equations are valid

only in steady state operation. Consequently, scalar control is simple but generates poor

response during transient operation [132]. In contrast, vector control operates directly

with the space-vector model of the motor and implements the equations given in (2-49).

Therefore, it offers good results in both steady-state operation and transient operation.

The group of vector control algorithms includes the Direct Torque Control (DTC)

method and the class of field oriented control strategies. The theory of field oriented

control was developed by researchers at Siemens in 1968-1969. Since this time,

researchers all over the world have implemented increasingly efficient practical systems
based on this theory [134].

The actual motor speed is the most important information for any speed control

algorithm. As illustrated in Fig. 2-3, there are two possible approaches to obtain this

measure: either to use a speed sensor or to calculate the speed based on the electrical

motor quantities. These two approaches are applicable to scalar control methods as well

as to vector control methods but the use of vector control ensures better dynamic

response. The interest in speed sensorless control emerged from practical applications

where high control quality is required but the speed sensor is either difficult to use due

to technical reasons, or too expensive. The speed sensorless control of the induction

motor is currently one of the most intensively research fields in electrical drives [133].

19

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Induction Motor
Control Strategies

Scalar Control Vector Control
4, -. 41

With Speed

?

Ope-nL-0-0P WithSpeed Sensorless
Sensor

IIII
Sensor

II

Sensorless

Field Oriented
Vector Control

j r&rect
Torque

Control

C
V ctor C it,

Stator Oriented /'Rotor Oriented gg a pp FF 11 uu xx
Vector

ct ct

, Control rier te d Vector Control Oriented
eectorr Conttroll

FI--ndirect Dir I ndirect Direct e Indirect Direct Indirect

V

Natural Field
Orientation

Fig. 2-3 - The classification of the induction control strategies

2.3.1 Scalar Control
Scalar control uses the stator voltage amplitude Ui=2/3-juj and the stator

frequency fý as input quantities and works well in steady state and slow transient

operation. This strategy varies the stator voltage and the stator frequency according to a

fimction U., (Q so that the maximum torque available is large (and almost constant) at

any stator angular frequency COes.

In steady-state operation, the rotor flux has constant amplitude. Therefore, the

rotor equation in rotor co-ordinates is:

Rr "r+ d! r"
=R i' + i(cj),, - we - co,,.) -

(Lr i' + L. i') =0 (2-50) r
)j! 'r Rr+ (Cl)

es dt _r r -f -f -3

Under these conditions, the rotor current depends on the stator current space

vector and on the slip angular frequency (the difference as indicated in (2-5 1).

, r.
)LM ir

Rr +j(o)cs -(»er)Lr
(2-51)

20

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

The initial motor torque expression (2-48) can be modified by substituting (2-51)

in (2-48) which yields equation (2-52). Therefore, the motor torque is proportional to the

stator current module squared.

Xr. ir

T2 PV. -
Im

j(coes
-coer s -3

2
Im

j(coes Wer)
(2-52)

3 R, + j(e)
es -(0 e,

)L, 3R 0) -coe L

l= 1r

+i(
es Ir) r "i

It is seen that the stator current depends on the stator voltage as indicated by

(2-53), (2-54), (2-55), while the dependency between the torque and the stator voltage is

obtained by combining equations (2-52) and (2-55) to give relationship (2-56).

r
s

ir + jo)e
3- o),, r)T

"=R, ir +j(,)e r (2-53) =Rs s ,
Tr +j(o)es 3 -5 sTs

)2
.

ur ir + ir
j«De - (0

m er 1 =R, icoe
-9 Rr + j(c)es - coer

ýýr (2-54)

s li, l= Iii'l
s (Oes

(O)es
- O)er

(2-55)

Rs + jo)esLs +m
Rr+ i(Coes

- (J)er
)Lr
L

U2 3j
p2. -2 'Itn

Xwe
er

)2.

(2-56)
2mR, + coe Rs + j(otsL3 +

«oes
ý,

)2,
ý,

)L,

Rr + j(coes - coer)Lr

Fig. 2-4 presents the torque-speed characteristic calculated according to (2-56) for

a three-phase induction motor with the parameters Rs=0.371f); R, =0.415fl;
L,,, =2.72m]H; L,, =3.3mH; L. =84.33mH; p=l; P=11. IkW. The motor is supplied by a
three-phase 240V/5OHz supply. As the figure shows, the motor torque is zero at

synchronous speed and has its maximum at a relatively high angular speed O)m as

compared to the rated stator angular frequency (314rad/s). The motor normally operates

at speeds between the synchronous angular speed and com.

21

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

4 6T [Nml
70

T M 60 -------- I --------------- . -- - -- . .

50 -------- ------- i------- ---------- -----
4------------ -

40 -------- ------- I -------- --- ------------ 4 --- -- ----- -- -----------

30 -------- -------
4------- --- -----

20 ------- -------- -------- - - -

- 10 ------- ------- -------- [

0 50 ', ým- '
3ý -'-

-50
0 100 150 200 250

Gim ü) [rad/s]

Fig. 24 - Induction motor mechanical characteristic (P=11.1 kW)

At high stator angular frequency, around the rated value, the stator resistance is

negligible, thus, I i' I in (2-55) depends only on the slip angular frequency (CD, 1p=(Oes-COer) S

and on the voltage-angular frequency ratio (Wco,). If this ratio is kept constant then the

stator current amplitude and the motor torque depend solely on the slip angular

frequency. 'Iberefore, the maximum motor torque Tm is independent of the stator

angular frequency coes. At low frequencies however, the stator resistance has an
important influence on the stator current and leads to a diminished maximum torque,

with negative effects on the motor operation. The effect of the stator resistance on the

motor torque can be counteracted by raising the stator voltage to compensate for the

stator resistance. The function Us(co.,) that maintains Tm constant at all frequencies can
be derived from (2-56). The solution is a non-linear expression, difficult to implement

into hardware. A linear approximation of this function is usually adopted in practical

situations. The linear approximation U, (o),) is defined by two points corresponding to

the zero stator frequency and to the rated stator frequency:

1. At zero stator frequency, the stator voltage has to generate a current equal to the

stator current at rated stator angular frequency (314 rad/s) and maximum torque.
2. At the rated stator frequency, the voltage attains its rated value.

The stator voltage amplitude is therefore defined by (2-57) where 'p' is the

number of stator pole pairs. This approximate solution does not provide a perfectly

constant T. a,, but restricts its variation within a narrow interval.

22

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

UsNIAX-Rs 1
ý(max T)

=U Us =Rsls(maxT) + O)es

p . 27c . 50 so +a) -f, (2-57)

Speeds over the rated value can be obtained by increasing the stator frequency

over the 50 Hz limit but in this case the voltage is maintained constant at its maximum

value Um, 4_x. As a result, the maximum available torque decreases (it is inversely

proportional to the frequency squared) and very high speeds cannot be obtained using

this method. For instance, the maximum torque decreases to as much as 25% from the

rated value if the stator frequency is 1 OOHz.

The open-loop scalar control implements the strategy illustrated by (2-57). This

offers an approximate control over the motor speed but the effects of the load torque

variations cannot be compensated for due to the lack of any feedback information. A

compensation of the average slip angular frequency can be performed instead so that the

rotor speed equals the reference speed for the most frequent load torque value.

The control scheme can be implemented with a controlled rectifier as presented in

Fig. 2-5, or with an uncontrolled rectifier. In the first case, the PWM inverter controls

only the frequency of the output voltage, while the rectifier determines the output

voltage amplitude. In the second case, the switching pattern inside the inverter is more

complex and determines both the ftequency and the amplitude of the output voltage.

[IUL,, el
se

PWM fs
Rectifier Inverter

im

T
ref

fs

r-
++ Expected Slip

Frequency_

Fig. 2-5 - Open Loop Scalar Control Scheme

The scalar control strategy with speed sensor can be implemented as in Fig. 2-6

using a controlled rectifier and a PWM inverter. As in the previous section, the

controlled rectifier can be replaced by an uncontrolled rectifier if the inverter controls
both the frequency and the amplitude of the output voltage. The voltage control loop

modifies the DC voltage according to the required speed profile while the optimal slip
frequency is calculated as a function of the current absorbed by the motor: the slip

23

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

increases with the absorbed current. This type of slip-current correlation limits the

current variations in the DC link during the transient motor operation.

An increase of the resistive load increases the current absorbed by the motor and

decreases its speed. This lowers the DC link voltage. The speed controller responds by

increasing the reference voltage while the slip calculator increases the motor slip. As

demonstrated by equation (2-56) the motor torque increases with the increase of the

stator voltage and with the increase of the slip angular frequency. On the other hand, the

stator current depends on the stator voltage in the manner indicated in (2-55). Therefore,

a torque increase can be obtained with a diminished current change if the slip angular

frequency is changed accordingly. Conversely, when the load torque decreases the

current drop in the DC link is limited and the temporary transformation of the motor

into a generator is avoided, thereby reducing the strain on the power transistors in the

PWM inverter.

PWM Controlled
lnýveCrýter

+ Voltage
Rectifler

FM im

f

Controller

SIP
fs

f. 1p (I
SIP

+
ref

++ fr
T Tief frt,

Speed us

controller

Fig. 2-6 -Scalar control scheme with speed sensor

The sensorless scalar control strategy is based on the possibility of calculating the

slip frequency as a function of the stator frequency and the current in the DC link

between the rectifier and the PWM inverter [109]. The equation underlying the slip

angular frequency calculation can be derived from (2-55). The stator angular frequency

is determined as the sum of the slip angular frequency and the calculated rotor angular

speed corresponding to the actual voltage across the DC link. In general, the large DC

link capacitor prevents the amplitude of the AC voltage from being increased as rapidly

as the frequency, which is developed with practically no delay by simply feeding the

right triggering pulses to the inverter transistors. Hence, it is customary to calculate the

frequency control to the voltage control loop in the manner shown in Fig. 2-7 to prevent

the motor from ever receiving the inappropriate voltage-frequency ratio.

24

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Fig. 2-7 - Sensorless Scalar Control Scheme

Of the two control parameters, frequency control is by far the most sensitive as

small changes in frequency produce large changes of slip frequency and hence large

changes in current and torque. By slaving the frequency command to the DC bus

voltage, the rate of frequency change is generally limited to a value to which the motor

can respond without drawing excessive current or without regenerating.

2.3.2 Vector Control
Vector control strategies use the space vector model of the induction motor to

accurately control the speed and torque both in steady-state operation and in fast

transient operation. The dynamic performance achieved by vector control strategies

equals the dynamic performance offered by PC motor drives. In fact, with vector

control, induction motor drives outperform DC drives because of higher transient

current capability, increased speed range, and lower rotor inertia [33].

The class of vector control strategies encompasses field oriented control methods

and direct torque control methods. Field oriented control methods use the rotor oriented

reference frame, the airgap oriented reference frame or the stator oriented reference
frame (see Fig. 2-3). In each case, the reference frame real axis (axis V) is oriented

along the direction indicated by the corresponding magnetic flux. The rotor oriented

vector control simplifies the control system structure and generates very fast transient

response. However, systems working with the stator flux vector or with the airgap flux

vector have been successfully implemented as well [44], [32].

25

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

2.3.2.1 Rotor Flux Orientation

In the rotor flux oriented reference frame, the rotor flux vector has no imaginary

part so that the torque expression (2-49-a) can be written as (2-58). The rotor flux and
the rotor current depend to one another in the manner indicated by the equations in

(2-59).

T=2 p-Reý01.1m[io.
)=

_2p. TTd . rq 3rr3
(2-58)

T,
d = L, id + Lmlsd

IP,
q = L, iq + L. 'sq =0

T'd

+
dqjrd

=0 (2-59) Rlri, d
+

(o)ey,
- coý,

ýPq=Rr'rd

dt dt
Rrirq +

dTq
+

«oe'Fr
ý Coer

ýprd=
Rr'rq +

«oc'Pr
- Goer

ýprd
=0

dt

Equations (2-60) and (2-61) can be derived from the previous system. They

illustrate the influence of the stator current components over the rotor flux and on the

rotor current component on axis 'q' (irq). Thus, the modification speed of the rotor flux

is limited by the rotor time constant T, ý=I, /R,, while the rotor current component iq can
be changed rapidly as no time constant is involved in (2-61).

L dqf"d
+ 'Fd L Ad (2-60)

Rr dt

'rq
sq

As demonstrated by (2-60) and (2-61), the two quantities influencing the torque

can be independently controlled by two uncoupled control loops. For high dynamic

performance, the torque is controlled by keeping the rotor flux Td constant while

varying the rotor current component iq. Keeping the rotor flux constant implies

maintaining isd at a constant value while the rotor current component irq is controlled by

the stator current component isq.

The control strategy requires the rotor flux orientation to be determined in order to

calculate isd and isq. The direct vector control method estimates the magnetic flux vector

as a function of the stator voltage, the stator current and the rotor speed. There are three
types of rotor flux estimators differing by the input data they use: the current-speed

26

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

estimator (Is, co,,,), the current-voltage estimator (1,, Us) and the current-voltage-speed

estimator (Is, Us, co,,). The indirect vector control method is simpler as it calculates only

the argument 0 of the rotor flux as a function Of isd and isq. The direct vector control is

more robust than the indirect vector control but its performance depends on the type of
flux estimator used.

The current-speed estimator is derived from the basic rotor equation and firom

rotor flux expression as shown in (2-62), (2-63) and (2-64). The rotor flux is the

solution of the integral equation (2-65). This estimator works well at low speeds but it is

not precise at high speeds because in this case the speed measuring errors have a big

influence on the calculation results.

O=Rri: +
dTr'

e,
"'j

(2-62) dt
T: + L,

0=Rr, +
dT, '

_ j, 9 er
11: (2-63)

Lr dt

dIF: 1+
j(oer - F: +

L,
i: (2-64)

dt T, T, -

-I+
jo)e ýi

]dt
(2-65) +L

T,

The current-voltage flux estimator is derived from the stator equation and the

stator flux expression (see (2-66), (2-67), (2-68)). Therefore, the equation defming the

current-voltage flux estimator is (2-69). 'Mis method offers accurate results at high

speeds but the precision at low speeds is low.

3

=R 3+ -TS
dt (2-66)

Lr

sIs
Rs i: + L, ýLis +

L' (41"
- L. (2-67)

dt Lr dt dt

dT',
=

L, Cu:
- R,

di:
(2-68) dt L. Lm dt

27

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

L"
.t: -R, is, ýt

+ is f ýu
Lm

(2-69)

The current-voltage-speed estimator (1,, Uý, coer) combines the previous two

solutions: equation (2-65) and equation (2-69). It generates good rotor flux estimates
both at low speeds and high speeds.

-'T'so'.) +
-XFsr(I, U)

2
(2-70)

The rotor flux is the original choice for field orientation because in this reference
frame the equations corresponding to the two axes ((2-60) and (2-61)) are completely
independent. As a result, this control method generates the best dynamic performance.
On the other hand, the stator flux orientation has the advantage that the torque

calculation uses the stator flux instead of the rotor flux as illustrated by (2-7 1) which is a

consequence of (2-49-b). The stator magnetic flux is much easier to calculate than the

rotor magnetic flux because it depends on stator quantities (currents, voltages and

resistance) that can be directly measured.

2
P. Imýo). Reý. o-)= 2p

-71) 3
Fsd * 'sq (2

Oýt fýuo
- R, i (2-72) s -S

0

A typical direct rotor field oriented control scheme (see Fig. 2-8)) contains two

closed loops: one for isd (controlling the motor magnetic flux) and the other for i, q
(controlling the motor torque). The rotor flux orientation exploits the advantage that the

two quantities can be controlled independently: the value of one stator current

component does not have any influence over the value of the other current component.

This property simplifies the control structure and generates good dynamic performance.
One of the three flux observers previously described is used to determine the rotor

magnetic flux. Ibis information is used to calculate the reference frame transformations:

from the stator reference frame'to rotor reference frame, and from the rotor reference to

stator reference frame.

The flux generating current component (i, d) is maintained constant for speeds

under the rated value but is decreased for speeds above the rated value (in the so-called
field weakening region). Regardless of the vector control strategy, it can be

28

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

demonstrated that maintaining the magnetic flux constant at different stator frequencies

implies that the stator voltage amplitude is approximately proportional to the stator
frequency. As in the case of scalar control, the stator voltage amplitude is given by an

equation similar to (2-57). Therefore, for speeds larger than the rated value the magnetic
flux value cannot be kept constant because that would require high voltages that may
damage the motor. High speeds are obtained at the expense of the field weakening

which decreases the efficiency of the motor.
The torque generating current component (i, q) is calculated as a function of the

required motor torque and the motor field. The reference current i' q'
is proportional to

the torque-to-field ratio. The torque is calculated in turn as a function of the difference

between the reference speed and the actual speed of the motor.
iref.

o. q
us., U,

+
ý/-

- _U . -HUb PWM
- r 2-3 Uc

Im
U. d

-i

Otr e
---4. _ uc I in

Fývýer

ter-
Ussd

-
2p. L.

cose sine 3-T.

RotorFlux
irof d Iry

Estimator Llb
co,

coso= p

T

sino=
Tu
T

Cosa sine
ir sd

i.
d

if e+i i,
q

L2-

3
9q

Fig. 2-8 -Direct rotor field oriented control scheme

In the case of indirect rotor field orientation, the flux orientation is calculated by

integrating the stator angular frequency (2-73). The slip angular frequency is estimated

as shown by equation (2-76) which is derived from the basic equations governing the

rotor circuit (see (2-74) and (2-75)). In (2-76) it is implicit that the rotor flux amplitude
is constant due to very good current controllers providing very fast (ideally

instantaneous) dynamic response. Parameter detuning leads to a loss of rotor field

orientation and to a deterioration of the system dynamic response. The rotor time

constant T, especially should be updated through an estimator [10 1].

Offl =
ý(coslp

+ co,
ýt

= fco,
- dt (2-73)

29

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Tr
ýyr 0= Rr "r +

ýKr
+ i(coes - (ocr) *r dt

(2-74)

O=Rr '
rq

+ (J)
slpTrd

+
dTrq

=
Rr'rq +()slpTrd =Rr'rq + CosIpTr

dt (2-75)
O=Rr '

rd sIpTrq
+

dTd
dt

SIP -

Rr'rq

=
L. Rr

-
'sq ; --

I lsq

(2-76)
T,, LrTr Tr im

Fig. 2-9 - Indirect rotor field oriented control scheme

2.3.2.2 Stator and Air-Gap Flux Orientation

In the case of stator flux orientation, the flux equations take the form presented in

(2-77). The magnetic flux vector and the stator current vector are the solutions of two

coupled equations: (2-78) and (2-79) derived from (2-77). Therefore, the magnetic flux

and the torque-generating current component cannot be controlled independently as in

the case of rotor orientation. Here any modification of the magnetic flux has effects on

the torque-generating current component. This slows the system transient response

unless special compensation blocks are added to the control scheme.

30

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

T.
d = Ls'sd + Lmird

T,
q

= Ls'sq + Lmiq =0

+
dT,, d dT Rs',

d eT,
Ylq= Rs'sd +dU

sd
(2-77)

dt dt
dT Rs'sq +q

elf',
Tsd= R, 'sq + CoeT. Tsd = Usq

dt

dTsd
= Usd -

Rs'sd (2-78)
dt

'sq =U
sq -

(0
clF.

Tsd

(2-79)
Rs

The equations underlying the air-gap flux orientation are identical to (2-78) and
(2-79) but are expressed in a different reference frame. Both the stator and the air-gap

oriented vector control strategy are similar to the rotor oriented vector control in that the

magnetic flux vector is kept constant for speeds below the rated value, while the torque

is varied by modifying the corresponding current component (isq in this case).

Fig. 2-10 presents an example of stator field orientation. The control method is

similar to the rotor flux orientation but contains an additional flux controller. The flux

controller is added to diminish the effects of the interaction between the magnetic flux

vector and the torque-generating stator current component.

W, r Flux
Model I

w

-z'I

ref L
U*. q U, U, q

+q+
C-j()

- 2-3 Im Im

U.

1.

+ 2-3
(A) r

Speed I "sdf +
=U,

Controller sd U. d

T
'i

dd
f T2ýý"! E jI.

d
I:

d

+T sq -3 ib P OSI.
I-E

e+jO J', 2

T"f Flux
Controller (Der

Fig. 2-10 -Direct stator field oriented control scheme

31

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

2.3.2.3 Direct Torque Control

In a PWM inverter-fed machine, the vector T, is more filtered than T and

therefore T, rotates more smoothly. The motion of TS, dictated by the stator voltage, is

discontinuous, but the average velocity is the same with that of T in steady state. The

direct torque control (DTC) method is based on relation (2-49-c). Tberefore, the torque

is controlled by varying the angle 5 between the two flux vectors. Any DTC

implementation contains a flux control loop and a torque control loop. The reference

torque value is calculated by a speed controller, while the flux reference is determined

as a function of the reference speed co, ef.

The machine voltages and currents are sensed to estimate the torque and the stator

flux vector. The flux vector estimation gives information about the 600 sector where T,

is located. The errors Sy and ET generate digital signals through the respective

hysteresis-band comparators. A three-dimensional look-up table then selects the most

appropriate voltage vector (Uag Ubý u,,) to satisfy the flux and torque demands.

y ref E %Nr fj +1

- PWM + +
- - - -- Selection Ub im

ref CO
r

T" ET I Table Inverter

+ +0 +

Speed
Controller ý ý

1 /
ý / 7\ 600 Sector

\Z V Identification Wr

- sd Tsq
T U,

Flux and Ub
Torque 1, T Estimation 4. ib

Fig. 2-11 - Direct torque control with speed sensor

DTC ensures fast transient response and generates simple implementations due to

the absence of the closed loop current control, traditional PWM algorithm and the vector

transformations. It can be implemented with speed sensor as well as in sensorless

configurations. However, the drawbacks of DTC are the pulsating torque, pulsating flux

and the increased harmonic loss [33]. Recently a large number of papers have been

published concerned with improving DTC control [96], [69], [70], [75], [40], [18], [39],

[69].

32

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

2.3.2.4 Sensorless Vector Control Schemes

The speed estimation methods for induction motors are based on the possibility to

calculate the rotor speed as a fimction of stator currents and stator voltages. Therefore

the physical speed sensor is replaced by software or hardware implemented module that

performs the necessary calculations. The relation between the voltage and current is

influenced by both the motor speed and the winding parameters. These parameters are

subject to alterations during the motor operation due to heating and magnetic saturation.
Consequently, on-line parameter estimation procedures need to be implemented

alongside speed estimation algorithms to ensure correct results under various operation

conditions.
Complex mathematical methods have been developed to integrate the speed

estimation with the electrical parameter estimation process and to achieve high accuracy

and independence of the motor parameter variations. These methods combine the

classical field orientation approach with extended Kalman filters [14], [98], Luenberger

Observers [88], [111], neural networks [31], [13 1], fuzzy logic [136], [27]. A different

approach makes use of the effects of the rotor saliencies on the stator currents and

voltages [122] or the parasitic effects that originate from the discrete winding structure

of a cage rotor. In both these two cases, the stator currents contain harmonics that

depend on the rotor speed so that Fourier transforms are involved in the speed

calculation. Most of these methods are more accurate at high speeds than at low speeds.
As a result, the lowest speed at which the system works correctly is an important

performance indicator.

The Kalman filter (KF) was developed by R. Kalman and R. Bucy in the early

1960s [79], [80]. The standard KF [129] is a recursive state estimator for multiple-
input/multiple-output systems with noisy measurement data and with process noise

(stochastic plant model). It uses the inputs and the outputs of the plant together with a

state-space model of the system, to give optimal estimates of the system state. The space

state model is described by equation (2-80) where vector x is the state of the system and

vector u contains the system inputs. The system output is given by (2-81). The matrices

v and w, known as the spectral density matrices, model the noise processes. The noise is

supposed to be white and gaussian.

k =Ax +Bu+Fv (2-80)

Y=C. X+w (2-81)

33

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

The filter equation is given in (2-82), where K is the gain matrix of the filter. K is

calculated as a function of the matrices v and w that describe the statistical properties of
the noise processes. Equation (2-82) has the general form of a linear state-space

observer. Thus, the KF is an optimal observer because it calculates the vector x as a
function of vector u in such a manner that the adverse effect of the noise is minimised.

x=Mc+Bu+K(y-Ci) (2-82)

In the standard linear form, the Kalman filter can only estimate the stator current
d-q components, and the rotor current d-q components. To estimate the rotor speed

and/or the rotor resistance (the critical electrical parameter for most of the control

strategies), the time-varying variable is treated as a state variable. Consequently, a non-
linear system model is generated. To use a non-linear model with the standard Kalman

filter, the model must be linearized around the current operating point, giving a linear

perturbation model. The result is the extended Kalman filter (EKF). A comparison of
the perfonnances of KF and EKF is presented in [98]. The applications using KFs and
EKFs are very popular nowadays although they impose high computational demands on
the digital equipment involved [116].

The sensorless vector control of induction motors continues to be investigated by

many authors and several improvements have been proposed in the recent years [94],

[65], [81], [84], [112], [120], [135]. Many companies have launched their own

sensorless vector control products [20]. The most representative products are shown in

Table 2-1.

Table 2-1 - Representative AC Sensorless Vector Control Products

Company Product Ratings Vac input Speed Torque Min.

kW Reg (±%) Reg (±%) Speed at
111%

cont.

torque

ABB ACS 600 2.2-600 380-690 0.1-0.3 2 2 Hz

Allen- 1336 Impact/ 0.75485 230-600 0.5 5 0.5 Hz

Bradley Force

AC Drive

Baldor 17H 0.75-373 180-660 10% 3.5 100 rpm
Electric Encoderless of slip

34

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Company Product Ratings Vac input Speed Torque Min.

kW Reg (-±%) Reg (±%) Speed at
100%

cont.

torque

Cutler- AF93 1.5-15 340-528 0.5 N/A 50 rpm
Hammer

MitsubishiEl A200E 0.4-55 230-575 1.0 N/A <1 Hz

ectr. America A024/AO44 0.1-3.7 230/460 1-3 N/A 3 Hz

Siemens Master Drive to 1,500 208-690 0.1 <2.5 0

E&A 6SE70

Square D Altivar 66SV 0.75-220 208460 1.0 N/A 0.5 Hz

Yaskawa VS-616G5 0.4-800 200-600 0.1 3 0.5 HZ

Electr.

America

NFO Control NFO Sinus 0.37-5.5 230400 1 1 1

AB Switch I I I

The Natural Field Orientation (NFO) method, invented and patented by the
Swedish company named NFO Control AB, is one of the simplest and most efficient

sensorless motor control strategies so far. NFO Control AB implemented this method
into hardware alongside an improved PWM switching strategy and sell it under the

name "NFO Sinus Switch". NFO is derived from the stator field oriented vector control
and it can be implemented with both speed sensor and sensorless but its advantages are
fully exploited in the sensorless configuration. The corresponding control circuit is a

simplification of the control scheme in Fig. 2-10. The essence of NFO is that the

magnitude of the stator flux is not calculated by integration as in the case of stator flux

orientation. The flux is set in open loop as a reference quantity that may be subject to

change for field weakening [77], [78]. Thus, both the flux controller and the divider,

that are present in Fig. 2-10 inside the speed control loop, are eliminated.
NFO can be implemented in several forms beginning with the basic configuration

without current controllers, shown in Fig. 2-13, applicable to small drives. In this case,
the voltage component Usq is determined by the speed controller while the voltage

component Usd is calculated only as a function of the magnetising cuffent imý so that the

35

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

correct stator magnetic flux is generated. The stator magnetising current is defined by

(2-83).

T, + L. ir = L. i. (2-83)

The stator equations can be written using the quantity in,, as in system (2-84). One

of the features of NFO is that the control scheme operates so that the modulus of is.

equals isd (see Fig. 2-12). Therefore, the reference voltages are calculated according to

(2-85).

L.
d"=

Usd- Rs'sd
dt (2-84)

o)smLmism = u., - Rs'sq

uref = Rsism sd (2-85)

uref =Ri+ co Li

1

sq s sq ms m sm

Fig. 2-13 - Natural field orientation (NFO)

36

Fig. 2-12 - The stator and rotor current vectors in case of natural field orientation

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

The speed estimation is based on an inner voltage vector es defined according to

(2-86). It is demonstrated [78] that the motor speed can be calculated using e as
indicated in (2-87). 'Ibis equation is valid whether or not i.. equals isd-

R+R+ crs is c;
djý,

3r+,,
r

dt

crs =
L.

ar = Lm
LsL

rm

(or =

pLs
'sn

- Cy ' 'sd
+ as

(2-86)

(2-87)

At low speed, the magnitude of e is small. Therefore small errors in measuring the

motor currents will lead to large relative errors in calculating the vector e (2-86) that

will in turn reflect into large relative errors of the estimated rotor speed. Thus, the speed

estimation precision is minimal at very small rotor speed. Most sensorless control

strategies face the same problem that is why the minimal speed that the system can

efficiently control is one of the key parameters used in measuring the control system

performance.
The space vector concept has been described alongside the space vector model of

the three-phase induction motor. These concepts have been used to describe the main

techniques for the control of induction motor drives. In the next chapter, neural network

theory is briefly presented and neural control is considered with a view to assessing its

applicability to produce efficient control systems for the envisaged induction motor

applications.

2.4 COMMON CURRENT CONTROL SOLUTIONS
REVIEW

The control of induction motor variable speed drives often requires an accurate

control over the motor currents [13 2]. This is most often achieved by means of a voltage

source inverter. Such an inverter is supplied with DC voltage and it generates three-

phase PWM voltage with adequately controlled harmonic content. The standard thre-

phase inverter configuration contains 6 power transistors connected into 3 pairs (A, B

37

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

and C) as illustrated in Fig. 2-14. Each pair belongs to one inverter leg. The normal
inverter operation is a series of stable states separated by fast transients [55]. Only one

transistor in each pair can be switched on, during a stable state. If both transistors in the

same pair are switched on in the same time, short-circuit occurs and the inverter is

irreversibly damaged.

Fig. 2-14 - Three-phase PVM inverter

The inverter states are described by six bits, each bit taking value '1' when the

corresponding transistor is turned on, and '0' when the transistor is turned off The bits

related to transistors in the same inverter leg have complementary values during the

stable states. Tberefore, the stable states can be described as sets of only three bits, each
bit describing the operation of the upper transistor in the corresponding inverter leg.

However, the transistor switching process is not instant so that during each transient, the

first transistor has to be turned off before turning on the second one. Consequently, there

are short time intervals when both bits related to one inverter leg are simultaneously '0',

as illustrated in Fig. 2-15.

Fig. 2-15 - The control signals to the transistors in the same inverter leg

38

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Usually, the inverter switching is controlled via an interface circuit that has three

binary input signals and generates the optimal sequence of control signals on each of the

six transistors. In this case, the switching process generating the three PWM voltage

signals is mathematically described as a simple time series of bit triplets corresponding

to the stable states of the inverter. The eight possible inverter states are related to only

seven output voltages. This is due to an identical result corresponding to states (1,1,1)

and (0,0,0) when the voltage across the load is zero, as shown in Fig. 2-16.

bA IM

((0,1,0)
A

0-10)

(1,0,0)

(1,1,1) (0,0,0) a Re

c (0,0,1) (1.0,0)

Fig. 2-16- The Inverter output voltage space vectors

The current control techniques presented in the literature fall in three categories:

feedback control using ramp comparison PWM [56], hysteresis control [57], and

predictive control [36], [83]. The first method involves the generation of a PWM

voltage using the classical comparison between a triangular waveform (the carrier) and a

sinewave (the modulator) [64]. The amplitude of the modulator is corrected based on

the difference between the reference current amplitude and the actual current amplitude.

The main drawback of this method is the slow current response.

The hysteresis current control method uses a set of three hysteresis controllers, as

presented in Fig. 2-17. Each controller is included in a separate feed-back loop and

therefore acts independently. The three controller outputs are binary signals that control
the switching of the three inverter legs. This is the fastest control method that can be

obtained with simple hardware resources. The main disadvantage is the variable

switching frequency that depends on the load parameters and load operation conditions.

The irregular switching conditions also affect the inverter efficiency and the reliability

39

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

due to the overrating of the power transistors. Some versions of this control method

involve limiting the switching frequency to adequate values by using adaptive strategies

to modify the hysteresis cycle width or by simply limiting the number of switches per

second [82]. In spite of their high switching frequency, the hysteresis current controllers

generate larger current ripples than predictive controllers operating at similar frequency.

icref
+ Uc ref

ibref
+

D.
FF47 Ubre Voltage load

ýLiTj-- Inverter
iaref 41 ic L- -----

Uaref lb

Fig. 2-17 - Current Control Strategy Using Hysteresis Controllers

The class of predictive current controllers perfonns better control by anticipating

the future current response of the load as a function of the inverter voltage, and selecting

the optimal inverter output according to the reference current. This approach is used to

minimise the harmonic content of the current and the switching frequency [66], [87] or

to improve the transient response speed [92], [59]. A combination of the two approaches

is also possible [106]. This type of current control uses a load model consisting of a

three-phase R-L-e circuit illustrated in Fig. 2-18 where e,,, eb and e, are voltage supplies.

Ra La

................................ I
f-Y I'llillillo ---ý C-ýýe,

Rb Lb

RC Lc
ec

Fig. 2-18 - The equivalent circuit of the induction motor

The circuit is considered symmetrical, that is R. 7Rb=R'ý--R, La=Lb=Lc=L and

therefore, the electrical quantities in the equivalent circuit are related by the space vector

equation

j! (t) = Ri(t) + LýLl(-t) + e(t) dt -
(2-88)

40

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Controlling the current requires the calculation of the internal voltage e, which depends

on the nature of the load and on its operation mode. It is also necessary to measure or to

estimate the resistance R and the inductance L in the equivalent circuit. Therefore, the

predictive current control has two important drawbacks: the computational complexity

and the requirement for information on the parameters in the equivalent circuit. The

computational complexity can be overcome using the latest fast digital electronic
devices (DSPs, FPGAs, ASICs) [76]. Methods that operate with approximate
information on the circuit parameters have also been developed and validated by

experimental tests [1061. The simplified approach adopted in [106] considers that the

voltage component Ri is negligible. This assumption is valid for a large category of

electrical motors but it is not true for small power induction motors where the stator

resistance is large. In this situation, equation (2-88) becomes

l(t) u(t) - ý(t) dt -
(2-89)

Therefore, the current space vector moves on the trajectory whose direction depends on

the expression u-(*g(t). The current control process is thereby transformed into a

geometrical problem. Thus, the inverter voltage needs to be generated in such a manner

that the space vector u(t)-g(t) is situated on the same direction as &Kt)-i(t), where &0

is the reference current.

Furthermore, the control solution presented in [106] requires only to determine

which of the six equilateral triangles in Fig. 2-16 includes the vertex of vector e. To

achieve this, only the inverter voltage -u(t) and the signs of the three load current

derivatives are used. The adequate inverter output voltage is then determined

considering that e is located in the middle of the corresponding triangle. The method

operates with two alternative switching modes: a quick response mode, which avoids

the inverter states (0,0,0) and (1,1,1), and a harmonic suppression mode, which includes

these states. The method has been tested experimentally and proven superior to the

hysteresis control method in terms of harmonic content.

This method has the advantage of a relatively simple implementation but it is not

optimal because of the two simplifications it uses: the resistance R is neglected and the

estimated vector g can have only six discrete positions. Calculations that are more

accurate are perfonned by the predictive current controller proposed in [66].

An important criterion in selecting the appropriate current control strategy for a

particular application is the level of inverter losses. The losses can be limited by

41

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

decreasing the switching frequency of the transistors but this method cannot be used in

any circumstances because it increases the current harmonic content. The simplest

solution applicable to predictive current control methods is to generate the two

equivalent states (1,1,1) and (0,0,0) selectively, depending on the previous inverter state.

If the previous state had two bits 1 and one bit 0, while the next voltage needs to be

zero, then state (1,1,1) is generated. Otherwise, state (0,0,0) is generated [123]. A

number of other methods that are capable to improve the current harmonic content

without increasing the switching frequency have also been reported [83], [128], [59],

[1151.

An improved version of the control strategy initially proposed in [106] will be

presented in chapter 4. The new strategy, does not neglect the effect of the resistance R

as in [106], and it incorporates an on-line inductance estimation strategy allowing a

more accurate calculation of the of the internal voltage e. Therefore, the strategy is

applicable to all types of electrical motors and not only to electrical motors where the

stator resistance is negligible.

2.5 IMPLEMENTATION SOLUTIONS FOR
ELECTRICAL DRIVE CONTROL STRATEGIES

2.5.1 General Hardware Resources
The control systems can be implemented using several types of electronic

equipment:
1) General purpose microprocessors

2) Transputers

3) Microcontrollers

4) Digital Signal Processors (DSPs)

5) Application Specific Integrated Circuits (ASICs)

6) Field Programmable Logic Arrays (FPGAs)

7[be microprocessors were invented in 1971 as universal VLSI circuits for general

applications. Since the first years of their existence, they were used to implement high

efficiency control strategies for electrical drives. The advances in the digital technology

generated a series of different VLSI circuits whose architecture is adapted to specific

tasks as opposed to the universality of the initial microprocessors.

The word transputer is derived from TRANSmitter and comPUTER. It is a

microprocessor initially created by Inmos Ltd. UK. Compared to other microprocessors

42

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

the transputer has two very special features: it has on chip serial links for

communicating to other transputers, and it has hardware support for timesharing. The

serial communication links are used to connect several transputers in a network. The

result is a parallel multiple-instruction-multiple-data system. The microcontrollers are

microprocessors with the internal structure adapted to embedded system applications.

Their instruction set is optimised for control applications, while the chip structure
includes on-chip RAM and ROM memory, serial communication ports, timers, and a
large number of internal registers. Although general microprocessors, transputers and

microcontrollers have been used for motor control applications, ([35], [140], [17]) the

DSPs, ASICs and FPGAs are the most commonly used hardware resources nowadays.

DSPs are general-purpose data processors initially created for applications that

process large amounts of data such as data acquisition, image enhancement and

processing, remote sensing, voice synthesis and recognition, telecommunications. The

DSP architecture is adapted to handle mathematical problems in real-time. It

implements functions such as Finite Impulse Filters (FIR), Infinite Impulse Filters

(HR)), Fast Fourier Transforms (FFT), convolutions, etc. The application of DSPs has

now been extended to electric drive control because they extensively use many of the

typical DSP functions as part of the speed and torque control algorithms.
Most of the DSP functions require the incoming data to be multiplied and added

with various quantities generated by internal feedback mechanisms. This feature is

generally called Multiply/ACcumulate. To increase performance, most general-purpose

DSP Processors perform a multiply/accumulate function in a single clock cycle. The

hardware to perform this function is called a Multiply/Accumulator (MAC). Most DSPs

have a fixed-point MAC while some have a more expensive floating-point MAC. Every

processor is capable of performing signal-processing algorithms because they are all

capable to perform additions and multiplications. However, a DSP performs this

operation faster than a general-purpose microprocessor because it contains hardware

resources optimised for this kind of calculations.

A relevant comparison of the performance of a typical FIR implementation using

different technologies is provided in [85]. Each tap of a digital filter requires one

multiply/accumulate cycle. A standard PentiumTII processor requires 11 clock cycles to

perform a single multiply/accumulate operation whereas most DSPs require just a single

cycle. A 50 M]Hz fixed-point DSP performs a multiply/accumulate cycle in only 20 ns

while a 133 NIHz Pentium processor requires 1.3 lis to perform the same function. As a

43

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

result, a 133 MHz Pentium processor has only 24% signal processing power of a 50

NIHz DSP for the filter fimction shown in Fig. 2-19.

25-
CL S-Bit, 16-Tap FIR Filter - Fully-pafaffel 22.00

Performance Comparisons
Distributed Arithmetic (est)

(PDA)
(External Performance)

020

U. 15.40
N

15

LO 0
FPGA

10
FPGA

Sequential
cc Distributed 0
V Asithmetic 4 00 C .

2.60
1.00 ý F 7GA

0.24 E7 0
133 MHz Single XC44)03E-3 Four XC40IOE-3 XC4013E-2

Pent! UMT" 60 MHz FPGA SO MHz FPGA FPGA
Procesew DSP (68% util.) DSPs (96% Util.) (76% Utit.)

Fig. 2-19 - Relative speed for various implementations of an 8-bit, 16-tap FIR filter compared to a
50 MHz fixed-point DSP processor

Because most DSPs only have one MAC unit, each tap is processed sequentially,

slowing the overall system processing speed. Some of the more powerful, DSPs have

multiple MACs but they are more expensive. These DSPs perform multiple MACs in

one clock cycle. The same goal is accomplished by using several single-MAC DSPs

with shared high-speed memory. However, multiple processors require complex real-

time multiprocessor code that is difficult to develop and debug. The millions of MACs

per second that are possible to be achieved with multiple processors imply a high

development effort.
ASIC technology is used whenever the application requires performance beyond

the abilities of current DSPs or when the expected production volumes justify a

sernicustorn design solution. Because DSPs are cheap devices, the use of ASICs is cost

effective only in case of mass production. However, typical DSP functions can be very

efficiently implemented into an ASIC architecture that is optimised for a target

application, offering thereby higher processing speed. The ASIC approach is very

efficient for example, in case of a complex digital-filtering algorithm requiring

44

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

numerous multiply/accumulate cycles. An ASIC implementation of the filter might have

a large ntunber of MACs so that all the taps can be processed in parallel.

The programmable logic (FPGA approach) provides a third solution that combines

the best of both DSP and ASIC technology without their respective limitations. Like a

general-purpose DSP, FPGAs are programmable and changeable. The designer can

make changes quickly without the additional cost and long lead-time of an ASIC. On the

other hand, FPGAs have sufficient complexity to host several MACs and other basic

calculation units into a single device. As a result of the lower price of FPGAs compared

with the ASICs, the FPGA implementation is an economically viable solution for a

larger class of products than the ASIC approach.

Not only is the FPGA implementation faster than DSPs, but it offers good trade-

offi between system density and performance. The first FPGA implementation of the

16-tap filter in Fig. 2-19 uses 68% of an XC4003E-3 FPGA, or roughly 1500 gates [54].

This implementation is 15 times faster than a 133MIh Pentium and outperforms a

single 50 MHz DSP by a factor of 2.6. The key to its efficiency is the Sequential

Distributed Arithmetic (SDA) algorithm [108], [53]. This algorithm takes advantage of

the XC4000E architectural features. The multiply: ftmctions are mapped into the FPGA's

function generators, the adders and accumulators use the XC4000E fast carry logic, and

the serial shift registers are efficiently built in on-chip RAM [7]. The highest

performance FPGA implementation uses about 75% of an XC4013E-2 FPGA, or about

9750 gates. Though roughly seven times larger than the first version (which was a

space-efficient version), the high-performance implementation is 22 times faster than a

Pentium processor. Even higher performance is possible if the application can tolerate

the extra data latency caused by pipelining.

A broad range of alternate FPGA implementations is available. The trade-offs

between density and performance are shown in Fig. 2-20. Each implementation can be

tailored to the speed, density and cost requirements of the target application. Serial

sequential arithmetic is the most efficient but also the slowest. Parallel Distributed

Arithmetic (PDA) is the fastest but uses the most logic. SDA is a good compromise of

speed and density, depending on system requirements.

45

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

LCILBs Double-Rate
Istributed 00" Fully-F larallel fithmetic /

DietriL uted 162
400- - Arithir efic MHz 0/

0 (PDA)
66
MH 00 0 300- - '

p,
Sequential

Z
O Distributed

8.1 ArithmetiC 200- - (SDA)

100- - l Serial ý
00e LI

kHz to 10
-0

kHz
-Sequential 'OIPOOO

16 32 48 64 an

Fig. 2-20 - Performance of different Distributed Arithmetic (DA) FIR filter Implementations and

their relative silicon efficiency in XC4000E FPGA logic blocks (CLBs)

2.5.2 Implementation Solutions for Induction Motor
Drives

The perfonnance of a single DSP processor is adequate for a large class of

standard drive control applications. As a result, DSPs have been largely used for drive

system control applications involving the use of PWM inverters [51], [99], [126], [89],

[13 5]. They have the advantage of flexibility and adaptation to different applications due

to software control strategy.
However, generating PWM gating signals and implementing the current control

loops require a high sampling rate to achieve a wide bandwidth performance. Tberefore,

a large amount of DSP computation resources must be devoted to generating the PWM

signals and executing the motor current control algorithms [127].

If the control system combines sophisticated current control methods with other

complex control algorithms and/or parameter identification, then the general DSP

limitations previously presented can create design and development problems.

Moreover, the software code for control algorithms is not optimally implemented in

general-purpose DSP architectures. A typical control algorithm contains many repetitive
feedback loops and parallel structures. Typically, about 20-40% of the DSP's code

utilises 60-80% of the DSP processing power [85].

46

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Although the employment of a further DSP can solve the problem, the additional

hardware and software for such a dual-DSP controller will complicate the design

process [124]. Consequently, the performance gain that comes with the use of additional
DSP processors is small when compared to the increase in the product time-to-market

and the supplementary fmancial burden involved by the complicated design process.
Using FPGA-implemented accelerators in conjunction with one single DSP that

monitors the operation of the system is the optimal solution for high-performance

industrial plants controlled in real time. The FPGA-based DSP accelerator concept is

similar to a floating-point coprocessor working with a general-purpose microprocessor.

The repetitive data processing is performed at a high speed by FPGAs for each element

to be controlled in the system. A fast DSP processor is used to handle the peak

performance of a small piece of code. It monitors the overall activity in the system and

implements the general control strategy. Efficient DSP/FPGA-based control structures

for AC drives have already been reported in literature [125].

FPGAs will probably never completely replace general-purpose DSP processors.

The current generation of FPGAs addresses the fixed-point DSP portion of the market.

General purposes DSPs still dominate in floating-point performance as they have the

advantage of using familiar software methods. Thus, the designer can implement the

DSP algorithm using a programming language like C and compile the code for a

specific DSP processor. On the other hand, the FPGA and the ASIC approaches require

a radically different design approach due to the differences between the software and the

hardware paradigms. These design differences tend to decrease nowadays but they still

limit the number of applications developed using FPGA technology.

2.6.3 Modern ASIC/FPGA Design Methodologies
VLSI technology has recently moved into the submicron era and the integration

level increases very fast (the transistor count doubles every 18 months). Consequently,

increasingly complex circuits can be integrated on a single chip, while the design

process is ever more difficult. The traditional design methods are not adequate to the

complexity of the present electronic systems and to the time-to-market requirements.
Moreover, the technology advances so fast that, in many situations, by the time a certain

electronic equipment is designed and tested, the underlying implementation technology

is already obsolete.
The first answer to the design methodology crisis was the development of

Hardware Description Languages (HDL). They offer technology independent design

47

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

methods, consisting of abstract descriptions of the circuit functionality, in a

programming language fonnat. Synthesis software tools bridge the gap between the

high-level abstract HDL descriptions and the low-level hardware implementation details

specific to each technology. 'Me use of abstract HDLs increases the design productivity

very much, as compared with the traditional vendor proprietary tools for designing

integrated circuits, which were based on specific technologies, and functioned primarily

at the gate level.

The most popular HDL is VHDL whose evolution began with a mandate set by

the Department of Defence (DoD) of the USA back in the early 1980's, as part of the

Very High Speed Integrated Circuit (VHSIC) Program. This resulted in the adoption and

initial release of an IEEE Standard 1076 in December 1987, which has been superseded

by VHD1! s IEEE Std. 1076-1993 Language Reference Manual (LRM). The LRM was

approved by the IEEE Standards Board in September 1993, and published in 1994.

VHDL was developed as a flexible hardware description language, capable to handle

hierarchical circuit models containing different levels of modelling abstraction

(behavioural, structural, mixed) [110], [107]. Nowadays, VHDL is supported by al

major Computer Aided Engineering (CAE) platforms.

The second answer to the design methodology crisis was the invention of the

FPGA chips. Using FPGAs, fast prototyping techniques can be used in VLSI design

thereby dramatically decreasing the time-to-market for the new digital products. The

FPGA design cycle consists of several interrelated steps (Fig. 2-21) that usually involve

the use of a hardware description language: VHDL or another HDL (Verilog, Abel, etc).

First, the abstract HDL circuit model is generated with a text editor, and then it is

compiled and simulated. The simulation results are compared to the design

requirements, and corrections in the initial model are performed if necessary. Once an

adequate circuit model is obtained, it is synthesised generating a netlist description of

the circuit. The netlist generation process takes into account the target FPGA technology

and the imposed timing and area constraints. In the last stage, the netlist description is

optimised and mapped onto the specific FPGA device used for implementation. The

final result is a bitstrearn file that can be downloaded into the FPGA chip for practical

verifications. The design cycle can be repeated in case the practical results are not

satisfactory. After the final verification, the production of the new equipment can be

achieved using either FPGA or ASIC technology.

48

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

Text Editor

'9E Z
tPr

oizr a-i Yý

HDL Compiler [--ý Simidator

Target Technology ---- ý_nstralnts
(component library)

[-ýýýýCoo

(Netlist)

Implementation Tool
(logic reduction, mapping,

place & route)

Bitstream Dowifload

Design Veriflcation

Fig. 2-21 - FPGA design flow from HDL to final implementation

One of the latest significant shifts in design methodology is the principle of design

reuse. The only efficient way to create complex sub-micron ICs is to employ large

blocks that have been previously designed, and then to integrate them into an ASIC

architecture which also includes the original sections of the new design. This way, the

designer can focus on areas of the architecture where it truly adds value in terms of the

product' s target market, and leave the rest to pre-designed blocks that deliver the more

routine functions in a predictable manner. The pre-designed blocks are usually named
Intellectual Property Blocks (IPs) or'cores'.

Today, intellectual property exists in a variety of types: hard, soft, and firin, each

with its own advantages and disadvantages [42], [117]. The advantage of the hard layout

is small size, high performance and other optimisations such as low power. Another plus
is that the designer knows the timing across the core, since gates and interconnect have

been specified. One drawback is that the core must be used as-it-is with no changes.
Moreover, the designer is limited with respect to the manufacture technology of the

larger design if these cores are used. Finn cores offer a bit more flexibility in that they

exist as optimised, synthesised netlists. Their advantage is that they can be optimised for

timing during the final place and route. However, the core cannot be combined with

49

Chapter 2. THE OPERATION AND CONTROL OF INDUCTION MOTORS - REVIEW

surrounding logic to reduce the total design gate count. Soft cores offer the greatest
flexibility since they are supplied in the form of high-level description language that can
be synthesised with surrounding logic. Ibus, it can be optimised during synthesis to

reduce gate count and achieve some desired level of performance versus area. However,

its inherent flexibility is also a disadvantage, since the abstract logic of the soft core

must be verified along with the surrounding logic. Developing a test bench to achieve

this result is the most difficult part of using a soft core.

50

3 ELEMENTS OF NEURAL CONTROL

Neural control is a branch of the general field of intelligent control, which is based

on the concept of artificial intelligence (AI). AI can be defined as computer emulation of

the human thinking process. The AI techniques are generally classified as expert

systems (ES), Rizzy logic (FL), artificial neural networks (ANN).

The classical expert systems are based on Boolean algebra and use precise

calculations while fuzzy logic systems involve calculations based on an approximate

reasoning. Fuzzy logic is a superset of conventional (Boolean) logic that has been

extended to handle the concept of partial truth - truth values between "completely true"

and "completely false" [45]. It was introduced by Dr. Lotfi Zadeh of UC/Berkeley in the

1960's as a means to model the uncertainty of natural language. The truth of a logical

expression in fuzzy logic is a number in the interval [0,1]. Fuzzy Logic has emerged as a

profitable tool for the control of complex industrial processes and systems. It is used for

processes with no simple mathematical model, for highly non-linear processes, or if the

processing of linguistically formulated knowledge is to be performed. Although it was

invented in the United States, the rapid growth of this technology started from Japan and

has now again reached the USA and Europe. The controllers based on this mathematical

approach are known as fuzzy controllers.

'Me use of artificial neural networks (ANN) is the most powerful approach in AL

ANNs are information processing structures whose architecture and operation are

inspired biological nervous tissue. Any ANN is a system made up of several basic

entities (named neurones) which are interconnected and operate in parallel transmitting

signals to one another in order to achieve a certain processing task [139]. One of the

most outstanding features of ANNs is their capability to simulate the learning process.

They are supplied with pairs of input and output signals from which general rules are

automatically derived so that the ANN will be (in certain conditions) capable of

generating the correct output for a signal that was not previously used. The neural

51

Chapter 3. ELEMENTS OF NEURAL CONTROL

approach can be combined with the fuzzy logic generating neuro-fuzzy systems that

combine the advantages of the two control paradigms.

3.1 Neurone Types
The operation of the artificial neurones is inspired by their natural counterparts

[62]. Each artificial neurone has several inputs (corresponding to the synapses of the

biological neurones) and one single output, the axon. Each input is characterised by a

certain weight indicating the influence of the corresponding signal over the neurone

output. The neurone calculates an equivalent total input signal as the weighted stun of

the individual input signals (3-1).

n

net = jwj - xi
i=l

(3-1)

The resulting quantity is then compared with a constant value named the threshold

level and the output signal is calculated as a function of their difference (net-t). This

function is named the transfer function or the activation function. The input weights, the

threshold level and the activation function are the parameters which completely describe

an artificial neurone. Depending on the type of the artificial neurone the activation

ftinction may have several forms [63]. There are analogue neurones using continuous

real activation functions and discrete neurones whose activation functions are

discontinuous. Bipolar neurones generate both positive and negative outputs while

unipolar ones generate only positive values.

f(net)

1

t net

- ----------- ýýWýýMm ---------------- m -------------------- MM--M --------
Fig. 3-1 - Sigmoidal activation function of bipolar analogue neurones (, %=l)

In case of bipolar analogue neurones, the most popular activation function is given
by equation (3-2) (140]. The output varies continuously between -1 and +1, depending

on the input signals, that can have any real value (Fig. 3-1). Parameter X is a constant

controlling the slope of the activation ftmction's graph. Some authors consider 7'=I to

simplify the calculations while others operate with the more general format presented in

52

Chapter 3. ELEMENTS OF NEURAL CONTROL

(3-2) but the fundamental results and properties of the corresponding ANNs remain

valid in both situations.
The function in (3-2) is part of a larger transfer function class called "sigmoidal

fimctions". What they have in common is the graph shape and the property to be

derivable, which is essential in some applications.

(net) 2
(net-t)

I+%. e-
(3-2)

An alternative activation function is presented in (3-3). It is part of the sigmoidal
functions group and, as shown in (3-4), it has the same limit values as function fl.

(net) =
l-, %. e -(net-t)

(3-3)
I+X. e -(net-t)

lim f, (net) = +1
net-++oo (34)

lim f. (net)=
-1

net-*--w

Unipolar analogue neurones are similar to bipolar ones with the difference that the

output signals can only take values between 0 and +1 (Fig. 3-2). Their activation

function is described by (3-5).

f3(net) (net-t)

f(net)

I

+0.5

0t net

(3-5)

Fig. 3-2 - Sigmoidal activation function for unipolar analogue neurones (X=l)

Not all continuous activation : ftmctions are sigmoidal functions [90], [139]. For

instance the stepwise-linear activation fimction presented in (3-6) is not derivable in two

points: net--t-1.0 and net--t+1.0 (Fig. 3-3).

if net <t-1.0
(net) net -t if net E [t - 1.0; t+1.0]

if net> t+1.0
(3-6)

53

Chapter 3. ELEMENTS OF NEURAL CONTROL

f(net)

----------------------------- -------------

t-1.0
0 net t t+1.0

------------------- ---------
Fig. 3-3 - Non-sigmoidal transfer function

Discrete neurones use threshold type activation functions. The bipolar discrete sort

is associated with the activation function described in (3-7) while the unipolar type uses

the activation fimction illustrated by (3-8). These two functions can be considered

limiting cases (?, -* oo) of the siginoidal transfer functions presented in (3-2) and (3-5).

(net) =I
net ýt t

(3-7)
-1 net <t

f, (net) =I
net ý! t

(3-8)
0 net< t

Over the last few years, more sophisticated types of neurones and activation

functions have been introduced in order to solve different sorts of practical problems. In

particular, radial basis neurones have proved very useful for many control system and

system identification applications [74], [139]. These neurones use so called radial basis

activation functions. Equation (3-9) presents the most often used form for such a
fimction, where Y is the n-dimensional vector of input signals and Ta constant vector

of the same dimension while 11-11 is the Euclidean norm in the n-dimensional space.

f, (x) = exp(-llx - tll') (3-9)

Practically f7 shows how close vector Y is to vector T in this n-dimensional space.

The closer x is to t, the larger is f7(x); if x--t then f7(x)=I. The classical Gaussian bell is

obtained for the unidimensional case while the two-dimensional case is illustrated by

Fig. 3-4. Obviously, such a neurone type is very far from the biological model, but this

is irrelevant since it proves useful for certain technical applications.

54

Chapter 3. ELEMENTS OF NEURAL CONTROL

Fig. 3-4 - Radial basis activation function: two-dimensional case

3.2 Architectures of Artificial Neural Networks
Artificial neural networks differ by the type ofneurones they are made of and by

the manner of their interconnection. There are two major classes of neural networks:

feed-forward ANNs and recurrent ANNs. Feed-forward artificial neural networks

(FFANN) are organised into cascaded layers of neurones. Each layer contains neurones

receiving input signals from the neurones in the previous layer and transmitting outputs

to the neurones in the subsequent layer. The neurones within a layer do not

communicate to one another. The first network layer is named the input layer, while the

last one is named the output layer. All the other neurone layers are known as the hidden

layers of the neural network.

FFANN do not have any memory of the past inputs so that they are used for

applications where the output is only a function of the present inputs. Therefore, each

input vector is simply associated with an output vector. If step activation functions are

used, several analogue or discrete input vectors can be associated with a single discrete

output vector. Stich neural networks are used to solve classification problems. In a

classification problem, the set of all possible input vectors is divided into several

arbitrary subsets. Each subset is a class. The problem consists of finding out to which

class a given input vector belongs. The neural network associates each class with a

binary vector and generates the corresponding code for any input vector. Any

55

Chapter 3. ELEMENTS OF NEURAL CONTROL

classification problem can be solved by a network with only two layers (the output layer

plus one hidden layer) [43].

Fig. 3-5 - Feed- forward neural network architecture

Recurrent artificial neural networks include architectures where neurones in the

same layer communicate (cellular neural networks) or architectures where sorne of tile

outputs of a FFANN are used as inputs (real-time recurrent networks, Hopfield

networks). These neural architectures can be described either by continuous tilyie models

or by discrete time models.

The concept of cellular neural network (CNN) was first introduced by Chua and

Yang (1988). They are a special class of recurrent neural networks, which consist of

cells connected only to the cells their neighbourhood (Fig. 3-6). Thus, the main feature

of CNNs is the fact that information is directly exchanged just between neighbouring

cells. Due to this local interconnection property, CNNs have been considered

particularly suitable for VLSI implementations for high-speed parallel signal processing.

CNNs are used in several application areas: image processing, artificial vision,

associative memories, biological systems modelling, etc.

56

Chapter 3. ELEMENTS OF NEURAL CONTROL

Fig. 3-6 - Cellular neural network

The real-time recurrent neural networks are the most adequate neural structures
for modelling finite and infinite state machines. They explicitly implement the concept

of "internal state" as a set of neurone outputs which are used as future inputs of the

FFANN contained inside the feed-back architecture (Fig. 3-7).

Fig. 3-7 - One-layer real-time recurrent neural network (discrete time model)

The discrete time models contain delay units on the feed-back connections, while

the continuous-time models contain low-pass filters (usually first-order elements). Finite

state machines are modelled by discrete-tirne models involving neurones with step

activation functions, while infinite state machines are modelled by continuous time

models containing neurones with sigrnoidal activation functions.

Fiopfield networks are a particular case of recurrent neLiral networks that contain

only one layer of neurones and there is no feed-back loop between any neurone and

57

Chapter 3. ELEMENTS OF NEURAL CONTROL

itself The connections between any two different neurones are symmetrical in Hopfield

networks, that is the corresponding weights are equal. Furthermore, each neurone is

connected to an external input signal. Each state of a Hopfield network can be

characterised by a so-called "energy function". The evolution of the network's state
determines a decrease of the energy function towards a local minimum. Each local

minimum is associated to a stable state. In this respect, Hopfield networks can be

configured in manners that allow solutions to be found for particular optimisation

problems. This feature has been used for associative memory applications, and the

optimisation of the power dispatch in the power systems [49].

3.3 Training Algorithms
One of the most important feature of neural networks is their ability to learn (to be

trained) and improve their operation using a set of examples named training data set.
The training process is actually controlled by mathematical algorithms that fall in two

main classes: constructive and non-constructive. The non-constructive training

algorithms adapt only the connection weights and the threshold levels. The constructive

algorithms modify all the network features including its architecture (neurones and even
layers are added or eliminated as necessary). All the algorithms modify the neurone

weights and thresholds based on calculations that analyse the network response to

particular inputs. The modifications are performed in a manner that brings the network

outputs closer to the expected ones.

Depending on the nature of the training data set, there are two categories of

algorithms: supervised and unsupervised [62]. The supervised algorithms use a training

data set composed of input-output pairs. The unsupervised algorithms use only the input

vectors. In case of supervised algorithms, the training process is controlled by an

external entity (the 'teacher') that is able to establish whether the network outputs are

adequate to the inputs and what is the size of the error. Then the network parameters are

modified according to the particular correction method defming each training algorithm.
In case of unsupervised methods (the Hebbian rule, the "wintier takes all" algorithm,

etc), there are no means to know what the expected outputs are. The network evolves as

a result of the "experience" gained from the previous input vectors. The weight values

converge to a set of final values dictated by the input values used as training data set in

conjunction with the particular training algorithm.
The unsupervised family of training algorithms is mainly used for signal and

image processing, where pattern classification, data clustering or compression
58

Chapter 3. ELEMENTS OF NEURAL CONTROL

algorithms are involved. The control engineering problems are better tackled by

supervised training methods, as the relationship between inputs and desired outputs is

better defined and easier to control.

3.3.1 The Error Back-Propagation Algorithm
The most popular supervised training algorithm is the one named "error back-

propagation", or simply "back-propagation". It involves training a FFANN structure

made up of sigmoidal activation : ftmction neurones. The back-propagation algorithm is a

gradient method aiming to minimise the total operation error of the neural network. The

total error is a function defmed by equation (3-10) where Oj" is the column vector of

the reference outputs and Oi is the column vector of the actual network outputs

corresponding to the input pattern number T. The total error Err is the sum of the errors

corresponding to all np input patterns.

ref -f -
)= 110 ref _oi

2
Err=ý(Oj -Oiy-(Oi ol i

11

i=l i=l
(3-10)

For each training step, the vector of all neurone weights and threshold weights

(W) is updated in such a way that the total error Err is decreased. The vector W can be

associated to a point in a Nw-dimensional space (the parameter space), where Nw is the

total number of weights and thresholds in the neural network. The most efficient way to

perform the update is to shift the point W along the curve indicated by the gradient of

the total error (VErr). This principle is illustrated by equation (3-11), where W(t) is the

parameter vector during the current training cycle, W(t+l) is the parameter vector for

the next training cycle and Tj is the learning-rate constant. Ideally, the algorithm stops

when the total error is zero. In practice, it is stopped when the error is considered

negligible.

W(t + 1) = W(t) - il - VErr = W(t) - il -
aEff DErr DEff

...
clErr

)T

"WI "%VNW

(o

OW2 aW3 0

For the practical calculation of the error gradient VEff, the components in the

vector W are usually rearranged as a three-dimensional matrix. The matrix has a number

of rectangular layers equal to the number of neurone layers in the neural network. Each

rectangular layer is a two-dimensional matrix containing one line for each neurone in

the corresponding layer of the neural network. Each line includes the input weights and
its threshold level of a neurone. Tberefore, the element wjkm in the three-dimensional

59

Chapter 3. ELEMENTS OF NEURAL CONTROL

matrix is the weight 'm' of the neurone W situated in the layer J' inside the neural

network. Ibe threshold level corresponds to the last element in each line and is not

treated any differently to the input weights because it can be considered as an extra

weight supplied with a constant input signal -1.

In case of a one-layer network, the components of the error gradient are calculated

according to (3-12) where the input signal x. is the corresponding input signal.

nn aErr a : ý110,, f
_OiII2 -:

ý2(of
-o

df
CI km

i
i=l

ik ik
d(netik -tk)

xm (3-12)
L

i=l

As demonstrated in [140], bipolar sigrnoidal activation functions given by (3-2)

have the property (3-13), so that the equation (3-12) can be transformed into (3-14).

df
-1

(I_
f2)

T(-net- t) ý- -2

aErr n

'(01f =-f (3-14) ik ilk)*(' -
fi2lk)'Xm

ýýIk.
i=1

If the network has more than one layer then the input signal x. is actually

generated by the neurone 'm' in the layer two so that xm has to be replaced with f2,,.

Equations (3-16) and (3-17) illustrate the calculations for the neurones in layers two and

three.

n 6Eff (Omf I-f 2
&Wlkm ik ilk)'(ilk

)* f2m (3-15)

c9Err
n (Oref

-fl
)'('-fi21x)*Wlxk'('-fi22k)*fi3m

(3-16) = -2
2:

ix)x
09%V 2 km i=I x

n
ref _filx).

(I_fi2x). I: Wlxy I-f 22
4m 'ýWAm i=l x

oix I i2y
)'W2yk fi3k)* f

0y

The previous calculations can be generalised for any number of layers [90], [140].

Each component of the gradient is determined following the iterative process (3-18).

Similar results are obtained for all types of sigrnoidal activation functions. These

equations justify the name of the training algorithm: the output errors of the FFANN

affect the calculations referring to any weight because their influence propagates back to

the inputs from one layer to the next in accordance with (3-18).

60

Chapter 3. ELEMENTS OF NEURAL CONTROL

, bErr n,
ref

-= YIY, (Oi. -filx). Bilx OýWjkm i=l x

Ix =- f2
ilx)'2: Wlxy '8i2y

y

2). 2:
W 8i2x =

(1
-

fi2x
2xy ' 5i3y

y

..
2 (1

- fi(k_l)x)' E W(k-I)xy '5iky
y

0 X: ý A. m
Sikx

2 fi(k-lj'fý. X=M

(3-18)

The back-propagation algorithm faces the well-known problem of any non-linear

optimising algorithm using the gradient method: it can become stuck in a local

minimum of the objective ftinction (the function 'Err' in this case). Tberefore, the back-

propagation algorithm is not guaranteed to generate a satisfactory solution for all input-

output association problems and FFANN architectures. The training result depends on

several factors [140]:

1) Network architecture (number of layers, number of neurones in each layer)

2) Initial parameter values W(O)

3) The details of the input-output mapping

4) Selected training data set (pairs of inputs and corresponding desired outputs).

5) The learning-rate constant T1

Back-propagation is not a constructive algorithm; the network architecture has to

be chosen in advance. Unfortunately, there is no clearly defined set of rules to be

followed in order to decide which is the most appropriate architecture for a problem.

Choosing the architecture is a result of a trial and error process supported by previous

experience. However, it was mathematically demonstrated that any input-output

mapping can be learned by a FFANN with only one hidden layer, provided that the

number of neurones in the hidden layer is large enough for the problem to be solved
[103]. This means that if a neural network proves incapable of learning how to perform

a certain task, than one possible solution is to increase the number of neurones in the

hidden layer or layers.

A different solution is to restart the algorithm with another set of initial

parameters W(O). This solution is based on the assumption that the previous failure was

generated by stopping at a local minimum. The trajectory of vector W in the parameter

61

Chapter 3. ELEMENTS OF NEURAL CONTROL

space is dependent on its starting point W(O), therefore, the situation may be avoided by

changing the initial weights and thresholds.

Another important aspect is choosing an adequate training data set, so that if the

number of different input values is finite, the training data set may cover all the

possibilities. Nevertheless, if this number is infinite (as it happens when the inputs are

analogue signals), or if the number is too large, then only a selection of input

combinations will be used to train the neural network. The quality of the training

process is influenced by the way the training data set is generated. If the training data set

adequately covers all the aspects of the input-output mapping, then the network will be

able to generate correct answers for inputs that were not used during the training period.

This property is called "generalisation7' and is made possible by the fact that any

FFANN actually performs an interpolation in an n-dimensional space (where is 'if the

length of the input vectors) [68]. The interpolation is carried out based on the

information provided by the input vectors used during the training period. If the input-

output mapping is continuous and smooth, then the network will easily generalise and

yield correct answers as a result of a training performed with only few input vectors. If

the input-output mapping is rugged and complicated, then a large number of input

vectors is required for an adequate training process.

The training process may require hundreds, thousands or even millions of steps of

the type described by (3-11). The actual number depends on the nature of the input-

output mapping and on the learning-rate constant il. A large value for il accelerates the

training process but also increases the chance that the vector W oscillates around the

final solution without ever reaching it. A small il increases the chances to obtain the

desired solution but also increases the necessary number of training cycles.

3.3.2 Algorithms Derived from the Back-Propagation
Method

A series of new algorithms have been derived in the last two decades from the

classical back propagation method. They bring improvements to the training process by

accelerating the convergence and improving the chances of finding a good solution for

particular application types. The improvements proposed can be summarised as:

1) The learning-rate constant il is varied after each training cycle. It starts with a
large value that is progressively diminished during the training process. Therefore,

the training process is fast at the beginning but the fmal oscillations are avoided
because il decreases during the training process.

62

Chapter 3. ELEMENTS OF NEURAL CONTROL

2) Every adjustable network parameter has its own learning-rate constant i1i. The

back-propagation algorithm may be slow, because the use of a unique learning-

rate parameter may not suit all the complicated error variations in the NW-

dimensional parameter space. Thus, a learning-rate value that is appropriate for

the adjustment of one weight is not necessarily appropriate for the adjustment of

another. Thus, the learning algorithm is described by equation (3-19).

OErr aErr
112 -5T 113 --

02 aW73

aErr
)T

TINW
ODINNW

)

DErr
W(t + 1) = W(t) - III aw I

3)

4)

5)

(3-19)

If one leaming-rate is associated with each network parameter, then all the

learning-rates are allowed to vary from one training cycle to the next. The variance

may be calculated according to point 1). More sophisticated methods may

calculate the leaming-rate constants based on the error fimction partial derivatives.

Therefore, i1i is large if the influence of wi over the error is small and 11i is small

otherwise (3-20).

I
ýEff ýjv

ýwi +K
where K>0 (3-20)

If the sign of the error derivative ffirrlfti oscillates for several consecutive

iterations, the corresponding learning-rate parameter Tli is decreased.

The convergence of the training is accelerated by supplementing the current

weight adjustment with a fraction of the previous weight adjustment, as shown in

equation (3-21). This algorithm is named the momentum method [140] and the

second term indicating the fraction of the most recent weight adjustment is called

the momentum term. The momentum term a is a user-selected constant with

values between 0.1 and 0.8.

W(t + 1) = W(t) - il - VEff + a[W(t) - W(t - 1)] (3-21)

Real-time recurrent neural networks need to be trained in such a manner that they
learn a certain temporal correlation between inputs and outputs. A promising training

method applicable to such situations and named the dynamic back-propagation training

[63] has been derived from the classical one. The main feature of the new method is that

input vectors are not applied randomly, but in rigorously defined series. The expected

outputs depend both on the current input and on past inputs, while the error calculation
is performed globally for the entire temporal series of input vectors.

63

Chapter 3. ELEMENTS OF NEURAL CONTROL

3.3.3 Training Algorithms for Neurones with Step
Activation Functions

If the activation functions of the neurones in FFANN are not sigmoidal, the back-

propagation algorithm cannot be used because the error fimction cannot be derived.

However, two other recursive methods presented in (3-22) and (3-23) are applicable to

the FFANNs with only one layer. These are recursive methods like the back-propagation

algorithm, but in this case, the training process always has fmite number of cycles,

provided that the desired input-output relation can be learned by a one layer network.

n

ij Wý+kl -": Wýk + 71.
jXk

*(Or ef - fii) (3-22)

n

J+l jX.

(o
I r. ef -net (3-23) "ý W ýk + ll'ý, k 'V

ýk

Finding the correct weights for a multilayer FFANN with step activation fimctions

is a complicated problem. The previous two methods cannot be generalised for such

networks. Either constructive methods or genetic algorithms need to be used instead.

3.3.4 The Voronoi Diagram Algorithm
The Voronoi diagram is a constructive algorithm applicable to FFANNs

composed of neurones with step activation function [34]. As previously mentioned, any

FFANN containing step activation function neurones solves a classification problem.

The Voronoi diagram is a graphical representation of the classification problem to be

implemented by the FFANN. Let us consider the m-dimensional space of the input data

and a set of points in this space, corresponding to a given set of input vectors. The

Voronoi diagram (also known as Thiessen polygons or Drichelet tessallation) is a

partitioning of the m-dimensional space into convex regions called Voronoi cells, each

of which defines the region of influence of one given point in its interior. Any Voronoi

cell can be defined as the intersection of a finite number of half-spaces and is therefore

delimited by a finite number of hyperplanes.

Each hyperplane can be modelled by one neurone with a step activation fimction

such as (3-7) or (3-8). In the unipolar situation, the neurone generates the output signal

'I' for the inputs corresponding to points on a given side of the hyperplane, while '0' is

generated for all the other inputs. As illustrated by (3-24), there is a one-to-one

correspondence between the algebraic parameters defming the hyperplane and the

64

Chapter 3. ELEMENTS OF NEURAL CONTROL

neurone parameters. The same applies to bipolar neurones, but the output '0' is replaced
by 6-1 ".

in
Ew,

*x, -tý: 0<=*net-tý!: O<*f(net)=I
j=1

ýw, , x,
)

-t<0 ý--> net -t<0 <* f (net) =0

(3-24)

j=I

m

A Voronoi cell is defined by its borders. Consequently, a point in the input data

space belongs to a certain Voronoi cell only if all the corresponding neurones

simultaneously generate the required outputs. Thus, the set of convex cells in a Voronoi

diagram can be modelled by a FFANN with two layers. The input layer contains the

neurones modelling the hyperplanes and the second layer contains one neurone for each

convex cell. All the neurones defming the borders of a particular cell feed the

corresponding neurone in the second layer.

The classes defined by a classification operation are not necessarily convex.

Therefore, one class may be the union of several Voronoi cells. As a result, a third layer

is necessary in the corresponding neural network. The third layer contains one neurone

for each class of input vectors. Each neurone is connected only to those neurones in the

second layer implementing Voronoi cells that are part of the given input vector class.
Fig. 3-8 illustrates a Voronoi diagram example built for a neural network with two

inputs and one output. Thus, the diagram is two-dimensional and the hyperplanes are

straight lines. The shaded areas cover the Voronoi cells that belong to the class 'P, the

other cells are part of class '0'. There are four Voronoi cells in Fig. 3-8: r,,, rb, rc, rd that

belong to class 'I', and they are bounded by 9 lines modelled by neurones nl through

n9. Therefore, the first neurone layer contains 9 neurones, the second contains 4

neurones (one neurone for each of the Voronoi cell) whereas the third layer contains a

single 4-input neurone (Fig. 3-9). The outputs of the neurone in the third layer is '1'

when XI and X2 correspond to a point in one of the shaded areas and it is '0' for all the

other cases.

65

Chapter 3. ELEMENTS OF NEURAL CONTROL

Fig. 3-9 - The neural architecture based on the Voronoi diagram in Fig. 3-8

Very efficient computer algorithms have been developed for the construction of

Voronoi diagrams in high dimensional space [46]. They are able to solve this class of

problems in linear time and this performance aspect provides tremendous impetus for

further research on this topic.

3.4 Control Applications of ANNs
In the recent years, neural solutions have been suggested for many industrial

systems using either feed-forward or recurrent neural networks. Most of the published

papers describe control system applications built around a feed-forward neural network

66

Fig. 3-8- The Voronoi diagram for a 2D example

Chapter 3. ELEMENTS OF NEURAL CONTROL

included inside a traditional feedback control system. The ANN is usually made up of

sigrnoidal activation function neurones and back propagation is normally used to train

the network either on-line or off-line. Some applications use neurones with a radial base

activation function. The ANN may play different roles: plant identification [58], [119],

non-linear controller [74], [130], and fault signalling [72], [71]. The neural plant
identification technique can be applied to induction motor sensorless speed estimation,
for example in [3 1] where the plant parameter to be identified is the rotor speed.

The typical neural networks used for identification purposes are multilayer feed-

forward structures containing neurones with sigmoidal activation function. There are

two configurations for plant identification: the forward configuration and the inverse

configuration [140]. In case of forward configuration, the neural network receives the

same input vector x as the plant, and the plant output provides the reference output Oref

during the training (Fig. 3-10 (a)). During the identification, the norm of the error vector

110'f-011 is minimised using the back-propagation algorithm. As illustrated in

Fig. 3-10 (b), the inverse plant identification employs the plant output y as the network

input, while the neural network generates an approximation of the input vector of the

plant. The norm of the error vector to be minimised through learning is therefore jjx-011.

ref
x Y--O

ref

Plant Y--O Plant hCref
+ x-+0 -0 X-

Neural Neural
LO' Network

0
Network

(a) (b)

Fig. 3-10 - Neural network configuration for plant identification:
(a) forward plant identification; (b) Inverse plant identification

Feed-forward neural networks generate instantaneous response. Thus, they can

model the steadya-state operation of the plant but are not directly capable of modelling its

dynamic behaviour. To account for the plant dynamics, the FFANN has to be supplied

with a series of past inputs of the plant. Such an approach requires that the neural

network is interfaced with a shift register that stores the time series of input vectors (see

Fig. 3-11). The shift register is updated at each operation step. An update consists of

storing the most recent input vector and discarding the oldest input vector.

67

Chapter 3. ELEMENTS OF NEURAL CONTROL

f0

Feed-Forward
Neural Network

x(t) lx(t-l)lx(t-2)lx(t-3)1 I x(t-n)

Shift Register

Fig. 3-11 - Neural network interfacing for modelling the plant dynamics

An alternative solution is to use recurrent neural networks. This solution is purely

neuronal in that it does not require a shift register. However, most of the control systems

have used the first solution so far, because the dynamic back-propagation algorithm

requires more computation resources than its static counterpart.

Both identification configurations have advantages and disadvantages. Forward

plant identification is always feasible, but it does not immediately allow for the

construction of the plant control. In contrast, plant inverse identification facilitates

simple plant control. However, the identification itself is not always feasible because in

some cases more than one vector x corresponds to a certain vector y (or series of such

vectors).
Fig. 3-12 presents a basic control system using a neurocontroller. There are two

alternatives: either the neural network is trained only off-line in an inverse identification

configuration, as presented in Fig. 3-10 (b), or it is initially trained off-line but the

training continues on-line in the control system. Shift registers are used, both during the

off-line identification process and inside the control system, to enable the modelling of

the dynamic plant behaviour. The neurocontroller input consists of the most recent plant

outputs plus the output reference for the current time. Tberefore, at each operation step,
it generates a control vector 0 that causes the plant to produce the expected output y"f.

68

Chapter 3. ELEMENTS OF NEURAL CONTROL

. pw

0

Neural y
Plant Network

y ref Y-Y ref

Fig. 3-12 - Basic control system configuration using a feed-forward neurocontroller

The fault signalling applications are part of the larger class of classification

applications. The task of the neural network is to analyse the input data and to generate

information about the operation of the plant: normal operation, or abnormal operation.

In the second case, it may give fin-ther details about the abnormality: short-circuit,

surpassing voltage or speed limits etc. The neural network is of the feed-forward type

and is trained off-line using experimental data that reflects all possible operation modes

of the plant.

3.5 NEURAL NETWORK IMPLEMENTATION
METHODS

Hardware implemented neural networks are essentially arrays of interconnected

processing units that operate concurrently. Each unit has a simple internal structure that,

in some cases, includes a small amount of local memory. The most important design

issues concerning any neural network hardware implementation are the degree of

parallelism, the information processing performance, the flexibility and the silicon area.
There are several categories of neural network hardware implementation [95]:

1. Analogue implementation

2. Digital implementation

3. Hybrid implementation

4. Optical implementation

3.5.1 Analogue Hardware Implementation
Analogue neural networks can exploit physical properties of silicon devices to

perform network operations obtaining very high processing speed. However, analogue
design can be very difficult because of the need to compensate for parameter variations

with temperature, manufacturing conditions, etc. One approach is to implement

69

Chapter 3. ELEMENTS OF NEURAL CONTROL

neurones using common operational amplifiers and resistors [140]. The operational

amplifier implements the activation function, while the resistors determine the weight

values (Fig. 3-13). The amplifier output voltage V,,,, t depends on the input voltages V+

and V. that, in turn, depend both on the input voltages and on the resistors values. Ohm

laws are used to perform all the necessary calculations.

V, V8. t
negative

Vdd

weights Linear

I
Vdd Region Saturated

V

V. VIt Region

V, +l +0 lb
V positivel V, V+

weights Saturated
Vm Region --ý

j

VSS

Fig. 3-13 - Neurone implementation using operational amplifiers and resistors

The implementation style using resistors ensures very good linearity but it is not

flexible because the weight values are set during the manufacturing process and they

cannot be altered afterwards. Creating a changeable analogue synapse involves the

complication of analogue weight storage. The simplest approach is to replace the fixed

value resistors by MOS transistors that can operate as voltage adjustable switches. Each

transistor is controlled by a voltage Vp produced by the charge stored on a capacitor.

The charge has to be periodically refreshed. The influence of Vg, upon the resistance
between the source and the drain of each transistor is illustrated in Fig. 3-14. Tbus, the

dependence between Ids and Vds is not linear but it can be used as an acceptable

approximation of a linear function within certain ranges of currents and voltages. More

sophisticated multiplication mechanisms (such as Gilbert multipliers) need to be used if

very good linearity is required over a large range of voltages.
The number of operational amplifiers that can be integrated on a chip is limited.

Therefore, the implementation methods that use operational amplifiers are applicable

only to small-scale neural networks. To obtain high integration densities, the

implementation of the activation function is performed with very simple circuits. A

minimalist design style is adopted in the analogue approach described in [15]: each

activation function is modelled by a circuit containing a single MOS transistor. The

design methodology is based on current-mode subthreshold CMOS circuits, according

70

Chapter 3. ELEMENTS OF NEURAL CONTROL

to which the signals of interest are represented as currents. The current mode approach

offers signal processing at the highest bandwidth for a given power consumption. In

[102] a different approach is described: the basic building block is a transconductance

amplifier (Fig. 3-15). In its basic form, the amplifier contains three MOS transistors and

transforms a differential input voltage Vj, ý=VIN2 into a differential output current

IO,, i=Ij-I2. The relation between input and output is non-linear and is a good

Fig. 3-14 - Neurone implementation with electrically tuneable weights

12

vv2

o O-d --o
Ib

Bias
Voltageod

Fig. 3-15 - Circuit diagram of a differential transconductance amplifier

The first analogue commercial chip was the Intel 8017ONW ETANN (Electrically

Trainable Analogue Neural Network) [11]. It contains 64 neurones and 10280 weights.
The non-volatile weights are stored as charge on floating transistor gates and a Gilbert

multiplier provides 4-quadrant multiplication. A flexible design, including internal

feedback and division of the weights into 64x8O banks, allows multiple configurations

71

approximation of a siginoidal activation function.

Chapter 3. ELEMENTS OF NEURAL CONTROL

including 3-layers of 64 neurones/layer, and 2-layers with 128 inputs and 64

neurones/layer. No on-chip training was provided, so the connection with a PC is

necessary. The PC performs the training process and then transmits the resulting weight

values to the neural chip.
New implementation technologies and possible applications of analogue neural

chips continue to be investigated and several successes have been reported in literature

[104], [91], [97], [6 1], [100].

3.5.2 Digital Hardware Implementation
The digital neural network category encompasses many sub-categories including

slice architectures, single instruction multiple data approach (SM), systolic array

devices, radial basis function architectures (RBF), ASIC and FPGA implementations.

For designers, digital technology has the advantage of mature fabrication techniques and

digital chips are easily embedded into most applications. However, digital calculations

are usually slower than in analogue systems, especially when performing the

multiplications between weights and input signals. Moreover, analogue inputs must first

be converted into digital format. The most common performance rating used to compare

digital neural implementations is the Connection-Per-Seconds (CPS), which is defmed

as the rate of multiplication and accumulate operations during normal operation.
Slice architectures for neural networks provide basic building blocks to construct

networks of arbitrary size and precision. For example, the NeuroLogix NLX-420 Neural

Processor Slice has 16 processing elements and a speed of 300MCPS. A common 16-bit

input bus is multiplied by different weights in each parallel processing element. The

weights are initially read from outside the chip. The 16-bit weights and inputs can be

selected by the user as sixteen 1 -bit values, four 4-bit values, two 8-bit values or one 16-

bit value. The 16 neuronal inputs are processed by a user-defmed piecewise continuous

activation function to produce a 16-bit output. Internal feedback allows the

implementation of multi-layer networks. Multiple chips can be interconnected to build

large networks.

A far more elaborate approach is to place many small processors on a chip. Two

architectures dominate such designs: single instruction with multiple data (SMM) and

systolic arrays. For SMM design, each processor executes the same instruction in

parallel, but on different data. In systolic arrays, the basic processors are connected in a

matrix architecture. Each processor does one calculation step before passing its result on
to the next processor in a pipelined manner. A systolic array system can be built with

72

Chapter 3. ELEMENTS OF NEURAL CONTROL

Siemens MA-16. The MA-16 provides fast matrix operations using 4x4 processor

matrices with a 16-bit interconnecting buss. The overall performance is 400MCPS. The

multiplier and accumulator outputs have 48-bit precision. Weights are stored on-chip

and neurone activation functions are generated off-chip via lookup tables. Multiple

chips can be cascaded.
The networks with RBF neurones provide fast learning and straightforward

implementation. The comparison of input vectors to stored training vectors can be done

quickly if non-Euclidean distances (such as the Manhattan norm shown in (3-25)) are

calculated with no multiplication. One of the commercial available products is Nestor

NII 000 chip. The Nestor N11 000, developed jointly by Intel and Nestor, contains 1024

stored vectors of 256 5bit elements. The chip has two on-chip learning algorithms, but it

is relatively slow: 40kCPS.

IIX
- YIIManhat

tan
ý'

Z IXi
- yi I

i
(3-25)

Digital ASIC and FPGA solutions require that the ANN is fully designed and

trained for a particular application before its actual hardware implementation. The

operation of the ANN is usually described in terms of Boolean functions or in terms of

logic operations and threshold gates (TG). The threshold gate is a more general concept

than a logic gate. Any logic gate can be considered a particular case of a TG but TGs

can perform more complex information processing tasks than logic gates. They have

inputs with different integer weights that makes them very suitable for neurone

hardware implementation. Unfortunately, the technology limits the weights to small

integer values: 0, ±1, ±2, ±3. The direct use of TGs to implement neurones generates

compact hardware structures, but this approach can only be used for a limited number of
ASIC technologies. It cannot be used for FPGA implementation because they are not

available inside the Complex Logic Blocks (CLBs) of FPGA chips. However, the

indirect use of TGs is possible because a TG can be emulated by a digital structure

composed of no more than a few AND, OR and NOT interconnected logic gates.
Designing an ANN for a specific application involves the use of either training

algorithms or constructive algorithms. Constructive algorithms are the preferable

approach in many situations because they are able to determine both the network

architecture and the neurone weights and are guaranteed to converge in finite time. A

large number of constructive algorithms, reviewed in (29] have been developed in the
last decade. They are divided into three categories: geometric ([34], [113]), network-

73

Chapter 3. ELEMENTS OF NEURAL CONTROL

based [118] and algebraic [67]. Several VLSI friendly algorithms have been created in

order to bring closer the design stage and the implementation stage. These algorithms

consider some specific aspects of VLSI implementation technology: the precision of the

input weights and the neurone fan-in. These factors lead to important limitations that

need to be taken into account when designing a neural network. One of the first VLSI

friendly algorithms uses the concept of "adaptive tree network7' [16]. The research in

this direction has been extended by using a combination of AND gates and OR gates,

alongside with Threshold Gates (TGs) [19].

3.5.3 Hybrid Implementation Techniques
Hybrid design attempts to combine the advantages of analogue and digital

techniques. The use of analogue implementation is attractive for reasons of

compactness, speed and the absence of quantization effects. The advantage of digital

signals is their robustness. These signals are not affected by disturbances and the

calculations performed in digital format always yield precise results.

The pulse modulation technique is one of the most promising principles that can
be used to develop efficient hybrid architectures. Using pulse modulation, the internal

signals of the neural network are modelled as pulse streams whose parameters are varied

in accordance with the neurone states. Depending on the parameter that is varied, there

are three theoretical alternatives: the pulse-amplitude modulation, the pulse-width

modulation and the pulse-frequency modulation (62].

1. In case of pulse-amplitude modulation, the amplitude of the pulses is modulated in

time in a manner that reflects the variation of the corresponding neurone signal. This

technique is not satisfactory in neural networks because the information is

transmitted as analogue voltage levels, which makes it susceptible to processing

errors due to circuit parameter variations.

2. The pulse-width modulation method alters the pulses duration according to the

amplitude of the neural signal. The pulse-width modulated signal is robust since the

information is coded as a set of time intervals and no analogue voltage is used.
However, if several signals in the neural network have almost similar values, then a
large number of pulse edges occur almost simultaneously. The existence of this

synchronism represents a drawback in VLSI networks since many synapses tend to
draw current from the internal supply lines simultaneously. It follows that the
internal supply lines have to be oversized to accommodate the high instantaneous

currents that may be produced by the use of pulse-width modulation.

74

Chapter 3. ELEMENTS OF NEURAL CONTROL

3. Pulse-frequency modulation maintains both the amplitude and the width of the

pulses constant but modifies the frequency of the pulses. This modulation scheme

generates robust signals as well. Moreover, different signals modelling the equal

analogue quantities are usually phase-shifted, which leads to avoiding the

synchronism of the pulse edges. Thus, the power requirement is averaged in time as

a result of using pulse-frequency modulation. Hybrid neural networks combining

pulse-frequency modulation and neurones implemented in analogue technology have

been successfully designed and implemented [105], [4 1].

Another reason for producing hybrid neural network implementations is the need

to interface the neural architectures with the existing digital equipment. In such a

situation, the external inputs and outputs are digital, to facilitate the integration into the

digital systems, while internally some or all of the processing is done in analogue

technology. The AT&T ANNA chip, for example, is externally digital and all the

internal signals are in digital format, but it uses capacitor charge to store the neurone

weights [114]. The charge is periodically refreshed by a specialised internal mechanism.

The chip structure includes Multiplying Digital-to-Analogue Converters (MDAC).

There are electronic devices capable to multiply a digital value with an analogue signal.

The MDACs are used to perform the multiplications between the weights and the input

signals of each neurone. Conversely, the Bellcore CLNN-32 chip uses digital 5-bit

weights, but the neurone inputs and outputs are analogue signals [13]. As in the case of

the ANNA chip, the multiplications between weights and signals involve the use of

MDACs. The overall performance of the Bellcore chip is 100MCPS. Thus, the MDACs

allow the neural network designer to freely combine analogue and digital technologies

in an optimal fashion for a given application problem.

3.6.4 Software Versus Hardware Implementations
The software implementation uses a classical von Neuman machine (a general-

purpose microprocessor or a DSP). This approach can be used to implement any kind of

neural network structures and any training algorithm. However, neural networks

simulated on Von Neuman machines run in a series fashion, which does not allow them

to be used in real time applications. The operation speed of the neural network is inverse

proportional to the number of neurones. Consequently, very large neural networks can

only be efficiently software implemented if special hardware resources are also

available: either large general-purpose parallel machines or cheaper alternatives such as

specialised co-processors, or accelerator cards for personal computers.

75

Chapter 3. ELEMENTS OF NEURAL CONTROL

The hardware approach overcomes the speed limitations of the software
implemented neural networks. True parallel operation mode is achieved in this case,

making the calculation speed independent of the network complexity. The actual speed

of hardware implementation solutions depends on the technology. The highest speed is

achieved using optical implementations while the lowest speed is obtained with the

electronic digital architectures. Several optical neural processors have been reported in

literature [50], [47]. However, the optical technology has not attained its maturity yet.
This approach is still too expensive, too imprecise and too rigid, so that electronic
implementations are preferred in most cases.

The training process is faster in case of specialised chips as compared with

software implementations, but only relatively simple training strategies are currently
implemented into hardware. Thus, a limited number of training algorithms can be

performed on-line. If the practical application does not require on-line training, the

training process can be performed off-line in a software system, and then the resulting

weights can be downloaded into the neural chip. Alternatively, the obtained weights can
be used to produce an ASIC or FPGA implementation. FPGA implementations are

preferable as they allow fast prototyping. Furthermore, some FPGA chips are capable to

change their structure on-line. This feature supports the design of a large range of new

on-line training algorithms for digital implemented neural networks.

76

4. DEVELOPMENT OF A NOVEL
INDUCTION MOTOR SENSORLESS

CONTROL STRATEEiY

This chapter presents the mathematical principles and algorithms underlying the

adopted sensorless control strategy for three-phase cage induction motors. The control

method comprises two elements: the stator current control strategy and the sensorless

speed control strategy. Both of them are based on an equivalent three-phase R-L-e

circuit whose parameters are derived from the space vector model of the induction

motor. Induction motor speed estimation strategies are investigated and compared in

terms of accuracy and hardware implementation complexity. Several new sensorless

speed control methods are fonnulated and tested by computer simulations.

4.1 THE INDUCTION MOTOR EQUIVALENT
CIRCUIT

The proposed motor control strategy uses the classical sensorless drive system

structure with the motor supplied by a VSI-PWM inverter, which is controlled by a
digital circuit based only on the stator current feed-back information. As mentioned in

chapter 2, the predictive current control method uses an equivalent R-L-e circuit of the

load modelled by the equation

E(t) = Ri(t) +L
Al(-t)

+ e(t) dt -
(4-1)

The R-L-e equivalent circuit parameters for an induction motor can be derived

from its general space vector model

77

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

d'FO
dt

0
0o dlJ' RT + -j e -(0.0 =0 (4-2) dt

1,0 = L. i, 0 + L. i, 0
0 Lr "r)

+ L. j, 0

particularised for the stator reference frame. Thus, the parameters defining the reference

frame are 0=0 and (o=co,, =O, which yields the equation system

R, i: +
dT:
dt
T.

R, i, ' +- jco,, T, ' =0 (4-3) dt

The two fluxes can be eliminated from the equations giving:

3
Rj: +L

di
5+L

dt ' dt (44)
0= Rr'sr + L.

L"s
+ Lr

Lr
- jo3,

r
(L. i: + L,, ir)

s 1 I

dt dt

Therefore the derivative of the rotor current vector is

d i, ' I
ý* =- -Rr', ' -L.

Le'
+jCo, r(Lri,

' +L. i:)] (4-5)
dt Lr

[

dt

Substituting this in (4-4) gives

u: =R, i: + Ls-Lm
L.) di:

+
L. [-R, i'

,+
joa,, (L, i'

,+L.
i:)] (4-6) Lf, dt Lr

Identifying this result with the fundamental equation (4-1), the parameters of the

equivalent circuit are determined as follows:

L= LsL, -O.
Lr

R=Rs

Rrir + jo)e s -R, is %FS (4-7)
r
(Lr i,. + L. i:)] =

Lm
r+

jo)er-
Lr Lr

U US
is

78

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Consequently, the voltage space vector u is the voltage supplying the motor, the

current i is the stator current, while the internal voltage e is a quantity bearing

information on the motor operation parameters (speed and rotor current).

Table 4.1 presents the electrical parameters of five different three-phase cage

induction motors. It reflects the influence of the motor power on other parameter values.

Thus, the stator and the rotor resistances are larger at lower powers and smaller at higher

powers. On the other hand, the leakage inductances are always small compared to the

mutual inductance. In a well-designed motor, the total leakage inductance L,,, +L, does

not surpasses 10% of the mutual inductance Lm.

Table 4.1- Electrical parameters of three-phase induction motors

Quantity (a) (b) (C) (d) (e)

& 0.01141 0.3710 0.79f2 2.89n 5.9fl

F, 0.0110 0.415n 0.76f2 2.39f) 4.62f2

L, 0.32mH 2.72mH 1.57mH 1 ImH 22mH

L" 0.36mH 3.3mH 1.59niH 6mH 24n1H

LM 11.68mH 84.33niH 65mH 214mH 809mH

p (pole pairs) 2 1 2 1 1

P llOkW I ll. lkW j5kW j3kW 2kW

Under these conditions, the expression of the equivalent inductance L can be

transformed as shown in (4-8) and it can be approximated by the sum of the two leakage

inductances. The result is the approximate equivalent circuit illustrated in Fig. 4-1.

(L,,, Q (L, Q+Qs:
ý L(Fs + Lcff (4-8)

Lm + Lcff Lm +Lor

Fig. 4-1 - The approximate R-L-e equivalent circuit of a three-phase induction motor

79

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Thus, despite the large number of turns in the motor windings, the equivalent
inductance L is relatively small due to the tight magnetic coupling between stator and

rotor. However, the precise circuit contains a slightly larger equivalent inductance that

can be calculated according to (4-7).

The parameters of the 11.1 kW motor presented on column (b) in Table 4.1 are

used to illustrate all the control principles formulated in this chapter. Using the same

parameters for all simulations and calculations facilitates meaningful comparisons

between alternative control strategies.

4.2 THE CURRENT CONTROL ALGORITHM

4.2.1 The Switching Strategy
The predictive current control strategy proposed in this thesis involves the concept

of non-inductive voltage, which is defmed as the sum of the resistive voltage component
Ri and the internal voltage component e. This quantity, denoted by Vj, excludes the

inductive voltage component Ldi/dt from the total voltage, hence the name of non-
inductive voltage. This can be calculated using one of the two expressions:

I Vni =Ri+e=u-L- dt
(4-9)

The second formulation is more profitable as it does not use the value of the internal

voltage e, which is difficult to calculate.

The digital implementation of the control algorithm requires that all the quantities

are sampled at equal time intervals. If the sampling process is taken into account then

equation (4-1) becomes (4-10), where T, is the sampling period and k is the index of the

samples:

H(kT,) = Ri(kT,) +L Li(kT,) - i((k - I)Tj + e(kT,) + Err(k, T,) (4-10)
T.

The function Err(k, T,) represents the calculation error generated by replacing the

derivative in (4-1) with the approximation calculated based on the difference between

two consecutive current values. The calculation error decreases with increasing

frequency of the PWM and is negligible at the frequencies commonly used in induction

motor drive systems (2 kHz to 20 kHz). Under these conditions, equation (4-10) can be

written as

80

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

11(kT,) -=, Ri(kT,) +L [i(kT,) - i((k - 1)T,)] + e(kT,) T.

The notation can be simplified by replacing the time argument 'kT, ' with the

sample index k, thereby transforming equation (4-11) into the equivalent form

j! (k) =- Ri(k) +L [i(k) - i(k - 1)] + e(k) (4-12)
T. --

Based on (4-9) and (4-12), the non-inductive voltage can be approximated as

u(k) -L
[i(k) - i(k - 1)]

T.

The inverter output voltage is constant between two consecutive switching

transients and if the PWM period is sufficiently short, the internal voltage e can be

considered constant as well (u(t)=U), g(t)=E). This assumption substantially simplifies
the current calculations. Thus, the relation (4-1) becomes

di(t) U+L+ (4-14)
dt

and has the solution
xt

U-E (, (O)_U-E eL i(t)=ýRý+
-R

The real and the imaginary part of the current space vector are

U-B R,

x(t) = Re(i(t)) = Reýll
RB+

Ref 0) -RI-e
U-g R ly(t)

= Imf i(t)) = imý
ii

RB
+lm -RI. e 0)

Combining the two equations (4-16), the result is

U-E
imli(0) _U RE

y(t) = Inll
R1+ Reli(0) -pR91-

(x(t)
- Reti(0) -

ll
Rh

1)

which can be reduced to

Imýj(o) _U-E
y(t)

R
x(t) + Im(i(O)) =a- x(t) +b

Reýi(O) -URE

81

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The constants 'a! and V in (4-18) are defined by

imfi(O)
URE

a=
Reli(O)-

URE

b= Imfi(O)l

(4-19)

Equation (4-18) is that of a straight line. This entails that the vertex of the current

space vector i shifts with a variable speed along a straight trajectory. Due to the linear

relationship between vectors Vi and i, the trajectory of Vi is straight as well.

Furthermore, according to (4-20), the vertices of the two space vectors shift along

parallel trajectories whose direction is indicated by the argument r, calculated according

to (4-21).

Vrd (t) =R- i(t)+ E => dV. i =R- di (4-20)

s= arg(dy�i) = arg(di) = arg(i(+oo) -i(0» = arg(V�i (+oo) -M�i (0» (4-21)

The value V,, i (+oo) is the non-inductive voltage after an infinitely long period of time

and can be calculated as:

U-E L V. j (+oo) = lim(Ri(t) + E) = lim R- +(i(o)-R-E -e
R+E

=U (4-22)
t-). OO t-+-[R-R)-

As a result, the angle c is

c= arg(11 - Y�i (0»

YI(O

1 \(1,0,0)

yl(+()0)=u
(0.0.1)

Fig. 4-2 - The trajectory of the vertex of V,, space vector

(4-23)

82

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Thus, as illustrated in Fig. 4-2, the trajectory of vector Yni is a straight line

oriented on the direction that links the point corresponding to the inverter output voltage

with the initial value of the non-inductive voltage V. (O). These considerations can be

used to determine the direction of the current trajectory in the complex plane without

using the value of the internal voltage e.

The control voltages to the transistors in the PWM inverter need to be produced in

such a way that the inverter output voltage maintains the required currents across the

load. The required current modification during one sampling period is a complex

quantity defined by the argument "arg{&Kk+l)-i(k))" and the module &1eKk+l)-i(k)J.

These two parameters are often impossible to achieve simultaneously because only 7

inverter output voltages are available, which means that only 7 different current shifts

can be performed at a given moment. Therefore, there are two alternative switching

strategies:

Minimising the module of the current error &eKk+l)-i(k+l)J.

Minimising the angle between the direction of the required current trajectory and

the direction of the actual current trajectory larg{iýeKk+l)-i(k))-arg{i(k+l)-i(k)ll.

The first alternative generates optimal control results but requires that equation
(4-14) is solved for all seven possible output voltages and the results are compared. The

most important disadvantage of this method is that the internal voltage E needs to be

determined first. The calculation can be performed according to the equation

g(k) = Yw (k) - Ri(k) = u(k) -L
[1(k)-i(k-1)]-Ri(k) (4-24)

T.

but this involves the value of the stator resistance R that needs to be determined on-line
because it changes during the motor operation. Therefore, this method necessitates

complicated calculations that make it unpractical.
The inverter switching strategy adopted in this thesis uses the second alternative.

This approach yields good control results without requiring the value of the stator

resistance, because it involves Vi instead of E in the calculations. Thus, the directions ej

0=l, 2,3,... 7) of the possible current trajectories are first determined according to

equation (4-23). Then the output voltage 1ij that minimises the expression
Jej

- argtlref (k + 1) - i(k)ý is generated during the next sampling period.

This current control strategy is illustrated by the example in Fig. 4-3. The current

error vector A&f=&Kk+l)-i(k) indicates a direction in the complex plane which is not

83

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

identical to any of the directions that can be achieved using the available voltages.
However, the voltage coded as (0,1,0) is capable of producing a current change in a

direction that is much closer to the reference one than the other six possibilities
(including the zero output voltage). As a result, this voltage is generated during the next

sampling period T.. A consequence of the fast voltage switching is that the non-

inductive voltage vector Vi never reaches the fmal value V,, i (+oo) = 1! during any of the

sampling periods and therefore Vj is always inside the hexagon in Fig. 4-3.

output voltage lin

(0,1,0)

R[-l
re

(0,1,1)7
Re

(0,0,1)

Fig. 4-3- The graphic representation of the PWM current control principle

The switching strategy can include the null voltage generated by the inverter,

thereby increasing the control flexibility, or it can exclude it improving the current

response speed. Including the null output voltage in the switching strategy improves the

current hannonic content (106], but presents the disadvantage that the current response
is slow if the motor current is small. The current change rate jd: 1/dtj when u--O is

governed by equation

I di 1=--ilRi+el
dt L--

(4-25)

that is derived from (4-1). As demonstrated by (4-7), the internal voltage e is

proportional to the motor currents, and therefore the module of vector e is

approximately proportional with the module of the equivalent current vector (the stator

current). In this case, the current change rate can be considered proportional to the

module of the current vector, which means that the system response is infinitely slow

when the motor currents tend to zero.

84

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

I di
= -Klil => lil = i(O) -e

-Kt

dtl
(4-26)

If the inverter generated voltage is not zero then the current change rate is given by

I di 1=--LIRi+e-ul=--ilV,,
i -ul dt L--L

(4-27)

This ensures high response speed because the vector Vni lies always inside the voltage
hexagon and therefore jVj-Ijj is always much larger than zero. As a result, the control

method excluding the zero output voltage has to be adopted when the value of IVil is

below a critical limit IVilt. The zero voltage can be involved in the switching strategy

when IVil is above this limit. The value of the critical limit is chosen based on the

required current response and the parameters in the equivalent circuit. Consequently, the

control method that always excludes the zero voltage can be considered a particular case

of the general control strategy. This particular case is defted by jVnjj, j=+oo so that
JE, jj<jV, jj. rt in all situations.

Iberefore, the adopted current control strategy in this basic form is flexible as it

allows adjusting the relationship between the response speed and the harmonic content.
A small IVilcn ensures a better harmonic content while a large IVilct generates faster

transient response. The algorithm presented in [106] offers a similar type of flexibility

but it uses the magnitude of the current error as the criterion for using or rejecting the

zero voltage. The new current control strategy uses the value of JV.. J instead.

The new current control strategy generates voltage pulses defined by widths that

are integer multiples of the sampling period T, The motor currents are sampled before

each switching process. Every time, the last two sets of current samples are used in the

calculations for the next voltage. Therefore, the output voltage can only change at
definite moments in time given by

tk = kT, +5t k=0,1,2,3, (4-28)

where 5t is the time required for the calculation process to be fulfilled (Fig. 44).

The classical PWM signals are generated by comparing a sinewave (the

modulator) with a triangular wave (the carrier). The widths of the generated voltage
pulses varies continuously between zero and the period of the triangular carrier T, The
frequency of the voltage pulses fpwm equals the carrier frequency f, An alternative
method is the space vector PWM. It changes the inverter voltage between the seven
possible values in such a manner that the average voltage over several switching periods

85

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

equals the reference voltage space vector. In both cases, the PWM frequency has to be

rigorously controlled because it influences the quality of the generated voltage signal,
but it is also approximately proportional to the losses in the inverter. Ibus, it has to be

limited to an acceptable value by adopting an appropriate carrier frequency. The PWM

frequency used in common drive systems varies between 2 kHz and 20 kHz.

u
5t

Ts 2Ts 3 Ts 4Ts 5Ts 6Ts 7Ts STs t

Fig. 44 - The PWM voltage signal generated by the basic version of the new control algorithm

The PWM frequency generated by the new control method is not constant, but is

influenced by the motor operation conditions and it varies inside the interval

[0; 1/(2T,)]. The maximal number of switching processes per second is restricted by

equation (4-28). This number needs to be large so that a voltage change can be

generated at approximately the moment it is required. This consideration leads to the

necessity of a short sampling period. Nonetheless, a short T, is equivalent to an
increased upper limit of the PWM frequency. Therefore, an additional restriction needs
to be imposed on the current control algorithm in order to limit the frequency of the

PWM voltage while maintaining a short sampling period. A given PWM frequency fpWM

can be imposed if only two switching processes are allowed during a time interval of
Tpwm=l/fpwm. If the voltage has already been switched twice during a certain time

period, then the switching process is inhibited until a new period begins. Thus, T., and
Tpwm are now independent quantities and T, can be set at much smaller values than

Tpwm. Typically, Tpwm is 10 to 40 times longer than T, As the PWM frequency can be

as high as 20 kHz, it means that the sampling frequency can be up to 800 kHz, which

requires fast A/D converters. This is the enhanced version of the current control

algorithm. It is more flexible than the basic algorithm version because it allows a

supplemental adjustment of the inverter losses beside the control over the current
harmonics.

86

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

4.2.2 The On-Line Inductance Estimation
For a correct current control, the value of inductance L needs to be either

measured or estimated. An original on-line estimation method has been integrated into

the switching algorithm to transform it into a universal control strategy, which does not

require any previous information about the motor parameters.

The on-line estimation starts with an initial inductance L (0). The inductance

estimation (0) is then incrementally updated and progressively more accurate

estimations (1), L (2), L (3) are calculated until the correct value is found. The

algorithm convergence is guaranteed for any initial inductance value, but for reasons of

simplicity, it is considered that L(0)=O. Each incremental correction is performed in

parallel with one current control step (one output voltage being determined). The effect

of using an estimated inductance instead of the exact value is that the non-inductive

voltage Vj cannot be calculated exactly, but an estimated value 'ý,, is determined

instead. Equation (4-13) can be therefore rewritten as

LL
V. i(k) = u(k)--[i(k)-i(k-1)]=E(k)--., &i(k) (4-29)

T. T. -

The estimated inductance is given by the relation L =L+AL where L is the real

inductance and AL is the estimation error. As a result, equation (4-29) becomes

L+AL AL
Y,, i(k)=I!

(k)--. Al(k)=Y. i(k)--. Ai(k) (4-30)
T. T. -

During the next sampling period the current varies according to equation

u(k + 1) =- Ri(k + 1) + e(k + 1) +LA (k+l)
T.

Adding and subtracting Vi(k)=RI(k)-fýe(k) gives

j! (k + 1) =-'Vni (k)
- Ri(k) - 2(k) + Ri(k + 1) + e(k + 1) +L Ai(k + 1) (4-32)

T. -

With the notation Ae(k + 1) = 2(k + 1) - ýj(k), (4-32) can be written as

11(k + 1) =-: Vj (k) + RAi(k + 1) + Ae(k + 1) +L Ai(k + 1) (4-33) T. -

and as

87

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

11(k + 1) - Yj (k) -=
(R

+
L-

- Ai(k + 1) + Ae(k + 1) (4-34)

Substituting (4-30) in (4-34) gives:

AL L' jj(k+l)-Ym(k)- Ai(k) =-
(R

Ai(k + 1) + Ae(k + 1) (4-35) T.

or

(k + 1) R+ Ai(k+l)+- . Ai(k)+Aý(k+l) (4-36) 1)
AL

T., - - T.
L

where

(k 1) = E(k + 1) - Yj (k) (4-37)

The internal voltage e has been shown to be a function of the motor currents,

which have a rate of change limited by the motor inductances. Therefore, the change of

the internal voltage e is similarly limited and lAe(k+l)l decreases with the increase of the

sampling frequency f, = I /T,. As a result, in many practical applications 14e(k+1)1 is much

smaller than the module of the other two terms in equation (4-36).

If conditions

.)-

jAi(k + I)l
[JAe(k

+ I)l <<
(R

+ TL T.
(4-38)

lAe(k + I)l << -
JAL

- Ai(k)l

T.

are fulfilled then equation (4-36) can be simplified as

AL
(k + 1) =-

(R
+

L, Ai(k + 1) +. Ai(k) (4-39) T.

The on-line induction estimation is based on the approximate equation (4-39) and

on geometrical properties of the set of 3 space vectors involved in it. Thus, if the

estimation error AL is positive then the space vector 'ý,, (k+l) is situated between

Ai(k+l) and Ai(k) as illustrated by Fig. 4-5 (a). On the other hand, if AL is negative then

Ai(k+l) lies between Ai(k) and ý7,, (k + 1). In case AL=O, the direction of ý7, (k + 1) will

be the same as the direction of Ai(k+1).

88

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Ai(k)

A

YA

, LL
-Ai(k) TS L (k)

T Ts S
Ak VA(k) 9

_1
ý

ýA
00

Ai(k)

(R+
-Ai(k+l)

(b)

Fig. 4-5 - Inductance estimation principle

The estimated inductance L=L+ AL needs to be corrected by increasing it

whenever the situation in Fig. 4-5 (b) occurs, and by decreasing it in the situation
illustrated by Fig. 4-5 (a). The algorithm is concisely expressed as

L(k+l)=L(k)+8L if Ai(k+l) is between ýIjk+l) and Ai(k)
A (4-40)
L(k+l)=L(k)-5L if V,, (k+l) is between Ai(k) and Ai(k+l)

where the increment step 5L is a small positive quantitý.

'Me presented algorithm operates correctly only if 14e(k+l)l is negligible. The

validity conditions (4-38) for induction estimation are a prerequisite for obtaining

accurate estimation values. The larger the value of lAe(k+l)l the larger the estimation

errors. Other factors that influence the induction estimation process are the quantisation

error of the A/D converters and the value of the step 8L. Due to the quantisation error,

the vectors 'ý,, (k + 1) and &i(k+ 1) are not always on the same direction even if the

inductance estimation is correct. This causes small fluctuations of the estimated value

after the approximate inductance has already been calculated. The amplitude of the

fluctuations is proportional to the increment step size 8L and therefore it has to be small

to ensure good estimation precision.

4.2.3 The Conditions For Accurate Current Control
As previously demonstrated, the PWM current controller operates correctly if the

sampling frequency is high. Two conditions need to fulfilled:

1) The sampling frequency has to be sufficiently high to ensure that the approximate

expression (4-13) of the non-inductive voltage Vj is valid.

89

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

2) 'Me sampling frequency needs to be high enough to ensure that the variations of the

internal voltage 14e(k+l)l fulfil the conditions (4-38) for accurate inductance

estimation.
This section investigates the limitations imposed by these conditions in the

particular case when the inverter load is an induction motor. The calculations presented
involve a series of approximations without diminishing the generality of the

conclusions. The values of the motor parameters in Table 4.1 are used as a guide to

determine the validity of the approximations.

4.2.3.1 The Accurate Non-inductive Voltage Calculation

Relation (4-13) yields accurate results only if the stator current derivative can be

considered constant during a single sampling period T, This condition ensures an

almost linear current variation during one sampling period and allows approximating the

current derivative with the current variation as shown in (4-4 1).

3 . 5.

s (441)
dt T,

The variation of the stator current derivative can be expressed as the Taylor series

332323s di, (t + Ts)= ýE, (t) +
T, is T.,

(442)
Tt dt 1! ' dt 2

(t)
+

21 * dt
133 (t)

+----

If only the first two terins of the series are taken into account, the accuracy condition

(4-4 1) can be mathematically expressed as

3

') 4=ý T
d'j: e di,

+T t << dt ýt dt dt
(443)

Consequently, the general equation system (4-4) needs to be solved first in order

to determine the stator current as a function of the stator voltage. The rotor inertia keeps

the motor speed almost constant during one sampling period Ts. As a consequence, the

differential equation system in (4-4) can be considered linear in these conditions. The

elimination procedure, which is used to solve linear differential equation systems,

requires that the system is written in terms of differential operators 'D', so that (4-4)

becomes

!!: = D,, i: + D. i, '

0= Drs i: + Dr i, '
(444)

90

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The four differential operators used in (4-44) are defined as:

Dss Ls
d

+Rs Tt

Dsr L. d
dt (445)

Drs Lm
d- jo)ý,, Lm
dt

D,
r

Lr
d

+Rr -jo)crL, dt

According to the elimination method, the stator current is the solution of the

differential equation

(DsaDrr - DsrD,,) - i: = D, u: (446)

which is equivalent to

a-fL"+b-LI"+c. i: =(R -. J. u: dt2 dt
jco L

a= LsL, - C. (4-47)

�(L.
L, b= LsRr + LrRs - jcoe

�L,
R, c= RaR, - jcor

The general form of the solution is illustrated by

5
P2-t

(Rr
- jo),, L,) .! I: P2-t

Rq

32+-e+3 (448) i"-K,. eP"t+K *e R, R,, -jco., L, R, = K, *eP"t +K2 R,

where K, and K2 are constants depending on the initial conditions, while p, and P2 are
the solutions of the polynomial characteristic equation (4-49) attached to (4-47).

a p' +b-p+c=0 (449)

lbus, p, and P2 are given by

Pi =-
LsR,, - L,, Rs + jo)ý, LL, -

VA-

2. LLr

P2 =-
LsR,, - LR, + jo)ý, LL, + vfA- (4-50) 2-LLr

A= (LR, + L, R. - jco,, LL,) 2-4- LL,, (R, R,, - jco,, LR,)

The first and second derivatives of the stator current are

91

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

di:
= pjKj - ePlt + p2K2 *e

p2t

dt
d 21:

=2 pit + P2 P2t

dt2 p, K, -e K, *e

(4-51)

Expressions (4-51) demonstrate that pi and P2 strongly influence the relationship
between the values of the two derivatives. They are the essential factors that determine

the minimal acceptable switching frequency that validates condition (4-43). This is

fulfilled if p, and P2 have such values that the following relations are simultaneously

true:

T, IpIK,
eP"l <<lpK,. e pltl <* T,. P, <<l

(4-52)
.2e Pit <<Ip, K -epitl ý* T T, JP2K2 12

'P2 <<1

They can be expressed as a single condition:

T -max (4-53)
s

ýpl 1, lp, 1) << I

Fig. 4-6 illustrates the dependency of p, and p2 on the rotor speed calculated for

the 11.1 kW induction motor in Table 4.1. Thus, at very low speeds, the imaginary parts
in (4-50) can be neglected while the absolute real parts are given by

LR, -LR -r- LLRR,
lim jReý, srs

V(L, R +LR, Y-ý

Co. -*O 2- LLr
(4-54)

lim R4J LsRr - LrRs +
V(LRr

+ LR, 4- LLri,, R,

W. -+Ol 2- LLr

According to the considerations presented in section 4.1, the equivalent load induction L
is small in comparison with I, and L., Consequently,

4. LLrRrRs <<(L, R, +LrR, (4-55)

and the first absolute real part in (4-54) is much larger than the second absolute real part,

as shown in Fig. 4-6 and demonstrated by (4-56).

lim jReýj LsRr+LrR!;

Co. -+O 2- LL,
lim jReý2 0

,
0)1-1.0

(4-56)

92

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

-60 60 140

-80 ------
--40 -------------- ------ ------

'-100.
------ --- --- in --- 100 ------------- - --------------

120 ------------ 1
20 --- rr ------

<
0. 8 -- - ------------ -------------- --

-140 0 200 400 600
0F
0 200 400 600

OL 60
200 400 600

speed [rad/s] speed (radls] speed [red/s]

600 600

-20
C14

-40 - --- ----------------

400 - ------ ------ ----- ------

--
ý400 --- (N

----------- ------
----- I ------ ------

200 ------- ----- ------- 200 --- ---- --------------

0L 0 200 400 600
I 00

200 400 600 - 0 200 400 600
speed [rad/s] speed [rad/s] speed [rad/s]

Fig. 4-6 The variation of p, and P2 with the motor speed (calculations for a motor of 11.1 kW)

At high speeds, the imaginary parts cannot be neglected. At speeds around the

motor rated value or higher, the absolute imaginary part Of P2 is approximately

proportional to the rotor speed (o,,, while the absolute real parts are almost equal and

have low values. To demonstrate this, the expression of A is transformed by substituting

the expression (4-7) of L, the result being

A= (L, R, + L, R, - jco., LL,)2
-4L, L,, RR, +40. R, R, +4jo),, LOR, (4-57)

Using basic algebraic calculations, equation (4-57) can be written as

A= (- L, R, + L, R, + jcoeLL,, Y+ 40. R, R,, (4-58)

The quantity between brackets is very large when the rotor speed is high and the square

root of A is well approximated by

lim -FA L, R,, + L, R, + jo)e (4-59)
M, -+. o ,

LL,)

Therefore, the values of p, and P2 at high motor speed are given by

3 -L R +jco, -L Rr
rs ,

LL, - lim rA
lim pi = 0), -+-o =-L,,

Rs Rs
0), -+W 2-LLr LLr L

(4-60)
-LsRr -LrRs +jcoe +Iim VE

"M P2 =
,
LLr

-LsRr +j-o)erLLr
ti). -+oo 2-LLr LL,,

93

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Table 4.1 shows that the stator and the rotor resistances are always the same order

of magnitude. Moreover, in many situations they have close values. Based on this

observation, the real and the imaginary parts at high speed are approximated by

liM lReý, j; e liM iReý2 ý gý lim lReý,
w"-+CO wý-+CO 0«-+0
lim jimýI 0 I

o« -+CO
"M JIM

(»er
W« -+-0

The maximum value of modules jpj I and IP21 can be calculated as a fimction of the

results in (4-56) and (4-61) as follows:

ma+, 1, lp, 1) < V[max jReý,), ReWlf + [MaX I'MWI IMW)f (4-62)

22 -E: -

=
LLR + Ry 2

-63) Max lim Reý, Mý2
OL 'r

(4 IP115IP21)"ý + lim + Coe
-40

Therefore the maximal value of IpIl and IP21 is obtained when the motor attains its

maximal speed o)m.. The angular frequency squared co' = o)'. is much larger than the er M

other term in (4-63) Therefore the relationship given in (4-63) can be approximated as

FLýOR
+L Rsý

+I -- CO.. (4-64) Pmax = MaXýPl 19 JP2 11 =- (J)max 2
ax Ir m

Using the result in (4-64), the condition (4-53) becomes

T max «1 (4-65)

The maximum motor speed does not surpass twice the rated speed in normal drive

systems, which means the sampling frequency E, must comply with the condition

I
>> 27c - 100 = 628 Hz (4-66) T.

4.2.3.2 The Mathematical Conditions for Accurate Induction

Estimation

The initial form (4-38) of the conditions for accurate inductance estimation can be

divided by T., and transfonned into

94

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

lAe(k + 1ý
<< R+

L JM(k + 1ý
T. T. - T.

jAe(k+lý
<<

AL I Ai(ký
T. T. T.

If the condition (4-66) is fulfilled then the variation of vectors g and i is almost
linear during a sampling period. Thus, the vector variations can be well approximated

using the vector derivatives, and the inequalities between vector variations become

inequalities between vector derivatives.

dý L) Idil
-<<

(R
+

dt
I

de(kT, + Tj
<<

AL. I dj(kTj
dt T, dt

(4-68)

Based on the basic equation of the R-L-e circuit (4-1), and on the property that

du/dt=O during one sampling period T,, the derivative of the internal voltage e is

obtained as follows:

de di d'i dM
-R L -R L

dt dt dt2 dt dt dt2
(4-69)

Using the results in (4-5 1), the relationship between the first and the second
derivative of the stator current can be written as

l 1
I 's'

dt <max pll, IP21 ' t CO..
dt

(4-70)

Therefore, the module of the intemal voltage derivative complies with

F dý IL = R, 'S +LK:! ý R+L
Li'

<R
Le'

+ L(o 'ýLe- (4-71)
dt dt dt2 dt dt2 s dt max dt

and

dý L, -,
dtl < (R, + Lo)max) *I

dt
(4-72)

'Ibus, the first condition for accurate induction estimation becomes

dý 3L di: I
< (R, + Lo)

max),
Lil

<< Rs + <* >> O)max (4-73) dt

I

dt T,

)

dt TS

which is equivalent to condition (4-66).

95

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The second condition involves two derivatives at two different moments in time.

To simplify the mathematical calculations, it can be replaced with the more restrictive

condition (4-74) that contains simultaneous derivatives.

_ maxtj
dell de(kT, + T,) AL. ýdj(kT,)

_
AL f1di I

<< << f-. MM - (4-74)
dt T, dt dt

s
dt

The minimal current derivative can be estimated on the base of equation

LIdil =jjj-Ri-ej=jj! -Y. jj dt
(4-75)

derived from (4-1). To perform the calculations it is necessary to estimate the average

module of the quantities involved.

The stator and rotor currents depend mostly on the first harmonic of the voltage

because the effects of the higher harmonics are filtered out by the motor inductances.

The internal voltage depends on the motor currents, therefore its average module is also

determined by the voltage fundamental harmonic. The average module of the non-

inductive voltage can be determined by rewriting equation (4-1) in terms of fundamental

harmonics:

11, = co,, LI, + R, 1. +E (4-76)

The internal voltage depends on the amplitude of the motor currents, on the rotor

angular frequency We, and on the parameters R,, I, Lý as shown in (4-7). The inductance

L in the equivalent circuit is much smaller than Ls and 4, so that the corresponding

voltage component in (4-76) is much smaller than E. Tbus, the amplitude of the non-

inductive voltage approximates the amplitude of the stator voltage fundamental

harmonic:

JRJ, + El = lUs - Lco
-li-I = lull (4-77)

The instantaneous value of the internal voltage is proportional to the motor

currents. Therefore, the vector e suffers small but high frequency oscillations. However

these oscillations do not significantly affect the amplitude JEJ of the internal voltage. On

the other hand, due to the PWM modulation, the amplitude of the fundamental harmonic

does not surpass the amplitude of the PWM square pulses. This conclusion is illustrated

in (4-78) where kpwm<l is the PWM modulation index.

kpwm -
11!: 1= JU, I (4-78)

96

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The minimal and maximal stator current values are obtained when the stator

voltage and the non-inductive voltage are parallel and anti-parallel, respectively.

min
ldi, l_ 1 111.

- kpwm
1 (1

- kpwm) -
JR: I

Idtl LL
(4-79)

maxýýL'-'j = -11U, + kpwmjj., j
-1

(1 + kpwm).
dt L- L

Combining the second relation (4-79) with (4-72), the result is

max
dql

< (R. +L(j)max)'maxL"' =(L' +(j)..,,
)(I+kpwm). Ill: l (4-80)

1
dt

I

dt L

Therefore, the second condition for accurate induction estimation is transformed into

RsL : 1= AL

,

)-(l+kpwm)-jjj: j<<
m in

L-T, tL-T,

The sampling frequency f, which fulfils this condition is given by

II+ kpwm Rs + Lo)

T, I- kpwm AL
(4-82)

The accepted inductance estimation error AL is an important factor that influences the

minimal sampling frequency. Very accurate inductance estimations imply small AL that,

according to (4-82), require high sampling frequencies. Less accurate inductance

estimation can be performed at lower sampling frequency. For example, the inductance

estimation with a precision of 0.5 mH for the 11.1 kW motor in Table 4.1, when
kpwm=0.7, requires that the f. is much larger than 46.2 kHz. Therefore, an adequate

sampling frequency is 450 kHz. Even larger sampling frequencies are required if either
kpwm has larger values or if higher estimation precision is required. The practical

solution to limit the sampling frequency fý while obtaining accurate induction estimation

is to perform the estimation process at small stator angular frequency wes.
In conclusion, the lower limit for the sampling frequency has been calculated. It is

defined by conditions (4-66), (4-73) and (4-82) which must be fulfilled simultaneously.
The first two conditions are less restrictive as they depend only on the maximal motor

speed. The last condition is more restrictive and depends on the motor speed, on its

electrical parameters and on the PWM modulation index. Consequently, condition
(4-82) alone can be used for practical calculations as any sampling ftequency

determined based on (4-82) also fulfils conditions (4-66) and (4-73).

97

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

4.2.4 Current Control Implementation Methods
The implementation of the two interrelated algorithms can be performed using

DSPs or using specialised digital architectures (ASICs or FPGAs). The DSPs approach
is simple because the corresponding software development is straightforward. However,

the two algorithms imply a large number of time-consuming mathematical operations to

be performed for each PWM pulse and therefore they use most of the DSP resources,

limiting its capability to perform the speed control task. The use of specialised digital

structures ensures fast operation and allows the speed control and the current control

algorithms to be performed in parallel.

There are two possible software implementations for the current control

algorithm: the direct implementation of calculating all the angles, and the indirect

implementation that uses scalar products between vectors to fmd the optimal output

voltage. The direct implementation implies calculating the six necessary angles using

"arctan" trigonometric function as shown in (4-83), and then comparing the results.

INV
arctan(RIMeIIIINV -

Vi

1)

'MI! IINV YI)

CC

7c - arctan(Re JEINV
--

VI

7C

2
7C

2

when Refl!
INV -II>0

when RejYINV
-

VI) <0

when
f RejjjjNv - VI) =0
LIMJYINV -II>0

when
Ref!!

INV -VII =0

][M[I!
INV -

VI I<0

(4-83)

The "arctan" function can be implemented as a look-up table thereby accelerating

the calculations but the sequentially performed subtractions, divisions and comparisons

required by (4-83), considerably slow down the calculation process. A realistic estimate

of the computational effort can be obtained considering that the first two possibilities in

(4-83) are equally probable while the last two are unlikely to be fulfilled due to the exact

equalities which are involved. In this case between 12 and 18 subtractions (depending

how many times case (a) and case (b) occur in (4-83)) are requested. Additionally, a

further 6 divisions and between 6+6= 12 and 9+6= 15 comparisons have to be performed

for each sampling period.

There are DSPs containing on-chip RAM and on-chip maskable ROM (for

instance TMS320CSx) [8]. Consequently, both the control program and the look-up

table can reside either on-chip or off-chip in an external EPROM. On-chip configuration

98

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

is advantageous because it is compact, reliable and simplifies the PCB design.

Unfortunately, the on-chip ROM memory space is limited. A total of 8.210 memory

words are available for TMS320C51 and twice as much for TMS320C53 [8]. If the

complete motor control program is large then there might be no available space for a
look-up table, which will have to be placed in an external EPROM.

In case a simple and compact hardware implementation is aimed, alternative

algorithms must be used to eliminate the need for the external EPROM memory chip.
As a result, the trigonometric function calculations have to be avoided because any

specialised routine for calculating such functions is a huge time consumer. The indirect

implementation avoids trigonometric functions by utilising scalar products, which are

performed between each of the 6 vectors and the reference vector. By definition the

scalar product between two n-dimensional vectors a and b is given by

a -b =
jaj-JýJ-Cosq (4-84)

The smaller the angle 9 between the two vectors, the larger the result. Thus, the correct

output voltage is chosen by maximising the corresponding scalar product. Tlie

calculations are relevant only if the 6 vectors have the same module. To fulfil this

condition, the six vectors need to be normalised. Consequently the 6 scalar products pj

(where j= 1,2,... 6) have to be calculated according to

V, I+ ImlAi,,
, fl-IM[U(i) Re(Ai,, INV - INV f)-Reju(j)

2
(4-85) VReju(j)

-V,
I'+Imfu(j)

-V, INV - INV -I

where u(j) is one of the inverter output voltages and Ai,, f is the current error vector: INV

Ai,, f=i,, Kk+l)-i(k). To avoid square root calculations, the equation (4-85) can be

replaced by

(Re(Ai,,
f). Refu(j) -V,

)+Imf, &i,.. INV - V, 1) 2

2 INV -f)-
IMIUM

Pi

_VI12+, MIU(j) _Vj
2 (4-86)

Reju(j) INV INV -

The actual voltage generated by the inverter is u(J-) , where the index J,,,. is INV

determined from the condition

2
pj. = maxýj?

)
i

(4-87)

99

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

A total of 30 multiplications, 12 subtractions, and 12 additions are required to

perform the respective calculations. Clearly, the second approach requires much more

resources than the first one.

The software implementation of the inductance estimation algorithm necessitates

that the relative positions of three vectors Ai(k), Ai(k+l) and V, (k + 1) is expressed in

algebraic terms. Three different vectors in a plane are never linearly independent, one is

always a linear combination of the other two. Thus, the real and the imaginary part of

(k + 1) can be written as:

ReLV, j (k + I)l =a- RelAi(k)) +- RejAi(k + 1))

ImLVA (k + 1)) =a- Im[Ai(k)) +P Im(Ai(k + 1)) (4-88)

where cc and P are two real quantities. The vector (k + 1) is situated between Ai(k)
A

and Ai(k+1) if and only if (x>O and P>O, while Ai(k+1) lies between Ai(k) and V. (k + 1)

if and only if (x<O and P>O. The two cases are illustrated by Fig. 4-7 where (k + 1)
A

corresponds to first situation (a, >O) and Y,, 2(k+1) corresponds to the second situation

(CC2<0)-

Fig. 4-7 - Three vector problem: graphical representation (a, >O; CC2<0)

The equation system (4-88) has to be solved in order to determine the relative

position of the three vectors as requested by the inductance estimation algorithm. The

system solution is

100

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

CC
ReIY2(k+ 1)) -ImlAi(k+ 1)) -IMIY2(k+ 1)) -Rel, &i(k+ 1))

Re(Ai(k)) - ImjAi(k + 1)) - Imli(k)) - RejAi(k + 1)1
(4-89) RejAi(k)j *IMIY2(k + 1)) - ImjAi(k)) - RejY2(k + 1))

Re[Ai(k)) - Im(Ai(k + I)l - Imli(k)) - ReJA i(k + 1)1

As a result, the inductance estimation algorithm requires 6 multiplications 2

divisions and 3 subtractions to be performed in order to determine cc and P. Depending

on the sign of two quantities, the decision to correct the present inductance estimation is

eventually taken according to

L(k) + 5L
L(k) - 8L

whena <0 and >0
whencc >0 and >0

(4-90)

which may imply another addition or subtraction. Consequently, a total of 11 or 12

mathematical operations are needed at each estimation step.
The combined software implementation of the current control and inductance

estimation algorithms requires a very large number of mathematical operations to be

performed. In case where the direct current control implementation is employed, then up

to 12+24=36 algebraic calculations and 15+2=17 comparisons are requested for each

algorithm step. The use of the indirect current control implementation in order to

eliminate the need for look-up tables requires up to 12+54=66 algebraic operations and

5+2=7 comparisons for each algorithm step. In a typical situation where the PWM

frequency of 20 kHz and Tpwm=10-Ts, the algorithm requires that 200,000 calculation

steps are performed each second. This amounts to a total of 7,200,000 algebraic

operations plus 3,400,000 comparisons per second in the case of the direct

implementation. The indirect implementation requires a computational effort of

13,200,000 algebraic operations and 1,400,000 comparisons per second.

A DSP program created to perform all these operations contains supplementary

instructions: reading operands from memory, writing results to memory, program

control instructions Oumps) and so on. An optimistic estimate is that the calculation and

comparison instruction number is approximately equal to the number of all other

instructions in the program. That means that a speed of at least 30,000,000 instructions

per second (30 MIPS) is actually required for on-line operation.

The DSPs commonly used in drive system applications belong to the TMS320C3x

and TMS320C5x series because they are fast and inexpensive processors. The of 16-bit,

fixed-point DSPs TMS320C5x generation perform up to 50 MIPS while some of the

101

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

TMS320C3x perform 30 MIPS but have a separate 60 MFLOPS floating point

arithmetic unit, which increases the total computation power tremendously. The latest

DSP devices offer much larger calculation speeds (TMS320C6x generation offers

1600 MIPS) but their price is still too high for inexpensive drive control applications.

Thus, the computation effort required by the adopted current control strategy can be

handled by an inexpensive DSP. However, the algorithm consumes a significant part of

its total resources (up to 33% if a DSP from the TMS320C3x generation is used and up

to 60% if a TMS320C5x is used). Therefore, a complex induction motor control strategy

including the presented current control method can be difficult to implement using a

single common inexpensive DSP. The resistance estimation algorithms plus the flux and

speed control procedures involve a large number of calculations and the total

requirements can easily surpass the calculation power of such a chip.

Multiprocessor DSP-based control systems are therefore not a practical solution,

and hardware implementation using ASIC or FPGA technologies proved to be an

adequate alternative strategy for a fast and efficient control system capable of providing

high performance. The high speed is achieved by adapting the hardware architecture to

the algorithm specific data flow requirements. In addition, pipelining and parallel

processing can be used on large scale to exploit all the opportunities offered by the

specific calculation algorithms. The more parallelisms that can be found in one

algorithm the faster the operation of its hardware implementation can be.

Calculation parallelism is best exploited by hardware implemented neural

networks containing tens, or hundreds of elementary processing units co-operating to

solve a particular problem. The neural approach is flexible as the neurone number can

be increased or decreased, the calculation precision varying accordingly. The neural

network size and architecture is determined based on the necessary calculation precision

and the available hardware resources. The motor controller structure developed in this

research work uses FPGA implemented neural networks alongside pipelined digital

structures to carry out the computationally intensive task of controlling the stator

current. This solution is fast, inexpensive and eliminates the timing problems related to

the sequential operation of a DSP processor. Using this approach, the complexity of the

control tasks performed is not significantly limited by the hardware operation speed.

The only important limitation is given by the available amount of hardware resources.

102

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

4.2.5 Current Control Simulation
The drive system simulation approach combines the modelling flexibility of the

VHDL software tools with the graphical capabilities of MATLAB. Ibus, the simulation

results have been generated in a numerical fonnat using Workview Office 7.31

produced by Viewlogic, and then imported in MATLAB to generate the corresponding

graphs.
A VHDL model of a three-phase induction motor has been created using the

mathematical space vector model of the motor. A separate simplified model of the

PWM inverter has been developed considering all power transistors as ideal switches.

The two modules were combined with an abstract VHDL description of the adopted

control strategy to generate a model of the entire drive system. This has been used to

analyse the current control principles presented in section 4.2. The system operation has

been simulated with different parameter values and the simulation results validated the

current control principles previously presented.

As shown in the VHDL Code Fragment 4.1, the motor model is an entity having

two input ports (the stator voltage and load torque) and two output ports (the stator

currents and the rotor angular frequency). All data regarding the motor operation during

the simulation is stored in an output ASCH file (motor. txt). The file contains numerical

data in matrix format, which is compatible with MATLAB. Each line in the matrix

contains the set of quantities that characterise the motor operation at a certain moment in

time: currents, voltages, speed and torque.

-- Code Fragment 4.1

LIBRARY math;
USE math. complax basic. all;
USE math. mathtyx. all;
USE std. textio. all;

ENTITY motor IS
PORT(us: IN COMPLEX;

Tload: IN REAL;
ist: OUT COMPLEX;

omegar: OUT REAL);

END motor;

ARCHITECTURE arch-motor OF motor IS
CONSTANT Rs: REAL : -0.371;
CONSTANT Rr: REAL : -0.415;
CONSTANT Ls: REAL : =0.08705;
CONSTANT Lr: REAL : =0.08763;
CONSTANT Lm: REAL : =0.08433;
CONSTANT Jr: REAL : =0.1;
CONSTANT p: REAL : -2; 0;
CONSTANT deltat: TIME : -50 ns;
CONSTANT dt: REAL *= 5.0e-8;

103

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

SIGNAL next
-

step: INTEGER : =l;
FILE outf : TEXT IS OUT llc: \andrei\motor. txt";

BEGIN
PROCESS(next-Step)

VARIA13LE my_.: line: LINE;
VARIABLE istl, ist2, irl, ir2, Fistl, Fist2, Firl, Fir2, z:

COMPLEX : =(0.0,0.0);
VARIABLE T, omegarl, omegar2: REAL : =O. O;
CONSTANT d space: STRING

BEGIN
IF next

-
step=l THEN

WRITi(my__: lin9, us. re);
WRITE (my_jine, d space);
WRITE(my jine, us. im);
WRITE (my_., line, d space);
WRITE(my_line, istl. re);
WRITE (my line, d space);
WRITE(my line, istl. im);
WRITE (myjine, d

-
space);

WRITE(my__: line, ir7l. re);
WRITE (my_., line, d

I
space);

WRITE (my jine, iýl. im) ;
WRITE (my_., line, d space);
WRITE(my_line, T),
WRITE (my_line, d space);
WRITE(my_., line, omagarl);
WRITELINE(outf, my_line);

END IF;
istl: =ist2;
irl: =ir2;
Fistl: =Fist2;
Firl: -Fir2;
omegarl: =omegar2;
Fist2: =Fistl+(us-P. S*istl)*dt;
Fir2: =Firl+(j*omegarl*Firl-Rr*irl)*dt;
ist2: =(Lr*Fist2-Lm*Fir2)/(Lr*Ls-Lm*Lm);
ir2: =(Ls*Fir2-Lm*Fist2)/(Lr*Ls-Lm*Lm);
z: =istl*conj(irl);
T: =3.0/4.0*p*Lm*(z. im);

omegar2: -omegarl+(T-Tload)/Jr;
IF next step<1000 THEN

next_; tep<--next_step+l AFTER deltat;
ELSE

next-step<-l AFTER deltat;

END IF;
ist<-istl;
omegar<=omegarl;

END PROCESS;
END arch_motor;

coNFIGURATION conf motor OF motor IS
FOR arch-motor
END FOR;

END conf_motor;

The PWM inverter is modelled as a simple VHDL process. The sensitivity list of

the process contains the 6-bit vector 'abcdef containing the control signals to the six

power transistors. The first three bits uniquely define the inverter output voltage. They

104

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

are used as the selection criterion in the CASE statement that generates the

corresponding voltage space vector 'us'.

-- Code Fragment 4.2

process(abcdef(5 downto 3))

constant UO: REAL
begin

case abcdef(5 downto 3) is

when 11100"=> Us<=UO*(1.0,0.0);
when 1111011=> us<=UO*(0.5,0.866);
when 1101011=> us<=UO*(-0.5,0.866);
when 1101111=> Us<=UO*(-1.0,0.0);
when 11001"=> us<=UO*(-0.5, -0.866);
when 1110111=> us<=UO*(0.5, -0.866);
when others=> us<=(0.0,0.0);

end case;
end process;

The motor parameters used for the simulations presented in Fig. 4-8, Fig. 4-9 and

Fig. 4-10 are given in the column (b) of Table 4.1. Thus, according to equation (4-8) the

inductance in the equivalent circuit is L=5.9 mH. The parameters defming the operation

of the current controller are as follows:

1. The module of the reference stator current space vector: 10 A

2. The reference frequency: 50 Hz.

3. The inductance updating step 5L: 0.05 mH.

4. The PWM frequency: 20 kHz

5. The sampling frequency: 450 kHz.

6. jynilat=00

'L[mH]
6

5 -------- ---------

4 ----------- ---------------------------------

3 ------- --------- ----------------- ---------

2 --- ---- ------------------ -------- -------- --------

I I ----------------- A

0

0 50 100 150 200 250 300 t[MS]

Fig. 4-8 - Inductance estimation values

105

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

As shown in Fig. 4-8, the correct inductance value is obtained in a short time

interval (about 200 ms). The initial induction estimation error is very large causing very

large errors in the calculation of the non-inductive voltage vector V, ýi. The increasing

accuracy of the inductance estimate is reflected in the decreasing ripples of estimated

, Vj shown in Fig. 4-9.

Fig. 4-9 - The non-inductive voltage estimation

Fig. 4-10 presents the trajectory in the complex plane of the actual current space

vector across the stator winding. It demonstrates that the current ripples are maintained

at low levels.

10 r ----------

5 r

0 ------- ------------------- ---

.......... --------- - ----
il o

-10 ---------
oil

................... -

15 -10 .5 0 5 10 15
Refil[A]

Fig. 4-10 - The load current space vector

106

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Similar simulations have been performed for a current control algorithm version

that always uses all the seven output voltages (jVjj&=0). Similar results have been

obtained but the inductance estimation process has been demonstrated to be much

slower (about ten times slower). Moreover, the variations of the inductance estimation

value in steady-state operation were twice the amplitude of the result of Fig. 4-8. On the

other hand, the current ripple amplitude decreased to approximately 70% compared to

Fig. 4-10 after the inductance estimation process was finished. Ibus, although using the

zero voltage decreases the current ripples, it also increases the inductance estimation

errors, thereby affecting the accuracy of the information on the motor operation.
Consequently, this control method version decreases the precision of any sensorless

speed control strategy based on the equivalent R-L-e circuit.

4.3 THE NEW SENSORLESS INDUCTION MOTOR
CONTROL STRATEGY

The common sensorless induction motor control strategies are derived from the

sensor-based field oriented control methods that have been extended to include speed

estimation algorithms. All field orientation methods require several transformations of

the electromagnetic quantities from the stator reference frame into the flux reference
frame, and back from the flux reference frame into stator reference frame. Thus, a

general stator quantity 'A' is transformed from fixed stator co-ordinates into mobile flux

co-ordinates, using equation (4-91). The inverse transformation is carried out according

to (4-92) where O(t) indicates the angle of the flux vector (the rotor flux, the stator flux

or the airgap flux) and is a function of time. The complete control algorithms require

several other mathematical calculations to be carried out: integrations, divisions,

multiplications and square roots.

(Aod
=(

COS 0(t) sin0(t)j. (A'dj
(4-91)

A(q') -sinO(t) cosO(t)) ýAq)

Ad cosO(t) -sinO(t))
(Ado)

A'q =
(

sinO(t) cosO(t)) . (Aqo (4-92)

The sensorless speed control strategies are usually software implemented using
DSPs or microcontrollers, because the hardware implementation is difficult to achieve

due the large number of different mathematical operations to be implemented. Attempts

have been made to combine the software and the hardware approaches [52]. This

107

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

strategy requires the implementation of a custom mathematical processor alongside

specialiscd control modules, RAM memory, and ROM memory (to store the control

programs). The specialised modules implement routine tasks such as the PWM signal

generation or the A/D converter control, while the mathematical processor carries out all

the complex mathematical calculations and updates the operation parameters for the

specialised modules. Such an approach combines the flexibility of software

implementation and the speed of the hardware implementation. On the other hand, it

requires large integrated circuits and complex design procedures including simulation

tools capable to check the operation of the mixed software-hardware control block.

An inexpensive, simple and compact hardware implementation requires the

calculation to be minimised so that the software component of the control algorithm can
be eliminated. Therefore, simpler speed estimation methods and simpler control

strategies need to be devised.

The calculation complexity can be much reduced if quantities that are invariant at

reference frame transformations are used so that matrix equations like (4-9 1) and (4-92)

can be eliminated. The two types of quantities having such a property are the space

vector modules and the phase shifts between the space vectors. A control algorithm that

operates with such quantities is more suitable to using polar co-ordinates than the

classical rectangular co-ordinates. Consequently, new speed estimation algorithms and

speed control algorithms need to be developed and they need to be expressed as simple

equations in polar co-ordinates. The novel speed control strategy proposed in this thesis

can operate in conjunction with the current control method described in section 4.2, or it

can be implemented independently. In both situations the speed control strategy is based

on two principles:

1) The speed information is extracted by analysing the magnitude and/or the phase shift
between two space vectors A and B, chosen from the electromagnetic variables in

the equivalent R-L-e circuit (u, V., i, 9, D.

2) The motor speed is controlled by modifying the amplitude and the angular speed of

the stator current vector.

Using only quantities that are invariant at reference frame transformations (phase

shifts and amplitudes) implies that the choice over the reference frame does not change

the form of the speed estimation method or the form of the speed control algorithm. All

reference frames are equivalent. However, the mathematical demonstration of the

principles underlying the new control strategy is simpler in rectangular co-ordinates than

108

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

in polar co-ordinates. Furthermore, some reference frame orientations are preferable to

others. For simplification reasons, the most appropriate approach is to define the

reference frame orientation using the vector A involved in the motor speed estimation
(the real axis of the rectangular co-ordinates is maintained parallel to this vector as

illustrated in Fig. 4-11). In such a situation, the phase shift aBA between B and A is

calculated using only the rectangular components of vector B:

RelD.) = B. COS CCBA

=> aBA= arctan lmlll,)
I= B'Sn CCBA

(Re[!!,
))

: 11M Ime s
b

=ReJA. 1
Re.

(113A

Reffl3a)

0a Kes

c

Fig. 4-11 - The reference frame oriented on vector A

(4-93)

In the next chapters it is demonstrated that the calculation of the space vector

arguments can be efficiently carried out by hardware implemented neural networks. The

result is that the phase shift calculation is reduced to subtracting the space vector

arguments, thereby avoiding trigonometric calculations and reducing the total chip area

of the controller. Therefore, equations like (4-93) are used only for theoretical analysis

but they do not have to be implemented directly into hardware.

4.3.1 Speed Estimation Algorithms
Several estimation methods can be developed depending on the vectors A and B

that are chosen from the quantities available in the R-L-e circuit u, V j, 1e n
:)

methods have different degrees of accuracy and imply different calculation complexity

levels. The most straightforward solution is operating with the voltage u and the current

i because they are directly measurable quantities. The non-inductive voltage Vni is a

109

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

good option if the speed estimation is performed by a controller that uses the current

control strategy presented in section 4.2. The vector Vi is calculated for the current

control algorithm but the information can also be transferred to the speed estimator

thereby decreasing the computation effort. The use of the internal voltage e requires the

largest number of calculations because its value needs to be derived from the space

vectors u or Vni.

The class of estimation methods defmed by A=ýi is analysed in a stator current

oriented reference frame. Due to the stator current orientation, the imaginary part of the

stator current vector is zero and the reference frame rotates with the angular speed CO'.,

which corresponds to the synchronism speed in steady state operation. Throughout this

section, the superscript 'syn' is attached to space vectors expressed in the synchronous

stator current oriented reference frame. The conditions deffi-ling the chosen reference

frame are mathematically described by

wes *

is= 13 (4-94)

where Iý designates a real quantity. The induction motor space vector model in a stator

current oriented reference frame is expressed as

syn

R Is +
dT.

+ j(o,, Tsyn
s dt

dT'Y' n ý-: - r+j
er

)' Tsyn sy' =R, isy + -r _r dt
(Coe$ co (4-95)

i syn T, syn
= LsIs + Lm

-r
! syn

=L isyn +L. I Er
r-r s

If the last two equations in (4-95) are substituted in the first two, the result is

syn
nh dIs syn RsIs + L.

dt
+Ls dt +jco,, (L, I, +L. I,,

(4-96) sn
O=R, isyn +L,

ý Lyn
+Lln

A'-+
jcoslp(LmIs +L isyn)

r dt dt r-

The quantity 'comp' in (4-96) is the 'slip angular frequency' and represents the

difference between the stator and the rotor electrical angular frequencies.

ü) SIP = 0) es - (0 er (4-97)

The slip angular frequency is related to the motor slip 's' as follows

0), Ip =s- Co., (4-98)

110

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The calculation of co, lp is a prerequisite for the rotor speed estimation. The relation

between (o, lp and the rotor speed is described by

(i)
es -

Ct)slp 1%IP
pp

(4-99)

Therefore, the speed estimation methods can be reduced to methods of estimating the

slip angular frequency. The possible slip estimation methods are first analysed in steady

state operation and then in transient operation.

4.3.1.1 Steady-State Analysis

The general differential equation describing the evolution of the rotor current

vector is

d syn dl Ir+
-r + -9 (4-100)

dt Lr
+jco"")-iry' Lr dt

j

This equation is a consequence of the system (4-96). In steady-state operation, the motor

currents are sinusoidal and have constant frequency, which entails circular trajectories

for the corresponding space vectors. Thus, in the synchronous reference frame, the rotor

current and the stator current space vectors are constant during the steady state.

Therefore, the stator current derivative and the rotor current derivative are zero in

(4-100). The rotor current space vector during steady-state is:

syn
=

-jos, PLnIs

-f Rr +j (o slp
L,.

(4-101)

Based on equation (4-101), all the steady-state electromagnetic quantities of the

R-L-e equivalent circuit can be calculated. First the internal voltage e is calculated and

then the V rom its expression. Thus, the general equation (4-7)
.,, i and u are derived fi

becomes

syn
=

Lm
"n 'yn

Lm- [-
R, j7 +i o),! Esýn

]
2

Lr

[-Rr-'sryn+jO3er(Lr',
+Lmi,

Lr
(4-102)

Substituting (4-101) in (4-102) yields

syn
=Lm

jo), IPL. R,, I.
+ icoer -jo),, IPL,

LIll
+ Lml, (4-103)

Lr

[

Rr + ico, lpLr Rr +jcoslpLr

The result can be incrementally transformed as follows:

ill

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

e syn =
Lm ico,

1PL
Rjs

, J- "R

RrLmI
3 (4-104)

Lr

(Rlr

+jcorIpLr r+
jcoýIpLr

e
syn=L. j(o)ýj, +co., ý,. RrIs

(4-105)
L, Rr +jcorIpLr

syn
L ico,

(4-106)
Lr Rr + jcoýIpLr

syn
L (J)es(i) LLRIL jcoý, L. R 2js

m slp m rýýrýs + -m ._r (4-107) 2+ jC02 2 +j(J)2 Lf Rr slplýr
L,, Rr

sip r

The calculation of the real and the imaginary part of the internal voltage in steady-state

yields

Reý syn
CO

escoSjPLmLrRrIS Lm
R2 +C02 L2L

r SIP rr
21 (4-108) JIMýsyn

o)esLnRr s
Lm

R2 +C02 L2L
f SIP rf

The non-inductive voltage space-vector Vi depends on e according to general

equation Vni=Rj+-e which, in the synchronous reference frame, is transformed into

ysýn - RsI$ + e'yn
. Therefore, the real and imaginary parts of V

lu i are:

n co o) , L. LrRrl., Lm
Re ý" 1= RJ, + ýý es ýý slp

ru R2+ Co
2pV, Lf

21r
TT sl (4-109)

syn coesL�, Rfl!,
. L, ImKni

)=

2 +(02

1

Rr slpcr
Lr

To calculate the voltage vector usys the equation (4-1) is rewritten as

u Sys . ejo" R- i"" -e josy" +L-d
(i Sys .e jo")+

esys .e jown
dt

in the synchronous reference frame. It can be then further transformed into

, L, +L
dl

3 +jo) L. I +e
syn

dt es s _s

The stator current vector has constant module during steady-state operation so that

1) becomes

syn = IZj
s+

jco,, L - Is + e' "= Vsyn +jco L-I
- -1 es s (4-112)

112

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Substituting (4-108) into (4-112), the voltage vector u' components can be expressed

as:

yn
Coe L. L R 1. L.

ReLu, '
)=Rsls+

sCOSIP rr
2 +Ct)2 0 RL
r sip rr

JIMLSyn)=
co L R2I L

u+ es mrsm
Lr

(0esis
R2+ C02

0L
r sip rr

All the space vectors given in (4-108), (4-109) and (4-113) can be used to

calculate the slip angular frequency. Both the vector amplitudes and the phase shift

between these vectors and i. contain information about co,, Ip. Nonetheless, the alternative

methods of slip estimation imply different degrees of precision, mathematical

complexity and implementation difficulty. The next two sections analyse the alternatives

from the hardware implementation perspective.

4.3.1.1.1 Slip Estimation Methods Based on Vector Amplitude

Using the real and imaginary components in (4-108), the absolute value of the

intemal. voltage is

ýyn Re2 syn
)

+Im2ýsyn)=Re2ýs)+Im2ý.
j= coý, LnRj,

-

Lm 1=

Lr

From (4-114) co., Ip can be derived as follows:

2

..
Rr_

cosip syn
2 (4-115)

The solution has a complicated non-linear mathematical form so it is not suitable

for efficient hardware implementation. Linear equations can be implemented as

interconnected adders and multipliers. The non-linear relationship (4-115) necessitates

an additional divider plus a square root calculator. The dividers, and particularly the

square root calculators, are bulky hardware structures. Positive results have been

obtained in the last decade in developing efficient square root calculators ([23], [24],

[25], [73]) and efficient dividers ([21], [22]). However, the structure of their

implementation is still large so that any means of avoiding such hardware structures are

preferable when compact hardware implementations are needed.

An alternative solution is the use of look-up tables to determine the

correspondence between e and the motor slip. There are three main factors that

113

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

influence the value of the slip angular frequency: 1ý1, (0, ý and Ir', but the calculation

results are also dependent on the rotor resistance, which is variable with the

temperature. Fig. 4-12 illustrates the variation of e against (o. 1p at rated voltage and rated
frequency, calculated for the 11.1 kW induction motor. The figure demonstrates that the

effect of rotor resistance variations is not negligible. Thus, the solution requires a four-

dimensional look-up table which needs a large memory space. If, for instance, only 15

values were taken into account for each table dimension, then the table would have

50625 entries. Similar mathematical considerations apply to the implementation

strategies that use space vectors 11 or Vi instead of ý.

Fig. 4-12 - The variation of e against the slip angular frequency at rated stator frequency.

Small tables can be implemented in the same digital chip as the control circuitry

thereby reducing the manufacturing cost. Large look-up tables can only be implemented

as external EPROM chips, thereby complicating the PCB layout, increasing the power

consumption and the size of the controller, decreasing its reliability, etc. In conclusion,

the vector amplitude approach is not suitable for hardware implemented speed

estimation.

4.3.1.1.2 Slip Estimation Methods Based on Phase Shift

The second possible approach to the motor speed estimation is to process the

infonnation contained in the value of the angle a between the stator current vector i and

one of the other vectors: e, u or V., j. The calculations yield the following results:

R Lr (R2 + Co 2
p2,

)+
Co cü V. L R

tan-1 aui = tan-(argýu, >»= 2r2 sl
+ CO. 21

es SIP rr (4-116) (L�L. -V)-
(R). Co_ + 2. R 2

coe mrpr es r 's

114

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

=211PL, +
LR,

(Rr2+cos2lpO,)

tan-' ccv. j = __ .2 Rr we r ,,
O. R

tan` a, i ==
o)., IPL,,

Rr
(4-118)

Relation (4-116) is very complicated and non-linear. It is not suitable to hardware

implemented estimation of the slip angular speed. The result in (4-117) is simpler than

(4-116), it contains one term that is proportional with co, lp and another term proportional

with the slip angular frequency squared. If the stator angular frequency is high (co. =_314

rad/s), and the slip is small (it normally is during typical motor operation) then the last

term in (4-117) can be neglected and an almost linear relationship between (o, lp and

tan-'(cc v. j) is obtained:

; Zý
! ý--IPLI

=:: ý (OSIP
Rr

-tan-'av. i Rr Lr
(4-119)

Fig. 4-13 presents the numerical calculation results obtained for the 11.1 kW

motor at a stator angular frequency q, =314 rad/s. It can be seen that the ReO&j)/Im(yj)

characteristics are almost straight lines at this rotor speed. Unfortunately, their curvature
increases with the decrease of speed so that the relationship (4-119) is not valid for

speeds much below the rated speed.

Fig. 4-13 Quasi-linear dependency between (o, lp and ReQýw) / ImCVI) ratio (o). =314 rad/s)

115

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The approximate relationship (4-119) is appropriate for hardware implementation

together with the current control strategy previously presented in section 4.2, because it

provides the value of Vj. This version of the slip estimator is based on equation

R)]. R,
co,, p -= tan-'(av. i)- == tan-'

[argýV'
i)- arg(i: (4-120)

Lr Lr

However, such an estimation method can be used only in a limited number of practical

applications, where the motor speed is variable but always high. The correct slip

estimation at any speed can only be performed using the equation

R
arg(:

)]. Rr
co = tan`(cc, an-'

[arg(e)- i (4-121)
sip J. tL Lr

r

that is derived from (4-118).

The internal voltage vector e can be calculated either as a fimction of Vni, is and

R,, or based on jj,, Rs, co,, and iS. The two alternatives are:

2: = Yl'- Rsi:

2: E: Ri' LsL, - 0,
*
di:

s Lr dt
(4-122)

The choice made depends upon the electrical quantities available. If the new current

control method is used, then the Vi-based estimator is optimal in terms of hardware

implementation. Otherwise, the u-based estimator is the better option. Tbus, the two

alternative estimators operate based on the equivalent equations

co,, P = tan-[argLV, ' - R, i:)- arg(i:
Rr
Lr

co =tan-' arg u: -R s LsL, 0.
.
di:

arg(i:
Rr (4-123)

SIP

I

S-3 Lr dt
)l

Lr

These two estimators are superior to the amplitude-based estimators presented in

the previous section because the division and the square root calculation are eliminated.

The Vi-based estimator is particularly simple, as it requires only two multiplications

and one subtraction. The u-based estimator is slightly more complicated because it

requires one additional multiplication and two additional subtractions (the current

derivative being approximated by the difference of the last two current samples). The

vector argument calculations in the stator reference frame can be performed by a
hardware implemented neural network. Alternatively, the function tan7l can be easily

116

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

implemented as a small look-up table because it is a periodical and symmetrical
fimction and only its values between 0' and 90' need to be stored. Such a small table is

implementable into the same chip as the rest of the speed controller.
Due to their mathematical simplicity and hardware implementation advantages,

the estimators based on the phase-shift information are adopted in this work as the

optimal solution to the speed calculation problem.

4.3.1.2 The Transient Analysis of the Slip Estimation Process

The previous mathematical results are valid only in steady-state operation because

they are based on the steady-state solution (4-101) of the differential equation (4-100).

Further investigations are carried out in this section to analyse the magnitude of the slip

estimation errors if the slip estimator uses these equations during the transient operation

of the motor. Equation (4-100) is a first order linear differential equation. This class of

equations has the general form

dj' "
+a (t) - i, "' = b(t) (4-124)

dt -

where a(t) and b(t) are complex functions of time, while the solution is

i,, (t) =e
+(t)dt

.[fe
f ! (t)dt

. b(t)dt + K] (4-125)

where K is a constant that is calculated based on the initial conditions. In the particular

case of equation (4-100) the two time functions a(t) and b(t) are given by

R,,
+j c)., Ip (t) Lr

dl
Lr

(jo)"lp
(t) + ýTs)

so that the general solution is

Rr.
t. j cosig(t)dt f Lr

t+ji to., p
(t)dt

fel
Lr COOP (t)IS +

s-
- dt + K]

dt
I

(4-126)

(4-127)

The general rotor current solution is very complicated. To simplify the

calculations, a rule of thumb can be used: given the same initial state, the average slip

estimation errors are smaller during the slow transients, than during the fast transients.

The rule is justified by two facts:

117

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

1. The induction motor is a stable system (during any transient its parameters tend to

change to stable values and after the transient ends they remain unchanged). Any set

of inputs corresponds to a set of stable motor quantities.

2. The variation in speed of any mechanical or electromagnetic quantity is limited by

finite time constants, that is they cannot change instantaneously.

All the motor characteristic quantities closely follow the corresponding steady-

state values during a slow transient. The difference is larger during fast transients

because the motor quantities lag behind the steady-state values due to the speed

limitations imposed by the time constants. The accuracy of the previously analysed slip

estimators depends on how close the motor quantities are to the steady-state values.

Tbus, fast transients will tend to generate larger estimation errors than slow transients.

In conclusion, to assess the maximal magnitude of the slip estimation errors it is

necessary to analyse the fastest motor transients.

If the PWM inverter supplying the motor is controlled by a current controller as

the one described in section 4.2, then the steady state operation is best described by two

basic parameters: the stator current angular frequency weý and the stator current vector

amplitude Is. Thus, the motor transients can be divided in three categories:

1) Transients caused by the alteration of co,

2) Transients generated by the variation of the stator current amplitude I,

3) Combined transients created by a simultaneous variation of the two quantities.

4.3.1-Z 1 The Effects of Altering the Stator Current Frequency

The fastest transient between two stator angular frequencies is caused by a step

change of its value. In practical situations, the rotor inertia generates large mechanical

time constants (larger than the electromagnetic time constants of the motor). Therefore,

the rotor speed change is small during the relatively short transient caused by a step

change of the stator angular frequency. To simplify the calculations, the rotor speed is

considered constant during the transient. If the rotor speed is constant then, according to

(4-97), a step change Of Wes implies a step change of co, jp. The transient response for the

rotor current is the solution (4-129) of the differential equation (4-128) which is a

particular case of (4-124) because the functions a(t) and b(t) are in this case complex

constants.

d syn Rlr
+n . _jLM -+(je) ýIP)-i, ry

»SIPI,

dt Lr Lr
(4-128)

118

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

_(_R+j.,, P,
)t [2lLmls

i'ry' = Ke Lj 0)
sip

[2 R +jo) If
r SIP

(4-129)

The symbol coill denotes the initial slip angular frequency, co [2] is the fmal slip

angular frequency, and K is a constant whose value has to be calculated taking into

account the initial conditions. The initial rotor current is:

-jcüi'IL I
Vo) ==. SIP m3 (4-130)

fp Rr +joýIPL,

Consequently, the expression describing the rotor current dynamics is

j(13[2 V]
.R j(012))t 12 ILnI, jo)

sLI _(,
. 11,

jo) IL. Is

isyn sip lp m3e SIP (4-131)
R +jco[2]L R +j(L), [,, ']L R +j(o

(21L

r sip rrp r) r sip r

which can be transformed into

ýL+j I RL R 21

syn -syn[21
_

isyn[2)
+j(0! 21 t=

isyn[21
(Dsll'

isyn[l])-e
JL,

'11) &isyn
-ejLr (4-132)

(r

-r -f

To calculate the evolution of vector e during the transient, relation (4-132) is

substituted into (4-102). The result is illustrated by equations

isyn(21 syn[2] L, , yn _jsyn[l]). e4!
-j-f-ý-))t

=
ý-- (- R, + jo),

rL,
)

-r -r
+ jcoerLmI

sl (4-133)
Lr

I

and

+jj2l
syn[2] esyn[21

Vn[l] L, syn[2) syn

JL,
rt

syn =e-
Ce

-e
)-eý +j, "P,

),
=e -Ae -e (4-134)

L

where e"" is the initial internal voltage and e syn[21 is the final internal voltage.

Iberefore, the trajectory of the intemal voltage is a spiral of the type illustrated by

Fig. 4-14.

The real part and the imaginary part of the internal voltage are:

R
-.: -L

Reýsyn
J= Reý"121)-

(Reýý'Yn lcos
rj)[2]t + JMý2vn

)Sin
CJ)121tý Lrt

sip SIP
Lr

R (4-135)

, Mýsyn
ýsyn[2] J_ (JMý2syn)COS : Lt

Im j)[21t (J)[21tý Lr

sip
Reý2syn)sin

,P

T'hus, the stator speed step change produces electromagnetic oscillations in the

rotor that can be sensed back in the stator due to the corresponding oscillations of

induced electromotive force emf (an electromagnetic echo). All the previously analysed

119

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

slip estimation methods based on the R-L-e model produce erroneous results during the

transient operation of the motor because they are affected by electromagnetic echoes.

iý
lin

syn[l] Ae syn
e

(the i2tial vector)

Vý syn[2] e
0 (the fimal vector)

Is Re

Fig. 4-14 - The evolution of the rotor current space vector in the synchronous frame of co-ordinates

The two hardware implementable estimators discussed (the u-based estimator and

the Vi-based estimator) generate transient estimates according to equation

.
RLt

R Reý syr(2])-(Reýe syn
ICOSO)!

2]t + Imýe'jsind. ',
Pltý

L,
O)mp ----

SIP
R ---

(4-136)
Lr ýsyij2jj_(j ý2synjCOS ! 2]t

at

J)[2]tý
L,

Im m 0.1p -Reý2synjsin slp

The slip angular frequency estimates undergo damped oscillations at a frequency equal

to the slip frequency. This causes oscillatory estimation errors described by

syT(2) syn syn
t

j21tý L,
R, Reý 1-(Reýe iCose)f'lt+Imý2)sin

�p (4-137) err. (t) Lr ýsyit2])_(,
Mý

synl OS
! 2]t

R. L sp

Im 2c cj)�p -Reý2"ýin0)1�21pItý
L,

Equation (4-108) demonstrate that Re {g") and Im{g'y") are proportional to Is and

to co,, so that the effects of these two factors cancel out in equations (4-136) and (4-137)

because both the numerator and the denominator are proportional to Is and to (On. Thus,

the estimated slip and the estimation errors depend only on the initial slip angular
V] [2] frequency co. 1p and on the final slip angular frequency o), Ip. Alternatively, the errors can

be defined as a function of col. 1,
P] and the slip angular frequency change

Aw - (1)
[21

_ 0) V]
SIP SIP SIP

On the other hand the magnitude of the estimation errors can be calculated as a

function of the internal voltage variation jAe, yn I which is the distance in the complex

plane between the initial internal voltage vector e'yn[l] and the final internal load vector

120

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

e syn[21 (equation (4-134)). In other words, jAe'ýmj is the difference of two steady-state

vectors: the final one and the initial one.
Elementary algebraic calculations based on (4-108) prove that the locus of e*' in

steady state operation is defined by

[IM(2sy.) -
C02 42

Re(ýý
X. Is
40,

(4-138)

'Mis equation can be transformed into

_e)-Ry =R Re {e')y +
(lm{

R= m
Mr

(4-139)

proving that the locus is a set of circles whose position and radius depend on the stator

current amplitude L and the stator angular frequency co,, s. According to (4-139), all the

circles are tangent to the real axis in the point of co-ordinates (0,0). The sign of Im fgsý')

depends on sign{coýs), so that there are circles both above and below the real axis. The

upper circles correspond to positive stator angular frequency, while the lower circles

correspond to negative stator angular frequency.

Fig. 4-15 presents the internal voltage locus in steady state for the 11.1 kW motor

at positive stator angular frequency and positive slip angular frequency. Any steady state

internal voltage e" is situated at the intersection between a radius (corresponding to

(osip) and a circle (corresponding to I, xI co,, I). When the slip angular frequency changes,

the vector e syn undergoes a transient that ends in a point situated at another intersection

of a circle with a radius. If the transient is due to a change of the rotor speed then the

final circle is identical to the initial circle, as the stator angular frequency is unchanged.

If the transient is generated by a change of the stator angular frequency then both the

new radius and the new circle are different as compared to the initial ones. Fig. 4-15

demonstrates that, at the same initial co, jp, the internal voltage variation jAej and

therefore the slip estimation errors increase with the magnitude of the step change Ao)slp.

Fig. 4-16 presents MATLAB simulation results obtained for the 11.1 kW

induction motor. The stator angular frequency undergoes step changes described by

(4-140). The step change Os ranges between 3 and 10 rad/s and the rotor inertia has been

considered infinite so that the rotor speed variation is null during the entire transient.

121

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

0 when t<0
92, when t; ->

0

1, =7A 18o - 0 rad/s I irr a ddv1 s
6A160 -

40 -

120

100

80

Is=AA-1 60
2A. N
IA 40

N
20

0 20 40

2 rad/s

3 radls

4 radls

8r

5 rad/s

6 rad/s
7 rad/s

I

I
rad/s
/S 9 rad/s

60 80 100
Re&3") [A]

Fig. 4-15 - Internal voltage locus during steady-state (co. =314 rad/s)

osip
14

12 ---------- L

10 ------------ ------- ---

8 -------- -- ----- ---- ---

4 ---- --- --- -

--------------------------- ----

0
0.3 0 60 9l 2 1 5 . . v . t[s]

(4-140)

Fig. 4-16 - The transient response of the slip angular frequency estimator (slip modification)

122

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

At low slip frequency (smaller than 5 rad/s in this case), 1, &esyn I is small and the

oscillations are damped before the end of the first period so that the oscillatory character

of the estimator response is obscured. It becomes apparent at higher slip angular

frequencies when both jAesynj and the oscillation frequency are higher so that the

oscillating errors are damped only after several periods.

The initial slip angular frequency co., Ip before the transient has an important

influence as well. Thus, the error calculated in (4-137) can attain very large values if the

denominator approaches zero, while the numerator has large values. This happens when

the amplitude of the oscillatory component of the denominator in (4-137) is almost

equal to ImIgsyn[21). Therefore, the magnitude of the estimation errors depends on

IM(psy, [2]), which in turn depends on the initial o), Ip and on Ao)slp. As shown in Fig. 4-15,

the value of IMIýýsyn[2]} is small when the initial (olp is large, thereby amplifying the

estimation errors. Moreover, if the initial o), Ip and/or Aco,, Ip are sufficiently high, then the

spiral trajectory crosses the real axis, situation illustrated in Fig. 4-17, and the

denominator in (4-137) becomes zero. In this case, the errors are infinitely large. In

practice, these catastrophic situations are generated by extreme transients: fast and large

changes of the stator angular frequency associated with motor reversals or extremely

fast speed changes. In these situations the corresponding spiral trajectories have a large

diameter and often cross the real axis several times.

jJrnj! eynj

(I)SIP 0-

Lm is-
Lr

(J)slpA

(J)Slp= +
COSIPB

0 Ref9syn)

Fig. 4-17 - Internal voltage transients at two slip angular frequency ((olll III
SIPB

>> CosIpA)

123

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Conversely, the estimation errors are small when IM wyn[21) has a large value,

which is equivalent to a small o), Ip. Thus, to minimise the estimation errors, it is

important that the internal load vector does not approach the real axis of the

synchronous reference system. This is equivalent to maintaining (olp to low values.

All the previous theoretical results have been obtained for infinite rotor inertia. If

the rotor inertia is small then the slip angular frequency is not constant during the

transient. The slip is a maximum at the beginning of the transient and then it decreases,

as the rotor speed tends to follow the stator changes. This means that the vector e'ý' does

not rotate around a fixed point but around a moving point. This point shifts towards the

initial position of vector e, the effect being an accelerated decrease of the spiral radius

(hence a smaller spiral) and a shorter transient. A smaller spiral trajectory in the

complex plane implies smaller slip estimation errors than in the case of the infinite

inertia motors. Therefore, the results analysed so far represent the maximal estimation

errors that can be obtained during the transients when co., Ip is variable but I., is constant.

4.3.1.2.2 The Effects of Altering the Stator Current Amplitude

Equation (4-100) cannot be solved for a step change of the stator current

amplitude because in this situation the stator current derivative would be infinite. 'Me

step change however, can be considered a limit case of a very fast linear increase

followed by a constant value (4-141). The two operation conditions can be studied

separately integrating the corresponding differential equations and obtaining two time

functions: ý11(t) and ýi2(t). The concatenation of the two solutions describes the complete
behaviour of the system:

Iso +Klt if < T,
(4-141)

lso+K,. Tj iftý: Tj

The period Tj (when the current amplitude undergoes a ramp variation) is short

which implies that the motor speed can be considered constant due to the rotor inertia.

In these conditions, the general equation (4-100) becomes

dir
+ (R,. +

L,,,
.- (0 +K

Lr L,, 51P
(Igo

I t)+KI] (4-142)

where Iso is the initial current amplitude and KI is a constant equal to the derivative of

the current amplitude. The general solution of equation (4-142) is (4-143), where the

parameters K, p, cc, and P are complex constants. The expression K-ePI is the general

124

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

solution of the homogenous equation derived from (4-142), while (xt+p is a particular

solution of the non-homogenous equation, whose parameters can be calculated by

substituting this expression in (4-142).

'r =K-+ at +P (4-143)

The constant K is determined considering the initial condition when the rotor current

value corresponded to the initial steady-state operation:

K-p+P=I,, o
- j(L)slpL. I,

o

Rr + iCt)slp

Tberefore the values of the constants are:

-jco.,,, L. K,
j Rr + JCOOp

jo)., IPL. L, K, L. Oco,,
PIo + KI)

Rr +i (J)
slp

+ (R, +jct),, Py

p+ i(J)SIP
Lr
LmLrK, jo)ýIPL. VrKj

K (Rr + i(osip (Rr + j(')slp ý

(4-144)

(4-145)

17hus, the variation of vector ýi during the transient has two components: a linear

component varying with the speed cc (proportional with the current derivative KI), and

an oscillatory component whose frequency equals the slip frequency coIp. In accordance

with the general equations (4-7), the corresponding variations of the vector e are:

syn = (-R, + jco, (4-146)
,
L. (KeP'

+ cct ++ jco,, (KIt + 1,0) -
! ýM-

Lf

The mathematical form of this equation determines the type of slip estimation

errors during the first part of the transient. When the slip angular frequency is small, the

oscillatory character of the estimation error is not visible because period T, is short (it is

shorter than the oscillation period). If the motor slip is large, the error oscillation has a
large frequency as well, and the oscillatory character of the estimation error becomes

apparent (see the MATLAB simulation results in Fig. 4-18 and Fig. 4-19). The ramp

variation is followed by a period of time when the stator current amplitude is constant.

The result of this is a second transient during which the rotor current settles to a stable

value. The equation describing the second transient is identical to (4-128), only the

125

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

initial conditions are different. Thus, the slip estimation oscillations during the second

transient are similar to those generated by the stator angular frequency transients

analysed in the previous section.

0

-2

-4

-6
L

-10

12

10

a

6

4

1)

I ir

-5 0

Slip Estimation

60

40

20

c

------- ---------
0
0 50 100 15"

is
15

10

5

------ ------

0
0 - 0.5 1 1.5 0.5 1 1.5 2

Fig. 4-18 - The slip estimator transient response (L modification). (olp=10 rad/s; TI=0.5s

0

-0.5

-1

15

50

40

30

20

10

n

I

-10 -5 0

Slip Estimation

- 0.5 1 1.5

6 --------------------- L

2 --4 ------ ------- r -------
01 0 10 20 30 40

is
1

II

10

5

o 0 0.5 1 1.5 2

Fig. 4-19 - The slip estimator transient response (7, modification). w, lý=35 rad/s; TI=0.5 s

If the stator current increase is quasi-instantaneous, then the Tj is very small and
Ki is very large. The transient rotor current cannot follow the fast evolution of the

126

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

equilibrium value given by (4-101), but its trajectory is almost linear and the amplitude

of the error oscillations is relatively small. During the second part of the transient, the

rotor current ý1 and the internal voltage gyn have spiral trajectories in the complex plane,

generating larger transients. The initial radius of these spirals increases with the speed of

the first transient and so does the amplitude of the estimation errors.
These considerations are supported by the MATLAB simulation results in

Fig. 4-18, Fig. 4-19, Fig. 4-20 and Fig. 4-21. The first two figures present slow

transients (TI=0.5 s) while the last two present fast transients (TI=0.25 s). The rotor
inertia has been considered infinite so that the rotor speed is constant. Fig. 4-18 can be

directly compared to Fig. 4-20 as they involve the same slip angular frequency

(co,, P= 10 rad/s) while Fig. 4-19 can be directly compared with Fig. 4-2 1. Analysing these

figures it results that the global estimation errors increase with the transient speed. The

errors during the first part are affected only by the transient speed, while the errors

during the second part are affected by the slip angular frequency as well. The estimation

errors can be significantly larger when co., Ip is large. This is due to the different positions

of the e*m spiral trajectory in the complex plane (the distance to the real axis).

Using the previous observations and calculations, an important conclusion can be

drawn: the estimation errors can be decreased by restricting the transient speed
(parameter KI) and by maintaining the slip angular frequency at small values.

Furthermore, the influence of co, lp is more important than the influence of KI.

C

-1

-2

-3

-4

jr

----------- --- -------------

-------- ------ --------------

------- ------- --------------

-------------- --- -------
-Pi o -5

Slip Estimation

80

60

40

20

n

e

--------- ---------

------------ ------
0

14

12

10

8

6

4

2o 0.5 1 1.5

50 100 150
is

12

10

8

6

4

2

Co 0.5 1 1.5

Fig. 4-20 - The slip estimator transient response (1, modification). co., ý-10 rad/s; TI=0.25s

127

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

0

-0.5

-1

-1 -ýl 5

100

80

60

40

20

n

1"

-10 -5 0
Slip Estimation

e
10

8

6

4

2

n

----------------- --------

20 40 60
is

15

10

5

-- ------------------ --

-00.5 1 1.5 2 00
0.5 1 1.5

Fig. 4-21 - The slip estimator transient response (L modification). cDjpý=35 rad/s; TI=0.25 s

4.3.1. Z3 General Transient Effects

Simultaneous changes of both the amplitude of the stator current I, and the stator

angular frequency co. produce combined electromagnetic echoes. The effect of the two

changes can be enhanced or diminished internal voltage oscillations, depending on I.,

and co, lp variation in time. If the oscillations are diminished then the slip estimation

errors are decreased during the transient operation. Amplified oscillations imply less

accuracy in slip estimation.
The general variation of the rotor current corresponding to a pair of functions I., (t)

and co, ip(t) is given by (4-127). Substituting the rotor current ýj in (4-102) the function

9 syn(t) can be calculated, thereby assessing the transient slip estimation errors. The exact

correlation between these functions is very convoluted. However, there are a few

practical rules applicable to all transients in the three categories analysed. These rules

are derived based on the simulation results and can be used as guidelines to estimate the

outcome of a certain transient in terms of slip estimation errors.

1. If the errors contain an oscillatory component the oscillation frequency is

approximately equal to the motor slip frequency &p=o), 1ý27c.
2. The average errors are large during fast transients and small during slow transients.

128

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

3. Given the same initial state and the same transient speed, the errors increase with the

distance between the initial internal voltage vector -e'yn[l] and the final internal
yn[21

voltage vector e'

4. The estimation errors are much bigger during a transient at large O)op than the errors

during a transient at small (i)sIp because in the first case esyn is situated closer to the

real axis in the real plane and therefore tarf I(argWyn)) undergoes larger variations.

5. For the same initial conditions, decreasing the stator current amplitude with AI,

generates larger estimation errors than increasing the current with the same Al,

6. For the same initial conditions, increasing the stator angular frequency with A(O,,

generates larger estimation errors than decreasing the angular frequency with the

same AO)es-

Rules 4,5 and 6 can be explained based on geometrical considerations. The

principles underlying the rule 4 have been discussed in a previous paragraph (The

Effects of Altering the Stator Current Frequency), and they have been illustrated in

Fig. 4-17. Rules 5 and 6 are justified by the fact that both the increase of stator angular

frequency (oop and the decrease of the stator current amplitude 1, bring the vector e'P

closer to the real axis in Fig. 4-15. The opposite changes move e'yn further away from

the real axis.
These conclusions are validated by the MATLAB simulation results in Fig. 4-22,

Fig. 4-23, Fig. 4-24 and Fig. 4-25. All the four simulations imply equal variations of the

slip angular frequency and of the stator current, but the signs of these variations and the

initial values are different. The errors are maximal in Fig. 4-24 where coop increases and

1, decreases. This combination of factors brings the centre of the internal voltage spiral

trajectory close to the origin of the co-ordinate system. As a result, the trajectory

intersects the real axis several times and a series of infinite slip estimation errors is

produced. The error oscillations are smaller in the other situations where either %, Ip

decreases (Fig. 4-23 and Fig. 4-25) or the increase of cosip is counterbalanced by the

increase of 1, (Fig. 4-22).

The first important conclusion based on these simulation results is that the direct

transitions never generate the same errors as the reverse transitions. The transient in

Fig. 4-25 is the opposite of the transient in Fig. 4-22 and Fig. 4.24 is the opposite of
Fig. 4-23 but the corresponding slip estimations are totally different. The second

conclusion is that the position of the internal voltage spirals in the complex plane is

more important than the size of the spirals. A spiral trajectory with a small radius placed

129

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

close to the real axis in the complex plane produces much larger estimation errors than a

larize spiral situated at a big distance from the real axis.

40

30

20

10

n

40

30

20

10

n

40

30

20

10

n

Slip Angular Frequency
UU
UI

0 0.5 1 1.5 2

Slip Estimation

- 0.5 1 1.5 2

40

30

20

10

n

is

10

5

0L
10

10

8

6

4

1)

C

-------- --- -------r

20 30 40

is
-- III

: 1':::::::::::: t:::::
0.5 1 1.5 2

Fig. 4-22 - The effects of the simultaneous Increase of co. 1p and 1,

Slip Angular Frequency

II

0.5 1 1.5

Slip Estimation

2

II
II

u 0.5 1 1.5

60

40

20

C
0

10

B

6

4

1)

e

--------- ---------------

50
is

100 1

II

: 71: ::
0.5 1 1.5 2

Fig. 4-23 - The effects of decreasing (o, lp while increasing 1,

130

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

40

30

20

10

n

1500

1000

600

0

-500

-innn

Slip Angular Frequency
III
III

''0 0.5 1 1.5

Slip Estimation

2

II
II

40

20

0

-20 L
0

10

8

6

4

2

n

e

------------- -------- ----

-- -------------
50

is

100

1.5 2 1.5

Fig. 4-24 - The effects of increasing (o. 1p while decreasing L

40

30

20

10

n

40

30

20

10

n

Slip Angular Frequency

---- ---- -----

0.5 1 1.5 2

Slip Estimation

10

8

6

4L
15

10

8

6

4

2

n

e

: 1: iir
30 35 1 20 25

Is

0.5 1 1.5 2 w 0.5 1 1.5 2

Fig. 4-25 - The effects of the simultaneous decrease of co. 1p and I,

'Iberefore, the slip estimator based on the phase-shift between vectors e and ýi is

accurate only in steady state motor operation. The slip estimations during transient

operation are not reliable. Using such an estimator requires a special speed control

131

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

strategy that takes into account the large transient errors and compensates their effects.

The design of the speed control strategy must be based on the six practical rules

previously formulated.

4.3.2 The Novel Speed Control Algorithm
In accordance with the general principles exposed at the beginning of section 4.3,

a novel speed control algorithm is proposed which can be expressed as a set of simple

mathematical equations written in polar co-ordinates. The proposed speed control

strategy incorporates the slip estimator based on the phase-shift between the vectors e

and & The new method simultaneously carries out two interrelated tasks:

1) Controlling the rotor speed (o, so that it follows the reference speed Chef-

2) Maintaining the slip angular frequency at a constant value: o), jP=0, jp.

The two tasks are performed by controlling the angular frequency and the

amplitude of the stator current. Thus, the speed controller contains two control loops.

The slip control loop determines the stator current amplitude I., in such a manner that

(osip is maintained as close as possible to the reference value OsIp, while the speed

control loop calculates the stator angular frequency (j)e,

4.3.2.1 The Slip Control Loop

The slip control loop implements a non-linear control strategy to keep w. 1p

constant by modifying the stator current amplitude Is. The stator current controls the

rotor current and the interaction of the two generates the motor torque, which in turn

affects the slip angular frequency. The induction motor torque is given by the general

equation

2
Lm - Irný,

3
(4-147)

If the expression of the rotor current for steady-state operation (4-101) is

substituted in (4-147) then the steady-state motor torque is obtained as a function of

current amplitude and slip angular Erequency:

T(Is 9 cosip) = Lln - Im
j o), Ip L. 1,2

-1 (4-148)
1

Rr -jco, IpLr

This expression can be firtlier simplified as follows:

132

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

T(l co = L. - Im
' ico,,

PL.
I, 2 (R. + jco,,,

PL,
)

J)2
(4-149)

39 SIP 2 +(Rr
SIP r

22

T(I
cDsPL. IsRr_

(4-150) SICOSIP)
=22

Rr +Co 0
slP r

Thus, the motor torque increases with the stator current squared but has a non-

linear variation against the slip speed. Fig. 4-26 illustrates the torque-slip characteristics

for the steady-state operation of the 11.1 kW induction motor. The critical slip angular

frequency at which the torque attains its maximum corresponds to the null torque

derivative:

OJ2 2
_C02 aT(i

39 co SIP m3
Rr (Rr

SIP
0,

0
J)

22 ao) 2 +(sip
(Rr

sipor

I IT [N-ml
2.0

1.8 ------ -- ------ ----- -------------------------------- ----------- 1, =7A

-- ----------------- 1.6 --------- -------
: 1. -6A

1.4 --- --- - --- ------- -- ----
Is-5A

1.2 --- - ---- -------- - --- --- ----- - ---------
P

1.0 -- ---

...... 0.8

........ 0.6

---------- ----- 0.4 ------ -------------------

0.2

0.0
0

Wk

15- 10 15 20 25 30.

SIP
_j

C081p[rad/sl

Fig. 4-26 - Steady-state torque variation for stator currents between IA and 7A

From (4-15 1), the critical slip angular frequency co k is calculated as SIP

co
k

=Rr =1 SIP Lr Tr

(4-151)

(4-152)

The motor windings heat up during the operation. The result is a progressive increase of

the stator and rotor resistances, which entails an increase of the rotor electrical time

133

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Th Co., constant T, and therefore an increase of the critical slip angular frequency. us, ",
P

is independent of the stator current amplitude I, but depends on the rotor temperature.

(ok The actual variation of ,p during the motor operation depends on the construction

details of the motor and on its operation mode.

In practical applications, the load torque Tj decreases with the decrease of the

motor speed (aTj1aco, >O). The stability of the motor operation is ensured only if the

motor torque T and the load torque Tj comply with condition

sign
ur

-sign
f all 1

<* sign
'T

-sign (4-153)
acol f1 50), f ao)SIP

As a result, the motor speed is stable only if the slip angular frequency is in the interval

[0; co, ',
P).

Iberefore, the reference slip angular frequency n,, Ip has to be set to a value

situated inside this interval. According to Fig. 4-26, the motor slip can be varied at

constant load torque by controlling the stator current amplitude. The slip control loop

needs to increase the stator current amplitude I., when the slip angular frequency rj),, Ip is

larger than the reference . 0s, p) and to decrease it when the slip angular frequency is

smaller then f1sip. The process requires information on the actual motor slip. To

calculate this information, the control loop incorporates the slip estimation principles

based on the phase shift between e yn and Pyn. Thus, maintaining a constant slip angular

frequency during the steadye-state operation is equivalent to maintaining a constant angle

between e syn and Vyn.

H im
esyn

I

(J)es >0 (A)es >0
(L)Slp<o

(

Wslp>O

0 Is Re

(J)es <0 Wes<O

coslp>o ())Slp<o

in IV

Fig. 4-27 - Internal load voltage locus in the complex plane

134

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

According to equations (4-138) and (4-139), the locus of e'ý' is a set of circles

tangent to the real axis of the rectangular synchronous reference frame. The stator

current amplitude I, is proportional to the circle radius so that for a given stator current

amplitude the locus is made up of the two circles illustrated in Fig. 4-27.

As demonstrated by the system (4-154) derived from (4-108), the quadrant where

the internal voltage e'" is situated, depends on the sign of the stator angular frequency

Wes and on the sign of the slip angular frequency co, jp:

sign e
syn

=signf(j),, I*signl(j),,,
Pl

sign m
syn

= sign[co..)
(4-154)

In most practical applications, the load torque opposes the motor shaft rotation. In

this situation, the absolute value of the rotor speed is smaller than the absolute value of

,, and cosip have the same sign and e' is situated the magnetic field speed. Tberefore we yn

either in quadrant I or in quadrant IV of Fig. 4-27.

1(0., 1 ICL).,. I => sigti(O)SIP)= sip(co.) (4-155)

There is one category of applications where the torque may not be opposed to the

shaft rotation: the cranes and the elevators. When an elevator is moving down, its

weight creates a torque that tends to accelerate the shaft rotation. As a result, the rotor

moves faster than the motor magnetic field, and the slip angular frequency sign is the

opposite of the stator angular frequency sign. In this situation, the vector e'" is situated

in either quadrant H or in quadrant III.

< 1 sigil(CDý, 1p) = -sigri(co..) (4-156)

In conclusion, the sign of the reference slip angular frequency n,, Ip must be

dependent on the stator angular frequency sign and on the nature of the load. It has to be

positive for the motor operation in quadrants I and III and it is negative otherwise. The

motor operation in the four quadrants corresponds to four different internal voltage

vectors for steady-state operation: e yn (OSIPI), 2syn Pslp2)i 2 syn Pdp3). gsyn(f2sip4) where

lflslpll-"ý10sip2lý--10slp3l: --10stp4l. The values of the four reference slip values r1,1p have to be
k

smaller in absolute value than the module of the critical slip angular frequency I coslp 1. If

equation (4-152) is substituted in (4-118), the result is:

0) 1p
tan-'cc, i =

sk

(C)SIP
(4-157)

135

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Consequently, the internal voltage vectors corresponding to the motor operation at

critical slip are placed at 45' with regard to the reference frame axes. At slip values

I O)k I
smaller in absolute values than , Pl tan-'(x, i decreases and if (o, lp is null then tan- cc, j is

null as well. As shown in Fig. 4-28, the vectors e'Y'(Qsjpj), gsyn(OsIpA e"'(OsIp3),

e Syll (Qslp4) need to be situated in the sectors limited by the imaginary axis of tile
syn((

synchronous reference system and by the vectors e J)sjP I),
, yn ((J)slp2), esy"(OsIpO,

e
syn (O)slp4). Based on these considerations, the slip control principle call be formulated as

follows:

A) When the internal voltage vector e'Y" lies in one of the shaded areas in Fig. 4-28, the

controller decreases the stator current amplitude in order to increase thc absolute

value of the slip angular frequency w, jpj.

B) When the internal voltage vector lies outside the shaded sectors the speed controller

needs to decrease the stator current amplitude in order to increase the 1(,), Ipl.

syn (0) irn 1

s3,11
e

esyll(ý? sip, e
(Qs]p2)

Syl (, r, -ý k syn (eý, c
1 pl)

syll
s

ke

S-yn kk (1)s1p3) SyI1 «1)
;, p4)

e
syn (Oslp3Q)eSYII

Oslp4

IH
e syn (,) 1v

Fig. 4-28 - Characteristic points on the c"" locus and the corresponding slip angular frequencies

Due to the symmetry in Fig. 4-28 the calculations referring to four quadrants can

be reduced to equivalent calculations in only one quadrant. The trans flormat i oil fi-0111

four quadrants to one is carried Out by replacing the real and imaginary parts of I vector

syn 1,, SN "
e with their absolute values. The result is an equivalent vector given by

, Iyn +j- ýIni syll ýE"" [cos(ot"')+ j- sin(ot"I)] (4-158) cq% eqN Cq% cq%

that is always situated in the first quadrant, as illustrated in Fig. 4-29.

136

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

dls
dt

F
eqv

(()SIP)

syn ýqv
eqv dls

I// dt >0
YKAMqv

0 7()t ref is lRel eqv

Fig. 4-29 - The reduction of the four quadrants to one

The rules A) and B) concerning the control of the stator current amplitude call

therefore be expressed as the differential equation

dl,
= F,

(',

,
ß,

q\ dt
(4-159)

ßeqv -ý arg
ý: U' - (ý2,1,)l

- arg
ý'' (wýIP)l

= arctan
""IP

- argýE�, ', '«ü�p)ý
eqv eqv

where the angle Peqv is the difference between the reference argument

ret v(Q, j,,
)j

and the argument Cteqv of the actual equivalent vector F"" (X, arg
JE,. ý, n

There are several alternative expressions for the function F, but all ofthern liavc to

limit the current amplitude within an interval of acceptable values I L, ; 1ý , 1. 'I'l ic

maximurn limit is imposed by safety reasons: the motor and the power electronics

circuitry has to be protected against overheating. The minimal stator current is imposed

so that the internal voltage amplitude jesy"I does not decrease under the limit where its

argument cannot be calculated. Several versions of function F, are analysed ill section

4.3.2.3 and the corresponding motor control performance is assessed.

4.3.2.2 The Speed Control Loop

if the slip angular frequency (osir, is maintained constant then the steady-state

relation between the rotor mechanical speed and the stator electrical angular Frequency

is linear:

= Q,
lp + (J)er = Oslp (4-160)

137

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

However, the slip angular frequency o), Ip cannot be kept constant at the reference

value 92,1p in transient operation. During transients, all the quantities describing the

motor operation undergo complicated changes that are difficult to control due to the

non-linearity of the underlying mathematical equations. Furthermore, the transient

operation causes the slip estimation errors analysed in section 4.3.1.2, thereby raising

the difficulty level of the control task. Thus, the speed control loop needs

simultaneously to compensate the errors of the motor slip estimation and to control the

rotor speed.
All the possible control strategies can be expressed by the general differential

equations

ref rf ref
(0 = Sign{CO, ')+ Co' = sign{o) ')- flsip +p- 0)

F. (co'f, coý�Is 9
ßeqv

dt es

where the fimction 'sign' is defmed by

+I when x>0
sign(x)= Owhenx=O (4-162)

-I when x <0

Individual strategies rely on different forms of the function F..

4.3.2.3 Alternative Sensorless Speed Control Strategies

Any speed control strategy can be defined by the two functions F. and F, involved

in equations (4-159) and (4-161). The simplest control version is defined by the

fimctions

F, (Is
9 Peqv

fKI'P,
qv when I, r=

(Is-min; Is-max)

[0 when 10 (s-min; ls-max) (4-163)

F. (co"f
1COcs9

Is
9Peqv)=

K,, -sign(co ref - 03cs
)

es es

where K, and K. are proportionality constants. In this case, the derivative of the current

amplitude is proportional to the angular error P,,, while the derivative of the angular

frequency depends on the sign of the stator frequency error. Therefore, the motor control

is linear and uses two P controllers operating in an independent manner, as the two

functions F, and F. are calculated based on different parameters. This type of control is

appropriate when the application requirements do not include fast transient operation.

138

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Fig. 4-30 and Fig. 4-31 present the 11.1 kW motor response to a step change of

the reference speed for two different values of the parameter K.. In the first simulation

K. =240 s", while in the second simulation K. =2xl 04 s-1, so the stator frequency varies

much faster than in the first case. The rest of the simulation parameters are the same in

both cases: KI=50 A/s-rad, ImIn=0.5 A, Ilmax=24.5 A, D., Ip=1.31 rad/s, J=0.015 N-m2. The

load torque is considered proportional to the rotor speed. Although the stator angular

frequency varies faster in Fig. 4-30, the motor attains the reference speed in a shorter

time period in the situation presented in Fig. 4-30. Moreover, the average stator current

amplitude is lower when K. has a lower value. This implies that the motor efficiency is

better in Fig. 4-3 0 than in Fig. 4-3 1.

Using this control strategy, the motor behaves similarly to a synchronous machine

with a start-up cage rotor:

e it is able to generate a constant speed for a certain range of load torque values.

The rotor speed accurately follows the variations of the stator frequency if this

variation is slow.

If the variations of the stator frequency are too fast, they take the rotor out of

synchronism and the speed response becomes relatively slow.

The simulation results prove that the transient slip estimation errors do not affect

the stability of the drive system operation. The errors cause oscillations of the angles

aeqv and P, qv but the stator current amplitude is given by

I, (t) = K, -
fPeqv (t). dt (4-164)

so that the effect of these oscillations is filtered out by integration. However, control

strategies of increased complexity are required to obtain a fast system the system

response step changes of co,, f. Very fast induction motor transient responses are typically

obtained using the rotor field oriented control strategy. The new speed control strategy

can be improved by finding two functions F, and F. that emulate the behaviour of a

rotor field oriented controller. Thus, the field generating current component hd needs to

be maintained constant while modifying the torque generating current component

according to the speed error. This requires the calculation of the position 0, (t) of the

rotor flux vector W, and the equation system (4-165) to be solved.

139

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

2aq.
[rad]

600
eM

400
Oer [rad/s]

1.5 - ------- 300 ----- 400 ------ ----
------- ------- 200 ---------------

200 ----------- -- ----- 0. ------- ------- 100 - --------
0

246 -YO'O 0 100 2 -4 6
b me [S] bme [S]

eqv

[radl (1)., [radls] Load Torque [N-m]
1.5 400 0.2

200 -- ------------------- 0.1 ---- ------------------ 0.51 ----- --- -----------

1 ----- -- ------------ 300 ---- - -------

0 ------ 100 ------------- -------

- -- - ------- ---

-0. ___j 0 0, 10,2 462462 -4 6
b me [S] Ume [S] bme [s]

30
Is [A]

315
(J)ref [rad/s] Motor

i
Torque

.

[N-ml

314.5 ----------------------- 20 - ------ I........ f ------- 314 0
10 313.5 -----------------------

-q 31-
0246 _0 246246

b me [S] bme [S] bme [S]

Fig. 4-30 - Motor Response to Gradual Stator Angular frequency Change

2
a,, [rad]

e. [V]

400
(J)er [md/s]

-
.......... 400 --- 300 1.5 ------ -------

...................... 200 ------------- 200

0 100 ------ 0.5 -------------- ------- -------- ----

0
0246 -20 Too 0 100 0246

b me [s] bme Is]
fleqv [rad] (D., [md/sl Load Torque [N. m]

1.5 400 0.2

1 -7 -------------- ------- c 300 ------- 3 ----------------
0.5 ------- --------------- 200 ---------------------- 0.1

J 100 -------------- 0 ------- ------

-0.5
0

0246 _0 2460246
bme (S] We (S] We [s)

30
Is [A]

i 315
(J)ref [md/s]

5
Motor Torque [N. ml

314.5 -------
---------- t...... 20

314 0
10 ------- ------- 313.5 ----------------

3131
_0 24602460246

b me [s] We (s] bme [s)

Fig. 4-31 - Motor Response to Sudden Stator Angular frequency Change

140

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

t

isd -= I, (t) - COS fo)ýý (t) -t- dt - Ov (t) = const.
0 (4-165)

e -t-dt-Ow(t) =f((o. f -o),)
'sd= I, (t) - sin('fc-),., (t)

0

The rotor flux vector is not calculated by the new speed control strategy in order to

minimise the calculation amount. On the other hand, solving the equation system

(4-165) would increase the hardware implementation complexity to an unacceptable

level. However, this strategy can approximate the position of -y, using the position of

e'y" for large and medium power motors. The internal voltage vector is defined by

(4-102). If the speed is larger than a few revolutions per second, then e'y' is

approximately perpendicular on the rotor flux vector _y,
because the rotor resistance can

be neglected as compared to motor reactance. Under these conditions, it can be used to

determine the position of vector Z in the complex plane.
i syn ' Im

e

Re

ir

Fig. 4-32 - The relative position of vectors e, I and T In the synchronous reference frame

Fig. 4-32 indicates the typical positions of the vectors e, i and IT, in the

synchronous reference frame. Modifying the motor speed requires a modification of the

motor torque. The field orientation solution is to alter the stator current component isq

while keeping isd constant. According to the new control method, the task is achieved by

simultaneously changing the stator angular frequency (o, s and the stator current

amplitude Is. The two stator current components are given by

'sd =Is -COSY
(4-166) isq= Is -sin

141

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

where the angle y is indicated in Fig. 4-32, while the derivatives of the two components

are

disd il
S

cosy -1, sin y-
dy

=0 dt dt dt
fl

M"
!

-' sin y+I, cos y-
dy

dt dt dt

(4-167)

The derivative disd/dt is ideally null during the motor speed change and therefore the

variation of the stator current amplitude I, depends on y according to

dl,
=1, tgy.

dy
dt dt

(4-168)

which is derived from the first equation (4-167). Substituting (4-168) into the second

equation (4-167), the result is

di,
=

d'qs tgy
dt dt tgy - siny + cosy

(4-169)

which demonstrates that the stator current component i, q increases with the increase of

Is. In the same time, any variation of I., has to comply with the condition (4-168).

Consequently, any increase of the stator current amplitude Is has to be simultaneous with

an increase of the angle y=n/2-argfieý'J. As demonstrated by the simulation results, the

variation of L generates an initial increase of arg{! ey') followed by a decrease. This

variation is reflected in the opposite alteration of the slip estimation results and of the

angle y (therefore an unwanted result). To maintain the correct relation between 1, and y

in accordance with (4-168), the stator angular frequency Coes needs to be altered

simultaneously with I., so that the effects of co. variations compensate the unwanted

effects over angle y. It was proven in section 4.3.1.2 that increasing the slip angular

frequency c0slpýWes-(Oer leads to oscillations starting with an initial decrease of arg{! eyn).

This decrease can cancel out the unwanted increase caused by the modification of 1,.

The subsequent oscillations of angle y resulting from the modification of 1. need to be

cancelled out by suitable variations Of Wes. The exact analytical solution to this problem

is very difficult to find and the corresponding hardware implementation is too complex

due to the non-linearity of the solution. However, simplified solutions, equivalent to

quasi-field oriented control methods, can be investigated based on a few principles

derived from the previous considerations and from the rules governing the slip

estimation process. The principles are:

142

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

The value of argfit") needs to be maintained at values close to 900 (LIsIp has to be

small) to maintain the slip estimation errors at acceptable levels.

The rotor speed changes are always initiated by the speed control loop according to

equations (4-160) and (4-161). The stator current variations compensate for the

unwanted oscillations of angle y, which can be calculated as a function of Pq, and
ref cc
Cqv

* 'Me angle y has to be allowed to increase during the speed changes simultaneously

with the increase of I, This is equivalent with a simultaneous increase Of Pep and 1,,

which can be easily achieved if aF, Iapeq, >O.

e If the angles y and P, q, become too large, the stator frequency variation speed has to

be limited in order to reduce the motor slip and the error slip estimations. On the

other hand, the stator frequency is allowed to undergo fast speed changes as long as

the motor slip has small values.

One of the simplest solutions that complies with the above principles is given by

K, A if is C= (s-min; Is-max) q, F, (13
s Peqv

0 if Is 0 (s-min; Is-max)
(4-170)

=
sign(o)Tcf -Pqv-K o Pmax

ref es co2)
if Oeqv "

I. (o)
'Coe I es 39 39peqv) rcf - coj - (K.,

- Pm.
x -K sign(CO., oo2)

if Peqv ; -ý* Pmax

where F. is a piecewise linear ftinction (Fig. 4-33) defined by the constants KI, K. 1,

Kw2y P whose optimal values depend on the motor parameters. The functions (4-170)

represent the basic version of the new sensorless speed control algorithm proposed in

this thesis.
This control solution has been tested by simulations on the 11 -1 kW motor using

different values for the constants in (4-170). The MATLAB simulation results

demonstrated substantially improved dynamic response, as exemplified in Fig. 4-34. In

the same time, the method is capable of maintaining the rotor speed constant despite

load torque variations (Fig. 4-35). The system response speed is approximately

proportional to Ki, but increasing K., over a certain limit actually deteriorates the

system response. This phenomenon is illustrated in Fig. 4-36, which can be compared

with Fig. 4-34.

143

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

ýiF,,) (DSIP < Q'IP WSIP >Q SIP

WSIP
K., 6) C.)l Area of limited I

COSIP Q,
Ip/ stator frequency

variation

-Kcj2

W-a ref 0 flmax

a ref
eqv I __

eqv
fleqv

Fig. 4-33 - The variation of F, with 0 when J)ref > 0) es es

3

3

2

2

Speed [rad/s

)o ----------- i ------------

50 ----------- -----------
Reference speed

)o ----------- i ------------

;n
L

---------- ------------

50

A
I

Rotor speed
;v V-ý f ------- --- ,

Stator angular
frequency

........... --------

-------------------------------- I............

----------- 4 ------------ ----------- ----------- ----------

........... 4 ---------- 4 ------------

----------- v

0 0.5 14
Time[s]

Fig. 4-34 - Quasi-field oriented control method results (K. 1-1000 s")

As shown by these simulation results, the stator angular frequency undergoes non-

linear variation caused by the non-linear mathematical model (4-170) of the control

strategy. Again, the motor behaves in a similar manner to a synchronous motor: the rotor

speed follows the stator frequency changes only if the speed of these changes is below a

critical limit depending on the rotor inertia and on the load torque.

144

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Speed [rad/sl TorqueIN-ml
350 7

300 -- 6

250- 5

200

150 -3

100- 2

so -1

I

0
0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3

Time[s) Time [s]

Speed Irad/sl
350

A' A

300
i1v --

........
.......

.......

250 ------------------- ------ -- -------- T -------- - ---- ----- ------
Rotor speed

200 ---------- r --------- ---------- ------------------ ---

150 -------- --------- ----- --- - -------

Stator angular
frequency

100 --------- --------- --------- ------ -- --------- t
Reference speed

.................. .
AA

50 V

05 1 1.5 2 2.5 3 3.5 4 4.5 5

I Time[s] I

Fig. 4-35 - The motor speed variation during a step increase of the load torque (K, 1=1000 s-1)

A' A

................... ------------- ---------.........

"........ I.. I......... 0...................

Rotor speed

......... --------- --------- --- ---- 4 -- ---------- ---------------

......... -------- --------- ----- --- 4 4- ------- f
Stator angular

frequency
--------- - --------- --------- ----- - -- -- ------- t

Reference speed

.........
AA

r VV

Fig. 4-36 - Quasi-fleld oriented control method results (K. 1=3000 s")

The speed control strategy can be further refined by using different values for the

constant K, depending on the stator current amplitude I,. A single value KI cannot be

optimal for all the motor currents in the range (L-min; Is-..) because, as demonstrated by

equation (4-150), the motor torque is proportional to 1, squared, and the same derivative

145

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

dlýdt produces different torque variations at different stator current amplitudes. The

effect is a slow dynamic response of the motor when the current is close to 1,
-mi. and a

very fast one when the current is close to Thus, to optimise the motor response, an

improved function F1 needs to be found, which ensures the same dynamic parameters

both at small stator currents and at large stator currents. This requires that the motor

derivative does not depend on the stator current amplitude. The time derivative of the

torque is:

dT dl, 2ct), IPO. I, R, di,

r+
Cl)

2
dt als dt

-+ SIPO,
dt

(4-171)

Consequently, the torque derivative dT/dt is independent of the current amplitude 1, if

&ýdt is inversely proportional to Is. To include this improvement, the quasi-field

oriented control strategy initially formulated in (4-170) can be is transformed into

dIs
F, (I., ß,

q,
)

=
IK,

- ßeqv /13 if I cz (I., i�; Is-max)

dt 0 'f I: e (,. %-min;
Is-max)

sign(wrcf - coe,
)
-
(K.

1-
ß.

q, -K
'f ßeqv < ßmax (4-172) do)es

= F. (co ref
, C0es 9

Is
9

ßeqv 's (02)
es re 'f ßeqv 2t ß.. dt S'gn(0).. f - Oes

)' (Kol
- ß.. - K£02

ref = nslp ++p- coref
es er f

In case the limited hardware resources available do not allow the implementation of a

supplementary division block (it consumes a significant amount of chip area), the

division by Is can be replaced by a stepwise approximation. Tberefore, the unique

constant K, is actually replaced by a stepwise approximation that uses a set of different

constants Kil, KI2, Ki3, ... depending on the value of I, In this case, the parameters of the

electrical drive dynamic response depend on the quality of the approximation, which in

turn depends on the amount of available hardware resources. The functions (4-172)

represent the enhanced version of the new sensorless speed control algorithm proposed
in this thesis.

4.4 THE COMPLETE CONTROL SCHEME
The complete sensorless induction motor control scheme generated in this chapter

includes a speed controller that operates according to (4-172), a current controller that

implements the new method described in section 4.2, and a conversion block that

interfaces the two controllers (Fig. 4-37). The conversion block transforms the
ref ref -

quantities co,, and 1, into the reference current ýi for the current controller.

146

Chapter 4. DEVELOPMENT OF A NOVEL INDUCTION MOTOR SENSORLESS CONTROL STRATEGY

Ti -'
f PWM Indu n on

I re r Speed Inverter Motor Itor

jag

Controller
Or

ý2sip

A'

def I jjref
I 1

AM Conversion
SS
Conversion i's I Current Non-Unear I

Block Conu ollet system I
ial 'b

--- --------

Fig. 4-37 - The Block Diagram of the Sensorless Control Scheme

The current control principles formulated represent a generalisation of the method

presented in [106] that leads to superior control performance. The new method requires

a big computational effort that can only be performed with the aid of hardware

implemented neural networks. The combined effect of the speed controller non-linearity

and the slip estimation errors during the transients are very difficult to analyse

mathematically but the overall system behaviour can be studied using computer

simulations. MATLAB simulations presented prove that the drive system operates

without significant speed oscillations, without stationary errors and with good dynamic

performance.

147

5. THE FPGA NEURAL CONTROL
APPROACH

This chapter describes the new strategy of implementing neural networks into

digital hardware using logic gates and determines the resulting implementation

complexity to prove its superiority as compared to relevant results previously presented

in the literature. The strategy is illustrated by a complete implementation example: the

neural network controlling the current through the stator windings of the induction

motor. Experimental results are presented to demonstrate the validity of the adopted

design and implementation principles.

5.1 THE NEURAL NETWORK DESIGN AND
IMPLEMENTATION STRATEGY

The FFANN design and implementation manner adopted in this thesis is adapted

to applications that require high operation speed, accurate control over the network

outputs, low cost digital hardware and fast prototyping. FPGA chips are ideal for fast

prototyping but the low cost versions still have a limited number of available logic

gates. Therefore, the amount of required hardware resources needs to be minimised by

optimising the number of neurones and by a compact implementation of each neurone.

The classical FFANN design method using neurones with sigmoidal activation function

and the back-propagation training algorithm is not appropriate in this context because

the resulting number of neurones is large and the sigmoidal activation function requires

a considerable amount of hardware resources for implementation. Therefore, neural

networks designed with the constructive Voronoi algorithm and consisting of neurones

with step activation functions were used instead. The constructive algorithm ensures the

minimisation of the neurone number, while the step activation function simplifies the

implementation size of each neurone.

148

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

5.1.1 General Implementation Principles
The hardware resources offered by FPGA chips are limited to logic gates and flip-

flops. The implementation strategy developed in this thesis uses exclusively logic gates

to transform any FFANN into a digital hardware structure. The strategy exploits the

equivalence between the operation of logic gates and the operation of particular types of

neurones. N-input AND gates and n-input OR gates are assimilated to n-input unipolar

binary neurones (the input and output values can only be '0' or T) having positive input

weights. The difference between the two logic gate types consists in the relationship

between their input weights and the threshold level.

An OR gate output is activated whenever at least one of the inputs is active (is T).

Ibus, the threshold level of the corresponding neurone is positive, but lower than the

smallest input weight, as illustrated by (5-1).

< tOR :5 minlwi) i
(5-1)

The output of an n-input AND logic gate is activated only when all the 'n' inputs

are active. Therefore, the threshold level can be in this case as large as the total sum of

all the input weights. However, it cannot be higher than this sum because otherwise the

output cannot be activated in any conditions at all.

tAND wi (5-2)

On the other hand, the threshold level of the corresponding neurone has to be higher

than the total sum of any combination of 'n-11 input weights. This last condition is

expressed by relation (5-3).

n

tAND>-minfwi)+Z, wi
i-I

(5-3)

As a result, the threshold levels for the two sorts of neurones are confined within

the interval limits shown in (5-4). Conversely, any neurone with binary input signals (101

and I F) whose parameters comply with one of two conditions (5-4), behaves either as an
AND gate or as an OR gate.

149

Chapter S. THE FPGA NEURAL CONTROL APPROACH

(-M

i
inlw.)+Ewi;

_,
wi tAND (a)

tOR E O; min(wil] (b) (54)
i

wi > OVi = 1,2 n

Neurones whose parameters do not comply with any of the two relations (5-4) can
be implemented as a configuration containing several interconnected logic gates. The

details of the hardware configuration depend on the relationship between the input

weights and the threshold level. The number of necessary gates increases with the

complexity of this relationship. To simplify the logical analysis, the adopted

implementation strategy decomposes the complex neurones into a pyramidal structure of

simpler subneurones. Each subneurone can be finther decomposed into higher-order

subneurones until each of them can be implemented with a small number of logic gates.

As explained in chapter 3, the Voronoi algorithm produces a HANN with up to

three layers of neurones with step activation functions. The algorithm version that

produces unipolar neurones is adopted because unipolar neurones are more adequate for

hardware implementation than bipolar neurones. The network accepts analogue input

signals but generates digital output signals. The neurones in the input layer have

analogue inputs and binary outputs, while the rest of the neurones operate only with

binary signals. Therefore, the neurones in layers two and three are appropriate for direct

digital hardware implementation. The neurones in the first layer need to be converted

first into a digital form that uses bit patterns as inputs instead of analogue signals.

The most appropriate binary codification to be used for neurone input quantities is

the complementary code (also named "two's complement" and symbolised by CA It is

very largely used in computer technology for integer number representations, but it can

be readily adapted for real values in the interval [-l; +I).

Considering a n-bit representation "bn-ibn-2bn-3
....

b1bo", the corresponding integer

value (I.) is given by:

n-2
in =-2

n-I bn-1+2: 2'. bi
i=O

(5-5)

The largest positive number, which can be represented on 'n' bits, is 2'-'-l while the

smallest number is -2n-1. Real values between -1.0 and +1.0 can be represented dividing

all the integer values In by 2n". Thus, equation (5-6) illustrates the complementary code

extended to real numbers:

ISO

Chapter S. THE FPGA NEURAL CONTROL APPROACH

n-2
Rn

-bn-1+2: 2 -n+l+i
-bi 2 i=O

(5-6)

The large-scale utilisation of complementary code in digital technology is due to

the advantages of simple hardware implementation of addition and subtraction. A

hardware implemented neural control system contains not only neural networks but also

traditional digital structures. Therefore, the use of the same codification manner for the

two modules is an important advantage because it simplifies the interface between them.

Thus, the new implementation strategy consists of two parts. In the first phase, the

initial HANN mathematical model is digitised, so that the neurones in the input layer

operate only with binary signals. The input signals of the converted FFANN consist of

bit strings coding the values of the initial analogue inputs. In the second phase, all the

neurones are converted into a set of interconnected logic gates. The implementation into

logic gate structures is perfornied neurone by neurone. Each neurone corresponds to a

hardware configuration containing at least one logic gate.

6.1.2 Model Digitisation
Ile equations underlying the conversion of the analogue neurones into equivalent

digital neurones can be demonstrated by decomposing this process in two successive

stages. The first stage is to replace the analogue input signals by binary patterns. The

second stage brings additional corrections to the neurone mathematical model, so that

the resulting neurones use the complementary code extended to real numbers described

by (5-6).

The principles underlying the digitisation process involve two basic concepts: the

codification style and the neurone behaviour. The codification style, illustrated in

Fig. 5-1, is defined as the correspondence between the initial analogue input signals and

the binary input codes used by the digital neurone. On the other hand, the neurone

behaviour is described by the relationship between the analogue inputs and the neurone

output signal. The initial neurone behaviour has to be maintained unchanged during the

two stages of the digitisation process. To achieve this, the neurone parameters (input

weights and the threshold levels) need to be modified at each conversion stage, in a

manner that counteracts the effects of replacing the analogue input signals with binary

pattems.

151

Chapter S. THE FPGA NEURAL CONTROL APPROACH

Codification Style

Analogue Input Neurone'
Signals Code Output

Neurone
Parameters

Neurone Behaviour

Fig. 5-1 - Basic concepts related to the neurone digitisation process

The minimal condition to attain this aim is to perform the changes such that the

sign of the activation function argument is kept constant. This principle is expressed by

equation

sign Z w, , x, - t) = sign(net - t) = cons tan t
(

iml
(5-7)

However, for reasons of mathematical simplicity, a more restrictive condition is used

instead, namely the argument "net-t" of the activation function is kept itself constant

rather than only the sign of it:

m Ywi xi -t =net -t=constant

5.1.2.1 Conversion Stage One

(5-8)

The first step, illustrated in Fig. 5-2, transforms the analogue neurones generated

by means of Voronoi algorithm into digital neurones. The newly obtained neurones

receive binary patterns on their inputs instead of analogue signals. The task is achieved

by keeping the threshold level unchanged while splitting each input defined by its initial

weight wij into nb subinputs, whose weights wijp (p=O, 1, ... nb- 1) are calculated as

follows:

2'+'
wq) =

nb
.w ii Vp<nb-l

2
=-W wij(nb-')

t
i

(5-9)

152

Chapter S. THE FPGA NEURAL CONTROL APPROACH

The superscript '(1)' in equations (5-9) shows that the corresponding quantities have

been calculated during the first conversion stage. Likewise, the superscript '(2)'

identifies the quantities calculated during the second conversion stage.

w (1) ilo
Xilo (1) (1) Will xill (1) W, l x

(1) WA2

(1)
0 01

Xii :::: Cne i12

t
neti-ti (1) nefj-ýj

Wii 2 X.
V) Wi20

I

Xi2 i20 a
(1)

(1) w
12l

(1) w (1)
122 XME>-ýý

Fig. 5-2- The neurone model before and after stage one of the conversion

'Me result of the previous calculations is that the initial W inputs are turned into

'm' input clusters, each cluster containing 'nb' subinputs. The symbol 'wij' stands for the

weight number J' of the neurone T in the network, while 'w9)' represents the weight lip

of subinput 'p' in cluster J' pertaining to neurone T. The index p=O corresponds to the

least significant binary figure, while P=nb-1 corresponds to the most significant one.
According to the previous considerations, only those neurone parameter changes

that maintain argument "neti-ti" of the activation function constant are allowed. The

argument corresponding to the neurone after the first conversion stage is calculated as

fn nb-I m nb-2
9) 2P"

net9)-tP)=ZZw9)-XT-tj(')=Z w -x . x(l) + J: w lip ip ip
j=l P-0 j-1

(

P. 0 2 nb ip

where x(j') (p=O, 1,2,... nb- 1) are the bits of the binary code received by each new neurone jp
input.

Equation (5-10) can be transformed into

=mw
Ob-2

-"b+P+l .
(1)

net9)-0) Z
ij-(-Xý')

Z2 xjp - tp) J(-b-1)
+

j=l P. 0

The expression between parentheses corresponds to the extended complementary code
definition given in equation (5-6). Therefore, (5-11) is further transformed into

m fl) =m netP) - ti(') wij ,x tj wo * xi - ti = neti - tj (5-12)

153

Chapter S. THE FPGA NEURAL CONTROL APPROACH

where xj is an analogue input value of the initial neurone. This proves that the condition

expressed by (5-7) is fulfilled. Thus, during conversion stage one the codification style

based on the complementary code has been introduced and the required modifications of

the neurone parameters have been performed so that the neurone behaviour has been

maintained unchanged.

6.1.2.2 Conversion Stage Two

The conversion of the neural network into logic gate architecture is based on the

relations (5-4) and on the possibility to transform any neurone into an equivalent

structure containing interconnected elements that comply with (5-4). Such

transformations are possible only if all the neurone weights are positive. The stage one

neurones may have both positive and negative weights. The second conversion stage

aims to replace these neurones with equivalent ones having only positive weights. The

simplest way to eliminate negative input weights is to use only the module of their

values. Consequently, the relationship between stage one neurone weights and their

stage two counterparts is expressed by

Wý2) = lip
lwlip ý,)l (5-13)

Adopting this method means that supplementary parameter alterations are required

in order to counteract the neurone behaviour alteration which is caused by changing the

sign of some input weights. As the weight values have already been changed according

to (5-13), the neurone behaviour can be corrected by changing the threshold level and/or

the codification style.

It can be demonstrated that no change of the threshold level can counteract the

effect of the input weight alterations. Thus, the change of the threshold level needs to be

carried out in such a manner that equation

M nb-I M nb-I
F

neti(') - ti(') =
ZJWýI)J. Xý2)_tý2) w9) - X9) - 0) = net(l) - 0)

UP UP UP UP i-I P-0 j-1 P-0

is fulfilled for any input bits xjjp. However, if the input signals to the stage two neurones

are the same as the inputs to stage one neurones (x9) = x9)), then there is no constant lip UP

value ti(') that allows (5-14) to be valid for any combination of input signals. To prove

this, the value of t(j2) can be calculated as

154

Chapter S. THE FPGA NEURAL CONTROL APPROACH

m nb-1

lip lip lip

J=j P=O

which is derived from equation (5-14). The value calculated according to (5-15) is

dependent on the input bits x9) and therefore is not a constant as the threshold level UP

should be.

Equation (5-15) demonstrates that no acceptable solution exists when the

codification style of stage one neurone is identical to the codification style of stage two

neurone. Therefore, the codification style needs to be altered as well. A simple solution

to this problem can be found if the input bits corresponding to negative input weights at

stage one neurones are reversed at stage two neurones. 'Me modification can be readily

Fig. 5-3 - The neurone "i" before and after stage two of the conversion

The relationship between the input bits of stage two neurones and stage one

neurones is expressed by function

XPI if WT >o X ý2) lip lip
lip X9) if WT <o lip lip

The two situations in (5-16) can be compressed into equation

Xý2)
1
-sign

(wilýp))+
sign(w9)). 0)

lip 2 lip UP

where the 'sign! function is defmed by

+1 X>o
sign(x)

f0x=0

(5-18)

-I X<o

Iss

implemented into hardware with NOT logic gates as shown in Fig. 5-3.

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

Using (5-13) and (5-17), the argument of the transfer function for stage two

neurones can be calculated as

In nb-l jw9)j-sign(wPl)-jwjl, ', Ij
. netf') -tf')

lip lip
. -. t'lj(Wq)).

jWp)j.
xq) -t

ý2)
11 lip lip UP

j=l P=O 2

and

in nb-l m nb-
lwý" I-

Wý
1))

netý`) - tP) W9) - X9) + tip lip t f2)
(5-20) lip UP

j=l P=O j-1 P. 0 2

Given the requirement of equality between the two activation function arguments,

the threshold level can be calculated based on equation

m nb-l m nb -1
1wi(j 1) 1-W

i(IP)
m nb-I

pj 2)
- Wý') - XT + 21

- -tý -. XýI) - t! l)
..,

E
I

zzwý')

j=l P=o
vp lip j=l P=O

2 j=l P-0
lip lip

Therefore, the result is

M rlb-'jW9)j-W9)
ý2) týl) +

up up
tj

a
2: 2:

j-1 P=O
2

(5-22)

The threshold level ti(') is constant in equation (5-22) because it depends

exclusively on constant quantities. The parameters of stage one neurones depend on the

initial parameters as described by (5-9). Consequently, (5-22) can be successively

transformed as:

mM.. b-
2""

wij 1_ 2P*l
.w

ti +, + 2"
(5-23) 22 j=l j-1 P-0

mm nb-2 21
ti ++- F, 2:

nb 2 j., p. o 2 jI
(5-24)

in mM nb-2 2P
ý2) t +ZIT. .

ýw
41-wj+

zwii (5-25)
1 '+' 2 j=l j-1 P-0 j-1

ý2)
m nb-I 2P In nb-1 2P m

ti =tj +I Iwo I-2: Zy-.
- wo +Zwo (5-26)

j=l P-0). I P. 0 j.)

156

Chapter S. THE FPGA NEURAL CONTROL APPROACH

ý2) 2' b -1
.

In

w
ijl

2 nb
-1.

fn

W+

In

I
=t'+ -

11

2 ij w (5-27) F nb

I Y,
ii

j=l j-1 j=l

m
ti(') =tj +(1-2-"").

Jlwijl+2 -nb w (5-28)

Thus, the parameters of the fmal digital neurones can be calculated as a function

of the initial analogue neurone parameters by combining (5-28) with (5-13) and (5-9),

the result being

Wý2) =
2p+l

wijlp = 0,1,2,... nb -1 up : ý-.
1

(5-29)
t ý2) t+ (1

- 2-'b)-
m

wijl+2-'b -w
IiY,

I Y,

ii

j=l j=l

As shown in Fig. 5-4, the final implementation solution uses a codification style

that involves two binary codes. The first one is the complementary code. This code is

transfonned by a set of NOT gates into the second code, which is directly used by the

neurone obtained after the second conversion stage. This neurone model has only

positive input weights so that it can be transfonned into a digital structure containing

exclusively AND logic gates and OR logic gates.

Codification Style linplcmented with NOT gates

Analogu Input Input Neurone
Signals Code (1) Code (2)

,, ---. tplcmcntary
Output

Code)

Neurone
Parameters

Neurone Behaviour

Fig. 54 - Neurone conversion solution

6.1.3 Digital Model Implementation Using Logic Gates
The FFANN implementation into a hardware structure is performed separately for

each neurone. The implementation method requires that at first the array of input

weights wi(j'p) is sorted in descending order. The sorted array contains a total number of tip

A=mxnb elements (w,, w,, w3 ... wA), where 'm' is the number of analogue input

157

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

signals and nb is the number of bits used for each input code. The sorted weights

correspond to the input signals x,, X2' xA. An iterative conversion procedure is used

to analyse the input weights and to generate the corresponding netlist description of the

logic gate implementation. As mentioned in section 5.1.1, the iterative procedure

decomposes the initial neurone into a pyramidal structure of interconnected

subneurones. The structure comprises a top subneurone, a layer of first-order

subneurones, a layer of second-order subneurones, etc. The subneurones have all the

properties of normal neurones, but they have fewer inputs than the initial neurone. Some

subneurones are implementable by very simple logic gates configurations. The rest are

further decomposed into second-order and third-order subneurones until all them are

implemented.

5.1.3.1 Preliminary Considerations

A series of interrelated basic concepts need to be defined before describing the

iterative hardware implementation process: terminal weight group, group threshold

level, dominant weight, cumulated weight, critical weight, non-critical weight,

significant weight, insignificant weight.

A terminal weight group (or simply a terminal group) is a set of weights

comprising the last N consecutive elements in the sorted array. Therefore any terminal

weight group can be uniquely identified by the symbol GL(F) where F is the index of

its first element. There are a number of A overlapping terminal weight groups in the

sorted affay: Q(1), Gt(2), Gt(3), ..., Gt(A). Terminal weight group Gt(l) encompasses

all the weights in the array. The weights of each first-order subneurone generated by the

iterative implementation algorithm are the weights of a terminal group. However, not

any terminal group generates a first-order subneurone in the final implementation. 'Mus,

the number of first-order subneurones in the pyramidal logic gate structure is situated in

the interval [0; A].

The group threshold level Tt is a quantity calculated by the conversion algorithm

for each terminal group of weights that is to be converted into a subneurone. The

group threshold level equals the threshold level of the subneurone to be generated. Tlie

same terminal group can be analysed by the implementation algorithm more than once

in different contexts. Each time it can be associated with a different threshold level.

If a weight value is larger than the group threshold level, then it is named a

dominant weight of the corresponding terminal group. Any dominant weight is

158

Chapter S. THE FPGA NEURAL CONTROL APPROACH

related to a dominant input that, if active, is able to activate the neurone output signal
(force it to 'I'), even if all the other input signals are inactive ('0'). The dominant

weights in a subneurone are always the first in the corresponding terminal group,
because the initial array of weights was sorted in descending order. Consequently, the

number D of dominant inputs can be determined using condition (5-30), and if the

largest weight in a terminal group is not dominant, no weight is dominant in that

terminal group.

W3V0-! gi <D F+i
ý!: Tt

(5-30)
wF+i < Tt Viý! D

71be cumulated weight of a terminal group Gt(F) is defted as the sum of all its

component weights. The cumulated weight equals the 'net' value of the neurone when

all its inputs are active ('l') in the same time. This is the maximum 'net' value of the

corresponding subneurone. If the cumulated weight is smaller than the group

threshold level, then the subneurone output is always inactive, regardless of the input

signals.

AA
3=s. s W, (F)=Ewi max I]wi xi

i=F

ýi=F I

(5-31)

The output of a subneurone can be activated either by dominant inputs or, if no

dominant input is active, by combinations of several non-dominant inputs. Some of

these non-dominant inputs are included in all the combinations capable of activating the

output. They are named critical inputs and they correspond to critical weights.

Activating these inputs does not necessarily ensure that the subneurone output is active.

They only bring the 'net' value of the subneurone close to the group threshold, so that

the output can be activated in conjunction with less important input signals (the

importance of an input signal is proportional to its corresponding weight). As the initial

array was sorted in descending order, the critical weights always follow the dominant

weights in any terminal group.

Thus, the critical weights can be determined by subtracting all the dominant

weights from the cumulated weight. The result has to be larger than the group
threshold. Each of the remaining weights are then subtracted from the previous result,

obtaining a series of increasing values. Those values that are smaller than the group
threshold level correspond to critical weights. This method is summarised in (5-32)

159

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

where D is the number of dominant weights and C is the number of critical weights in

the given terminal group.

D-1
Wý (F)

-1 w3F. i > Tt
iýO

D-1

Wt (F) 8s WF+D+j 1 WF+i < Tt V 0: 5 <C (5-32)
i=O
D-1

Wý (F) - WF+D+j -
li WSFii 2: Tt Vi 2ý C
i=O

Thus, if all dominant inputs are '0' and at least one of the critical weights is '0'

in the same time, then the neurone output cannot be active. On the other hand, the

subneurone output can be active when all the dominant inputs are inactive, but all the

critical inputs are active.

In some cases, the critical inputs are sufficient to activate the neurone output. In

other cases, the critical inputs can activate the output only in conjunction with certain

combinations of less important inputs, because the sum of the critical weights is lower

than the threshold level. These less important inputs, involved in activating the

subneurone output, are named non-critical inputs and they correspond to non-critical

weights. As opposed to critical inputs, none of the non-critical inputs is essential for

the subneurone activation. If a non-critical input is inactive, its task can be performed

by groups of other non-critical inputs, so that the 'net' value is maintained above the

threshold level and the subneurone is kept active. However, if all non-critical inputs

are deactivated in the same time, the subneurone output is deactivated as well. A

subneurone with D dominant weights and C critical weights has non-critical weights as

well, if and only if the conditions (5-33) are fulfilled. These conditions signify that the

neurone output can be activated by non-dominant inputs but the task cannot be

performed by critical inputs alone.

5 WF+i 2ý Tt

C-1 WF+D+i < Tt
ii=O (5-33)

The three previous input categories (dominant, critical and non-critical) are

unequally important for the subneurone operation, but all influence the output signal.
llese types of inputs have significant weights. Insignificant inputs do not influence

the subneurone output at all. The insignificant inputs have insignificant weights,

160

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

which are very small and do not affect the relation between the subneurone 'net' vaiLle

and the group threshold level, regardless of the corresponding input signals.

Consequently. these inputs are not implemented into hardware.

The effect of sorting the initial array of input weights is that the weights of the

same type are grouped together. Furthermore, the groups are arranged ill a standard

sequence: dominant, critical, non-critical, and insignificant, as illustrated by Fig. 5-5 oil

the particular case of a neurone with 12 arbitrarily chosen input weights.

One or several weight types can be absent from the sequence. For instance, a

neurone complying with condition (5-4)-(a) is implementable with an AND logic gate

and has only critical weights, because if one of the AND inputs is '0' (inactive) tile logic

output is '0' as well. Similarly, the neurones complying with condition (5-4)-(b) are

implementable with OR logic gates and have only dominant input weights.

n-reshold level ýio. o

111111i oi,. -"' vo05 5ssss wi wi N wý wwww %4 sý89 wltj wss s1 i !£s

Fig. 5-5 - The neurone weight types and their relative position in the sorted array of weights

5.1.3.2 The Implementation Process - Detailed Description

In this section, the hardware implementation of the digital neurones is described in

detail, using the concepts and the formulas from the previous section. Thc

implementation process is divided into three procedures (Fig. 5-6):

(A) The first one carries out a preliminary neurone check. It analyses the sign of' its
threshold level T. If the sign is negative or zero, tile neurone output is always

161

Chapter S. THE FPGA NEURAL CONTROL APPROACH

active regardless of the input signals and the neurone implementation is a simple

connection between Vcc (+5V) and its output.

(B) If the threshold level is positive, the array of weights is sorted in descending order

and then the second procedure is called. This one is a recursive implementation

procedure that repeatedly calls itself and builds the required pyramidal structure,

gate by gate.

(C) Eventually the third procedure is called which, according to the principles
discussed in section 5.1.2 (at conversion stage two), attaches inverter gates to

those inputs in the sorted array that correspond to negative weight values at

conversion stage one (w'
. <* w9) < lip

START

Preliminary
Neurone
Check

0 t>O

out<=Vcc

yes

Sorting the
Weiahts

fAl
VIV

Recursive Implementation
Procedure

(AND and OR Gates Insertion)
(B)

STOP STOP

Fig. 5-6 - The hardware implementation process

The recursive implementation procedure (B) has two input parameters that are

recalculated for each call of the procedure. The two parameters are the current terminal

group defined by its starting index F, and the associated threshold level of the terminal

group Tt. The parameters at the first call are F=I and Tt--t. Thus, the process starts by

analysing the terminal group Gt(F)=Gt(l), which comprises all the weights in the array

in conjunction with the neurone threshold level T. The operation of the recursive

implementation procedure can be described in 10 steps.

Step 1) The number D of dominant inputs and the number C of critical inputs are

calculated by means of (5-30) and (5-32). Condition (5-33) is used to determine whether
the subneurone has non-critical inputs. Table 5-1 presents all the possible situations and

the next algorithm step to be performed in each case.

NOT Gates
Insertion

162

Chapter S. THE FPGA NEURAL CONTROL APPROACH

Table 5-1 - Subneurone implementation cases

Dominant inputs Critical inputs Non-critical inputs Next algorithm step

D=O C=O N=O step 2

D>O C=O N=O step 3

D=O C>O N=O step 4

D>O C>O N=O step 5

D=O C=O N>O step 7

D>O C=O N>O step 8

D=O C>O N>O step 6

D>O C>O N>O step 9

Step 2) The neurone has no significant input and therefore its output is always

inactive. The hardware implementation reduces to a simple connection between the

neurone output and the circuit ground. End of the procedure (B).

Step 3) The subneurone has only dominant inputs and it is implemented as a

D-input OR gate. End of the procedure (B).

Step 4) The subneurone has only critical inputs and it is implemented as a D-input

AND gate. End of the procedure (B).

Step 5) The subneurone can be activated either by one of the dominant inputs or

by all the critical inputs together. Therefore, the current subneurone can be decomposed

into a simpler subneurone plus one higher-order subneurone. The first has D+1

dominant inputs and is connected to the D dominant inputs of the initial subneurone,

while input D+1 is fed by the second subneurone. The output of the second subneurone

is activated only when the initial subneurone is activated due to the critical input signals.

Therefore, it is implemented as a C-input AND logic gate. End of the procedure (B).
Subncurone output 'u 5u ut

F F+D-1

11MIll

F+D F+D+C-1

Fig. 5-7 - Subneurone Implementation at step 5

163

Chapter S. THE FPGA NEURAL CONTROL APPROACH

Step 6) The subneurone has critical and non-critical inputs. Therefore, the

subneurone output is active if all the critical inputs are active simultaneously with

certain combinations of non-critical inputs. The subneurone can be decomposed into a

higher-order subneurone supplying a simple subneurone implementable as an AND gate

with C+I inputs. The first C gate inputs are connected to the current subneurone critical

inputs, while the last input is connected to the output of the higher-order subneurone

which analyses the remaining input combinations.

Fig. 5-8 - Subneurone implementation at step 6

The recursive implementation procedure needs to be recalled to generate the

implementation of the higher-order subneurone. The new parameters are given in (5-34).

The new threshold level is lower than the previous one because the remaining input

signals need to cover only the difference between the previous threshold and the sum of

the C critical weights already implemented by the AND gate. Go to step 10.

F=F+C
C-1

Tt =Tt -
I:

WSF+i

i=O

(5-34)

Step 7) The subneurone has only non-critical inputs. Thus, there are several

combinations of input signals capable to activate the subneurone output. The

combinations are classified into a number of categories. Each category is associated

with a terminal group and comprises all the combinations that involve the first input in

the given terminal group. In some terminal groups, the different combinations share only

the first input but in others, they share more than one input. It is necessary to calculate

the number K of combination categories and the number S of shared inputs, apart from

the first one in each category. The first requirement is achieved, as shown in (5-35), by

calculating the cumulated weight of the smaller terminal groups included in the current

one and comparing the result with the current threshold level.

164

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

W, (F+i)ý: Tt VO:! ýi<K
W, (F+i)<T, Vi; ->K

For each terminal group Gt(F+j) 0=0,1,2 K-1), the number SO) of shared inputs

is determined according to (5-36). To calculate SO), individual weights are subtracted

from the cumulated weight of the group and the result is compared with Tt. One input is

shared by all the combinations in the current category, if and only if the subtraction

result is smaller than the threshold level. Otherwise, there are input combinations

capable to boost the 'net' value of the neurone above the threshold level without using

the tested input. The number SO) does not include the first input in the corresponding

terminal group. According to the definition, this input is implicitly used by all the

combinations in the same category, so that the input weight wF,. j, i is not even tested in

(5-35)

(5-36).

Wt (F + i) - ws. +j+, +, < Tt lWt
(F + i) - W3F+j+i+I 2: Tt

V0
-5 i< S@ [if SO) > 0]

v i, ý!: S@
(5-36)

Therefore, the current subneurone is implemented as an OR gate with K inputs as

illustrated in Fig. 5-9. The OR gate inputs are fed by AND gates with So)+2 inputs

0=0, l, 2,... K-l) that model the K different combination categories. The first SO)+1

inputs of each AND gate are connected to all the shared inputs of the combinations in

the respective category (including this time the first input in the corresponding terminal

group). Input SO)+2 is connected to the output of a higher-order subneurone that

analyses the contribution of the remaining inputs to the total net value. Go to step 10.

Subncurone output

V V

F F+S(O) F+l F+S(1)+l F+K-l i
F+K-I+S(K-

Mgher-order lUgher-order Ifigher-order
subneurone 1 subneurone 2 subneurone K

Fig. 5-9 - Subneurone implementation at step 7

165

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

The recursive implementation procedure is recalled K times for each high-order

subneurone. The parameters for each call are calculated according to (5-37). The

principles that underlie these calculations are similar to those applying to the parameters
in (5-34). Go to step 10.

Fj F+ S(j) +I
SO)

T Tt
-I WF+j+i

i=O

(5-37)

Step 8) The neurone has dominant inputs and non-critical inputs. The

combinations of non-critical inputs able to activate the neurone output fall into a number

of K categories. Number K is determined using method (5-38), which is similar to

(5-35) but takes into account the existence of the D dominant inputs. Thus, the index of

the first non-critical input is, in this case, F+D instead of F, so that the initial index F+i

in (5-35) has to be replaced with F+D+i.

Wt(F+D+i)ý->Tt VO: 5i<K
(5-38)

Wt(F+D+i)<Tt Vi; ->K

Similarly, the number SO) of shared inputs in each category of input combinations

is calculated according to method (5-39), which is derived from (5-36) by replacing each

T' with 'F+D' to take into account the existence of the dominant inputs.

3 W, (F +D+ i) - WF+D+j+i+l < Tt V0 -5 '< S(i) Uf SO) > 01
(5-39)

1

Wt(F+D+j)-WSF+D+j+i+12ýTt V'kS(i)

Subneurone output

F F+D-11 I--

0 910.... Q-0.... 0

F+D F+D+S(O) F+D+l F+D+S(I)+l F+D+Kl
F+D+

lUgher-order HIgher-order lUgher-order
subneurone I subneurone 2 subneurone K

Fig. 5-10 - Subneurone implementation at step 8

166

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

As shown in Fig. 5-10, the neurone is implemented by an OR gate with D+K

inputs interconnected with K AND gates. The first D inputs of the OR gate are

connected to the subneurone dominant inputs, while the rest of the inputs are supplied

by the AND gates.
As in the previous cases, the recursive procedure is recalled K times to implement

the K higher-order subneurones in Fig. 5-10. The parameters for each call are given in

(5-40). Go to step 10.

Fj =F+D+S(j)+l

Tt
SO

Tti -1 WF+D+j+i
i=O

(540)

Step 9) The neurone contains all three types of significant inputs: dominant,

critical and non-critical. It is implemented by a D+l-input OR logic gate cascaded with

a C+I-input AND gate and a higher-order subneurone as shown in Fig. 5-11. The

higher-order subneurone analyses the combinations of non-critical inputs and activates

the current subneurone output when a valid combination is received on the inputs

simultaneously with all the critical inputs being active. To generate the higher-order

subneurone implementation, the recursive procedure is called with the parameters

calculated in (5-41). Go to step 10.

F=F+D+C
C-1

Tt = Tt -
1: WSF+D+i
i=O

Subneurroonnee oouutppuutt I

F F+D-1

F+D F+D+;
ql

lflgher-ordcr subneuronc

Fig. 5-11 - Subneurone structure at the step 9

(541)

Step 10) The execution of the implementation process returns to the point where

the present procedure call has been perfonned. This point can be inside this procedure at

167

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

steps 6,7,8 or 9, or it can be at the stage where the recursive process itself was initiated.

In the first case, according to computer programming principles, the old parameters F

and Tt are restored and the execution resumes at the stage where this call was initiated.

In the second case, the execution of the present procedure stops.

5.1.3.3 Neurone Implementation Example

For a better understanding of the implementation algorithm, a complete example

is presented in Fig. 5-13. The neurone has A=12 input weights and positive threshold

level 't'. The weights are sorted in descending order and the recursive implementation

procedure is initiated with parameters F=I and Ti= t =10, as shown in Fig. 5-12. The

number of dominant and critical inputs is calculated at step 1) of the recursive

implementation procedure. The result is D=3, C=O. The three dominant inputs

correspond to the dominant weights w,, w2, w3 in Fig. 5-13. Condition (5-33) is used

to demonstrate that the neurone has non-critical inputs as well. Thus, according to

Table 5-1, the next step to be performed is step 8). The number K of non-critical input

combinations is calculated using relations (5-38). The result is K=3. The first two

groups contain weight combinations sharing only one input each, while in the third

group, four inputs are shared. Therefore, the output of the neurone implementation is

generated by the 6-input OR gate gl connected to the 3 dominant inputs and to 3 AND

gates (g2, g3, g4). Gates g2 and g3 have two inputs while g4 has five inputs.

As illustrated in Fig. 5-12, the iterative procedure recalls itself three times to

generate the subneurones corresponding to the three previously mentioned groups of

weights. First, the procedure is recalled with parameters F=5 and T, =t- w4 = 1.9 to

generate the implementation of the subneurone connected to gate g2. This subneurone

has four dominant inputs. (related to the weights w,, w, ', w7, w,), one critical input

(2)
(corresponding to W9 = W3) and two non-critical inputs (corresponding to w, O and

w 3,1). Step 9) is carried out and gates g5 and g6 are inserted into the hardware structure.

The remaining three inputs belong to a higher-order subneurone that requires the

iterative procedure to be called for the third time.

168

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

Call 1
F=l; Tt =10

Can 2 Call 4 Can 8
F=5; Tt =1.9 F=6; Tt =3.9;

IF=10;
Tt =0.8

CaR 3 CaH5 11 Call 6 Call 7
F=10; Tt =0.1 F=7; Tt =II[F=8; Tt = 1.4

1 ýF=9;
Tt = 1.9

Fig. 5-12 - The recursive implementation process for the neurone In Fig. 5-13

The procedure parameters are redefined as F= 10 and T, =t-1.9 - w'q = 0.1 during

call number three. As a result, the corresponding subneurone contains two dominant

inputs plus one insignificant input (corresponding toW, 2) and it is implemented by the

2-input OR gate g7. At this stage, calls number 2 and 3 of the iterative procedure are

finished. The control is handed over to call number I which initiates the call number 4

with the parameters are F=6, Tt--t- w, =3.9 in order to generate the implementation of

the subneurone connected to the AND gate g3. The new subneurone has only non-

critical weights falling in K=3 categories and it is implemented by logic gates g8, g9,

g 10 and g 11. This subneurone is connected to three third-order subneurones, which are

analysed during procedure calls 5,6 and 7, and their implementations contain the gates

g12 to g15-
The end of procedure call 7 brings procedure call 4 to an end as well. The control

is passed back to procedure call 1, which initiates the call number 8 with parameters

F= 10 and Tt--t- w 56 - w7 - w, - wq' =0.8, and implements the subneurone connected to

the AND gate g4. This second-order subneurone has two dominant inputs

(corresponding to wlo and w,,) and one insignificant input (related to ws so that it 12

is implemented by the 2-input OR gate g 16.

The end of procedure call number 8 is followed by the end of procedure call

number 1, which stops the entire recursive process. At this point the third procedure is

called (procedure C in Fig. 5-6), and inverter gates are connected to the inputs related to

the weight wq. After this stage is finished, the neurone hardware implementation is

complete. It is seen that the weight w12 is insignificant due to its small value and

therefore the corresponding input was not necessary in any combination of inputs. Tbus,

169

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

the neurone implementation consists of 8 subneurones and requires a total of 18 logic

gates arranged on 6 layers.

12 output
11.5

Threshold level =10 91)

1) <0
IIIL

w
16

47 1

6.1,
r

g2

6

2.9
2.5 g5

2

0.5
. 0.05

(2) (2) (2) (2) (21) (2) (2) (2) (2) (2) (2) (2)
WWWWWW IV WW 1692 W3 io Wil W

ýttttttt9

S W2S W3s WSs W6S SWWS WS WS1, W1 4 "ýr% Wi g5 6 jo ;I WI,
2

The sorted array of input weights

at conversion stage two

g3
_g4

2583

gs 91 6
-r T-

10 11

g6 g9 glo I- gll
I T-T

5,8 3

g7 g12 11 g13'1ý -, l.;

10 11 ,,, 11
53 10 83

g14

Fig. 5-13 - Digital mathematical model to gate structure conversion example

This example illustrates the complicated calculations necessary to transfiorm even

a simple neurone model into a system of interconnected logic gates. ANNs containing

several neurones require an amount of calculations that can be ciliclently perl'ormed

only by specialised software instruments. Such instrunients have been developed and

they are presented in the next section.

5.2 UNIVERSAL PROGRAMS FOR FFANN
HARDWARE IMPLEMENTATION

The solution adopted in this thesis is universal. It implies a three stage autolnitic

analysis of the FFANN mathematical model and the generation of' a VIIDL model

describing the corresponding hardware structure. The task is carried out by a set of' three

interconnected C++ programs, given in Appendix A and illustrated in Fig. 5-14, which

communicate by means of simple ASCII files.

170

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

Matrix description
of the neural network

CPP

I
Optirr&ed netlist

CON-V-NET. CIT description
4

VHDL-TR. CPPI
-

Netlist description]
T

VHDL model of the
digital hardware
implementation

Fig. 5-14 - The data flow between the mathematical description and the VIIDL model of a FFANN

The first program, CONVNET, transforms the input mathematical model into a

preliminary netlist description of the hardware implementation. The mathematical

model consists of a set of matrices containing the parameters of the neurones in the

neural network. Each matrix refers to one neural layer and each row in a matrix contains

the parameters of a single neurone. The first elements of a row are the neurone weights

while the last one is the threshold level. The transformation starts witli tile model

digitisation, performed according to equations (5-29), and then applies the algoritlini

illustrated by Fig. 5-6 in section 5.1.3 (Digital Model Implementation Using Logic

Gates). The program allows the user to set the number of bits used by the analogue

inputs, and the maximal number of inputs per logic gate. If a larger number ofinputs are

required at a certain stage of the conversion, a pyramidal interconnection of' simpler

gates will be used to replace the required gate (Fig. 5-15).

12
34 56

123

Fig. 5-15 - Examples of fan-in reduction using interconnections of simpler logic gates

The second program, OPTIM, ininimises the netlist description by eliminating file

redundant components. The netlist optimisation requires that three nicinory tables

containing the circuit nodes and gates are built. Each table contain.,; data about a spccific

171

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

type of logic gate (NOT, AND, OR). The tables are thoroughly explored to find groups

of redundant gates (gates of the same type connected to the same input nodes). Each

group is replaced with a single logic gate whose output signal is distributed to all the

circuit nodes previously connected to the outputs of the eliminated gates. For instance

the gates g7, g15 and g16 in Fig. 5-13 are redundant and can be replaced by a single 2-

input OR gate. The elimination of any gate changes the circuit configuration. Gates that

were initially connected to different nodes can be connected to the same nodes after the

elimination of a number of redundant gates. This creates the opportunity for further

elimination of redundant gates. Therefore, after the equivalent gates are removed, the

tables are updated and the process is restarted as shown in Fig. 5-16. The optimisation

process stops only when no additional modification can be made in any of the three

tables.

_,
transforms the optimised netlist description into a The third program, VIHDIý TP

VHDL model of the hardware implemented neural network. The obtained VFML file

can be synthesised using any commercially available software package specialised in

FPGA design. The file contains a single VHDL entity (the network) whose

corresponding architecture comprises a number of internal signals and a list of

assignment statements. Each statement models one or several identical logic gates by

associating a logical expression either with an internal signal or with an output signal.

START

Check table with NOT gates
-T-

jEliminate redundant gates and uFdate NOT-table

Check table with OR gates

lEliminate redundant gates and update OR-tab-le-, -]

Check table with AND gates

I Eliminate redundant gates and update AND-table I

yes
any update? ý-

Write results Into output file

Fig. 5-16 - The general flow-chart underlying the Optimisation program

172

Chapter S. THE FPGA NEURAL CONTROL APPROACH

For exemplification, the VHDL model of the neurone in Fig. 5-13 is presented
below. The model has been generated using the three universal C++ programs. It is

important to note that the index of the components inside the input port 'd-in' vary
between 0 and 11 instead of 1 to 12 as it was in Fig. 5-13.

-- Code Fragment 5.1
LIBRARY ieee;
USE isee. std logic-1164. all;

ENTITY networkl IS
PORT((Lin : IN std logic vector(ll DOWNTO 0); --the 12 input signals

d out: OUT std logic vector(O DOWNTO 0)); --the single output
END networkl;

ARCHITECTURE arch networkl OF networkl IS
SIGNAL n1, n2,;

ý3,
n4, n5, n7, n8, n9, nl0,

nll, nl2, nl3, nl6: std logic;
BEGIN
nl6<= NOT d in(8); the NOT gate
nl<= d in(5) AND n4; gate g2
n2<--nlý AND n7; gate g3
n8<= d in (1) AND n1l; gate g9
n9 <= in(4) AND n12; gate glo
n5<= 4_in(2) AND n15; gate g6
n13 <= d in(9) AND d in(10); gate g14
n7<- n8 AND n9 AND n10; gate g8
n10 <=d in(7) AND d in(2) AND n15; gate gll
n3<- (: k_in(l) AND d in(4) AND d in(7) AND d in(2) AND n15;
nl5<= d in(9) OR d in(10); -- gates g7, g15, g16
n12 <- a in(7) OR d in(2) OR n13; -- gate g13
nll <= d in(4) OR d in(7) OR d in(2) OR d in(9); gate g12
n4<= n1COR d in(l) OR d in(4) OR d in(7) OR n5; gate g5
d ut(O)<=d in(3) OR d in(6) OR d in(O) OR nl OR L 0 n2 OR n3;

- END arch_networkl;

CONFIGURATION conf networkl OF networkl IS
FOR arch networýl
END FOR;

END conf-networkl;

The optimisation perfonned by OPTIM has three important effects on the previous
VHDL model:

"A single expression models the group of the redundant gates g7, g 15 and g 16. The

other logic gates are modelled by individual logic expressions.

" The internal signals n6, n14 and n15 are absent in the list at the beginning of the

network architecture. They have been removed alongside with the gates g7, g IS, and

g16.

The three types of logic operators (NOT, AND, OR) occur in three distinct sections

of the network architecture description. Inside each section, the logic expressions are
sorted in ascending order according to the number Of logic operators involved. This

173

Chapter S. THE FPGA NEURAL CONTROL APPROACH

feature is just a side effect of the optimisation algorithm but it simplifies the

inspection of the obtained VHDL model (for instance, counting the total number of

gates of a certain type or with a certain fan-in).

5.3 THE HARDWARE IMPLEMENTATION
COMPLEXITY ANALYSIS

There are two important cost functions characterising the ANN hardware

implementations: the input-output delay and the required chip area. For most

applications, the delay time is satisfactory but the chip area is critical because the

hardware resources are always limited. The input-output delay is approximately

proportional to the implementation depth, which is defted as the number of layers of

elementary circuit units: TGs or logic gates. Several approximate methods have been

proposed to determine the required chip area of an ANN, depending on the envisaged

implementation technology. They imply the calculation of the number of neurones, the

number of implementation units (logic gates or threshold gates, depending on the

technology) [29], the total input number of all implementation units [60], the sum of all

input weights and thresholds [29], etc. In the case of FPGA implementations, the total

number of gates is the most suitable means to determine the implementation complexity.

It is difficult to calculate in advance the number of logic gates required by a

pyramidal logic structure with n inputs, like the one in Fig. 5-13, because the result

depends on the fan-in of each individual logic gate. The calculations are simple only if it

is possible to achieve the implementation with logic gates having the same fan-in A. in

this case, the implementation complexity is given by equation (5-42), where Fxj is the

ceiling function (the smallest integer greater or equal than x).

[n-I
A- 11

(542)

Usually the implementation algorithms require logic gates with different fan-ins,

so that (5-42) is applicable only to a limited number of practical situations. However,

any A-input AND gate or A-input OR gate can be replaced by a number of A gates of the

same type, but having only two inputs. If the fan-in is restricted to A=2, then equation

(5-42) is simplified as (5-43).

NLG2=n-I (543)

174

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

<=>

Fig. 5-17 - The integration of NOT operator in complex logic gates performing NOT-AND and
NOT-OR operations

Any logic circuit can be built using exclusively 2-input logic gates. Therefore, the

number of equivalent 2-input gates in the neural network implementation is a universal

measure of its hardware complexity and offers a means to compare different

implementation algorithms. As opposed to the rest of the logic gates, the NOT gates

always have A=I. However, they are not taken into account when estimating the

implementation complexity because the NOT logic operator can be integrated into

2-input logic gates as shown in Fig. 5-17. Note that the total number of inputs 'n' in

(5-42) and (5-43) is larger than the number of the neurone binary inputs (A=n, x nb)

because some input signals drive more than one gate in the pyramidal structure.

5.3.1 Results Previously Reported in the Literature
An efficient neural network implementation strategy is one that minimises the

number of equivalent 2-input gates in the corresponding digital circuit. Only a few

complexity minimising algorithms have been developed so far for digital hardware

implementations. The most relevant two of them are proposed in [1211 and [30] and

lead to the same order of implementation complexity but generate different circuit

depths. The results presented in [30] are converted here in numbers of 2-input gate and

then a comparison is performed between these results and the hardware complexity

generated by the new implementation strategy proposed in this thesis.

The neural network is treated in [30] as a set of k Boolean functions Fn, m, i
(i=1,2 k), with n inputs and a cumulated total of m groups of 'I' in the truth table. In

the one-dimensional case a group of '1' is a set of successive n-bit input strings, whose

corresponding fimction outputs are all T. The approach can be extended from one

dimension to several dimensions, as shown in Fig. 5-18. The number of truth table

dimensions equals the number n,, of inputs of the analogue neurone modelled.

175

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

one-dimensional group of T

- Output
01001010] values

000 001 010 Oil 100 101 110 111
The binary code of the input signal

0000

The binary 10 0011 two-dimesnional
code of group of T
input Y 01 00

00 00
11

00 01 10 11
The binary code of input X

0 0 0

o

0
0 1

Fig. 5-18 - Groups of 'I' in one-dimensional and two-dimensional truth tables

The groups of '1' are generated with a constructive method so that they optimally

cover those points in the d-dimensional input data space that have to activate the outputs

of the corresponding network. Therefore, the constructive method used in [30] is a

particular case of Voronoi algorithm, where all the Voronoi cells are hypercubes

bounded by hyperplanes parallel to the axes of the input data space. Three

implementation alternatives are compared:

(i) The direct function implementation in disjunctive normal form (DNF) (initially

proposed in [26]).

(ii) A more sophisticated strategy which involves the use of n-bit comparators

alongside with AND gates and OR gates. The comparators model the n. -dimensional
hyperplanes parallel to na-1 axes of the input data space. Each of them performs

comparisons between one of the na analogue input signals and a constant. The second

layer is made up of 2na-input AND gates. Each AND gate implements a hypercube-

shaped Voronoi cell corresponding to a group of 'P. The third layer is made up of OR

gates combining the information provided by different AND gates.

(iii) A synthesis of the previous two methods that replaces some of the

comparators with DNF terms of the Boolean function. This method analyses the size of

the groups of 'P. The small cells are more efficiently implemented in DNF format,

while large groups are better implemented by comparators. Tbus, some of the

comparators are replaced by a number of AND gates and NOT gates.

Any n-bit comparator between a variable quantity and a constant value can be

implemented with up to 'n-l' 2-input gates [28]. A neural network with n, analogue

176

Chapter S. THE FPGA NEURAL CONTROL APPROACH

inputs coded on nb bits each requires up to n. -(2 nb _ 1) comparators, which is

equivalent to n. - (nb-l). (2 nb - 1) 2-input logic gates. The redundancy across different

comparators can be reduced by optimisation algorithms. The optimisation is limited by

the number of comparators. The comparators outputs are independent signals and

therefore are generated by separated logic gates. Thus, if there are n. -
(2 nb - 1)

comparators then the complexity of the circuit cannot be decreased below n. -
(2 nb -1)

2-input logic gates.
The set of Boolean functions F,, ýi (i=1,2 k) contains a total of m groups of '1'

in the truth tables. Consequently, the implementation complexity of the second neurone

layer in the corresponding ANN is up to (2-nrl)-m equivalent 2-input logic gates. On

the other hand, the hardware complexity of the third layer is up to m-k+ C'. This k

result is a generalisation of the particular cases illustrated in Fig. 5-19. Thus, if the

neural network has only one output (k--1) then the third layer is implemented as a

pyramid of OR logic gates with the complexity of m-1 equivalent two-input gates. If the

neural network has two outputs then the situation is more complex. Thus, the outputs

are generated by two different pyramids that can share some of the 'm' inputs

(Fig. 5-1940) or they can be completely separate (Fig. 5-19-(b)). When the two

pyramids share part of the 'm' inputs the resulting implementation contains three

subpyramids and two extra OR-gates generating the actual output signals. As a result,

the hardware complexity is larger than in Fig. 5-19-(b). When the number neural

network outputs is larger than two, several situations are possible depending on the

number of shared clusters of input signals between different OR-gate pyramids. Two

possibilities are illustrated in Fig. 5-19-(d) and Fig. 5-19-(e) for the situation when k=3.

Generally, the hardware complexity corresponding to the third neural network layer

increases with the number of shared clusters of inputs. The maximal number of input

clusters is C2. Therefore, a number of k+ C2 subpyramids are contained in the kk

corresponding hardware implementation. Furthermore, each output is generated by a

pyramidal OR-gate structure with k inputs and a complexity of k-1 two-input logic

gates. The total complexity of the third layer can be therefore calculated as

m-k _C2 +k- (k
- 1) = rn -k +C2 (544)

kk

177

Chapter S. THE FPGA NEURAL CONTROL APPROACH

k=l
(a) k=2

A
Comple3dty: m- I Coinple3dty: m-2

k=2 (C)

-
11

/X\ <=>

Comple3dty: m- I

d)

k=3

k=3

zn
Complexity III

Fig. 5-19 - Analysis of the third layer complexity (typical situations)

Thus, the upper limit of the implementation complexity for method (6) in 1301 is:

k(k - 1)
Nl,

G20i) :::: n'.
(2"

b2- (5-45)

It is demonstrated in [30] that the hybrid method (iii) generates impicnientations

with up to four times less complexity. The complexity level given in (5-45) is thereby

reduced to:

Nl,
G2(in)

n-2
nb

+
n,, - in +

k(k - 1)
-k 4284

(5-46)

The complexity of the second layer can be calculated as a function ofthe 11,111, I)cr

N,,,,,, of neurones in the first layer of the ANN generating tile Boolean functions

(iý1,2-1). Two different situations are illustrated in Fig. 5-20 (a) and (b). In Fig. 5-20

(a), the decomposition of the central region of the diagram into Voronoi cells is

178

Complexity: m- I

Chapter S. THE FPGA NEURAL CONTROL APPROACH

demonstrated and the implementation of one cell is illustrated. in Fig. 5-20 (b), the

neural network contains only one neurone and therefore each Voronoi cell is defined by

two comparators supplying a single two-input AND gate. This result can be generalised

for an n,, -dimensional input data space as follows: each neurone modelling an oblique

hyperplane in the input data space is part of a number of up to 2"', (`ý- ') groups of 'J'.

The corresponding Voronoi cell requires up to 2-na comparison results but only il,, of

them are linked to a particular neural hyperplane. If required, the other 11, signals are

related to a different neurone. Therefore the maximal number of inputs of tile AND-gate
"b

structure implementing the second layer is N,,,
u, - na -2

211b

:D
na inputs

n, inputs

Fig. 5-20 - The estimation of the second layer complexity in a two-di mensional case

In these conditions, equation (5-46) becornes (5-47). The result in (5-47) is an

upper limit because it is possible that more than one neurone includes a certain groill) ol'

N1,
G 2oblique _

n,,
ý2`

- 1)
+N neur it -2

nnb -n, I+- k(k
---Ik (5-47)

4 1) 84

179

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

The most general parameter used to compare the general properties of the
implementation algorithms is the order of complexity of the generated hardware

structure. The order of complexity is a concept initially used in software engineering and

computer sciences, but it has been extended for assessing the size of neural hardware

implementations [28], [29], [30]. The order of complexity associated with an
implementation algorithm is an expression that shows how the implementation

complexity varies with the increase of the network parameters (number of neurones,

number of interconnections, etc.). The increase can be linear, polynomial, exponential,

factorial, etc. The order of complexity is obtained considering that all network

parameters involved in the exact hardware complexity equation have very large values.

In such a situation, one of the terms has a much larger value than the others, so that the

overall complexity can be approximated by this term alone. The order of complexity is

defined as the expression of the most significant term in the hardware complexity

equation, after all the constant factors have been eliminated. The elimination of constant

factors is justified by the fact that they do not affect the relation between two different

orders of complexity.

For instance, an exponential order of complexity always implies larger

implementations than a linear order of complexity. Provided that the size of the network

(N, ieuir) is sufficiently large, (5-48) is fulfilled and the exponential expression generates

larger values than any linear expression, regardless of the constants KI and K2 involved.

The same considerations apply to any pair of complexity orders.

K, .2N... > K2 , Nneur <*
2N-> K2

(if Nn,
ur

is sufficientlY large) (548)
Nneur K,

For implementations where both n,, and nb are large numbers, the second term in

(5-47) is the largest and the approximation in (5-49) is valid. Thus, the implementation

size undergoes an exponential increase with na and nb which makes the implementation

of sizeable neural networks very difficult.

NLG2oblique ;e
Nneur na

2
-2

n. nb-nb

ý=> O(Nneur ' na -2
n&nb-nb) (549)

5.3.2 The Analysis of the New Implementation Method
The logic structure generated by the implementation algorithm adopted in this

thesis, initially presented in section S. 1.3.2, is analysed now from a geometrical point of

view, in order to determine the corresponding hardware complexity. The analysis is first

180

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

performed for neurones with two analogue inputs (X and Y), and then the results are

generalised for any number of analogue inputs. The hardware complexity is initially

assessed without taking into account any hardware optimisation. Then the

improvements brought about by the optimisation algorithm presented in section 5.2 are

considered as well, and the hardware complexity after optimisation is discussed.

5.3.2.1 Implementation Without Optimisation

If the neurone has only two analogue inputs then the input data space is two-

dimensional and the hyperplanes are reduced to simple lines. The input data space is

divided in 4 quadrants depending on the values of the most significant bits in X and Y

input binary codes. The half-space where the neurone output is active covers a number

of one, two, three or four of these quadrants. The quadrants can be either partially

covered or totally covered. Each quadrant is in its turn divided into other four

subquadrants defined by the second significant bit in each input code. The division

process can be carried out for nb times because each input code contains nb bits.

Each division in four subquadrants corresponds to a subneurone inside the

complete hardware implementation. The subneurone models the boundary between the

active region and the inactive region inside the subquadrant. If the symmetrical

situations are ignored, there are only eight types of relative positions between the
hyperplane and the four quadrants. They are analysed in Fig. 5-21 alongside with the

corresponding subneurone implementations. The presented results apply to the

subneurones of orders larger than one but smaller than nb. The analysis of the first-order

subneurones generates results similar to the findings shown in Fig. 5-21, but the bits V

and '1' in the truth tables are reversed. This situation is caused by the use of two's

complement codification where the most significant bit of positive numbers is V, while
for negative numbers it is s19.

Therefore, all subneurones of order i<nb in the pyramidal structure are fed with the

signals of zero, one, two or three higher-order subneurones. The subneurones of order nb

are not fed by other subneurones because there are no more bits available in the input

codes to generate such subneurones. In this case, as shown in Fig. 5-22, the higher-order

subquadrants are either completely included or completely excluded from the active

region of the current subquadrant. Such subquadrants are named elementary

subquadrants because they cannot be finther divided into higher-order subquadrants. If

the area bounded by the hyperplane is more than half the surface of a higher-order

181

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

subquadrant then it is completely included in the active region. Otherwise, it is

completely excluded. There are five types of nb-order subneurones defined by tile

number of subquadrants that are included in the active region (Fig. 5-22). Two of thein

have the hardware complexity NLG2ý1 (H and J), while the other three have tile

complexity NLG2ýO (G, 1, K), because they do not require any logic gate for their

implementation.

Y,

0--

'70 Xi (A)
active zone

sub-quadrant

-L-
Output

Xýj

higher order
subnettrone(l)

,j
output

-1
output

yllý Xýj

0

L\2

01 higher OfAm
(B) Xi stibitem-one (2)

Idgher of der
subneurone(l)

Output

Y,

2

\3

Y, A

Ngher-cirder
subneurone (3)

1 X[

X1 A xf Iý Idgliel. Older
Idglier-order slibliellf Olle (3)
subneurone(2)

Y,
tig laigher- order I tier order

Idgher-order
subsimirone(l) subnem-one (2)

subneurone(l)

-1-outplit 1 Output

X
Y,

I X1

00

(E)
0x Itigher order

0
xf

subneurone (2) 111glkel ordel

Yi tilgher-order
sublielu one 0

subneurone(l) output

Output

Y, Yi
ýj

0 0 xi
Ilighel older

xi X1

I

111gliel ol del
slibilt-Ill 0111.0

Fig. 15-21 - The division of a (i-l)-order quadrant in i-order quadrants and (lie corresponding

subneurone i inplenienta t ions (I <i<nI,)

182

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

In a data space with more than two dimensions, there are more subneurone types

than in Fig. 5-21. As Fig. 5-21 demonstrates, the number of subneurones equals every

time the number of subquadrants crossed by the hyperplane. Therefore, the highest

hardware complexity is obtained when the number of subquadrants crossed by the

hyperplane is maximal. A hyperplane in a na-dimensional space can cross lip to 2", -I

quadrants. Therefore, this is the maximum number of higher-order SLibneurones that call

feed the current subneurone. In such a situation, the pyramidal logic gate structure can

be considered as a binary tree with n,, +l layers of nodes and 2", leaves: one leaf fior

each subquadrant inside the current quadrant. Some of the leaves use the signals

generated by subneurones to produce the correct neurone output signals while others

directly use the input signals of the original neurone. Fig. 5-23 illustrates a three-

dimensional subneurone (n, =3) that generates a maximal hardware implementation

because the hyperplane crosses all subquadrants except (x,, y,, z,)=(I, I, I). III tills

subquadrant, the subneurone output is 'I'. The maximal number of nodes in the binary

tree, except the neurone output, is:

11 ý

Y2'=2 n, +]
-2

I

yl
0

Output r -t- ýo
utput

Y, k yl

0

Xi
elementary sub-quadrant

Putput

Y,
F7

Xi Yi
(. J) X1

1

0

(1)

Fig. 5-22 - Types of nb-order subneurones

I output

Xi

X1

Output

i
Vcc

183

Chapter S. THE FPGA NEURAL CONTROL APPROACH

output

tree root

X1
][1.1 xro

_ýý)
x, -i -tree nodes - YI-I Y1.0

Y, YI-I Y, -0 Y,
YI-I Y, -0 ZI-I (

ZI-I zi 0 Z1.1 ZI-0 ZI-I ZI-0

AAA

Y,
Zi \ ----------------------------

ZI-I Z1.1 ý leaves
ZI

(1)
ZI

(2) Zi
() Lzro

Lý_,
_-O

zrý LZ
,
_O

ZI-0

Fig. 5-23 -A three-dimensional subneurone implementation and the corresponding binary tree

As illustrated in Fig. 5-23, each node of the binary tree generates one input in the

logic gate structure if the related input bit (xi, yi, zi) is 'I' on that node. Otherwise, no
input is necessary. Only half of nodes correspond to input bits 'P. Thus, the total

number of inputs in the logic gate structure is the sum between the number of

subneurones and the number of nodes divided by two (5-5 1).

2 +1
-

Ni,,
P.,

(n.) = 2"m -I+ = 2"a+l -2 (5-51)

The maximal hardware complexity of one subneurone can be calculated as a
fimction of n., according to (5-52).

NrjT2-max(n.) = Nip,. (n.) -I= 2'"' - (5-52)

The total pyramidal structure of logic gates corresponding to one neurone has a

complicated structure due to the variable number of higher-order subneurones feeding

each lower-order subneurone. However, it is possible to determine the total number of

subneurones of any order without analysing the detailed interconnections between them

and the subneurones of other orders. The number of subneurones equals the number of

subquadrants of corresponding size that are crossed by the hyperplane in the input data

space. In a two-dimensional case, the subquadrants, are square-shaped and there are 2'-'

subquadrants on each side of the square input data space. The maximal number of

crossed subquadrants is 2-2"1-1. In a n. -dimensional data space the subquadrants are

cubes (n, =3) or hypercubes (n, ý>3) and the previous result can be generalised to:

184

Chapter S. THE FPGA NEURAL CONTROL APPROACH

2', [2 1 -< 2(' (-5-53)

The generalisation is based on the fact that the hyperplane can be projected oil a

base with n,, -l dimensions upon which lie a number of maximurn quadrants.

Each ofthese quadrants is the bottom of a na-dimensional prism containing at most two

subquadrants that are crossed b) the hyperplane. Fig. 5-24 illustrates tile two-

dimensional and the three-dimensional Situations.

Therefore, the total miniber of subneurones is given by equation (5-54).

I<2. (5-54)

Based on the previous results. an absolute Lipper limit of the total implementation

complexity of all the analogue neurones can be calculated as in (5-55). This calculation

does not take into account the tact that order-rib subneurones have a smaller hardware

complexitN.

Fig. 5-24 - The intersection between the hyperplane and the subquadrants of second order (i=2) in

the t-v%o-dimensional case (A). and three-dimensional case (B).

N, 1,111,1\ < Nneur
n.
"" "' - 1)

-
(2"'

2

The expression (5-55) can be replaced with the higher maximal limit that has a

simpler expression, as in 0-56).

185

Chapter S. THE FPGA NEURAL CONTROL APPROACH

NGT2-toW<N.
(2-

(20a+l
- 3) <24- Ne -

(2"a' b-nb
-

1)

The order of complexity generated by the adopted implementation method is given
by (5-57).

O(Nneur *2
n. fib-nb

)

(5-57)

This result is superior to the one presented in (5-49) which corresponds to the

method presented in [30] because the order of complexity (5-57) is smaller than the

order of complexity (549). Therefore, the implementation of large neural networks
designed with Voronoi diagrams is most efficient using the implementation strategy

presented in section 5.1.3 even if no hardware optimisation is carried out.

5.3.2.2 Optimised Implementations

The optimisation process presented in section 5.2 decreases even ftirther the level

of the initial hardware complexity. Very efficient optimisations are possible because,

despite the large number of high-order subneurones, the number of different subneurone
types is relatively small. This means that many of the subneurones are redundant. Given

the correspondence between the hyperplanes in the input data space and neurones
hardware implementation, the number of different subneurones of a certain order is

estimated using geometrical considerations. An order-i subneurone, in a two-
dimensional data space, corresponds to a hyperplane (a straight line) in a quadrant with

the side length 2"b-*'elementary subquadrants. The slope of the two-dimensional
hyperplane (the straight line) is the same in all the subquadrants, regardless of their

order. Tbus, the subquadrants differ only by the intersection points between the
hyperplane and the corresponding subquadrant sides (Fig. 5-25). For a certain order T,

there are a number of Nc =2x 2"', " classes of two-dimensional subquadrants,
depending on these intersection points. Similarly, in a n. -dimensional data space the

number of classes is N. = n. .2
nb-'+'

.

186

Chapter S. THE FPGA NEURAL CONTROL APPROACH

Fig. 5-25 - Example of order-i subquadrant

The subquadrants in the same class can differ by the exact shape of the boundary

bet, ween the active region and the inactive region. The shape of this boundary depends

on tile slope and position of the hyperplane and it contains a precisely determined

sequence of' steps as in the example presented in Fig. 5-25. The maximal number of

different step patterns for a given class of subquadrants can be calculated using

algebraic and geometrical considerations. First, this upper limit is determined in a two-

dimensional input data space and then the result is generalised for an n-diniensional

situation.

The step pattern in each subquadrant of order T depends on the exact position of
the straight line in the subquadrant. An elementary subquadrant is included in the active

region of the two-dimensional input data space if more than half of its surface is situated

on the active side of the IvyPerplane defining the neurone. In a two-dimensional case, the

hyperplane is reduced to a straight line. The inclusion or the exclusion of each

elementary quadrant can be detenuined by analysing the position of its centre. If the

centre lies on the active side of the hyperplane then it has to be included in the active

region of the input data space. Otherwise, it is excluded form the active region of the

input data space. All the step patterns included in one of the Nc classes contain a

common elenientarý quadrant oil one side of the current subquadrant. This elementary

subquadrant is determined b) the intersection point between the hyperplane and the side

of the subquadrant, as shown in Fig. 5-26.

187

elementary stib-quadraiits

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

1/2 nb'l

[I ly Perplane
[Position (11)

112 1/2nb

6 [I ly -Perplane Elementary
ýPosilioil (1) subquadrant I

71 defining the
class of 4
patterns

112 nb

t

2 nb-1+1 elementary subquadrants

Fig. 5-26 - The step patterns included in one class of order 1P subquadrants

The c\act position of tile intersection point can vary with as much as 1/2"b" for

one class of' patterns. and it determines which other elementary subquadrants are

included in tile active region. Tliis corresponds to two extreme hyperplane positions (a)

and (b), presented in Fig. 5-26. When the hyperplane is in position (a) then only the

elementary subquadrants marked by number 'I' in Fig. 5-26 are included in the active

region. If the hyperplane position changes continuously from position (a) to position (b)

then new elementary quadrants are included in the active region in the order determined

by the distance betNveen the corresponding centres and the initial hyperplane (a). This

order is indicated for the example in Fig. 5-26 by the numbers 2 through 7. Tile

inclusion of each elementary quadrant generates a new pattern included in the current

class. In the end, when the position (b) is attained, a maximal number of 2 nb-"' -I new

elementary subquadrants have been added. This means that in a two-dimensional input

data space the maximum number of patterns in a class is NP(i) =2 nb _" 1.

In a three-dimensional situation, the hyperplane is immersed in a three-

dimensional data space as initially presented in Fig. 5-24 (B). The elementary

subquadrants are in this case cubes grouped together into prisms with square bases

included in the (X, Y) plane. Depending on its slope, the projection of the hyperplane

188

Chapter S. THE FPGA NEURAL CONTROL APPROACH

can cover the entire (X, Y) square included in the current subquadrant or only part of it.
If the entire (X, Y) square is covered then the two extreme positions of the boundary

plane enclose a number of up to (2 nb-i+1
Y

-I centres of elementary quadrants and

therefore the maximal number of patterns inside one class is NP(i) =2
2*(nb-'+')

. In a ne

dimensional space, this can be generalised as NP(i)=2(", -1)*(nb-'+')

. Therefore, the

maximal number of different subquadrants, and implicitly the maximal number of

subneurone types of the order 'i', is given by (5-5 8).

Nsub-q (i) = N, (i) - NP (i) = n. - 2"s *("b -1"') (5-58)

The number of subneurones per layer is an increasing exponential as shown by

equation (5-53), while the number of possible subneurone implementations is a
decreasing exponential as demonstrated by (5-58). After the optimisation, the number of

subneurones of each order is the minimum between the number of possible subneurones

and the actual number of subneurones, as shown in (5-59). Therefore, due to the

exponential variation of the two functions, the remaining neurones after the optimisation

are very few as compared to the initial number of neurones. This situation is illustrated

by the example in Fig. 5-27.

Nsubn-opt (i)= min
[Nsubn(i);

Nsub-q (')
I=

minj2(s-'X'-)*; n. . 2's
(nb -'+')

1

(5-59)

N. b,, -w(i)=min[Nsubn(i);
N,. b-q(i))=minl2('s-'X'-')"; 2"s

(nb-'+')+1092 n& j (5-60)

The intersection point between the two graphs illustrated by Fig. 5-27 is placed at
the location corresponding to equal exponents in (5-60). This is given by the solution of
the equation (5-61).

(n, -1). (i-1)+ I= n. (nb -'+
1) + 1092n. (5-61)

To compare the present algorithm with the algorithm presented in [30], the limit

situation, with n, and nb having very large values, is analysed in (5-62).

lim. fil= lim.. n. *nb+ 2n. + 1092n. -2 =L, (5-62) nl; nb-+ n,; nb-s.

I

2n. -1

12

Therefore, the number of optimised subneurones can be calculated as in equations
(5-63), (5-64) and (5-65).

189

Chapter S. THE FPGA NEURAL CONTROL APPROACH

I, L2-2ý"
+ .2n.

(nb
opt

1
11

a
11,2-1

n,
(n2,

+ Ila
2 n.

1 n. ý2n,
N_ +n,

2- 'la

500

1011

400

300

200

1 (0)

(5-63)

(5-64)

(5-65)

number of
unoptirTised
subneurones

0 the number
of possible
subneurones

Fig. 5-27 - Graphical representation of the optimisation process (na=2, nb=10)

The resulting total complexity is given by (5-66).

n, " bnb3,. nb
ýn. +1

N
neut -

N,,
ýbn - t)pt

-
(2 3); zý N

neur
222+n,,

-22 (5-66)

Therefore, the resulting order of complexity is (5-67).

0N (5-67)

This result did not take into account the cross-neurone optimisations, which can

bring further liard,, vare reduction. Still, it shows that the increase of the network

implementation with parameters ii, and rib is much slower in the case of the new

implementation method, as compared with the standard method presented in [30]. The

result In (5-67) is slightly larger than the square root of the initial result (5-49). This

190

23456789 tO

subnetil'one order

Chapter S. THE FPGA NEURAL CONTROL APPROACH

implies a substantial gain in terms of hardware complexity reduction for large neural

networks.

The method in [30] considers a particular case of Voronoi algorithm where all tile

hyperplanes are parallel to the axes in the input data space for each tile generated order

of complexity is reasonable. If a general Voronoi approach using oblique hyperplancs is

necessary then the method [30] generates much larger implementations than tile one

presented in this chapter. In conclusion, the present implementation method is tile most

adequate for ANN network implementation designed using Voronoi diagrams with

oblique hyperplanes.

5.4 THE NEURAL PWM GENERATOR

5.4.1 DESIGN GUIDELINES
The design philosophy underlying the neural PWM generator is based oil the

principle that the hardware implementation complexity is proportional to tile amount of

input information supplied to the neural network, and the precision demanded wilcil

processing this information. As shown in (5-66), the implementation complexity

depends on the number nb of bits used for each input code and on tile 111.11liber of'

neurones used by the network. Therefore, a good implementation complexity can be

obtained by choosing the minimal values for the two parameters: the milliber ol'bits Oit,)

and the number of neurones (Nneff). The first parameter affects the allIOL1111 OfIllplit dlt, 1

while the other controls the calculation accuracy.

The use of a limited number of bits to code the analogue input signals causes

digitisation errors that alter the position of the corresponding point in the input dala

space (the input-data point). If the input-data point is situated close to a boundary ol'a

Voronoi cell, then the errors caused by digitisation become significant and tilcy cýllj

cause the point in the data space to cross tile boundary of the correct Voronoi cell, I'lic

result is that the network will generate incorrect output signals.

191

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

Voronoi cell

Ideal
input-point
position

Altered input-point
positions generated
by digitisation errors

Fig. 5-28 - The effect of digitisation errors onto the neural network behaviour: (A) the errors are

irrelevant; (B) the errors can cause incorrect output signals

Most practical applications require that the cell boundaries are curved

hypersurfaces in the input data space, while the neurones model only hyperplanes.

Therefore, the required boundaries are approximated by successions of hyperplanes.

This generates differences between the real cell boundaries and the ideal ones.

Therefore, the limited calculation precision associated with the limited number of'

neurones cause imperfect Voronoi cells. The smaller the number of neurones, the larger

the calculation errors.

However, the behaviour of the drive system is influenced by the global propertiesý

of the PWM signal (the harmonic content). The individual voltage pulses it, 111C 1)\km

signal have a small influence oil its harmonic content. This allows the use ol''nipci-ject

control strategies, as long as tile probability for errors is sufficiently low to havc .1

negligible effect on the statistical properties of the output signals. Based oil tile previous

considerations, the achieved neural control can be assessed by tile probability oI'

generating an erroneous output. A low probability is associate(] with a Iligh coll(, -()I

quality, while a high probability is associated with low control quality. The current

control quality call be adjusted by varying the nUmber of neurones in the network in(]

the number of input bits for each neurone.

Therefore, the neural approach allows the adaptation of the pricc-perforniance

ratio to the requirements of' a wide range of applications. I ligh quality control c, 111 be

obtained with complex neural architectures containing a large FlUmber of' neurones. On

the other hand, inexpensive controllers can be produced by LISing lowcr precision ncural

networks that contain a limited number of neurones.

192

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

5.4.2 General Description of the Adopted Neural
Architecture

The output voltages generated by a PWM inverter can be associated with a three-

bit code. The neural network has the task to generate the correct bit code related to each

PWM rectangular voltage pulse. According to the current control strategy adopted in tile

previous chapter, the neural network output signals depend on two factors: tile vertex

position of the non-inductive space vector Vni(k) in the complex plane, and the direction

indicated by error vector [irA+l)-i(k)]=RAi,, t-. For each position in the complex plaile

and for each direction, one specific set of control signals is generated to the inverter.

The actual current i(k), the reference current i,
_,
ýk+]) and the non-inductive

voltage Vý, j(k) are complex quantities treated as pairs of real values. This implies tile

construction of a four-dimensional Voronoi diagram: two dimensions correspond to

current error vector, while the other two are the components of vector V,,, (k). To

simplify the design process, the network has been decomposed into functional modules.

Each module was then designed separately by means of two-dimensional Voronoii

diagrams. The novel architecture is defined by three interconnected subnetworks

(Fig. 5-29). The first neural component determines the position of the noll-Indlictivc

voltage space vector V,, (k) in the complex plane, while the second deternmies the

direction of the current error vector Ai,, f. The third subnetwork merges tile two results

and generates a three-bit code associated with one Of tile Output Voltages Ofthe PWM

inverter.

The first two subnetworks are designed by means of Voronoi diagrams. Therefore,

the initial four-dimensional Voronoi diagram has been replaced by a pair of' two-

dimensional diagrams. The two-dimensional diagrams are the projections of' the IoUr-

dimensional one in two perpendicular planes. Each combination of' four re'll 111puts

corresponds to two input-data points in two different diagrams. They are the pro. 1cctions

of the unique input-data point in the four-dimensional input data space.

193

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

t t, t
Iavei 4 Control Signals Generation

(Two la-yers)
t

Angle Calculafi layer 2
)

flo Position Calculafion
(One layer (Two layers)

i ref
(k+l)-i(k) t

Vni(k)

Fig. 5-29 - The architecture of the neural network

The adopted implementation solution is as follows: the angle subnetwork

determines the argument of the error vector A-i,, f with a precision of ±ct", while dic

position subnetwork divides the complex plane into 'in' polygonal cells and determines

the cell which includes the vertex of V,,, (k). The generation ofthe control sigiials to be

supplied to the PWM inverter considers that the vertex of V,,, (k) is located in the ccntre

of the corresponding cell, and the calculation is performed accordingly.

5.4.3 The Angle Subnetwork
This subnetwork uses a number of 'n' neurones placed within a single layer to

divide the complex plane into'2n' sectors (Fig. 5-30). The calculatioii crror'AC is rclated

to the number of neurones 'n' according to equation (5-68):

360"
Ac =- 2-n

Fig. 5-30 - The division of the complex plane into sectors (angular Voronoi cells)

(5-08)

194

Chapter S. THE FPGA NEURAL CONTROL APPROACH

The neurone output is '1' if the vertex of the current error vector is located into

the active region defined by the neurone in the complex plane, and it is '0' otherwise.

Consequently, a different result is generated for each of the n sectors. The obtained

binary code has an important property: any group of consecutive sectors shares several

identical bits on certain positions in the corresponding codes, as shown in Table 5-2.

The number of shared bits decreases when the width of the group increases. Thus, lt'thC

sectors are defined by n neurones then the codes corresponding to a gl-OLIP Of' In

consecutive sectors share n-m+1 identical bits. The positions of the shared bits depend

on the position of the sector group inside the 3600 interval. These properties are

exploited by the control signal subnetwork described in section 5.4.5, and by tile

implementation of the on-line inductance estimator.

Table 5-2 - The codes generated by an angle subnetwork with n=6 neurones

Angle Interval Code

[-15 ; 15 0 0 0 0 0 0

150; 450) 1 0 0 0 0 0

[450; 750) 1 1 0 0 0 0

[75 ; 105 1 1 1 0 0 0

[105", 135") 1 1 1 0 0

1 ý55
,

16f; 1 0

1 ý5 ý; l 9i5 I I I I I

195(; 225") 0 1 1 1 1 1

[225 ; 255 0 0 1 1 1

[25T-, 285 0 0 0 1 1

11 SO 0 0 0 0

[315 ; 345 0
1

0
1

0 0 0

5.4.4 The Position Subnetwork
The position SUbnetwork divides the complex plane into polygonal cells. I'licre is

a large range of possible solutions of performing this division. According to the adoptc(l

current control principles, the argument of the difference vector V,,, -upýk, Nj, wilcl-c jjj, ýk, %j

is one of the inverter output voltages, equals to the argument of' the cot-j-cspojj(jjjjg

current variation across the load. To ensure good operation accuracy, thc argumcnis

corresponding to the sarne voltage upwm but to different vectors V,,, insidc the sallic

195

Chapter S. THE FPGA NEURAL CONTROL APPROACH

Voronoi cell, should have almost equal values. Using geometrical considerations, three

conclusions can be drawn:

I. increasing the number of cells increases the operation accuracy of' the neural

network.

2. The point in the complex plane corresponding to an inverter output voltages

cannot be included in any Voronoi cell. If such a point were included in a cell tilen

arglYni-UPWMI varies between 00 and 3600 for different vectors V,,, in tile same cell.

Therefore, these point need to be part of the cell boundaries.

3. As a consequence of the previous point, the vectors V,, situated close to a voltage

vector upwm should be separated into a large number of cells, the criterion of

separation being the value of argýYni-UPWMý. This means that the complex plane

division into cell should have a radial structure around each point corresponding to

an inverter output voltage. Around such a point, the Voronoi diagram has to be

similar to Fig. 5-30.

The adopted solution simultaneously takes into account the previous three points

and the need to minimise the number of neurones. Therefore, the divisjoii into cells

shown in Fig. 5-31 has been chosen. It has the advantage that one neurone cail be

involved in the radial configuration of two or three different inverter voltages thereby

optimising the ratio between the current control quality and the liardware

implementation complexity.

Fig. 5-31 - The partition of the interest area into Voronoi cens

The position subnetwork contains two layers. The first layer mo(lels flic

boundaries of the triangular Voronoi cells. The second layer contains a 1111111hcr of'

196

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

neurones equal to the number of Voronoi cells. Each neurone is activated if the input-

data point is situated inside the associated cell. The output data generated by this

subnetwork is therefore a string of Nv bits that contains a single bit '1' and Nv-1 bits

101, where Nv is the total number of Voronoi cells. The neurones in the second layer can

be implemented as a combination of NOT gates and 3-input AND gates that are driven

by the neurones in the first layer.

5.4.5 The Control Signal Subnetwork
The control signal subnetwork has the task of generating the three-bit output code

related to the inverter voltage, using the information generated by the other two

subnetworks. For each triangular Voronoi cell, the argument of the current error vector

can have values between 00 and 3600. The interval [00; 3600] corresponding to each cell
is divided into sectors related to different inverter output voltages. The division into

sectors is carried out considering that the vector -V: -ni
is always situated in the centre of

the corresponding triangular Voronoi cell. According to the analysis in the previous

chapter, there are two alternative control strategies: the zero output voltage generated by

the inverter is either included or excluded from the calculations. Therefore, the 3600

interval is divided either into six or into seven intervals, depending whether the zero

voltage is used or not. The zero voltage is never used by the Voronoi cells in the

immediate neighbourhood of the complex plane origin because in this case IVil is small,

and using the zero voltage would cause a very slow current response (Fig. 5-32).

The architecture of the control subnetwork contains two layers. The first layer

includes six or seven neurones for each triangular Voronoi cell, depending on the

adopted current control version and on the position of the cell with respect to the origin

of the complex plane. Each neurone identifies a sector in the complex plane that is

associated with a range of error vectors arguments arg(A&f). This argument information

is coded by the angle subnetwork in the manner presented in Table 5-2. Therefore, all

the angle values included inside a certain sector correspond to binary codes that share a

given set of identical bits on certain consecutive positions inside these codes. As a

result, the neurones in the first layer are implemented as AND connected to a certain

number of NOT gates depending on the numbers of bits '0' and '1' to be tested. An

additional input of the AND gate is connected to the output of one neurone in the

position subnetwork. The output of this neurone is activated when the vector Vj is

situated in the correct triangular Voronoi cell.

197

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

\ //

Voronol cell
which excludes
the use of the
zero voltage

Re/

\/
Voronoi cell
which allows

the use of the
zero voltage

Fig. 5-32 - The triangular cell classification based on their position with respect to the origin

The second layer consists of three neurones generating the three general outpia

bits of the neural network. These neurones multiplex the information supplied by the

first layer neurones, and they are implemented as OR logic gates.

5.4.6 The Automated Design Process
A set of three programs has been developed in order to generate the adequatc

matrix description for the three neural subnetworks. These programs are used in

conjunction with the three universal programs: CONV
-N[ýT,

OPTIM 111(1 VIII)I, TR

(presented in section 5.2) to obtain a complete automation ofthe neural network design

and implementation. Tile conversion process is monitored by it master progi., 111,

(pWM_GEN) that controls the user interface and calls all the six speciallsed prograllis

in the correct order. The logical connections between these programs are ilitistraic(l by

Fig. 5-33. The master program allows the user to control the niall, lic1cps ol, tile

neural networks to be generated:

e The number of triangular Voronoi cells.

9 The number 'n' of sectors used to divide the 360 degrees interval.

The number of bits used to code the analogue inputs ofthe angle subnetwork

The number of bits used to code tile analogue inputs ofthe position sublietwork

'rhe maximum number of inputs allowed for one gate

Whether 6 or 7 PWM output voltages are used

198

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

Fig. 5-33 - The neural PWM generator design programs and their interconnections

Note: If the number of triangular Voronoi cells is only 6, the present CUrreiit

control rnethod becomes similar to the control algorithm presented M 1] 061 wlici-c the

complex plane is divided into 6 regions. The control algorithm iii 11061 uscs very

limited information on vector e because only the region in the complex plane tilit

includes the vertex of e can be calculated. The information oil V,,, used by the present

control algorithm is more accurate because the inductance 1, is estimated on-line In the

manner described in the previous chapter.

Alternative architectures defined by different numerical parameters have been

tested by means of computer simulation. The solution generating 111 ()pti, 11,11

performance-complexity ratio has been adopted. The implementation solution uses iij, 5

input bits to code each analogue input for both the angle subnetwork and the position

subnetwork. The 3600 interval is divided into 36 sectors while the compIcx plane is

divided into 54 triangular Voronoi cells. The zero voltage is not used (the parameter

YmIcri was considered infinite).

The initial netlist description of tile angle subnetwork contained 660 logic gatcs

arranged on II gate layers. The netlist was eventually optinlised to 378 gates

(representing 57.27% of the initial gate count). The initial and the number ofgatcs

199

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

for the position subnetwork are 567 and 242, which means compression to 42.68%. This

subnetwork has been implemented by a logic gate structure with 14 layers. On the other

hand, the control signal subnetwork has been optimised from 3026 to 709 gates resulting

in compression to 23.43%. The corresponding hardware implementation contains only 6

layers of logic gates. Therefore, the total number of logic gates in the oPtimised neural

implementation is 1329 logic gates. According to the definition given in 5.3, the

obtained circuit depth is 14+6=20 layers of logic gates. The VHDL descriptions of the

angle subnetwork and of the position subnetwork are presented in Appendix B.

5.4.7 Simulation and Physical Implementation Results
The obtained neural description has been integrated into a VHDL model of the

motor current controller. This current controller model has a lower level of abstraction

compared to the previous model used for the simulations presented in chapter 4. Here

the switching pattern is not generated based on mathematical equations as in the

previous case, but it is produced by the neural network model. The controller was

combined with the models of the induction motor and the inverter presented in the

previous chapter, and simulations have been performed to demonstrate the correct

operation of the neural network. Fig. 5-34 illustrates the simulation results obtained with

the 11.1 kW induction motor parameters. The results prove the correct operation of the

neural network, and shows good performance of the novel neural control strategy. The

simulation parameters are:

The switching frequency: 20kHZ

The sampling frequency: 300 kHz

The reference current frequency was 50Hz

40 The reference phase current amplitude is 6.66A, corresponding to a space vector

amplitude of I OA.

0 jVjjcrt=oo (only six inverter voltages are used, the zero voltage being eliminated)

The operation speed of the neural network has been tested by means of timing

simulations using Xilinx Foundation 1.4 software and by practical implementation in a

Xilinx XC4010XL FPGA chip which is included on a XS40 test board. To carry out the

two tests, a VHDL testbench supplying the neural network with variable input signals

has been developed.

200

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

Li[A]
lb la Ic i[Al

TI -------------- ------

10 ------- ------ ------

---------- 2-------

0-- -- --- -- -- -- --- -- --- -- 0 ----- ----------- ------ 4 ----- -----

-2 -5 ------ ------ ------ --- -------

-4 --- -- --
-10 ------- ------- 1 ------

-6
ýl

5 1ý0 --5 0 0 0.01 0.02 0.03 0.04 0.05 006 5 10 15

L
time [s] i[Al

Fig. 5-34 - VHDL simulation results: the three phase currents and the corresponding space vector

The neural network in the adopted configuration requires a total of 20 input bits.

The required series of 20-bit input patterns is generated by a 20-bit counter. To obtain a

pseudo-random sequence of input patterns, a supplementary block has been inserted in

the testbench between the counter and the neural network (Fig. 5-35). This block simply

rearranges the 20 bits inside the neural network input pattern. The XS40 test board

contains a 12MHz clock oscillator. A supplementary 8-times clock divider has been

added to the testbench structure to decrease the initial 12MHz to 1.5NIHz as shown in

Fig. 5-35.

The least significant output bit of the 20-bit counter changes every time a new
input pattern is generated. This signal (named 'CADENCE' in Fig. 5-35) indicates the

rhythm of the pattern generation process and it can be used to measure the propagation
delays through the neural network. Thus, the propagation delay is the measured time

between the edge of signal CADENCE and the moment when signals BX, BY, BZ are

stable on the output pins.

The VHDL testbench has been synthesised and downloaded into a Xilinx

XC4010XL FPGA chip. The synthesis tool provided by Xilinx Foundation analyses the

abstract VHDL model and generates an optimised implementation file (a bitstream file)

in accordance with the application requirements and the structural details of the target

chip. The software allows two types of optimisation: for speed and for implementation

complexity (or chip area). Each of them can be carried out with high or with low

computational effort.

201

Chapter 6. THE FPGA NEURAL CONTROL APPROACH

BX BY BZ

L -L I Xilinx Control Signals Generation
f Twf-i la", rrý, ý

f]

neural

I

-X-C'4010. XIL

Angle Calcidafion

(5+5 bits) I
-i, -ef

CADENCE

Position Calculation
J,, vin lnv, ýi

V, (k) 1 (5+5 bits)

clock
1.5NEEIZ

reset clock,
12NIlIz

Fig. 5-35 - Testbench for testing the neural network operation speed

The FPGA chip used for this implementation contains 400 Coinplex Logic Blocks

(CLBs). Each CLB includes two D-type flip-flops and three logic function genei-atol. s.

Two of the function generators have 4 inputs each while the third one has only 3 1111)LIIS.

All the function generators are implemented as look-up tables and therefore tile

corresponding propagation delays are independent of the Boolean functions.

The synthesis of the complete VHDL testbench was performed using the options

of chip area optimisation with high computational effort. The resulting Inipleniematiol,

used 192 CLBs, which means 48% of the hardware resources available in the c1iij). on

the other hand, the separate implementation of the neural network constimcd only 171)

CLBs representing 45% of the chip resources.

After synthesis, timing simulations have been perf'ornied to arialyse the

propagation delays in the FPGA chip. The maximal propagation delay Co und during thc

simulation is II Ons, the minimal one is 35ns, but the rna . jority ofthe delay times 11-c

about 50ns- In other words, the propagation time is less than 1.5 clock cycles, which

proves the very high operation speed of the neural network. No other digital circuit

could perform the same calculations during less than two clock cycles.

Fig. 5-36 presents a fragment of a timing simulation result. It demonstrates that

the delay times related to the three output bits are not equal. Furthermore, Ilic till-cc

propagation delays vary from one transition of inputs to another. I lazard effects are also

202

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

present in the neural network thereby generating short oscillations of the output logic

states during the transient.

,
jgnal Wavelotm Device Options Tools View Window Help File c

IT
iming Break

I zyý --Low i 18 Sus 14115,11 41.

us 14 u 14 4 . ,. 4 . lus 14 4. lOns/div I ... 14 3 sus 14 61.1s 14 7us 14 -' ," 14

'11 111111 1 I'll 1 1 I 1
:

, 43.47us I1 1111 ... 111111111 11
1

,

i BRESET. I
1 BCL14
0 CADENCE
o BX.

ID BY
.....

o BZ
.......... ---

49. Jits 80.5ns

Fig. 5-36 - Timing simulation results obtained using Xilinx Foundation software

The results of the practical tests demonstrate that the operational speed of' tile

neural network is even higher than estimated using timing simulations. Fig. 5-37 shows

the waveforms captured with a Hewlett Packard digital oscilloscope using a time scale

of 200ns per division. Fig. 5-38 presents the same waveforms at a smaller time scale

(5ons per division) so that the propagation delays can be easily determined. All tile

practical measurements have led to the conclusion that the propagation delay is less than

80ns which is equivalent to less than a single clock cycle.

0

by

bz

uJ
Fig. 5-37 -Test results using the hardware implemented N 111m, (cstl)cjjc I,

203

Chapter 5. THE FPGA NEURAL CONTROL APPROACH

Fig. 5-38 - Propagation delay measurements (detail of Fig. 5-37)

This chapter presented a new approach to ANN hardware implemeiitatloti, mid

applied the novel principles to derive a neural network capable of controlling the stator

current of an induction motor. The next chapter presents the completc FPGA

implementation of the induction motor controller, which includes tile neural arcliaccture

presented in this chapter.

204

6. THE INDUCTION MOTOR CONTROLLEP,
'VHDL DESI(iN

The design and hardware implementation of the motor controller has been carried

out using two main software resources: Workview Office 7.31 and Xilinx Foundation

1.4. Both of them are sophisticated tools for the design, simulation and testing of FPGA

implemented circuits. Workview Office is a general software package produced by

Viewlogic [2], [3] and it can be used in conjunction with FPGAs manufactured by a

large variety of producers. It includes a flexible VHDL simulator that supports all the

features described by the IEEE 1076-1993 standard definition of the language [9]. On

the other hand, Xilinx Foundation is a software package specialised in developing

applications using the FPGA families manufactured by Xilinx [5]. It is capable of

optimising the hardware implementation according to speed and chip area requirements

of particular applications being more versatile than Workview Office from this point of

view. However, Xilinx Foundation supports only a subset of the standard VHDL

language, namely those statements and functions that can be synthesised and directly

implemented into hardware. Furthermore, this software lacks a VHDL simulator. It

performs simulations using the netlist files obtained after the synthesis stage, which
limits its capabilities and slows down the design and test cycle. Consequently, the

VHDL design and simulation have been performed using Workview Office while the

implementation and timing verification have been carried out using Xilinx Foundation.

The combined use of the two software packages improved the overall efficiency of the

simulation, troubleshooting, and synthesis stages in the design cycle.

The VHDL description of the complete motor controller includes the two

algorithms described in chapter 4: the current control strategy and the sensorless speed

control algorithm. The model has been developed using a hierarchical approach and

contains four tiers that consist of several specialised logic blocks (Fig. 6-1). The VIIDL

code related to these blocks utilises generic parameters to define the size of the registers,

adders, subtracters, busses and other elements involved. This allows rescaling of the

205

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

controller hardware structure according to the calculation precision imposed by tile

available types of FPGA circuits. The present version of the motor controller has beeil

implemented into a Xilinx XC4010XL FPGA included on a XS40 test board, which

contains a 12 MHz clock circuit.

DC Internal
lrput PWM lb RL load

Valftge L

4 rn

Inverter L Voltage

, (n start conv.

Tier2 Tierl TierO

Neural Reference Interface Speed
PVVM Invert e4

Generator I -1 Block Caludator Interface

angle 7 1 Control
r- - - -W Mgebraic I -

Neural Calculations
Inductance

Look, u Estimator
M lti l

p
'I able

Speed u p e

Contro Slip
Estimator

Putpose
Mtdtipfier ' T

Control I ICOIti-ol
L Ilit rol II Motor H ý-Iýl I ýli"M Controller

reL speed I felk

Fig. 6-1 - The most important functional blocks of the FPCA motor controller

The control units included in the structure of tiers 0,1 and 2 sYnchronisc the

operation of all the other logic blocks and control the information transt'er betweell

different tiers. They have been designed as clock-synchronised finite state machilles

(FSM) using the specialised State Editor prograrn included in the Minix 1-ojIndatj()II

package. Using this program, a FSM is graphically described as a state diagrain, wilicli

can be automatically converted into a VHDL model. The other blocks in eacli tier liavc

been described directly in VHDL using the register-transfer logic (R'1'1,) inallner.

Therefore, they consist of registers interleaved with combinational logic structurcs:

adders, subtracters, comparators, etc.

Each of the four tiers performs specific tasks:

206

Chapter S. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

TierO generates a space vector of constant amplitude and variable angular speed. Tbe

angular speed corresponds to the stator current frequency. The vector is defined by

its real and imaginary parts in the stator reference frame. Therefore, tierO is a

sinewave generator. It produces two variable frequency sinewaves shifted with go".

e Tierl. carries out the algebraic calculations required by the control algorithm and

controls the operation of the A/D converters that provide information on the motor

currents. It determines the reference current space vector by multiplying the unit

space vector generated by tierl with the amplitude of the reference stator current. It

also calculates the vectors V,, i and V, & involved in the current control algorithm and
in the on-line inductance estimation process.

* Tier2 contains the neural network that generates the PWM switching pattern based

on space vectors ýi and Vj. The angle calculation subnetwork, which is part of the

complex neural network, is involved in the on-line inductance estimation algorithm.
It also calculates the motor slip angle ccq, that is used by tier3.

* Tier3 generates the reference stator angular frequency and the reference stator

current amplitude using the external reference rotor speed and the motor slip angle

as input inforniation.

6.1 THE SINEWAVE GENERATOR
TierO is described by a VHDL entity with three input ports (clock, reset, and

speed_rate) and three output ports: cosx, cosy and start_tierl as shown in the Code

Fragment 6.1. The first two outputs are the projections on axes OX and OY (Fig. 6-2) of

the unit vector rotating around the origin of the two-dimensional plane with the angular

speed indicated by the input port speed_rate. The output port start_tierl informs tierl

when the calculations performed by tierO have been completed and the data on the

output ports cosx and cosy is ready.

-- Code Fragment 6.1

entity tierO is

port (

clk: in STD LOGIC;

reset: in STD LOGIC;

speed rate: in STD_LOGIC VECTOR(16 downto 0);

cosx: out STD LOGIC VECTOR (8 downto 0);

cosy: out STrý'LOGI6 VECTOR (8 downto 0);

start_tierl: out STD_LOGIC

and tierO;

207

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

i Im

cosy
Re

I 0 N +i. o No-
cosx

Fig. 6-2 - The real and Imaginary components of the unit vector

The architecture of tierO contains three components: a data processing unit

(data_tierO), a control unit (ctrl_tierO), and a look-up table (sin_rom). The look-up

table stores information about the waveform of the two sinewaves that need to be

generated. Traditionally, the look-up table contains the samples of the sinewave to be

generated and the data processing unit reads the table in sequence and at the required

speed. To reduce the memory size, only the information referring to a quarter of a

sinewave period is stored in the memory. However, such a look-up table is still too large

to be efficiently implemented in the same FPGA with the rest of the controller. To

minimise the memory implementation size, the differential modulation technique has

been used. This was made possible by the fact that the angle 0 in Fig. 6-2 has a

predictable variation in time due to its relation to the stator current angular frequency:

Mdt--wes- It increases or decreases depending on the sign of (o,,, but is not subject to

sudden variations. Therefore, the values of cosx and cosy can be determined by adding

or subtracting small increments to the values calculated during the previous calculation

cycle. The increments take up fewer bits than the corresponding sinewave samples

because they are small quantities. These small increments can be stored in a compact

look-up table that requires much less hardware resources than the classical look-up

table.

The VHDL code describing the look-up table has been automatically generated by

the specialised C++ program Sin_Rom. CPP presented in Appendix C. The program has

two parameters defining the amplitude of the sinewave (ampl) and the number of entries

in the look-up table (IR-steps). Therefore, several versions of the look-up table can be

208

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

generated by altering these two parameters. The optimal version depends on the required

precision and on the available hardware resources. Different alternatives have been

tested by simulation and physical implementation, and the solution given by ampl=127

and n_steps=64 has eventually been adopted. These two parameters defme a sinewave

with 265 samples per period and values between -127 and +127. The difference

between two samples varies between 0 and 7, so 3 bits are sufficient for each memory

location. In conclusion, the differential modulation technique reduces the size of the

look-up table to 33% because the initial 9 bit samples can be replaced by 3-bit sample

differences.

The VHDL model automatically generated by the C++ program is an entity with

one input port (the address bus) and one output port (the data bus). The associated

architecture contains a single process that produces the data corresponding to the

address using the constant array of 64 std_logic_vector elements shown in Code

Fragment 6.2

-- Code Fragment 6.2
LIBRARY IEEE;
USE IEEE. std

-
logic

-
1164. ALL;

USE IEEE. std logic! unsigned. ALL;

ENTITY sin rom IS
PORT(

A: IN std logic_vector(S DOWNTO 0);
DO: OUT std logic-v9ctor(2 DOWNTO 0));

END sin-rom;

ARCHITECTURE sin rom arch OF sin rom IS
TYPE mem

-
data IS ARMY (0 TO 6) OF std logic v8ctor (2 downto 0)

constant VD: mem data
((101,101,101),
('01,101,101),
('0', 101,111),
('0"'0"'01),

...................

(111, 'J" 101)) ;
BEGIN

PROCESS(A)
begin

Do<=VD(conv-integer(A));
END PROCESS;

END sin_rom_arch;

209

Chapter S. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

The data processing unit inside the sinewave generator has a cyclical operation.

During each cycle, it reads the look-up table in sequence and adds or subtracts the

memory values to the current outputs in order to generate the required sinewaves. The

operation cycles are initiated by a clock divider modelled by the VHDL process

staq_generator inside the architecture of data-tierO. The corresponding VHDL code

is:

-- Code Fragment 6.3

startý_qenerator: process (reset, olk)
variable counter-Val: integer range 0 to 511;

begin
if reset=111 then

counter val: =2;
start<=ý101;

elsif clk=111 and clklevent then
if counter val=O then

counter
-

val: =UpperCount-tierf;
start<=111;

else
counter val: =oounter-val-1;
start<=5_0

end if;
end if;

and process;
and data_tierf_arch;

The clock division ratio specified by the constant UpperCount_tierf has been set

to 79. Given the 12 MHz frequency of the clock signal, a number of 150,000 operation

cycles are initiated every second. A complete sinewave period contains 256 samples, so

each sample is repeatedly generated for a number of times that depends on the required

sinewave frequency. To achieve this, a new value read from the ROM memory is added

to the previous result only when the memory address changes. Thus, the speed of

changing the memory address is proportional to the required frequency. The

multiplication with the corresponding proportionality constant is performed by tierl,

which transmits the result to tierO on the input port speed_rate.

The value of speed_rate is added to the signal adr_cosy and the result is stored in

the register next-adr_cosy. Based on the information stored in adr_cosy and

next-adr_cosy, the correct memory address is generated, after which the value of cosy

is updated. At the end of each operation cycle, next_adr_cosy is copied to adr-cosy so

that a new value for next-adr_cosy can be calculated at the beginning of the next cycle.

The addition is performed using the '+' operator defined in stdJogic-signed package

from IEEE library. The operators in this VHDL package have the advantage that the

sign bit of the shorter operand is always extended on the empty positions as shown in

210

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

Fig. 6-3. This simplifies the design process for complementary code adders and

subtracters as they can be directly modelled by the corresponding algebraic equations.

23122i2liNi 1911811706 1 15040P 1111101918
17

161514 13 12 1110
1+

ADR-COSY

ttttt 416
1
151l4il3il2lllllOI9181716151413121 110 SPEED

-
RATE

sign bit

23122i2li2Oil9il8il7il6ll5il4il3A2 iII il0i 918 17
161 51 413 12 1 11 01 NEXT-ADR-COSY

Fig. 6-3 - NEXT_ADR_COSY calculation

Two signals generated by the control unit, add_speed_rate and inc-adr, indicate the

moments when the two address values adr cosy and next_adr cosy are updated. They

correspond to independent VHDL processes because the updating operations are carried

out at separate moments in time:

-- Code Fragment 6.4

process (reset, add speed rate)
begin

if reset=lll then
n9xtý_adr_cosy<-(others=>IO');
speed

'
sign<-101;

elsif a7dd speed rate=lll and add speed ratelevent then
next_adr_cosy<=adr_cosy+speed rate;
speed sign<=speed rate(16);

end if;

end process;

process (ino adr, reset) --It is the last process to be performed
begin

if reset-11, then

adr
-
cosy<=(others=>101);

elsif7inc -
adr=111 and inc_adrlevent then

adr cosy<--next_adr-cosy;
end ii;

and process;

The signals adr_cosy and next_adr_cosy are 24-bit vectors whose most

significant 8 bits correspond to the sample index relative to the beginning of the

sinewave period (a number between 0 and 255). During each operation cycle,

next-adr_cosy is compared to adr_cosy. If the most significant 8 bits in the two

vectors are different, it means that the current sample index has changed after

next_adr_cosy has been modified by adding speed_rate. Consequently, a new value is

to be read from the memory and it has to be either added to or subtracted from cosy,
211

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

depending on the slope of the sinewave around the current sample. Otherwise no

operation is performed.
The look-up table has only 64 entries corresponding to a quarter of the complete

sinewave period. As a result, the address required by the look-up table is made up of

only 6 bits and varies between 0 and 63. The address needs to be calculated according to

a certain algorithm, which locates the correct look-up table entry depending on the

current sample index (between 0 and 255) and the sinewave frequency sign. The details

of the address calculation algorithm are first presented for positive speeds and then it is

extended to both positive and negative speeds. As the sample index increases from 0 to

255, the memory address varies according to Fig. 6-4. Thus, when the sample index is

inside the interval [0; 63] (the first sinewave quarter), the bits 16 to 21 of adr_cosy are

used as memory address:

mem-adr = adr_cosy(21 downto 16) (6-1)

For sample indices in the interval [64; 127] (the second sinewave quarter), the memory

values need to be extracted in the reversed order. The address is in this case calculated

using the formula:

mem_adr = 127 - adr_cosy(22 downto 16) (6-2)

I Memory address

- - 70 1 1
:

1 !
60 --- - --------------- --------- ------- T

50 - -------------- ---- ---- ------- L ---------------
40 ------------ -- ---- --------------- --- ------- --- -- -------- ---- -- -------- J.

30 -------- ----- ---- ---------- --------------- ----------
20 ----- --------- ---- ----------- ------- ---
10 -- ----------------- ---- ------ --- ------

0

0 50 100 150 200 250
Sample index

Fig. 64 - The correspondence between sample index inside the complete sinewave and the memory

address

The same addressing sequence is used for the second sinewave half because the

two halves differ only by the most significant bit of adr_cosy, which is '0' during the

first half and T during the second half. The bits 16 to 22 of adr_cosy undergo the same

sequence of changes during the two sinewave halves (Fig. 6-5) and therefore the same

212

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

calculations can be used to generate the entire waveform. 71bus, formula (6-1) is applied

for the third sinewave quarter, while fonnula (6-2) is used for the fourth quarter.
Sample index relative to the

b eginning ofthe current
wave half: [0; 127]

23122121120119118117116
1
IY403PI1111019 18

17161514
13 12 1110

Sample index

in the first
quarter of the
sinewave
[0; 63]

Absolute
sample index

1 [0; 255] 1

Fig. 6-5 - The bits of signal adr-cosy

The most significant bit of adr_cosy (the bit 23) is used to decide whether the

new memory value has to be added to or subtracted from the current cosy value. These

values are added during the first half and subtracted during the second as shown in

Fig. 6-6.

0.8 - The values from----
the look-up table

0.6--
are added to the

OA- previous result
0.2 ----------- r ---- ------- r

0 ----------- Ir -- -------- Ir
I

-0.2 ----------- L L
I

-0.4 ---------- IL ----------- IL

-0.6 -------- --- L ------------ ,
I

-0.8 ----- ----- ----------- L ------

The values from the

-------- ---
look-up table are
subtracted from the

r previous result

r ------- --- F ----------- r

r --------- -r ----------- Ir

L ----------- ----------- t

L ----------- I -- --------- L

----------- I ---- -------

----------

100 150 200
Addr. increase Addr. decrease Addr. increase Addr. decrease Sample
Mem. values Mem. values Mem values Mem values index

are added are added are subtracted are subtracted

Fig. 6-6 - Sinewave generation algorithm (positive spteds)

The algorithm can be now extended for both positive and negative speeds. To do

so, it must be noted that each location in the look-up table stores the difference between

213

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

the next sinewave sample and the current sinewave sample for positive sinewave slope

and positive speed:

TABLE[mem_adr] =
INextSample- CurrentSanpld (6-3)

At negative speeds the sequence of samples is reversed so that the previous sample is

calculated instead of the next sample:

TABLE[mem-adr - 1] = lCurrentSample
- Pr eviousSamplel (64)

The vector next_adr_cosy is larger then adr cosy at positive speed because speed_rate

is a positive value. When the speed is negative, speed_rate is negative as well, and

next_adr_cosy becomes smaller then adr_cosy. Thus, adr cosy is used to generate

mem_adr when the speed is positive, while next-adr cosy is used to calculate

mem-adr-1 when the speed is negative.

The memory address used to update cosx is derived from signals adr cosx and

next_adr_cosx which are 8-bit long vectors. Their values are related to the values of

adr_cosy and next_adr_cosy because the two sinewaves are 900 shifted, which is

translated into a sample index difference of 64. Consequently, adr_cosx is obtained

adding 64 to the most significant 8 bits of adr_cosy, which can be reduced to adding

"Ol" to the bits 22 and 23 of adr_cosy (Fig. 6-7). The vector next_adr_cosx is used

only to generate the memory addresses at negative speeds because the transitions

between two sinewave samples is already determined by the difference between

adr_cosy and next_adr_cosy. Consequently, next adr_cosx is calculated according to

the simple equation

next-adr_cc)sx = adr-cosx -I

23122121120119118117116115114113 112 111110 19 18
17

16 15 14 13 12 1110
1

LO A ADR-COSY

L76
'514i3i2il

Jo

ADR COSX

Fig. 6-7 - ADR_COSX calculation manner

(6-5)

The sinewave generator calculates the address in two stages implemented as two

VHDL processes. First, an intemal memory address (int_mem_adr) is calculated based

214

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

on the 7 bits which give the relative sample index to the beginning of the current

sinewave half (Fig. 6-5). The internal memory address is compared to 63 during the

second stage, and in case it surpasses this limit then equation (6-2) is used to calculate

the equivalent address, which is confined between 0 and 63. When this upper limit is not

surpassed, no calculation is performed. The final result mern-adr consists of the least

significant 6 bits of the vector x generated at stage two.

Due to the large number of operation cycles performed every second compared to

the number of sinewave samples, there are numerous cycles when the memory is not

addressed because tierO outputs do not need to be updated. During the cycles when the

memory needs to be addressed, the operation is carried out twice: first time to update

cosy and second time to update cosx. The signal controlling which of the two memory

addresses is to be calculated at a certain moment (adr mux) is generated by the control

unit. This signal is '0' when the address corresponding to cosy is calculated, and it is III

otherwise. Tberefore, the calculation of int-mem-adr in the first VHDL process

depends both on adr-mux and on the speed sign stored by the signal speed_sign as

shown in the following code fragment.

-- Code Fragment 6.5

process(adr cosy, adr-cosx, next-adr-cOsy, next-adr-coax,
adý-mux, speed sign)

begin
if speed sign-, O, and adr-mux--0, then

int mem adr<=adr_cosy(22 downto 16);

elsi:
C-spe-ed sign=10, and adr-mux=111 then

int
-

mem_adr<=adr_cosx(6 downto 0);

elsif speed sign=111 and adr-mux-101 then
int

-
mem-adr<--next-adr-cosy(22 downto 16);

else
int mem_adr<--next_adr_cosx(6 downto 0);

end
if

end process;

process(int -
mem adr)

variable x: s-td logio_veotor(6 downto 0);

begin
X: -int mem adr;
if x(C)-11-1 then

x: ="0111111"-(101 & x(5 downto 0));

and if ;
mem adr<=x (5 downto 0) ;

and process;

adr_cosx<=(adr_cosy(23 downto 22)+110111) r. adrý_cosy(21 downto 16), -
next-adr_cosx<=aclr_cosx-110191;

Signals cosy and cosx are updated inside two VHDL processes, which are

activated by the signals add_cosy and add_cosx generated by the control unit. Tllcsc

215

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

processes decide whether to add or subtract the value read from the look-up table based

on the speed sign and the most significant bit of adr_cosy and adr cosx, respectively.

This most significant bit indicates if the current sample is situated in the first or in the

second half of the sinewave period. This information is correlated with the sign of the

sinewave slope. If the slope is positive the new value has to be added to the output

signal, otherwise it has to be subtracted. The reset signal is part of the sensitivity list of

the two processes so it initialises the outputs at the beginning of the circuit operation.

The two outputs cosx and cosy are also periodically reinitialised to the correct values

whenever adr_cosy is zero (Code Fragment 6.6). This mechanism improves the system

robustness by avoiding the accumulation of errors caused by possible electromagnetic

interference generated by the power transistors in the PWM inverter.

-- Code Fragment 6.6

process(adr -
cosy)

--This reset ensures that errors are periodically eliminated
begin

if adr-Cosy(23 downto 16)-110000000011 then
periodical_reset<=Ilv;

else
pariodical_reset<=101;

end if;

and process;

process(add cosy, reset, adr_cosy, periodical-reset)
begin

if (reset=119 or (periodical reset-111) then
int

-
cosy<=(B=>111,0=>Ill, oti: ers->101);

elsii add
-

cosy=111 and add
-

cosylevent then
if (adr

-
cosy(23) xor speed sign)-101 then

Int
-

cosy<=int-cosy+(101 & data);

else
int

-
Cosy<-int-cosy-(101 & data);

end i: f

and if;

end process;

--The value of 'cosx' is reset whenever the memory address is 0 and

--mux-adr-0. When mux-adr-1 it means cOsx will be increased.

--Therefore it mustn't be reset any longer.

process(add cosx, reset, adr_cosy, adr_mux, periodical_reset)
begin

if reset=111 or (periodical
-

reset-Ill and adr_mux-101) then
int coax<=(others->101);

elsif add cosx=lll and add cosxlevent then
if (adrý_cosx(7) xor spee-d sign)-101 then

int
-

cosx<=int_cosx+(101 & data);

else
int

-
cosx<=int_cosx-(101 & data);

and if,

and if;

end process;
cosv<-int cosy;

216

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

cosx<=int-cosx;

As previously mentioned, the control unit has been designed as a finite state

machine using the State Editor included in Xilinx Foundation software package. Thus,

the operation of ctrl-tierO was initially described by a state diagram, which has

subsequently been converted into a VHDL model. The elements of a typical diagram are

states, transitions, transition conditions, actions, the reset signal, the clock signal, input

ports and output ports.

* The transitions between states are triggered by the clock signal. 'Ilie state machine

can be defined as either active on the rising clock edge or active on the falling clock

edge.

A condition assigned to a transition inhibits the state change until the condition is

fulfilled. All conditions need to comply with the VHDL syntax because they are

included as they were written in the automatically generated VHDL model of the
FSM.

* The actions performed by the state machine are changes of the output ports. There

are three different types of actions: entry actions, state actions, and exit actions. The

changes occur at different moments in time: at the transition from the previous state

to the current state (entry action), during the current state (state action) or at the

transition between current state and next state (exit actions).

The reset signal is a special input port that brings the state machine in its original

state. It can be defined as synchronous or asynchronous. The synchronous reset
brings the FSM in the initial state only when the correct clock edge occurs, while the

effect of an asynchronous reset signal is instantaneous.

There are two types of output ports: registered and combinational. The registered

outputs are modelled as registers and therefore the effect of any action is valid until

the next action modifies the port. The combinational outputs have no memory. Ilie

effect of any action lasts as long as the FSM is in the state linked to the respective

action, after which the output returns value specified for the original state (the state
forced by the reset signal).

17he model of ctrl_tierO has been defmed as a state machine with six states that is

active on the falling clock edge and uses an asynchronous reset signal. The control unit
has five output ports: adr_mux, add_cosx, add_cosy, add_speed_rate and inc_adr.

The port adr mux is registered while the others are combinational (Fig. 6-8). Each

217

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

operation cycle of ctrl-tierO begins when the start signal is activated by tile process ill

Code Fragment 6.3 contained in the data processing unit. The first actioti carried out

during the control unit operation cycle is to trigger the calculation ofnext adr cos-,, bN
--. I

adding speed_rate to its previous value. The vectors adr_cosy and next_adr_cosv are

compared by the data processing unit and the signal equal is set accordingly. This

requires the inclusion of a comparator in the structure of the data processing unit. The

corresponding VIIDL model is described by Code Fragmeiit 6.7.
az Ep PUMMEMME

EiL JdO Z, -h Y- FStd 2-
k9 J _!

L_j

[k
ctrl-tierO L__;, Inc_adr

0
[ý)-equal J:)add_speed_rate

f+
ram =ACTIONS

ý7
[Udla ýam TIONS E:)-start -Lý adr-mux

7
[D- reset L)add cosx

_ (hk
ýclk add_cosy

Fa -d-----
SregO r_mux-Vý. 4-- Entry action

A Ladd-speed rate-' State action [add cosy-l" 0
1> t 40

rese equal='O' k-ýý -, Si ý-- S2 ! ---- -- -- I-. S3

add_speed_rate<='O', equaWl
add-cosy<='O': Fad d

cosx<='O';
cojxjýý

add
- inc adr-'O';

=adrmu*x<='l'

S6 S5
S4

pcadr- 1

Fig. 6-8- The state diagram of ctrl_ticrO

-- Code Fragment 6.7

process (adr_cosy, next-adr
-

cosy)
begin

if adr-cosy(22 downto 16) /= next_adr_cosy(22 downto 16) then
equal<='01;

else
equal<=111;

end if;

end process;

if the most significant 8 bits of next-adr_cosy and adr_cosy are difTerellt, filet)

the values of cosx and cosy need to be updated. During states S 1, S2 jilld S3 the \,, ariablc

adr_mux is set to '0' so that cosy can be updated wheii addcosy lCtivated. I)Jil-lilg

states S4, S5 and S6 adr_mux is set to 'I' to calculate the njcjlj()l-\, ld(jl, ess

corresponding to cosx. The output vector cosx is updated during the state S5. DIII-Ing

state S6, the signal inc_adr is activated and, as shown by Code Fnigment 6.4, the ýcctoi-

adr_cosy is updated. If the vectors adr_cosy and next_adrcosy, are equal then the

operation cycle comprises only the final action linked to the state S6. Consequcullý,

218

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

there are short operation cycles and long operation cycles depending on the value ofthe

signal equal generated by the data processing unit. These two cycle types arc Illustrated

by the simulation results in Fig. 6-9.

EM Signal

ET
RT.
U
-SPEED-RATE
-COSY
-MUX.
-COSX
ADR_ -

evice Options Tools View Window Help
`ýd cl

7t

'n.

= 12 OCII15 13OUns 4 uOns ISOOns 16UOnz 700n3

,

IUUOns

.,

19 "1",

r--I r ---- I r---i r-1 r-i r= r---i

-F- 7-

Long operation cycle
cycle

Fig. 6-9 - Control unit simulation resufts

The complete model of the sinewave generator has been simulated using

Workview Office and the results have been exported in MATIAII to draw the

corresponding graphs. Fig. 6-10 illustrates the operation corresponding to t'otir different

frequencies and proves the correct generation of the two sinewaves, cosx and Cos.,,, It

also demonstrates the correct transition from the wavefornis corresponding to one

frequency to the waveforms corresponding to another frequency.

1

8

6

4

2

0

2

4

6

8

-1 tillisl
+5OHz -50H-z -IOOH, - I ool Iz

Fig. 6-10 - The operation of tiero

219

Chapter S. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

6.2 THE STRUCTURE OF TIER1
Tierl is a complex processing module composed of a control unit (ctrl

-
tierl) and

a data processing unit (data_tierl) that performs several calculations and control tasks

required by both tierO and tier2:

* Controls the operation of the two A/D converters connected to Hall sensors that

measure the stator currents of the motor.

* Uses the digital information provided by the A/D converters to calculate the stator

current space vector.

* Determines the derivative of the current space vector and uses this information to

calculate the non-inductive space vector Vj

Calculates the space vector VA=g(k)-_Vnj(k-j), which is used by ticr2 to estimate the

inductance in the equivalent R-L-e circuit.

Calculates the vector speed_rate used by tierO.

* Calculates the rectangular co-ordinates of the reference stator current by multiplying

the unit vector produced by tierO with the amplitude calculated by tier3.

e Performs adjustments of the numerical values supplied to the neural network located

in tier2, so that the network operation speed is maximised.

To achieve all these tasks, tierl needs to perform several multiplications. There

are numerous multiplier hardware architectures reported in the literature [137], [138],

[48], [86]. They differ in hardware complexity and operating speed. The fastest

multipliers use combinational architectures but unfortunately they have very large

hardware complexity. Sequential architectures are more compact but in the same time

they are slower. To optimise both the speed of the motor controller and its complexity, a

single fast multiplier is used by tierl to perform all the multiplications. Tlierefore, all the

signals involved in multiplications have been multiplexed to the inputs of this

multiplier.

The VHDL multiplier model developed in this thesis, implements the 2 Nd - radix

multiplication algorithm which is flexible as it allows good control over the trade-off
between speed and circuit complexity. The multiplication is carried out in several stages

using groups of N., j bits at a time, where the number Ns, is the multiplier's step length. If

N, j is I the classical Booth architecture is obtained. This generates a very compact but

slow multiplier. If the value of N., j is larger then I then faster multipliers are obtained,

but they occupy more space on the chip. The fastest architecture is obtained when Nl

220

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

equals the length of the second operand. In this case, the corresponding hardware

multiplier has a purely combinational structure, which makes it, space inefficient but

very fast.

The VHDL multiplier model uses three generic parameters that defline the length

of the two operands and the step length, as shown in Code Fragment 6.8. These

parameters allow the adaptation of the multiplier to any application requirements

referring to speed, operand size and hardware complexity.

-- Code Fragment 6.8

entity smultiplier is

generic(n, m, step_length: integer);

port (

a: in STD LOGIC VECTOR (n-1 downto 0);

Can be only positive
b: in STD_LOGIC VECTOR (m-1 downto 0);

Can be both positive and negative
prod: out STD

-
LOGIC VECTOR (n+m-1 downto 0);

clk, start: iný STD
-

LOGIC;

ready: out STD_LC7GIC

end smultiplier;

The fact that all the multiplications required by the motor control algorithm

involve a signed operand and an unsigned operand has been exploited to optimise the

structure of the controller. Thus, a specialised multiplier has been created, which has an

unsigned input bus (b) and a signed one (a). The multiplication process is composed of

a series of simple operation cycles. Each cycle consists in multiplying the operand a

with the least significant Nsl bits of b and adding the result into a shift register. Both the

result and the operand b are then shifted with N,, l positions to the right. The architecture

comprises two shift registers, a control unit and a reduced size combinational multiplier

with input buses of width equal to the size of a and NI, as illustrated in Fig. 6-11.

The multiplication process is triggered by the start input signal. When this signal

is active (is 'I') both the control unit and the multiplication result register are reset.

When start returns to '0', the control unit initiates the multiplier operation by activating

the signal first-step which causes the operand b to be loaded into the corresponding

shift register. After b has been loaded, the series of calculation cycles commences.

During each cycle, the load_step signal is activated first and then shift-Step is

activated. After the shift, the most significant N., j bits of the two registers in Fig. 6-11

are padded with zeroes.

221

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

reset

j

load shift s hift
Multi icatio Result (h"rod)j B -* --I I I

pý ý I! load

Step

Reduced Size
Combinational Multiplier

Adder
tep I load stpp ý shift t, p

Control Unit

7-- #
starl clk

Fig. 6-11 - Flexible multiplier structure

The number of necessary calculation cycles is given by the VH DI. constant nsteps

that depends on the length of b (parameter m) and on the step length N, I, accordilig to

equation

nsteps = ceiling(m /N
sl

)
(6-0)

where the function 'ceiling' generates the smallest integer that is larger than its

argument.

Signal count is loaded with valLie nsteps when the input sigI1,11 star(is activate(j,
-eased at each calculation cycle simultaneously with a(wilig tile 1), -I and it is deci 'lit al

multiplication result to the result register. If count is larger than I then tile two registers

are shifted and a new cycle is initiated. Otherwise the calculations are stopped and the

ready signal is activated. The VHDL model of the control unit, sll()%k, ll 11, (, ()(le
Fragment 6.9, operates with five different states (sO, sl, s2, s3, s4), cilcil (, I, tilcill

activating one of the control signals previously discussed.

-- Code Fragment 6.9

type state is (sO, sI, s2, s3, s4)

signal s: state;

constant nsteps: integer := (m+step_length-l)/Step_length;

process(clk, start)
begin

if start='1' then

s<=sO;
count<=nsteps;

elsif clk=111 and clk'event then

case s is

when sO => s<=sl;
when sl => s<=s2;
when s2 => if count>1 then

222

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

s<=s3;
count<=count-1;

else
S<=s4;

end if;
when s3 => s<=s2;
when s4 => null;
when others => null;

and case;
end if;

end process;

first step <- Ill when s=sl else woo;
load ; teP <= Ill when s=s2 else 101;

shift -
step <- Ill when s=s3 else 101;

ready., int <= Ill when s=s4 else 101;

ready<=ready_.., int;

This algorithm is applicable only to positive values. Therefore, if the operand b is

positive then the multiplication result is the value stored in the result register after the

calculation sequence has finished. Otherwise, this result has to be transformed into a

valid two's complement codification of the negative multiplication result. This

transformation is based on the next considerations:

* If b is a negative number then '2m-b' which is its two's complement is a positive

number.

If b is replaced by '2'-b' in the multiplication process, the result is '(2'ý-b)-a' that

has the same module as the correct result but it has the opposite sign.

The correct multiplication result is obtained by reversing the sign of the previous

expression. Therefore, the calculation formula is: a-b-2'. a.

The VHDL implementation of this principle is described by the process in Code

Fragment 6.10, where the information is transferred from the internal register int-Prod

to the output port prod in two manners, depending on the most significant bit of b. If

b(m-l)='O' then the operand b is positive and the internal information is copied to tile

output port, while if b(m- 1)='l' then the previous calculation formula is used.

-- Code Fragment 6.10

process (a, b, int,
_prod)

begin
if b(m-l)-101 then

prod<=int,
_prod(n+m-1

downto 0);

else
prod<=int prod (n+m-1 downto 0) - (a & zeroes (m)

end if ;
and process;

Fig. 6-12 presents the pipelined architecture of data_tierl that includes the

rnultiplier previously discussed. The first operation performed is the calculation of the

223

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

rectangular components i, and iy of the stator current space vector. The calculation is

carried out using a modified form of the classical conversion equations. 17hus, the two

components are replaced by equivalent values that are rescaled to limit their maximal

values and to limit the number of bits necessary to be allocated for each of them. The

rescaling technique allows a good control over the number of bits used by each internal

signal, but on the other hand decreases the calculation precision of data_tierl.

Furthermore, the rescaling factors need to be taken into account by the subsequent

calculations that involve the equivalent quantities. The simulation and the synthesis

results showed that rescaling with 0.5 offers the best trade-off between precision and

hardware complexity. I'lierefore, the calculations are performed according to:

=3.1
ieqv =

i. 3.1
224-

(6,7)
iy =3 i"V =L .4i+ia =0.866- iL ýE

*
(2'b +'a) ybb 222 2)

(+

The multiplication with 0.866 required in (6-7) is performed by the multiplier integrated

in data_tierl. Once the two rectangular components have been determined, the current

error vector A&Kk)=ýi,, Kk+l)-i(k) and the current variation Ai(k)=i(k)-i(k-1) are

calculated by simple subtracters. The components of Ai(k) are multiplied with tile

estimated inductance L and subtracted from the corresponding voltage components to

determine the vector Vt ni, which is used by both the neural network generating the PWM

signal and by data_tier I to calculate the vector V, &.
The adapter blocks included in Fig. 6-12 enhance the operation precision of the

angle subnetwork inside the neural network contained by tier2. The angle subnetwork

calculates the argument of a space vector based on its rectangular co-ordinates. 'nie

number of input bits of the angle subnetwork is smaller than the total number of bits of

the two co-ordinates. Tberefore, it uses only the most significant n bits of these co-

ordinates. If the two values are small numbers, the most significant bits are all '0' or all

III
I (depending on the sign of the numbers) and an incorrect result is generated. The

adapter simultaneously shifts the two co-ordinate values to the left until their leftmost n

positions contain significant bits. Shifting a binary number to the left is equivalent to a

njultiplication by a power of two. As the two co-ordinates are simultaneously multiplied

with the same power of two, the adapter actually amplifies the module of the vector but

leaves the vector argument unchanged.

224

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

speed_mte
u3i

Fig. 6-12 - The structure of Data-Tierl

The VHDL model of the adapter has two main input ports inbusa and inbusb (the

initial two co-ordinates) and two main outputs outbusa and outbusb, as shown in Code

Fragment 6.11. The generic parameter 'n' defmes the width of the input and the output

busses. It has to be set in accordance with the width of the VHDL signals to which it is

225

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

connected. All the signals in this tier have correlated widths that are primarily

determined by a generic parameter 'ni' which determines the width of the busses i. and

ib presented in Fig. 6-12.

-- Code Fragment 6.11

entity adapter is

generic(n: integer);

port (
inbusa: in STD_LOGIC VECTOR (n-1 downto 0);
inbusb: in STD_LOGIC VECTOR (n-1 downto, 0);

outhusa: out STD_LOGIC VECTOR (n-1 downto 0);

outhusb: out STD_LOGIC VECTOR (n-1 downto 0);

clk: in STD_LOGIC;
1d: in STD_LOGIC;

ready: out STD_LOGIC

and adapter;

The additional input Id triggers the shifting process while ready signals the moment
when the process is finished. Each step of the process is synchronised by the clock

signal elk. The method to determine the end of the process is to test the most significant

two bits in each of the two partial results. If any of the two pairs contains different bits

then the process must stop to avoid an overflow that would change the sign of at least

one of the co-ordinates. The process must also be stopped if all the bits are zero in the

same time. This happens when both input co-ordinates are simultaneously zero, which

would cause an infinite shifting process. The architecture of the adapter contains two

VHDL processes: the first shifts the two input values in a synchronised manner, while

the second verifies the existence of non-zero bits and communicates the result through

the internal signal not-all-zero:

-_ code Fragment 6.12

architecture adapter_arch of adapter is

signal int_busa, int_busb: STD_LOGIC VECTOR(n-1 downto 0);

signal not_all_zero: std logic;

begin
process(ld, clk, inbusa, inbusb)

begin
if clk=11, and elk-event then

if id-111 then
int busa<=inbusa;
int busb<=inbusb;

rea7dy<=10';
elsif Unt busa(n-l)=int busa(n-2)) and

(int-busb(n-1)=int-busb(n-2))
and (not_al1_zero=11') then

int
-

busa<=int busa(n-1) & int busa(n-3 downto 0) & so,;
int busb<=inCbusb(n-1) & inCbusb(n-3 downto 0) & 10,;

else
ready<=11';

and if
end if

226

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

end process;
process (Int busa, int busb)

logic;
variable x: std

begin
x: =101;
for i in 0 to n-l loop

x: =x or int-busa W;

x: =x or int-busb(i);

end loop;

not all zero<=x;
and process;
outhusa<=int buss;

outbusb<=intý-busb;
end adapter-arch;

Fig 6-13 presents the state diagram that describes the operating sequence of tierl,

which is controlled by ctrl-tierl modelled as a pair of correlated state machines. The

first dictates the sequence of mathematical operations performed by tierl while the other

controls the interface with the A/D converters. The A/D circuits TIC1550 produced by

Texas instruments [1] have been used, as they offer the advantage of integrating the

sample-and-hold circuit, an internal clock oscillator and the digital converter itself in the

same chip. Moreover, this type of chip can be easily interfaced with other digital circuits

due to the 3-state parallel port, and it can be addressed as an external memory device.

T bus, it has a RD input pin that triggers the conversion and an active low EOC output

pin that signals the end of the conversion. The interface state machine activates RD in

state S28 and then waits for the conversion to finish. After each conversion, it loads tile

information in the specialised registers, as shown in Fig 6-13 correlated with Fig. 6-12.

The operation of the first state machine in Fig 6-13 is described by a linear sequence of

states which controls the multiplier, the associated multiplexers and loads each partial

result in the specially allocated register. The activity of the two state machines is

correlated by means of the internal signal RdNow that is used to indicate the moments

when the analogue to digital conversion is finished. Each operation cycle of ctrl_tierl is

triggered by the start_tierl signal, which has a frequency of 150 kHz and it is gcncratcd

by ctrl_tierO. As a result, the A/D converters are activated with the same frequency and

therefore the sampling frequency of the motor controller is 150 kHz as well.

227

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

D- ready_m IG_iry -JDId ýj ctri-tierl E: >-EOC1 E0C2 _
-Did-di -jDstarI_Der2

V/diagram ACTIMS E: ý>-start -E)Id -speed-rate -E: >Start
-

fn -Dlrj-l
PdNovv

E: >- reset -FL>mux_adrb[2 0]
- -Old-ern 1:: >i(I sinxv _Qýld_vr

-EDld_V Iy Fmý_Clk -0. >Mux_adra[l 0]
-Dld-V2 _FL> Do-V I.

Srego mux_adra<="10" Imux
adrh<-Iný"

i mux adra-"00"
mu

sreg ýoj

st, ýý -l

S31

Fig 6-13 - The state diagram of cirl-fier I

'1

6.3 THE PWM GENERATION AND THE ON-LINE
INDUCTANCE ESTIMATION

The data processing unit of tiet-2 named data tiel-2 (1. 'ig. 6-14) cojjjý1111" jjjý' 1)\\ \1

signal generator, which includes the neural network presented in chapter 5, the on-linc

inductance estimator and the motor slip calculator. All these three digital structurcs use

information provided by the angle subnetwork. Thus, tile 111(juct, 111ce csti, 11,1tioll Is
228

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

performed by comparing the arguments of vectors Aft), Ai(k-1), V, &(k), the motor slip is

calculated as the difference between arg{ý) and argfýi), while the PWM generation

requires the calculation of arg(A&f). This implementation solution reduces the

hardware complexity of the motor controller because the same neural structure is used
for three different purposes.

The structure of data_tier2, shown in Fig. 6-14, includes three registers that are

connected to the angle subnetwork and store the output codes associated with the

vectors Ai(k), Ai(k-1), VA(k) calculated by tierl. They provide this information to an

analysis module that controls the inductance updating block, which increments or

decrements the value of the inductance, depending on the relative position between the

three vectors. The induction estimation result is loaded into a register whose 'load' input

isvalidated by comparing the reference rotor frequency with the upper limit of 10 Hz. It

was shown in chapter 4 that the induction estimation errors increase with increasing

stator frequency. It was also demonstrated that stator frequency increases linearly with

the rotor steady-state angular speed. Thus, the inductance estimation errors can be

maintained low if the estimation process is performed only at low rotor reference speed.

The 'frequency check' block in Fig. 6-14 compares the reference speed with the upper

limit and validates the estimate signal generated by ctrI-tier2 only if the reference speed

is situated below this limit. Otherwise, the estimated inductance L is kept unchanged.
aeqv t equivalent sUp angle

A nt.
Reduction to the first, L NFOG4

abcdef quadrant Frequency

a

tttttt &a,, Hp anigale ch: eck llue

;
ýj sub

n

PWM Inverter Interface + estimate
abc NJ

21 reset

3+

2 Validation reg reset Inductance updating reset

tj reg
Block W ld reset blo7ck load

c ITk t
3 ld +1 -

Control Subntework
Conversion to Two's

Analysis Module

Complern

F-1
Position Calculation Angle Calculation 14_dis reg 10 reg reg

Subnetwork Subnetwork Id I ld Sul

V. i. V.,
Y adr - net out

MUx

Y. i

4ý
T eI YA A: Iref A!

Fig. 6-14 - The RTL description of data_tier2

229

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

According to the induction estimation algorithm discussed in chapter 4, the

analysis module has to determine which vector (Ai(k), Ai(k-1) or V,. \(k)) is situated

between the other two. As demonstrated in chapter 5, the angle subnetwork divides the

360' interval into a number of equal sectors. All the output codes associated witil space

vectors that belong to a given group of consecutive sectors correspond to binary codes

that share a certain number of identical bits. One space vector is situated between tile

other two if it is included in the group of sectors delimited by the two vectors.

Therefore, the relative position of the space vectors can be determined by analysilig tile

codes associated by the angle subnetwork. This method is illustrated by an example In

Table 6-1 that involves three vectors v-,, V4, Y6 situated in the sectors -1,4 and 6. It call be

calculated that V4 lies between v-) and V6 because the code associated with V4 shares tile

bits b5 and bo with the codes corresponding to Y2 and V6. On the other hand, tile vectors

Y2 and V4 share the bits b5, b2, bl, bo. Therefore, V6 is not situated between v-, and v.,

because the code Of Y6 does not share the bits b2 and b, with the other two codes.

Table 6-1 - The output codes of an angle subnetwork with n=6 neurones

Sector Index Angle Interval-- Code

b5 b4 b3 b2 bi bo

1 0 [-15 ; 15 0 0 0 0 0 0

2 [150; 45 0 1 0 0 0
10

0

3 [45(), 750) 1 1 0 0 0 0

4 j75ý-, 1050) 1 1 1 0 0 0

5 [1050; 1350) 1 1 1 1 0 0

6 [1350; 165) 1 1 1 1 1 0

7 16 5'), 19 5'» 1 1 1

8 [195(); 225) 0 1 1 1 1 1

9 [2250,255)

-- - - -- -

0 0 1 1 1 1

ý 10 7 28 5 ý) - j-2--5-5 0 0 0 1 1 1

-- J285
, 315 0 0 0 0

12 0 5 0
1

0 0 0
1

0
-1

1

The PWM inverter interface transforms the three bits 'abc' defining tile desired iiwerter

output voltage into a vector with six control signals 'abcdef that are transmitted to tile

power transistors. The edges of the signals controlling the transistors III tile saille
230

Chapter S. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

inverter leg (a-d, b-e, and c-f) do not occur simultaneously so that short-circuits are

avoided. Thus, a transistor is turned on at 2.5 jis after its counterpart in the Inverter leg

has been turned off. This is achieved by using the hardware structure in Fig. 6-15 where

the control signals are generated by AND gates whose outputs depend both oil tile

current bits and on the previous bits generated by the neural network. The previous bits

are stored into a 6-bit register that is loaded at 2.5 Vts after the neural network new

output has been transmitted to the interface block. If one of the bits was previously I'

while the current value is '0', then the corresponding AND gate output changes from I'

to '0' immediately. If the previous value was '0' and the current value is '1' the AND

gate output transition cannot occur immediately because the gate Inputs are diflerelit 1`61,

a period of 2.5 ýts. The 2.5 Vts delay is generated by a down-counter that is reset by tile

same signal ld_reg which loads the 'abc' register (Fig. 6-14).

Fig. 6-15 - The PWM inverter interface

The signal Id_reg is generated by the validation block, which is a modulo ý)

counter. Therefore, the frequency of Id_reg is 10 times smaller than the 1're(ILICIICN' of'

Id_abe. The signal Id_abe is activated once during each operation cycic ofilic inotor

controller. The operation cycles are initiated by tierO with a fireqtiency of' I so k 11/,

which entails that the signal Id_reg has a frequency of 15 kliz. 'I'lleret, ()rc, I, tills

configuration the frequency of the PWM signal generated by the motor colitroliel. Is

15 kHz.

The control unit of fier2 (Fig. 6-16) synchronises the operation ofthe nltlljil)lcxcl-

connected to the angle subnetwork in Fig. 6-14 with the activity of the 1-cgistcl-s 111(1 111c
231

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

operation of the inductance updating block. The operation cycle of the control Unit IS
described by Fig. 6-16 and it consists of the following steps:

1. The stator current vector is supplied to the angle subnetwork and after tile

calculations the three-bit vector abc is loaded in the corresponding register.
2. The shifted components of vector e are analysed and the corresponding %, alue is

stored in the specialised register by activating signal ld_es.

3. The angle of the current space vector i, is determined and the quantity proportimial

with the slip angular frequency is determined.

4. The code corresponding to the argument of the vectorVA is calculated and stored III

a register.

5. The argument of Ai(k) is calculated and it replaces the value of Ai(k-1) whIcIl is

transferred into a second register (Fig. 6-14).

6. Once the angle codes associated with the three vectors Ai(k), Ai(k-1), V%(k) are

known, their relative position is analysed by the corresponding conibinatioiial

module and then the estimated value of L is updated. It can be increased, decreased

orleft unchanged.
ct r1-t i er2

re a dy_V2s
ready [//d -iajr7amEACý51057NýS]

ED- ready_dis _err)s
[D- reset ready_es

A start-tier2

-Dld-dis

-Dld_V2s

-E)ld-es

-D1d_shp_ang1e

-Destimate
-flZ>adr_nn[2 01

-Dld_abc

ld_es<=13'.
ld_V2s<=U'.
Id-abc<=O'

,
estimate<=D"
ld_dis<=D',

- - ý' Id slip angle<=O'; <-- "000
Srego

Fa d Fn n Fadr nn<--"001 "I

4 ld-abc<=T, F, ý-
St S2 >ý S3) >ý SAI

adr nn<=T11",

ýýad' V"= 2

- Facr nn<7"100ý

S 10

Fig. 6-16 - The state diagram of ctrl_tier2

232

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

Each operation cycle starts when the necessary input information, calculated by

tierl, is available on the input ports of tier2. The appropriate moment to start the

operation of tier2 is indicated by the signal start_tier2 generated by tierl. On the other
hand, ctrl-tier2 waits for the four adapters included inside tierl to finish their shifting
tasks. As shown in Fig. 6-16, the signals ready_erris, ready es, readyy2s and

ready_dis generated by the adapters in Fig. 6-12 are used to test the validity of the input

information before it is processed by the angle subnetwork.

6.4 THE IMPLEMENTATION OF THE SPEED
CONTROL STRATEGY

ýI
Tier3 calculates the stator frequency and the stator current amplitude using the slip

angle and the rotor reference speed. The calculations are performed according to the

control principles discussed in chapter 4. The simplified function F, using a single

proportionality constant KI has been used to minimise the hardware structure of this tier.

To simplify the VHDL model even further, the multiplication with K, has been

modelled as a set of shifts and additions as follows:

-- code Fragment 6.13

process(beta) -- multiplication by 0.101B-0.625

variable x: std logic_vector(7 downto 0);
begin

x: =beta & -0000";

x: =beta+beta(3) & beta(3) & beta & 1100";

Kj_tim9s-beta<-x;
end process;

This approach is advantageous when KI contains a large number of '0' bits but a small

n umber of 'I' bits.

The current increments calculated using F, are accumulated in a specialised

register. The accumulation process can be inhibited if I, decreases under the limit Is-inin

or increases over Is-.., thereby maintaining the current amplitude within the acceptable

range of values (Fig. 6-17). On the other hand, the speed derivative function F,, has been

implemented as a look-up table. The angle neural network divides the 360' interval into

36 sectors, which means that only 9 sectors are allocated to each quadrant. Therefore,

the look-up table is small and can be modelled by a case VHDL statement:

-- code Fragment 6.14

process (alpha)

begin
case alpha is

when -0000- F- omega<="00011";
when "00011, iomega<-"00011";

when "0010" F omega<="00011";

233

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

when 1100111, => F- omega<="00100";
when "0100" => F_omega<-"00110";

when "0101" -> F_omaga<-"01000";
when "0110" => F omega<-"01010";
when "0111" => F omega<-"01100";
when "1000" => F omega<-"01110";
when others -> F omega<-"01111"

and case;
and process;

'Ibis approach has the advantage that non-linear versions of F. can be

implemented with the same hardware resources as the piecewise linear versions. The

values generated by F. are always positive. They need to be added or subtracted

depending on the difference between the reference speed and the calculated speed of the

rotor. Furthermore, the constant quantity Qjp needs to be added to or subtracted from

the previously obtained result depending on the sign of the reference speed. All these

situations are analysed by the simple interconnection of adders, subtracters and

multiplexers shown in Fig. 6-17.

equ

,e

Nn Stator Frequency

nlux

add + add
Stator current amplitude

up e
Current Amplitude Frequency

update

clk
Register

reset reset--
Register upd4

LUJ'adt

MCheckc'k

nlux

T
add

++

auddadd

x

sub

+
sub Speed Derivative +

lierermce
reference equivalent 811P angle Actual Rotor Spefed I

ro
ttol Rotor

angle Speed

Fig. 6-17 -The structure of Tier3

The operation of tier3 does not require a control unit. Al the results arc updatcd

when the input signal update is activated by tier2. Ibis input signal is conncctcd to the

234

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

signal estimate generated by ctrl_tier2. The signal estimate is activated at the cn(j ot, thc

operation cycle of tier2 after the motor slip angle has been calculated. Therefore, it

indicates an appropriate moment for tier3 to perform its calculations as the slip angle

cteqv is one of the two input data used by this tier.

6.5 THE COMPLETE MOTOR CONTROLLER
SIMULATIONS

A VFIDL testbench has been developed by combining the model oftlic conI)IL-1,.

controller with the VHDL model of the three-phase induction motor presented in

chapter 4. Several simulations have been performed using Workview Office sofkkalc

package with different values of the generic parameters involved in tile controller

description, in order to test its correct operation. 'rhe simulations denlonstrilte tile

controller capability to generate correct PWM signals (Fig. 6-18), to accuratel", Colltr(d

the stator current and to determine the 1110tor equivalelit Ind(IC1,111ce.

alS Edit Signal Axes 'View V/jndckv Annotahnn lil[,

2 (D al ;tII II J-VIVI

labcdetl! 3j

/abcdef(4)

labcdef(A)

/, -Ih cI It'll "I

labcdeffl)

labcdef(Oj

16m
Time (Seconds)

16.5ni

Fig. 6-18 - Motor controller simulation results

As discussed in chapter 5, the precision of the neural llet%kork. gC11crollig 111C

pWM signal is restricted by the limited number of' Voronoi ccll,,. I lo%kc%cj-, LýI%cjj 111

adequately high IlLimber of cells, the operation imprecision is sufficicIIIIN lo%k to 11; 1%c ;j

negligible effect on the overall operation of' the drive system. The paranicicr %; Ihics

given in chapter 5, ensure sufficiently accurate control of' the stator current vector. ()n

the other hand, the on-line induction estimation process is affected hN. tile 1111111cd

235

Chapter 6. THE INDUCTION MOTOR CONTROLLER VHDL DESIGN

precision of the angle subnetwork involved (±5' error), and as a result, the final

estimated inductance is smaller than the correct value. Fig. 6-19 presents a comparison

between the initial simulation results in chapter 4, performed in ideal conditions

(perfectly accurate angle calculations), and the simulation results obtained with the

controller model that performs angle calculations using the hardware implemented angle

subnetwork. The inductance estimation inaccuracy causes errors in the calculation of

vectors Vj and e but this does not affect their average value over several operation

cycles of the controller. Thus, the effect of the inductance estimation error over the

motor speed control is minimal due to the high inertia of the rotor that filters out the

ripples of the control signals, originated by the induction estimation errors. The accuracy

of the inductance estimation can be increased by increasing the number of neurones

included in the angle subnetwork. However, the simulations performed proved that such

an approach brings a minimal improvement in the global behaviour of the drive system,

which does not justify the increase of the total hardware complexity of the motor

controller. On the other hand, the computer simulations demonstrated the adequate

operation of the motor controller including the neural network described in chapter 5,

and its satisfactory capability to control the operation of a three-phase induction motor.

ImHl

2

1

Results obtained In Ideal
-conditions

. -----------------

- -- -- -------------

------- ---------- ---
-------A

Results obtained with the hardware
Implemented neural network

0
0 50 loo 150 200 250 300 t[MS]

Fig. 6-19 - Comparison of inductance estimation simulation results

After the successful implementation of the motor controller into a Xilinx

XC4010XL FPGA, it has been tested in conjunction with a small three-phase induction

Inotor (less than 0.5 W). The next chapter presents the experimental results obtained.
236

7. EXPERIMENTAL RESULTS

This chapter presents experimental results relating to the performance of a

complete three-phase induction motor drive system controlled by the new neural FPGA

controller.

7.1 THE DRIVE SYSTEM
The practical tests have been performed using the FH2 MklV testbench produced

by TecQuipment [4]. The testbench offers the facility to mount up to two electrical

machines, DC and AC on the same shaft (Fig. 7-1) and includes speed and torque

sensors that allow testing the motor operation.

The laboratory testbench configuration available includes the FH90 four-pole

three-phase cage induction motor and the FH50 DC motor (not used in the experiments).

The stator windings are reconfigurable, both A-connection and Y-connection being

possible. Nevertheless, TecQuipment recommends that the A-connection is used. The

237

Fig. 7-1 -The FH2 MkIV testbench

Chapter 7. EXPERIMENTAL RESULTS

rated line voltage is 220V in this configuration, while the line currents have values of up

to 1 A, depending on the load torque. The practical experiments proved that the speed

control principles discussed in chapter 4 are valid for both Y-connection and A-

connection. This experimental conclusion is supported by the theoretical possibility of

transforming any A-connected load supplied by a sinusoidal voltage system into an

equivalent Y-connected load. The high frequency harmonics contained by the PWM

voltage are filtered by the motor inductances and therefore the corresponding current

harmonics are negligible. As a result, only the fimdamental harmonics of the voltage and

current need to be taken into account and the Y-connected equivalent R-L-e circuit is

applicable to A-connected motors as well.

The experimental setup that includes the FH2 MkIV testbench and the FH90

induction motor is presented as a block diagram in Fig. 7-2 and is illustrated by the

photograph in Fig. 7-3. The motor is supplied by a PWM inverter bridge

SKM40GD I 32D produced by Semikron [6] which contains 1200 V IGBT transistors.

The bridge is supplied with DC voltage by a diode rectifier via a low-pass filter. The

input voltage of the rectifier can be adjusted using an autotransformer, which allows the

smooth control of the DC-link voltage. The IGBT transistors in the PWM inverter are

controlled by the XC4010XL FPGA controller on the XS40 test board. This FPGA is a

low voltage device that associates the voltage level of 3.3 V with logic '1 1 [7].
Insuladon

240 V transformer
ryyy-

4 '0 IL

=F
7 T

PWM
Inverter

Im
3-

Torque S ed
Generator Measuerementj

(SKM40GD132D)
auto-

tramformer
7ml 1

240 Dflver Board for Signal A/D : V:
owl

E

,W Power Transistors WpUllcation, Conversion

insulation auto-
transformcr

transfonner
CMOs

Interface
0-

-

XS40 Board

19999999 2

switches

Fig. 7-2 - The schematic of the experimental setup

The voltage level of the control signals is adapted in two stages to the electrical

characteristics of the power transistors. First, the CMOS interface in Fig. 7-2 amplifies

the output signals of the FPGA to 5V and supplies them to the transistor driver board. In

238

Chapter 7. EXPEFUMENTAL RESULTS

the same time, the CMOS interface protects the control circuits against the damaging

effects of any failure that may occur in the power circuits. In the second stage, the driver

board amplifies the control signals to 15 V, which is the control voltage level,

Fig. 7-3 - The experimental set-up

Two of the motor currents are measured using Hall effect transducers that generate

a voltage proportional to the measured current, which are then amplified using simple

operational amplifiers and transmitted to the TLC1550 10-bit AID converters produced

by Texas Instruments [1]. The binary codes produced by the A/D converters are

transmitted to the FPGA controller. As mentioned in chapter 6, the VHDL controller

model contains a series of generic parameters defining the size of several internal

modules. Many of these parameters are correlated and depend on the width 'ni' of the

two current input busses 'ia' and 'ib'. To implement the entire motor controller in a

single XC4010XL FPGA, the generic parameter 'ni' was limited to 8. Thus, only the 8

most significant bits are used by the FPGA controller in this configuration. The

reference speed of the motor is set in two's complement code using a set of8 switches.

Consequently, the rotor electrical angular frequency (o, can be set at values between

-128 and +127 Hz, corresponding to mechanical speeds between -3840 rev/s and

+3810 rev/s. The CMOS interface and the operational amplifiers have been

implemented on a single interface board, illustrated in Fig. 74 together with the XS40

board.

239

recommended bv the IGBT manufacturer.

Chapter 7. EXPERIMENTAL RESULTS

Fig. 7-4 - The XS40 board and the interface board

The parameters of the speed control algorithm implemented by tier3 (see chapter
6) have been determined based on practical experiments with the motor. The equivalent

parameters of the FH90 motor were initially determined. The stator resistance was

measured directly, the result being 95 92, which Is a large value for a three-phase

induction motor. The equivalent inductance L has been approximated by measuring the

voltages across the motor and currents at 50 Hz stator frequency, while the rotor speed

was forced to zero. In these conditions, the internal voltage e has a small value and the

total impedance of the motor is mostly given by the resistance R and by the equivalent

inductance. The measurements and the calculations showed that L is about 220 mH. The

critical slip angular frequency was determined while keeping the stator current constant.

This was achieved by connecting the rotor windings to variable resistors as shown in

Fig. 7-5. The obtained result was (,)kp = 95 rad/s corresponding to a speed of 1050 rev/s S1

(the rated speed is 1500 rev/s). The equivalent slip angle ct" has been arbitrarily set at cq% II

65' (according to the considerations in chapter 4, it can have any value between 45" and
901). The equation

tan-, ((". f)= QýI,
eqv k (J)Slp

240

Chapter 7. EXPERIMENTAL RESULTS

demonstrated in chapter 4, yields the value flýjp=44.3 rad/s, corresponding to a slip
frequency of 7 Hz. The other parameters that defme the speed control algorithm (K. 1,
K. 29 Pm., KI) have been determined by trial and error in practical experiments that

testing the performance of the drive system.

-r-

dc: l _0 U a

Speed Torque Im
U Gauge Gauge -3 b H

0U c
Manual Current

Control

Fig. 7-5 - The measurement of the critical slip at constant current

As a conclusion of the considerations presented in this chapter and in the previous

ones, the main characteristics of the adopted VHDL motor controller are:

0 The sampling frequency (tier 1) f, = 15 0 kHz

o The PWM frequency (tier2) fpwm=15 kHz

e The maximal rotor speed allowing inductance estimation 600 rev/min (10 Hz)

The width of the input busses ia and ib (tierl) ni=8

The step length of the multiplier N, 1=4
The stator resistance (defmed by a constant in the model of tierl): R, =950

The equivalent slip angle Ct,, qv=65'

e The reference slip angular frequency 0,1ý=44.3 rad/s

0 The parameters defming the speed control dynamics: K. 1=650 s", Y, 2=200 ell

P. ax=0.7 rad, Ki=1 A/s

" The switching delay between the two transistors in the same inverter leg: 2.5ps

" The input clock frequency flk= 12 MlIz

" The number of samples used to generate the reference sinewave, (tierO): 256

" The number of bits for each entry of the look-up table (tierO): 3

" Number of bits used for the reference motor speed: 8

241

Chapter 7. EXPERIMENTAL RESULTS

" The number of inverter output voltages used: 6 out of 7 (the null voltage is not used)

" The number of triangular Voronoi cells of the position neural subnetwork: 54

" The number of sectors of the angle subnetwork: 36

" The number of bits used to code the input signals of the position subnetwork: 5

" The number of bits used to code the input signals of the angle subnetwork: 5

In this configuration, the implementation of the controller took up 98% of the hardware

resources available on the XC4010XL FPGA. The values of all the parameters can be

easily modified by altering a series of constants and generic parameters in the VHDL

code describing the model of the motor controller. Consequently, given the appropriate

FPGA, the controller can be adapted in terms of hardware complexity and operation

accuracy to the requirements of a large range of particular applications.

Two sets of experiments have been carried out. The first set verified the PWM

voltage generation and the current control accuracy, while the second set reefer to the

speed control performance of the drive system.

7.2 CURRENT AND VOLTAGE CONTROL TESTS
A special version of the controller VHDL model has been created for the first set

of experiments. This version lacks tier3 so the frequency of the stator current is identical

to the frequency specified by means of the 8 switches and the stator current amplitude is

constant. This approach simplifies the testing procedure because it checks the operation

of tiers 0,1 and 2 without the feedback signals calculated by tier3 and therefore any

operational error can be located much easier.

Fig. 7-6 presents four of the PWM control signals generated by the FPGA motor

controller. They have been monitored using a four-channel Hewlett Packard digital

oscilloscope. The figure demonstrates the correlation between two of the signals that

control the transistor on the same inverter leg (dr](5) and ctrl(2)). Thus, the two signals

have complementary values: when one of them is '0' the other is 'P. The 2.5 Ps delay

generated by the interface block contained in tier2 is not visible in Fig. 7-6 due to the

inappropriate time scale (50 ps/div), but it can be observed in Fig. 7-7 where the time

scale is 15 ps/div. The overall PWM voltage across the motor can be seen in Fig. 7-8.

242

Chapter 7. EXPERIMENTAL RESULTS

ý-
mPM-, =TI lk*ý

Acqui, it ion i.; -topped.

.
50 Ma/s

I Im OU ý)Ai, m

'RE

WIN

abcd

_'ab def(4j__., 7

abcd

H] 500ms/dr. 60 000000 P
E L' Im C1113971 cli

Fig. 7-6 - Four of the FPGA output signals controlling the transistors in the IIWM in% erter

Fig. 7-7 - The switching delays produced by tier2 to avoid the short-circuits in (lie in% crit-1.

243

Chapter 7. EXPERIMENTAL RESULTS

Fig. 7-8 - The PWM voltage generated by the inverter for a reference stator frequenev of So III

r ýItibties Hel t l l
tf

e p up Measu n ro ae

, ju I' It ion I, ,t opped

-AIG r,, VAS,, MWýJ=

5 00 ms/dN 30 0 00000

IFig. 7-9- One of the stator currents (the stator is V-connected) measured using a Hall transdu cc r

Fig. 7-9 illustrates one of the motor currents corresponding to tile operation modc

generated by the voltages in Fig. 7-8. The voltage signal in Fig. 7-9 is acquired I, roni one

of the Hall transducers and its amplitude of 200 rnV corresponds to current amplitude ()I'

0.4 A. Fig. 7-10 presents the DC-link voltage in the sarne operation conditions ;,,, (I

demonstrates that the ganima filter cornposed of' the 6 mH inductor and 470 pl:

244

Chapter 7. EXPERIMENTAL RESULTS

capacitor illustrated in Fig. 7-2 is capable to maintain the DC voltage level within

acceptable limits.

-.
Rib

flt, ý, j Lýt ion is st oppQd

.0
kS'a i

0 OnýUj 00n On On Or Or

$4

200 V

ITII 5 OU ms/ld wam-130000O. U.,

Fig. 7-10 - The voltage ripple on the DC link

7.3 SPEED CONTROL TESTS
The second set of experiments, demonstrating speed control, Nvere carricd mit

using the entire VHDL model of the controller, as presented in the previOLIS chapter. I 11c

tests were perforined with the stator A-connected, but similar results are obtained when

the stator winding is Y-connected. The drive system has been tested both in steIdv_, tltc

and in transient operation.

Fig. 7-11 compares the steady-state operation of the induction motor wlicl, It Is

controlled by the new FPGA controller, with the natural operation of the motor without

any controller. The reference speed of the controller is 1500 rev/s (the rated speed ot, tile

FH90 motor). This figure demonstrates that the controller is capable to niaijjtýjijj tile

rotor speed almost constant despite large variations of the load torque. The iniprovenleill

brought by the use of the new controller is given by the higher rigidity of'speed-tor(itic

characteristic. This improvement can be quantified as the speed increase produced bN

the FPGA controller for each value of the load torque (Fig. 7-11).

245

Chapter 7. EXPERIMENTAL RESULTS

Natural Torque Characteristic
T[Nm] Controlled Torque Characteristic

0.9

0.8 ---------- 4 --------- ------ r -------- ------- * --r ----------

0.7 ---------- - ------- :
--------- ---------- --- ------ - --------

0.6 -------- ----------- ---------------- ---- --- -----

0.5 ---------------------- --------------------------

----------- 0.4 ---------------------- Speed control: ------
improvement 0.3 --------------------- :- --------- ---------
at 0.5 N-ni i

-------------------- ---------- 11 -- -------- 0.2 ----------------------

0.1 ----------- ---------- ---------- ---------- 11 ---------- r -- ------

0
400 600 800 1000 1200 1400 1600

n[rev/min]

Fig. 7-11 - The static mechanical characteristic of the motor with and without digital controller

Fig. 7-12 presents the motor transient response to a fast variation of the torque. A

perfect step variation of the load torque could not be achieved due to the limitations of

the testbench. However, Fig. 7-12 shows the capability of the FPGA controller to

maintain the speed almost constant while the load torque undergoes significant

variations relative to the motor rated power. Thus, the increase of the torque causes a

slight slow down of the rotor and this leads to an increase of the motor slip above the

imposed value. Therefore, the slip compensation mechanism included in the controller

iincreases the motor current and boosts the active torque reducing the slip frequency to

the initial value. The transient process takes approximately 0.8 s.

246

Chapter 7. EXPERIMENTAL RESULTS

Fig. 7-12 - The drive system response to a step change of the load (orque

Fig. 7-13 illustrates the motor start-up when the load torque is mill. The transient

response lasts for approximately 0.65 seconds, after which the motot- speed is cmistaia

at 1500 rev/min.

The load torque during the transient operation illustrated in Fig. 7- 1.;

Fig. 7-15 is proportional to the rotor speed. As a result, the motor acceleration is more
247

Fig. 7-13 -The motor start without external load tor(I tic

Chapter 7. EXPERIMENTAL RESULTS

difficult and the transient response is slower. The result in Fig. 7-15 can be comparc(I

with the motor start when no speed control system is used (Fig. 7-14). Clearlý. the

FPGA speed controller improves the dynamic response of the drive systern.

Fig. 7-15 - The motor start under load when controlled by (fie 2% &N ice

The improvernent is limited by two factors:

0 The motor parameters

0 The available hardware resources

248

Fig. 7-14 - The natural motor start under load without the H'GA con(rollcr

Chapter 7. EXPERIMENTAL RESULTS

The parameters of the motor FH90 are not suitable for sensorless control with high

response speed because the stator resistance is large (95 91) and therefore the resistive

voltage component is large. Furthermore, the motor power is small (approximately

0.5 kW) so the amplitude of the internal voltage e is smaller than the resistive voltage

component. As a result, the calculated equivalent slip angle oc,, qv is inaccurate and

affected by large fluctuations during motor operation. These fluctuations tend to cause

system instability, which can be counteracted only by increasing the time constants of

the system, which is equivalent to limiting its overall dynamic performance.

Nonetheless, the limitations imposed by the motor parameters are not particular to the

new control method presented in this thesis. They affect most of the sensorless speed

control algorithms developed so far.

249

CONCLUSIONS AND FURTHER WORK

8.1 DISCUSSION AND CONCLUSIONS

An original sensorless speed control strategy for induction motors has

successfully been developed, implemented and tested by simulations and practical

experiments. The theoretical underpinning is based on an equivalent R-L-e circuit of the

induction motor, and it includes a universal current control algorithm applicable to any

three-phase power system, in addition to a specific speed control algorithm designed for

induction motors. The two algorithms have been devised in a manner that minimises the

number of algebraic calculations and transfers part of the control tasks to hardware

implemented neural networks. This approach generates a more compact hardware

structure than a controller using classical current control methods and field oriented

control strategies.
The current control algorithm is an improved predictive control method enhanced

by the inclusion of an on-line induction estimation technique, which calculates the

inductance in the equivalent R-L-e circuit. The equivalent inductance value is used to

determine the optimal switching sequence of the PWM inverter in order to obtain fast

current response while limiting the current ripples. The current control algorithm does

not necessitate high calculation precision and it is most naturally expressed in

geometrical terms, which makes the implementation, using simple neural networks, a
feasible solution.

The speed sensorless control method devised uses space vectors expressed in

polar co-ordinates instead of the normal rectangular co-ordinates, which simplifies the

Co-ordinate transformations between the fixed stator reference frame and the mobile

reference frames. Moreover, the control algorithm is based on input quantities that arc
invI ariant to such transformations: phase-shifts between space vectors (most efficiently

calculated by neural networks), vector amplitudes and vector angular speeds. A stator

current oriented reference frame is used, which eliminates the need to calculate the rotor

Rj flux vector V,. However, a quasi-field oriented control method is obtained by taking i

into account in an indirect manner that is, its position in the complex plane is estimatcd

250

Chapter B. CONCLUSIONS AND FURTHER WORK

based on the position of the internal voltage e and the relation between the frequency

and the amplitude of the stator current is defined in a manner that approximates the

behaviour of a classical space vector controller. Tberefore, good control quality is

obtained with a reduced computational effort.

The work demonstrates the multiple advantages of using hardware implemented

neural networks in the motor control process. Thus, the neural approach reduces the

complexity of the control system by eliminating the need for large external EPROM-

implemented look-up tables, increases the calculation speed of the controller, and

enables the resealing of the controller structure with good control over the performance-

complexity ratio. A new implementation strategy has been developed for feed-forward

artificial neural networks containing neurones with step activation functions. This

strategy transforms the mathematical model of the network into an optimised VHDL

description which contains only AND, OR and NOT logic gates. Given the high

operation speed of the obtained neural networks and the limited hardware resources, the

optimisation aimed to minimise the implementation gate count. The entire process was

successfully automated by means of C++ programs.

The XC4010XL FPGA containing the equivalent of only 10,000 gates was used

experimentally to prove the validity of the new sensorless control principles. Such a

small device is sufficient for simple applications, which do not require high dynamic

performance. The industrial applications in this category include drive systems for fans

and pumps where fast speed changes are not only unnecessary but they are also

pernicious due to the shock waves (stresses) which can be created in the system. The

cost of applying control to these applications is decreased by the elimination of the

speed sensor, which is made possible by the introduction of the new FPGA controller

using hardware implemented neural networks.

High dynamic performance can be obtained with more complex controllers

implemented in larger devices from the new FPGA families Spartan and Virtex, which

offer more than 100,000 equivalent gates per chip. These devices can integrate complex

neural networks alongside high precision classical digital structures that operate with

quantities represented by a large number of bits. In this case, the control performance is

of the same level of precision as the accurate sensorless vector control algorithms that

include Extended Kalman Filters, but without the need for extremely high-speed DSP

devices. The optimal size of the FPGA for a given application depends on the required

dynamic performance combined with the price limit imposed by the market.

251

Chapter B. CONCLUSIONS AND FURTHER WORK

The theoretical investigations, the computer simulations and the experiments

proved the validity of the induction motor speed control principles but at the same time

highlighted some practical limitations. Thus, as in the case of other sensorless speed

control strategies, the controller needs to be tuned to the parameter values of each

particular motor. Furthermore, the speed control is more accurate in the case of medium

and high power induction motors, as they have small stator resistance and large internal

voltage amplitude during normal operation. An advantage is that the current control

method does not require any previous information on the load parameters and generates

similar results regardless of the motor type and its rated power.

8.2 FURTHER WORK

The research results described open a series of new development directions for the

improvement of the control quality of the present motor controller and for the extension

of its applicability area.
One of the most important improvements can be the elimination of the possible

steady-state speed errors caused by the variation of the rotor resistance as an effect of

the temperature rise during the motor operation. This can be achieved by implementing

a simple thermal model of the induction motor in order to calculate the rotor

temperature based on the initial temperature before the motor start-up and on the

variation of the stator currents in time. Heating inside the motor is generated mainly by

the stator current -is and by the rotor current ý1. If the motor slip angular frequency co, lp is

maintained constant at the reference value Qjp then, based on the mathematical analysis

presented in chapter 4, the rotor current space-vector can be calculated as:

-j(o.,, pL
1,

=
-j! ns,

pL.
13

Rr + jco,,
pLr

R,, + jflslpL, (8-1)

and therefore the amplitude of the rotor current is proportional to the amplitude of the

stator current. The heat generated by the motor currents is eliminated through the outer

layers of the stator and by means of the air circulated by the motor fan. Therefore, the

rotor temperature is the solution of the differential equation

TQ -
dT

K Q, - 1,2 (t)- FQ
Tt (8-2)

where TQ is the motor thermal time constant, 1. is the stator current amplitude, FQ is a

function of rotor speed and r is the motor temperature rise compared with the starting

moment. Identifying FQ is a prerequisite for solving the equation. Given the physics

252

Chapter B. CONCLUSIONS AND FURTHER WORK

underlying the operation of a typical fan, the fimction FQ is depends on the rotor speed

and on the rotor speed squared. Consequently, equation (8-2) can be approximated as:

d-r
+T=KQI -I, 2(t)-K *(o, (t)-K 2

(8-3) TQ - dt
Q2 Q3 * CL)r

Thus, to increase the steady-state speed control accuracy it is required to identify

the parameters TQ, KQj, KQ2 and KQ3 and to implement the equation (8-3) into

hardware. This solution increases the hardware implementation of the controller but it is

much less complex than an extended Kalman filter so it is the preferable alternative for

the practical applications that do not necessitate extremely high speed control accuracy.

A second improvement can be generated by the refinement of the motor control

strategy summarised in (4-172). Thus, in a very general case both F, and F. may depend

on all the four parameters involved co", coe,, I., and Pqv. A thorough mathematical CS

analysis combined with computer simulations can determine mathematical expressions

for F, and F, that yield superior dynamic performance compared to the results obtained

so far. If Fi and F, turn out to have a complicated non-linear dependency on the four

input parameters then the neural approach can be extended to the implementation of the

two functions. Initially a stepwise approximation needs to be generated and then this

approximation can be transformed into a series of Voronoi cells that are readily

transformed into a neural network implementable into hardware. Such an

implementation strategy needs to be compared to the classical implementation method

that uses digital structures, which explicitly perform all the calculations involved. The

neural solution is advantageous if either high calculation speed is necessary or if the

neural hardware complexity level is lower than the level corresponding to the classical

implementation solution.
Another solution to limit the number of calculations involved in the induction

motor sensorless speed control process is to adopt a fuzzy control strategy. The control

method developed can be readily transformed into a fuzzy strategy by the fuzzification

of the two fundamental functions F1 and F.. This approach can be particularly fruitful if

the exact mathematical expressions of the functions are strongly non-linear and depend

on all the four input parameters, thereby making direct mathematical calculations

difficult to implement into hardware.

The overall speed control quality can be improved by implementing a control

strategy with multiple reference angles are, ', between the space vectors g and i that

correspond to multiple reference slip values 0,1p. Large values for 0,1p allow the

253

Chapter 8. CONCLUSIONS AND FURTHER WORK

generation of larger torque at the same stator current amplitude but in the same time

they worsen the speed control capability of the system. Thus, small slip values are

preferable when the torque is small, but higher slips need to be adopted if the load

torque increases. An improved control system may use a set of three to five different

reference slip angles, the decision on which angle to be used at a certain moment being

taken based on the stator current amplitude Is. Thus, whenever the stator current

amplitude surpasses an upper limit, a smaller (x" is adopted, which corresponds to a eqv

larger 92,1p and has the effect of reducing the necessary I.,. Conversely, when the stator

current decreases below a lower limit, a larger value for arl" is adopted and the speed cqv

control performance is improved.

The applicability of the current control strategy included in the general control

approach is not limited to induction motors. It can be used to control the current in any

power system that may include other types of three-phase motors such as synchronous

or DC-brushless motors. Specific speed control strategies can be devised for these

motors based on the same general R-L-e equivalent circuit as in the case of induction

motors. Any of the new speed control strategies can be then used in conjunction with

the current control strategy presented in this research work.

The extension of the present control principles to a large range of power systems

and the investigation of the advantages generated by the hardware implemented neural

approach in each particular case offers a large area of possibilities for future fertile

research.

254

REFERENCES
(In alphabetical order)

[11 *** "Analogue and Mixed Signal Catalogue", Texas Instruments, copyright

1999.

[2] *** "Designing with Powerview/WorkviewPLUS", Viewlogic Systems, Inc.,

293 Boston Post Road West, Marlboro Massachusetts 01752-4615, copyright

1993.

[31 *** "Digital Analysis with Powerview/WorkviewPLUS", Viewlogic Systems,

Inc., 293 Boston Post Road West, Marlboro Massachusetts 01752-4615,

copyright 1993.

[4] *** 1417112/3 MkIV Electrical Machines Teaching System", TecQuipment,

Bonsall Street, Long Eaton, Nottingham, NG 10 2AN, UK, 1997

[5] "Foundation Series Quick Start Guide 1.4", Xilinx Inc, 1997.

[6] 4'Semikron Innovation + Service", Semikron International, Sigmundstr.

200, D-9043 1, NUmberg, Germany, copyright 1998.

[7] *** "The Programmable Logic Data Book", Xilinx, Inc., 2100 Logic Drive,

San Jose, California 95124, USA, copyright 1999.

[81 "TMS320C5x -User's Guide", Texas Instruments Inc. 1992

[91 , IEEE Standard VHDL Language Reference Manual", IEEE standard

1076-1993,1994.

[101 ***: "Energy Savings with Electric Motors and Drives" Guide provided by

Energy Efficiency Enquiries Bureau, Crown copyright 1998

"Intel 8017ONX ETANN Data Sheets", February 1991

[12] "Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP",

Literature Number: BPRA057, Texas Instruments Europe, July 1997,

(www. ti. com).

[13] Alspector, J.; Allen, R. B.; Jayakumar, A.; Zeppenfeld, T.; Meir, R.:

"Relaxation Networks for Large Supervised Learning Problems", in

"Advances in Neural Information Processing Systems 3", (Lippmann, R. P.;

Moody, J. E.; Touretzky, D. S. eds), Morgan Kauftnann 1991, San Mateo, CA,

pp. 1015-1021.

[14] Al-Tayie, J. K.; Acarnley, P. P.: "Estimation of Speed, Stator Temperature and

255

REFERENCES

Rotor Temperature in Cage Induction Motor drive Using the Extended

Kalman Filter Algoriflim7' IEE Proceedings on Electric Power Applications

vol. 144, no. 5, September 1997, pp. 301-309.

[15] Andreou, A. G.; Boahen, K. A.; Pouliqueen, P. O.; Jenkins, R. E.; Strohbehn, K:

"Current-mode subthreshold MOS circuits for analogue VLSI neural

systems", IEEE Transactions on Neural Networks, vol. 2,199 1, pp. 205-213.

[16] Armstrong W. W.; Gecsei, J.: "Adaption Algorithms for Binary Tree

Networks", IEEE Transactions on System, Man, Cybernetics, no. 9, pp. 276-

285,1979.

[17] Atkinson, D. J.; Hopfensperger, B.; Lakin, R. A.: "Field Oriented Control of a

Doubly-Fed Induction Machine using Coupled Microcontrollers", EPE'99

Lausanne (CD).

[18] Aubebart, F.; Girerd, C.; Chapuis, Y. A.; Poure, P.; Braun, F.: "ASIC

Implementation of Direct Torque Control for Induction Machine : Functional

Validation by Power and Control Simulation" PCIM'98, Power Converter and

Intelligent Motion Conference, Nuremberg, May 25-28 1998, pp 251-260.

[19] Ayestaran, H. E.; Prager, R. W.: "The Logical Gates Growing Network! ',

Technical Report CUED/F-INFENG/TR 137, Engineering Dept., Cambridge

University, 1993.

[201 Bartos, F. J.: "Sensorless Vector Drives Strive for Recognition", Control

Engineering, September 1996.

[21] Bashagha, A. E.; Ibrahim, M. K.: "A New Digit-Serial Divider Architecture"

International Journal on Electronics, vol. 75, no. 1, pp. 133-140.

[22] Bashagha, A. E.; Ibrahim, M. K.: "A New High Radix Non-Restoring Divider

Architecture" International Journal on Electronics, vol. 79, no. 4, pp. 455-470,

1995.

[23] Bashagha, A. E.; Ibrahim, M. K.: "Design of a Square-Root Architecture: Digit

Serial Approach" International Journal on electronics, vol. 76, no. 1, pp. 15.

25,1994

[24] Bashagha, A. E.; Ibrahim, M. K.: "Digit-Serial Squaring Architecture" Journal

of Circuits, Systems and Computers, vol. 4, no. 1, pp. 99-108,1994.

[25] Bashagha, A. E.; Ibrahim, M. K.: "Nonrestoring Radix-2 k Square Rooting

Algorithm" Journal of Circuits, Systems and Computers, vol. 6, no. 3 pp. 267-

285,1996

256

REFERENCES

[26] Baum, E. B.: "On the Capabilities of Multilayer Perceptrons", J. Compl.,

no. 4,1988, pp. 193-215.

[27] Beierke, S.; Konigbauer, R.; Krause, B.; Altrock, C. V.: "Fuzzy Logic

Enhanced Control of AC Motor Using DSP"; Embedded Systems Conference

California; 1995, pp 101-106

[281 Beiu, V.: "Entropy, Constructive Neural Leaming and VLSI Efficiency" in

Proceedings of NEUROTOP'97: Neural Priorities on Data Transmission and

EDA, Brasov Romania, 22-30 May 1997, pp. 38-74.

[29] Beiu, V.: "VLSI Complexity of Discrete Neural Networks", Gordon and

Breach & Harwood Academics Publishing, 1998.

[30] Beiu, V.; Taylor, J. G.: "Optimal Mapping of Neural Networks onto FPGAs11,

'Natural to Artificial Neural Computation', Lecture Notes in CS930,

Springer-Verlag, Berlin, June 1995.

[31] Ben-Brahim, L.: "Motor Speed Identification Via Neural Networks" IEEE

Industry Applications Magazine, vol. 1, no. 1 January/February 1995, pp. 28-

32

[32] Boldea, I.; Nasar, S. A.: "Vector Control of A. C. Drives", CRC Press, Bota

Raton, 1992.

[33] Bose, K. B.: "High Performance Control of Induction Motor Drives", IEEE

Industrial Electronics Society Newsletter, September 1999, pp. 7-11

[34] Bose, N. K.; Garga, A. K.: "Neural Network Design Using Voronoi Diagrams"

IEEE Transactions on Neural Networks vol. 4, no. 5, September 1993 pp.
778-787.

[35] Bowes, S. R.; Mount, M. J.: "Microprocessor Control of PWM Inverters",

IEEE Trans. Ind. Applicat., vol. 128, no. 6, pp. 293-305,1981

[36] Brod, D. M.; Novotny, D. W.: "Current Control of VSI-PWM Inverters", in

IEEE-IAS Conf. Rec. 1984, pp. 418-425.

[37] Butcher, J. C.: "The Numerical Analysis of Ordinary Differential Equations -
Runge-Kutta and General Linear Methods", John Wiley & Sons, 1987

[381 Cecati, C; Rotondale, N.: "Torque and Speed Regulation of Induction Motors

Using the Passivity Theory Approach", IEEE Transactions on Industrial

Applications, vol. 46, no. 1, February 1999, pp. 119-127.

[391 Chapuis, Y. A.; Poure, P.; Braun, F. "Torque Dynamic Correction of Direct

Torque Control for Induction machine Using a DSP", PCIM'98, Power

257

REFERENCES

Converter and Intelligent Motion Conference, Nuremberg, May 25-28 1998,

pp. 241-250.

[40] Chapuis, Y. A.; Roye, D.: "Optimization of Square Wawe Transition for

Direct Torque Control of Induction Machine" Proceedings of the Intelligent

Motion Conference, NUmberg, 10-12 June 1997.

[41] Churcher, D.; Baxter, D. J.; Hamilton, A.; Murray, A. F.; Reekie, H. M:

"Generic Analog Neural Computation -71be EPSELON chip", in "Advances

in Neural Information Processing Systems", (Hanson, S. J.; Cowan, D. J.;

Giles, C. L. eds.), Morgan Kaufmann 1993, San Mateo, CA: pp. 773-780.

[42] Conradi, P.: "Reuse in Electronic Design: From Information Modelling to

Intellectual Properties", John Wiley & Son Ltd, 1999.

[43] Cybenko, G.: "Aproximations by Superposition of a Sigmoidal Function",

Mathematics of Control, Signal and Systems, vol. 2, pp. 303-314,1989

[44] DeDoncker, R; Novotny, D. W.: "The Universal Field Oriented Controlleel,

IEEE-IAS Trans., vol. 30, no. I January/February 1994, pp. 92-100.

[45] Driankov, D.; Hellendoom, H.; Reinfrank, M.: "An Introduction to Fuzzy

Control" Springer-Verlag, Berlin Heidelberg 1993

[46] Dwyer, R. A.: "High-dimensional Voronoi Diagrams in Linear Expected

Time", Discr. Comput. Geom., vol. 6,1991, pp. 343-367

[471 Eichmann, G.; Caulfield, H. J.: "Optical learning (inference) machine",
Applied Optics, no. 24,1985, pp. 378.

[48] Eldridge, S. E.; Walter, C. D.: "Hardware Implementation Of Montgomery's

Modular Multiplication Algorithm", IEEE Transactions on Computers vol.
42, pp. 693-9,1993.

[49] EL-Sharkawi, M.; Neibur, D. (Eds.): "Artificial neural networks applied to

power systems", IEEE Power Engineering Society tutorial course, IEEE

catalogue number 96 T? 112-0,1996

[50] Farhat, N. H.; Psaltis, D., Prata, A.; Paek, E.: "Optical Implementation of the

Hopfield Model", Applied Optics, no. 24,1985, pp. 339.

[511 Fodor, D.; Vas, J.; Katona, Z.: "Fuzzy Logic Based Vector Control of AC

Motor Using Embedded DSP Controller Board", Proc. of PCIM'98 -
Intelligent Motion, pp 235-240

[52] Foussier, P.; Calmon, E; Carrabina, L; Fathallah, M.; Grennerat, V-; Jorda,

X.; Gontrand, C.; Retif, M. J.; Chante, J. -P.: "Practical Example of Algoridun

258

REFERENCES

Integration for Electrical Drives", EPE'99 Lausanne (CD).

[53] Goslin, G. R.: "Using Xilinx FPGAs to Design Custom Digital Signal

Processing Devices", Proceedings of the 1995 DSP Technical Program, pp.

595-604.

[54] Goslin, G.; Newgard, B.: "16-Tap, 8-Bit FIR Filter Application Guide",

Xilinx Inc., November, 1994.

[55] Gottlieb, I. M.: "Power Supplies, Switching Regulators, Inverters and

Converters", I st ed., Blue Ridge Summit, PA., 1984

[56] Gottlieb, I. M.: "Practical Power-Control Techniques", I st ed., Indianapolis,

IN, USA: H. W. Sams, 1987

[57] Gottlieb, I. M.: "Regulated Power Supplies", 4th Edition, Blue Ridge Summit,

PA, 1992

[581 Grzesiak L.; Beliczynski B.: "Simple Neural Cascade Architecture for

Estimating of Stator and Rotor Flux", EPE'99 Lausanne (CD)

[591 Habetler, T. G.; "A space vector-based regulator for AC/DC/AC converters",

IEEE Trans. on Power Electronics, vol 8, no. 1, pp. 30-36,1993.

[60] Harnmerstrom, D.: "The Conectivity Analysis of Simple Association - or -
How Many Connections Do You Need", Proceedings. NIPS'87 (Denver

USA), Amer. Inst. Phys., 1987, pp. 338-347.

[61] Haffer, H.; Nossek, J. A.; Stelzl, R.: "An Analog Implementation of Discrete-

Time Cellular Neural Networks", IEEE Transactions on Neural Networks,

vol 3, no 3, May 1992, pp. 466-476.

[62] Haykin, S. "Neural Networks A Comprehensive Foundation" Macmillan

College Publishing Company, Inc. 1994

[63] Heht-Nielsen, R.: "Neurocomputing. Reading", Addison-Wesley Publishing

Co. 1990.

[64] Holtz, J.: "Pulsewidth modulation -A Survey", IEEE Trans. Ind. Electron.,

vol. 39, no. 5, pp. 410-420,1992.

[65] Holtz, J.: "Speed Estimation and Sensorless Control of AC Drives" in

proceedings of IECON93, IEEE-Industrial Electronics Society 1993, pp. 649-

654.

[66] Holtz, J.; Stadtfeld, S.: "A Predictive Controller for the Stator Current Vector

of AC Machines Fed from Switched Voltage Source", KEE IPEC-Tokyo

Conf. Rec. 1983, pp. 1665-1675.

259

REFERENCES

[67] Hopcroft, J. E.; Mattson, R. L.: "Synthesis of Minimal Threshold Logic

Networks", IEEE Trans. on Electr. Comp., EC-6, pp. 552-560,1965.

[68] Hornik, K.; Stinchcombe, M.; White, H.: "Multilayer Feedforward Networks

are Universal Approximators", Neural Networks, No. 2,1989, pp. 359-366.

[69] Hu, W. Y.; Zhong, L.; Rahman, M. F; Lim, K. W.: "A Fuzzy Observer for

Stator Resistance for Application in Direct Torque Control of Induction

Motor Drives", Proc of the Second International Conference on Power

Electronics and Drives (PEDS'97), 26-29 May, 1997, Singapore, Vol. 1, pp.

91-96.

[701 Hu, Y. W.; Rahman, M. F., et al: "Direct Torque Control of Induction Motor

Using Fuzzy Logic", Canadian Conference on Electrical and Computer

Engineering, St. John's, Newfoundland, Canada, May 25-28,1997, Vol. 2,

pp. 767-772.

[711 Hwang, B.; Saif, M.; Jamshidi, M.: "A Neural Network Based Fault Detection

and Identification (FDI) for a Pressurized Water Reactor", Proceedings of the

12th IFAC World Congress on Automatic Control, Sydney, Australia, 1993

[72] Hwang, B. C.; Saif, M.; Jamshidi, M.: "Fault Detection and Diagnosis of a

Nuclear Power Plant Using Artificial Neural Networks", Journal of Intelligent

and Fuzzy Systems, Vol. 3, No. 3, pp. 197-213,1995

[73] Ibrahim, M. K.; Bashagha, A. E.: "Area-Time Efficient Two's Complement

Square Rooting" International Journal on electronics, vol. 86, no. 2, pp. 127-

140,1999.

[74] Irwin, G. W.; Warwick, K.; Hunt K. J.: "Neural Network Applications in

Control" Institution of Electrical Engineers, London 1995

[75] Javurek, J: "Possibilities of Improving the Method of Direct Control of

Asynchronous Machine Torque, Automatizace Journal (Chech Republic) No.

12,1997, pp. 789-794

[76] Jeong, S. G.; Myung-Ho, W.: "DSP Based Active Power Filter with Predictive

Current Control", IEEE Trans. on Industrial Electronics vol. 44, No. 3, June

1997

[771 J6nsson, R: "Natural Field Orientation (NFO) Provides Sensorless Control of

AC Induction Servo Motors" PCIM Magazine June 1995, pp. 10- 17

[781 J6nsson, R; Leonhard, W.: "Control of an Induction Motor without a

Mechanical Sensor, based on the Principle of 'Natural Field Orientation'

260

REFERENCES

(NFO)" International Power Electronics Conference IPEC-Yokohama 1995,

pp 101-106.

[79] Kalman, R. E.: "A New Approach to Linear Filtering and Prediction

Problems", Trans. ASME (J. Basic Engineering) vol. 82D, no. 1, March 1960,

pp. 35-45.

[80] Kalman, R. E.; Bucy, R. S.: "New Results in Linear Filtering and Prediction

Theory", Trans. ASME (J. Basic Engineering), vol. 83D, no. 1, March 1961,

pp. 95-108.

[811 Kanmachi, T.; Takahashi, 1: "Sensor-Less Speed Control of an Induction

Motor", IEEE Industry Applications Magazine, vol. 1, no. 1,

January/February 1995, pp. 22-27.

[82] Kawamura, A.; Hoft, R. G.: "Instantaneous Feedback Controlled PWM

Inverters with Adaptive Hysteresis", IEEE Trans. Ind. Appl. vol. IA-20,

pp. 769-775,1984.

[83) Kazmierkowski, M. P.; Dzieniakowski, M. A.: "Review of Current

Regulation Techniques for Three-Phase PWM Inverters", IEEE IECON Conf.

Rec., pp. 567-575,1994

[84] Kelemen A.; PanA, T.: "Simultaneous Speed and Rotor Resistance Estimation

for Sensorless Vector-Controlled Induction Motor Drives" Proceedings of the

Twenty-Seventh International Inteligent Motion Conference, June 20-22,

1995 NUmberg Germany, pp. 523-530.

[851 Knapp, S. K., Xilinx Corporate Applications Manager: "Using Programmable

Logic to Accelerate DSP Functions", Xilinx, Inc. December 1996.

[86] Koc, C. K. Johnson S.: "Multiplication of signed-digit numbers", Electronics

Letters, May 1994 pp. 840-841.

[871 Kolar, J. K.; Ertl, H.; Zach F. C.: "Analysis of on- and off-line optimised

predictive current controllers for PWM converter systems", IEEE Trans. on
Power Electronics, vol. 6, pp. 451-462, July 199 1.

[881 Krzeminski, Z.: "An Observer System for Induction Motor without Speed

Sensor" Proceedings of the Twenty-Seventh International Inteligent Motion

Conference, June 20-22,1995 NOrnberg Germany, pp. 143-153.

[891 Krzeminski, Z.; Guzinski, J.: "DSP Based Sensorless Control System of tile

Induction Motor", Proc. of PCIM'98 - Intelligent Motion, pp 137-146.

[901 Kung, S. Y.: "Digital Neural Networks", Prentice Hall 1993.

261

REFERENCES

[91] Lanser, J. A.; Lehmann, T.: "An Analog CMOS Chip Set for Neural Networks

with Arbitrary Topologies", IEEE Transactions on Neural Networks, vol. 4,

no 3, May 1993, pp. 441-444.

[92] Le-Huy, H.; Dessiant L. A: "An addaptive current control scheme for PWM

synchronous motor drives: analysis and simulation"" IEEE Trans. on Power

Electronics, vol. 4, pp. 486-495 Oct. 1989.

[931 Leonhard, W.: "Control of electrical drives", 2 nd edition Springer, Berlin

1996.

[94] Lin, F. -J.; Shyu, K. -K.; Wai, R. -J.: "DSP-Based Minmax Speed Sensorless

Induction Motor Drive With Sliding Mode Model-Following Speed

Controller", IEE Proceedings - Electric Power Applications, November 1999,

Vol. 146, Issue 6, pp-471

[951 Lindsey, C. S.; Lindblad, Th.: "Review of hardware neural networks: A user's

perspective", Proceedings of the 3rd Workshop on Neural Networks: From

Biology to High Energy Pyhsics, Isola d'Elba, Italy, September 26-30,1994.

[96] Ltidtke, I.; Jayne, M. G.: "A new direct torque control strategy", IEE

Colloquium on Advances in Control Systems for Electric Drives, 24 May

1995, London, UK, Digest No: 1995 pp. 114-120.

[97] Macq, D.; Verleysen, M.; Jespers, P.; Legat, J. D.: "Analog Implementation of

a Kohonen Map with On-Chip Learning", IEEE Transactions on Neural

Networks, vol 4, no 3, May 1993, pp. 456-461.

[98] Manes, C.; Parasiliti, F.; Tursini, M.: "Comparative Study of Rotor Flux

Estimation in Induction Motors with a Nonlinear Observer and the Extended

Kalman Filter", Proceedings of the 20th International Conference on Industrial

Electronics Control and Instrumentation EECON - Bologna, vol. 3, pp. 2149,

1994.

[99] Manes, C.; Parasiliti, F.; Tursini, M.: "DSP Based Fiels-Oriented Control of

Induction Motor with a Non-Linear State Observer" 27h Annual IEEE Power

Electronics Specialists Conference, vol 2, pp, 1254,1996

[100] Massengill, L. W.; Mundie, D. B.: "An Analog Neural Hardware

Implementation Using Charge-Injection Multipliers and Neuron-Specific Gain

Control", IEEE Transactions on Neural Networks, vol. 3, no. 3, May 1992,

pp. 354-362.

[101] Matsuo, T.; Lipo, T. A.: "A Rotor Parameter Identification Scheme for Vector

262

REFERENCES

Controlled Induction Motor Drivee', Rec. IEEE-IAS Annual Meeting, pp.

538-545

[102] Mead, C. A.; Ismail, M.: "Analogue VLSI Implementation of Neural

Systems", MA: Kluwer, Boston, 1989

[103] Mirchandini, G; Cao, W.: "On I-fidden Nodes in Neural Nets", IEEE

Transactions on Circuits and Systems No. 36, May 1989, pp. 661-664

[104] Mortara, A.; Vittoz, E. A.: "A Communication Architecture Tailored for

Analog VLSI Artificial Neural Networks: Intrinsic Performance and

Limitations", IEEE Transactions on Neural Networks, vol. 5, Number 3, May

1994, pp. 459466.

[105] Murray, A. F.; Del Corso, D.; Tarassenko, L.: "Pulse-Stream VLSI Neural

Networks Mixing Analog and Digital Techniques", IEEE Transactions on

Neural Networks, vol. 2, no. 2, March 1991, pp. 193-204.

[106] Nabae, S.; Ogasawara M.; Akagi, H.: "A New Control Scheme for Current

Controlled PWM Inverters", IEEE Trans. Ind. Appl., vol IA-22, no. 4, pp.

697-701, July/August 1986.

[107] Navabi, Z. "VHDL - Analysis and Modeling of Digital Systems", Electrical

and Computer Engineering Series, McGraw-Hill International Editors, 1993.

[108] New, B. "A distributed arithmetic approach to designing scaleable DSP

chips", EDN, August 17,1995, pp. 107-114.

[109] Novotny, D. W.; Lipo, T. A.: "Vector Control and Dynamics of AC Drives",

Oxford Science Publications, Clarendon Press - Oxford 1996.

[110] Perry D. L.: "VHDI: '- Second edition, McGraw-Hill Series on Computer

Engineering, McGraw-Hill Inc 1994

[111] Profumo, F.; Griva, G.; Tenconi, A.; Abrate, M.; Ferraris, L.: "Stability

Analysis of Luenberger Observers for Speed Sensorless High Performance

Spindle Drives", EPE99 Lausanne (CD).

[112] Rajashekara, K.; Kawamura, A.; Matsuse, K.: "Senorless Control of AC

Drives", IEEE Press, 1996.

[113] Ramacher, U.; Wesseling, M.: "A Geometrical Approach to Neural Network

Design", in Proceedings. UCNN89 (Washington USA), IEEE Press, vol 2,

pp. 147-153, January 1989.

[114] Minger, E.; Boser, B. E.; Jackel, L. D.: "A neurocomputer board based on the

ANNA neural network chip", in "Advances in Neural Information Processing

263

REFERENCES

Systems 4", (Moody, J. E.; Hanson, S. J.; Lippmann, R. P. eds.), Morgan

Kaufmann 1992, San Mateo, CA, pp. 773-780.

[115] Satieo, S.; Torrey, D. A.: "Fuzzy Logic Control of a Space-Vector PWM

Current Regulator for Three-Phase Power Converters", IEEE Transactions on

Power Electronics, vol. 13 no. 3, pp. 419-426,1998

[116] Schwartz, M.; Shaw, L: "Signal Processing - Discrete Spectral Analysis,

Detection and Estimation" McGraw-Hill Book Company 1975.

[117] Seepold, R.; Kunzmann, A. (eds.): "Reuse Techniques for Vlsi Design",

Kluwer Academic Publishers, 1999.

[118] Smieja, F. J.: "Neural Network Constructive Algorithm: Trading

Generalisation for Learning Efficiency? ", Circuits, Systems, Signal

Processing, vol. 12, no. 2, pp. 331-374,1993.

[119] Summer, M.; Campbell, J.; Curtis, M.: "A Stator Resistance Estimator for

Sensorless Vector Controlled Drives using Artificial Neural Networks",

EPE'99 Lausanne (CD)

[120) Tajima, H.; Hori, Y.: "Speed Sensorless Field Orientation Control of the

Induction Machine", IEEE Trans. Ind. Appl. vol. 29,1993, pp. 175-180.

[121] Tan, S.; Vandewalle, J.: "Efficient Algorithm for the Design Of Multilayer

Feed-Forward Neural Networks", Proceedings IJCNN'92 (Baltimore USA),

IEEE Press, vol. 2,1992, pp. 190-195.

[122] Teske, N.; Asher, G. M.; Bradley, K. J.; Summer, M.: "Sensorless Position

Control of Induction Machines using Rotor Saliencies under Load

Conditions", EPE'99 Lausanne (CD).

[123] Trynadlowski, A. M.; Legowski, S.: "Minimum-loss vector PWM strategy for

three-phase inverters", IEEE Trans. Power Electron., vol. 9 no. 1, pp. 26-34,

1994

[124] Tzou, Y. -Y.; Tsai, M. -F.; Lin Y. F.; Wu, H., "Dual-DSP Fully Digital Control

of an Induction Motor", IEEE ISIE Conf. Rec., Warsaw, Poland, pp. 673-678,

June 17-20,1996

[125] Tzou, Y-Y.; Hsu, H-J.: "FPGA Realization of Space-Vector PWM Control IC

for Three-Phase PWM Inverters" IEEE Transactions on Power Electronics,

vol. 12, No. 6, November 1997, pp. 953-963.

[126] Tzou; Y-Y, Yeh, S-T.; Wu, H.: "DSP-Based Rotor Time Constant

Identification and Slip Gain Auto-Tuning for Indirect Vector-Controlled

264

REFERENCES

Induction Drives", IECON Proc. Vol. H, pp. 1228, Taiwan 1996

[127] Vadivel, S.; Bhuvaneswari, G.; Rao, G. S.: "A Unified Approach to Real Time

Implementation of DSP Based PWM Waveforms", IEEE Trans. Power
Electron. vol. 6, no. 4, pp. 565-575,1991

[128] Van der Broeck, H. W.; Skudeiny, H C.; Stanke, G. V.: "Analysis and
Realisation of a Pulsewidth Modulator Based on Voltage Space Vectors"

IEEE Transactions on on Industry Applications, vol. 24, No. I

January/February 1988 pp. 142-150.

[129] Vanlandingham, H. F.: "Introduction to Digital Control Systems", MacMillan

Press, NewYork, 1992.

[130] Vas P.; Li J.; Stronach, A. F.: "Artificial Neural Network-Based Control of
Electromechanical Systems". in Proceedings of .4 th European Conference on
Control IEE. Coventry. 1994.

[131] Vas, P.: "Artificial-Intelligence-Based Electrical Machines and Drives.

Application of Fuzzy, Neural, Fuzzy-Neural and Genetic Algorithms",

Monographs in Electrical and Electronic Engineering, Oxford University

Press, 1999.

[132] Vas, P.: "Electrical Machines and Drives, A space-vector theory approach",
Monographs in Electrical and Electronic Engineering, Oxford University

Press, 1992.

[133] Vas, P.: "Sensorless Vector and Direct Torque Control", Monographs in

Electrical and Electronic Engineering, Oxford University Press, 1998.

[134] Vas, P.: "Vector Control of AC Machines", Monographs in Electrical and
Electronic Engineering, Oxford University Press, 1990.

[1351 Vas, P.; Stronach, A. E; Neuroth, M.: "DSP-Based Speed-Sensorless Higli-

Performance Torque Controlled Induction Motor Drives", Proc. of PCIM'98 -
Intelligent Motion, pp 225-234.

[136] Vas, P.; Stronach, A. F.; Neuroth, M.; Du, T.: "A fuzzy controlled speed-

sensorless induction motor drive with flux estimators", IEE EMD, Durham,

1995, pp. 315-319.

[137] Walter, C. D.: "Fast Modular Multiplication using 2-Power Radix",

International Journal of Computer Mathematics No. 3, pp. 21-2 8,199 1.
[138] Walter, C. D.: "Systolic Modular Multiplication, IEEE Transactions on

Computers" vol. 42, pp. 376-378,1993.

265

REFERENCES

[139] White, D. A.; Sofge D. A.: "Handbook of Intelligent Control: Neural, Fuzzy,

and Adaptive Approaches" Multiscience Press, Inc. 1992.

[140] Zurada, J. M: "Introduction to Artificial Neural Systems", West Publishing

Company, 1992.

266

LIST OF PUBLICATIONS

Dinu A.; Cirstea M. N.; McCormick M; Ometto A.; Rotondale N.: "New

Approach for PWM Inverter Using a State Space Observer", in The Proceedings

of Symposium on Power Electronics, Electrical Drives, Advanced Machines,

Power Quality (SPEEDANT 98), Sorrento June 3-5 1998 Italy pp. A2-31 - A2-36.

Dinu A.; Cirstea M. N.; McCormick M: "Virtual Prototyping of a Digital Neural

Current Controller" in Ninth International Workshop on Rapid System

Prototyping June 3-5 1998, Leuven Belgium pp. 176-180.

HI. Dinu A.; Cirstea M. N.; McCormick M: "An Adaptive Control Strategy for

Electric Drives" in the proceedings of (PCM98) Nfirnberg, May 28-28 1998, pp.

101-107.

IV. Dinu A.; Cirstea M. N.; McCormick M; Ometto A.; Rotondalle N. "Neural ASIC

Controller for PWM Power Systems" in Eleventh Annual IEEE International

ASIC Conference "ULSI - Making It Real" - Rochester September 13-16 1998",

pp. 29-33.

V. Dinu. A.; Cirstea M. N.; McCormick M.: "A Novel Neural PNVM Controller", in

proceedings of the IEE International Conference on Simulation

(SIMULATION98), York, UK, September 30 - October 2 1998, pp 375-379.

VI. Dinu A.; Cirstea M. N.; McCormick M; Ometto Antonio; Rotondalle Nicola:

"Load Independent Current Control Strategy for PNVM Inverters" in the

proceedings of UKACC International Conference on Control (CONTROU98)

September 1-4 1998 Swansea UK pp. 1118-1122.

VII. Dinu A.; Cirstea M. N.; McCormick M; Ometto A.; Rotondalle N.: "Neural

Network for Control of PWM Inverters" in the proceedings of Power Electronics

and Motion Control (PEMC'98), Prague, September 8 1998, CDROM.

VIU. Dinu, A.; Cirstea, M. N.; McCormick, M.; Ometto, A.; Rotondale, N.: "Sensorless

Induction Motor Control Strategy Optimised for FPGA Hardware

Implementation", Proc. of Int. Conf. on Optimization of Electric & Electronic

Equipment (OPTIM-IEE), Brasov, Romania, May 2000, PP. 625-630.

IX. Dinu, A.; Cirstea, M. N.; McCormick, M.; Haydock, L.; AI-Khayat, N.: "Neural

Current Controller for Induction Motor Applications", Proc. of Int. Conf. on

267

LIST OF PUBLICATIONS

Optimization of Electric & Electronic Equipment (OPTIM-IEE, IEEE), Brasov,

Romania, May 2000, PP. 665-670.

Papers Accepted for Publication:
Aounis A.; Cirstea M. N.; McCormick M.; Dinu, A.: "Vector Controlled Induction

Motor Drive Modelling Using VHDL", Proc. of IEE Int. Conf. on Computer

Aided Control Systems Design (CACSD 2000), Salford, UK, 11-14 Sept. 2000.

Cirstea M. N.; Aounis A.; Dinu, A.; McCormick M.: " VHDL Approach to

Induction Motor Modelling", Proc. of the IEE CONTROL 2000, Cambridge, UK,

4-7 Sept. 2000.

268

Appendix A
UNIVERSAL C++ PROGRAMS FOR NEURAL
NETWORK HARDWARE IMPLEMENTATION

Appendix A. 1 - CONV-NET. CPP
#include <iostream. h>
#include <fstream. h>
#include <string. h>
#include <stdlib. h>
#include <memmanag. h>

#define MaximumDepth 100
#define LengthInputTab 2000
#define AND 1
#define ANY 0

ofstream output
-

file;
int *out

-
layer, *index, *node, *inverter, *used;

//Index specifies the initial position of the weights in the matrix
row
//before they were rearranged according to their descending values.
//Node is a vector which stores the node numbers corresponding to the
//weights. The node number is not generally speaking corelated with
the
//input numbers because there are inversor gates and because some
neurones
//are located in other layers than the first.
double *w; //The weights vector for one neurone
int no

-
w; //The number of weights per neurone

int current
-

node, output_node, ncý_gates-O, max_dePth, depth. 0;
int ncý_max-inputs;

void adcý_gate(int ind init, double threshold, char and ate); L. 9

void arrange(void)

int i, i_max, i_aux, 3;
double max, max

-
aux;

for(i=O; i<no-w; i++)

max=w[il;
i-max=i;
for(j=i+l; j<no

-
w; j++)

if (max<w EjI

max=w[j];
i_max=3;

if(i max !- i)

max aux=w[i max];
w['ý Max]=w[3.];
w[i]=max

-
aux;

i aux=index[imax];
i; Tdex[i

max]-3. ndex(i];
index[Ji=i-aux;

Al

APPENDIX A

I
}

}

int add inverter(int i)

noý_gates++;
++current node;
output

-
file<<". NOT

output7 file<<node [index [i]]<<11 "<<current-node<<II\nII;
if(fou-tput_file. goodo)

cout<<"\n\aError on file writing";
exit(l);

return current-node;

double* measure_matrix(int& no-neu, int& no-values,
input-file)

double temp;
char buffer[2];
no-neu=no_yalues=O;
while (input-file. read (buffer, 1) ,I input-f ile. eof

if(buffer[01==I\nI)

no-neu++;
I
input

-
file. clearo;

input file. seekg(O, ios:: beg);
do

input_file>>temp;
if(linput

-
file. gofo)

no_values++;
1
while(! input-file. eofo);
lf(no-neu==0)

no neu++;
if«no values/no neu)*no

-
neu -- no-valuas)

no-v7alues=no-v7aluas/n(: ý.
_neu;

else
if«no-values/(no-neu+1» -- no-valuas)

no-values=no-values/(no-neu+l);
no neu++;

else

cout<<"\n\aError in input filet";
exit(l);

input
-

file. clearo;
input

-
file. seekg(O, ios:: beg);

w=alloc-double(no-values);
return w;

}

void read line-Matrix(istream& input-file)

istream&

A2

APPENDIX A
r-

int i;
for(i=O; i<no-w+l; i++)

input
-

file>>w[i];
if(! input_file. goodo)

cout<<"\n\aError when reading the input file";
exit(l);

int convert_neuron(void)

int i;
double threshold;
inverter=alloc_int(no_w) ; //Shows if the corresponding weight was

negative
//thereby requiring an inversor gate

used=alloc_int(no-w); //Shows if the node has been already used
in the

//past so that the inverter has already been put
index=alloc-int(no-w+l);

for(i=O; i<no-w; i++)

index[i]=i;
inverter[i]=O;
used[i]=O;

for(i=O; i<no-w; i++)

if(w[i]<O)

w[il=-w[i];
inverter[index[ill-1;

w[no w]-=w[i];
w[i]:; 2*w[i];

threshold=-w[no w];
if(threshold<=07)

output
-

node=-l; //Output value is constantly 1

cout<ý'I\n\aWarning: The output of a neurone is constantly let;
I
else

arrange();
adcLgate(O, threshold, ANY);

delete index;
delete used;
delete inverter;

return output-node;

int port_number(int i)

int rez;
if (inverter[ind9x[i]]w=O)

A3

APPENDIX A

rez=node[index[i]];
if(depth>ma: ý_depth)

max-depth=depth;

else

if(depth+l>max-dePth)
ma)ý-depth=depth+l;

if (used[index[ill)
rez--used[index[ill;

else

used[index[ill=add inverter(i);

rez--used[index[ill,

return rez;
J

int det-num-internaý_gate-layers(int no-inp)

int no
-

inp-top, no-layers=l;
iflnoý_inp<=no

-
max-inputs)

return 1;

else
while(no-inp>no-max-inputs)

no_inp_top--no_inp/no_max_inputs;
if(no_inp>no_inp_top*no_max-inputs)

no-inp-top++;
np-inp=np-inp_top;
no

-
layers++;

return no-layers;

I

int cursor=O;
int input[LangthInputTab];

void writeý_gate(char *name, int no-inputs, int local_cursor)

int i, no
-

inp-top-gate, no_last-inputs;
if(no-inputs<=no-max-inputs)

output
-

file<<name<<no
-

inputs;
for(i-ýO; I<no

-
inputs; i++)

output
-

fil7e<<11 II<<input[loca1_cursor+ij;

current-node++;
output

-
file<<" "<<current

-
node<<II\nII;

output7node-current-node;
noý_gates++;
if(loutput-file. goodo)
f

cout<<"\n\aError on file writing";
exit(l);

I
else

A4

APPENDIX A

no-inp_top_gate=no_inputs/no-max_inputs;
if(no-inputs>no-inp_top_gata*no-max-inputs)

no
-

inp-top-gate++;
if (oursor+no_inputs+no_inp_ýtop_gate>=LengthInputTab)

cout<<"\n\aError: Input table is full";

exit(l);
I
for(i=O; i<no_inp_top_gate-l; i++)

local_cursor=cursor+i*no-max-inputs;
writeý__gate(name, no

-
max

T
inputs, local cursor);

input[cursor+no-inputý+il=outpulý_node;

local
-

cursor=cursor+(no_inp_top_gate-l)*no max_inputs;
no_last

-
inputs--no-inputs-(no-inp__ýtop-gate-l)*no-max-inputs;

if(no_last_inputs>l) //It is possible to have only one remaining
input

writeý_gate(name, no
-

last
-

inputs, local-cUrsor);
input[cursor+no_inputs+no_3. np_ýtop_gate-ll=output node;

else
input[cursor+no

-
inputs+no

-
inp top_gate-

1]=input[cursor+no-inputs-11;
for(i=O; i<no

-
inp_top_gate; i++)

input[cursor+il=input[cursor+no-inputs+i];

writeý_gate(name, no-inp_ýtop-gate, cursor);

double sum;
int j;

void ad4 gate(int ind init, double threshold, char and ate) L-9

int i, no
-

inputs, no-big_ýweights, ind for AND;
//These are local variables because they need to be preserved during

the
//recursive calls of the function
if(threshold<=O)

cout<<"\n\aError: The output of a subneurone is constantly Joe;
exit(l);

if (I an(ý.
_gate)

sum=O;
no inputs=O;

ný7big_yeights=0;
ind for-AND=ind init;
for(i=ind init; i<no-W; i++)

if(w[il>-threshold)

no-inputs++;
no

-
big-yeights++;

ind for AND=i+l;

for(i=ind for_AND; i<no_w; i++)

A5

APPENDIX A

sum=O;
for(j=i; j<no

-
w; j++)

sum+=w[j];
cumulated

if(sum>=threshold)

weights.
no

-
inputs++;

//The sum will be the result of several

//inputs anyway because these are not big

I
if ((no-inputs>l) && (lan(k_gate))
I

depth=depth+det_num_internal-gate-lavers (no-inputs)
because there is

if(depth>MaximumDepth)
//one gate anyway

cout<<"\n\aError: Too many recursive calls P,;

exit (1) ;
I
for(i=O; i<no_inputs; i++)

if(i>--no-big_yeights)

cursor+=no inputs;
if(cursor>=LengthlnputTab)

//I-l I

cout<<"\n\aError: Input table is full. Enlarge the input
table";

exit (1)

ad(: k_gate(ind init+i, threshold, AND);

cursor-=np_inputs; //necessarily be an AND
gate

input[cursor+i]-output_node;

else
input[cursor+i]-POrt

7
number(ind init+i);

writeý_qate C'. OR", noý_Jnputs, cursor); //Here the gate is actually
written

depth=depth-det_num_internal,
_gate-layers(no-inputs); I

else if((no_inputs=-l) && (no_big_weights--l) && (tancL_gate))

output
-

node=port_number(ind init) //It is just a
straightforward

//input-output conection

else if (((no_inputs-1) && (no big_ýweights-0)) II ancLgate)
//An AND gate will be used

no-inputs=l; //When is just a simple AND gate, it coresponds to
a

input

//single combination of inputs. Variable 'no inputs, in
//used for economy of space in the stacC. The first

//is compulsory to be used which is why no-inputs-1.
sum=0;
for(i-ind init; i<no-w; i++)

SUM+-W[3.];

for(i=ind init+l; i<no-W; i++)
if(sum-w[il<threshold)
no-inputs++;

A6

APPENDIX A

else
break;

sum=O;
for(i=ind init; i<ind init+no-inputs; i++)

sum+=W[J . L];
if(threshold-sum>O)

no-inputs++; //A further subneurone is required
if(no-inputs<2)

cout<<"\n\aError in algorithml An AND gate has less than 2
inputs 1 11;

exit(l);

depth+=det-num-internaý_gate-layers (no-inputs) //, -if because
there is

//one gate anyway
if(depth>MaximumDepth)

cout<<"\n\aError: Too many recursive callsIll;
exit(l);

for(i=O; i<no_inputs; i++)

if((i<no-inputs-l) 11 (threshold-sum<=O))
input[cursor+il=port

-
number(i+ind init);

if((i==no-inputs-l) && (threshold-sum>O))

cursor+=no-inpUtS; //The suplementary subneurone is

added
if(cursor>=LengthInputTab)

cout<<"\n\aError: Input table is full. Enlarge the input
table";

exit(l);
I
ad(k_gate(ind init+no-inputs-l, threshold-sum, ANY);

cursor-noý_inputs;
input[cursor+i1=output_node;

writeý_gate(". ANDII, no
-

inputs, cursor);
depth-=det-num-internal-gate-layers(no-inputs);

else if(no_inputs==O)

output
-

node=O; //Output value is constantly 0

cout<<"\n\aWarning: The output of a neurone is constantly Oil;
I
else

cout<<"\n\aError in conversion algorithm";
exit(l);

void main(int noý_par, char** par)

ifstream input
-

file;
int no-neu-0, no_values_per_line, previous_nq_neu, gate_layerB-0;
int i, no-file;

A7

APPENDIX A

iflnoý_par<4)
I

cout<<"\nToo few parameters";
exit(l);

I
no_max_inputs=atoi(par[noý_par-11);
output file. open (par [noý_par-2 ios: out)
if(lou-tput_file. goodo)

cout<<"\n\aError: The output file cannot be openedl 11;
exit(l);

cout<<"\n ----- Start conversion ----- 11;
for(no-file=l; no-file<noý_par-2; no-flle++)

input-file. open(par[no-file], ios:: in);
if(! input-file. goodo)

cout<<"\n\aError: The input file cannot be openedl 11;
exit(l);

cout<<"\nProcessing file "<<no-file;

previous-no_neu=no-neu;
w--measure_matrix (no_neu, no_yalues_per_line, input_file)

no
-
w=no values_per

-
line-1;

ifl(no iile>l)&&(previous_no_neu 1= no_values_per_line-l))

cout<<"\n\aError: Wrong number of neurones in layer "<<no-file;

exit(l);

out-layer=alloc-int(no-neu);
if(no-file==l)

node=alloc int(no W);
for(i=O; i<no_w; i++)

node[i]=i+l;
output

-
file<<11. INPUT 11<<nodeEij<<11\n11;

if(loutput_file. goodo)

cout<<"\n\aError on file writing";
exit(l);

current-node-no-w;

max_depth-0;
for(i-O; i<no-neu; i++)

read line-Matrix(input_file);

out-layer[il-convert neurono;

gate
-

layers+-max-dePth;
if(no_file==noý_par-3) //It was the last input file so the

output
//ports must be written

for(i-O; i<no-neu; i++)

output-file<<". OUTPUT "<<out-layer[i]<<11\n11;
if(loutput-file. goodo)

A8

APPENDIX A

{
cout<<"\n\aError on file writing";
exit(l);

delete node;
if (no-file<noý_par-3) //File no lnoý. par-21 is the output file so

this is
//not the last input file

node=alloc
-

int(no-neu);
for(i=O; i<no_neu; i++)

node[i]=out-layer[i]; //The outputs of the previous layer are
//the inputs for the next one

if (node [i] <=O)

cout<<"\n\aWarning: The output of the hidden neuron "<<(i+l);
cout<<" in layer "<<no_file<<" is constantl";

input
-

file. close();
delete w;
delete out-layer;

I
input

-
file. close();

cout<<"\nThe output file contains 11<<n4ý_gates<<11 logic gates on 11;
cout<<gate-layers<<11 gate layers\n";

Appendix A. 2 - OPTIM. CPP
#include <iostream. h>
#include <fstream. h>
#include <stdlib. h>
#include <string. h>
#include <memmanag. h>

#define NOT 3
#define AND 1
#define OR 4
#define INPUT 2
#define OUTPUT 5
#define NO WORDS 5
#define CANCELLED -2
// 10 1 is already defined
, voc'.

in CONV NETI. CPP as 'ground' and 1-11 as

char* words [5] =(". AND", ". INPUT", ". NOT", ". OR", " -OUTPUT");
int length[5]={4,6,4,3,7);

struct gate-string

char name[81;
int ncý_gates;
int cursor;
int* gate-nodes;

gate
-

string *and s, *or_s;
int ; input_sl *Output_s, *not_s;

A9

APPENDIX A

int max-input=O, max_output=O, max_and=O, max_or=O, max-not-0;
int cursor_input=O, cursor_output=O, cursor_not=O;
int no_initý_gates, no-firý_gates;

gate
-

string* allo(ý_gate-string (int ncý_qate-strings)

gate
-

string *pointer;
if(noý_gate-Strings>O)

if(l(pointer=new gate-string[noý_gate-stringsj))

cout<<alloo-err;
exit(l);

I
return pointer;

else
return NULL;

}

void init_structures(void)

int i;
for(i=O; i<max_and-l; i++)

and
-
s[i]. ncL_gates=O;

ancfs[il. cursor=O;
and7ý[i]. name[O]=O;

I

for(i=O; i<max-or-l; i++)

or s[il. ncý_gates=O;
or-s[!]. cursor=O;
or s[i]. name[O]-O;

int check,
_word(char*

buffer)

int i, j, found;
for(i=O; i<NO WORDS; i++)

found=l;

for(j=O; j<length[i]; j++)
if(buffer[j] I- words[i][j])

found=O;
break;

if(found-1)

return i+l;

return 0;

int det-inputs(char *buffer)

int i=O;
whil9(((buffar[i]>-lAl) && (buffer[il<-'Z')) 11 (buffer(ilmn. 1))

i++;

A10

APPENDIX A

return atoi(buffer+i);
}

void first_scan(ifstream& in-file)

char buffer[101;
int i, node, ind word, no inputs;

cout<<"First scan\n";
while(lin-file. eofo)

in file>>buffer;
in-d word=check_word(buffer);
switch (ind word)

case INPUT: in_file>>node;
max

-
input++;

break;

case OUTPUT: in_file>>node;
max-oUtput++;

break;
case AND: no

I
inputs=dat-inputs(buffer);

if(np_3. nputs>max
-

and)
max

-
and=no_inputs;

for(i=O; i<=no
-

inputs; i++)
in_file>>node;

break;

case OR: no inputs=det
-

inputs(buffer);
if(np_inputs>max-or)

max or--no
-
inputs;

for(i=0; iZ=no
-

inputs; i++)
in file>>node;
break;

case NOT: in file>>node;
in_file>>node;
max not++;
break;

default: if(buffer[01-0)
break;
else

cout<<"\n\aSyntax error in input fileve;
exit(l);

and s=alloc,.
_gate_string(max-and-1);

or_s=alloc_clate_string(max-or-1);
input

-
s=alloc-int(max-input);

output_s=alloc_int(ma)ýýoutput);
not-s=alloc-int(2*max-not);
init structures();
ncý. initý_gates=max-not;

void second scan(ifstream& in-file)

char buffer[10];

int i, node, ind wOrd, no-inputs;
cout<<"Second scan\n";
in_file. seekg(O, ios:: beg);

All

APPENDIX A

in file. clearo;
while(! in-file. eofo)

in file>>buffer;
ind word=check_word(buffer);
switch (ind word)

case INPUT: in file>>node;
input_; [cursor_input]=node;
cursor-input++;
break;

case OUTPUT: in file>>node;
output7s[cursor

T
outputl=node;

cursorl-output++;
break;

case AND: no_inputs=det inputs(buffer);

and s[no_inputs-21. noý_gates++;
strcpy(and s[no-inputs-2l. name, buffer);
for(i=O; i<--no

-
inputs; i++)

in_file>>node;
break;

case OR: no
-

inputs=det_inputs(buffer);

or_s[no_inputs-2l. nc!
_gates++;

strcpy(or-S[no-inputs-2l. name, buffer);
for(i=O; i<--no

-
inputs; i++)

in file>>nodeý,
break;

case NOT: in_file>>node;

not s[cursor not++]-node;
in iile>>node;

not
-

s[cursor_not++I-node;
break;

default: if(buffer[01-0)
break;
else

cout<<"\n\aSyntax error in input file";
exit(l);

I
for(i=O; i<max_and-l; i++)

and
:-
s[i]. gate

T
nodes=alloc

-
int((and s[ij. ncý_gates)*(i+3));

np__initý_gates+=and s[i]. np_gates;

for(i=o; i<max-or-l; i++)

or-s[il. gate-nodes=alloc-int((or-s[il. ncý_gates)*(i+3));
no-initý_gates+=or-s[i]. nc!

_gates;

void third scan(ifstream& in_file)

char buffer[10];
int i, node, ind wOrd, no_inputs, curs;
cout<<"Third scan\nvf;
in

-
file. seekg(O, ios:: beg);

in_file. clearo;

A12

APPENDIX A

while(lin-file. eofo)

in file>>buffer;
ind word=check_word(buffer);
switch (ind word)

case AND: no
-

inputs=det-inputs(buffer);
curs=and s[no

-
inputs-2]. cursor;

for(i=O; T<---nc!
_,

', nputs; i++)
in

-
file>>and s[no-inputs-2l. gate-nodes(curs+i];

and
-

s[no
-

inputs-2]. cursor+-(no-inputs+l);
break;

case OR: no inputs=det inputs(buffer);
curs=or_s[no_inputs-2]. cursor;
for(i=O; i<=no

-
inputs; i++)

in_file>>o3ý_s[no
-

inputs-2]. gate-nodes[curs+i];
or

-
s[no

-
inputs-2l. cursor+-(no-inputs+l);

break;

case NOT: in_file>>node; //If it is a inverter gate
there are

case INPUT: //two nodes to be read. If it
is just

case OUTPUT: in_file>>node; //a port, there is only one
node to

break; //be read;
default: if(buffer[01-0)

break;
else

cout<<"\n\aSyntax error in input file";
exit(l);

void write_file(ofstreama out_file)

int i, j, k;
for(i=o; i<max input; i++)

out-file<<II. INPUT "<<input-s[i]<<II\nII;
for(i=O; i<max not; i++)

if(not-s[2*i] I- CANCELLED)
out_file<<". NOT II<<not_s[2*i]<<II II<<not_s[2*i+l]<<II\nII;

for(i=O; i<max_and-l; i++)
ifland s[i]. name[O])

for(j=O; j<and s[i]. ncý_gates; j++)
if(and s[i]. gate-nodes[j*(i+3)]I-CANCELLED)

out file<<and
-

s[i]. name;
for(k=O; k<i+i, k++)

out
-

file<<" "<<and s[i]. gate-nodes[j*(i+3)+kj;
out_file<<II\nII;

for(i=O; i<max or-l; i++)
if(or_s[i]. name[O])

for(j=O; j<or_s[il. ncý_gates; j++)
if(or_s[i]. gate_nodes[j*(i+3)11-CANCELLED)

out-file<<or-s[i]. name;

A13

APPENDIX A

for(k=O; k<i+3; k++)

out
-

file<<" "<<or_s[il. gate_nodes[j*(i+3)+k];
out-file<<II\nII;

I
for(i=O; i<max

-
output;! ++)

out-file<<". OUTPUT "<<output,
_s[il<<l'\nll; }

void arrange-inputs(int *begin, int length)

int i, j, i min, min, aux;
for(i=O; i7<length-2; i++)

exchanged
min=begin[i];
i min=i;
f7or(j=i+l; j<length-l; j++)

not
if(begintjl<min)

min=begin[j];
i- min=j;

if(i 1= i-min)

}
}

aux=begin[i];
begin[il-begin[i-min];
begin[i-min]=aux;

I

void arrangeý_all-inputs(void)

//The last is the output nods and the
//second-last doesn't need to be

//with itself

//The last is the output nods which is

//to be modified

int i, j;
for(i=O; i<max and-l; i++)

for(j=O; j<ý-nd s[il. ncý_gates; j++)

arrange-inputs(and s[i]. gate-nodes+j*(i+3), i+3);
for(i=O; i<ma: ý-Or-l; i++)

for(j=O; j<or-s[il. ncý_gates; j++)

arrange-inputs(or_s[l]. gate_nodes+j*(i+3), i+3);

}

int check_inputs (int *beginl, int *begin2, int length)

int i, rez=l;
if((*beginl - CANCELLED) 11 (*begin2 -- CANCELLED))

return 0;
else

for(i=O; i<length-l; i++)
if(beginl[i] I- begin2[i])

rez=O;
break;

return rez;

}

A14

APPENDIX A

void replace-all(int dest, int source)

int i, j;
for(i=O; i<max not; i++)

if(not s[2*i]-dest)
not s[2*i]=source;

for(i=O, i<max
-

and-l; i++)
for(j=O; j<(and s[i]. noý_gates)*(i+3); j++)

ifland s[i]. gate_ncdes[j]==dest)
and s[i]. gate

-
nodes[j]=source;

for(i=07, i<max
-

or-l; i++)
for(j=O; j<(or_s[il. ncý_gates)*(i+3); j++)

if(or_slil. gate_nodes[j]==dest)
or-s[i]. gate-nodes[j]=source;

for(i=O; i<max output; i++)
if (output_s [i] -dest)

output-s[ll=source;

void optimise_structure(void)

int i, j, k, replacement;
do

replacement=O;
arrangeý-all

-
inputso;

for(i=O; i<max
-

not-l; i++)
for(j=i+l; j<max-not; j++)
if((not-s[2*il-=not_s[2*jl) && (not s[2*il I- CANCELLED))

not_s[2*j]=CANCELLED;
replace

-
all(not

-
s[2*j+l], not-s[2*i+l]);

replacement-1;
no-fin,

-gates--;

for(i=O; i<max and-l; i++)
for(j=O; j<a7nd s[i]. np_gates-1; j++)
for(k=j+l; k<and s[i]. ncý_gates; k++)

if(check_inputs(and s[i]. gate nodes+j*(i+3),
and s[i7]. gate-nod-es+k*(i+3), i+3))

and s[i]. gate nodes[k*(i+3)]-CANCELLED;
replace_all(a7nd s[il. gate nodes[k*(i+3)+i+21,

and
-

s[il. gate_nocfe-s[j*(i+3)+i+2]),
replacemený=l;
no_fin,

_gates--;

for(i=o; i<max or-l; i++)
for(j=O; j<or_s[il. ncý_gates-l; j++)
for(k=j+l; k<or-s[i]. ncý_gates; k++)

if(check_inputs(or_s[il. gate-nodes+j*(i+3),
or-S[i]. gate-nodes+k*(i+3), i+3))

or
-

s[i]. gate
-

nodes[k*(i+3)]-CANCELLED;
rýp-lace-all(or_s[i]. gate_nodes[k*(i+3)+i+2],

or-s[il. gate-nodes[j*(i+3)+i+2]);
replacement-1;
np-firý_gates--;

A15

APPENDIX A

)
while(replacement);

void deallocý_everything (void)

int i;
for(i=O; i<max_and-l; i++)

delete and s[i]. gate
-

nodes;
for(i-O; i<max_or-l; i++)

delete or
-

s[i]. gate_nodes;
delete and s,
delete or a;
delete not_s;
delete input

-
S;

delete outpu7t-s;

void main(int noý_par, char** par)

ifstream in file;
ofstream out file;
if (no_par<3)

cout<<"\nToo few parameters";
exit(l);

in file. open(par[ll, ios:: in);
ii-(Iin_file. goodO)

cout<<"\n\aError: The input file cannot be openedt";
exit(l);

cout<<"\n ---------- Start optimisation ---------- \n";
first scan(in file);

second scan(i-n file);
third scan(in-file);
cout<<no_initý_gates<<'I gates in the input file\n";
no

-
firý_gates-no

-
init_qates;

opýtimise_structure();
out file. open(par[2], ios:: out);
if(lout-file. goodo)

cout<<"\n\aError: The output file cannot be openedl";
exit(l);

write-file(out-file);
dealloc

-
everythingo;

in file. close();
Out file. closeo;
cout<<no_fin__gates<<II gates in the output file\n";
if (no-fin.

_gates<no-initý_gates)

cout<<"The structure has been compressed at 11;
cout<<((100.0*no_firý_gates)/no-initý_gates)<<"% from the initial

size\n";

else
cout<<"The structure could not be compressed\n";

A16

APPENDIX A

Appendix A. 3 - VHDL_TR. CPP
#include <iostream. h>
#include <fstream. h>
#include <stdlib. h>
#include <string. h>
#include <ctype. h>
#include <memmanag. h>

#define NO WORDS 5
#define BUFFER SIZE 30
#define NO-INPUTS MAX 25
#define NO-PORTS 300
#define NO MAX-FILES 5

#define and 1
#define or 2
#define J-nv 3
#define

_input
4

#define
-output

5

#define INPUT TYPE 1
#define NODE TYPE 2
#define OUTPUT_TYPE 3

typedef char standard list[2][NO-INPUTS MAX];

char *dict[NO WORDS] -("AND", "OR", "NOT", "INPUT", "OUTPUT");
char buffer[BUFFER. SIZE];

char* node-list;
int input list[NO PORTS1, output list[NO PORTS];
int max

-
ý-ode-numb;; r, internal_nodes, inpýt oursor, output cursor;

int gate count[NO MAX FILES];
int no f7irst net;
ofstream output_file;

void init-listý_gate_count(void)

int i;
for(i=O; i<NO MAX-FILES; i++)

gate-count[i]-0;
I

int search-word(char* name, int length)

int i, answer=O;
char* temp=alloc char(langth+l);
for(i=0; i<length7,7i++)

temp[il=name[i];
temp[length]=O;
for(i=O; i<NO WORDS; i++)

if(Istramp(dict[i], temp))

answer=i+l;
break;

delete tamp;
return answer;

A17

APPENDIX A

int word limit(char* buffer, int& w beg, int& w_end)

int i;
w beg=w__ýsnd-l;
f7o-r(i-O; i<BLTFFER SIZE && buffer[: L]1=0; i++)

if(buffer[i]>='Al && buffer[i]<='Zl && w-bGg--=-l)
vý beg-i;

if(buffer[i]<'Al 11 buffer[il>'Zl && w_begl=-l)
w end=i-1;

if(w-begl--l && w_end! =-l)
return 1;

if(buffer[i]==O && w-beg>-l)

w-end=i-1;
return 1;

return 0;
I

void count,
_ports-and_nodes(int

no_file, char** par)

ifstream input-file;
int w_beg, w end, index;
int input

-
r;

7imber=O, output number=O, current node-number;
input_cursor=O;

output_cursor=O;
input nuinber=O;
outpit nilynher=O;
cout<<"\n Processing file "<<no

-
file;

input
-

file. open(par[no
-

filel, ios:: in);
if(12. nput_file. goodo)

cout<<II\n\aError: The input file cannot be opened";
exit(l);

input
T

file>>buffer;

whileýOinput_file. eofo 11 buffer[Ol)

if(word limit(buffer, w beg, vý__end))
if(index=search_word(&buffer[w begl, w_end-w beg+l))

iflindex-
-

input)
input number-1;

iflindeýý--oUtput)

output-number=l;
I
else

cout<<"\n\aError:
exit(l);

else

Sytax error in input file";

current node number=atoi(buffer);
iflmaxý_pode ;;

uýer<current_node_number)
max_node_number=current_node_number;
if(input-number==l)

A18

APPENDIX A

input-list [input-cursor++ I =current-node-number;
input-number=0;
I
ifloutput numberý-1)

output-list[output-cursor++] =current node-number;
output-number=O;

input-file>>buffer;

input
-

file. closeo;
if(input_cursor>=NO-PORTS)

cout<<"\n\aError: Too many input ports";
exit (1) ;

I
if(output-cUrsor>=NO-PORTS)

cout<<"\n\aError: Too many output ports";
exit(l);

I

int find node_in_yactor (int* vector, int node_num, int total_num)

int i;
for(i=O; i<NO_PORTS; i++)

if(vector[i]=--node-num)
return total_num-1-1;

cout<<"\n\aSerious internal error in the algorithm";
exit (1) ;
return 0;

I

void write-network_entity(int no-file)

output
-

file<<11LIBRARY ieee; \nUSE iees. std logic 1164. all; \n\nvv;

outputý file<<11ENTITY network"<< (no_file+no_firs-t net-1) <<11 IS\n";

output-f ile<<11 PORT (d in : IN std lOgiO_Y6ctOr C'<< (inPut_cursor-1)

outputý_file<<11 DOWNTO 0); \n d Out: OUT std logic
-

vector(11;

output
-

file<<(output cursor-l)<<11 DOWNTO 0)); \nEND nat7work";

output7file<<(no-file+no-first-net-l)<<"; \n\n";

}

void write-logic-exp(ifstream& input-file, int no-file)
I

#define NO GATE INP 30

char gateý_name[51;
int i, no

-
inputs, w-beg, vý.

_end,
index;

int gate nodes[NO
-

GATE
-

INP];
input

T
fiYe>>buffer,

whileý(Iinput_file. eofo)

if(word limit(buffer, w-beg, vý__end))

index=search
-

word(&buffer[w_beg], w_end-w_beg+l);
if(index<=3)

A19

APPENDIX A

for(i=O; *(dict[index-ll+i)! =O; i++)
gate-nameli]-(*(dict[index-l]+i));

gate_name[i]=0;
gate count[no file-l]++;
if(i7ndex<3) -

no inputs=atoi(&buffer[w nd+l]);
else-

no-inputs-1;
if(no-inputs>NO-GATE_INP)

cout<<"\n\aError: One of the gates has too many inputsve;
exit(l);

for(i-O; i<no-inputs+l; i++)
input file>>gate-nodes[i];

if(nodý-list[gate-nodes[no_inputsl-l]-NODE
-

TYPE)
output-file<<" nII<<gate-nodes[no-inputs];

else

output-file<<" d out("<<find node_in_vector(output list,
gate-nodes[no_inputs], Output_cursor);

output.
_file<<")"#*

output-file<<"<=";
if (no-inputs>l)

if(node-list[gate
-

nodes[O]-l]--NODE_TYPE)
output_file<<" n'I<<gat9-nodes[O];

else

output-file<<" d in("<<find node_irý_vector(input-list,
gate-nodes[O], input_cursor);

output_file<<9";
I
for(i-l; i<no-inputs; i++)

output
-

file<<" "<<gate
-

name;
iflnocie

-
list[gate

-
nodes[i]-l]-NODE TYPE)

output file<<" nII<<gate-nodes[i]; -

else

output file<<" d inCI<<find node-in_vector (input list,
gate

-
nodes[il, input-cursor);

output-file<<")";

output-file<<"; \n'l;

else

output -
file<<" "<<gate-name;

if(node_list[gata_nodes[01-1]==NODE_TYPE)
output-file<<" nII<<gate-nodes[O];

else

output-file<<" d in("<<find node-in_vector(input-list,
gate-nodes[Ol, input_cursor);

output.
_file<<")";

A20

APPENDIX A

output_file<<"; \n";

input-file>>buffer;

void write network architecture(char* file_name, int no file)

ifstream input-file;
int

i, it_is_input, it_is_output, w beg, vý__end, index, current node-number;
int no-Signals;
node

"7
list--alloc

-
char(max

-
node

-
number+l); //+l is for safety

for(i=O; i<max n7ode number; i++)

node_list[iT=O;
cout<<"\n Reprocessing file "<<no

-
file;

output file<<"ARCHITECTURE arch
-

network"<<(no_file+no_first_net-1);
output7file<<" OF network"<<(no

-
file+no_first_net-l)<<" IS\nII;

input iile. open(file_name, ios:: in);
if(linput_file. goodo)

cout<<"\n\aError: The input file cannot be opened";
exit (1) ;

input
-

file>>buffer;

while(linput_file. eofC. ll buffer[O])

if(word limit(buffer, w_beg, w_end))

index=search word(&buffer[w. begllw. end-w. beg+l);
if(index==-input)
it

-
is

-
input=l;

else
it is input=O;
i i-(i rýd-ýex==-oU tpu t)
it is

-
output=l;

else
it-is-output=O;

else

current_node_number=atoi(buffer);
if(it is

I
input)

nods list[current node number-l]-INPUT_TYPE;
else il(it-is-outpu-t) -

node
-

list[current
-

node
-

number-l]=OUTPUT_TYPE;
else if(node

-
list[current-node-number-l]I-INPUT_TYPE

node_list[current_node_number-l]I-OUTPUT_TYPE)

node
-

list[current node-number-l]-NODE_TYPE;
internal-nodes=l;

I
input_file>>buffer;

no signals=l;
if (internal-nodes)

A21

APPENDIX A

output
-

file<<" SIGNAL n1l;
for(i-O; i<max node number; i++)

if (node-list[i]Z-NODE-TYPE)

outputý-file<<(i+1);
break;

for(i++; i<max-nod9-numb9r; i++)

if(node-list[i]-NODE_TYPE)

no-signals++;
if(no

-
signals%10ý0)

output_file<<", \n n1f;
else

output_file<<", n";
output-file<<(i+l);

outpulý_file<<": std logic; \n";

I

output-file<<IIBEGIN\nII;
inputý_file. seekg(O, ios:: beg);
input

-
file. clearo;

write logic
-

exp(inputý_file, no-file);

outpit file<<IIEND arch network"<< (nc_file+nc,
_firstý

net-1) <<11; \n\n";

input Tile.
closeof

delete node-list;

}

void write-network_configuration(int no-file)

output file<< "CONFIGURATION conf`_network11<< (no_file+np_first_nQt-l)

output7file<<11 OF network";
outpujfile<<(no, -

file+no
-

first
-
net-l)<<,, IS\n FOR arch_network";

outpuifile<<(no -
file+noý first: net-1);

outputýfile<<11\n END FOR; \nEND

conf net7work"<<(no -
file+no_first_net-1);

ojtput,
_file<<1-;

\n\n11;
I

void write-networks(int no-file, char** par)

write
-

network_entity(no_file);
write

-
network

-
architecture(par[no_file], no_file);

write_network_configuration(no-file);
I

void main Unt noý_par, char** par)

ifstream inputý_file;
int i, j, total_gate

-
count=O;

init
-

list,
_gate -

counto;
if(noý_par<4)

cout<<"\n\aError: Too few parametersill;
exit(l);

if (noý_yar>NO MAX FILES+3) //3 is for prog. name+out file+ no. first
net.

A22

APPENDIX A

cout<<"\n\aError: Too many files! ";
exit (1)

no-first-net=atoi (par [noý_par-l

output file. open (par [noý_par-2], ios: : out)
if(! output_file. goodo)

cout<<"\n\aError: Output file cannot be opened!
exit (1) ;

for(i=l; i<no_par-2; i++)

for(j=O; j<NCL_PORTS; j++)

input-list[j]=O;
output list[j]=O;

I
max

-
node-number=O;

internal-nodes=O;
count,

_ports -
and nodes(i, par);

write-networks(3., par);
cout<<"\nArchitecture no. l, <<i<<,,

gates";
total,

_gate_count+-gate_count[i-11;

contains "<<gate-count[i-l]<<, v

I
cout<<"\nTotal gate count: ll<<totaý_gatG_count;

output-file. close();

Appendix A. 4 - MEMMANAG. H
//This is a header file used by the three universal programs
#if ! defined(STDLIB H
#include <stdli: b. h>
#endif

char* alloc
-

arr="\n\aError: Insufficient RAM memory for dinamic
allocation! ";

float* alloc-float(int mem-length)

float *pointer;
if(mem-length>O)

if(! (pointer=new float[mem-length]))

cout<<alloc-err;
exit(l),

return pointer;

else
return NULL;

I

double* alloc-double(int mem_length)

double *Pointer;
if (mem length>O)

A23

APPENDIX A

if (I (pointer=new double [mem-lengthl))
I

cout<<alloc-err;
exit(l);

return pointer;

else
return NULL;

I

int* alloc-int(int mem-length)

int *pointer;
if(mem-length>O)

if(I(pointer=new int[mem- lengthM

cout<<alloc-err;
exit(l);

return pointer;

else
return NULL;

char* alloo-char(int mem_length)

char *pointer;
if(mem-length>O)

if(I(pointer=new char[mem
-

length]))

cout<<alloc-err;
exit(l);

return pointer;

else
return NULL;

Appendix A. 6 - MATRIX. H
//This is a header file used by the three universal programs
#include <iostream. h>
#include <process. h>

char* alloc
-

error="\n\aError: Not enough memory for dinamic
allocation! 11;

class vector

private:
int length;
double* no;

public:
vector (void)
vector (int) ;

A24

APPENDIX A

-vector(void);
double& operator[] (int)
void resize(int);

};

class matrix

private:
int rows, columns;
vector* val;

public:
matrix (int, int)
-matrixo;
vector& operator[](int);
int no rows(void);
int no-columns(void);

vector:: vector(void)

length=O;
no=NULL;

vector:: vector(int nlength)

length=nlength;
if(length>O)

if(! (no=new double[length]))

cout<<alloc-error;
exit(l);

else
no=NULL;

vector:: -vector(void)

if(no! =NULL)
delete no;

double& vector:: operator[](int index)

if(index<O 11 index>--length)

cout<<"\n\aError: Index value is outside limits";
exit(l);

I
return no[index];

void vector:: resize(int nlength)

if (nol=NULL)
delete no;

length=nlength;

A25

APPENDIX A

if (length>O)

if(I(no=new double[lengthl))

cout<<alloo error;
exit(l);

else
no=NULL;

}

matrix:: matrix(int lengthl, int length2)

int i;
if(langthl<=O 11 length2<=O)

cout<<"\n\aError: The matrix dimensions must be positivel";
exit(l);

rows=lengthl;
columns-length2;
if(! (val=new vector[rows]))

cout<<alloc_error;
exit(l);

for(i=O; i<rows; i++)

val[i]. resize(columns);
}

matrix:: -matrix(void)

delete [I val;

vector& matrix:: operator[](int index)

if(index<O 11 index>=rows)

cout<<"\n\aError: Index value is outside limits,,;
exit(l);

return val[index];

int matrix:: no_rows(void)

return rows;

int matrix:: no_columns(void)

return columns;

A26

Appendix B

THE VHDL MODELS OF THE ANGLE
SUBNETWORK AND OF POSITION

SUBNETWORK
Appendix B. 1 - THE POSITION SUBNETWORK

LIBRARY ieee;

USE iaea. std logic-1164. all;

ENTITY networkl IS
PORT(d in : IN std logic-v6ctor(9 DOWNTO 0);

d out: OUT std logic-vactor(53 DOWNTO 0));

END networkl;

ARCHITECTURE arch networkl OF networkl IS
SIGNAL nll, nl2, nl3, nl4, nl6, nl7, nl8, n2l, n22,

n24, n25, n26, n28, n29, n3O, n3l, n32, n33, n34,
n35, n36, n37, n38, n39, n4O, n4l, n42, n43, n44,
n45, n46, n47, n48, n49, nSO, n5l, n52, n53, n54,
n55, n57, n58, n59, n6O, n6l, n62, n63, n64, n65,
n66, n67, n68, n74, n75, n8O, n8l, n86, n87, n93,
n94, n95, n96, n97, n98, n99, nlOO, nlO8, nlO9, nllO,
nll6, nll7, nl33, nl34, nl49, nl5O, nl5l, nl52, nl53, nl54,
nl63, nl64, nl65, nl66, nl73, nl74, nl83, nl84, nl85, nl97,
nl98, nl99, n2l7, n2l8, n220, n221, n239, n240, n241, n242,
n243, n245, n246, n247, n248, n249, n250, n251, n253, n254,
n258, n259, n260, n261, n264, n265, n266, n267, n268, n269,
n270, n271, n272, n273, n274, n275, n276, n277, n278, n279,
n28O, n281, n2B2, n283, n284, n285, n288, n289, n293, n294,
n296, n297, n298, n3O4, n3O5, n314, n3l5, n3l6, n3l7, n324,
n325, n326, n329, n330, n334, n335, n348, n349, n367, n368,
n369, n372, n373, n379, n380, n390, n391, n399, n4OO, n4Ol,
n4lllln4l2, n450, n451, n452, n453, n455, n457, n460, n462,
n465, n469, n470, n4B7, n491, n492, n5l4, n521, n547: std logic;

BEGIN
nll<= NOT d in(4);

n2 8<= NOT cf in (8) ;
n2 9<= NOT ci-in (7) ;
n30<= NOT in(6);

n3l<= NOT in(5);

n243<= NOT in(9);

n452<= NOT n154;
n453<= NOT n285;
n455<= NOT n14;
n457<= NOT n199;
n460<= NOT n18;
n462<- NOT n242;
n465<= NOT n1l;
n469<= NOT n110;
n470<= NOT n326;
n487<= NOT n22;
n491<= NOT n68;
n492<= NOT n369;
n514<= NOT n26;

BI

APPENDIX B

n521<= NOT n412;
n547<- NOT n451;
nl3<= d in(3) AND n12;
n22<- nll AND n2l;
n26<- nll AND n25;
n34<- d in(9) AND n33;
n36<- d in(2) AND n35;
n38<- ý-30 AND n37;
n4l<- d in(3) AND n40;
n43<= cf-in (2) AND n42;
n45<= n3O AND n44;
n47<= n29 AND n46;
n5O<- nll AND n49;
n52<- d in(l) AND n5l;
n53<- d in(O) AND n3l;
n55<= d in(2) AND n54;
n59<= d in(3) AND n58;
n60<= d in(l) AND n3l;
n62<- d in(2) AND n6l;
n65<- n29 AND n64;
n67<= n28 AND n66;
n75<= n29 AND n74;
nSl<= d in(9) AND n80;
n87<= n2B AND n86;
n94<= n29 AND n93;
n97<= d in(3) AND n96;
nlOO<= nll AND n99;
nll7<= n28 AND n116;
nl34<= d in(9) AND n133;
nl50<= ý-28 AND n149;
nl53<= nll AND n152;
nl64<= n30 AND n163;
nl66<= nll AND n165;
nl74<= n28 AND n173;
nl85<= d in(9) AND n184;
n2l8<= r; -29 AND n217;
n221<= nll AND n220;
n240<= d in(9) AND n239;
n246<= cf in(l) AND n245;
n247,5= cf-in (5) AND d in(O);
n249<= n243 AND n248;
n251<= d in(B) AND n250;
n254<= d in(2) AND n253;
n259<= cf-in(6) AND n258;
n261<= cf-in (3) AND n260;
n265<= ci-in (2) AND n264;
n268<= (ý-in(7) AND n267,
n270<= nll AND n269;
n272<= d in(7) AND n271;
n274<= d in(6) AND n273;
n277<= cf-in (2) AND n276;
n280<= cf-in (3) AND n279;
n284<= (:

Fin(B) AND n283;
n2B9<= ci-in(3) AND n288;
n294<- cf-in (7) AND n293;
n298<= n243 AND n297;
n305<= d in(B) AND n304;
n3l7<=

ý-ll AND n316;
n330<- nll AND n329;
n335<= d in(8) AND n334;

B2

APPENDIX B

n349<= n243 AND n348;
n373<= d_in(7) AND n372;
n380<= nll AND n379;
n391<- d in(B) AND n390;
n40l<- n243 AND n400;
n451<- n243 AND n450;
d out(53)<- n452 AND n453;
d out(52)<= n154 AND n455;
ci-out(50)<- n199 AND n460;
d'out (4 8) <= n242 AND n465;
d out(47)<- nll AND n453;
d out(46)<= n469 AND n470;
d-out(38)<= n22 AND n470;
ý-out(37)<= n491 AND n492;
ý-out(27)<= n26 AND n492;
d out(26)<= n369 AND n455;
cf-out (16) <= n242 AND n369;
cf-out(15)<= n412 AND n460;
d out(7)<= n199 AND n412;
d out(6)<= n451 AND n465;
d out(5)<= nll AND n491;
cf-out (3) <= n22 AND n469;
d out(l)<= n26 AND n452;
d out(O)<= n154 AND n451;
nl7<= d in(3) AND d in(2) AND n16;
n24<= cf-in (2) AND cf-in (1) AND d in (0)

n39<= (d-in(l) AND 4-in(O) AND n-31;

n57<= (i-in(l) AND n730 AND n5l;
nl83<=

j in(3) AND n29 AND n108;
nl98<= nll AND n28 AND n197;
n266<= d in(6) AND d in(5) AND d in(l);
n275<= d in (5) AND d in (1) AND ci-in (0)
n296<= ci in (6) AND cf

-
in (2) AND n7281,

n3l5<= ci-in (7) AND cf in (3) AND n314;
n368<=

ý'in(8) AND rill AND n367;
n399<= cfin(7) AND d in(3) AND n324;
d out(517<= n14 AND n453 AND n457;
4 out(49)<= n18 AND n453 AND n462;
ci-out(45)<- nllO AND n285 AND n455;
d out(44)<= n14 AND n452 AND n470;
d out(43)<= n154 AND n285 AND n460;
ci-out(42)<- nlB AND n457 AND n470;
d- out(41)<= n199 AND n285 AND n465;
cfout(40)<= nll AND n462 AND n470;
d out(39)<= n242 AND n285 AND n487;
d out(36)<= n6B AND n326 AND n455;
cf'out(35)<= n14 AND n469 AND n492;
cfout(34)<= nllO AND n326 AND n460;

-
out(33)<= n18 AND n452 AND n492;

cfout(32)<= n154 AND n326 AND n465;
d out(31)<= nll AND n457 AND n492;
ý-out(30)<= n199 AND n326 AND n487;
d out(29)<= n22 AND n462 AND n492;
d- out(28)<= n242 AND n326 AND n514;
cfout(25)<= n14 AND n491 AND n521;
d- out(24)<= n68 AND n369 AND n460;
ciout(23)<= n18 AND n469 AND n521;
d- out(22)<= nllO AND n369 AND n465;
cfout(21)<= nll AND n452 AND n521;
d out(20)<= n154 AND n369 AND n487;

B3

APPENDIX B

d out(19)<- n22 AND n457 AND n521;
d out(18)<- n199 AND n369 AND n514;
4-out(17)<= n26 AND n462 AND n521;
4d out (14) <- n18 AND n491 AND n547;
ci-out (13) <- n68 AND n412 AND n465;
d ut(12)<- nll AND n469 AND n547; L-0
d ut(ll)<- n110 AND n412 AND n487; L-0
d out(10)<= n22 AND n452 AND n547;
d out(9)<= n154 AND n412 AND n514;
(i out(B)<- n26 AND n457 AND n547;
ci out(4)<= n6B AND n451 AND n487;
d ut(2)<- n110 AND n451 AND n514; L-0
n63<= d in(l) AND d in(O) AND n30 AND n3l;
n95<- d in (2) AND d in (1) AND n30 AND n3l;
nl09<- d in(3) AND n28 AND n29 AND n108;
n278<- d- in(6) AND d in(5) AND d in(l) AND d in(O);
n282<= ci in (7) AND d in(6) AND d in(2) AND n281;
n325<- d in(B) AND (i-in(7) AND ci in(3) AND n324;
n48<= d in(2) AND d in(l) AND d in(O) AND n30 AND n3l;
n4ll<- d in(8) AND d in(7) AND d in(3) AND nll AND n314;
n98<= d in (2) AND d in (1) AND d in (0) AND n29 AND n30 AND n3l;
nl5l<= d in(3) AND d in(2) AND d in(l) AND n29 AND n30 AND n3l;
n241<= d in (3) AND 4T in (2) AND d in (1) AND nll AND n28 AND n29 AND

n30 AND n3l;
nl2<= d in(2) OR d in(l);
nl4<= n7ll OR n13;
nl6<= d in(l) OR d in(O);
nlB<= n-11 OR n17,
n2l<= d in(3) OR d in(2);
n25<- (i in(3) OR n24;
n33<= ci in(O) OR n32;
n44<= d7in(l) OR n3l;
n46<= n743 OR n45;
n5l<= d in(O) OR n3l;
n6l<= n30 OR n60;
n64<= n62 OR n63;
n66<= n59 OR n65;
n96<= n94 OR n95;
nl08<= n55 OR n57;
nl52<= n150 OR nl5l;
nl54<= n134 OR n153;
nl63<= d in(l) OR n53;
nl97<= n97 OR n98;
nl99<= n185 OR n198;
n2l7<= n43 OR n164;
n239<= n67 OR n221;
n242<= n240 OR n241;
n245<= d in (5) OR d in(O);
n258<= n7246 OR n247,
n264<= d in(6) OR n246;
n267<= n265 OR n266;
n276<= n274 OR n275;
n28l<= d in (5) OR d in(l);
n283<= n28O OR n282;
n3l4<= n254 OR n259;
n3l6<= n305 OR n315;
n324<= n277 OR n278;
n367<= n261 OR n268;
n369<= n349 OR n368;
n4l2<= n401 OR n4ll;

B4

APPENDIX B

n450<= n270 OR n284;
n37<= d in(l) OR d in(O) OR n3l;
n42<=

d in (1) OR n30 OR n3l;
n54<- n30 OR n52 OR n53;
n58<- n29 OR n55 OR n57;
n68<- n34 OR n50 OR n67;
n93<= n36 OR n3B OR n39;
n99<= n87 OR n97 OR n98;
nllO<= n8l OR n100 OR n109;
nl49<- n4l OR n47 OR n48;
nl84<- n166 OR n174 OR n183;
n253<= d in(6) OR d in(l) OR n247;
n260<= cf in (7) OR ý254 OR n259;
n269<= r; 251 OR n261 OR n268;
n273<= d in(5) OR d in(l) OR d in(O);

n279<= n272 OR n277 OR n278;
n285<= n249 OR n270 OR n284;
n326<= n298 OR n317 OR n325;
n390<= n289 OR n294 OR n296;
n4OO<- n380 OR n391 OR n399;
n35<= d in(l) OR d in(O) OR n30 OR n3l;
n4O<= n729 OR n36 OR n3B OR n39;
n49<= n2B OR n4l OR n47 OR n48;
n86<= d in(3) OR n29 OR n43 OR n45;
nl33<-

;; ll OR n59 OR n65 OR n117;
nl73<= d in(3) OR n62 OR n63 OR n75;
n220<= n2B OR n4l OR n48 OR n218;
n271<- d- in(6) OR d in(5) OR d in(2) OR d in(l);

n293<= ci in (6) OR d- in(2) OR n246 OR n247;
n304<= d- in(7) OR cfin(3) OR n265 OR n266;
n348<=

n280 OR n282 OR n330 OR n335;
n74<= d in(2) OR d in(l) OR d in(O) OR n30 OR n3l;
nl65<= d in(3) OR'ý28 OR n29 OR n43 OR n164;
n288<= d in(7) OR d in(6) OR d in(5) OR d in(2) OR d in(l);
n297<= d in(S) OR nll OR n289 OR n294 OR n296;
n372<= d in(6) OR d in(5) OR d in(2) OR d in(l) OR d in(O);
n379<= d in(B) OR d in(3) OR n265 OR n266 OR n373;
n8O<= q_in(3) OR nli OR n28 OR n62 OR n63 OR n75;
n334<= d in(7) OR d in(6) OR d in(3) OR d in(2) OR n246 OR n247;
nll6<= d in(3) OR d in(2) OR d in(l) OR d in(O) OR n29 OR n30

n3l;
n250<= d in(7) OR d in(6) OR d in(5) OR d in(3) OR d in(2)

d in (1) OR d_in (0) ;
n32<= d in(3) OR d in(2) OR d in(l) OR nll OR n28 OR n29 OR n3C

n3l;
n248<= d in(8) OR d in(7) OR d in(6) OR d in(3) OR d in(2) OR nll

n246 OR n2Z7;
n32 9<= d in (8) OR d in (7) OR d in (6) OR d in (5) OR d in (3)

d in (2) OR d in (1) OR d in (0)
END arch_networkl;

CONFIGURATION conf networkl OF networkl IS
FOR arch network7l
END FOR;

END conf-networkl;

Appendix B. 2 - THE ANGLE SUBNETWORK
LIBRARY ieea;
USE ieee. std logic_1164. all;

OR

OR

OR

OR

OR

B5

APPENDIX B

ENTITY network2 IS
PORT(d in : IN std logic-vector(9 DOWNTO 0);

d out: OUT std logic-vector(17 DOWNTO 0));
END network2;

ARCHITECTURE arch network2 OF network2 IS
SICNAL nll, nli, nl3, nl4, nl5, nl6, nl7, nl8, nl9,

n20, n2l, n22, n29, n3O, n3l, n32, n33, n34, n35,
n36, n37, n38, n39, n4O, n4l, n43, n44, n46, n47,
n48, n49, n57, n58, n59, n6O, n62, n63, n64, n65,
n69, n7O, n76, n77, n78, n79, nBO, n8l, n82, n83,
n84, nB5, n89, n9O, n9l, n92, n93, nlOO, nl0l, nlO3,
nl04, nlO5, nlO6, nllO, nlll, nll2, nll3, nll4, nll5, nll6,
nll7, nll8, nl2O, nl2l, nl22, nl23, nl24, nl25, nl27, nl28,
nl29, nl3O, nl3l, nl32, nl33, nl35, nl37, nl38, nl39, nl4O,
nl47, nl48, nl5O, nl5l, nl52, nl57, nl58, nl59, nl6O, nl73,
nl74, nl75, nl76, n2O5, n2O6, n215, n2l6, n2l7, n2l8, n2l9,
n222, n223, n225, n226, n230, n231, n232, n233, n235, n236,
n238, n239, n240, n241, n242, n243, n244, n245, n246, n250,
n251, n252, n253, n260, n261, n263, n264, n265, n266, n267,
n270, n271, n272, n273, n274, n275, n276, n277, n278, n280,
n28l, n282, n2B3, n287, n288, n290, n291, n292, n293, n294,
n302, n3O5, n3O6, n3lO, n3ll, n312, n3l3, n3l4, n3l5, n3l6,
n3l7, n3l8, n3l9, n320, n321, n322, n330, n331, n332, n333,
n334, n335, n336, n337, n343, n344, n345, n346, n347, n348,
n349, n350, n351, n352, n353, n361, n362, n365, n366, n367,
n368, n369, n370, n372, n373, n375, n376, n377, n378, n379,
n380, n38l, n382, n383, n384, n385, n395, n396, n397, n398,
n399, n4OO, n4Ol, n4O5, n4O6, n407, n4O8, n4O9, n4lO, n4ll,
n4l2, n4l3, n4l4, n4l5, n4l9, n420, n421, n422, n423, n424,
n426, n427, n437, n438, n439, n440, n441, n443, n444, n446,
n447, n448, n450, n452, n453, n454, n455, n456, n457, n459,
n460, n461, n462, n466, n467, n468, n469, n472, n473, n474,
n475, n476, n477, n478, n479, n490, n491, n496, n497, n5O5,
n506, n5O7, n5O8, n5O9, n529, n530, n542, n544, n545, n548,
n551, n552, n553, n554, n555, n556, n557, n558, n559, n561,
n562, n563, n564, n565, n566, n570, n571, n572, n573, n576,
n577, n579, n580, n581, n582, n593, n595, n596, n597, nS98,
n602, n6O3, n6O4, n6O5, n6O6, n607, n6O8, n6lO, n6ll, n6l2,
n6l6, n6l7, n6l8, n6l9, n620, n621, n622, n623, n624, n632,
n633, n637, n638, n639, n640, n64l, n643, n644, n646, n647,
n648, n649, n650, n651, n652, n653, n661, n662, n667, n668,
n669: std logic;

BEGIN
nl 1<= NOT d in (4) ;
nl2<- NOT cf-in(8) ;
nl 3<= NOT ci in (7)

nl 8<= NOT cf-in (6)

nl 9<= NOT cf-in (5)

n343<= NOT d in(3);

n344<= NOT d in(2);

n347<= NOT ý in(l);

n348<= NOT ci in(O);

nlS<= d in(O) AND n14;
nl7<=

nll AND n16;
n20<m n18 AND n19;
n30<= d in(2) AND n29;
n3l<= cfin(O) AND n13;
n33<= rd2 AND n32;
n36<= nll AND n35;

B6

APPENDIX B

n38<= n13 AND n37;
n4l<= n12 AND n40;
n44<= n13 AND n43;
n47<= d in(l) AND n46;
n58<= d in(l) AND n57;
n60<= d in(O) AND n59;
n63<= n13 AND n62;
n65<= d in(2) AND n64;
n70<= d in(l) AND n69;
n77<= n12 AND n76;
n79<= nll AND n78;
nBO<= d in(O) AND n18;
n82<= d in (1) AND n8l;
nB5<= d in(2) AND n84;
n9l<= n12 AND n90;
nl0l<= d in(l) AND nlOO;
nl04<= cf-in(3) AND n103;
nlO6<= (37in(2) AND n105;
nlll<= n13 AND nllO;
nll4<= n12 AND n113;
nll8<= nll AND n117;
nl20<= n18 AND n115;
nl2l<= d in(O) AND n19;
nl23<= n12 AND n122;
nl25<= n13 AND n124;
nl28<= d in(l) AND n127;
nl30<=

d in(2) AND n129;
nl33<= (i in(3) AND n132;
nl35<= d7in (1) AND n37;
nl40<- cf-in (9) AND n139;
nl48<= n18 AND n147;
nl50<= d in(l) AND n115;
nl52<= n13 AND nl5l;
nl58<= d in(2) AND n157;
nl60<= n12 AND n159;
nl74<= d in(3) AND n173;
nl76<=

d in(9) AND n175;
n206<= nll AND n205;
n2l5<- d in (1) AND nl 9;
n2l7<= n12 AND n216;
n2l9<- n13 AND n218;
n223<= d in(2) AND n222;
n226<= (i in(3) AND n225;
n233<= in(9) AND n232;
n236<= in (3) AND n235;
n238<= cf-in (2) AND n124;
n240<= n18 AND n239;
n243<= n13 AND n242;
n246<= n12 AND n245;
n253<= nll AND n252;
n261<= nlB AND n260;
n263<= d in(2) AND n239;
n265<= n13 AND n264;
n267<- n18 AND n266;
n271<- d in(3) AND n270;
n273<- ci in(9) AND n272;
n274<- din(l) AND d in(O);
n276<= n718 AND n275;
n278<- n19 AND n277;
n281<-- d in(2) AND n28O;

B7

APPENDIX B

n283<= n13 AND n282;
n288<= n18 AND n287;
n292<= d in(3) AND n291;
n302<= d in(2) AND n147;
n306<= d in(3) AND n305;
n3ll<= n18 AND n310;
n3l3<= d in(9) AND n312;
n3l5<= d in(3) AND n314;
n3l7<=

J18 AND n316;
n3l9<= n13 AND n318;
n330<= d in(2) AND n277;
n332<= ci-in(9) AND n331;
n334<= J19 AND n333;
n335<- d in(3) AND d in(2);
n346<= ci-in (9) AND n345;
n349<= ý5347 AND n348;
n351<= n343 AND n350;
n362<= n343 AND n361;
n366<= n19 AND n365;
n368<= nlB AND n367;
n370<= d in(9) AND n369;
n373<= n343 AND n372;
n376<= n18 AND n375;
n379<= n13 AND n378;
n382<= d in(4) AND n381;
n385<= n12 AND n384;
n396<= n344 AND n395;
n399<= n13 AND n398;
n4Ol<= n18 AND n4OO;
n406<= n343 AND n405;
n4O9<= d in(9) AND n408;
n4ll<= n18 AND n410;
n4l3<= n344 AND n412;
n4l5<= n13 AND n414;
n420<= n344 AND n419;
n422<= n343 AND n421;
n424<= d in(4) AND n423;
n427<=

J12 AND n426;
n438<= n347 AND n437;
n439<= n19 AND n348;
n441<= n12 AND n440;
n444<= n344 AND n443;
n448<= n343 AND n447;
n450<= n18 AND n412;
n455<= d_in(9) AND n454;
n457<= n343 AND n456;
n459<= n18 AND n395;
n460<= n19 AND n347;
n462<= n13 AND n461;
n469<= n12 AND n468;
n473<= n344 AND n472;
n478<= d in(4) AND n477;
n491<=

J13 AND n490;
n497<= n12 AND n496;
n506<= n343 AND n505;
n509<= d in(9) AND n508;
n530<= ci-in(4) AND n529;
n542<= n18 AND n437;
n545<= n343 AND n544;
n548<= n13 AND n443;

B8

APPENDIX B

n552<= n12 AND n551;
n554<= n347 AND n553;
n559<= d in(4) AND n558;
n561<= n712 AND n456;
n563<= n347 AND n562;
n564<= n18 AND n348;
n566<= n344 AND n565;
n573<= n343 AND n572;
n577<= n13 AND n576;
n582<= d in(9) AND n581;
n593<= n13 AND n562;
n596<= n344 AND n595;
n598<= n347 AND n597;
n603<= n12 AND n602;
n606<= d in(4) AND n605;
n608<= n347 AND n607;
n6lO<= n13 AND n553;
n6l2<= n344 AND n6ll;
n6l7<= n13 AND n616;
n6l9<= n12 AND n618;
n621<= d in(9) AND n620;
n624<=

n3-43 AND n623;
n633<= n12 AND n632;
n637<= n59 AND n348;
n639<= n347 AND n638;
n641<= d in(4) AND n640;
n644<= n12 AND n643;
n647<= n347 AND n646;
n650<= n344 AND n649;
n662<= d in(4) AND n661;
n667<= n712 AND n2l;
n34<= d in(l) AND d in(O) AND n13;
n39<= d_in(O) AND n18 AND n19;
n83<= d in(O) AND n13 AND n18;
n93<= ck_in(9) AND d in (3) AND n92;
n241<= d in(l) AND d in(O) AND n19;
n290<= d in(2) AND ý19 AND n277;
n294<= ý11 AND n12 AND n293;
n322<= nll AND n12 AND n321;
n397<= n19 AND n347 AND n348;
n446<= nlB AND n347 AND n437;
n453<= n13 AND n344 AND n452;
n467<= n18 AND n344 AND n466;
n476<= n13 AND n343 AND n475;
n555<= n18 AND n19 AND n348;
n557<= n13 AND n344 AND n556;
n571<= n13 AND n347 AND n570;
n580<= n12 AND n344 AND n579;
n653<= d in(9) AND n343 AND n652;
n49<= d_in(9) AND d in(3) AND d in(2) AND n48;
n89<= d in(O) AND n13 AND nlB AND n19;
nll2<= ck_in(l) ANI) d in(O) AND n18 AND n19;
nl38<= d- in(2) AND ý12 AND n13 AND n137;
n231<= ci

-
in(2) AND n13 AND n18 AND n230,

n244<= ci in(2) AND d- in(l) AND n18 AND n19;
n251<= dT in(3) AND d in(2) AND n13 AND n250;
n377<= n719 AND n344 AND n347 AND n348;
n474<- n18 AND n19 AND n347 AND n348;
n648<= n13 AND n18 AND n19 AND n348;
nll6<= d in(2) AND d in(l) JUM n13 AND n18 AND n115;

B9

APPENDIX B

nl3l<= d in (1) AND d in(O) AND n13 AND n18 AND n19;
n337<= nll AND n12 AND n13 AND n18 AND n336;
n353<= d in (4) AND n12 AND n13 AND nlB AND n352;
n38O<= n18 AND n19 AND n343 AND n344 AND n347;
n407<= nlB AND n19 AND n344 AND n347 AND n348;
n604<= n13 AND n18 AND n19 AND n347 AND n348;
n651<= n12 AND n13 AND n18 AND n347 AND n348;
n669<= d in (9) AND n343 AND n344 AND n347 AND n668;
n320<= d in (3) AND d in(2) AND d in(l) AND d in(O) AND nlS AND n19;
n507<= n13 AND n18 AND n19 AND r; 344 AND n347 AND n348;
n22<= d in (9) AND d in (3) AND d in (2) AND d in (1) AND d in (0) AND

n12 AND n2l;
n383<= n13 AND n18 AND n19 AND n343 AND n344 AND n347 AND n348;
n622<= n12 AND n13 AND n18 AND n19 AND n344 AND n347 AND n348;
n479<= n12 AND n13 AND n18 AND n19 AND n343 AND n344 AND n347 AND

n348;
nl4<= n12 OR n13;
n2l<= n13 OR n20;
d out(17)<= n17 OR n22;
n732<= d in(l) OR n3l;
n37<=

d in(O) OR n18;
n43<= d in(O) OR n20;
n46<= n39 OR n44;
n4B<= n4l OR n47;
d out(16)<= n36 OR n49;
n-59<= nlB OR n19;
n62<= n20 OR n60;
n76<= n63 OR n70;
n8l<= n13 OR n8O;
n90<= n82 OR n89;
n92<= n85 OR n9l;
d out(15)<= n79 OR n93;
n-110<= n80 OR nlOl;
nll5<= d in(O) OR n19;
nl27<= n718 OR nl2l;
nl29<= n125 OR n128;
nl37<= n39 OR n135;
nl39<= n133 OR n138;
d out(14)<= n118 OR n140;
nl57<= n148 OR n150;
nl73<= n152 OR n158;
n205<= n160 OR n174;
d out(13)<= n176 OR n206;
n-222<= n18 OR n150;
n230<= nl2l OR n150;
n239<= d in(l) OR n19;
n250<= n148 OR n241;
n252<= n246 OR n251;
d out(12)<= n233 OR n253;
r; 270<= n263 OR n267;
n277<= d in(l) OR d in(O);
n280<= n274 OR n278;
n291<= n288 OR n290;
n293<= n283 OR n292;
d out(ll)<= n273 OR n294;
rý310<= n215 OR n302;
n3l6<= d in(2) OR n19;
n3l8<=

n315 OR n317;
n321<= n319 OR n320;
d out(10)<= n313 OR n322;

B10

APPENDIX B

n336<= n334 OR n335;
d out(9)<= n332 OR n337; ý-350<= n344 OR n349;
n352<= n19 OR n351;
d- out(8)<= n346 OR n353;
r&5<= n347 OR n348;
n367<= n344 OR n366;
n381<= n379 OR n38O;
n384<= n382 OR n383;
d- out(7)<= n370 OR n385;
n7412<= n19 OR n347;
n4l9<= n19 OR n349;
n421<= n4ll OR n420;
n423<= n415 OR n422;
n426<= n383 OR n424;
d out(6)<= n409 OR n427;
n7437<= n19 OR n348;
n452<= n397 OR n450;
n466<= n438 OR n439;
n472<= nlB OR n438;
n475<= n473 OR n474;
n477<= n469 OR n476;
n553<= n18 OR n348;
n556<= n554 OR n555;
n570<= n439 OR n542;
n576<= n347 OR n542;
n579<= n474 OR n577;
n581<= n573 OR n580;
d out(3)<= n559 OR n582;
n7616<= n20 OR n348;
n6l8<= n608 OR n617;
n620<= n612 OR n619;
n623<= n621 OR n622;
d out(2)<= n606 OR n624;
n638<= n13 OR n637;
n652<= n65O OR n651;
d out(l)<= n641 OR n653;
n668<= n348 OR n667;
d out(O)<- n662 OR n669;
n40<= d in(l) OR n38 OR n39;
n57<= d in(O) OR n13 OR n20;
n64<= n12 OR n58 OR n63;
n69<= n13 OR n20 OR n60;
n84<= n12 OR n82 OR n83;
nlOO<= d in(O) OR n18 OR n19;
nll3<= n106 OR nlll OR n112;
nl32<= n123 OR n130 OR nl3l;
nl47<= d in(l) OR d in(O) OR n19;
nl5l<= ci in(2) OR n7148 OR n150;
nl59<= d in(3) OR n152 OR n158;
nl75<= nll OR n160 OR n174;
n225<= n112 OR n219 OR n223;
n242<= n238 OR n240 OR n241;
n245<= n236 OR n243 OR n244;
n264<- d in(3) OR n261 OR n263;
n266<= ci in (2) OR d in(l) OR n19;
n275<- d in(2) OR r; l-g OR n274;
n282<= d in(3) OR n276 OR n281;

n287<= in(2) OR n274 OR n278;
n305<= rd8 OR n278 OR n302;

Bll

APPENDIX B

n3l4<= d in(2) OR nlB OR n19;
n361<= n18 OR n19 OR n344;
n375<= n19 OR n344 OR n349;
n378<= n373 OR n376 OR n377;
n395<= n19 OR n347 OR n348;
n405<= n396 OR n397 OR n401;
n4lO<= n19 OR n344 OR n347;
n4l4<= n343 OR n4ll OR n413;
n443<= nlB OR n347 OR n439;
n447<= n13 OR n444 OR n446;
n461<= n344 OR n459 OR n460;
n468<= n457 OR n462 OR n467;
d out(S)<= n455 OR n478 OR n479;
n505<= n444 OR n474 OR n491;
n529<= n497 OR n506 OR n507;
d out(4)<= n479 OR n509 OR n530;
n-551<= n344 OR n446 OR n548;
n562<= n18 OR n19 OR n348;
n565<= n13 OR n563 OR n564;
n572<= n561 OR n566 OR n571;
n602<= n555 OR n593 OR n598;
n607<= n13 OR n18 OR n348;
n6ll<= n12 OR n608 OR n610;
n632<= n13 OR n347 OR n348;
n646<= n13 OR n20 OR n348;
n649<= n644 OR n647 OR n648;
n78<= d in(9) OR d in(3) OR n65 OR n77;

nlO5<= d in(l) OR ýi in(O) OR n13 OR n18;

nll7<= cfin(9) OR n104 OR n114 OR n116;

nl24<= in(l) OR d in(O) OR n18 OR n19;

n232<=
nll OR n217 OR n226 OR n231;

n260<= d in(2) OR d in(l) OR d in(O) OR n19;

n272<= nll OR n12 OR n265 OR n271;
n333<= d in(3) OR d in(2) OR d- in(l) OR d in(O);

n372<= n18 OR n19 OR n344 OR r; 349;

n398<= n18 OR n343 OR n396 OR n397;

n400<= n19 OR n344 OR n347 OR n348;

n454<= d in(4) OR n441 OR n448 OR n453;
n490<= n-18 OR n344 OR n347 OR n439;
n496<= n343 OR n444 OR n474 OR n491;
n5O8<= d in(4) OR n497 OR n506 OR n507;
n558<=

d in(9) OR n545 OR n552 OR n557;
n595<=

J12 OR n347 OR n555 OR n593;
n597<= n13 OR n18 OR n19 OR n348;
n643<= n13 OR n20 OR n347 OR n348;
nl6<- d in(9) OR d in(3) OR d- in(2) OR d in(l) OR n15;

n35<= ci in(9) OR cf in(3) OR r; 30 OR n33 OR n34;

nlO3<=
ýi in(2) OR n12 OR n13 OR n39 OR nlOl;

nl22<= cf in(2) OR d in(l) OR n13 OR n120 OR nl2l;

n2l6<= cf in(3) OR ci in(2) OR n13 OR n148 OR n215;

n2l8<= ci in (2) OR cf in(l) OR d in(O) OR n18 OR n19;

n235<= d in(2) OR cfin(l) OR n13 OR n18 OR nl2l;
n3l2<= nll OR n12 OR n13 OR n306 OR n3ll;
n369<= d in(4) OR n12 OR n13 OR n362 OR n368;
n408<= d in(4) OR n12 OR n399 OR n406 OR n407;
n605<=

4 in(9) OR n343 OR n596 OR n603 OR n604;
n640<= cfin(9) OR n343 OR n344 OR n633 OR n639;
n29<= d in(l) OR d in(O) OR n12 OR n13 OR nlB OR n19;
n440<- i; 13 OR n18 OR n343 OR n344 OR n438 OR n439;
n456<= n13 OR n18 OR n19 OR n344 OR n347 OR n348;

B12

APPENDIX B

n544<= n12 OR n13 OR n344 OR n347 OR n439 OR n542;
n331<= d in(3) OR nll OR n12 OR n13 OR nlB OR n19 OR n330;
n345<= cf-in(4) OR n12 OR n13 OR n18 OR n19 OR n343 OR n344;
n661<- d in(9) OR n12 OR n13 OR n343 OR n344 OR n347 OR n348;

END arch_network2;

CONFIGURATION conf network2 OF network2 IS
FOR arch network72
END FOR;

END conf-network2;

B13

Appendix C
SIN ROM. CPP

/* This program generates the VHDL model of the internal look-up table
used by tierl.

#include <iostream. h>
#include <fstream. h>
#include <math. h>
#include <process. h>
#include <string. h>
#include <conio. h>

#define AHPL 255
#define N STEPS 64
#define FileName "c: \\andrei\\sin rom. vhd"
const int upper-index. ((int)flooý(log(N STEPS-1)/log(2)));

void write-header(ofstream& f)

f<<"LIBRARY IEEE; "<<endl;
f<<"USE IEEE. std logic

-
1164. ALL; "<<endl;

f<<"USE IEEE. std logic_unsigned. ALL; "<<endl<<endl;
f<<"ENTITY sin rom IS"<<endl;
f<<" PORT("<<endl;
f<<Iv A: IN std logic v8ctor("<<upper-index;
f<<" DOWNTO 0); "<<endl;
f<<Iv DO: OUT std logic_vector(2 DOWNTO 0)); "<<endl;
f<<"END sin_rom; "<<endl<<endl;
f<<"ARCHITECTURE sin rom arch OF sin rom IS"<<endl;
f<<" TYPE mem data iS ARRAY (0 TO 117< (pow (2, upper_index+l) -1)
f<<") OF std logic_vector(2 downto, 0); "<<endl;
f<<" constant VD: mem data : -"<<endl<<" (11;

I

void write-end(ofstream& f)

f<<l'BEGIN'l<<endl;
f<<" PROCESS(A)"<<endl;
f<<" begin"<<endl;
f<<Iv DO<=VD(conv

-
integer(A)); "<<endl;

f<<" END PROCESS; "<<endl;
f<<"END sin_rom_arch; ";

}

void main(void)

clrscr () ;
ofstream f;
int sample;
double step=bý_PI/2.0/N STEPS;
int sum--AMPL, max-0;
f. open(FileName, jos:: Out);
if(f. fail())

cout<<"Error: The file could not be opened"<<endl;
exit (1) ;

}

cl

APPENDIX C

write header(f);
for(int i=O; i<N_STEPS; i++)

sample=floor(AMPL*sin(-M PI-2+(i+l)*step)-sum+0.5);
if(max<sample)

max=sample;
sum+=sample;
cout<<sample<<endl;
switch(sample)

case 0: f<<" (101,10v, woo)vl;
if (i<N_STEPS-1)

f<<11, "<<endl;
break;

case 1: f<<" ('01,101, 11911;
if (i<N STEPS-1)
f<<", "<<endl;
break;

case 2: f<<" (101, Ilv, vOv)";

if (i<N STEPS-1)
f<<", lv<<endl;

break;
case 3: f<<"

if (i<N STEPS-1)
f<<", "<<endl;
break;

case 4: f<<"
if (i<N STEPS-1)
f<<'v, "<<endl;
break;

case 5: f<<" (111,10', 111)";
if (i<N STEPS-1)
f<<", 11<<endl;
break;

case 6: f<<" (111,111, 101)";
if (i<N STEPS-1)
f<<", 'v<<endl;
break;

default: f<<"
if (i<N STEPS-1)
f<<11, VV<<endl;

f<< "<<endl;

wri te-end (f
f close () ;

}

C2

