
COMPOSITIONAL FRAMEWORK
FOR THE GUIDED EVOLUTION OF

TIME-CRITICAL SYSTEMS

SHIKUNZHOU

A thesis submitted in partial fulfilment of the requirements of De Montfort University
for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

May 2002

Abstract

Most of the time-critical computer systems are special-purpose and complex, and are

typically embedded in larger systems, such as avionics and robotics control systems.

The engineering of time-critical systems poses significant challenges to their 'correct'

specification, design, development and evolution. Because of the complexity of time­

critical systems, the likehood of subtle errors is much greater than other computer sys­

tems and some of these errors could have catastrophic consequences such as loss of

life, money, time or damage to the environment. It has been recognised that the use of

formal methods, in the life-cycle of time-critical systems, is fundamental.

The thesis proposes an approach, based on a formal method (known as Interval

Temporal Logic (ITL)), for engineering time-critical systems, rapidly, efficiently and

above all, correctly. The approach uses an integrated framework to deal with the life­

cycle of time-critical systems. The proposed framework integrates conventional ap­

proaches and formal technologies for engineering time-critical systems.

Based on this framework, the thesis then focuses on using ITL and its executable

subset, Tempura, for the development and evolution of time-critical systems develop­

ment and evolution. An important issue during this evolution is to manage' change' , as

well as to cope with its propagation. This is called guided evolution in the thesis. The

proposed approach aims to validate and analyse time-critical system's behaviours of

interest, such safety, liveness, as well as analyse timing behaviours and ensure the cor­

rectness of the timing properties. The validation and analysis are performed at run-time.

The assumption/commitment paradigm has been adopted in the thesis. The assump­

tion/commitment technique is valuable as a compositional principle to be used during

time-critical systems development and evolution. Behavioural properties expressed in

ITL can be validated and tested compositionally. The framework presented in the thesis

is language independent.

The proposed approach can deal with both sequential and parallel time critical sys­

tems. This is a particular challenging research area because within such a system the

functional behaviour and non-functional timing requirements are combined, implicit

and can be difficult to validate and analyse.

A prototype tool is developed for three purposes: to test the approach, to speed and

to scale up time-critical systems development and evolution based on the proposed ap­

proach. Two case studies, including a post office letter sorting system and an assembly

line control system, are used for experiments with the approach and the prototype tool.

Conclusion is drawn based on analysis of experiments, which shows that the pro­

posed approach is feasible and promising in its domain. Further research directions are

also discussed.

Contents

Acknowledgements

Declaration

Publications

1 Introduction

1.1 Purpose of Research and Overview of the Problem

1.2 Scope of the Thesis and Original Contribution .

1.3 Criteria for Success

1.4 Thesis Structure . .

2 Time-critical Systems: Development and Evolution

2.1 Introduction......

2.2 Time-critical Systems .

2.2.1 What is a Real-time System? .

2.2.2

2.2.3

Time-critical Systems

Timing issues of Time-critical Systems

........

...........

ix

x

xi

1

5

7

8

10

10

12

12

14

16

CONTENTS

3

2.3 Research Issues in Time-critical Systems .

2.4 Formal Notation and Methods

2.5 Software Evolution

2.5.1 Managing Evolution of Time-critical Systems .

2.6 Summary .

Preliminaries

3.1 Introduction

3.2 Computational Model .

3.3 Interval Temporal Logic

3.3.1 Introduction. . .

3.3.2 Temporal Logic V s Interval Temporal logic

3.3.3 Syntax and Semantics

3.3.4 Types

3.4 Assumption/Commitment Paradigm

3.5 Refinement Calculus

3.6 Tempura

3.6.1 Introduction

3.6.2 Another ITL-based Executable Language

3.6.3 The Language.

18

22

28

30

34

35

35

36

39

39

39

42

48

48

52

60

60

61

62

3.7 Conclusion 66

4 An Integrated Framework 67

ii

CONTENTS

4.1 Guided Evolution of Time-critical Systems

4.1.1 Why Guided Evolution? ..

4.1.2 What is Guided Evolution? .

4.2 Assertion Points .

4.3 The Approach . .

4.3.1 A Phase-based Methodology .

4.3.2 Visualisation of Time-Critical Systems

4.4 Summary

5 Evolution: Guidelines and Analysis

5.1

5.2

Defining Run-time Analysis

Compositionality

5.2.1 The Role of Compositionality

5.2.2 Compositional Method .

5.2.3 Sequential Composition

5.2.4 Parallel Composition

5.3 Timing Analysis Guidelines

5.4 Summary

6 AnaTempura: A Realisation

6.1 System Architecture.

6.1.1 The Server .

6.1.2 Tempura Interpreter

67

67

69

73

78

79

93

97

98

98

99

· 100

· 101

.107

.109

· 115

· 120

121

· 121

· 124

· 125

iii

CONTENTS

6.1.3 Realisation of Assertion Points Technique .

6.1.4 Realisation Run-time Analysing Technique

6.2 Realisation of Timing Analysis .

6.3 Visualisation in the Tool

6.3.1 Animation in AnaTempura.

6.3.2 Timing Diagram in AnaTempura .

6.4 Summary

7 Case Studies

7.1 Introduction

7.2 Mail Sorter System

7.3 Assembly Line System

8 Conclusion

8.1 Summary of Thesis

8.2 Criteria for Success and Analysis .

8.3 Future Directions

References

A Mail Sorter: Phase 3 Documentation

A.l Description of the change .

A.2 Specifications

A.3 Mail Sorter: Source Code .

.

A.4 Source Code: assertion.h

· 125

· 127

· 129

.132

· 133

.134

· 136

138

· 138

· 139

· 157

182

· 182

· 184

· 188

192

208

.208

.209

.214

.219

iv

CONTENTS v

A.5 A Typical Run-time Analysing Result 220

B Assembly System: source code 223

C Assembly System: Run-time Analysis Results 226

D Assembly System: Run-time Analysis Results with A Bad Case 228

List of Figures

2.1 A Typical Software Evolution Process 30

3.1 Basic Statements .. 63

4.1 A Loop of Time-critical Systems Evolution 69

4.2 The Analysis Process . . . 73

4.3 Assertion Points and Code 74

4.4 Impact Change Management Framework . 80

4.5 Impact Analysis at Code Level . 86

4.6 The Role of Run-time Analysis . 91

4.7 The Modified Incremental Model . 93

5.1 Interleaving................ 113

6.1 General System Architecture of AnaTempura

6.2 Processing Assertion Data ...

6.3 Timing Diagram Via Animation

6.4 Timing Information of State Variables

· 122

· 126

· 135

.136

LIST OF FIGURES vii

7.1 The Structure of the Original and Modified Mail Sorter · l39

7.2 The Composition of the Mail Sorter · 145

7.3 Timing Information of the Modified System · 147

7.4 Validation of the Original System. · 153

7.5 Validation of the New System: Animation · 154

7.6 Validation of the New System: Console · 154

7.7 Output of the Trace File . · 155

7.8 Old Assembly Line . · 157

7.9 New Assembly Line. · 164

7.10 Validation of the Assembly System . .178

List of Tables

2.1 Formal Methods Usage. .. 33

3.1 Syntax ofITL

3.2 Frequently used abbreviations

42

43

5.1 Possible Binary Relationships between Timing Parameters 116

6.1 An Example of Computation Time List 131

Acknowledgements

I wish to express my most profound thanks to my supervisors Professor Hussein Zedan

and Dr. Antonio Cau for their invaluable advice, support and encouragement during my

three year study. Without any of these, the work in this thesis would only be impossible.

There are so many intensive discussions that impressed me so much.

Meanwhile, I would like to thank colleagues at Software Technology Research Lab­

oratory and Department of Computer Science in De Montfort University for their sup­

port and feedback, and for providing such a stimulating and friendly working atmo­

sphere. There are too many to list individually. The regular seminars provide us with a

good opportunity to communicate, discuss and co-stimulate.

I would also like to thank the Research Office in De Montfort University for their

outstanding management.

Finally, I must thank my parents for all their memorable support and encourage­

ment, which are too precious to forget.

Declaration

I declare that the work described within this thesis was originally taken by me between

the dates of registration for the degree of Doctor of Philosophy at De Montfort Univer­

sity, November 1998 to May 2002.

Publications

H. Zedan, S. Zhou, N. Sampat, X. Chen, A. Cau, and H. Yang, K-Mediator: To­

wards Evolving Information Systems, in IEEE Proceedings of International Con­

ference on Software Maintenance' 200 1 (ICSM200l), 2001.

H. Zedan, A. Cau, and S. Zhou, A Calculus for Evolution, in Proceedings of The

Fifth International Conference on Computer Science and Informatics (CS&I'2000),

2000.

S. Zhou, H. Zedan, and A. Cau, A Framework For Analysing The Effect of

'Change' In Legacy Code, in IEEE Proceedings of International Conference on

Software Maintenance'99 (ICSM99), 1999.

S. Zhou and H. Yang, An Approach to Measuring Reverse Engineering, in Pro­

ceedings of the Fifth International Conference for Young Computer Scientists

(lCYCS99), August, 1999.

S. Zhou, H. Yang, P. Luker, W.e. Chu and X.He, A Useful Approach to Devel­

oping Reverse Engineering Metrics, in Proceedings of the 23rd IEEE Computer

Software and Application Conference (COMPSAC99), 1999.

Chapter 1

Introduction

1.1 Purpose of Research and Overview of the Problem

The engineering of time-critica1 systems poses significant cha1lenges to their 'correct'

specification, design and development. In such systems, the time, at which each input

is processed or output is produced, is critica1. In genera1, time-critical systems are

characterised by the fact that severe consequences will result if functiona1 as well as

timing properties of the system are not satisfied. Most of the time-critical computer

systems are specia1-purpose and complex, require a high degree of fault tolerance, and

are typica1ly embedded in a larger system [118]. Avionics, robotics and process control

are a11 examples of time-critica1 computing [118].

An important aspect in the development of a time-critical system is how to cope

with its "evolution". The evolution of a time-critica1 system happens not only after the

first delivery of the system but also in the early stage of its life-cycle, i.e. evolutionary

1.1. PURPOSE OF RESEARCH AND OVERVIEW OF THE PROBLEM

development. The evolution of a time-critical system could be due to changes in the

original requirements, adopting a different hardware platform or to improve its perfor­

mance in its entire life-cycle. Rapid development causes continuous changes in the

software life-cycle. Because of the timing aspects, changes in a time-critical system

cause even more troubles to developers of time-critical systems than in other appli­

cations. Because of their (time-critical systems) complexity, the likelihood of subtle

errors is much greater and some of these errors could have catastrophic consequences

such as loss of life, money, or damage to the environment. Hence, how to respond

to 'change' is a fundamental issue in the development of time-critical system. This

response must be undertaken rapidly, efficiently and, above all, correctly. Responding

to changes requires understanding the functionality, as well as timing aspects, of the

system, identification of the necessary changes and then apply the changes.

Another important issue in managing change is to establish mechanisms to cope

with its propagation. The change is often made to a specific part of the system. After the

change is made, that part may no longer be compatible with other parts of the system, as

it may no longer provide what was originally expected or it may now require different

services for the rest of the system. These dependencies need to be checked, validated

and re-established if they are lost. The process in which the change spreads through

the software is often called the ripple effect of change [136]. Various techniques have

been proposed to model change [6, 17] and its impact [99, 107, 106] for non-real time

systems. The prediction of the size and location of change has also been considered

(e.g. [40]).

2

1.1. PURPOSE OF RESEARCH AND OVERVIEW OF THE PROBLEM

In this research, we concentrate on following aspects of change management, es­

pecially, managing impact of change, mainly, identifying, specifying and controlling

ripple effects of changes:

• Change analysis: to analyse and specify the change correctly using formal meth-

ods;

• Impact analysis: to analyse impact of change via analysing, revealing and speci­

fying the relationships between different system components and changes by us­

ing compositional theory and assumption/commitment framework, furthermore,

to control ripple effects;

• Ripple effect control: The use of compositional theory and assumption/commitment

framework can reduce the ripple effect (we will define this in next section), be­

cause isolating a target sub-system from its surrounding sub-systems during en­

gineering processes becomes possible and effective, which will decrease the level

of likely ripple effects causing by neighbouring sub-systems or draw a clear pic­

ture to ripple effects.

In this thesis, we are going to discuss how to tackle the development and evolu­

tion of time-critical systems rapidly, efficiently and, correctly, based on the following

observations:

• Due to the very complex nature of time-critical systems, their development and

evolution processes must be repeatable, well-defined, managed, and potentially

optimised.

3

1.1. PURPOSE OF RESEARCH AND OVERVIEW OF THE PROBLEM

• It has been recognised that the use of formal methods, in the development of

such systems, is fundamental if "correctness" is to be assured. Using formal

approaches increases our understanding of a system by revealing inconsistencies,

ambiguities, and incompleteness that might otherwise go undetected [77, 135].

Hence, formal techniques are crucial for the engineering of correct time-critical

systems.

• In a time-critical system, the functional behaviours of the system and the non­

functional timing requirements are highly coupled, implicitly and can be very

difficult to analyse and validate. Attempting to analyse and validate such a system

is a particular challenging research area.

• Due to the unmanageable size and extreme complexity of time-critical systems,

an ideal solution is to partition the whole system into smaller and manageable

sub-programs or components. These sub-programs or components will be treated

separately, based on an assumption about the behaviour of its surrounding sub­

programs, components or even the environment of the whole systems. Therefore,

compositional theories shall be adopted and developed.

• In the development and evolution process of a time-critical system, most tim­

ing requirements will not be proved to be satisfied until full implementation of

the system, i.e., testing of the source code in real working conditions. Analysis

and validation must be performed at run time before the final deployment of the

system.

4

1.2. SCOPE OF THE THESIS AND ORIGINAL CONTRIBUTION

The terms used in the chapter, such as time-critical systems, behaviours, composi­

tional theories, assumption/commitment framework, etc., will be defined in the follow­

ing chapters.

1.2 Scope of the Thesis and Original Contribution

This thesis aims to present a sound technique, together with its supporting tool, for en­

gineering time-critical systems rapidly, efficiently and, above all, correctly. The thesis

concentrates on engaging formal techniques to handle development and evolution of

time-critical systems. The scope of research includes:

• The architectural design of the integrated approach: a phase-based methodology

has been identified in the approach, supporting guided evolution, i.e., evolving

time-critical systems under a controlled manner.

• The formalisation of the notion of run-time analysis: run-time analysis for time­

critical systems will be formally defined. Specification-based assertion points

technique has been developed for run-time analysis. The proposed run-time anal­

ysis technique has been implemented in a prototype tool.

• The development of compositional theory: the role of compositionality has been

identified and rules to conduct composition of time-critical systems are developed

aiming at evolutionary development of time-critical systems.

• Implementation of a prototype tool and experimentation with case studies: a sys­

tem is developed to illustrate and support the proposed approach. Another pur-

5

1.2. SCOPE OF THE THESIS AND ORIGINAL CONTRIBUTION

pose of the prototype tool is to implement the developed theories and rules for

guided evolution. A number of case studies are used for experiments with the

approach and the prototype system.

The original contribution of the thesis lies in two aspects:

• Guided evolution of time-critical systems. The contents of guided evolution have

been identified and defined in the thesis. During the evolutionary development of

time-critical system, guided evolution provides a technical basis for a repeatable,

well-defined, managed, and potentially optimised development process. It first

addresses a general architectural design of an integrated engineering framework

for handling evolutionary development of time-critical systems. This involves

crossing levels of time-critical systems, from specification in mathematical man­

ners to source code in different programming languages (language independent).

Time-critical systems' behaviours of interest can be analysed and validated in any

stage of evolutionary development. The validation and analysis are performed

within a single logical framework. As the main guideline provided in the evo­

lution of the time-critical systems, a set of extendible compositional rules offer

a repeatable and well-manageable way to handle evolutionary development of

time-critical systems.

• Run-time analysis. It is a key part in this thesis. One mechanism, namely, as­

sertion points, are used to generate run-time data (assertion data), which fully

reflects run-time behaviours of the time-critical system. An analysing and vali­

dating mechanism has been designed to capture and analyse assertion data. The

6

1.3. CRITERIA FOR SUCCESS

analysing and validating mechanism then analyses and validates run-time be­

haviours with respect to formal specification of the system. Errors will be re­

ported during the system run. The run-time analysis does not only report an error

but also indicate the location of the error.

1.3 Criteria for Success

The following criteria are given to judge the success of the research described in this

thesis:

• For a "living" time-critical system, what is the most specific characteristic, dis­

tinguishing it from other system from the perspective of evolution and making a

higher potential for producing impact of change than other conventional systems?

• Can we have a systematic way to cope with the specific characteristic of time­

critical systems and its evolutionary life-cycle?

• Can timing or functional behaviours of interest of a time-critical system be cap­

tured, analysed and validated efficiently and correctly under its real working en­

vironment in real-time?

• Can a time-critical system be developed under a repeatable base?

• How easy is it to manage evolutionary development of a time-critical system

using the proposed approach?

7

1.4. THESIS STRUCTURE

• Is the approach feasible for realisation? For example, is it possible to build a tool

based on the approach?

1.4 Thesis Structure

The thesis is organised as follows:

• Chapter 1 gives the background, motivation, scope and original contribution of

the thesis.

• Chapter 2 provides an overview of the current state of the art in the develop­

ment and evolution of time-critical systems, related formal notation and methods,

scheduling, software evolution, and in particular, their intersection, time-critical

systems' engineering.

• Chapter 3 discusses the related work, especially those involving usage of formal

techniques. Reasons of choosing Interval Temporal Logic (ITL) and its work­

bench as formal base of the proposed approach in the thesis have been given in

the chapter. New extended work of ITL workbench with respect to time-critical

systems engineering has also been described in this chapter.

• Chapter 4 explores the proposed approach in detail, including definition and con­

tents of guided evolution, a step-by-step methodology, assertion points technique

and visualisation of time-critical systems.

8

1.4. THESIS STRUCTURE

• Chapter 5 describes run-time analysis, compositional guidelines and timing anal­

ysis guidelines of the guided evolution.

• Chapter 6 is about realisation of the proposed approach by building a tool, namely,

AnaTempura. The chapter covers the tool's general system architecture, key tool

components and user interface.

• Chapter 7 deals with case studies, which include three case studies with dif­

ferent aspects, namely, an experiment of the general fulfilment of the approach

with using AnaTempura, a test of application of compositional guidelines in a

time-critical system with shared variable-based parallelism and an implementa­

tion of the approach towards another time-critical system with message-based

parallelism.

• Chapter 9 discusses the proposed approach and the supporting tool according to

a set of criteria. Conclusion is drawn based on this discussion, and prospective

further work is also discussed.

9

Chapter 2

Time-critical Systems: Development

and Evolution

Objectives:

To give an overview to time-critical systems

To discuss key issues in time-critical systems development

To investigate relevant formal methods

To conclude main problems of time-critical systems evolution

2.1 Introduction

Any computing system, either a hardware or a software system, will inevitably grow in

scale and functionality. Time-critical systems tend to be large and complex, functioning

in distributed and dynamic environments, and have complex timing constraints. These

systems have brought significant challenges to a wide range of software engineering

disciplines.

2.1. INTRODUCTION

Real-time systems differ from traditional systems in that deadlines or other ex­

plicit timing constraints are attached to tasks, the systems are in a position to make

compromises and faults, including timing faults, that may have catastrophic conse­

quences [118].

Any system, by its nature, tends to follow an evolutionary development and any

time-critical system is no exception. This evolutionary development is regarded as

being divided into corrective actions to fix latent defects, adaptive actions to deal with

changing environments, andperJective actions to accommodate new requirements [125].

A major goal in evolution is to enable the system to be operated correctly, despite its

complexity, throughout the software life-cycle. One way of achieving this goal is by

usingformal methods, which are mathematically-based languages, techniques and tools

for specifying and verifying both hardware and software systems. They have the clear

advantage that precise descriptions can be made. Moreover, it is possible to prove that

certain necessary properties hold. Most of the existing work which uses formal meth­

ods concentrates on the high abstract level, i.e. specifications, without regard to the

source code. Also, the much stricter timing requirements for time-critical systems im­

pose more demands on the implementation [73]. Most timing requirements will not be

proved to be satisfied until full implementation of the system. Timing analysis must be

employed at any time from the phase of defining the requirements and specifying the

system to the final deployment of the system.

This chapter investigates the current situation of software evolution, real-time sys­

tems and formal methods. It proposes the basic criteria for formal methods to be ap-

11

2.2. TIME-CRITICAL SYSTEMS

plied in the time critical systems domain. Among the range of the application areas of

time critical systems, this thesis concentrates on the evolutionary development of time

critical systems. Based on the proposed criteria, the existing popular formal methods,

especially temporal logic, are investigated and assessed.

2.2 Time-critical Systems

In the real world, more and more vital applications such as nuclear power stations, flight

control software for airplanes, the space shuttle avionics systems, the space station, etc.,

are of a time-critical nature. Time-critical systems are characterised by quantitative tim­

ing properties relating occurrences of events [73]. In general, time-critical systems are

part of real-time systems, but meeting the deadline of tasks in a time-critical system

is considered as critical as these tasks. Terms such as "hard" and "soft" real-time sys­

tems are sometimes used. In this section, we will describe what a real-time system

is; provide an overview; discuss some emerging principles and primitives for real-time

systems and time-critical systems.

2.2.1 What is a Real-time System?

Real-time systems are characterised by the fact that severe consequences will result

if functional as well as timing properties of the system are not satisfied. Real-time

systems are increasingly being used to ensure the effective operation of a wide range of

human activities, including administration, financial management, manufacturing and

process control [98]. The Oxford Dictionary of Computing defines a real-time system

12

2.2. TIME-CRITICAL SYSTEMS

as:

Any system in which the time at which output is produced is significant. This is

usually because the input corresponds to some movement in the physical world,

and the output has to relate to that same movement. The lag from input time to

output time must be sufficiently small for acceptable timeliness.

Some of the characteristics of real-time systems are [23]:

• Large and complex. Although real-time software is often complex, features, such

as information hiding, separate compilation and abstract data types provided by

real-time languages and environments enable these complex systems to be broken

down into smaller components which can be managed effectively.

• Manipulation of real numbers. A fundamental requirement of a real-time pro­

gramming language, therefore, is the ability to manipulate real numbers, i.e.

many real-time applications (for example, signal processing, simulation and pro­

cess control) require numerical computation facilities beyond those provided by

integer arithmetic.

• Extremely reliable and safe. The complexity of real-time systems exacerbates the

reliability problems; not only must expected difficulties inherent in the applica­

tion be taken into account but also those introduced by faulty software design.

• Concurrent control of separate system components. A major problem associated

with the production of software for systems which exhibit concurrency is how to

express that concurrency within the structure of the program.

13

2.2. TIME-CRITICAL SYSTEMS

• Real-time control facilities. Response time is crucial in any real-time system. It

is very difficult to design and implement systems which will guarantee that the

appropriate output will be generated at the appropriate times under all possible

conditions .

• Interaction with both hardware and software interfaces. The nature of real-time

systems requires that computer components interact with the external world. For

example, they need to monitor sensors and control actuators for a wide variety of

real-world devices.

2.2.2 Time-critical Systems

Before proceeding further, it is worth spending some time clarifying the term "time­

critical system". It is well-known that real-time systems all have in common the notion

of timeliness. Depending on the criticality level of timeliness, real-time systems are

often distinguished between hard and soft real-time systems. Bums [23] defines that:

hard real-time systems are those where it is absolutely imperative that responses

occur within the specified deadline, whilst

soft real-time systems are those where response times are important but the

system will still function correctly if deadlines are occasionally missed.

For example, a flight control system of a combat aircraft is a hard real-time sys­

tem because a missed deadline could lead to a catastrophe, whereas a data acquisition

14

2.2. TIME-CRITICAL SYSTEMS

system for a process control application is soft as it may be defined to sample an input

sensor at regular intervals but to tolerate intermittent delays [23].

Hard real-time tasks are also sometimes called time-critical tasks. Systems with

such tasks are often embedded in a large target system (consisting of both software and

hardware) of which the tasks are an inseparable part. Such a system must cooperate

with its surrounding, real-time, real-world environment. Computers are being used

increasingly in safety-critical systems because of the added flexibility and decreased

costs that they can generate. However, many accidents have been blamed on the use of

computers and especially on the software in them.

Critical systems are defined as [63]:

A computer, electronic or electro-mechanical system whose failure may cause

injury or death to human beings, e.g., an aircraft or nuclear power station control

system.

Safety is closely coupled to the notion of risk. Charette [28] defines risk as an event

or action:

• Having a loss associated with it.

• Where uncertainty or chance is involved.

• Some choice is also involved.

Safety can then be defined as the freedom from exposure to danger, or the exemption

from hurt, injury or loss. Criticalness of time-critical systems ties tightly with the

15

2.2. TIME-CRITICAL SYSTEMS

timeliness. The safety of time-critical systems is coupled to the risks triggered by

timing properties.

It is necessary to define a time-critical system more precisely depending on the

relationships between such a system and its environment.

A time-critical system must keep abreast with its environment, which is a time­

critical environment, by reacting properly and timely to events occurring in the

environment from the operation of the system. In such a system, the damage

incurred by a missed deadline is greater than any possible value that can be ob­

tained by correct and timely computation and may cause catastrophic results.

The term" environment" has been defined as:

The environment of a time-critical system embraces all external factors or forces,

which include surrounding things, conditions or influences, especially affecting

the existence or development of the system.

For example, the environment of a robot control system includes all sensors and actua­

tors of the robot.

2.2.3 Timing issues of Time-critical Systems

Above all, it is necessary to investigate timing issues in time-critical systems. First of

all, we need to clarify the notion of timing properties. Motus classifies timing properties

into three groups [98]:

16

2.2. TIME-CRITICAL SYSTEMS

• Performance-bound properties which comprise integral time characteristics for

the system as a whole, or for a part of it. Examples of this group are response

time, time-out, and execution time for sequences or loops in programs.

• The time-wise correctness of events and data is concerned with execution time

of programs and delays between events.

• Time correctness of interprocess communication is concerned with reactions

in real-time systems, tending to be responsive to stimuli.

Timing behaviours of a system are usually realised by constructing a schedule for

co-ordinating the execution of processes. A number of timing parameters are used to

determine the behaviour of a system. These parameters will be used for scheduling and

to express timing properties. They are [23]:

• Start time: the time instant when a task is activated.

• Computation (or execution) time: the time interval between the start time and

the termination time of a task.

• Deadline: the upper limit for the termination of a task.

• Activation period: the interval between two successive start times for a task.

• Any communication delays incurred per message transferred.

• average times spent by tasks in queues.

17

2.3. RESEARCH ISSUES IN TIME-CRITICAL SYSTEMS

2.3 Research Issues in Time-critical Systems

Due to the very complex nature of time-critical systems and the demands of their

evolutionary development, the approaches and tools of evolutionary development of

time-critical systems are still far from mature. In this section, research issues of evolu­

tionary development of time-critical systems are discussed.

Formal Development. The high reliability requirements in time-critical systems have

caused a movement away from informal approaches to the structured and, increasingly,

the formal [23]. McDermid names three techniques [83]: informal, structured and

formal. Informal methods usually make use of natural language and various forms of

imprecise diagrams. When describing software in a natural language, three main prob­

lems, ambiguity, incompleteness, and contradiction, can occur. Structured methods

often use a graphical representation, but unlike the informal diagrams these graphs are

well defined. The graphical form may also have a syntactical representation in some

well-defined language [23]. Although structured methods can be made quite rigorous,

they cannot, in themselves, be analysed or manipulated. It is necessary for the notation

to have a mathematical basis if such operations are to be carried out. Methods that have

such mathematical properties are usually know as formal. They have the following

clear advantage:

• Precise descriptions can be made in formal notations.

• They allow systems to be defined in abstract terms.

18

2.3. RESEARCH ISSUES IN TIME-CRITICAL SYSTEMS

• They demand attention to issues of completeness and consistency, therefore re­

ducing the chances of overlooking certain areas or situations which could cause

errors or bugs [49].

• It is possible to prove that necessary properties hold.

• They allow the progressive refinement of an abstract specification into a concrete

specification using well-defined rules. This leads to the possibility of generating

programs from formal specifications automatically.

• Using formal descriptions it is possible to detect the deviations (intentional or

otherwise) of a program from its original specification. It may be possible to

create tools to carry out much of this detection work [49].

In this thesis, formal methods provide a solid theoretical foundation for integrat­

ing techniques in handling the evolutionary development of time-critical systems and

building a practical formal tool.

Scheduling. A common characteristic of many real-time systems is that their require­

ments specification includes timing information in the form of deadlines. In a time­

critical system the situation may indeed be catastrophic with actual damage resulting

from an early or missed deadline. In general, there are two views as to how a system

can be guaranteed to meet its deadline. One is to develop and use an extended model of

correctness; the other focuses on the issue of scheduling [71]. The use of appropriate

scheduling algorithms has been isolated as one of the semantic models used to describe

the properties of real-time systems [118].

19

2.3. RESEARCH ISSUES IN TIME-CRITICAL SYSTEMS

However, in this thesis, we are not going to describe how to develop scheduling

theories. Instead, we give a review of timing diagrams technique, which is embodied

in our own methodology of handling the evolution of time-critical systems.

Timing analysis. This research issue focuses on analysing timing properties via for­

mal techniques and ensuring the correctness of timing properties of time-critical sys­

tems.

Timing analysis can be illustrated by looking at a typical list of questions which can

be asked, in any given practical situation, about the characteristics of time [115]:

• Is time discrete or continuous?

• Is time unbounded?

• If time is continuous, is it dense, and if so, is it complete - in other words, can

continuous time be modelled by rational or real numbers?

• Is time branching or linear; cyclic or acyclic?

• If time branches, should past and future be handled differently?

Run-time detection and verification technology. System design focuses on closing

the "semantic gap" between the given application requirements and the chosen run­

time hardware/software architecture. Time-critical system explicitly requires run-time

mechanisms that guarantee upper bounds for the maximum execution time of critical

tasks and for the maximum duration of the interprocess communication protocols [72].

Most of the timing properties of time-critical systems cannot be verified to be correct

20

2.3. RESEARCH ISSUES IN TIME-CRITICAL SYSTEMS

or not before full implementation of the entire system. There are a few general purpose

methodologies providing solutions to this issue.

Change management of time-critical systems. Understanding the impacts of soft­

ware change has been a challenge since software systems were first developed [17].

Formal methods could be helpful when handling change in time-critical software devel­

opment and make change management more efficient. This technique is called guided

evolution.

Compositional evolution. There are two reasons for handling evolutionary develop­

ment of time-critical systems compositionally.

Because of the size and complexity of time-critical systems, it is impossible to

handle the whole system at once. The solution is to decompose the whole system

into smaller, manageable units/components that are easier to handle and can be

treated fairly independently of one another.

Time-critical systems are characterised by a close interaction between the system

and its environment. Modem time-critical systems even allow highly complex

computer-environment interactions that humans are no longer able to control.

Formal compositional techniques are extremely helpful to reveal interactions be­

tween the system and its environment and then to specify and verify these sys­

tems.

21

2.4. FORMAL NOTATION AND METHODS

Program Visualisation of time-critical systems. Program visualisation comprises

techniques where the program is specified in a conventional, textual manner, and pic­

torial representations are used to illustrate different aspects of the program, for in­

stance, its run time behaviour [127]. Program visualisation is already a common tech­

nique, however, this technology, such as one of the first program animation systems,

BALSA [20], and its descendants, is only applicable to sequential programs. New

methods and tools have to be developed that are able to visualise the special kinds

of information needed in the context of time-critical computing, for example, parallel

behaviours.

2.4 Formal Notation and Methods

The debate about the use and relevance of formal methods in the development of com­

puting systems has always attracted considerable attention. Formal methods have been

a topic of research for many years, however they are rarely used in commercial con­

texts [31]. Even in some companies where formal methods have been employed, it

is normally only to a limited extent and is often resisted by managers and technicians.

This situation is hardly surprising since formal methods technology is largely perceived

to consist of a collection of prototype notations and "research" tools which are difficult

to use and do not scale up easily. There are many widely held misconceptions about

the use of formal techniques [47]. It may be fair to say that formal methods research

has to some extent been dominated by fundamental aspects rather than by problems in

application [18].

22

2.4. FORMAL NOTATION AND METHODS

It is important to realise that as the complexity of building computing systems is

continually growing, a disciplined, systematic and rigorous methodology is essential

for attaining a "reasonable" level of dependability and trust in these systems. In short,

the use of formal methods is no substitute for good software production management,

generally because formal methods use discrete mathematics to describe a system, logic

proofs can be applied to ensure the correctness of the specifications of the system. More

detailed reasons will be given in the following parts of the thesis. Time-critical systems

may have the most to gain from the use of formal methods, such techniques are in fact

useful in a wide variety of application areas in industry. Some examples show that

formal development techniques together with their associated verification tools have

been successfully applied in industry [10]. For example, assertional methods, temporal

logic, process algebra and automata, have all been used with some degree of success.

Rolls-Royce and Associates have been applying formal methods (mainly YOM)

for the development of software for time-critical systems, and nuclear power plants in

particular, for a number of years [51, 52].

A number of medical instruments, which have life-critical functionality, are other

typical examples of time-critical systems. For example, two Hewlett-Packard (HP)

divisions have used formal specification in order to enhance the quality of cardiac care

products [75, 32] by using HP-SL, a formal specification language based on YOM,

developed at HP laboratories [12].

More recently, NASA commissioned work involving the application of formal meth­

ods to support digital flight control systems (OFCS) [Ill, 117]. Another example is the

23

2.4. FORMAL NOTATION AND METHODS

formal specification of the TCAS collision avoidance system, which was undertaken by

N. Leveson et al. for the Federal Aviation Administration (FAA) [39].

In addition, formal specification languages and their semantics are themselves be­

ing standardised (e.g. LOTOS [62], YDM [19], and Z [100]). An important trigger

for exploitation of research into formal methods comes from the interest of regulatory

bodies or standardisation committees (e.g. the International Electro-technical Commis­

sion [60, 61], the European Space Agency [1], the MOD Defence Standard 00-55 [88],

the MOD Defence Standard 00-56 [87], and the UK Railway Industry Association [8]).

For a formal methodology to be complete it must be able to fulfil the following

requirements [49]:

1) Specification. It must be possible to state what a program is meant to do in a

fonnal precise way, i.e. a specification in mathematical manner, unambiguously,

consistent and complete.

2) Verification. Given the specification and a program obtained, it should be possi­

ble to prove using formal mathematical methods that the program does what the

specification states. Therefore, if verification can provide proof that the program

achieves its purpose, then it becomes the desired replacement or partial replace­

ment for exhaustive testing and it can be called proof of correctness. It is essential

to employ a set of proof rules to show correctness of properties.

Fonnal methods can therefore be seen as covering two areas: specification and

development. In order to carry out verification it is necessary to be able to formally

24

2.4. FORMAL NOTATION AND METHODS

represent the program itself; that is, an exact specification of the semantics or meaning

of each programming language construct is required.

A formal specification is usually composed of five primary components, a semantic

model, a specification language (notation), a verification system/refinement calculus,

development guidelines and supporting tools.

Formal methods can be classified into the following five classes or types, i.e.,

Model-based, Logic-based, Algebraic, Process Algebra and Net-based (Graphical)

methods [85].

Model-based Approach. A system is modelled by explicitly giving definitions of

states and operations that transform the system from one state to another. Examples

include Z [116] and Vienna Development Method (VDM) [15].

Logic-based Approach. In which logics are used to describe the desired system

properties, including low-level specification, temporal and probabilistic behaviours.

Examples of logics include Hoare Logic [53, 54, 55] and Temporal Logic [110, 27,

93,94,26,137].

Algebraic Approach. In this approach, an explicit definition of operations is given

by relating the behaviour of different operations without defining states. There is no

explicit representation of concurrency. Examples include OBJ[43] and LARCH [45].

Process Algebra Approach. Process algebras give an explicit model of concurrent

processes, representing behaviours by means of constraints on allowable and observ-

25

2.4. FORMAL NOTATION AND METHODS

able communication between the processes. Examples include, Communicating Se­

quential Processes (CSP) [56], Calculus 0/ Communicating Systems (CCS) [86], and

Language O/Temporal Ordering Specification (LOTOS) [79].

Net-based Approach. Net-based approaches give an implicit concurrent model of

the system in terms of (casual) data flow through a network, including representing

conditions under which data can flow from one node in the net to another. Examples

include Petri Net [109] and predicate transition nets [41].

These formalisms were used with real time context by conservative extensions to

include time, such as Real-time Hoare Logic [57], Timed CCS (TCCS) [37], Timed

CSP (TCSP) [108], and Timed Communicating Object Z (TCOZ) [80].

Methods and their supporting tools for the formal verification and analysis of sys­

tem exist. For example, HyTech [50] is a symbolic model checker for linear hybrid

automata [3], a subclass of hybrid automata that can be analysed automatically by

computing with polyhedral state sets. A key feature of HyTech is its ability to per­

form parametric analysis, i.e. to determine the values of design parameters for which a

linear hybrid automaton satisfies a temporal-logic requirement. HyTech has been most

successful when applied to systems that involve an intricate interplay between discrete

and continuous dynamics.

Mok et. al (within the SARTOR project) [90] developed a technique based on

a logic for real-time systems (Real Time Logic (RTL» and a specification language

(Modechart). Real Time Logic first appeared in [65], and was inspired by Harel's

statechart [48]. A method for verifying properties of systems specified in modechart

26

2.4. FORMAL NOTATION AND METHODS

was described in [66].

Both HyTech and Modechart are only suitable for the formal verification process

during development. They cannot handle source code-level analysis against given prop­

erties. In addition, both formalisms are not compositional, which makes them hard for

large-scale system evolution. The recent work on real-time constraints monitoring us­

ing RTL [64] and interval model checking [24] is based on Linear Time Logic (LTL).

Although these analysers and their underlying logic are suitable for expressing real­

time properties they both are non-compositional and not able to handle source code­

level analysis. As we will see later on our tool is able to perform the necessary formal

analysis at source code-level.

Analysers based on Anna [113] and PLEASE [126] are amongst early developed

analysers. Anna is a language extension of Ada to include facilities for the formal

specification of the intended behaviour of Ada programs. It augments Ada with precise

machine-processable annotations so that well established formal methods of specifica­

tion and documentation can be applied to Ada programs. Like Anna, PLEASE allows

software to be annotated with formulae written in predicate logic; annotations can be

used in proofs of correctness and to generate run-time assertion checks. As the logic in

PLEASE is restricted to Horn clauses, specifications can be also transformed into pro­

totypes which use Prolog to 'execute' pre- and post-conditions. Anna and PLEASE,

however, do not deal with timing properties and are not compositional.

Temporal Rover [35] is a tool for the specification and verification/validation of

protocols and reactive systems. It can automate the verification of real-time and rel-

27

2.5. SOFTWARE EVOLUTION

ative temporal properties. The formal specification is written using a combination of

Temporal Logic [110] and language of choice, such as C and Java. Temporal-logic

assertions are inserted into the body of executable code in conjunction with pieces of

formal specification. Temporal-logic assertions can be simulated using the Temporal­

Rover simulator. However, Temporal Rover verifies the systems based on simulation

and is not compositional as well. It offers simple pre and post conditions that is not

enough for handling complex parallelism. The tool has no graphical output yet.

2.5 Software Evolution

Macroscopically, the role of computer software has undergone significant changes over

a time span of little more than 50 years. Dramatic improvements in hardware perfor­

mance, profound changes in computing architectures, vast increases in memory and

storage capacity and a wide variety of exotic input and output options have all precipi­

tated more sophisticated and complex computer-based systems [5].

Microscopically, it is safe to say that from the day that a large software system goes

into service, functional, performance, operator and environmental requirements will

undergo changes. Moreover, the delivered software system will contain some latent

defects that were not detected during testing. These factors cause software systems

inevitably to evolve in scale, environment and functionality, especially those successful

enough to survive a long period [13, 7]. There is growing recognition that software, like

all complex systems, evolves over a period of time [42]. It's essential for time-critical

systems that both functional requirements and timing requirements are satisfied after a

28

2.5. SOFTWARE EVOLUTION

step in their evolution.

Taxonomy of Software Evolution

Software evolution consists of the activities required to keep a good and useful

software system. They are correcting defects, enhancing functionality and improving

quality. Depending on these activities, software evolution can be divided into:

• corrective actions to fix latent defects

Defects refer to the system not performing as originally intended, or as specified

in the requirements [7]. Some of examples include:

- correcting a program that aborts, or

- correcting a program that produces the incorrect results, or

- correcting a program that doesn't produce the required results within the

correct time.

• adaptive actions to deal with changing environments

It includes systems changes, additions, insertions, deletions, modification, exten­

sions, and enhancements to meet the evolving environment in which the systems

must operate [7], e.g. it is necessary to modify some time parameters to fit new

hardware configurations in real-time systems.

• perfective actions to accommodate new requirements

This will happen as a consequence of a change in user requirements of the soft­

ware. For example, a payroll suite may need to be altered to reflect new taxation

29

2.5. SOFTWARE EVOLUTION

laws; a real-time power station control system may need upgrading to meet new

safety tandards; a mail sorting system may need tuning to reduce total process

time.

Software evolution is a process where maintenance is conducted continuously. For

example, in a typical software evolution environment, software maintenance consumes

about 90% of all re ource . Furthermore, a number of theories, approaches and tools for

software maintenance have been employed in the software evolution environment. For

example, Gallagher's program slicing [40], dependency analysis and its tool set [129],

and traceability analysis [17] are widely u ed to analyse change of impact in oftware

evolution.

2.5.1 Managing Evolution of Time-critical Systems

Figure 2.1: A Typical Software Evolution Process

There have been variou development techniques for time-critical application. These

30

2.S. SOFTWARE EVOLUTION

were based on the traditional methods such as the waterfall model [105], spiral model [16],

and incremental model [84]. However, other specialised techniques have emerged that

utilise notions, such as object-oriented and component paradigms (for example, HRT-

HOOD [29]).

Software evolution consists of the key activity, handling changes.

A typical software evolution process is shown in Figure 2.1 [7].

• Change Management is to uniquely identify, describe, and track the status of each

requested change. In fact, change management is an ongoing activity throughout

the software evolution process.

• Impact Analysis determines the scope of the requested change as a basis for its

planning and implementation. It evaluates change for potential impacts on ex­

isting systems, other systems, documentation, hardware, data structure, and in­

volved persons (e.g. users, maintainers, or operators.).

• System Release Planning is the production of a plan which contains the general

strategy of applying the change, the content of the new system and the timing of

system releases. The system release plan may also give a plan of the adequate

testing of the change and the system release document.

• Design Changes is to develop a revised design for the approved changes. A

review of the target system's structure, program, or modules will be given in

this stage. System and program design is covered for each of the three activity

categories of evolution, namely, corrective, adaptive, and perfective.

31

2.5. SOFTWARE EVOLUTION

• Coding is to change the software to reflect the approved changes represented in

the designs. The major activities are:

- implement and review all changes to code, Temporal Rover [35] is a tool for

the specification and verification/validation of protocols and reactive sys­

tems. It can automate the verification of real-time and relative temporal

properties. The formal specification is written using a combination of Tem­

poral Logic [110] and language of choice, such as C and Java. Temporal­

logic assertions are inserted into the body of executable code in conjunc­

tion with pieces of formal specification. Temporal-logic assertions can be

simulated using the Temporal-Rover simulator. However, Temporal Rover

verifies the systems based on simulation and is not compositional as well. It

offers simple pre and post conditions that is not enough for handling com­

plex parallelism. The tool has no graphical output yet.

- restore or place the source code under control of the configuration manage­

ment system, and

- update the change request to reflect the modules or units changed.

• Testing is to ensure compliance with the original requirements and the approved

changes. The major testing activities are:

I. Human testing: requirements, design, and code walk-throughs or inspec­

tions.

2. Computer testing:

32

2.5. SOFTWARE EVOLUTION 33

* Unit test: all code changes by module or unit.

* Integration test: the interfaces between each module of the program

and the program as a whole.

* System test: the interfaces between programs to ensure that the system

meets all of the original requirements plus the added changes.

* Acceptance testing: where the user approves the revised system.

• System Release is to deliver the system and updated documentation to users for

installation and operation.

I Steps in the Evolution Process I Current Usage I Formal Methods Usage

Change Analysis informaVstructured structured
mature techniques non-well-developed

Impact Analysis ad hoc mathematical analysis

Change Description informaVstructured formal specification

New System Design informal/structured formal specification
e.g. pseudo-code technique and verification

Coding restructuring code refinement + derive code
directly from concrete specification

Testing mature testing Test suites generated by
methods and tools using Formal Specification,

few practical tools available

Table 2.1: Formal Methods Usage

Formal techniques can be utilised within the above process. In Table 2.1, we sum-

marise such usage. We develop compositional techniques to illustrate such utilisation

2.6. SUMMARY

in the thesis.

2.6 Summary

Time-critical systems are these in which their "correctness" depends on both functional

and timing correctness. Using formal methods is crucial in the specification, develop­

ment, and implementation of these systems. The chapter reviewed current techniques

for the "evolution" with the need for compositional and sound methodology for han­

dling that evolution.

34

Chapter 3

Preliminaries

Objectives:

To give a computational model

To introduce formal basis: Interval Temporal Logic (ITL)

To give a short review of Temporal Logics

To describe Tempura, an executable subset of ITL

To introduce Refinement Calculus

To give the Assumption/Commitment paradigm

3.1 Introduction

We begin by establishing a computation model which is suitable for modelling time­

critical systems. Then we describe a formal basis of our methodology, namely, Interval

Temporal Logic (lTL). ITL forms a specification oriented methodology for the engi­

neering of time-critical systems. The choice of ITL is based on a number of reasons.

These reasons will be presented in this chapter in conjunction with a number of com-

3.2. COMPUTATIONAL MODEL

parisons between ITL and other similar logics. Furthermore, all refinement relations

and rules, as well as the process of run-time analysis, are precisely formulated in ITL.

ITL has an executable subset, namely, Tempura. It can be used for simulation and

rapid prototyping purposes. A refinement calculus of ITL will then be introduced in

this chapter. In addition, as a key issue of preliminaries, the assumption/commitment

paradigm will be discussed.

3.2 Computational Model

First of all, we develop a computational model which attempts to overcome some of

the simplifying assumptions, such as, "all processes are periodic"; "the processes are

completely independent of each other"; or "all processes have a fixed worst-case exe­

cution time", made both by other formal real-time languages and by other scheduling

theories. A time-critical application within our model is characterised by:

• A fixed set of periodic and sporadic tasks. Each periodic task has an associated

deadline. Each sporadic task has a defined minimum inter-arrival time and a

deadline.

• Computation times may be between a minimum (best-case) and a maximum

(worst-case).

• Communication between tasks is asynchronous. Tasks are related to one another

by precedence relationships.

• Tasks may execute on a single processor, a multiprocessor or a distributed system.

36

3.2. COMPUTATIONAL MODEL

- Tasks allocated to a single processor may be preempted at run-time by other

tasks.

- Multi-node systems with general static process allocation are calculated

pre-run-time .

• Processors are either connected by a broadcast local area network (token ring or

token passing bus) or a point-to-point architecture.

The main advantage of this model in conjunction with the formal development

method is that it allows us to remove a number of significant restrictions found in other

approaches, for example, the maximal parallelism hypothesis, which is an unrealistic

assumption made in languages such as Timed-CSP [114].

Computation

We take a view that a unit of computation defines mathematically an abstract architec­

ture upon which applications will execute. A system is a collection of agents, which

is our unit of computation. Systems can themselves be viewed as single agents and

composed into larger systems. At any instant in time a system can be thought of as

having an unique state. The system state is defined by the state variables of the system

and, for a concurrent system, by the values in the communication links.

Computation is defined as any process that results in a change of system state.

An agent is described by a set of computations which may transform a private data­

space and may read and write to communication links during execution. Each compu-

37

3.2. COMPUTATIONAL MODEL

tation may have both minimum and maximum execution times imposed.

A system should be tightly related to its environment. A system should realise

correct computations to meet requirements from its environment and supply feedback to

the environment. The environment of a system embraces all external factors or forces,

which include surrounding entities, conditions or influences, especially affecting the

existence or development of the system. For example, for a robot control system, its

environment includes all sensors and actuators of the robot.

Behaviours and Properties

A behaviour in our model is defined as a sequence of states, i.e., an interval a. Hence,

a behaviour could be finite or infinite. A behaviour is also the same as a unit of com­

putation. A behaviour is calledjUll behaviour if it contains all the state variables of the

system, otherwise, it is called partial. A partial behaviour can be obtained by hiding

some state variables (formally, it is a projected behaviour over certain state variables).

A property, P, is a set of behaviours. A general classification of properties is readily

available:

safety (something bad does not happen) and

liveness (something good will eventually happen) property.

A safety property is finitely refutable, so if a behaviour does not satisfy the property,

then we can find who took the step that violated it. A property P is a liveness property

if and only if every finite behaviour with the prefix a is a prefix of a behaviour in P.

38

3.3. INTERVAL TEMPORAL LOGIC

3.3 Interval Temporal Logic

3.3.1 Introduction

Interval Temporal Logic (ITL) is an extension of classical first order logic especially

designed for representing time-dependent behaviour. It has proved to be an effective

notation for specifying and reasoning about real time critical systems.

ITL is a flexible notation for both propositional and first order reasoning about peri­

ods of time found in descriptions of hardware and software systems. It can handle both

sequential and parallel composition unlike most temporal logics. It offers powerful and

extensible specification and proof techniques for reasoning about properties involving

safety, liveness and timeliness.

3.3.2 Temporal Logic V s Interval Temporal logic

Temporal logic has its origins in philosophy, where it was used to analyse the structure

or topology of time. In recent years, it was found to be valuable in real-time applica­

tions.

In physics and mathematics, time has traditionally been represented as just another

variable. First order predicate calculus is used to reason about expressions containing

the time variable, and there is thus apparently no need for a special temporal logic.

However, philosophers found it useful to introduce special temporal operators, such

as 0 (henceforth) and 0 (eventually), for the analysis of temporal connectives in lan­

guages. The new formalism was soon seen as a potentially valuable tool for analysing

39

3.3. INTERVAL TEMPORAL LOGIC

the topology of time. Various types of semantics can be given to the temporal operators

depending on whether time is linear, parallel or branching. Another aspect is whether

time is discrete or continuous [82].

Temporal logic is state-based. A structure of states is the key concept that makes

temporal logic suitable for system specification. Mainly, the types of temporal se­

mantics include [82] interval semantics, point semantics, linear semantics, branching

semantics and partial order semantics.

The various temporal logics can be used to reason about qualitative temporal prop­

erties. Safety properties that can be specified include mutual exclusion and absence of

deadlock. Liveness properties include termination and responsiveness. Fairness proper­

ties include scheduling a given process infinitely often, or requiring that a continuously

enabled transition ultimately fires. Various proof systems and decision procedures for

finite state systems can be used to check the correctness of a program or system.

In real-time temporal logics, quantitative properties can also be expressed such as

periodicity, real-time response (deadline), and delays. Early approaches to real-time

temporal logics were reported by Ostroff [101] and Benveniste [14]. Since then, real­

time logics have been explored in great detail.

In this thesis, Interval Temporal Logic (ITL) was chosen as formal preliminar­

ies. ITL was originally developed by Ben Moszkowski in order to model digital cir­

cuits [92]. Later it was designed particularly as a formalism for the specification and

design of software systems [93, 95, 96, 27]. Timing constraints are expressible and

furthermore most imperative programming constructs can be viewed as formulas in a

40

3.3. INTERVAL TEMPORAL LOGIC

slightly modified version of ITL by Zedan and Cau [26].

While other temporal logics, such as Discrete Temporal Logics (PTL) [36], based

on the notions of points, ITL is concerned with the truth of statements over intervals,

rather than just to a point in time; that is, the starting and ending points are both con­

sidered. However, its syntax contains the basic temporal operators, which are the same

as of PTL, such as O(next) , O(sometime), and D(always). Except for shared ad­

vantages with other temporal logics, the reasons of choosing ITL result from its own

characteristics, which are presented as follows.

• ITL is a flexible notation for both propositional and first-order reasoning about

periods of time found in descriptions of hardware and software systems.

• Unlike most temporal logics, ITL can handle both sequential and parallel com­

position and offer powerful and extensible specification and proof techniques for

reasoning about properties involving safety, liveness and time.

• Tempura [94], an executable subset of ITL, provides an executable framework

for developing, analysing and experimenting with suitable ITL specifications.

• ITL has a complete axiomatic system [97].

• In addition, Zedan and Cau have provided a refinement calculus for ITL [26] that

can "translate" an ITL formula into executable code.

41

3.3. INTERVAL TEMPORAL LOGIC 42

3.3.3 Syntax and Semantics

The key notion of ITL is an interval. An interval a is considered to be a (in)finite

sequence of states aD, a1"" where a state ai is a mapping from the set of variables

VaT to the set of values Val. The length 10"1 of an interval aD ... an is equal to n (one

less than the number of states in the interval l , i.e., a one state interval has length 0).

The notation ai:j denotes the subinterval of a of length j - i with states ai, ai+l, ... , aj.

Table 3.1: Syntax of ITL
Expressions

e "= JlI a I A I g(eXP1,· .. ,eXPn) I za:]

Formulae
] ::= p(exPl'"'' exPn) I -,] I h 1\ 12 I \Iv.] I skip I II ; 12 I 1*

The syntax of ITL is defined in Table 3.1 where Jl is an integer value, a is a static

variable (doesn't change within an interval), A is a state variable (can change within an

interval), v a static or state variable, 9 is a function symbol and P is a predicate symbol.

The informal semantics of the most interesting constructs are as follows:

• za:]: choose a value of a such that 1 holds. If there is no such an a then za:]

takes an arbitrary value from a's range.

• skip: unit interval (length 1).

• 11 ; 12: holds if the interval can be decomposed ("chopped") into a prefix and

suffix interval, such that h holds over the prefix and 12 over the suffix, or if the

interval is infinite and]1 holds for that interval.

IThis has always been a convention in ITL

3.3. INTERVAL TEMPORAL LOGIC 43

• 1*: holds if the interval is decomposable into a finite number of intervals such

that for each of them f holds, or the interval is infinite and can be decomposed

into an infinite number of finite intervals for which f holds.

Table 3.2: Frequently used abbreviations

Of ~ skip; f next

more Otrue non-empty interval

empty
.....

empty interval = ,more

in! true ;false infinite interval

finite ,in! finite interval

Of finite; f sometimes

of ,O'f always

if fo then iI else 12 (fo 1\ fd v (,fo 1\ h) if then else

folliI fo 1\ iI parallel composition

fin f o(empty :J f) final state

(#)f finite ; f ; true some subinterval

rilf -,((#)-,f) all subintervals

keep f ril(skip :J f) all unit subintervals

while fo do iI ~ (fo 1\ iI)* I\fin 'fo while loop

Oexp za: O(exp = a) next value

fin exp za:fin (exp = a) end value

A:= exp OA = exp assignment

eXPl +- exp2 finite 1\ (fin eXPl) = exp2 temporal assignment

eXPl gets exp2 keep (exPl +- exp2) gets

stable exp exp gets exp stability

These constructs enables us to define programming constructs, including O(sometimes),

O(always), C(next), etc. Table 3.2 contains some frequently used abbreviations. For ex-

ample, a simple heating controller program can be defined it as:

3.3. INTERVAL TEMPORAL LOGIC 44

Tempurature_Controller -.. (if temp > Threshold

then 0(Heater = 0 N)

else O{Heater = OFF))*

The following are some examples illustrating ITL:

1. In an interval, the variable I at some time equals 1 and at some later time equals

2 can be expressed as:

0[(1 = 1) 1\ 0(1 = 2)]

2. In an interval, if the variable I always equals 1 and in the next state the variable J

equals 2 then it follows that the expression I + J equals 3 in the next state:

[0(/ = 1) 1\ O(J = 2)] ::) 0(/ + J = 3)

3. The formula

(K + 1 ~ K) ; (K + 2 ~ K)

is true in an interval if, and only if, that interval can be chopped into two sub­

intervals such that the sub-formula K + 1 ~ K is true on the first subinterval

and the sub-formula K + 2 ~ K is true on the second subinterval. The net effect

3.3. INTERVAL TEMPORAL LOGIC 45

is that K increases by 3. This is expressed by the following property:

[(K + 1 ~ K) ; (K + 2 ~ K)] ::> (K + 3 ~ K)

The formal semantics of ITL is as follows: Assume X be a choice function which

maps any nonempty set to some element in the set. It is written a "'va' if the intervals

a and a' are identical with the possible exception of their mappings for the variable v. It

is assumed a fixed interpretation I which serves two purposes. First. it associates data

domains I l , I 2 , ••• , with the corresponding sorts 1. 2 •.... Secondly. I gives meaning to

the predicate and function symbols. More precisely. I maps each n-ary predicate sym-

bol p to an n-ary relation I(p) E 2Ip"1 x""" xIpn • Similarly. each n-ary function symbol f

is associated with a n-ary function I(J) E If- x ... x If- ~ If- that suits 1's sort
1 n n+1

requirements. It is assumed that I contains interpretations for the arithmetic operators

and relations for natural numbers as well as operators for manipulating finite lists (e.g.,

subscripting and list length).

The meaning of an expression is defined inductively:

• Static or state variable:

The value of a variable for an interval a is the variable's value in the initial state

3.3. INTERVAL TEMPORAL LOGIC 46

{

X(u) if u =I- {}
• Definite descriptions: Ea[zv : n =

X(Iv) otherwise,
where u is the set of values of the static variable v in the interval a' such that

a I"Vv a' and Mal [f] = true:

u - {a'(v): a' E Int, a "'va' and Ma/[f] true}.

If u is empty, the description equals some value selected from v 's domain Iv'

Since v is static, it has a unique value in a' denoted here a' (v).

The meaning of fonnulas is defined as:

• Predicates: Mafp(exPl,' .. ,exPn)] = true iff

• Negation: Ma[.. f] = true iff Ma[J] = false.

• Conjunction: Ma[fl A 12] = true iff Ma[Jd = true and Ma[h] = true.

• Universal quantification: MalVv • f] = true

if f for all a' S.t. a "'va' , Ma/[f] = true,

for all intervals a' that are identical to a except possibly for the behaviour of the

variable v (i.e., a "'va').

• Unit interval: Ma[skip] = tt iff lal = 1.

(exists a k, s.t.Mao ... ak [hI = true and

3.3. INTERVAL TEMPORAL LOGIC 47

«a is infinite and MO'k'" [12] = true) or

(a is finite and k :s lal and MO'k"'O'lcrl [12] = true»)

or (a is infinite and MO'[Jl))'

• Chop-star: MO'[f*] = true iff

if a is infinite then

(exist lo, ... ,In S.t. lo = 0 and

for all 0 :s i < n, li :s li+ 1 and M 0'1; .. . 0'1;+ 1 [I] = tt.)

or

(exist an infinite number of li S.t. lo = 0 and

for all 0 :s i, li :s li+ 1 and

else

(exist lo, ... ,In S.t. lo = 0 and In = lal and

Within above formulas, the constants "true" and "false" are the interval forms of

the classical truth values T and F. Formally, they can be defined as:

false ,.... f /\ 'f for any formula f;

true ,.... ,false

3.4. ASSUMPTION/COMMITMENT PARADIGM

3.3.4 Types

There are two basic builtin types in ITL (which can be given pure set-theoretic defini­

tions). These are integers N (together with standard relations of inequality and equal­

ity) and Boolean (true and false).

Further types can be built from these by means of x and the power set operator P

(in a similar fashion as adopted in the specification language Z).

For example, the following introduces a variable x of type T

(3x : T) . f - 3x· (type(x, T) 1\ f)

Here type(x, T) denotes a formula describing the desired type of x. For example,

type(x, T) could be 0 :::; x :::; 7 and so on. Although this might seem to be a rather

inexpressive type system, richer types can be added.

3.4 Assumption/Commitment Paradigm

Comparing to sequential programs, concurrent programs are much harder to specify

and verify. Assumption/commitment (sometimes also called rely/guarantee [l33]), as

against monolithic, specification paradigm has therefore been introduced [132]. The as­

sumption/commitment paradigm has been advocated in numerous variations (see [123,

103]) for the specification of interactive components of real-time/distributed systems.

48

3.4. ASSUMPTION/COMMITMENT PARADIGM

It provides a concept for the description of an interface 2 between a system and its en-

vironment [21]. The basic idea of the assumption/commitment paradigm is to make

a clear separation in an interface specification of a component into the responsibilities

of the component and those of its environment within their interaction [21]. In the as-

sumption/commitment paradigm, a component will be verified to satisfy a commitment

under the condition that the environment satisfies an assumption. In other words, it

suggests the structuring of specifications into assumptions about the behaviour of the

component's environment and into commitments that are fulfilled by the component

provided the environment fulfils these assumptions.

The idea that specifications are conveniently formulated and manipulated in the

form of assumption/commitment conditions is not new. Pre/postcondition specifica-

tions for sequential programs are special case of assumption/commitment specifica-

tions, in which the precondition expresses the conditions on the program variables the

program assumes on when control enters it, and the postcondition expresses the con-

ditions the program commits when and if control leaves it. Assumption/commitment

rules were first studied as extensions of Hoare Logic. The so-called "assumption /

commitment" method [89] introduced by Misra and Chandy in 1981 is suited to de-

scribe open systems, based on Hoare's pre/postcondition specifications [53]. But this

method is unable to prove temporal properties. The FloydIHoare techniques for proving

partial correctness of sequential programs [38, 53] can be viewed as a special case of

the proof technique for assumption/commitment properties. [103, 68] studied mainly

2Tbe logical connection between a real-time distributed (sub-)system and its environment is called
its interface.

49

3.4. ASSUMPTION/COMMITMENT PARADIGM

in the framework of state-based system models. Abadi and Lamport [2] studied as­

sumption/commitment paradigms for achieving compositionality for specification and

verification techniques using the Temporal Logic of Actions (TLA).

An assumption/commitment specification for a system Sys is a specification of the

basic form A ~ C, where A is an assumption condition and C is a commitment con­

dition. An assumption condition expresses the conditions that Sys assumes its environ­

ment to provide, and a commitment condition expresses what Sys commits to provide

in return. Formally, for a system Sys, the assumption/commitment style specification

can be expressed in ITL as follows:

W A As A Sys ~ Co A fin w',

which states that if the state formula w is true in the initial state and the assumption

As is true over the interval in which Sys is operating, then the commitment Co is

also achieved. Furthermore the state formula w' is true in the interval's final state or

is vacuously true if the interval does not terminate. This is particularly important as

As could be a formula asserting various assumptions about the environment in which

the system, under consideration, is operating. For convenience, in some cases, it can

abbreviate (As A w) to Ass and (Co 1\ fin w') to Com.

The following is an example adapted from the mine pump control problem [74, 22,

81, 70]:

Water percolating into a mine is pumped out of the mine. A pump controller

50

3.4. ASSUMPTION/COMMITMENT PARADIGM

switches the pump, depending on the methane level, i.e. to avoid the risk of ex­

plosion, the pump must be switched off when the methane level is above a critical

level. The presence of methane is measured in units of Pascal and indicated by

a methane sensor as a value of Pressure (a real number). There is a critical

level, M ineExplo, above which the pump must be switched off in 1 second. The

system, PumpController can be expressed as:

(Ass, Com), where

Ass: true

Com: 0 (

(Pressure ~ MineExplo ::J O(Pump = OFF)) /\

(Pressure < MineExplo ::J O(Pump = ON)))

The total specification means that the pump controller, PumpControlier guaran­

tees that it eventually turns the mine pump off (Pump = OF F), assuming that the

methane level reaches or exceeds the critical level, and eventually keeps the mine pump

operating (Pump = ON), assuming that the methane level is below the critical level.

Using such an approach to describe the desired properties we can achieve composi­

tional analysis and validation, which will be described later on.

51

3.5. REFINEMENT CALCULUS

3.5 Refinement Calculus

A refinement calculus for ITL is readily available based on Back [9] and Morgan's [91]

work. Using such a calculus, an ITL formula could be refined into concrete code written

in languages such as Ada, C. Especially, the development of an executable subset of

ITL, known as Tempura [94], was a milestone in the use of ITL as it enables one to

check, debug and simulate the design [26]. Therefore, the design and implementation

can be simply done in Tempura.

Refinement laws will be applied to transform from the abstract level to the concrete

level. During this transition, both abstract and concrete representations are allowed

to intermix. The representation at the abstract level is done using solely pure ITL

primitives. Firstly, the refinement ordering relation, "~", is defined in the normal way

as:

P~Q~Q ~p.

Clearly, "~ .. is a partial order. As usual then,

- a sequence Pk of agents is called increasing if Pk gets progressively stronger

- a sequence Pk of agents is called decreasing if Pk gets progressively weaker

52

3.5. REFINEMENT CALCULUS

It is elementary fact that each

- increasing sequence has a limit which is the weakest agent stronger than each Pk

(namely, nkPk);

- decreasing sequence has a limit which is the strongest agent weaker than each Pk

(namely, UkPk).

Let P be the set of all agents. A function F from P to P

- is A-continuous if for every increasing chain Pk: F(nk Pk) = nk F(Pk),

- is v-continuous if for every decreasing chain Pk: F(Uk Pk) = Uk F(Pk),

and

- is monotonic if P ~ Q :> F(P) C F(Q).

Assignment

The assignment is introduced with the following law

(:= -1) x:= exp Ox = exp

Non-deterministic choice

Let P and Q be two agents, P v Q denotes an agent that behaves either as P or Q. but

does not determine which one. Hence the environment cannot control or predict the

result. The following are some basic laws governing v.

53

3.5. REFINEMENT CALCULUS 54

The choice between the same agents is vacuous.

{v-l)PvP-P

The choice is commutative and associative:

{v-2)PvQ-QvP

(v -3) P v (Q v R) = (P v Q) v R

where R denotes an agent.

The choice has true as its zero.

(v -4) true v P - true

Note: for agent P and Q we have

P~Q (P v Q) = P

3.5. REFINEMENT CALCULUS

If then else-(:onditional

The conditional is both idempotent and associative.

(if -1) if fo then f else f - f

(if -2) if fo then fl else (if fo then 12 else h)

if fo then fl else h

if fo then(if fo then f1 else h) else h·

The following two laws describe how conditional makes a choice between its argu-

ments.

(if -3) if true then It else 12 - fl

(if -4) if fo then It else 12 if -,fo then 12 else fl.

The relationship between conditional and v is given by:

(if -5) if fo then (It v h) else h

(if -6) (if fo then It else h) v h

To allow unnesting of conditionals, there is:

(if fo then It else h) v

(if fo then 12 else h)

if fo then(fl v h) else (12 v h)·

(if -7) if foo then (if fOl then It else h) else (if f02 then It else h)

if (if foo then fm else f02) then fl else 12

55

3.5. REFINEMENT CALCULUS

Chop-sequential composition

The following rules describes the characteristics of ';' .

';' has empty as a unit and is associative.

(; - 1) empty; I I

I; empty

II; (12; h)

The chop operator distributes over nondeterministic choice and conditional.

(; - 3) II; (12 v h) ; 14

(fl ; 12 ; 14) V (fl ; h ; 14)

(; - 4) (if 10 then II else h) ; h

if 10 then (fl ; h) else (f2 ; h)

The chop operator is v-continuous.

While loop

The following law introduces the while loop.

(while -1) while fo do fl

(fo 1\ Id* I\fin -,10

56

3.5. REFINEMENT CALCULUS

The following law is for the introduction of a non-terminating loop

(while -2) while true do 11 Ii

Parallel

The following are some laws for the parallel agent.

(II -1) I II true - I

(II -2) 10 II II 11 II 10

(II -3) 10 II (fl v 12) - (fo II 11) v (fo II h)

(II -4) (fo II 11) II 12 - 10 II (fl II h)

(II -5) (if 10 then 11 else h) II Is - if 10 then (It II Is) else (12 II Is)

Variable introduction

The following is the local variable introduction law.

(var-1) varxinP ::Ix· P

where P is an agent.

An example with refinement The initial specification of the operator Control in ITL

is extracted from a robot control system:

Let l-o-c and r-o-c denote respectively the left and right steering commands received

from the operator. Let l/-o-c and lr-o-c denote respectively the last left and last right

57

3.5. REFINEMENT CALCULUS

steering commands received from the operator.

The specification of operator control is then as follows:

Ges --

311-o-c, lr-o-c • (

)

ll-o-c = 0 /\ lr-o-c = 0 /\

(o-act = (l-o-c =1= ll-o-c v r-o-c =1= lr-o-c) /\

Oll-o-c = l-o-c /\ Olr-o-c = r-o-c

)*

First we introduce with (var -1) the local variables ll-o-c and lr-o-c:

Des

c::

var II-o-c, lr-o-c in (

)

ll-o-c = 0 /\ lr-o-c = 0 /\

(o-act = (l-o-c =1= ll-o-c v r-o-c =1= lr-o-c) /\

Oll-o-c = l-o-c /\ Olr-o-c = r-o-c

)*

58

3.5. REFINEMENT CALCULUS

Then we will refine" into a while loop using law (while -2).

c

var ll-o-c, lr-o-c in (

)

ll-o-c = 0 A lr-o-c = 0 A

while true do (

)

o-act = (l-o-c =f ll-o-c v r-o-c =/:-lr-o-c) A

Oll-o-c = l-o-c A Olr-o-c = r-o-c

Finally, the assignment statements are introduced with (:=-1):

c

var ll-o-c, lr-o-c in (

ll-o-c = 0 A lr-o-c = 0 A

while true do (

o-act = (l-o-c =f ll-o-c v r-o-c =/:-lr-o-c) A

ll-o-c := l-o-c A lr-o-c := r-o-c

)

)

59

3.6. TEMPURA

3.6 Tempura

3.6.1 Introduction

An important reason of choosing ITL is the availability of an executable subset (known

as Tempura) of the logic. Originally proposed by Ben Moszkowski [94], Tempura is an

executable sub-language ofITL. The tempura program is deterministic, i.e. no arbitrary

choices (either of computation length or variable assignment) can be made during exe­

cution. For example, neither the formula ,skip nor the formula (1 = 0) v (1 = 1) is

executable, as both are non-deterministic. The former describes any interval of length

other than one, the latter gives a choice of values for the variable 1. It maintains the

equivalence between program and logical interpretation. Its syntax resembles that of

ITL. However, the syntax of Tempura is restricted in order to exclude formulae such as

--, and v. This means that some operators of ITL, such as negation, cannot be defined at

all in Tempura, and that some others can only be defined in a restricted form, such as

variable assignment. It has as data-structures integers and booleans and list construct

to built more complex ones.

Tempura offers a means for rapidly developing, testing and analysing suitable ITL

specifications. As with ITL, Tempura can be extended to contain most imperative pro­

gramming features and yet retain its distinct temporal feel. The use ofITL and Tempura

combines the benefits of traditional proof methods balanced with the speed and conve­

nience of computer-based testing through execution and simulation. The entire process

can remain in one powerful logical and compositional framework.

60

3.6. TEMPURA

3.6.2 Another ITL-based Executable Language

As well as Tempura, there is another temporal language, called Tokio, based on ITL.

Tokio was proposed by Fujita and Moto-oka [4] for the description of computer hard­

ware. It is based on ITL with influence from Tempura. It is also a superset of Pro­

log [30]. Temporal operators in Tokio include: concurrency(,)(The clause "P:-Q,

R" means that the Q and R are executed at the beginning of a time interval con­

currently), chop(&&) (This operators divide a time interval into two subintervals),

next(@), always(U), sometime(<», keep, Jinal(fin) and so on.

Variables in a Tokio program may have different values at different time instances,

i.e. the value of a variable varies with time. This makes the unification in Tokio more

complicated. There are two kinds of unification in Tokio: one is concerned with uni­

fying two Tokio variables, that is, unifying the entire sequences of values for the two

variables. The second one is concerned with unifying the values of Tokio variables at

specific moments in time through the use of special unification primitives.

Intervals can be manipulated using certain builtin operators, such as length, empty,

and not Empty .

The execution of a Tokio program is a mixture of resolution and transformation (or

reduction).

The execution of a program in Tempura is a reduction or transformation process.

Tempura is a temporal logic programming language in a broad sense, i.e. it is not based

on the "logic programming" paradigm (resolution and unification). The execution of a

program in Tokio is also a reduction process, but one which is combined with resolution

61

3.6. TEMPURA

and unification. The roots of Tempura are in the functional programming, imperative

programming, and logic programming paradigm. There have been no attempts at de­

veloping either the declarative or the operational semantics of original Tokio programs.

In order to give a formal semantics to Tokio, one would need to combine the semantics

of ITL with a semantics of Prolog that explicitly represents the execution mechanism.

3.6.3 The Language

The standard operations on expressions in Tempura are available like +, -, *, /, div, mod, =

, >, or, and. Tempura programs include eight elementary operators. As usual, "exp/'

means an arbitrary expression, b stands for a boolean expression and p and pI stand for

programs. They are:

Equality: eXPl = exp2·

Parallel composition: p 1\ p'.

Conditional: if b then p else p'.

Local variables: 3v : p.

Termination: empty.

Next: next p.

Sequential composition: p; p'.

Iteration: p*.

62

3.6. TEMPURA

Variables in Tempura have the same syntax as in ITL. The basic statements (with

the corresponding ITL constructs) are presented in Figure 3.1 :

ITL Tempura

11 1\ 12 hand 12
A:= exp A:= exp
more more
empty empty
0 sometimes
0 always
true true
false false
if b then h else 12 if b then h else 12
while b do I while b do I
repeat b until I repeat b until I
"procedures" define p(el, ... ,en) = f
"functions" define g(el, ... ,en) = e

Figure 3.1: Basic Statements

A real Tempura program must be given the means to communicate with the outside

world through input and output. Useful input and output facilities may need to be quite

sophisticated. Two naive functions of input and output are given. The function input

reads input from some device, such as a keyboard, and the function output produces

output to another device, maybe a terminal. Both of these functions take a variable

number of (zero or more) arguments whose values are read from the input device or

written to the output device. Absence of input or output is denoted by a call of the

corresponding function with no arguments: inputO or outputO.

63

3.6. TEMPURA

An example in Tempura The following is a very simple example to demonstrate a

"while" loop. The user inputs the initial values of "M". The value of "M" in subse­

quent states is to be kept decremented by a constant value of 1. If the value of "M"

equals 0, then the program will be terminated.

A sample Tempura program:

/* testwhile.t*/

/* Test run of While loop*/

define while_loop()

exists M,N:

The output:

input (M)

and N=l and

always output (M)

and

while not (M=O) do

{skip

and M: =M-N} } .

64

3.6. TEMPURA

Tempura 10> load "testwhi1e".

run while_loop().

[Reading file testwhi1e.t]

Tempura 11> State 0: > M=?

3.

State o : M=3

State 1 : M=2

State 2 : M=l

State 3: M=O

Done! Computation length: 3. Total Passes: 4.

Total reductions: 72 (72 successful).

Maximum reduction depth: 9.

Tempura 12> load "testwhile".

run while_loop().

[Reading file testwhile.t]

Tempura 13> State 0: > M=?

o .

State 0: M=O

65

3.7. CONCLUSION

Done! Computation length: O. Total Passes: 1.

Total reductions: 15 (15 successful) .

Maximum reduction depth: 8.

3.7 Conclusion

Interval Temporal Logic, ITL, together with its executable subset of Tempura, offers a

simple, expressive and efficient implementable framework.

Together with description of the assumption/commitment paradigm, which has been

proved to be efficient to express time-critical systems compositionally, this chapter gave

initial ideas and the formal basis (ITL and its framework) for the integrated approach

developed in this research. An overview to ITL and Temporal Logic, Tempura and

Tokio, and reasons of choosing ITL and its framework have also been given when

describing our formal framework.

66

Chapter 4

An Integrated Framework

Objectives:

To define "Guided Evolution"

To outline the general framework

To de cribe the a ertion point technique

4.1 Guided Evolution of Time-critical Systems

4.1.1 Why Guided Evolution?

-=f~L±!, {~T~~o /J'\L~'t., !lDPX*~o

Thi i a Chine e aphori m, la ting thou and of year. Thi ancient Chi­

ne e aphori m ay : a great dam will coUap e from a tiny hole dig by a wee

ant (or a mall leak will ink a great hip), and a catastrophic consequence

will happen after ignoring a lender flaw.

4.1. GUIDED EVOLUTION OF TIME-CRITICAL SYSTEMS

This aphorism describes the key characteristic of time-critical, i.e., nothing is "tiny"

or "small" in a time-critical system, so does any change. For example, we can imagine a

time-critical system as a great dam, so a wrongly changed timing parameter (a wee ant)

could cause a fatal failure of the entire time-critical system (collapse of the great dam).

The evolution of time-critical systems is due to changes in the original requirements,

adopting a different execution environment or to improve its efficiency. Continuous

changes take place in a time-critical software life-cycle, even before the first release of

a time-critical system. Unfortunately, time-critical systems behave like living things.

Most time-critical systems never really become stable, although they can reach a so­

called "steady state". For example, air traffic control systems need to be continuously

evolved to cope with dramatically changing air traffics. A time-critical system may fall

in a loop of evolution (Figure 4.1).

Due to the nature of time-critical systems, changes in them have a higher potential

for producing impacts than other conventional systems. The tight coupling between

functional properties and timing properties is the main cause of more impacts. A seem­

ingly slight change (either functional or timing change) of requirements can bring mas­

sive new changes of both functional and timing properties. Furthermore, some timing

properties won't prove to be satisfied until full implementation of the system. There­

fore, the software-change cycle for time-critical systems can be much more complex.

The key point is to manage the changes and their impacts with due regard to their in­

creased complexity. Without the requisite change management, changes in time-critical

systems can have unpredictable consequences.

68

4.1. GUIDED EVOLUTION OF TIME-CRITICAL SYSTEMS 69

Initial
Requirements

H

- System - -Development -

,of

System
Deployment

W

Changes

,~

Impacts

Figure 4.1 : A Loop of Time-critical Systems Evolution

As we described in Section 1.1, we concentrate on certain aspects of change man-

agement, e pecially, managing impact of change with respect to identification, specifi-

cation and control ripple effect of changes.

4.1.2 What is Guided Evolution?

During the evolutionary development, an important issue is to establish mechanisms to

cope with propagation between different evolutionary steps, i.e. coping with impact of

4.1. GUIDED EVOLUTION OF TIME-CRITICAL SYSTEMS

change. Every evolutionary development step is often made to a specific part of the

system. After each step, this part may no longer be compatible with other parts of the

system, as it may no longer provide what was originally expected or it may now require

different services to provide for the rest of the system. These dependencies need to be

checked, validated and re-established if they are lost. All this can be described as the

ripple effect. Therefore, what we require is a technique by which evolutionary develop­

ment is allowed so that existing systems are unaffected or gain a desirable effect. This

is defined as guided evolution.

Guided evolution provides a technical basis for a repeatable, well-defined, man­

aged, and potentially optimised development process for time-critical systems. It also

shows how to specify and design large and complex time-critical systems. It addresses

three aspects of managing time-critical software evolution. All these will be addressed

in a formal manner.

(i) Formal Specification: what the original software is to do, what the proposed

changes are to do, and what is the likely impact. In this work, the use of as­

sumption/commitment framework can reveal or specify relationships between

a system and its environment and among its sub-systems and can then specify

impacts between different sub-systems and between the system and its environ­

ment. For example, for a sub-system, we can treat it as a self-contained sys­

tem and treat its neighbouring sub-systems as its environment so that we can

easily specify the impacts between this sub-system and its "environment" using

assumption/commitment style specification.

70

4.1. GUIDED EVOLUTION OF TIME·CRITICAL SYSTEMS

(ii) Formal Design: how the new software is to accomplish its function including ex­

isting functions to be kept, newly required functions deriving from any changes,

and functions required to meet impacts.

(iii) Refinement: the transition from requirements to implementation, i.e., the process

of deriving code from formal specification through applying a set of mathemat­

ical rules (refinement rules), step by step, to guarantee the consistency between

the formal specification and code.

It is essential to apply formal methods in time-critical systems evolution. A number

of supporting reasons are as follows.

• Formal methods can specify properties of interest and increase our understanding

of an evolving time-critical system and its changes by revealing inconsistencies,

ambiguities and incompletenesses that might otherwise go undetected.

• The formal method, based on Interval Temporal Logic (lTL), used in this work is

compositional. It is efficient to decompose a time-critical system, which usually

is an extremely large system, into sub-systems with manageable size. This means

that the correctness of the whole system should be verifiable in terms of the cor­

rectness of the decomposed sub-systems whose verification is computationally

simpler. This is extremely useful when changes happen in a sub-system or a few

sub-systems.

• Due to complexity and tight coupling between functional properties and timing

properties, it is extremely difficult to specify a time-critical system or its changes

71

4.1. GUIDED EVOLUTION OF TIME·CRITICAL SYSTEMS

by using conventional methods. Use of formal methods can cope this problem

well.

• Indeed, we care more about performance than correctness for an evolved time­

critical system. Therefore, use of Tempura, the executable subset of ITL, enables

us to predict how well a system will operate in the field after applying changes.

The guided evolution technique is designed for the development of time-critical

systems. The following are important characteristics of this technique.

• The technique centralises the formal specification of the system. The formal

specification will be used or referred to throughout the whole evolution cycle.

Furthermore, the technique covers both the time-critical system's formal specifi­

cation and source code.

• It provides graphics (visualisation of time-critical systems), guidelines (mainly

rules and some hints or tips of how to use rules), and a phase-based methodology.

• It ties program simulation, formal verification, source code implementation and

testing in a unified manner.

In the rest of this chapter, a key point of the guided evolution, assertion points will

be described in full. We will describe the phase-based methodology by splitting it into

three phases. The core phase is the second phase, which uses two different abstraction

levels, the specification level and the source code level. All phases are closely tied to

the formal specification of the changes and the evolving system. Finally, a visualisation

system will be depicted briefly. A set of formal guidelines will be given in Chapter 5.

72

4.2. ASSERTION POINTS

4.2 Assertion Points

Introduction. We use an a sertion points technique as a means of managing changes

in time-critical ystems.

Assertion points are at source-code level and divide a given code into pieces as

introduced in Figure 4.3. For our purpose, the required information reflects the state of

the system up to that point. A sketch of the analysis process is depicted in Figure 4.2.

Key:

o
Entity

Process

Desired
Properties

(Tempura code)

System
(Source Code +

Assertion points

Validater

Validating and Reporting

Figure 4.2: The Analy i Proce

This figure give a ba ic idea of the contribution in the thesis. Giving a property

of intere t we would like to check, we use assertion points in the code to check the

validity of thi property at run-time. For evolving time-critical systems, properties of

interest (De ired Propertie), which relate to change , will be formulated and expressed

in Tempura code. A ertion point will be added depending on different propertie of

intere t. A ertion point technique con i ts of two components, assertion points to

73

4.2. ASSERTION POINTS

generate information and a mechanism to process this information. This mechanism

will not only capture and interpret information generated by assertion points but also

validate the properties. We give it an initial name of "Validator" here. The validator

itself could be just a Tempura formula to represent the comparisons between run-time

behaviours and properties of interest. We will give more implementation details in

following chapters.

B 1 C B 2 C B 3 C B 4 C B n+ 1
1 2 3 n

Original Code ~ ...

B (C' B { C' B! c' B! C: B'n+ I
123

Changed Code ~ ...

B: Assertion points

C: Code pieces

Figure 4.3: As ertion Points and Code

The Task of Assertion Points. The main task of assertion points can be described as:

directly gathering and emitting assertion data from the "binary" level.

Assertion is a sequence of changes. Assertion data reflects run-time information,

i.e., change of state.

The Construction of Assertion Points. The location of assertion points are chosen

strategically. A simple strategy is to find out what variables used in expressing our

property, to locate the e variable in the source code, and put an assertion point directly

74

4.2. ASSERTION POINTS

after this location. We give a simple example, which is a part of a control program of a

mail sorting system, processing air mail letter, as follows.

/* Detecting an Airmail letter and sending it

to an Airmail tray */

air_sensor = 1 ;

/*an airmail sensor detects an airmail and sets

the value of variable air_sensor to 1 */

assertion ("type_of_letter" , air_sensor);

if (air_sensor == 1)

/* send air letter to a right tray */

send_tray = "Air";

where "aiLsensor" indicates a result generated by an airmail sensor."aiLsensor =

1" indicates an airmail letter. "air_sensor = 0" means the letter is not an airmail letter.

"send_tray" represents a control signal, which will be sent to an actuator to deliver

the letter to an airmail tray. The two variables construct a property, i.e., whether the

system can send an airmail letter to an airmail letter tray once an airmail letter has been

detected. Therefore, two corresponding assertion points have been inserted directly

75

4.2. ASSERTION POINTS

after each assignment of a variable or related place, where the value of a variable will

be changed, e.g., an assertion point, "assertion("air", 1)" , has been inserted just after

the place, where the value of "aiLsensor" is changed, to indicate whether the airmail

sensor detects an airmail letter and send a correct signal or not.

Currently, the construction of assertion points has to be done manually. The con­

struction process begins during step-wise refinement. As new variables are added, we

begin to decide what assertion data will have to be produced and where assertion points

shall be inserted. The real building and inserting process happens in the transformation

process from low abstract level specification or Tempura code to executable code, such

as C or Java code. The concrete assertion points are written in the same source code.

Because the assertion points send sets of triplets, (variable, value, time stamp), an asser­

tion point is a function or procedure (in conventional language, such as C) or a class (in

object oriented (00) language, such as Java), including three sub-functions/procedure

(conventional language) or methods (00 language). The first captures the name of

the variable, the second grabs the value of the variable, whose name has already been

known by the first function/procedure/method, and the third function/procedure/method

obtains the time stamp. An example, written in C style code, is presented as follows.

void aname ()

return getvarname();

76

4.2. ASSERTION POINTS

void getval ()

return getvalue();

int rnyclock ()

return clock()/lOOO;

void assertion()

printf("!PROG: assert %s:%d:%d: !\n",

anarne(), getval(), rnyclock());

Among this piece of code, the function, "aname", captures and sends a name of

a variable, "getval" then reports the value of the variable, and meanwhile, "myclock"

gives the time. Real Assertion Points are similar to this "pseudo-example", but could be

more complicated. In addition, the function, getvarnameO, is used to capture the name

of the variable. getvalueO is a function to obtain the value of the variable. clockO is

77

4.3. THE APPROACH

a C function, to return the processor time used by the program since the beginning of

execution. ciockO/lOOO returns a time in millisecond.

Advantage of Using Assertion Points. There are a number of benefits of using as­

sertion point techniques.

• Assertion points are easily built and used.

• Using assertion points is language in dependant.

• Assertion point technique lets the monitoring, analysing, and testing service of

AnaTempura sit in-line without interrupting the system executing. Therefore,

timing properties can be analysed and tested more succinctly.

• It offers an automatic, minimal and precise testing service.

• It helps the analysts to get to the root of the run-time problem, anywhere in the

application, so analysts can quickly find the error or find new change impacts.

• It automatically pinpoints run-time errors quickly to ensure the reliability of the

entire aspects of the property, not just part of it.

4.3 The Approach

In this section, a detailed description of our integrated approach will be given.

78

4.3. THE APPROACH

4.3.1 A Phase-based Methodology

A mechanism for managing change in a time-critical system should be practical, sys­

tematic and compositional. A fundamental issue in our approach is the ability to cap­

ture a possible behaviour of a (sub-)system. Once the behaviour is captured then we

can assert if such behaviour satisfies a given property. And as a property captures a

set of behaviours, satisfaction is achieved by checking if the captured system's be­

haviour is an element of this set. We are not dealing here with the formal verification

of a property which requires that all possible system behaviours satisfy the property.

However, the formal verification of the property may also be performed using an ITL

verifier [95, 96, 112]. We are only concerned with validating properties which require

only "interesting" behaviours to satisfy the properties.

As described before, the evolution of a software system could be due to "changes"

in the original requirements, adopting a different execution environment or to improve

its efficiency. The management of change is an important yet often problematic stage

of the software development life-cycle. Even with substantial knowledge of a system,

managing it's change and evolution is by no means straightforward. The introduction

of a change to a single requirement may cause it to ripple through a system and impact

on other requirements and broader organisational goals. The problem of identifying

the total impact of a change is compounded by the size and complexity of relationships

between requirements artifacts. This can make the process of assessing the effect of

change expensive, time consuming and error-prone [78]. An essential way of managing

change is to start with handling the changes at requirements level. To begin with, we

79

4.3. THE APPROACH

must consider the relationship between the old and new requirements. Our approach for

managing changes is an integrated process that considers impacts at both requirements

and source code levels. The basic process is depicted in Figure 4.4. Its three basic

phases are described below.

Keys:

o
Activities

New

Requirements

Data Flow

Requirements

'Determine/

review ~ type of cfiange ~.

~I ~

Abstract Level

Concrete Level

Impact anafysis

~quirement

LeveC

Source Coae

. ./ LeveC

V ~ 'Deprayment

Figure 4.4: Impact Change Management Framework

Phase 1: Determine type of change

Phase Overview This phase reviews the proposed changes and checks the feasibility

of changes. The aim of this phase is to identify the type of change.

Phase Activities Although the term, "review of new requirements", has not been put

into the box of Pha e 1, "Determine Type of Change" (This is due to limited place in the

figure), e entially, we need a review of the new requirements before we can process

80

4.3. THE APPROACH

the identification of the type of change.

The developer should make sure that he understands the change being proposed

and the relevant system components affected, i.e. one needs to evaluate and clarify

the change request. In time critical systems, a review and classification of requirement

changes into timing and functional types is needed. Since the identification between

functional and non-functional requirements or changes is a long debate in the software

engineering area, we are not going to argue with any school here. Because of the unique

characteristic of time-critical systems, the tight coupling between function and time, we

simply classify properties of interest into functional change and timing change:

Functional Change: Afunction is a defined objective or characteristic action of a

system or component [58]. A functional change is a change applied to a system

so that the system can deploy new or modified functions, which are specified

according to new or modified functional requirements. In this thesis, we define

functional change as all non-timing changes.

Timing Change: Timing changes are applied to modify existing timing properties,

i.e., changes of values of timing parameters and then timing behaviours.

One can say that timing change could be a part of functional change. There are

intersections between functional and timing changes. For clarifying the problem in

the thesis, we classify all inter-sectional changes about timing parameters into timing

change category. Then considering timing and functional requirements as two entities

in system development, we can describe the changes in either of them as a co-evolution

81

4.3. THE APPROACH

process, i.e. some functional requirements bring new timing requirements or some

timing requirements bring new functional requirements. It is proposed therefore to

study the effect of changes of one entity on the other. This is in addition to the relation

between their rates of evolution and their natural interaction. This plays a crucial role

in fixing the shape and character of the changes, as well as the kinds of solution we can

have, and the types of method we can use to obtain them.

Phase Outcomes This stage will result in the identification of the current system

requirements specification before changes plus a review of the new requirements and

their allocations in the current system. The outcome of this stage will be a description

of the change and the type of the change in text. If the change brings modification of

the number of timing parameters or the value of any timing parameters, then the change

affects some timing properties of the system.

Phase 2.1 Impact analysis: Requirements level

Phase Overview At this stage, all timing and functional requirements will be anal­

ysed and the effect of the required change will be determined. Strategies will be devised

to minimise the effect of changes. Formal specifications of properties of interest should

be made in this phase.

Phase Activities The major activity of this phase is impact analysis at a higher ab­

straction level. As we mentioned before, one identifies the potential impact of the

82

4.3. THE APPROACH

changes on the whole system, i.e., hardware/software system, documentation, people,

etc. Impact analysis can also aid in the communication of the complexity of requested

change to the customers or end users who proposed the change. The results of im­

pact analysis can be used for later analysis, mainly, dependency analysis [17, 102] and

traceability analysis [17].

• Dependency: the ability to examine and evaluate dependency relationships among

program entities, such as data, control and component dependencies. Depen­

dency analysis is to track relationships between different sub-systems and to

analyse impact of any change.

• Traceability: the ability to trace a design representation or actual program compo­

nent back to requirements. Traceability analysis is to trace system requirements

through design, code and testing. Our run-time analysis is a powerful way to

perform this kind of analysis by linking design (specification), code and testing

altogether.

The main technique we used in this phase is based on the assumption/commitment

framework and compositional technique. This two techniques will be used to reveal and

specify changes and impact of changes. We use the assumption/commitment frame­

work to specify each change or property of interest separately. That is, when specifying

a change and a related target sub-system, we treat all surrounding sub-systems as the

target sub-system's environment. Let's recall the assumption/commitment paradigm

(Section 3.4. The form of assumption/commitment specification in ITL is as follows:

83

4.3. THE APPROACH

W 1\ As 1\ Sys :J Co I\fin w',

Giving a system, we would like to use this formula to distinguish between a tar­

get sub-system and its environments. The environment of a target sub-system could

be its surrounding sub-systems or possible external environments, i.e., external factors

of the whole system, with which the target sub-system communicates directly. The

sub-system, Sys, starts in a state, which satisfies w. For it to terminate in a state,

satisfying w', and committing to a property described by Co, the sub-system's envi­

ronment must achieve properties expressed by As, which presents assumptions or re­

strictions placed over the target sub-system's environments. If we apply a change to a

target sub-system and a new assumption should be place against a certain neighbouring

sub-system, the neighbouring sub-system should be changed correspondingly. There­

fore, the new change, required to this neighbouring sub-system, is caused by impact of

change to the target sub-system. Through this way, we can then specify the impact of

change.

Phase Outcomes The result of this stage is a formalisation of all properties of inter­

est. These requirements are expressed as ITL formulae. The soundness of the require­

ment specifications can be checked by a tool support environment, which includes an

interactive theorem prover [95, 96] based on the PVS [112]. The benefit for both end

users and software designer is that changes with unrealistically large impacts will be

84

4.3. THE APPROACH

prevented from being implemented. However, specification checking is not a part of the

thesis, we can use work done in [95,96] and [112], if we want to check the soundness

of the required specifications.

Phase 2.2 Impact analysis: Source Code Level

Phase Overview This phase involves the implementation of the proposed changes

and some further, necessary impact analysis in conjunction with each developing step.

The development from initial specifications in ITL, obtained from Phase 2.1 (Sec­

tion 4.3.1), is achieved through step-wise refinement using our ITL refinement calculus.

During the development process, assertion points will also be inserted into source code.

Once we derive source code from the specifications, then we can perform the main task

of this phase, run-time analysis and validation. The formal specification will be referred

throughout this phase.

Phase Activities This phase concentrates on the impact analysis at source code level

with respect to formal specifications. This analysis will be accomplished at run-time.

The run-time analysis checks whether an implementation is correct with respect to a

corresponding specification. It checks the consistency between the domain of code and

the domain of formal specification. It also detects further change impacts which only

appear during or after the implementation. In most cases, such impacts refers to timing

properties. The run-time analysis will be performed using AnaTempura via Assertion

85

4.3. THE APPROACH

points (see section 4.2).

&y:

TeBfSuite

GeneratWn

~ Datal ReBUlt.

() Aruly.ing activitie.

~ Data / Analy.inll Flow

Refinement

Figure 4.5: Impact Analysis at Code Level

Assertion Points
Generation

In Figure 4.5, the impact analysi at ource code level, the run-time analysis, is

depicted. Starting with a formal pecification, obtained from Phase 2.1, an implemen-

tation (code) has been developed via tep-wi e refinement and programming; it is, for

example, a C program. By mean of run-time analysis, we would like to check whether

the final y tem ati fie the pe ification and whether a new impact is found after im-

plementation. To thi e tent, an as ertion points uite i generated in conjunction with

implementation (code). The as ertion points uite i embodied in the source code. This

uite i u ed to reali the run-time analy is. More detail of the a sertion points will

be de cribed in next ection.

86

4.3. THE APPROACH

If necessary, an abstract test suite, i.e., a set of test cases derived from the specifi­

cation, is generated. Test cases are the input data values for which the property should

produce output. The test cases are in the domain of the function that the software imple­

ments. A test case specifies one experiment related to one test purpose and to one piece

of specification belonging to a particular part or component of the system. However,

how to produce a test suite is out of the range in this thesis and will not be discussed

further.

The main concern of this phase is the subsequent execution of the run-time analysis,

which leads to a verdict, either Pass (the implementation conforms to its specification

related to changes) or Fail (an error was found). The verdict of "Fail" results in an

investigation to the code or even recalling Phase 2.1 to find out what causes the failure

and finding possible new impacts. Results are generated automatically by the run-time

analysis via a monitoring process of information generated by assertion points. More

details of the analysis process is set out in the next chapter.

Phase Outcomes Because this phase involves refinement and programming, the first

outcome is the source code with assertion points inserted. The next outcome is results

generated from run-time analysis, induding a record of the run-time analysis and pos­

sible animation of run-time behaviours. The record of the run-time analysis includes

two possible files. One file is a log file, which records whether it is Pass or Fail for

each comparison between run-time behaviours and properties of interest. If the result

is Fail, two different values and their location will also be recorded. In this case, new

impact of change might be found. Another file contains all values of timing parameters

87

4.3. THE APPROACH

produced during the run-time analysis.

Phase 3 Deployment

Phase Overview We will review all files or records produced during the previous

phases. We will then generate documentation of the system. A manual will be pro­

duced if required. The whole system, together with the updated documentation, formal

specification and evolution records, should be ready to be deployed after this phase.

Phase Activities The main activity of this phase is to generate other system deliver­

abIes than the system itself, including an evolving or developing history, documentation

and a possible manual. The document will be a combination of diagrams, graphics and

text, together with the ready system.

An objective of reviewing process in this phase is regarded as a formal operation to

capture and record specific aspects of the process of handling changes in time-critical

systems evolution. The purpose is to rigorously review and document the following:

• What was wanted in the first place from the change requirements.

• What the change promised to do.

• What the change actually did.

• What was the change impact.

• Design and performance features of the applied changes and the finished system.

88

4.3. THE APPROACH

• The whole history of the modification.

One of the first documents to be generated is a preliminary statement of change

requirements. This basically defines the purpose and intended new properties of the

proposed system. This document will be produced after a review of outcomes from

phase 1.

The most important document is a number of formal specifications in ITL and Tem­

pura, which express all properties of interest, as well as impact of changes found in

phase 2.1. We will collect all related formal specifications and write them into a sepa­

rate file. A set of tables, diagrams, or figures will also be included in this document if

we have any, for example, a table containing all timing information.

The next document will be a collection of log files produced from phase 2.2. A

minimum requirement of the document is to include a log file generated from the run­

time analysis. Other documents can be a trace file that records timing information for

all states, a set of screen shots produced during animation, and a log file produced

by AnaTempura that can include information about the run of the system, for example,

test cases injected by AnaTempura or any error message echoed by the system. In some

cases, we can generate a file containing assertion data.

Another possible activity is to add some necessary comments into the source code

body, for example, marking newly added code pieces or commenting changed code

pIeces.

A manual will be produced or updated in this phase if required. The manual gives

necessary instructions of how to use the system, features of new functions, difference

89

4.3. THE APPROACH

between old and new systems, instructions of how to use new functions, and some

possible troubleshooting.

Phase Outcomes Documentation of the system will generated in this phase. A check­

ing list of outcomes includes:

• a description to change requirements,

• related formal specifications of changes and related sub-system.

• the source code itself with a set of assertion points inserted,

• a log file, containing all information of run-time analysis, generated by AnaTem­

pura, as well as necessary explanations,

• a trace file, containing timing information, i.e., values of timing parameters in

different states,

• a set of screen shots captured from animation,

• a log file recording all messages produced by the system during its run,

• a set of necessary comments added to the source code after the run-time analysis,

and

• a manual if required.

90

4.3. THE APPROACH

Keys:

D
Major phases

o
Phase and
its activities

-
Control and

Data Flow

Phase 1

~U' Impact jouml

Pnase3

1

6

1'\

p fwse2.1 PFtase 2

I "",, 2

'J{fUl ~
impact found

7 3 'Early

/' activities

8
~ '1(un-ti~ ~pactjOUnd

andysis

~s
5 Laur

activities

Pfwse 2 .2

Figure 4.6: The Role of Run-time Analysis

Relationships among Phases

As we de cribed before, run-time analysis of the Phase 2.2 plays a pivotal role in the

approach. As we can ee in Figure 4.6, the most number of flows (flow 3, 4, 6, 7, and 8)

link to run-time analysis. Results obtained from run-time analysis decides whether we

can turn to the next phase or recall the previous phase . This is depicted in Figure 4.6.

In Figure 4.6, "Early activitie " include various phase (2.2) activities before run-

time analY is, uch a refinement, and in ertion of assertion point. "Later activities"

include variou pha e (2.2) activities after run-time analysis, such as a draw of timing

diagrams. "Later activitie " only happened when all te ts are passed during run-time

analysi . If any problem happens during run-time analysis, that indicates either failures

of the ource code or new impact. Deci ion will then be made. At any time, if new im-

pact have been found, we need to go back to Phase 2.1 through the flow 7. Sometimes

91

4.3. THE APPROACH

if the new found impact triggers a brand new change requirement for the system or

even we need to adjust some parts of original change requirements, we have to go back

to Phase 1 (flow 6). For some new impacts, we may analyse it again and modify the

code slightly, i.e., early activities of Phase 2.2, through flow 8. The verdict, pass, leads

to some later activities if necessary (flow 4) and then the beginning of employment of

the system, namely, Phase 3 (flow 5). If an error is found which has been identified as

not being caused by any impact we will only need to go through the early activities of

Phase 2.2 again to check the code or the refinement process (flow 8).

Realistically, these activities may fall into loops if errors or new impacts keep ap­

pearing. Loops could be from flow 3 to flow 8, which indicates inconsistency between

specifications and the source code. A loop with flow 2, flow 3, and flow 7 or a loop

with flow 1, flow 2, flow 3 and flow 6 means continuously appeared new impact. An

ideal path will consist of flow 1, flow 2, flow 3, flow 4 and flow 5. If a sub-system is

small or simple enough, the ideal path will likely happen. Therefore, in this research,

we try to use compositional and incremental manners to reduce loops, especially loops,

consisting of flow 1, flow 2, flow 3 and flow 6. As a solution, we absorb the infras­

tructure of the Incremental Model [84], replacing its elements of the linear sequential

model by the general structure of our phase-based methodology. Furthermore, under

the compositional manner, instead of producing an increment each time, we compose

a certain number of related increments. This produces a modified incremental model

(Figure 4.7). We shall notice that new increments, such as, "Increment 1 +2" or "Incre­

ment 3+4", may still need some run-time analysis in some rare cases. Because of the

92

4.3. THE APPROACH

benefit of using compositional rules and introducing some necessary strong assump-

tions, the soundness of new increments should be guaranteed in most cases without

further run-time analysis or testing.

,------L..-""L

,------L..-""L

• •

Increment 1 ~

Compose Increment 1+2

Increment 2

Increment 3 ~

Compose Increment 3+4

Increment 4

• • •
Increment N

Compose

Figure 4.7: The Modified Incremental Model

4.3.2 Visualisation of Time-Critical Systems

Increment
(1 +2)+(3+4)

New
System

A visuali ation y tern has al 0 been employed in our methodology. This visuali-

sation y tern can help developer in selecting and specifying pictorial representations

93

4.3. THE APPROACH

which can easily be understood, during a time-critical system's evolution.

Visualisation, in essence, forces the developers to modify the program (the source

code), as well as related parts of its specification. In our visualisation system, the use of

Tempura will greatly reduce the modification. In general, we embody the visualisation

system into the Tempura code instead of the source code, highly reducing the level of

source code modification. Visualisation takes place both during and after the execution

or simulation of the program.

The task of our visualisation system is to visualise program behaviour, i.e., ex­

position of program properties by displaying multiple dynamic views of the program

and associated data structure, and program animation and data-structure rendering. It

can visualise various program behaviours, such as behaviours of parallel programs and

timing behaviours.

Three ways are used in our visualisation system.

• Textual Representation still remains as potential way to dynamically display

highlighted data generated by run-time process, control flow infonnation and so

on. For example, the representation of timing values in conjunction with anima­

tion images in the animation screen.

• Timing Diagrams present program data in a two-dimensional way with time

infonnation on one axis and variable values on the other.

• Animation of the program execution symbolically places each process, some­

times with a portion of distributed data, on an individual point in a two dimen-

94

4.3. THE APPROACH

sional display, corresponding to a single instant of time, i.e. a snapshot. As time

advances, the display changes like an animated movie.

The animation system defines a number of objects - usually considered to be an­

imation images (icons) - with parameters. These objects can be changed by program

operation. The object parameters are bound to program variables which are generated

by assertion points. These assertion points interact with a software monitor system,

which can listen to/ record all messages during execution and pass this information on

to the visualisation system. Multiple graphic views of properties will be animated by

highlighting an operation or a process with blinking, changing colours, and moving

animation images on the screen.

In our visualisation system, the animation images have been designed to loosely

correspond to the program's data or agents, i.e. the animation images represent abstrac­

tions designed to elucidate the program semantics. The visualisation system provides

a pictorial representation at a proper abstraction level, as well as the Tempura code of

the system. This representation is enough for developers or analysts to understand what

the system do, how it works in either a correct way or incorrect way.

Our visualisation system shows timing behaviours via a time diagram, which indi­

cates the state of processes. The time diagram visualisation works as follows:

1. Timing values (time stamps) for each process are first generated by assertion

points and sent to a trace file generator in the same order as during run-time.

2. A trace file will be produced after the program execution.

95

4.3. THE APPROACH

3. An animator of the visualisation system will read the trace file and then represent

it in a pictorial manner.

Time diagram visualisation takes places after the program execution. Accurate sim­

ulations of real-time behaviours will take place during the execution of the program.

This will be realised by sets of assertion points. In this case, these assertion points

send information to the visualisation system at each breakpoint in run-time. Then the

visualisation system displays the time information in a textual manner on the animation

screen, corresponding to each animation image.

The employment of the visualisation system will enable developers or users to:

• observe how computations are executed,

• visually develop and analyse algorithms and system programming

• analyse and improve the interactive run time facilities,

• monitor and analyse performance of the system,

• assist the users in choosing implementations, and

• produce documentation and description of algorithms and time-critical programs.

In addition, this system supports different programming languages, like CIC++,

Java, and Verilog.

96

4.4. SUMMARY

4.4 Summary

In this chapter, we presented a general methodology for handling change during time­

critical system evolution. Using the technique, we can validate and analyse those be­

haviours of a system which are of interest.

The methodology provides analysis at different abstract levels that automatically

guide the users to the location of program bottlenecks and change impacts. It also pro­

vides ways to observe how computations are executed. It provides a way of develop­

ment and analysis of change and system programming, monitoring of performance and

other aspects, as well as documentation and description of new design and programs.

The visualisation facility generates alternative views in a graphical manner through­

out the whole process. It acts as comprehension aids to formal techniques applied in

the methodology.

97

Chapter 5

Evolution: Guidelines and Analysis

Objectives:

To describe run-time analysis in a formal way

To discuss compositionality for formal evolution

To discuss timing analysis for formal evolution

5.1 Defining Run-time Analysis

A key task of our approach is to check a time-critical system at run-time and anal­

yse whether the (run-time) behaviours of the system satisfy its properties of interest.

For building such a execution mechanism, we need to specify the run-time analysis

processes. A simple ITL formula is used to define the run-time analysis as follows:

Sys A Prop A Monitor

S.2. COMPOSITIONALITY

where Sys denotes the real system (code)'s run-time behaviours, Prop denotes those

properties that we want to check, and Monitor represents the checking process. This

formula is not as simple as it seems. We give more details as follows:

Sys reads in the sequence of changes, as generated by the system via the assertion

points. Furthermore, it converts this sequence into a behaviour (interval).

Prop stands for properties of interest we are going to check. It is actually a

formal specification, written in Tempura. It tells what the system should do. The

Tempura interpreter will generate the behaviour corresponding to Prop.

Monitor will compare the behaviour of Sys with that of Prop.

Now we describe Sys in more detail. In fact, because of the use of assertion points,

Sys can be simplified and specified as follows:

o (input Sys..AD)

where Sys..AD means assertion data of a running external program/system that is a list

of variables and their instant values. This is a simplified version of Sys. In fact, once

Sys reads a sequence of changes, it will convert the sequence to a behaviour.

5.2 Compositionality

When hardware designs are considered, a typical solution is to partition the whole

system into units/modules and handle each unit/module separately. This is called the

99

5.2. COMPOSITIONALITY

modular approach. Similarly, this solution can be applied to software design. Large

software systems with unmanageable size and complexity can be decomposed into

smaller and manageable sub-programs or components. These sub-programs or com­

ponents will be treated in separation, based on an assumption about the behaviour of

its surrounding sub-programs, components and even the environment of the whole sys­

tem. In this case, these surrounding sub-programs and components can be said to be

the environment of the sub-program or component with which they are being handled.

This section describes the notation of compositionality with aspects of real time criti­

cal systems, i.e. firm links to timing analysis guidelines, and compositional theories,

developed for handling time-critical systems' evolution.

5.2.1 The Role of Compositionality

Compositionality is an important property for development and verification of any size­

able system [34]. It is also a crucial technique to guided evolution. Due to the very

complex nature of time-critical systems, it is extremely difficult to evolve such a sys­

tem. As described in the previous sections, one ideal way is to develop, verify and test

components or subsystems separately, to integrate components and subsystems and to

commission the whole system. There are two reasons to support this method:

• The full development is very complicated and takes a long time to accomplish.

It is therefore in general very difficult to verify the system after the whole con­

struction, because all the useful intuition used during the design process will be

lost and the final verification can be as hard as building the whole system from

100

5.2. COMPOSITIONALITY

scratch again.

• If the verification is only conducted after the implementation, early design errors

will result in loss of most of the later design work. The engineers may need to

return to the very beginning again.

Compositional methods allow gradual development, which enables the satisfaction

of a specification by a system be verified on the basis of specifications of its constituent

components, without knowing the interior construction of these components. It also

allows a so-called verify-while-develop paradigm [132].

In 1981, Jones [67] proposed a way to describe the interference between a compo­

nent and its environment by a rely-condition and a guarantee-condition. These repre­

sent state changes from the environment and the component respectively. In this way,

compositionality can indeed be achieved. Jones also gave an outline of a compositional

proof system for a large subset of the Owicki and Gries language [67]. An initial at­

tempt to give a semantic model for Jones' system was made by Aczel (see [34]). The

first mathematical treatment of this approach was developed by Stirling [119]. Further

work includes [120, 123, 122, 121, 134, 131].

5.2.2 Compositional Method

Compositionality asserts that the specification of a program should be verifiable in

terms of the specification of its syntactic subprograms [34].

As described in Section 3.4, the assumption/commitment paradigm will support

compositional evolution and methods. The assumption/commitment technique is valu-

101

5.2. COMPOSITIONALITY

able as a compositional principle to be used during guided evolution. ITL has a com­

positional proof system and has refinement rules. It also offers a workbench for writ­

ing specifications and for verifying them compositionally. An attempt at developing

compositional theories based on ITL workbench and a synthesis of existing work has

formed part of this research. In detail, our work is based on Moszkowski's [95] and

[96]. We attempt to extend ITL workbench by adding assumption/commitment style

specifications and compositional rules with adopting Cau's paradigm, [25]. This sup­

ports the approach described in Chapter 4 and plays a key role in the whole integrated

framework of the evolutionary development of time-critical systems.

A composition principle gives a way of composing assumption/commitment speci­

fications while discharging their assumptions [89, 104, 11,2].

We recall the format of assumption/commitment specifications, which has been de­

scribed briefly in Section 3.4. A system uses certain conditions (assumptions), w.r.t.

the system's environment, and gives expected behaviours (commitments) under these

conditions. Such a system is specified as follows:

W 1\ As 1\ Sys J Co I\fin w',

The system consists of a quadruple, (w, As, CO, w'). Here w and w' are state for­

mulas whereas As, Sys, and Co are arbitrary formulas which can contain temporal

constructs. The implication says that if w is true in the first state and As is true for the

period when Sys is active, then Co also holds and that w' is true in the final state. A

102

5.2. COMPOSITIONALITY

system Sys satisfies such a specification, denoted by the formula

Rsys(w, As, Co, w'),

if Sys is invoked in a state which satisfies w, and any environment action satis­

fies As, then any component action satisfies Co, and if a computation terminates, the

final state satisfies fin w'. Valid computations are those that if they satisfy assump­

tions, then they also satisfy commitments. A program satisfies a specification if all its

computations are valid.

For example, informally, in a nuclear power station control system, a property of

interest is described as:

Nuclear reactors of a nuclear power station will eventually be shut down

once the level of the radioactivity is exceeding the safety alert level.

An assumption/commitment specification of the property, P, is given by:

W /\ As /\ P :J Co /\fin w'

w: Reactors_run = 1/\ Em_Stop_Send = 0

As : true

Co : ((RadioJevel ~ Alert) => (Em_Stop_Send = 1 /\ OReactors]un = 0)) v

((RadioJevel < Alert) :J (Em_Stop_Send = 0/\ OReactors_run = 1))

fin w': (Reactors_run = 0 /\ Em_Stop_Send = 1) v

(Reactors]un = 1 /\ Em_Stop_Send = 0)

103

5.2. COMPOSITIONALITY

where variables, Em_Stop_Send and Reactors_run, are boolean variables. The

value of Reactors_run equals to I and Em_Stop_Send equals to 0 in the initial state.

If the value of Reactor S-1'un equals to I, then nuclear reactors keep running. If the

value of Reactors-1'un equals to 0, then nuclear reactors terminate. The value of

Reactors_run does not change until the value of Em_Stop_Send equals to O. The

value of Em_Stop_Send is decided by RadioJevel, which indicates the level of the

radioactivity. If the value of Radio_level exceeds the threshold, Alert, i.e. the level

of the radioactivity is beyond the safety level, the control system sets the value of

Em_Stop-Bend to 1 and then the reactors stop. Otherwise, the initial state will be

kept, i.e., the reactors run.

Refinement Further, refinement may be expressed as:

((As 1\ w) :J (Co "fin w')) C Sys

"~" means refinement. It can be abbreviated to

(Ass :J Com) ~ Sys

where (As" w) is represented by Ass and (Co "fin w') is abbreviated by Com.

The main rule for guided evolution is then as follows:

Let Sys be the system that has to evolve, X be the 'addition' and C(Sys, X) be the

evolved system.

104

5.2. COMPOSITIONALITY

(w 1\ As) :) (Co I\fin w') ~ Sys,

(wx 1\ Asx) => (Cox I\fin w'x) ~ X,

where C is a system composition operator such as sequential composition (;), con­

ditional, iteration, parallel composition, etc. The condition

is the condition under which the 'adding' of X to Sys is sound. Furthermore, in the

evolutionary development process, X could be a sub-system, which is awaiting to be

composed into the whole system. In this case, Sys will be the previous built sub-system

whilst C(Sys, X) indicates the final system. The compositional rule aims at proving

the correctness of C(C(Sys, X)Sys, X), i.e. the composition of Sys and X, from

the correctness of Sys, the correctness of X and relations between the corresponding

assumption/commitment specifications.

In addition, if we abbreviate (As 1\ w) to Ass and (Co 1\ fin w') to Com, then the

general rule can be expressed as follows:

105

5.2. COMPOSITIONALITY

where the condition

(Ass :) Com) ~ Sys,

(Assx :J Comx) ~ X,

Rc(Asse , Come, Ass, Com, Assx , Comx)

(Asse :) Come) ~ C(Sys, X)

Re(Asse, Come, Ass, Com, Assx , Comx)

is the condition under which the 'adding' of X to Sys is sound. The derivation of the

final system is performed using our refinement calculus. The calculus applies a method

in which the system is constructed gradually, step by step, using sound refinement rules,

to its final implementation. Each new design step for a new change is checked as soon

as it is carried out, and the correctness of these individual steps together guarantees

the correctness of the whole, new system. This calculus is a formal guideline to our

general approach, presented in Chapter 4, the step-by-step methodology (Figure 4.4),

and modified incremental model. presented in Figure 4.7.

106

5.2. COMPOSITIONALITY

5.2.3 Sequential Composition

If C is sequential composition then the rule is as follows:

(Ass :J Com) ~ Sys,

(Assx ::J Comx) ~ X,

Asse :J Ass,

Com :J Assx ,

Comx :J Come

(Asse :J Come) ~ (Sys ; X)

where X is another system, which will be added to Sys, sequentially. Ass and

Com represent the assumption and commitment of Sys, respectively. Assx and Comx

represent the assumption and commitment of X, respectively.

The rule is a derivable proof rule. It tells that we can derive a new system, Sys ; X,

from the sequential composition of an existing system, Sys, and another sub-system,

X, if and only if all premises of the rule hold. Among these conditions, Asse :J Ass,

Com :J Assx , and Comx ::J Come, must hold to guarantee the correctness of the

final composed system, Sys ; X, with respect to Asse and Come.

The condition, Asse ::J Ass, denotes that the assumption of the composed system,

Sys; X, must imply the assumption of the existing system, Sys, i.e., the environment of

the new system, Sys ; X, should be at least as strong as the environment of the existing

107

5.2. COMPOSITIONALITY

system, Sys. The condition, Com :J Assx , indicates that the assumption of the sub­

system, X, must be implied by the commitment of the existing system, Sys, i.e., the

environment of X should be at least as strong as the commitment of the new system.

The last condition, Comx :J Come, specifies that the commitment of X must imply

the commitment of the new system, i.e., the commitment of the final system must be at

least as strong as the commitment of the sub-system, X.

Demonstrative Example

Recall the example given in Section 3.4, we reuse the specification of PumpController

and present it again as follows:

(Ass, Com), where

Ass: true

Com: 0 (

(Pressure ~ MineExplo :J O(Pump = OFF)) /I

(Pressure < MineExplo :J O(Pump = ON)))

Supposing, in the real system, if the pump is switched off, an alarm should be

activated. We define the sub-system for controlling the alarm, X, as follows:

108

S.2. COMPOSITIONALITY 109

(Assx , Comx), where

Assx : true

Comx: 0 (

(Pump = OFF ~ O(Alarm = ON)) f\

(Pump = ON ~ O(Alarm = OFF)))

We then add Sys and X together. using the above sequential composition rule. The

new system. C. is defined as follows:

(Asse , Come), where

Asse : true

Come: 0 (

((Pressure ~ MineExplo ~ O(Alarm = ON)

f\

((Pressure < MineExplo ~ O(Alarm = OFF)))

Apparently, the premises of the rule hold. i.e., the rule can be applied.

5.2.4 Parallel Composition

Most time-critical systems are inherently parallel. The correct behaviour of a paral­

lel program is critically dependent on synchronisation and communication between

processes. Synchronisation is the satisfaction of constraints on the interleaving of the

S.2. COMPOSITIONALITY

actions of different processes. Communication is the passing of information from one

process to another. Synchronisation and communication are linked to each other, be­

cause some forms of communication require synchronisation, and synchronisation can

be considered as contentless communication. In parallel programming, communica­

tion between processes is modelled in two ways, shared variables and message passing.

Shared variables and message passing are used to express state-based parallel processes

and message-based processes respectively.

Shared Variables are objects that more than one process have access to; commu­

nication can therefore proceed by each process referencing these variables when

appropriate [23].

Message Passing involves the explicit exchange of data between two processes

by means of a message that passes from one processes to another via some

agency [23].

In the thesis, we concentrate on state-based parallelism because the formal base

of our approach, ITL, is state-based and to develop a full set of composition rules is

out of the range of the thesis. Further, parallel rules have been devised to compose

assumption/commitment specifications of parallel processes. These composition rules

are usually hard to construct because of mutual dependency: each process contributes to

the environment of the other ones and the commitment of a process thus influences the

assumptions of the other ones. Although this problem exists whatever communication

model is adopted, the corresponding assumption/commitment methods evolved into

different rules for parallel composition [25]. In the state-based approach, a typical

110

5.2. COMPOSITIONALITY

premise of the rule for deducing a specification of Sys I II Sys2 from the specifications

of SYSI and Sys2 is of the form Ass v Coml * Ass2 [69, 121, 130, 134], where

Ass is the assumption of Sysl II Sys2' Coml the commitment of SYSI' and Ass2

the assumption of SYS2' i.e. the most prominent operator is disjunction. Essentially,

disjunction in the state-based case comes from the use of predicates on state transitions;

a transition of SYSI II SYS2 is either a transition of SySI or a transition of Sys2.

State-based Parallel Composition Rule

State-based Process Specifications An assumption/commitment specification of a

state-based process P is a tuple (w, As, CO, w'). Then an assumption/commitment

specification of P is given by:

W /\ As /\ P :J Co /\ fin w'

which means if w holds initially and any environment action satisfies As, then any ac­

tion performed by P satisfies Co, and terminates in a state that satisfies fin w'. Here

w refers to the initial state; As refers to environment actions; Co refers to actions per­

formed by P, i.e. internal actions of the process or program; w' refers to the terminated

states (w.r.t the initial state). There are no communications.

The Rule As we described before, a parallel composition rule addresses the premise

of Ass v Coml * Ass2. Following this premise, it can be various forms to be

evolved into different rules. We choose the form Cau's work [25], based on Stolen's

111

5.2. COMPOSITIONALITY

work [124], and adapted it into an ITL rule. This syntactic parallel composition rule

for state-based processes is presented as follows:

w} 1\ As} 1\ p} :) Co} 1\ fin w'}

W2 1\ AS2 1\ P2 :) CO2 1\ fin W ' 2

w => w} 1\ W2

As V Co} => AS2

As v CO2 => As}

Co} v CO2 => Co

fin w'} 1\ fin w' 2 => fin w'

w 1\ As 1\ PI II P2 :) Co 1\ fin Wi

The rule tells that a system, PI II P2 can be derived by composing two parallel

sub-systems, PI and P2 , if and only if all premises of the rule hold.

The first prerequisite is that WI. As}, Co}, and w'} must be sound to guarantee the

correctness of PI, and W2, As2, Co2, and w' 2 must be sound to guarantee the correctness

of P2.

The conjunction in, for instance, premise W => WI 1\ W2 specifies that the initial

state, w, of the composed system, p} " P2, must satisfy both the initial state of PI, WI,

and the initial state of P2, W2. The premise, fin w' I 1\ fin w' 2 => fin w', indicates that

p} II P2 terminates (fin w') if both PI and P2 terminate (fin w't 1\ fin w' 2).

112

5.2. COMPOSITIONALITY 113

The disjunction in, for instance, premise COl v CO2 can be explained as follows:

a state transition from PI II P2 is either a state transition from PI or a state transition

Demonstrative Example

We use a program, x := y + 1 Iii y:= y + 2, to demonstrate the use of the state-

based parallel composition rule. "IIi" means the interleaved version of the parallel

composition (see Figure 5.1).

1 2
(x=O,y=O) ---> (x=l,y=O) ---> (x=1,y=2)

I
I 2 1
---------> (x=O,y=2) ---> (x=3,y=2)

Figure 5.1: Interleaving

It is easy to see that the following is an invariant:

O((y = 0 A (x = 0 v x = 1)) v (y = 2 A (x = 0 v x = 1 v x = 3)))

of the above. This invariant will be used in our As and Co below.

Let PI be the program, "x := y + 1", and P2 the program, "y := y + 2", then PI

satisfies

5.2. COMPOSITIONALITY

and P2 satisfies

WI /\ AS I /\ g ~ COl /\fin W~

WI : X = 0

AS I : D((y = 0 /\ (X = 0 V X = 1)) V

(y = 2 /\ (x = 0 V X = 1 V X = 3)) V

(Ox = X /\ Oy = y))

COl: D((y = 0 /\ (X = 0 V X = 1)) V

(y = 2 /\ (x = 0 V X = 1 V X = 3)) V

(Ox = X /\ Oy = y))

fin w~: (x = 1 V X = 3)

W2: y = 0

As2 : O((y=O/\(x=Ovx=1))v

(y = 2 /\ (x = 0 V X = 1 V x = 3)) V

(Ox = X /\ Oy = y))

Co2 : O((y=O/\(x=Ovx=1))v

(y = 2/\ (x = 0 V X = 1 V x = 3)) V

(Ox = X /\ Oy = y))

fin w2: y = 2.

114

5.3. TIMING ANALYSIS GUIDELINES

By the state-based parallel composition rule, PIIIP2, i.e., x := y + 1 IIi y:= y + 2

satisfies

W 1\ As 1\ P1 1IP2 :J Co I\fin w'

w: x=OI\Y=O

As : 0 (0 x = X 1\ 0 Y = y)

Co: true

fin w': (x = 1 v x = 3) 1\ Y = 2.

5.3 Timing Analysis Guidelines

An important goal of handling time-critical system evolution is to analyse and ver­

ify timing properties of the system at run-time. Timing relationships in time-critical

systems originate from their requirement to maintain timely interactions with the sys­

tem's environment. A set of timing parameters have been given in Chapter 2. We

consider timing parameters as bounds on computation time, or on the (sub-)intervals

(activation period) between start times. Timing analysis at run-time is useful to check

the satisfiability of timing behaviours of the system against timing properties specified

upon requirements. Furthermore, timing analysis at run-time can be used to evaluate

a real system's performance and to identify performance bottlenecks in system design.

In our approach, we concentrate on analysing computation times and relationships be­

tween different timing (sub-)intervals. This is known as computation time analysis in

this thesis.

115

5.3. TIMING ANALYSIS GUIDELINES 116

Computation Time Analysis refers to the analysis of timing parameters on com-

putation time of individual or activation periods. In time-critical systems, any

computation time must meet the deadline of the computation. The total activa-

tion period must meet the total deadline as well. It also involves analysing upper

and lower bounds of the average times spent by computations in the process.

Timing parameters are either unary, i.e. timing parameters have bounds on the

execution time of a computation, or binary, i.e. timing parameters have bounds on the

computation times between the initiation times of two computations [33]. Effectiveness

analysis relates to binary timing parameters that define upperllower bounds on sub-

intervals of computation pairs. Supposing there are two computations, C} and C2 , t}

and t2 denote start time of C l and C2, respectively. dl and d2 represent computation

time of C l and C2, respectively. In general, possible timing relationships between two

computations are presented in Table 5.1.

RelationType Description
C} before C2 tl + dl < t2
Cl meets C2 tl + d} = t2
C} overlaps C2 t2 - tl < dl
Cl finishesby C2 tl + dl = t2 + d2
Cl during C2 tl > t2 and tl + dl < t2 + d2
C} finishes C2 tl > t2 and tl + dl = t2 + d2
C2 overlaps Cl tl - t2 < d2
C2 meets Cl tl + d} = t2
C} after C2 t2 + d2 < tl
Cl contains C2 tl < t2 and dl > d2
Cl starts C2 tl = t2 and dl < d2
Cl equals C2 t} = t2 and dl = d2
C2 starts Cl tl = t2 and dl > d2

Table 5.1: Possible Binary Relationships between Timing Parameters

5.3. TIMING ANALYSIS GUIDELINES 117

During run-time analysis, we will check the various relationships between compu-

tations and to check the satisfiability of timing properties. By default, any sequencing

dependency between two computations, induces a minimum computation time which

must be satisfied in order to meet timing requirements. A minimum computation time

(lower bound), I (I ~ 0), from computation n to computation Cj (j > i, i, j E N) can

be defined as:

t > t- + I } _ 1

where tj is start time of computation Cj and ti is start time of computation Ci . Similarly,

a maximum computation time (upper bound), U (u ~ 0) is defined as:

In our approach, we use a distinguished state variable, Time in ITL, to represent

time and let there be an action to increase time, under the following assumptions:

• Time starts at O. This is defined as: Time = O .

• Time never decreases: D(OTime > Time).

The activation period of an interval can be defined as follows:

a = fin Time

where fin Time means the final value of the state variable, Time, at the end of the

5.3. TIMING ANALYSIS GUIDELINES

interval. Therefore, the computation time, d, of a computation can be expressed as:

d = fin Time - Time

where fin Time means the final value of the state variable, Time, at the end of the

subinterval of the computation and Time is the initial value of Time at the starting

point of the computation.

We also consider combined computation times of different computations, i.e. com­

position of two different sub-intervals. Given two computations, C1 and C2, with their

computation times, d1 and d2 , respectively, the combined computation time of C 1 and

C2 can be one of the following three:

• Sequential Composition: The combined computation time is represented by d1 ; d2•

Here we use ";" (chop) to express a sequential composition of two computation

times. The composed computation time of C1 and C2 is defined as:

• Conjoined Parallel Composition: A conjoined composition of d1 and d2 is de­

noted by 1\ and the conjoined computation time is defined as:

where max(d1 , d2) means that a maximum of the two computation times is cho-

118

5.3. TIMING ANALYSIS GUIDELINES

sen to indicate that the time to completion of the concurrent computations is

determined by the operation with the largest computation time;

• Disjoined Parallel Composition: when the computations, C1 and C2, belong to

two disjoined processes. This composition is denoted by the symbol, v, and the

combined computation time is defined by a pair, (db d2), i.e.

where (d1, d2) means that any of the two computation times could be chosen to

indicate that the time to completion of the concurrent computations is determined

by the operation with the determinable computation, i.e., if one computation de­

termines the whole concurrent process or can terminate both computations, then

its computation time is the time to completion of the concurrent computations no

matter another computation time is longer or shorter than it.

Furthermore, timing analysis involves the scheduling issues that have been intro­

duced in Chapter 2. The computation times of a process are determined by different

schedulers. For further timing analysis, it is not necessary to determine a schedule

of processes, but only to verify the existence of a schedule. Since there can be many

possible schedules, timing analysis proceeds by identifying conditions under which no

solutions are possible. A timing parameter is considered inconsistent if it can not be

satisfied by any implementation at run-time. Inductively, a timing property, consist­

ing of a set of timing parameters, is considered mutually inconsistent if these timing

119

5.4. SUMMARY

parameters can not be satisfied by any implementation at run-time.

5.4 Summary

This chapter gives three key concepts for the handling of time-critical systems' evolu­

tion, supporting the integrated approach and guided evolution, given in Chapter 4.

First of all, run-time analysis has been formally defined and explained. This will

be used to construct a tool to execute such a run-time analysing process. The second

section of this chapter describes compositional rules used to handle various changes

in time-critical systems evolution, especially adding or removing sub-systems to/from

an existing system, either sequentially or in parallel. We give a brief introduction to

composition theory and a short review of its history. A set of compositional rules have

been given. They are the general form of the compositional rule, sequential composi­

tional rule, and a basic parallel compositional rule. A number of simple examples have

been given to demonstrate ways of applying these rules. Finally, we give a set of basic

notions of timing analysis. A real example of using these notions will be presented in

Chapter 7.

120

Chapter 6

AnaTempura: A Realisation

Objectives:

To describe system architecture of AnaTempura

To give the way of using assertion points in AnaTempura

To discuss run-time analysis realisation by using AnaTempura

To give step-by-step timing analysis by using AnaTempura

To describe visualisation systems in AnaTempura

6.1 System Architecture

AnaTempura is designed as a semi-automatic tool which aims to support the step­

by-step methodology described in the thesis. This tool aims at helping engineers in

handling the evolution of time-critical systems in a comprehensive way. However, it

adopts semi-automation architecture since human intervention is crucial and unavoid­

able in handling time-critical systems evolution due to the difficulty of understanding a

program automatically.

6.1. SYSTEM ARCHITECTURE

AnaTempura is an integrated workbench for ITL that offers

• specification support,

• validation and verification upport in the form of simulation and run-time verifi-

cation in conjunction with formal specification.

The architecture reflects the framework in Figure 4.4. In this research, the tool

has been developed based on the phase-based methodology and is used to support this

methodology. AnaTempura is an open architecture that allows new tool components

to be easily "plugged in". A significant outcome is to realise the run-time analysis

proce sin AnaTempura, described in Chapter 5. AnaTempura automatically monitors

time-critical sy tern execution and analyses the system's run-time behaviours.

Tool Componnrt

Control Flow

....... ~

DDtll Flow

- _ . _};:>

Control imd

Data flow

o Specification

inITL
.... ~ · · l Requirements

.............................

......................... \

r-----".

,
1 ____ ------------------------------------ ______ 1

Figure 6.]: General System Architecture of AnaTempura

As shown in Figure 6.1, AnaTempura actually includes all tool components, "Server",

"Tempura Interpreter", "Output Con ole", "Animator", "User Browser", and "Timing

122

6.1. SYSTEM ARCHITECTURE

Diagram". Among them, except "Tempura Interpreter", which already exists and will

be introduced in a following section, other component (included in a box with dashed

lines in Figure 6.1) were either developed from scratch ("Server" , "Animator", and

"Timing Diagram") or updated for new requirements ("Output Console" and "User

Browser"). We will describe each of them one by one in the following sections. Ex­

cept for the tool component of ''Tempura Interpreter", the other tool components are all

developed in this research. Referring to Figure 6.1 and Figure 4.4, first of all, we will

use results generated from Phase 1, i.e., textural descriptions to change requirements

(Requirements). Then in Phase 2.1, we formulate all behavioural properties of interest,

such as safety and timeliness. These are presented as ITL formulae (Specification in

ITL) and stored in a Tempura file (Tempura Code), which will be loaded by AnaTem­

pura. Assertion points (Assertion Points) will be inserted into the body of the raw code

(Raw Code), e.g. C code, in Phase 2. The raw code with assertion points will also

be loaded by AnaTempura. These assertion points will generate run-time information

(Assertion Data), such as state values and time stamps after AnaTempura triggers the

execution of the program (Raw Code). The sequence of assertion data will be used to

construct a possible behaviour of the system for which we check the satisfaction of our

property. This check will be done by AnaTempura automatically.

This checking (indeed, the run-time analysis happened in Phase 2.2) is done as fol­

lows: start the AnaTempura and load the Tempura program (Tempura Code). AnaTem­

pura will then start the compiled raw code with assertion points. We then start the

Tempura program to check that behaviours as constructed from the data of the asser-

123

6.1. SYSTEM ARCHITECTURE

tion points, satisfy the properties. We note here that if the properties are not satisfied.

AnaTempura will indicate the errors by displaying what is expected and what the cur­

rent system actually provides. Therefore, the approach is not just a "keep-tracking"

approach, i.e. giving the running results of certain properties of the system. By not

only capturing the execution results but also comparing them with formal properties,

the AnaTempura tool can validate the properties. There is also a facility to animate

behaviours and to visualise timing properties.

There are two main components in AnaTempura (shown in Figure 6.1), Server and

Tempura Interpreter. Server sends/receives data to/from various components. Tempura

Interpreter is used to execute Tempura files. AnaTempura also offers powerful visu­

alisation function to enhance the ease of operation of the tool and comprehension of

the time-critical system evolution processes. We will describe the two tool components

and the visualisation function in the following sections.

6.1.1 The Server

The server is an interactive system with a user-friendly interface that allows the user to

analyse the time-critical systems. The user can manually enter any predicate using the

User Browser (Figure 6.1). We have used TcllTK [128] and Expect [76] to build the

tool.

The main function of the server is to capture assertion data sent by assertion points.

The server then send them to the Tempura interpreter. The Tempura interpreter executes

the Tempura file and convert/check the assertion data received and will send the appro-

124

6.1. SYSTEM ARCHITECTURE

priate messages, pass or fail, in conjunction with where and how the failure happens, to

the server. The server displays the received results on the Output Console (Figure 6.1).

6.1.2 Tempura Interpreter

The C-Tempura interpreter I was developed originally by Roger Hale [46] and is now

maintained by Antonio Cau and Ben Moszkowski. It is an interpreter for executable In­

terval Temporal Logic formulae. The first Tempura interpreter was programmed in Pro­

log by Ben Moszkowski, and was operational around December 2, 1983. Subsequently

he rewrote the interpreter in Lisp (mid March, 1984). The C-Tempura interpreter was

written in early 1985 by Roger Hale at Cambridge University. For more details, we

refer the reader to Moszkowski's book [94].

6.1.3 Realisation of Assertion Points Technique

There are two things we need to do to make assertion points work. One is to build

assertion points and another is to build mechanisms to collect assertion data sent by

assertion points, interpret captured data and deliver them to other different tool compo­

nents for further processing. Meanwhile, the construction of assertion points should be

as simple as possible.

After the generation of the assertion data, the server will capture them one by one

immediately. This process is realised by using the multiple process handling mecha­

nism of Expect. As shown in Figure 6.2, the "Data Capture" tool component of the

I The name "C-Tempura" comes from the language C that was used to write the interpreter.

125

6.1. SYSTEM ARCHITECTURE

D
........ ~

Raw Code

Key:

Tool Compollent

Data
Presentation

Data Flow

Assertion
... - Data

Figure 6.2: Processing Assertion Data

Server

server, written in Expect, will monitor the run of raw code, capture the information sent

by as ertion points and generate a string, containing assertion data. The form of the

string i pre ented as follows:

!PROG: a ert variable name: value: time stamp: !

where a et of marker included. They are presented a follows.

"!PROG" indicate the beginning of a piece of a sertion data and a declaration of the asser-

tion data, for example, here PROG mean this assertion data is generated from a

126

6.1. SYSTEM ARCHITECTURE

program.

"assert" indicates the beginning of concrete data.

":" separates each element of the assertion data.

"!" indicates the end of a piece of assertion data.

Depending on these markers, another tool component of the server, "Data Inter­

pret", also written in Expect, will get the strings and split them into three groups of

information, namely, variable name, value, and time stamp.

6.1.4 Realisation Run-time Analysing Technique

AnaTempura is designed for the validation of complex time-critical systems and their

changes where behaviour is time dependent. Especially, real time and relative time

constraints can be validated. This feature has been described and formally defined in

Section 5.1. We will give implementing details in this section.

Recalling the formal specification defined in Section 5.1,

Sys 1\ Prop 1\ Monitor

AnaTempura triggers and communicates with multiple processes simultaneously.

AnaTempura will enable full automation of run-time analysis. Referring to Figure 6.1

and the above fonnula, we describe them step by step as follows:

• Invoking/Controlling the run-time analysing process The server will load and

127

6.1. SYSTEM ARCHITECTURE

invoke the source code with assertion points. Simultaneously, the Tempura In­

terpreter will be triggered and used to interpret the Tempura code. In all, as we

defined in the above formula, there are three processes that are alive through­

out the run-time analysis process, the run of server, the interpreting process of

Tempura code and the run of the source code.

• Once the three processes have been triggered, the server controls the other two

processes. Monitor will assign an unique identifier to each of two processes,

the run of source code and the interpreting process of Tempura so that all data

generated by the two processes would not be confused. In addition, the server

may trigger some other simultaneous processes, such as animating run-time be­

haviours and drawing timing diagrams (we will describe this two in following

sections).

• Validating run-time behaviours For controlling the run of source code, the server

will inject pre-set testing data into the process of the source code run. A user

can also input instant data through the server during the source code run. That is,

the server will prompt a user to input some values through Output Console (Fig­

ure 6.1) and a user then inputs required values into User Browser (Figure 6.1).

The server can also generate random or special input data in order to test the sys­

tem under unusual circumstances that rarely happen in the real environment that

the system will encounter after its employment. In this case, AnaTempura acts

as the environment of the system. The source code will then perform different

computations. As we described in Section 5.1 and Section 6.1.3, assertion points

128

6.2. REALISATION OF TIMING ANALYSIS

will then generate assertion data.

6.2 Realisation of Timing Analysis

Recalling the timing parameters, start time, computation (or execution) time, deadline,

activation period, communication delays, and average times, we have to specify these

parameters in Phase 2.1, i.e., predefining timing properties, and AnaTempura will check

whether these parameters holds during the run of the system. The basic idea of run-time

analysis is not new. We use a standard method that is to actually run the system under

its real working environment, capturing the real execution times and analysing these

execution times with pre-defined and verified timing properties. A complete timing di­

agram will be drawn depending on sequences of values of timing parameters produced

at run-time. The timing diagram visualises the run-time timing behaviours of the sys­

tem. This is a part of the visualisation component of AnaTempura. We will describe it

in the next section.

We have given the contents of scheduling in Chapter 2 and timing analysis guide­

lines in Section 5.3. The following steps take place under timing analysis guidelines

and the requirements of scheduling:

• Firstly, calculating from two assertion points, the server calculates the computa­

tion time. Then, the server will check the computed computation time with the

expected one (specified by a timing property). This check is exactly the same as

checking other non-timing variables. Again the results will be "Pass" or "Fail".

If the computation time is larger than the required deadline, both the value of the

129

6.2. REALISATION OF TIMING ANALYSIS

expected and the real computation time will be displayed for further analysis by

the server.

• Secondly, a value change file, containing a sequence of changes, will be gener­

ated for further use, i.e. the drawing of timing diagrams and further analysis.

• Thirdly, further to deadline checking, the instant computation time will be taken

into account in the relationship analysis between different computations. De­

pending on different analytical targets, we can produce a list of pre-defined re­

lationships between every pair of computations that must be met to fulfil tim­

ing properties. Then we can compare the real relationship between each pair of

neighbouring or related computations and give comparative results depending on

the value change file produced by the server. For example, there is a process, P,

containing 10 computations. All computations must satisfy a binary relationship

as follows:

where Ci (0 < i < 9) is the ith computation of the process. If any computation

does not satisfy the relationship, the system fails

A checking run has been executed and the result is presented as follows:

> run test () .

!o:: Start

!1:: C_l: Pass time test

130

6.2. REALISATION OF TIMING ANALYSIS 131

Computation Start Time Computation Time
C_l 0 250
C-2 250 250
C3 500 70
CA 570 80
C5 660 250
C_6 910 250
C_7 1160 70
C_8 1230 80
C_9 1310 250

C_1O 1560 250

Table 6.1: An Example of Computation Time List

! 2 : : C 2 Pass time test -

! 3: : C 3 Pass time test -

! 4 : : C 4 Pass time test -

! 5: : C - 5 Fail: : Expect: 80, Real: 90

! 6: : C 6 Pass time test -

! 7 : : C 7 Pass time test -

! 8 : : C 8 - Pass time test

! 9: : C 9 Pass time test -

! lO : : C_ 10 : Pass time test

! 11 : : End

Done!

where we can find that the fourth computation does not meet the fifth computa-

6.3. VISUALISATION IN THE TOOL

tion. Therefore, the system fails.

• Fourthly, all run-time values of timing parameters will be taken into account to

check whether they satisfy a certain scheduling algorithm. We will produce an

extra Tempura file to store these algorithms. The server picks up this Tempura

file and checks the correctness of all timing parameters against the scheduling

algorithm. At the end, the server will give a form of results similar to the above

steps, i.e. the results of "pass" or "fail", and if a parameter fails to pass the check,

the server gives two values, one the expected value and the other the real value.

6.3 Visualisation in the Tool

We have given the design of a visualisation system in Section 4.3.2. Recalling Sec­

tion 4.3.2, we used three ways in the visualisation system. As shown in Figure 6.1, the

textual representation will mainly be done by the Output Console and the User Browser.

Timing diagrams will be generated either by the Animator or a Timing Diagram tool

component. We will describe the production of timing diagrams later on after we give

details of the implementation of the animation feature in AnaTempura.

A main contribution of the research is an animation feature in AnaTempura, i.e.,

visualisation of a program or system's run-time behaviours.

132

6.3. VISUALISATION IN THE TOOL

6.3.1 Animation in AnaTempura.

The principle goal of animation in AnaTempura is to help engineers to understand the

behaviours of the system which they are working with. The animation shall be made

as symbolical representations of hardware, intuitively as meaningful as possible. We

design each graphical element to symbolise data attributes expressively. Therefore, we

use well known and common metaphors from daily life. We chose the canvas wid­

get of TK to construct the animation in AnaTempura. The canvas widget provides

a general-purpose display that can be programmed to display a variety of objects in­

cluding arcs, images, lines, ovals, polygons, rectangles, text, and embedded windows.

It can be programmed to display a wide variety of objects. Each object can be pro­

grammed to respond to user input, or they can be animated under program control. As

a result, it provides a very flexible way for developers to visualise run-time behaviours

of time-critical systems. More details of canvas widget ofTK can be found in Welch's

book [128].

For portability and little influence on the source code, we built a separate Tclffk file

to animate run-time behaviours of the system. The server will load the file and invoke

a separate animation window, Animator (Figure 6.1). The animator waits to receive

processed assertion data sent by the server and displays different animation items on

the animation window depending on received data. We will give some examples of

animation in Chapter 7.

133

6.3. VISUALISATION IN THE TOOL

6.3.2 Timing Diagram in AnaTempura

There are two ways to draw a timing diagram in AnaTempura, one is to use the anima­

tion function and the other is to draw timing diagrams via an external software package,

GTKWave [44], embedded in AnaTempura. GTKWave is a fully featured GTK+ vl.2

based wave viewer for Unix and Win32. The way of using the animation to draw timing

diagrams is suitable to show very simple timing behaviours, e.g., a very small number

of timing behaviours in a very short interval. Usually, we use the external GTKWave

package to draw timing diagrams.

Timing Diagram Via Animation To draw a timing diagram via animation is the

simplest way and displays run-time behaviours of a system instantly. An example has

been given in Figure 6.3. Time diagrams are represented by a set of rectangles. The

width of rectangles indicates the length of corresponding computation times. The way

to draw these rectangles is the same as the animation, described in the previous section.

To draw timing diagrams via animation is a real-time visualisation. It takes place during

the run-time analysis.

However, because of the limitation of the size of the display window, we can only

show the timing diagram sub-interval by sub-interval if the total interval is too long.

It is difficult to draw an entire timing diagram of the system in a single window and

analyse run-time information under these circumstances.

Timing Diagram Via GTKWave Because to draw timing diagram via animation

can not show complex timing behaviours or longer intervals, an alternative way is to

134

6.3. VISUALISATION IN THE TOOL 135

A Letterl4-

AIr Mail 112
Sensor ~

Solenoid 4 T Delay4

DelayF

k:AWr ~ette rl

DelayS

Mail Sorter: Tree and Timing Diagram

Dismiss Ste p Start Stop

Figure 6.3: Timing Diagram Via Animation

use po t-mortem vi uali ation, i.e. to draw the timing diagram from a trace file that

is recorded during the run-time analysis after whole system execution. We have em-

bedded The Veriwell [59] simulator and GTKwave in AnaTempura to produce timing

diagram. Assertion data generated by as ertion points is sent to the Veri well simulator,

which produce a vcd 2 file, containing timing information, such as names of variables

and corre ponding time stamp . This vcd file is then used by GTK wave to generate

timing diagram. An example of a timing diagram, drawn by GTKwave, is depicted in

Figure 6.4. It how a diagrammatic representation of timing information for all state

variable of intere t. A can be een, various features are available, e.g. setting markers

for time line ,change the granularity of time, etc.

2Yalue change djagram (vcd)

6.4. SUMMARY 136

File Edit Search Time Marl:.ers View Help

VCD loaded successfully.
[61 facilities found.
[4337] regions found.

~ ... 11oIII ~I I+- I +- 1 +- 1 +-1 +- IFrom,....:...:lo_s_ec __ _ ~
Zoom Page Fetch Disc Shift

OIl ~ I U"OO I --.! 1 ~ 1 ~ 1 ~ I ~ I To: IZ159 ms

MarKer Time

Current Time
Z5Z ms

Signals

Ti.e
test. CLASS[31: 0]

test.LETTER[31:0]
test. SOL3[31: 0]
test. SOL4[31: 0]

test.clock
test.clo.clock

Walles

00000001 Yoooooooz

oooooooo
)()()()()()()()

0+ YOOOOOOO1 Xo+ YOOOOOO01

I

855 .. 5 171 .. ,.
00000001

~ 1 '{

Yo ()OOOO1)0000000

0+1..00000001 0+1.00000001 Yo+Y OOOOO001

I I 1...J ____ 1J i:::1...JC====================:::r:;I
Figure 6.4: Timing Information of State Variables

6.4 Summary

This chapter de cribe a tool, AnaTempura, developed to handle the evolution of time-

critical ystems following the guidelines given in Chapter 5.

Two main component of AnaTempura, the erver and the Tempura Interpreter have

been introduced. Four main function of the server, i.e. the main development of

AnaTempura in thi the i , have been described in details. They are: assertion points,

run-time analysis, timing analysis, and visualisation .

• Assertion points generate a ertion data at run-time. A ertion data are then used

to de cribe run-time behaviours of a time-critical system .

• Run-time analysis trigger a run of a time-critical sy tern, analyses run-time be-

haviour of the y tern with re pect to the ystem's specification in Tempura and

check whether the propertie of the sy tern which are of interest have been sat-

i tied.

6.4. SUMMARY

• Timing analysis checks timing infonnation generated from assertion points with

respect to the timing properties of a time-critical system. It analyses and indi­

cates different timing relationships between different computations of the system

during run-time.

• Visualisation provides animation of run-time behaviours of a time-critical system

and produces graphical timing diagrams that are helpful for timing analysis of the

system.

137

Chapter 7

Case Studies

7.1 Introduction

The two case studies presented in the thesis were selected from several experiments

which ranged from small to big scale, un-timed to timed, and sequential to parallel.

The first case study is engineering a Post Office letter sorting system, which shows the

entire process of managing changes in a time-critical system. It also demonstrated the

use of parallel composition rule.

The second case study is a medium size case study following a typical evolutionary

development process of an assembly line system. This kind of experiment is much

more realistic. The main concern of this case study is to apply the state-based parallel

composition rule.

7.2. MAIL SORTER SYSTEM

Original Structure

Clas Sensor
Delay/

Solenoid 4

Delay4

LeIter ensor

De/ay2

Solenoid 3

De/ay3

1st Cia Hopper 2nd Class Hopper

Modified Structure

Air Mail Sensor

Solenoid 6

Leuer Sem,or B

Solenoid 5

Air Mail Hopper

Class Sensor

Solenoid 4

Leller Sen sor

Solenoid 3

1st Class

Delay5

Delay7

Dela.\'6

Delay8

Delay}

Delay4

Delay2

Delay3

Hopper

Figure 7.1: The Structure of the Original and Modified Mail Sorter

7.2 Mail Sorter System

Description

Thi ca e tudy is extracted from a Po t Office letter sorting ystem, which is used to

sort Fir t and Second CIa letter. The decision was made to add a new functionality

of proce ing Air Mail letter . The new sub- y tern hould till sort both Fir t Class

and Second CIa letter within the original timing constraint .

139

7.2. MAIL SORTER SYSTEM

Phase 1 Determine type of change

Since the change is simple, we can immediately conclude that change involves a func­

tional requirement (i.e. adding the new function of sorting Air Mailletters) and a timing

requirement (i.e. keep the same performance time as the old system).

As a prerequisite, we will review the old system first.

Review of the old system

The old system is used to sort First and Second class letters and put them into different

hoppers as illustrated in the left hand side of Figure 7.1. The size of the main controlling

program in C is some 220 lines of code. The size of the total system is some 2.5K lines

of code. A class sensor detects the different colours of stamps and send corresponding

signals to the control program which in tum sends signals to the switch (solenoid). The

switch will tum the sorting gate on or off so as to release the two classes of letters into

different hoppers.

Delays in the system. which guarantee that sensors and actuators can accomplish

their tasks meeting the system's timing requirements. occur at different places as shown

in the left hand side of Figure 7.1: Delayl (7Oms) and Delay4 (250ms) for Class sensor

and Solenoid 4, respectively; Delay 2 (70ms) and Delay3 (80ms) for Letter sensor and

Solenoid 3, respectively.

There are two properties of interests: timeliness and safety properties. The former

involves the delay times for switching the solenoids and reading the sensors, whilst the

later is a safety requirement: Uno Second class leiter in the tray offirst class letters and

140

7.2. MAIL SORTER SYSTEM

visa versa". These properties are expressed in terms of the Class and Letter Sensors,

switches (Solenoid 3 and Solenoid 4), and the various time delays (Delay I, DeJay4,

Delay2 and Delay3).

The main actuator, Solenoid 3, drops the letter into the correct hopper. If the status

of Solenoid 3 is "ON", then it will release the letter into the First class hopper, and

when "OFF', it will release the letter into the Second class hopper. All used timing

parameters are extracted from the source code and are listed below:

SensarName ExecutionTime Deadline

ClassSensor Delay! 70ms

Letter Sensor Delay2 70ms

Actuatar Name ExecutionTime Deadline

Solenoid3 Delay3 80ms

Solenoid4 Delay4 250ms

An obvious requirement is that if the Class sensor detects a First Class letter, this

letter will eventually be dropped in the First Class hopper within the activation period

(Delayl + Delay2 + Delay4 + Delay3) of 470 ms and likewise for a Second Class letter

which will be dropped in the second class hopper also within 470ms. This is expressed

as follows:

141

7.2. MAIL SORTER SYSTEM

Sorter - (fin time - time:::; 470 "

((Class_Sensor = 1sLClass ::) O(Solenoid3 = ON)) "

(Class_Sensor = 2nd_Class::) O(Solenoid3 = OFF))

)

)*

where "time" is a global variable, indicating the current time and ''fin time", which

means the time at the end of the interval. Alternatively, in assumption/commitment

form, the old sorter system can also be expressed as:

(Ass ::) Com) C Sort

Ass: Letter _Class = 1sLClass v Letter _Class = 2nd_Class

Com: (fin time - time:::; 470 "

(Class_Sensor = 1sLClass ::) O(Solenoid3 = ON)) "

(Class_Sensor = 2nd_Class::) O(Solenoid3 = OFF)))

The mail sorter system guarantees that it eventually drops a "First Class letter"

into the "First Class hopper" and eventually drops a "Second Class letter" into

the "Second Class hopper", assuming that its environment sends a first or second

class letter.

142

7.2. MAIL SORTER SYSTEM

The timing property is fonnulated as follows:

[tin time - time = Delayl/\ LetterState =

aLdass_sensor /I stable (LetterState)] ; skip;

[tin time - time = Delay4 /I Letter State =

aLSolenoidA /I stable (LetterState)] ; skip;

[tin time - time = Delay2 /I LetterState =

aLletter _sensor /I stable (LetterState)] ; skip;

(fin time - time = Delay3 /I LetterState =

aLSolenoid_3 /I stable (LetterState)]

The timing property expresses the state of a letter and its corresponding deadlines.

Phase 2.1 Impact analysis: Requirement level

After reviewing the old system, we carry out the impact analysis of the required changes

to the system. What is required is that the new system should at least satisfy above

safety and timeliness properties.

Firstly, we recall the old system. The system should sort every First and Second

letter within a period of 470ms. Now we need to give it the ability of sorting Air Mail

letters.

The first step is to add the functional requirement to the old system "Sys", changing

it to "SYSl". Then "Sort" will be changed to "Sort", to enable the sorting of Air Mail

letters ("Sort Air"). The timing requirement "470" will be changed into "470-X". The

143

7.2. MAIL SORTER SYSTEM

"X" is the time needed to sort Air Mail letters.

The system is now:

Sort:

(Ass :J Com) ~ Sort

Ass: Letter _Class = 1sLClass v Letter _Class = 2nd_Class

Com: (fin time - time ~ 470 - X /\

(Class_Sensor = 1sLClass :J O(Solenoid3 = ON)) /\

(Class_Sensor = 2nd_Class :J O(Solenoid3 = OFF)))

Where Sort Air is

(AssAir :J COmAir) ~ SortAir

AssAir : Letter _Class = Air v Letter _Class = 1sLClass v Letter _Class = 2nd_Class

Com Air : (fin time - time ~ X /\

(AirMaiLSensor = Air :J O(Solenoid5 = ON)) /\

(AirMaiLSensor =I- Air :J O(Solenoid5 = OFF)))

The newly added Air Mail sorter component guarantees that it eventually sends a

"Air Mail letter" to the "Air Mail hopper" and eventually sends a "Non-Air Mail

letter" to modified the First/Second Class sorter, assuming that the environment

sends Air Mail or First or Second Class letters.

144

7.2. MAIL SORTER SYSTEM

The new system is shown in the right hand side of Figure 7.1.

Now we begin to analyse the change in detail with assumption/commitment style

of properties and compositional techniques. First of all, we need to recall all the spec-

ifications. For ease of description, we also supply a graphical view in Figure 7.2. The

graphical description of the old system can be seen in the left hand side of Figure 7.2.

The graphical description of the new component can be seen in the right hand side of

Figure 7.2.

Letters
(lsI &: 2nd Class)

o I Sl Class letters

2nd Class letters

Letters
(Air &: Non-air Mail
(lsI &: 2nd Class»

Non-air Mail leIters
(lSI &: 2nd Class)

Air Mail leIters

A

Old System Added Component

LeIters
(Air &: Non-air Mail
(lSI &: 2nd Class»

Non-air Mail letters
,..--_-.:..:.;(lS:..:...;1 &: 2nd Class)

o Air Mail letters

A

lsI Class lellers

2nd Class letters

New System (The Composition)

Figure 7.2: The Composition of the Mail Sorter

145

7.2. MAIL SORTER SYSTEM

We add the new component using the following sequential composition rule:

where,

(Ass :) Com) ~ Sort,

(AssAir :) ComAir) c: SortAir,

Asse :) Ass Air,

Com Air :J Ass,

Com :J Come

(Asse :) Come) ~ (SortAir ; Sort)

Asse : Letter _Class = Air v Letter _Class = IsLClass v Letter _Class = 2nd_Class

Come: fin time - time ~ 470" (

((AirMaiLSensor = Air) :) O(Solenoid5 = ON)) "

((AirMaiLSensor =I Air" Class_Sensor = IsLClass) :)

[<>(Solenoid5 = OF F) 1\ O(Solenoid3 = ON) 1\

((AirMaiLSensor =I Air 1\ Class_Sensor = 2nd_Class) :)

<>(Solenoid5 = OF F) 1\ <>(Solenoid3 = OFF)]))

It is easy to see that the premises of the rule hold, i.e., we can apply the rule.

A graphical description of the new system is shown at the bottom Figure 7.2.

In detail, the change needs a new "Air Mail Sensor", a new "Letter Sensor 8",

146

7.2. MAIL SORTER SYSTEM 147

Sensor Name ExecutionTime Deadline
Air M ailSensor DelayS 40ms
ClassSensor Delay! 40ms
LetterSensor Delay2 50ms
LetterSensor B Delay6 50ms
Actuator Name ExecutionTime Deadline
Solenoid6 Delay7 90ms
SolenoidS Delay8 50ms
Solenoid4 Delay4 90ms
Solenoid3 Delay3 60ms

Figure 7.3: Timing Information of the Modified System

and two new actuators (Solenoid 6 and Solenoid 5). The reader will notice that the

structure of the new system (right hand side of Figure 7.1) has changed to cater for the

new addition. As part of the new requirements, the new system should still keep the

same process time as the old system. Therefore, after analysing the functional change,

we begin to analyse the timing change.

The functional change has introduced new delays (Delay 5, Delay6, Delay7 and

DelayS). Among these delays, Delay5 denotes the time for the new Air Mail Sensor to

detect the kind of letters and send a relevant signal, Delay7 denotes the execution time

for the Solenoid 6 to release letters, Delay6 denotes the time for the new Letter Sensor

B to detect the existence of a letter and send a relevant signal, and DelayS denotes the

execution time for the Solenoid 5 to deliver letters into the different hoppers.

The new timing parameters are presented in Figure 7.3. The activation period time

for processing a letter is 470ms (Delayl + Delay4 + Delay2 + Delay3 + Delay5 +

Delay7 + Delay6 + DelayS). Therefore, we need to adjust all delays of the old system

7.2. MAIL SORTER SYSTEM

with respect to new delays. In the new system, the entire interval has been divided into

two sub-intervals. Each of two sub-intervals corresponds to one sub-process. The first

sub-process is used to sort Air Mail letter, corresponding to "X", and the second one

is used to sort First and Second Class letters, corresponding to "470-X". The sequence

of timing parameters of second sub-process will follow the same sequence as the old

system. They are:

and

Delay5 + Delay7 + Delay6 + Delay8 = X

Delay! + Delay4 + Delay2 + Delay3 = 470 - X.

The new timing property is defined as:

Process for sorting Air Mail letters:

[fin time - time = Delay5 /\ LetterState =

aLair _maiLsensor /\ stable (LetterState)] ; skip;

[fin time - time = Delay7 /\ LetterState =

aLSolenoid_6 /\ stable (LetterState)] ; skip;

[fin time - time = Delay6 /\ LetterState =

aLletter _sensor _B /\ stable (LetterState)] ; skip;

[fin time - time = Delay8 /\ LetterState =

aLSolenoid_5 /\ stable (LetterState)]

148

7.2. MAIL SORTER SYSTEM

Process for sorting 1 stl2nd Class letters:

[fin time - time = Delay5 /\ LetterState =

aLair _maiLsensor 1\ stable (LetterState)] ; skip;

[fin time - time = Delay7 /\ LetterState =

aLSolenoid_6/\ stable (LetterState)] ; skip;

[fin time - time = Delay6 1\ LetterState =

aLletter _sensor _B /\ stable (LetterState)] ; skip;

[fin time - time = Delay8/\ LetterState =

aLSolenoid_5 /\ stable (LetterState)]

[fin time - time = Delayl/\ LetterState =

aLclass_sensor /\ stable (LetterState)] ; skip;

[fin time - time = Delay4 /\ LetterState =

aLSolenoidA /\ stable (LetterState)] ; skip;

[fin time - time = Delay2 /\ LetterState =

aLletter _sensor /\ stable (LetterState)] ; skip;

[fin time - time = Delay3 /\ LetterState =

aLSolenoid_3 /\ stable (LetterState)]

The analysis results will be collected and documented in the last phase, Phase 3,

together with the complete specification of the new system.

149

7.2. MAIL SORTER SYSTEM ISO

Phase 2.2 Impact Analysis: Source Code-level

We derive from the specification of the new system the concrete code using refinement

rules. Since developing refinement rules is not a main concern of the thesis, we do not

give more details here.

After obtaining the executable code, we use AnaTempura to check it. In the first

step, we trigger the checking process for the component of old mail sorter (since it has

been modified from the very beginning). Checking runs are generated by AnaTempura

(Figure 7.4) following the analysis process depicted in Figure 4.2. The bottom window

is a terminal to show outputs and inputs of the running program. The top window shows

the checking process. Assertion-points are placed strategically in the code to check the

safety property and to the timeliness property. Different designs of assertion-points will

be used for different applications. For the mail sorter application, a parameterised C I

function ("Assertion") is introduced.

void assertion(char *aname, int val)

printf("!PROG: assert %s:%d:%d: !\n",

aname, val, myclock()); }

This function sends the state of the system ("aname"), and the current time (Hmy_

clockO,,2). For example, "assertion("class",l)", "assertion ("soloff',SoINo)" and "as-

sertion ("solon",SoINo)" are used to check the safety property of the program, i.e.,

IThis is due to the application was written in C.
2"myclockO is another function which is used to capture the time.

7.2. MAIL SORTER SYSTEM

whether a First class can be released into the First class hopper. The following shows a

fragment of C code with Assertion Points:

/* closing solenoid */ void SolOn (int SolNo) { assertion

("solon",SoINo); }

/* opening solenoid */ void SolOff (int SolNo) { assertion

("soloff", SoINo); }

if (class_sensor == 1)

/* its yellow - activate solenoid 3 */

assertion("class",l); SoIOff(4); Delay{Dtime1,1);

SoIOn(4); Delay(Dtime4,4);

scan_sensor ("letter sensor is ?" ,&letter_sensor);

assertion("lsens",letter_sensor);

if (!YellowSet) {

Delay(Dtime2,2); SoIOff(3); Delay(Dtime3,3);

YellowSet = 1; }

We note that

assertion("class",l); assertion{"lsens",letter_sensor);

are two assertion-points. They send messages when the code runs. The tool checks

and processes the sequence of information. compares it with the properties. and gives

messages like "Pass Letter Sensor 1 test" and "Pass Class 1 test". which indicate that

some of the safety and the timeliness properties are satisfied.

151

7.2. MAIL SORTER SYSTEM

Then we check the rest of the new system. We have also added corresponding

assertion-points for the newly added items. For example, in:

if (air_sensor == 1) { assertion (" air" , 1); SolOff (6) ;

Delay(Dtirne5,5); SolOn(6); Delay(Dtirne7,7);

scan_sensor(II1e tter sensor is?" ,&letter_sensor);

assertion (" Isens ", letter_sensor); if (! AirSet) {

Delay(Dtirne6,6); SolOff(5);

Delay(Dtirne8,8); AirSet = 1; } }

where the line

assertion(" a ir",l);

is used as an assertion-point of checking the process of sorting Air Mail letters. Three

assertion-points for the new sensors and actuators relate to the modified safety prop­

erty, while the three other assertion-points for the new delays relate to the timeliness

property. As described before, the time requirement for the change is that the total

perfonnance time for processing either Air Mail letter or First and Second Class letter

should be the same as the old system (470ms).

Some results from checking the modified system are presented in Figure 7.5, Fig­

ure 7.6, and Figure 7.7. They indicate that the safety property has been met for this

particular behaviour. The program has sent correct control signals to the actuators,

Solenoid 4 and Solenoid 5, and all Air Mail letters have been delivered to the Air Mail

Hopper. At the same time, all timeliness properties have been satisfied. The delay times

152

7.2.

for the en 01'S and olenoid are correct. We al 0 u ed orne incorrect cases to test the

program, uch ,\I e u ed horter dela . The checking process reports the error cor-

re tl . For e . ample. we re trict the delay (DelayS) of Solenoid 5 to 10. The Solenoid 5

will not ha e enough time to deli er the letters. We pre ent orne test result as follows:

!70:: olenoid 5 0 : P !70:: DelayS: Start !l1O:: Delay8: End !11O::

Delay 40: Prog 10 and Real 40.

Thi tell that the timing property i iolated. We then changed the number back to

50m and te ted it again. The che k ha been pas ed. We u e imilar cenarios to test

all delay and olenoid .

n"t

OUt SOnIOt 11' 0
1110 1180

SOIItIOII .. 1 '

" '''lei
l.f1ltf $tnsor .. JO

Z '111
3 15m)

It., ..

rll. Ult

lUll ' JUrt '.18),1
.UH (0 ... 1.,1

1500 1580

111M "11,1 , tt .. t •• t
111M , ••••• 1 4 tlU .U":: S 1.,.. ,< ,, [04 .. ,.,..
11..,. :: "1.,.. . ,.,. tt • • tl,t
1143' :: '1.1 l. t tar Sen 1 tea t
11..,.:: Stert •• 11,Z
II,.. :: ["" '.I.,Z
Usot :: '2 : , ••• t1 • • t •• t
U5oM :: , t ... " 3 Dfr tlU
111M:: Su,. ,.1Iy2
u,..:: [tM "1.,Z
II ... :: .. 1.,2 : ru. t1 .. , •• ,

~ ~!!~~htt .. U ...

0$> 1
1 :: t1 1
l$U :~ tl ... _ ,. ?

lit., :
> •

~~ ~:,;:::~~tl .. ti_ •

en>

Start Stop

H.1p

igure 7.4: Validation of the Original Sy tern

153

7.2. MAIL SORTER SYSTEM

Acbya:Jon TennlOalJon ActlvalJon TermInation

.o.lt Sensor 180 Class Sensor 430

Deay5 180 230 Delayl 430 480
Soleno,d 6 230 Soleno,d 4 480

Delay7 230 320 Delay4 480 530

lette' Sensor rozo letter Sensor

Delay6 320 370 Delay2 530 580
SOleno,d 5 370 J Solenoid 3 560

/
Delay8 370 430 Delay3 560

Non Alnnilll 2nd Class

- --- r;

~ ~ ~ 2!!.J

Figure 7.5: Validation of the New System: Animation

1370:: J1e10!PB: Strt
I~: : J1e10!PB: End
I ~:: J1e10!PB 60: Pas,
1430: : CI ... sensor 2: Pass
I~: : Sol.",nd 6 1Jf: Pass
I ~:: J1e1a!l3: Swt
I ~:: JIela!i3: End
I ~:: JIela!i3 50: Pass
!480:: Solenoid 6 ~: P ...
1480:: J1e10lf.: Swt
1530:: J1e10lf.: End
1530:: J1e10lf. 50: Pass
1530:: Dolay3A: Strt
1580:: JIelay3A: End
1580:: IIelay3A 50: Pass
1580:: SolenoId 3 ~: P ...
1580:: IIelay3ll: Swt

'170: : cl •• l'lng ...-.

u
320:: letter sensor 1$ 1
1
430: : cl .. ' is ?
2
650:: clearing senscrs
660:: . ir". I. ?

- - ----- --'

Figure 7.6: Validation of the New System: Console

Phase 3 Deployment

After having code ready, we review and collect all necessary documents and gener-

ate deliverable documentation to be released with the code. Usually, we also need to

produce a manual of using the program if the system is a complicated one.

Referring to Section 4.3.1 , we give a list of activities which need to be done for this

case tudy as follow .

154

7.2. MAIL SORTER SYSTEM

File Edit Search Time Mar~ers View Help

VCD loaded successfully.
[6J facilities found.
[4337J reg ions found.

~ .. I ~ ~I I+- I +- 1 +- 1 +-1 +-1 Fromr-:-:l°--:s_ec __ _

W

Zoom Page Fetch Disc Shift

/ .. ~ IUHool-.!1 -+ 1 -+ 1 -+1 -+1 To:12159ms

Mar~er Time

Current Time
252 ms

Signals

Tille
test. ClASS[31: 0]

test.lETTER[31:0]
test.SOl3[31:0]
test.SOl'([31:0]

test.clock
test.clo.clock

Walles

00000001

00000000

)()(XX)O()()(

0+](00000001

I

85~

X00000002

0000

XO

Yo+ 00000001

"'s 171 "'s

.1(00000001

01

00001 0000000

YO+ 00000001 ~+.J...00000001 0+.J...00000001

I N __________ ~I/~I~I __ ~I/

Figure 7.7: Output of the Trace File

• A description of the change requirement, i.e., adding a new feature of sorting Air

Mail letters, will be generated from analysing results of phase 1.

• Formal specifications generated from phase 2.1 will be collected and written as

a major part of the document, including the original specification, a specification

of the new added component and the composing process.

• Source code with assertion points inserted will be included in the document.

• Test re ult of run-time analysis, which are directly saved by AnaTempura, will

be included in the document.

• A typical trace file of timing information, which is generated by AnaTempura,

will be added into the document, together with some typical screen shots after

interpreting thi trace file.

• Two typical screen hot will be added into the document, which can be found in

thi chapter.

155

7.2. MAIL SORTER SYSTEM

A sample document can be found in Appendix A. Since the main document is gen­

erated from all above text, we just give a sample document in Appendix A without giv­

ing more details, such as explanations to all formulae. In real documentation, all things

should be explained in details as many as possible. After generating all documentation,

which includes updating history, updated timing information and verification records,

etc., we can deliver the system.

156

7.3. ASSEMBLY LINE SYSTEM

7.3 Assembly Line System

Description

In this section we describe a development process of an assembly line system. Initially,

the system consists of one robot and one conveyor. A decision was made to add one new

robot to the system. The robots and the conveyor will work in parallel. A new control

system will be developed from the old controlling systems by parallel composition and

some changes.

Review of the old system

Raw Tray

Conveyor

Figure 7.8: Old Assembly Line

First, we describe the y tern informally. The physical architecture of (an abstract

model) the original industrial as embly line system is presented in Figure 7.8. The

system consi ts of one conveyor and one robot. A sensor is installed at the left end

of the conveyor. The conveyor carries workcells that are denoted as circles on the

conveyor from left to right. Workcells will be processed by workers manually while

on the conveyor. The robot take unprocessed workcells from "Raw Tray" and put

157

7.3. ASSEMBLY LINE SYSTEM

workcells on the conveyor. Processed workcells will drop into an "End Tray". Because

the conveyor must cooperate with the robot to finish all tasks, the sensor is responsible

for detecting whether there is a workcell at the left end of the conveyor. When the

robot is putting a workcell, the conveyor must be stopped. If the sensor sends a signal,

indicating there is no workcell at the beginning position of the conveyor and the robot

holds a workcell, then control motor of the conveyor will stop and let the robot put a

workcell onto the beginning position of the conveyor. If the sensor indicates there is a

workcell at the left end of the conveyor, then the conveyor runs and the robot waits.

In addition, the working length of the conveyor is 5 metres. Depending on the

working speed of workers, the running speed of conveyor is 0.5 metre per second.

There are at most 10 workcells that can be put on the conveyor and the distance of

two workcells must be kept at least 0.5 metre or multiple of 0.5 metre. Therefore, the

robot must put unprocessed workcells properly. Otherwise either the conveyor or the

workers cannot work properly. The robot is required to finish taking or putting actions,

and restore its initial state, i.e., holding one new workcell, within 1 second.

In the rest of the reviewing process, we will give the formal specification of the sys­

tem requirements and design. First, we give state variables and notations for specifying

the system. The conveyor can be expressed by an array, L, with ten Boolean variables.

indicating ten positions of the conveyor. L[i](O ::; i ::; 9) denotes the i-th position

of the conveyor from the left side. If L[i] = 1, then there is a workcell at the i-th

position. Otherwise, L[i] = 0 means the position is empty. The length of the list L

is defined as 1 L I. A Boolean variable S is used to indicate the current state of the

158

7.3. ASSEMBLY LINE SYSTEM 159

conveyor. If S = 1, then the conveyor is in the stopped state. Otherwise, the running

state of the conveyor will be denoted by S = o.

The state of sensor can be expressed by L[O]. That is, if L[O] = 1, then there is a

workcell on the left end of the conveyor and the sensor should send a signal, reporting

this situation.

Furthermore, a Boolean variable, R, are set to express the status of the robot that

whether a robot holds a workcell in its armslhands or not. If R = 1, the robot holds a

workcell in its hand at current state. Otherwise, R = 0 indicates that the robot holds

nothing.

Based on the analysis, we can explore several different cases. The conveyor must

be in the stopped state in some cases and can move in the other cases. All these cases

guarantee the correct running of the system. First of all, we define the states of move

and stop.

The state of move can be defined as:

8

MOVE: 01\ L[i] = L[i - 1]
i=O

The state of stop can be defined as:

8

STOP: 0 A L[i] = L[i]
i=l

We consider the robot and the conveyor as two parallel processes of the system.

The system is expressed as RobotllConveyor. Therefore, a set of possible states of the

7.3. ASSEMBLY LINE SYSTEM

system can be defined as follows:

(!) R = 0 /\ L[OJ = 0

@ R = 1 /\ L[O] = 0

@ R = 0 /\ L[O] = 1

@ R = 1 /\ L[O] = 1

where, R = 0 means that the robot does not hold any work cell whilst R = 1

indicates that the robot holds a workcell. If L[O] = 1, then there is a workcell on the

left end of the conveyor and the sensor should report it by sending a signal. L[O] = 0

indicates the left end of the conveyor is empty. We use the symbols,OO, @,@, and @, to

represent four different cases, respectively, for following specifications.

Following our methodology, we define control systems of the robot and the con­

veyor in assumption/commitment form one by one.

Firstly, we analyse the above four different cases with respect to the control system

of the conveyor. It is easy to see that the conveyor can not run when the cases @,

because the conveyor should give the robot a chance to put a workcell on its left end.

For the rest of cases conveyor can move since the robot can put nothing on the left end

of the conveyor. In result, the control system of the conveyor can be defined as:

160

7.3. ASSEMBLY LINE SYSTEM

Wcanv " Ascanv "Conveyor :::> COcanv "fin w~anv

Wcanv:

Ascanv :

COcanv :

true

CD v @ v @ :::> [OS = 0 " MOVE] "

® :J [OS = 1 " STOP]

" OTime = Time + 1

fin w~anv: true

where OTime = Time + 1 gives the timing property of the conveyor control

system. That is, all operations must be performed in one time unit (1 second).

We then analyse each case for the robot. For cases, (1), or @, the robot holds nothing.

It should get a workcell immediately, but without affecting the running state of the

conveyor. For the case @, the robot holds a workcell and there is no workcell on either

end of the conveyor. In this case, the conveyor stops so that the robot can put one

workcell on the left end of the conveyor. For the case @, because there is a workcell on

the left end of the conveyor and the robot cannot put any new workcell, then the robot

will keep holding the workcell without taking any action. The control system of the

robot can then be defined as:

161

7.3. ASSEMBLY LINE SYSTEM

WR 1\ ASR /\ Robot:) COR 1\ fin wk

WR: R = 0

AsR : true

Co R : ® ~ [0 L[O] = 1 1\ 0 R = 0] 1\

[CD v ® v ®] :) OR = 1

1\ OTime = Time + 1

fin wR: true

where the timing property, OTime = Time + 1 has the same meaning as the one

in the conveyor control system.

We compose the robot control system and the conveyor control system together

using the following state-based parallel composition rule to get the system, Sys, i.e.,

(Robot II Conveyor).

162

7.3. ASSEMBLY LINE SYSTEM

WR 1\ AS R 1\ Robot :) COR I\fin wk

Wcanv 1\ Asconv 1\ Conveyor :) COconv I\fin W~onv

WSys => WR 1\ Wconv

Assys v COR => Ascanv

AsSys v COconv => ASR

COR v COcanv => COSys

fin W'R 1\ fin w' conv => fin WsyS

WSys 1\ Assys 1\ RobotliConveyor :) COSys 1\ fin W'sys

We can then generate a specification after composing the robot control system and

the conveyor control system together. It is:

WSys 1\ Assys 1\ Robot II Conveyar ::J COSys I\fin WsyS

wSys : R = 0 1\ S = 1 1\ I\~=o L[i] = 0

Assys :

COSys :

true

(<D v @ v @ :) [OS = 0 1\ MOVE] 1\

® :) [OS = 1 1\ STOP]) v

(® :) [OL[O] = 1 1\ OR = 0] 1\

[<D v @ v @] :) OR = 1)

1\ OTime = Time + 1

fin WSys: true.

163

7.3. A SEMBLY LI E SYSTEM

Thi pecification tell that a tran ition of Sys is either a transition of Robot or

a tran ition of Conveyor during a tate in thi tate-based ca e. In a certain state, a

commitment of the Sy will be either a commitment of the robot or a commitment of

the conveyor.

Phase 1 Determine type of change

Raw Tray
E1Id Tray

Conveyor

Figure 7.9: ew A embly Line

The phy ical architecture of (an ab tract model) the new a embly line system is

pre ented in Figure 7.9. A new robot and a corre ponding, new ensor have been added

into the new y tern. A new robot control program will be added into the assembly

control y tern. Both robots and the conveyor run in parallel. Therefore, the change

involve functional requirement of adding a new robot control component and a new

variable of toring the ignal ent by the new en or, a well a a timing requirement of

limiting the new robot' action time.

164

7.3. ASSEMBLY LINE SYSTEM

Phase 2.1 Impact analysis: Requirement level

Firstly, we analyse the difference between the old system and the new system. Com­

paring to the old system, instead of dropping into the "End Tray", a processed workcell

will be taken by the new robot and put into the "End Tray". We name the existing robot

as the robot 1 and the new robot as the robot 2. When both robots are taking or putting

workcells, the conveyor must be stopped. The new sensor will be installed at the right

end of the conveyor. We name the existing sensor as the sensor 1 and the new one as

the sensor 2. If the sensor 2 detects that there is a workcell at the right most end of the

conveyor, then it sends a signal, indicating that the robot 2 should take action to remove

the workcell from the end of the conveyor. The function of the sensor 1 is the same as

before. If both sensors send signals, indicating there is no workcell at the both end of

the conveyor, then the conveyor can run and two robots wait.

The state of the sensor 2 can be expressed by £[9]. That is, if there is a workcell

on the right end of the conveyor and the sensor 2 should send a signal, reporting this

situation by assigning a value 1 to £[9].

Furthermore, two boolean variables, Rl and R2, are set to express the status of the

two robots that whether a robot holds a workce11 in its arms/hands or not. If Rl = I,

the robot 1 holds a workcell in its hand at current state. Otherwise, Rl = 0 indicates

that the robot 1 holds nothing.

A safety property should be satisfied. That is, the robot 2 must always take away a

workcell at the right end of the conveyor before the workcell reaches the end. Other-

wise, the processed workcell will fall and break. The safety property, namely, WorkcellSafe,

165

7.3. ASSEMBLY LINE SYSTEM 166

must be satisfied. It is specified as follows in ITL:

WorkcellSafe ~ (00-, (£[9] = 1/\ R2 = 1))

which means that the power system will be damaged and a catastrophic result could

be happened if the system enters a state that a workcell reaches the right end of the

conveyor and the robot 2 still holds a workcell and is not able to take a new workcell.

Based on the analysis, we can explore several different cases as we did in the re-

viewing stage. The conveyor must be in the stopped state in some cases and can move

in the other cases. All these cases guarantee the correct running of the system. First of

all, we define the states of move and stop.

The state of move can be defined as:

8

MOVE: 0/\ £[i] = £[i - 1]
i=O

The state of stop can be defined as:

8

STOP: 0/\ L[i] = £[i]
i=l

As we can see, the above definitions are the same as ones defined in the old system.

Differing from the old system, we need to consider a new variable, £[9], corresponding

to the new sensor 2. Therefore, we have eight cases of possible states of the system.

They are:

7.3. ASSEMBLY LINE SYSTEM

CD Rl = 0 /\ L[O] = 0 1\ L[9] = 0

@ Rl = 1 /\ L[O] = 0 1\ L[9] = 0

@ Rl = 0 /\ L[O] = 1 1\ L[9] = 0

@ Rl = 1 /\ L[O] = 1 1\ L[9] = 0

@ Rl = 0 /\ L[O] = 1 1\ L[9] = 1

@ Rl = 1 /\ L[O] = 1 1\ L[9] = 1

® Rl = 1/\ L[O] = 0 1\ L[9] = 1

@ RI = 0 /\ L[O] = 0 1\ L[9] = 1

where, RI = 0 means that the robot 1 does not hold any work cell whilst Rl = 1

indicates that the robot 1 holds a workcell. L[O] and L[9] denote the state of the sensor

1 and the sensor 2, respectively. That is, if L[O] = 1, then there is a workcell on the left

end of the conveyor and the Sensor 1 should report it by sending a signal. L[O] = 0 or

L[9] = 0 indicates either the left end of the conveyor is empty or the right end of the

conveyor is empty. We use the symbols,CD, @,@, @, @, @, ®, and @, to represent eight

different cases, respectively, for following specifications.

Following our methodology, we define control systems of two robots and the con­

veyor in assumption/commitment form one by one. Because of the new four cases, we

need to reconsider all specifications of two robots and the conveyor. Firstly, we analyse

the above eight different cases with respect to the control system of the conveyor. It is

easy to see that the conveyor can not run when cases, @, @, ®, and @. Because there

167

7.3. ASSEMBLY LINE SYSTEM

is a workcell on the right end of the conveyor, if the conveyor moves, then the workcell

falls. For cases Q) and @, the conveyor can move since there is no workcell on the right

end of the conveyor and the robot 1 can put nothing on the left end of the conveyor.

For case @, although the robot holds a workcell and is ready to put it on the left end of

the conveyor, but the left end of the conveyor has not been vacated yet, therefore, the

conveyor should keep moving to vacate its left end. Only for case @, it is necessary for

the conveyor to stop and wait for a new workcell put by the robot 1 on its left end. In

result, the control system of the conveyor can be defined as:

Wconv /\ Asconv /\ Conveyor :J COconv /\fin w~onv

Wconv:

Asconv :

COconv :

true

<D v @ v @ :J [OS = 0 /\ MOVE] /\

® v @ v ® v (J) v ® :J [OS = 1 /\ STOP]

/\ OTime = Time + 1

fin w~onv: true

where OTime = Time + 1 gives the timing property of the conveyor control

system. That is, all operations must be performed in one time unit (1 second). In the

cases of Q) and @, the conveyor keeps running. In the cases of @, @,or ®, the conveyor

will stop to wait for two robots' operations. As we can see, the general specification

of the conveyor is the same as the one in the old system, but with four new cases. The

change of the original specification is rather trivial.

168

7.3. ASSEMBLY LINE SYSTEM

We then analyse each case for the robot 1. For cases, CD, @, @,or @, the robot 1

holds nothing. It should get a workcell immediately, but without affecting the running

state of the conveyor. For case @, the robot 1 holds a workcell and there is no workcell

on either end of the conveyor. In this case, the conveyor is required to stop so that the

robot 1 can put one workcell on the left end of the conveyor. Similar to case @, for case

®, it is required that not only the robot 1 should put one workcell on the left end of the

conveyor, but also a workcell on the right end of the conveyor should be removed. In

result, the conveyor must stop. For cases, @ or ®, because there is a workcell on the

left end of the conveyor and the robot 1 cannot put any new workcell, then the robot

1 will keep holding the workcell without taking any action. The control system of the

robot 1 can then be defined as:

WRI /\ ASRl /\ Robotl :::> CO Rl /\fin wIll

WRI:

ASRl :

CORl :

true

[® v (1)] :::> [OL[O] = 1 /\ ORl = 0] /\

[CD V @ V @ v ® v ® v ®] :::> 0 Rl = 1

/\ OTime = Time + 1

fin Wkl: true

where the timing property, OTime = Time + 1 has the same meaning as the one

in the conveyor control system. In the cases of @ or @, when the conveyor stops, if

Robot 1 holds a workcell, it will then put the workcell to the left end of the conveyor

169

7.3. ASSEMBLY LINE SYSTEM

whilst Robot 1 will keep idle. In the cases of @ and @, because the conveyor runs,

Robot 1 takes no action. Similarly, we can find that we applied some small changes

to the original specification of the robot (1), without changing the general form of the

specification.

We apply the following state-based parallel composition rule to get the system, Sys,

i.e., (Robotll/Conveyor).

WRl " ASRl "Robotl ::::> CO Rl "fin w~n

Wconv " Asconv "Conveyor ::::> COconv "fin w~onv

WSys => WRl " Wconv

Assys v CORl => Asconv

Assys v COconv => ASRl

CORl v COconv => CO Sys

fin W'RI "fin w' conv => fin wSys

WSys " Assys "Robotll/Conveyor ::> CO Sys " fin W'sys

We can then generate a specification after composing the robot 1 control system and

the conveyor control system together. It is:

170

7.3. ASSEMBLY LINE SYSTEM

WSys II Assys II Robotl /I Conveyor :J COSys "fin W~ys

wSys : Rl = 0 II S = 1 II /\;=0 L[i] = 0

Assys :

CO Sys :

true

(CD v @ v @) :J [0 S = 0 II M OV E] II

® v ® v ® v (1) v ® :J [OS = 1 II STOP]) v

([® v (1)] :J [OL[O] = 1 " ORl = 0] II

[CD V @ V @) v ® v ® v ®] :J 0 Rl = 1)

" OTime = Time + 1

fin W~ys: true.

Through analysing the above specifications and the composing process, we can

easily find that we simply repeated our work as in the reviewing stage. We do not

actually change anything significantly. However, we can find that the change, i.e.,

introducing a new variable, affects all existing components of the system. Apparently,

the use of the compositional rule reduces the work of analysing and specifying the

changes.

Then we consider the robot 2 and the whole assembly system. We can treat the

whole assembly system as a composition between the system, Sys (Robot 1 II Conveyor),

and the robot 2 control system in all. As we can see that Sys does not use R2 because

it is a state variable of the robot 2. The shared variable between Sys and the robot2 is

L[9] (and Time). Based on these facts, we can specify the robot 2 as follows:

171

7.3. ASSEMBLY LINE SYSTEM

WR2" ASR2 "Robot2 :::> CO R2 "fin wm
WR2: R2 = 0

AsR2 : true

CO R2 : R2 = 1 :J 0 R2 = 0

L[9] = 1 " R2 = 0 :J 0 R2 = 1

L[9] = 0 " R2 = 0 :J 0 R2 = 0

" OTime = Time + 1

fin Wk2: true

where the timing property, OTime = Time + 1, is still the same as ones in the

conveyor control system and the robot 2 control system. R2 = 1 :J 0 R2 = 0 means

that if the robot 2 holds a workcell, it must put the workcell to the tray in 1 second. If

there is a workcell on the right end of the conveyor (L[9] = 1) and the robot 2 holds

nothing (R2 = 0), Robot 2 must take the workcell from the right end of the conveyor

and put it into a tray in 1 second. Otherwise, Robot 2 takes no action.

Secondly, we compose the robot 2 control system and the Sys together using the

following state-based parallel composition rule. We use "Assembly" (Robot II/Conveyor 1/

172

7.3. ASSEMBLY LINE SYSTEM

Robot2) to represent the final assembly control system.

WSys A AsSys A Robot 1 I! Conveyor :::> COSys Afin W~yS

wR2 A ASR2 A Robot2 :::> CO R2 Afin W~2

w => WSys A wR2

As v COsys => ASR2

As V CO R2 => Assys

COSys V COR2 => Co

fin W'RIC Afin W ' R2 => fin w'

W A As A RobotlliCanveyor II Rabot2 :::> Co A fin w'

We can then generate a specification after composing the robot 2 control system and

the Sys together. It is:

173

7.3. ASSEMBLY LINE SYSTEM

where,

W /\ As /\ Assembly J Co /\fin w'

w : Rl = 0 /\ S = 1 /\ ":=0 L[i] = 0 /\ R2 = 0

As : true

Co : ((<D v @ v ® J [OS = 0 /\ MOVE] /\

® v @ v ® v 0 v @ J [OS = 1 /\ STOP]) v

([® v 0] J [OL[O] = 1 /\ ORl = 0] /\

[<D v @ v ® v @ v ® v @] J OR l = 1) v

(R2 = 1 :) 0 R2 = 0

L[9] = 1 /\ R2 = 0 J 0 R2 = 1

L[9] = 0 /\ R2 = 0 J 0 R2 = 0)

/\ OTime = Time + 1

fin w': true

Assembly ~ Robotl II Conveyor II Robot2

It is also easy to see that the premises of the rule hold.

So far, we can find the advantage of using compositional theory. Towards this

example, there is no need to modify the original specification significantly or build the

specification from scratch totally. We only need to do slight change to the original

system and add a new component via applying the compositional rule. This greatly

saves time. In this case study, we generally reused two original specifications and

174

7.3. ASSEMBLY LINE SYSTEM

developed only one new specification.

After impact analysis at the requirement level, we derive from the specification of

the new system the concrete code using refinement rules and generate the executable

code. The rest phases are similar to those presented in Section 7.2. A set of assertion

points have been designed and inserted into the executable code. We run the AnaTem­

pura and analyse all run-time behaviours of the system. The run-time analysis give

us some very satisfactory results. The evolution of the assembly line system has been

proved successful and the new system has been delivered, meeting all requirements.

Phase 2.2 Impact Analysis: Source Code-level

In the case study, we do not refine the code into any specific language. We derive from

the specification to a runnable Tempura code instead. A user can easily convert the

runnable Tempura code into a system in any other programming language, such as C or

Java. This shows the language-independent feature in our approach.

At the beginning of this phase, we decided the property of interest, which we are

going to check, is the safety property, i.e.,

WorkcellSafe (0 <> -, (L[9] = 1 A R2 = 1)).

We need always check the values of L[9] and R2 in each state and validate that the

values of L[9] and R2 will not equal to 1 at the same time.

We then firstly derive a runnable Tempura code. As an example, we give the Tem­

pura code of the conveyor as follows (the full program can be found in Appendix B).

175

7.3. ASSEMBLY LINE SYSTEM

define conveyor(L, Rl, S)={

always{

if «Rl = 0 and L[O] 0 and L [9] = 0) or

(Rl = 0 and L[O] 1 and L [9] 0) or

(Rl 1 and L[O] = 1 and L [9] = 0)

then {next S = 0 and next L = [0] + L[O .. ILI-l]}

else{

if «Rl 1 and L[O] 0 and L [9] 0) or

(Rl 0 and L[O] 1 and L [9] 1) or

(Rl 1 and L[O] 1 and L [9] 1) or

(Rl 1 and L[O] 0 and L [9] 1) or

(R1 0 and L[O] 0 and L [9] 1)

then {next S 1 and

next L (if R1=1 and L[O]=O then [1]

else [L[O]])+ L[I. .ILI-l] + (if L[9]=1 then [0]

else [L[9]])

}

} /* end of always */

}. /* end of conveyor */

Because this code is executable, we can then run it and check relevant run-time be­

haviours of the source code in Tempura. A checking facility has been added into the

176

7.3. ASSEMBLY LINE SYSTEM

Tempura code directly since accessing to all variables is possible in running the Tem­

pura code. The checking facility will be executed in parallel with the run of the assem­

bly system's source code. We give the checking facility in Tempura as follows:

if not (L[9] = 1 and R2 = 1)

then format ("Pass! \n\n", L[9], R2)

else format ("Fail at %t : L[9] = %t R2 = %t \n\n",

L [9], R2)}

The checking facility is a simple if-then-else clause. If the run-time behaviour sat­

isfies the safety property, a result of "Pass!" will be given. If the run-time behaviour

violates the safety property, a result of "Fail", together with values of the relevant vari­

ables in that state and the time stamp, will be given. We can then analyse it in a later

stage. furthermore, if the Tempura is converted into source code in other runnable lan­

guages, such as C, with inserting appropriate assertion points, the checking facility can

be easily converted to get and check assertion data. For example, we can have a func­

tion, "getO", to capture values of relevant variables in each state. Then the checking

facility will look like:

{get(L[9]) and get (R2) and

if not (L[9] = 1 and R2 = 1)

then format ("Pass! \n\n", L[9], R2)

else format ("Fail at %t : L[9] = %t R2 = %t \n\n",

L [9], R2)}

A screen shot of the validating process is presented in Figure 7.J O.

177

7.3. TEM

.....LcJ~

Asse Diy Lme S~tem •

I • • • • • • • • I
l Co~veyor

,
• A
,

•
I us Step I St.rt Stop

..:J.QJ~

Help

----------------~~.
~--~--~----------~~--~------------~----~~.~

·--'""lv·.

Figure 7.10: Validation of the A embly Sy tern

om validating re ult ha e been give a follow :

L=(O , O, O, O, O, O, O, O, O, O) Rl=O R2=O S 1 T=O

Pass!

L~[O , O , O , v , O , O , O , O , O , O] Rl=l R2=O S o T=l

Pass!

L-[~ , O , O , O , O , O , O , O , O , O) Rl=O R2=0 S 1 T=2

Pass!

L [O , l , O, O,r , , 0 , 0 , 0 , 0] Rl=l R2=0 S a T=3

178

7.3. ASSEMBLY LINE SYSTEM

Pass!

L=[l,l,O,O,O,O,O,O,O,O] Rl=O R2=O S

Pass!

L=[O,l,l,O,O,O,O,O,O,O] Rl=l R2=O S

Pass!

1 T=4

° T=5

This gives the validating process of the first six states. They indicate that the safety

property has been met. The assembly system never enters a state of "L[9] = 1 "

R2 = 1". A full record of the validating process with forty states has been given in

Appendix C). We can find that the system becomes stable after the twentieth state.

Therefore, in further validation, we only need to test for less than twenty-five rounds.

Furthermore, we test the system with an incorrect case, i.e., supposing the robot 2

gets some problems with transferring workcells. Therefore, in this incorrect case, the

value of "R2" will always be "I", i.e., the robot 2 holds a workcell but will not be

able to release it to a tray. Some test results are given as follows (a full record with

twenty-five states can be found in Appendix D):

L= [1, 1, 1 , 1, 1, 1, 1, 1, 1 , °] Rl=O R2=1 S = 1 T=18

Pass!

L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=l R2=1 S = ° T=19

Fail: L [9] = 1 R2 = 1

L= [1, 1, 1, 1 , 1, 1, 1, 1, 1, 0] Rl=O R2=1 S = 1 T=20

Pass!

L= [0, 1, 1, 1 , 1, 1, 1, 1, 1, 1] Rl=l R2=1 S ° T=21

179

7.3. ASSEMBLY LINE SYSTEM

Fail: L[9] = 1 R2 = 1.

This means that a workcell will always fall from the right end of the conveyor and

the control system begins to fail from the nineteenth state. For all even states after the

nineteenth state, because a workcell falls and the right end of the conveyor is vacant,

the safety property has been satisfied. However, for all odd states after the nineteenth

state, workcells keep falling and being broken, which leads to a general failure of the

system.

In this case study, we actually did a general run-time analysis. We do not derive the

specification to any specific code, such as C or Java but Tempura executable code. We

can still run the code (Tempura code) under a realistic circumstance and test properties

of interest. That shows the beauty of Tempura and our approach from another side. We

need no assertion points in this general case. We put just the property which we want

to check in parallel with the three processes, because we have access to all variables al­

ready. Later any programmer can easily convert the Tempura executable code to source

code in any other language and insert some simple assertion points. The checking fa­

cility inside the Tempura code can be easily modified to check assertion data sent by

assertion points.

Phase 3 Deployment

As we mentioned at the beginning of this chapter, because we do not convert the code

in any specific language, i.e., we do not produce any final product for this program,

we only need to make limited activities in this phase. As outcomes from this phase,

180

7.3. ASSEMBLY LINE SYSTEM

we need to include a description to the change requirement, i.e., adding a new robot

to the assembly system, all formal specifications, the executable Tempura code. and

some typical run-time test and analysis results in the deliverable documentation. A

programmer will easily produce a system in other language such as C and Java. as well

as producing assertion points and doing further run-time analysis. Main parts of the

document have been included in Appendix B, Appendix C, and Appendix D.

181

Chapter 8

Conclusion

8.1 Summary of Thesis

This thesis describes a study of the problems concerning handling evolutionary devel­

opment of time-critical systems. A systematic research approach has been optimised to

engineer time-critical systems and a tool has been implemented based on this approach.

The investigation was started by addressing the overall process of time-critical sys­

tems engineering. Time-critical systems nowadays plays an important role within the

broad area of software engineering. Enormous problems of engineering time-critical

systems await solutions, especially, problems of handling evolution of time-critical

systems. The investigation also shows that there exists little systematic research on

engineering time-critical systems. It is well-known that the use of formal methods is

fundamental for assuring the correctness of time-critical system. However. there is still

a big gap between formal development and run-time evaluation. Therefore. an approach

S.l. SUMMARY OF THESIS

to engineer the evolving time-critical systems systematically is addressed in this thesis.

The approach proposed in this thesis is used to tackle the development and evolu­

tion of time-critical systems rapidly, efficiently, and above all correctly. The central

stage is to develop an integrated framework to deal with the life-cycle of time-critical

systems. This framework integrates conventional approaches and formal technologies

for engineering time-critical systems. The basic components of guided evolution of

time-critical systems have been identified and defined in the thesis. It provides a tech­

nical basis for a repeatable, well-defined, and managed development process. It first

addresses a general architectural methodology of handling evolutionary development

of time-critical systems. This involves crossing levels of abstraction of time-critical

systems, from specification in ITL to source code in different programming languages.

Time-critical systems' behaviours of interest can be analysed and validated in any stage

of evolutionary development. The validation and analysis are performed within a sin­

gle logical framework. The assertion points technique has been applied in the thesis

to generated run-time data, which fully reflects run-time behaviours of the time-critical

systems. The run-time data then will be captured and used to validate behaviours of

interest with respect to the formal specification of the system. Errors will be reported

during the system run, i.e., the run-time analysis does not only report an error but also

indicate the location of the error. The approach can be applied to all systems in any

major programming languages, such as C and Java, for which the source code and

compiler is available.

Furthermore, compositional theories have been developed and integrated into the

183

8.2. CRITERIA FOR SUCCESS AND ANALYSIS

framework. A set of extendible compositional rules have been adopted as the main

guideline for a repeatable and well-manageable way to handle evolutionary develop­

ment of time-critical systems.

A prototype tool has been developed to support the proposed approach. The tool

is also used to implement the developed guidelines for guided evolution. A number

of case studies have been used for experiments with the approach and the prototype

system. They demonstrate the success of the proposed approach.

8.2 Criteria for Success and Analysis

In Chapter 1, a set of criteria are proposed to judge the success of the approach de­

scribed in this thesis. In this section, detailed analysis of our approach are presented

based on these criteria .

• For a "living" time-critical system, what is the most specific characteristic, dis­

tinguishing it from other system from the perspective of evolution and making

a higher potential for producing impact of change than other conventional sys-

terns?

The nature of a living time-critical, i.e., highly evolutionary. causes continuous

changes. This evolutionary life-cycle of time-critical systems brings even more

troubles to developers than other systems because of its specific characteristic.

the tight coupling between functional properties and timing properties.

• Can we have a systematic way to cope with the specific characteristic of time-

184

S.2. CRITERIA FOR SUCCESS AND ANALYSIS

critical systems and its evolutionary life-cycle?

As a prerequisite, we use assumption/commitment style Interval Temporal Logic

(ITL) specifications to reveal the relationships between timing and functional

properties, as well as impacts between different sub-systems and between the

system and its environment. After we can specify the system, its changes and

impact of change correctly, we then developed a phase-based methodology, pro­

viding a general architectural basis for guided evolution of time-critical systems,

crossing different levels of time-critical systems, from specification to source

code in different programming languages (language independent).

• Can timing or functional behaviours of interest of a time-critical system be cap­

tured. analysed and validated efficiently and correctly under its real working

environment in real-time?

By means of ITL, a work-bench of ITL, induding its executable sub-set of Tem­

pura, assumption/commitment style specifications in ITL. we can define proper­

ties of interest efficiently and correctly. By means of run-time analysing mecha­

nisms, assertion points and a corresponding analysing and validating mechanism.

behaviours of interest of a time-critical system can be captured. analysed and

validated efficiently and correctly in run time. Assertion points. a mechanism

inserted in the system, will generate assertion data. The corresponding analysing

and validating mechanism will then capture the assertion data and interpret it imo

run-time behaviours of the system and then analyse and validate the system via

comparing run-time behaviours and properties of interest.

J85

8.2. CRITERIA FOR SUCCESS AND ANALYSIS

• Can a time-critical system be developed under a repeatable base?

The answer is positive. A compositional framework, i.e., to develop the system's

sub-system separately and then to compose the sub-systems together, provides

a repeatable base for development and evolution of a time-critical system. That

is. by means of composition, if we need to repeat some evolutionary developing

process, we only need to work with relevant sub-systems instead of work with the

whole, making repeatable development possible. Further, a set of compositional

rules can be used to decompose and compose a system so that we can work with

sub-systems with manageable size .

• How easy is it to manage evolutionary development of a time-critical system

using the proposed approach?

The approach provides an integrated engineering framework for handling evolu­

tionary development of time-critical systems. This involves crossing levels of ab­

straction of time-critical systems, from specification to source code. The valida­

tion and analysis are performed within a single logical framework. The approach

defines guided evolution with giving a set of guidelines, including run-time anal­

ysis guidelines, compositional guidelines and timing analysis guidelines. All

rules were addressed under the integrated framework and are extensible. Visual­

isation mechanises were developed for revealing different stages of time-critical

systems' development. In addition, the systems do not need to be rebuilt from

scratch. Only the changes and their ripple effect need to be considered. But this

is a minimum that has to be done in every maintenance (evolution) system.

186

8.2. CRITERIA FOR SUCCESS AND ANALYSIS

• Is the approach feasible for realisation? For example, is it possible to build a

too/ based on the approach?

Quite a lot attention was paid to the practical part of the approach during develop­

ment. The case studies show that the approach is a "practical" one, i.e., feasible

for practice. A resulting tool named AnaTempura has been built.

The Tool AnaTempura is designed to support the step-by-step methodology of han­

dling evolutionary development of time-critical systems. This tool helps engineers in

handling the evolution of time-critical systems in a comprehensive way.

AnaTempura helps the user by performing its functions in an intelligent way. AnaTem­

pura automatically monitors time-critical system execution and analyses the system's

run-time behaviours.

AnaTempura employs visualisation techniques. The tool has a friendly user inter­

face. It provides animation of the program or system's run-time behaviours, as well

as draws timing diagrams during run-time. Both animation and timing diagrams are

helpful into analysis of the behaviours of the system and reveal the evolutionary devel­

opment process of the system.

AnaTempura considers possible error cases comprehensively. It is tolerant to many

user errors. The tool checks for the errors, corrects the errors whenever possible, and

gives relevant prompt information.

In addition, AnaTempura could anticipate user decision and interaction by provid­

ing possible operations' prompt and information prompt. AnaTempura can be installed

into different platforms. such as UNIX.

187

8.3. FUTURE DIRECTIONS

Assessment This research has so far indicated that the approach can be used to han­

dle practical time-critical systems. However, the real application of this approach will

not be seen until an industrial-strength tool has been developed and deep industrial­

based experiments have been carried. Therefore, more supporting units of AnaTem­

pura should be built such that more new features can be implemented and easily added

to it. There could be another valuable issus of integrating our approach in existing

commercial/industry-strength "evolution" tools.

The research presented in the thesis gives valuable detailed understanding in this

field.

The designed approach has been implemented by carrying out a number of case

studies. Experiments have been carried out and sample results of these experiments are

presented. Therefore, development and implementation of the approach achieved the

proposed goal of the research.

The approach developed in the thesis is a successful outcome of the research. It

is a valuable contribution to the area of time-critical systems research. This approach

combines theoretical development and experimental implementation and thus supplies

the confidence required when handling time-critical systems development.

8.3 Future Directions

Based on the discussions in former sections, we concluded that the approach has novel

ideas and is useful in handling evolutionary development of time-critical systems. The

resulting tool scales up the approach. In addition, our approach can be easily adapted

188

8.3. FUTURE DIRECTIONS 189

for different types of systems. For instance. with Components of The Shelf (COTS).

things we need to do is to produce the assumption/commitment specifications in ITLffempura.

and then instead of using refinement to develop changed system. we can use COTS. In

this section. we explore some possible extensions of the present work.

The most interesting future work could be an automatic assertion points producing

and inserting mechanism. In our previous research, we have to produce and insert

assertion points manUally. It could be a good research issue of intruding some other

techniques. such as program understanding. to enable the AnaTempura tool to find

appropriate allocations and insert corresponding assertion points.

This research has so far indicated that the approach can be used to handle practical

time-critical systems. However. the real application of this approach will not be seen

until an industrial-strength tool has been developed and deep industrial-based experi­

ments have been carried. Therefore. more supporting units of AnaTempura should be

built such that more new features can be implemented and easily added to it. There

could be another valuable issus of integrating our approach in existing commercial or

industry-strengthed "evolution" tools.

Furthermore. since all animations were made manually using TK. We have to cre­

ate a graphic model for each different system or property of interest from scratch. A

suitable graphic model could be developed and integrated with the formal ITL model

to give the target system more intuitive description so that we can derive an anima­

tion system more easily from the ITL graphic model without building things from

scratch. Because there are a number of more powerful graphic languages or pack-

8.3. FUTURE DIRECTIONS

ages existing. such as VRML for 3D graphics, a future development of AnaTempThis

research has 50 far indicated that the approach can be used to handle practical time­

critical systems. However. the real application of this approach will not be seen until

an industrial-strength tool has been developed and deep industrial-based experiments

have been carried. Therefore. more supporting units of AnaTempura should be built

such that more new features can be implemented and easily added to it. There could

be another valuable iS5US of integrating our approach in existing commerciaVindustry­

strength "evolution" tools. ura could be to integrate a suitable external graphic package

to enhance the feature of visualisation. A further feature of AnaTempura and the ex­

ternal graphic package could be an automatic matching mechanism. This mechanism

could keep the consistency between the ITL specification and the graphic model. Any

changes in ITL specifications could be reflected in the graphic model immediately.

Software reuse is an important technique in software development. Reusing pos­

sible components in time-critical systems is a valuable research issue. Component­

based software engineering covers the study of extracting reusable This research has so

far indicated that the approach can be used to handle practical time-critical systems.

However. the real application of this approach will not be seen until an industrial­

strength tool has been developed and deep industrial-based experiments have been car­

ried. Therefore. more supporting units of AnaTempura should be built such that more

new features can be implemented and easily added to it. There could be another valu­

able issus of integrating our approach in existing commerciaVindustry-strength "evo­

lution" tools. components from exiting source code and reusing them in further de-

190

8.3. FUTURE DIRECTIONS

sign and different environments. It could be a good and useful research issue how to

apply the our approach to the extraction and validation of reusable components, espe­

cially attempting to define various environments which a reusable component could be

deployed via using the assumption/commitment technique and the analysing strategy

developed in the thesis.

191

References

I. EUROPEAN SPACE AGENCY. ESA Software Engineering Standards, esa pss-05-0 issue

2 ed. rue MarioNikis, 75738 Paris Cedex, France, February 1991.

2. ABADI, M., AND LAMPORT, L. Composing Specifications. Tech. Rep. SRC Report 66,

Systems Research Centre, Digital Equipment Corp., Oct 1990.

3. ALUR, R., HENZINGER, T. A., AND Ho, P. Automatic Symbolic Verification of Em­

bedded Systems. IEEE Transactions on Software Engineering 22, 3 (1996), 181-201.

4. AOYAGI, T., FUJITA, M., AND MOTO-OKA, T. Temporal Logic Programming Lan­

guage Tokio. In Logic Programming '85, E. Wada, Ed., LNCS 221. Springer-Verlag, 1986,

pp. 138-147.

5. ARNOLD, R. S. Software Reengineering. IEEE Computer Society Press, 1994, ch. Intro­

duction: A Road Map Guide to Software Reengineering Technology, pp. 3-22.

6. ARNOLD, R. S., AND BOHNER, S. A. Impact Analysis - Towards a Framework for

Comparison. Proceedings Int. Conf. Software Maintenance (1993).

7. ARTHUR, L. J. Software Evolution: The Software Maintenance Chanllenge. John Wiley

& Sons, 1988.

References

8. ASSOCIATION, R. I. Safety Related Software for Railway Signalling, brbllu ltd/ria tech­

nical specification no. 23 ed. 6 Buckingham Gate, London SWIE 6JP, UK, 1991.

9. BACK, R. 1. R. A Calculus of Refinements for Program Derivations. Acta Informatica

25 (1988),593-624.

10. BARDEN, R., STEPNEY. S .• AND COOPER, D. The use of Z. In Z User Workshop. York

1991 (1992), J. E. Nicholls, Ed., Workshops in Computing, Springer-Verlag, pp. 99-124.

11. BARRINGER, H., KUIPER, R., AND PNUELI, A. Now You May Compose Temporal

Logic Specifications. In Sixteenth Annual ACM Symposium on Theory of Computing

(1984), ACM, pp. 51 ~3.

12. BEAR, S. An overview of HP-SL. In VDM '91, Formal Software Development Meth­

ods, S. Prehn and W. J. Toetenel, Eds., no. 551 in Lecture Notes in Computer Science.

Springer-Verlag, 1991, pp. 571-587.

13. BEHFOROOZ, A., AND HUDSON, F. J. Software Engineering Fundamentals. Oxford

University Press, 1996.

14. BENVENISTE, A., AND HARTER, P. K. Proving real-time properties of programs with

temporal logics. In Proceedings of ACM SIGOPS 8th annual ACM symposium on Oper­

ating systems Principles (Dec. 1981), pp. I-II.

15. BJ<pRNER, D., AND JONES, C. B. Formal Specification and Software Development.

Prentice-Hall International, 1982.

16. BOEHM, B. A Sprial Model for Software Development and Ehancement. Computer 21,

5 (May 1988),61-72.

193

References

17. BOHNER, S. A., AND ARNOLD, R. S. Software Change Impact Analysis. IEEE Com­

puter Society, Los Alamitos, 1996.

18. BOWEN, J., AND STAVRIDOU, V. Safety-Critical Systems, Formal Methods and Stan­

dard'l. IE£lBCS Software Engineering Journa/8, 4 (July 1993), 189-209.

19. BRITISH STANDARDS INSTITUTE. VDM Specification Proto-Standard, March 1991.

Draft, BSI ISTl5/50 document.

20. BROWN, M. H., AND SEDGEWICK, R. A System for Algorithm Animation. IEEE

Computer Graphics 18, 3 (1984), 177-185.

21. B ROY, M. A Functional Rephrasing of the Assumption/Commitment Specification Style.

Tech. Rep. TuM-I94 I 7, Technische Univeritat Munchen, 1994.

22. BURNS, A., AND LISTER, A. M. A Framework for Building Dependable Systems. Com­

puter 34, 2 (1991), 173-181.

23. BURNS, A., AND WELLINGS, A. Real-Time Systems and Programming Languages,

2nd ed. Addison-Wesley, 1997.

24. CAMPOS, S., AND GRUMBERG, O. Selective Quantitative Analysis and Interval Model

Checking: Verifying Different Facets of a System. In Proceedings of the Eighth Inter­

national Conference on Computer Aided Verification CAV (New Brunswick, NJ, USA,

July/Aug. 1996), Rajeev Alur and Thomas A. Henzinger, Eds., vol. llO2 of LNCS,

Springer Verlag, pp. 257-268.

25. CAU, A., AND COLLETTE, P. Parallel Composition of Assumption-Commitment Spec­

ifications: A Unifying Approach for Shared Variable and Distributed Message Passing

Concurrency. Acta Informatica 33, 2 (1996), 153-176.

194

References

26. CAU. A .. _",SD ZEDAN. H. Refining Interval Temporal Logic Specifications. In the

4th AMAST Workshop on Real-nme Systems. Concurrent. and Distributed Software

(ARTS'97) (MaJlorca. Spain. May 1997).

27. CAU. A .. ZEDAN. H .• COLEMAN, N., AND MOSZKOWSKI, B. Using ITL and Tempura

for Large Scale Specification and Simulation. In Proceedings of 4th EUROMICRO Work­

shop on Parallel and Distributed Processing. IEEE (Braga, Portugal, 1996), pp. 493-500.

28. CHARETTE. R. N. Application Strategies for Risk Analysis. Software Engineering Se­

ries. McGraw Hill. 1990.

29. CHEN, Z .. ZEDAN, H., CAU. A., AND YANG, H. Integrating Structured 00 Approaches

with Formal Techniques for the Development of Real-time Systems. Information and

Software Technology Journal 41 (1999), pp. 435-450.

30. CLOCKSIN, W .• AND MELLISH, C. Programming in Prolog. Springer-Verlag, 1981.

31. COLEMAN. D. The technology transfer of formal methods: what's going wrong? In

Proceedings of 12th ICSE Workshop on Industrial Use of Formal Methods (Nice, France,

March \990).

32. CYRUS. J. L., AND BELDSOE, J. D. Formal Specification and Structured Design in

Software Development. Hewlett-Packard Journal (December 1991), pp. 51-58.

33. DASDAN. A .. AND GUPTA, R. K. Timing Issues in System-Level Design. In IEEE CS

Annual Workshop on VLSI (IWV): System-Level Design (1998), pp. 124-129.

34. DE ROEVER, W. P. The Quest for Compositionaltiy. In Proceedings of IF/P Working

ConI, The Role of Abstract Models in Computer Science (1985), Elsevier Science B. V.

(North-Holland).

195

Rererences

35. DRUSII'iSKY. D. The Temporal Rover and the ATG Rover. In Proceedings of SPIN200

(2000). Time-Rover Corp .• Springer-Verlag.

36. EMERSON. E. A. Temporal and Modal Logic. In Hand Book of Theoretical Computer

Science. 1. van Leeuwen. Ed. Elsevier. 1990. pp. 996-1072.

37. FENCOTT. C. Formal Methods for Concurrency. International Thomson Publishing

Company. 1996.

38. FLOYD. R. W. Assigning Meanings to Programs. In Mathematical Aspects of Computer

Science. American Math. Soc .• 1967.

39. FOR AERONAUTICS. R. T. C. Minimum Operational Perfonnance Standards for Traffic

Alert and Collision Avoidance System (TCAS) Airborne Equipment - Consolidated Edi­

tion. 00185. One McPherson Square. 1425 K Street N.W., Suite 500, Washington DC

20005. USA .. 6 September 1990.

40. GALLAGHER. K. B .• AND LYLE, J. Using Program Slicing in Software Maintenance.

IEEE TSE 17 (1991).

41. GENRICH. H. J .• AND LAUTENBACH. K. System Modelling with High-Level Petri Nets.

Theoretical Computer Science J 3 (1981).

42. GILB. T. Principles of Software Engineering Management. Addison-Wesley, Reading

MA.1988.

43. GOGUEN. J. A .• AND TARDO, J. J. An introduction to OB1: A language for writing and

testing fonnal algebraic program specifications. In Software Specification Techniques.

Addison-Wesley Publishing Company. 1986.

196

Rererences

44. GTKwAVE ANALYZER. hnp://daggit.pagecreator.com/ver/wavel.

45. GUTTAG. J .• AND HORNING. J. Larch: Languages and Tools for Formal Specification.

Springer-Verlag. 1993.

46. HALE. R. Temporal Logic Programming. In Temporal Logics and Their Applications,

A. Ga1ton. Ed. Academic Press. London, 1987, pp. 91-119.

47. HALL, J. A. Seven myths of formal methods. IEEE Software (September 1990).

48. HAREL. D. Statecharts: A Visual Formalism for Complex Systems. In Science of Pro­

gramming 8 (1986).

49. HARRY. A. Formal Methods Fact File: VDM and Z. John Wiley & Sons, 1996.

50. HENZINGER, T. A., Ho, P., AND WONGTOI, H. Lecture Notes in Computer Science

1254. Springer-Verlag, 1997, ch. HyTech: A Model Checker for Hybrid Systems.

51. HILL. J. V. The development of high reliability software - RR&A's experience for safety

critical systems. In Second IEF/BCS Conference, Software Engineering 88, Conference

Publication 290 (July 1988). pp. 169-172.

52. HILL, J. V. Software development methods in practice. In Proceedings of 6th Annual

Conference on Computer Assurance (COMPASS) (1991).

53. HOARE, C. An axiomatic basis for computer programming. Communications of ACM 12

(Oct. 1969). 576-580.

54. HOARE, C. Notes on data structuring. In Structured Programming. Academic Press, Inc.,

London. 1972.

197

References

55. HOARE. C. Proof of A structured program: The sieve of eratosthenes. Computer 14, 4

(1972).

56. HOARE. C. Communicating sequential processes. Communication of ACM 21 (08 1978),

666-677.

57. HOOMAN, J. Specification and compositional verification of real-time systems. PhD

Thesis (1991).

58. IEEE. Software Engineering: IEEE Standards Collection. Institute of Electrical and

Electronics Engineers, Inc., 1997.

59. INC .. S. VeriWell User's Guide, 1994.

60. INTERNATIONAL ELECTROTECHNICAL COMMISSION. Software for Computers in the

Application of Industrial Safety Related Systems. International Electrotechnical Com­

mission. Technical Committee no. 65, Working Group 9 (WG9), IEC 65A (Secretariat)

122, Version 1.0" August 1991.

61. INTERNATIONAL ELECTROTECHNICAL COMMISSION. Functional Safety of Pro-

grammable Electronic Systems: Generic Aspects. International Electrotechnical Com­

mission, Technical Committee no. 65, Working Group 10 (WGIO), IEC 65A (Secretariat)

123, February 1992.

62. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 8807: Information

Proce.uing Systems - Open Systems Interconnection - LOTOS - A Formal Description

Technique Based on the Temporal Ordering of Observational Behaviour, first ed. Geneva,

Switzerland, 15 February 1989.

63. INTERNET. http://foldoc.doc.ic.ac.uklfoldoc/foldoc.cgi?safety-critical

198

References

64. JAHANIAN, F., AND GOYAL, A. A Formalism for Monitoring Real-Time Constraints

at Run-Time. 20th Int. Symp. on Fault-Tolerant Computing Systems (FTCS-20) (1990),

148-55.

65. JAHANIAN, F., AND MOK, A. K. Safety Analysis of Timing Properties in Real-Time

Systems. IEEE Transactions on Software Engineering 12, 9 (1986), 890-904.

66. JAHANIAN, F., AND STUART, D. A. A Method for Verifying Properties of Modechart

Specifications. In Proceedings of Real-TIme Systems Symposium (1988).

67. JONES, C. B. Development Methodsfor Computer Programs Including a Notion of In­

terference. PhD thesis, Oxford University Computing Laboratory, 1981.

68. JONES, C. B. Specification and Design of (Parallel) Programs. In Information Process­

ing 83, R. E. A. Mason, Ed. North Holland, 1983, pp. 321-332.

69. JONES, C. B. Tentative Steps Towards a Development Method for Interfering Programs.

ACM Trans. on Prog. Lang. and Syst. 5,4 (1983),596-619.

70. JOSEPH, M. Real-TIme Systems: Specification, Verification and Analysis. Prentice Hall,

1996.

71. JOSEPH, M., AND GOSWAMI, A. Formal Description of Real-time Systems: A Review.

Tech. Rep. RR129, University of Warwick, Dept of Computer Science, 1988.

72. KOPETZ, H., ZAINLINGER, R., FOHLER, G., KANTZ, H., PUSCHNER, P., AND

SCHUETZ, W. An Engineering Approach to Hard Real-Time System Design. In Pro­

ceedings of the 3rd European Software Engineering Conference, ESEC'91 (Milano, Italy,

October 1991), pp. 166-188.

199

References

73. KOYMANS. R. Specifying Message Passing and TIme-Critical Systems with Temporal

Logic. No. 651 in Lecture Notes in Computer Scinece. Springer-Verlag, 1992.

74. KRAMER, J., MAGEE, J., SLOMAN, M. S., AND LISTER, A. M. CONIC: an Intergrated

Approach to Distributed Computer Control Systems. Proceedings of IEE(part E) /80, 1

(1983), 1-10.

75. LADEAU. B. R .• AND FREEMAN, C. Using formal specification for product develop­

ment. Hewlen-Packard Journal (December 1991),62-66.

76. LIBES, D. Exploring Expect. O'Reilly UK, 1994. ISBN: 1565920902.

77. LIU. X .• YANG. H., AND ZEDAN, H. Formal methods for the re-engineering of com­

puting systems. In Proceedings of The 21st IEEE International Conference on Computer

SoJhmre and Application (COMPSAC'97) (Washington, D. c., August 1997), IEEE Com­

puter Society, pp. 409-141.

78. LOCK, S .• AND KOTONYA, G. Abstract: An Integrated Framework for Requirement

Change Impact Analysis. Requirenautics Quarterly: The Newsletter of the Requirements

Engineering Specialist Group of the British Computer Society (2000).

79. LOGRIPPO, L., MELANCHUK, T., AND WORS, R. J. D. The algebraic specification

language LamS: an industrial experience. ACM SIGSOFT Software Engineering Notes

15 (April 1990), 59-66.

SO. MAHONY, B., AND DONG, J. S. Timed Communicating Object Z. IEEE Transactions

on Software Engineering 26, 2 (February 2000), 150--177.

81. MAHONY, B. P., AND HAYES, I. J. A Case-study in Timed Refinement: A Mine Pump.

IEEE Trans on Software Engineering 18, 9 (1992), 817-826.

200

References

82. MANNA, Z., AND PNUELI, A. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, ISBN 0-387-97664-7, 1996.

83. McDERMID, J. Assurance in High Integrity Software. In High Integrity Software. Pit­

man, 1989.

84. McDERMID, J., AND ROOK, P. Software Development Process Models. In Software

Engineer's Reference Book. CRC Press, 1993, pp. 15/26-15/28.

85. McDERMID, J. A. Safety Aspects of Computer Control'. Butterworth, 1993, ch. Fonnal

Methods: Use and Relevance of the Development of Safety-critical Systems.

86. MILNER, R. A Calculus of Communicating Systems. Springer-Verlag, 1980.

87. MINISTRY OF DEFENCE. Defence Standard 00-56: Safety Management Requirements

for Defence Systems, 1996.

88. MINISTRY OF DEFENCE. Defence Standard 00-55: Requirements for Safety Related

Software in Defence Equipment, 1997.

89. MISRA, J., AND CHANDY, K. M. Proofs of Networks of Processes. IEEE Trans on

Software Engineering 7, 7 (1981), 417~26.

90. MOK, A. K. SARTOR- a Design Environment for Real-Time Systems. In Proceedings

of 9th IEEE COMPSAC (OCT 1985), pp. 174-181.

91. MORGAN, C. Programming from Specifications. Prentice-Hall International, 1990.

92. MOSZKOWSKI, B. Reasoning about Digital Circuits. PhD thesis, Stanford University,

July 1983.

201

References

93. MOSZKOWSKI, B. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE

Computer Society, February 1985.

94. MOSZKOWSKI, B. Executing Temporal Logic Programs. Cambridge University Press,

Cambridge UK, 1986.

95. MOSZKOWSKI, B. Some Very Compositional Temporal Properties. Programming Con­

cepts, Methods and Calculi, Ernst-Rudiger Olderog (ed.), IFfP Transactions A, 56 (1994),

307-326.

96. MOSZKOWSKI, B. Using Temporal Fixpoints to Compositionally Reason about Liveness.

In Proceedings of the 7th BCS FACS Refinement Workshop (Bath, UK, 1996), J. He, Ed.

97. MOSZKOWSKI, B. A Complete Axiomatization of Interval Temporal Logic with Infinite

Time. In Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer

Science (L1CS 2(00) (Santa Barbara, California, June 2(00), IEEE Computer Society

Press, pp. 242-251.

98. MOTUS, L., AND RODD, M. G. Timing Analysis of Real-Time Software. Pergamon,

1994.

99. MUNSON. J., AND ELBAUM, S. Code chum: A measure for estimating the impact of

code change. Proceedings of IEEE Conference on Software Maintenance '98 (ICSM98)

(1998).

100. NICHOLLS. J. E .• AND (EDS.). S. M. B. Z Base Standard. Tech. Rep. ZIPIPRG/92/12 1 ,

Oxford University Computing Laboratory. ZIP Project. Available from the Secretary. ZIP

Project. Oxford University Computing Laboratory. PRG, 11 Keble Road, Oxford OXI

3QD. UK. 30 November 1992.

202

References

101. OSTROFF, J. S., AND WONHAM, W. M. A temporal logic approach to real-time con­

trol. In Proceedings of the 24th IEEE Conference on Decision and Control (Florida, Dec.

1985), pp. 656-657.

102. PAAKKI, J., SALMINEN, A., AND KOSKINEN, J. Automated hypertext support for soft­

ware maintenance. The Computer Journal 7 (1996), 577-597.

103. PANGDYa, P. K. Some Comments on the Assumption-Commitment Framework for

Compositional Verification of Distributed Programs. In Stepwise Refinement of Dis­

tributed Systems. , J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds., no. 430

in Lecture Notes in Computer Science. Springer, 1990, pp. 622-640.

104. PNUELI, A. In Transition from Global to Modular Temporal Reasoning about Programs.

In Logics and Models of Concurrent Systems, K. R. Apt, Ed., NATO ASI Series. Springer­

Verlag, Berlin, Oct 1984, pp. 123-144.

105. PRESSMAN, R. S. Software Engineering: A Practitioner's Approach, 5th ed. McGraw­

Hill Book Company, 2000. European Adaptation, adapted by D. Ince.

106. RAJLICH, V. A Model for Change Propagation Based on Graph Rewriting. Proceedings

of ICSM'97 (1997).

107. RAJLlCH, V., DAMASKINOS, N., LINOS, P., AND KHORSHID, W. VIFOR: A tool for

software maintenance. Software Practice and Experience 20 (1990).

108. REED, G. M., AND ROSCOE, A. W. Timed CSP: Theory and practice. In REX

Workshop-Real-Time: Theory and Practice (1992), LNCS Springer-Verlag.

109. REISIG, W. Petri Nets: an Introduction. Springer-Verlag, Berlin, 1985.

203

References

110. RESCHER, N., AND URQUHART, A. Temporal logic. Library of Exact Philosophy

(1971).

III. RUSHB Y, J. Fonnal specification and verification of a fault-masking and transientrecov­

ery model for digital flight control systems. Tech. Rep. Contractor Report 4384, NASA

Langley Research Centre, Hampton, Virginia, USA, 1991.

112. RUSHBY, J. A Tutorial on Specification and Verification Using PVS. In Proceedings

of the First International Symposium of Formal Methods Europe FME '93: Industrial­

Strength Formal Methods (Odense, Denmark, 1993), P. G. Larsen, Ed., pp. 357-406.

113. SANKAR, S., ROSENBLUM, D., AND NEFF, R. An Implementation of Anna. In Pro­

ceedings of the Ada International Conference on Ada in Use (Paris, May 1985),1. G. P.

Barnes and J. G. A. Fisher, Eds., ACM, Cambridge University Press, pp. 285-296.

114. SCHNEIDER, S., DAVIES, J., M.JACKSON, D., G.M.REED, REED, J., AND ROSCOE,

A. Timed CSP: Theory and Practice. In PRX Real-time Workshop, Real-time: Theory in

Practice, J. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg, Eds., no. 600 in

LNCS. Springer-Verlag, 1992.

115. SHOHAM, Y. Reasoning about Change. Time and Causation from the Standpoint of Arti­

ficial Intelligence. MIT Press, 1988.

116. SPIVEY, J. M. Understanding Z. Cambridge University Press, 1988.

117. SRIVAS, M., AND BICKFORD, M. Verification of the FtCayuga fault-tolerant micro­

processor system, vol I: a case study in theorem prover-based verification. Tech. Rep.

Contractor Report 4381, NASA Langley Research Centre, Hampton, Virginia, USA, July

1991.

204

References

118. STANKOVIC, J., AND RAMAMRITHAM, K. Hard Real-Time Systems: Tutorial Text.

IEEE Compo Society Press, 1988.

119. STIRLING, C. A Generalizationof Owicki-Cries's Hoare Logic for a Concurrent While

language. Theoretical Computer Science 58 (1988), 347-359.

120. STcPLEN, K. Development of Parallel Programs on Shared Data Structures. PhD thesis,

Manchester University, 1990.

121. STcPLEN, K. A Method for the Development of Totally Correct Shared-state Parallel

Programs. In Proceedings of CONCUR 91, LNCS 527, J. Baeten and J. E Groote, Eds.

Springer-Verlag, 1991.

122. STcPLEN, K. An Attempt to reason about Shared-state Concurrency in the Style ofVDM.

In Proceedings of VDM91 , LNCS 551, S. Prehn and W. J. Toetenel, Eds. Springer-Verlag,

1991.

123. STcPLEN, K. Development of Parallel Programs on Shared Data Structures. Tech. rep.,

Manchester University, UNCS 1991-1-1, 1991.

124. STcPLEN, K., DEDERICHS, E, AND WEBER, R. Assumption/commitment Rules for Net­

works of Asynchronously Communicating Agents. Tech. Rep. SFB 342/2/93, Technical

University of Munich, 1993.

125. TAKANG, A., AND GRUBB, P. A. Software Maintenance:Concepts and Practice. Inter­

national Thomson Computer Press, 1996.

126. TERWILLIGER, R. B. PLEASE: a Language Combining Imperative and Logic Program­

ming. SIGPlan Notices 23, 4 (Apr. 1988), 103-110.

205

References

127. TOMAS, G., AND UEBERHUBER, C. W. Visualization of Scientific Parallel Programs.

No. 771 in Lecture Notes in Computer Science. Springer-Verlag, 1994.

128. WELCH, B. Practical Programming in TeL and TK, 3rd ed. Prentice Hall, November

1999. ISBN: 0130220280.

129. WILDE, N., AND NEJMEH, B. A. Dependency Analysis: An Aid for Software

Maintenance. Tech. rep., Software Enginering Research Center, University of Florida,

Gainesville, January 1987.

130. WOODCOCK, J., AND DICKINSON, B. Using VDM with Rely and Guarantee-conditions.

In Proceedings of VDM'88, The Way Ahead, LNCS, Vo1328. Springer-Verlag, 1988,

pp. 434-458.

131. Xu, Q. W. A Theory of State-based Parallel Programming. PhD thesis, Oxford Univer­

sity Computing Laboratory, 1992.

132. Xu, Q. W., CAU, A., AND COLLETTE, P. On Unifying Assumption-Commitment Style

Proof Rules for Concurrency. In CONCUR'94, LNCS 836 (1994), B. Jonsson and J. Par-

row, Eds.

133. Xu, Q. W., DE ROEVER, W., AND HE, J. The Rely-Guarantee Method for Verifying

Shared Variable Concurrent Programs. Formal Aspects of Computing 9, 2 (1997), 149-

174.

134. Xu, Q. W., AND HE, J. F. A Theory of State-based Parallel Programming: Part 1. In

Proceedings of BCS FACS 4th Refinement Workshop (Cambridge, 1991), J. Morris and

R. Shaw, Eds., Springer-Verlag.

206

References

135. YANG, H., LIU, X., AND ZEDAN, H. Tackling the Abstraction Problem for Reverse

Engineering in A System Re-engineering Approach. Proceedings of IEEE Conference on

Software Maintenance '98 (ICS98) (1998).

136. YAU, S. S., NICHOLL, R. A., TSAI, J. J., AND LIU, S. An Integrated Life-cycle Model

for Software Maintenance. IEEE Transactions on Software Engineering J 5 (1988).

137. ZHOU, C. C., HOARE, C., AND RAVN, A. P. A calculus of durations. Information

Processing Letters 40 (05 1991),269-276.

207

Appendix A

Mail Sorter: Phase 3 Documentation

A.I Description of the change

The decision was made to add a new functionality of processing Air Mail letters. The

new sub-system should still sort both First Class and Second Class letters within the

original timing constraints.

Change involves a functional requirement (i.e. adding the new function of sorting

Air Mail letters) and a timing requirement (i.e. keep the same performance time as the

old system).

A.2. SPECIFICATIONS

A.2 Specifications
The Old Sorter System

(Ass :) Com) ~ Sort

Ass: Letter _Class = 1st-Class v Letter _Class = 2nd_Class

Com : (fin time - time:::;; 4701\

(Class_Sensor = 1st-Class :) O(Solenoid3 = ON)) 1\

(Class_Sensor = 2nd_Class:) O(Solenoid3 = OFF)))

Timing Information of the Old Sorter System

Sensor Name ExecutionTime Deadline

Class Sensor Delay! 70ms

Letter Sensor Delay2 70ms

Actuator Name ExecutionTime Deadline

Solenoid3 Delay3 80ms

Solenoid4 Delay4 250ms

209

A.2. SPECIFICATIONS

Timing Property of the Old Sorter System

[tin time - time = Delayl/\ LetterState =

aLclass_sensor /\ stable (LetterState)] ; skip;

[tin time - time = Delay4 /\ Letter State =

aLSolenoidA /\ stable (LetterState)] ; skip;

[tin time - time = Delay2 /\ LetterState =

aLletter _sensor /\ stable (LetterState)] ; skip;

[tin time - time = Delay3 /\ LetterState =

aLSolenoid_3 /\ stable (LetterState)]

The New Component of Sorting Air Mail Letters

(AssAir :J ComAir) C Sort Air

AssAir: LetteLClass = Air v LetteLClass =

IsLClass v Letter _Class = 2nd_Class

ComAir : (fin time - time ~ X /\

(AirMaiLSensor = Air :J O{Solenoid5 = ON)) /\

(AirAfaiLSensor =I- Air :J O{Solenoid5 = OFF)))

210

A.2. SPECIFICATIONS

New Sorter System: Component of Sorting First and Second Class Letters

Sort:

(Ass ::::> Com) C Sort

Ass: Letter _Class = IsLClass v Letter _Class = 2nd_Class

Com: (fin time - time ~ 470 - X /\

(Class-Bensor = IsLClass ::::> O(Solenoid3 = ON)) 1\

(Class_Sensor = 2nd_Class::::> O(Solenoid3 = OFF)))

The Composition Rule

(Ass ::::> Com) ~ Sort,

(ASSAir ::::> ComAir) ~ SartAin

Asse ::::> Ass Ain

ComAir ::::> Ass,

Com::::> Come

(Asse ::::> Come) ~ (Sort Air ; Sort)

211

A.2. SPECIFICATIONS

The New Sorting System after Composition

Asse : Letter _Class = Air v Letter _Class =

IsLClass v Letter _Class = 2nd_Class

Come: fin time - time:::; 470 t\ (

((Air!v[aiLSensor = Air) J O(Solenoid5 = ON)) t\

((AirMaiLSensor -=I- Air t\ Class_Sensor = IsLClass) :J

[O(Solenoid5 = OF F) t\ O(Solenoid3 = ON) t\

((AirMaiLSensor -=I- Air t\ Class_Sensor = 2nd_Class) :J

O{Solenoid5 = OFF) t\ O{Solenoid3 = OFF)]))

The New Timing Information

Sensor Name ExecutionTime Deadline

Air MailS ensor Delay5 40ms

ClassSensor Delay! 40ms

Letter Sensor Delay2 50ms

Letter Sensor B Delay6 50ms

Actuator Name ExecutionTime Deadline

Solenoid6 Delay7 90ms

SolenoidS Delay8 50ms

Solenoid4 Delay4 90ms

Solenoid3 Delay3 60ms

212

A.2. SPECIFICATIONS

The New Timing Property

Process for sorting Air Mail letters:

[fin time - time = Delay5 1\ LetterState =

aLair _maiL-sensor 1\ stable (LetterState)] ; skip;

[fin time - time = Delay7 1\ LetterState =

aLSolenoid_6 1\ stable (LetterState)] ; skip;

[fin time - time = Delay6 1\ LetterState =

aLletter _sensor _B 1\ stable (LetterState)] ; skip;

[fin time - time = Delay8 1\ LetterState =

aLSolenoid_5 1\ stable (LetterState)]

213

A.3. MAIL SORTER: SOURCE CODE

Process for sorting 1 stl2nd Class letters:

[fin time - time = Delay5 1\ LetterState =

aLair _maiLsensor 1\ stable (LetterState)] ; skip;

[fin time - time = Delay7 1\ LetterState =

aLSolenoid_6 1\ stable (LetterState)] ; skip;

[fin time - time = Delay61\ LetterState =

aLletter _sensor _B 1\ stable (Letter State)] ; skip;

[fin time - time = Delay8 1\ LetterState =

aLSolenoid_5 1\ stable (LetterState)]

[fin time - time = Delay 1 1\ Letter State =

aLclass_sensor 1\ stable (LetterState)] ; skip;

[fin time - time = Delay4 1\ LetterState =

aLSolenoidA 1\ stable (LetterState)] ; skip;

[fin time - time = Delay2 A Letter State =

aLletter _sensor 1\ stable (LetterState)] ; skip;

[fin time - time = Delay3 1\ LetterState =

aLSolenoid_3 1\ stable (LetterState)]

A.3 Mail Sorter: Source Code

/* Program bysorternew.c - Extended letter sorter
* Sorting Air Mail, First Class and Second Class Letters
*/

214

A.3. MAIL SORTER: SOURCE CODE

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "assertion.h"
II loading library of assertion points

1* clearing the sensors *1
void pulseD5(void)
{

int wait = 100;
while (wait--);
text_out ("clearing sensors");

1* close solenoid *1
> Delivered-
void SolOn(int SolNo)
{

assertion("solon",SolNo);

1* opening solenoid *1
void SolOff (int SolNo)
{

assertion ("soloff",SolNo);

1* delay for time units *1
void Delay(int time, int dtype)
{

int counter_l=O;
int clo;
char *temp;

switch (dtype)
case 1 :

temp = "delayl";
break;

case 2 :
temp = "delay2";
break;

case 3 :
temp = "delay3";

215

A.3. MAIL SORTER: SOURCE CODE

break;
case 4 :

temp = "delay4";
break;

case S :

temp = "delayS";
break;

case 6 :
temp = "delay6" ;
break;

case 7 :
temp = "delay7";
break;

case 8 :
temp = "delay8";
break;

default:
break;

clo=myclock();
assertion(temp,O);
while (myclock()-clo<time)
{

} ;
assertion(temp,I);

/* sort second and first class letters into hoppers */
/* yellow = first and black = second */
void Sort_to_hoppers(int Dtimel, int Dtime2, int Dtime3,

int Dtime4, int DtimeS, int Dtime6,
int Dtime7, int Dtime8)

int YellowSet, AirSet, count;
int class_sensor, letter_sensor, air_sensor;
YellowSet = 1;
AirSet = 1;
SolOn(4);
SolOn(6);
for (count = 1; count < 3; count++)

/* error count, exit on 2 */

do

216

A.3. MAIL SORTER: SOURCE CODE 217

/* clear colour and letter sensor
then read letter colour */

pulseD5();
scan_sensor ("air_sensor is ?",&air_sensor);
if (air_sensor == 1)

else

assertion("air",l);
SoIOff(4);
Delay(Dtime1,1);
SoIOn(4);
Delay(Dtime4,4);
scan_sensor ("letter sensor is ?",&letter_sensor);
assertion("lsens",letter_sensor);
if (! AirSet)

{

Delay(Dtime6,6); SolOff(S);
Delay(Dtime7,7); AirSet = 1;
}

assertion("air",O);
SolOff(4);
Delay(Dtime1,1);
SolOn(4);
Delay(Dtime4,4);
scan_sensor ("letter sensor is ?",&letter_sensor);
assertion("lsens",letter_sensor);
if(AirSet)

{

Delay(Dtime6,6); SoIOn(S);
Delay(Dtime7,7); AirSet = 0;
}

else {
Delay(Dtime6,6); Delay(Dtime7,7);

} ;

scan_sensor ("class_sensor is ?",&class_sensor);
if (class_sensor < 2)

{ /* its yellow - activate solenoid 3 */
assertion("class",l);
SoIOff(6);
Delay(DtimeS,S);
SoIOn(6);
Delay (Dtime8, 8) ;
if(! YellowSet)

A.3. MAIL SORTER: SOURCE CODE

else

{scan_sensor ("letter sensor is ?",

}

&letter_sensor);
assertion("lsens",letter_sensor);
Delay(Dtime2,2); SolOff(3);
Delay(Dtime3,3); YellowSet = 1;

/* its black - deactivate solenoid 3 */
assertion("class",2);
SolOf£(6);
Delay(Dtime5,5);
SolOn(6);
Delay(Dtime8,8);
if(YellowSet)

{scan_sensor ("letter sensor is
&letter_sensor);

?" . ,

assertion("lsens",letter_sensor);
Delay(Dtime2,2); SolOn(3);
Delay(Dtime3,3); YellowSet = 0;

}

/* repeat until no letter has passed letter sensor */
while (letter_sensor != 0);

/*--*
* function main with parameters
*/

int main ()

int ch,delayl,delay2,delay3,delay4,
delay5,delay6,delay7,delay8;

printf ("Enter key: ?\n");
scanf ("%d", &ch);

*

218

A.4. SOURCE CODE: ASSERTION.H

while (ch>O)

printf ("Enter Delayl : ?\n");
scanf ("%d", &delayl);
printf ("Enter Delay2 : ?\n");
scanf ("%d", &delay2);
printf ("Enter Delay3 : ?\n");
scanf ("%d", &delay3);
printf ("Enter Delay4 ?\n");
scanf ("%d", &delay4);
printf ("Enter DelayS ?\n");
scanf ("%d", &delayS);
printf ("Enter Delay6 : ?\n");
scanf ("%d", &delay6);
printf ("Enter Delay7 : ?\n");
scanf ("%d", &delay7);
printf ("Enter DelayS : ?\n");
scanf ("%d", &delayS);
Sort_to_hoppers(delayl,delay2,delay3,delay4,

delayS,delay6,delay7,delayS);
printf ("Enter key: ?\n");
scanf ("%d", &ch);

printf ("!PROG: end ::\n");

A.4 Source Code: assertion.h

/** assertion.h
* library to assertion points
*/

/* get time */
int myclock()

return clock()/lOOO;

/* generate output text */
void text_out (char *txt)

219

A.S. A TYPICAL RUN· TIME ANALYSING RESULT

printf("%d:: %s\n",myclock(),txt);

/* output a name of sensor */
void scan_sensor(char *txt, int *temp)

text_out(txt);
scanf("%d",temp);

/* output variable name, value and time stamp */
void assertion(char *aname, int val)

printf("!PROG: assert %s:%d:%d: !\n",
aname, val, myclock());

A.S A Typical Run-time Analysing Result
Tempura 1% set path ="/home/staff/sz/ThesisCaseprogram/
CaselWorking/CharityVer/Casestudy/Casel/by_sorter".
path was previously set to ""
Tempura 2% load "by_sortla".
[Reading file /home/staff/sz/ThesisCaseprogram/CaselWorking/
CharityVer/Casestudy/Casel/by_sorter/by_sortla.t]
[Reading file /home/staff/sz/ThesisCaseprogram/CaselWorking/
CharityVer/Casestudy/Casel/by_sorter/ .. /library/conversion.t]
[Reading file /home/staff/sz/ThesisCaseprogram/CaselWorking/
CharityVer/Casestudy/Casel/by_sorter/ .. /library/exprog.t]
[Reading file /home/staff/sz/ThesisCaseprogram/CaselWorking/
CharityVer/Casestudy/Casel/by_sorter/ .. /library/tcl.t]
print_states was previously set to true
Tempura 3% run test().
!O:: Solenoid 4 ON: Pass
!O:: Solenoid 6 ON: Pass
!10:: Air sensor 2: Pass
!10:: Letter sensor B 2: Pass
!10:: Class sensor 0: Pass
!20:: Air sensor 0: Pass
!20:: Solenoid 4 OFF: Pass
!20:: DelayS: Start
!70:: DelayS: End
!70:: DelayS 50: Pass
!70:: Solenoid 4 ON: Pass
!70:: Delay7: Start
!160:: Delay7: End
!160:: Oelay7 90: Pass

220

A.S. A TYPICAL RUN· TIME ANALYSING RESULT

160:: Letter sensor B 0: Pass
160:: Delay6: Start
210:: Delay6: End
210:: Delay6 50: Pass
210:: Solenoid 5 ON: Pass
210:: DelayS: Start
270:: DelayS: End
270:: DelayS 60: Pass

.270:: Class sensor 2: Pass
!270:: Solenoid 6 OFF: Pass
!270:: Delayl: Start
!320:: Delayl: End
!320:: Delayl 50: Pass
!320:: Solenoid 6 ON: Pass
320:: Delay4: Start
370:: Delay4: End
370:: Delay4 50: Pass
370:: Delay2: Start
420:: Delay2: End
420:: Delay2 50: Pass
420:: Solenoid 3 ON: Pass
420:: Delay3: Start
4S0:: Delay3: End

.4S0:: Delay3 60: Pass
490:: Air sensor 2: Pass
490:: Letter sensor B 2: Pass
490:: Class sensor 0: Pass
500:: Air sensor 1: Pass
500:: Solenoid 4 OFF: Pass
500:: DelayS: Start
550:: DelayS: End

'550:: DelayS 50: Pass
550:: Solenoid 4 ON: Pass
550:: Delay7: Start
640:: Delay7: End
640:: Delay7 90: Pass
640:: Letter sensor B 1: Pass
640:: Delay6: Start
690:: Delay6: End
690:: Delay6 50: Pass

.690:: Solenoid 5 OFF: Pass
!690:: DelayS: Start
!750:: DelayS: End
!750:: DelayS 60: Pass
!760:: Air sensor 2: Pass
!760:: Letter sensor B 2: Pass
!760:: Class sensor 0: Pass
!770:: Air sensor 1: Pass
!770:: Solenoid 4 OFF: Pass
!770:: DelayS: Start
!S20:: DelayS: End
!S20:: DelayS 50: Pass
!S20:: Solenoid 4 ON: Pass
!S20:: Delay7: Start
!910:: Delay7: End

221

A.S. A TYPICAL RUN· TIME ANALYSING RESULT

!9l0:: Delay7 90: Pass
!910:: Letter sensor B 0: Pass

Done! Computation length: 130.
Total reductions: 49209 (48421
Maximum reduction depth: 28.
Tempura 4%

Total Passes:
successful) .

222

188.

Appendix B

Assembly System: source code

/* Assembly.t--Assembly line with A Conveyor and Two Robots */
/*

** three functions for one conveyor and two robots
** and then put them together
** to check a safety property of
** \next \always not (L[9] = 1 \and R2 1
**

*/
load " .. /library/conversion".
load " .. /library/tcl".
/* tcl NewAssembly */
set print_states = false.
/*firstly, the code for the conveyor */
/* conveyor move: $= 0 and L [0] + L[O .. ILI-l] */
/* conveyor stop: $= land L = L[O .. ILl] */
define conveyor(L, Rl, S)={

always{
if ((Rl 0 and

(Rl = 0 and
(Rl land

then {next S
else {

L [0] 0 and
L [0] land
L [0] land
o and next L

L [9]

L [9]

L [9]

= [0]

0) or
0) or
0)
+ L[O .. ILI-l]}

if ((Rl 1 and L[O] 0 and L[9] = 0) or
(Rl 0 and L[O] 1 and L[9] 1) or
(Rl = 1 and L[O] = 1 and L[9] = 1) or

8 Assembly System: source code

(Rl = 1 and L [0] = 0 and L [9] 1)
(Rl = 0 and L[O] = 0 and L [9] 1)

then {next S = 1 and next L =
(if R1=1 and L[O]=O then [1]
else [L[O]])+ L[1..ILI-1]

(if L[9]=1 then

} } }
/* end of always */
} .

else

/* end of conveyor */
define robotone(L, Rl) = {

always {

[L[9]])

if «Rl = 1 and L[O] = 0 and L[9]
(R1 = 1 and L[O] = 0 and L[9]

then { next R1 = O}
else{

[0]

0) or
1)

+

if «R1 = 0 and L [0] = 0 and L [9] = 0)

(Rl = 0 and L [0] 1 and L [9]

(R1 = 1 and L[O] = 1 and L [9]
(R1 0 and L [0] 1 and L [9]
(R1 1 and L[O] 1 and L [9]
(R1 = 0 and L[O] 0 and L [9]
then {next R1 1 } }

}/* end of always */
} .
/* end of robot 1 */
define robottwo(L, R2)

always {
if (R2 1)

then { next R2 = 0
else{

if (L[9] = 1)

0) or
0) or
1) or
1) or

= 1)

then { next R2 = 1
else {next R2 = 0 }

}l/* end of always */
}. /* end of robot 2 */
define assembly (C) = {

ex is t s L, R 1 , R2 , S, T: {
tCl("init", [1,2,3]) and
L=C and T=O and

or

or

R1=0 and R2=O and S=l and format ("\n") and
always{format("L=%t R1=%t R2=%t S = %t T=%t \n",

L, R1, R2, S, T)

224

8 Assembly System: source code

} .

and T .-
and { if

T +
not

then
else

1
(L[9] = 1 and R2 = 1)
format("Pass!")
format ("Fail: L[9]

%t R2 = %t \n\n",
L [9], R2)}

and always telbreak()
and always tel ("draweonveyone",

[L[O], L[1], L[2], L[3], L[4],
L[S], L[6], L[7], L[8], L[9]])

}

and eonveyor(L, Rl, S)
and robotone(L, Rl)
and robottwo(L, R2)}

/* end of assembly */

/* run */ define test() = {
assembly([O,O,O,O,O,O,O,O,O,O])
and len (20)
} .

225

Appendix C

Assembly System: Run-time Analysis

Results

Tempura 1% set path ="/home/staff/sz/
ThesisCaseprogram/Case2Working".

path was previously set to ""
Tempura 2% load "NewAssembly".
[Reading file /home/staff/sz/ThesisCaseprogram/

Case2Working/NewAssembly.t]
run test().
[Reading file /home/staff/sz/ThesisCaseprogram/Case2Working/

.. /library/conversion.t]
[Reading file /home/staff/sz/ThesisCaseprogram/Case2Working/

.. /library/tcl.t]
print_states was previously set to true
Tempura 3%
L=[O,O,O,O,O,O,O,O,O,O] R1=O R2=O S 1 T=O
Pass!
L=[O,O,O,O,O,O,O,O,O,O] Rl=l R2=O S 0 T=1
Pass!
L=[l,O,O,O,O,O,O,O,O,O] R1=O R2=O S 1 T=2
Pass!
L=[O~1,O,O,O,O,O,O,O,O] R1=1 R2=O S 0 T=3
Pass.
L=[1,1,O,O,O,O,O,O,O,O] R1=O R2=O S
Pass!
L=[O,1,1,O,O,O,O,O,O,O] R1=1 R2=O S
Pass!
L=[1.1,1,O,O,O,O,O,O,O] Rl=O R2=O S
Pass!
L=[O,l,l,l,O,O,O,O,O,O] Rl=1 R2=O S
Pass!
L=[l~l,l,l,O,O,O,O,O,O] Rl=O R2=O S
Pass.

1 T=4

o T=5

1 T=6

o T=7

1 T=8

C Assembly System: Run-time Analysis Results 227

L= [0, 1, 1 , 1, 1 , 0, 0 , 0 , 0, 0] Rl=1 R2=O S 0 T=9
Pass!
L= [1, 1, 1, 1, 1, 0, 0 , 0, 0, 0] Rl=O R2=O S 1 T=10
Pass!
L= [0 ~ 1, 1, 1, 1, 1, 0, 0, 0, 0] Rl=1 R2=O S 0 T=11
Pass.
L= [1 ~ 1, 1, 1, 1, 1, 0, 0, 0, 0] Rl=O R2=O S 1 T=12
Pass.
L= [0, 1, 1, 1, 1 , 1, 1, 0, 0, 0] Rl=1 R2=O S 0 T=13
Pass!
L= [1, 1, 1 , 1, 1, 1, 1, 0, 0, 0] Rl=O R2=O S 1 T=14
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1 , 0, 0] Rl=l R2=O S 0 T=15
Pass!
L= [1, 1, 1, 1, 1, 1, 1, 1, 0, 0] Rl=O R2=O S 1 T=16
Pass!
L= [0, 1, 1, 1, 1, 1, 1 , 1, 1, 0] Rl=1 R2=O S 0 T=17
Pass!

R2=O L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O S 1 T=18
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=19
Pass!
L= [1, 1, 1, 1, 1 , 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=20
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=21
Pass!
L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=22
Pass!
L= [0 ~ 1, 1, 1, 1 , 1, 1, 1, 1, 1] Rl=1 R2=O S = 0 T=23
Pass.
L= [1 ~ 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=24
Pass.
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O
Pass!

S 0 T=25

L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
Pass!

Rl=O R2=1 S 1 T=26

L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Pass!

Rl=l R2=O S 0 T=27

L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=28
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=29
Pass!
L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=30
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=31
Pass!
L= [1 ~ 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=32
Pass.
L= [0 ~ 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=33
Pass.
L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=34
Pass!
L= [0 ~ 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=35
Pass.

R2=1 L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O S 1 T=36
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=37
Pass!
L= [1, 1, 1, 1 , 1 , 1, 1, 1, 1 , 0] Rl=O R2=1 S 1 T=38
Pass!
L= [0 I 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=1 R2=O S 0 T=39
Pass!
L= [1, 1, 1, 1, 1, 1, 1, 1, 1, 0] Rl=O R2=1 S 1 T=40
Pass!

AppendixD

Assembly System: Run-time Analysis

Results with A Bad Case

Tempura 1% set path ="/home/staff/sz/
ThesisCaseprogram/Case2Working".

path was previously set to ""
Tempura 2% load "NewAssemblyBadCase".
[Reading file /home/staff/sz/ThesisCaseprogram/
Case2Working/NewAssemblyBadCase.t]
run test().
[Reading file /home/staff/sz/ThesisCaseprogram/
Case2Working/ .. /library/conversion.t]
[Reading file /home/staff/sz/ThesisCaseprogram/
Case2Working/ .. /library/tcl.t]
print_states was previously set to true
***Syntax Error on line 75 of "/home/staff/sz/
ThesisCaseprogram/Case2Working/NewAssemblyBadCase.t":
"." unexpected.
Tempura 3%
L=[OlO,O,O,O,O,O,O,O,O]
Pass!
L=[OlO,O,O,O,O,O,O,O,O]
Pass!
L=[1 l 0,O,O,O,O,O,O,O,O]
Pass!
L=[Ol1,O,O,O,O,O,O,O,O]
Pass!

Rl=O R2=1 S

Rl=l R2=1 S

R1=O R2=1 S =

R1=1 R2=1 S

L=[1 l 1,O,O,O,O,O,O,O,O] R1=O R2=1 S
Pass!
L=[Ol1,1,O,O,O,O,O,O,O] R1=1 R2=1 S
Pass!
L=[l(l,l,O,O,O,O,O,O,O] Rl=O R2=1 S
Pass!
L=[O,l,l,l,O,O,O,O,O,O] Rl=1 R2=1 S

1 T=O

° T=l
1 T=2

° T=3
1 T=4

° T=5
1 T=6

° T=7

D Assembly System: Run-time Analysis Results with A Bad Case 229

Pass!
L=[lt1,1,1,O,O,O,O,O,O] Rl=O R2=1 S 1 T=8
Pass!
L=[Otl,l,l,l,O,O,O,O,O] Rl=l R2=1 S ° T=9
Pass!
L=[lt1,1,1,1,O,O,O,O,O] Rl=O R2=1 S 1 T=lO
Pass!
L=[O,-I,I,I,I,I,O,O,O,O] Rl=1 R2=1 S ° T=11
Pass!
L=[l l l,I,I,I,I,O,O,O,O] Rl=O R2=1 S 1 T=12
Pass!
L=[Oll,I,I,I,I,I,O,O,O] Rl=1 R2=1 S 0 T=13
Pass!
L= [1 '- 1, 1, 1, 1, 1, 1, 0, 0, 0] Rl=O R2=1 S 1 T=14
Pass!

Rl=l R2=1 L= [° t 1, 1, 1, 1 , 1, 1 , 1, 0, 0] S ° T=15
Pass!
L= [1 '- 1, 1, 1 , 1, 1 , 1 , 1 , 0, °] Rl=O R2=1 S 1 T=16
Pass!

Rl=l R2=1 L= [° l 1, 1, 1, 1, 1 , 1 , 1, 1, °] S = ° T=17
Pass!

Rl=O R2=1 L= [It 1, 1, 1, 1, 1, 1, 1, 1 , 0] S = 1 T=18
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] Rl=l R2=1 S ° T=19
Fail: Lf9l = 1 R2 = 1
L= [1 '- 1 , , , 1, 1, 1, 1, 1, °] Rl=O R2=1 S 1 T=20
Pass!
L= [0, 1, 1, 1, 1, 1, 1 , 1, 1, 1] Rl=l R2=1 S 0 T=21
Fail: Lf91 = 1 R2 = 1
L= [1 '- 1 , , , 1 , 1 , 1 , 1 , 1 , 0] Rl=O R2=1 S = 1 T=22
Pass!
L= [0, 1, 1, 1, 1, 1, 1, 1 , 1, 1] Rl=l R2=1 S 0 T=23
Fail: Lf91 = 1 R2 = 1

R2=1 L= [1 '- 1 , , , 1, 1, 1 , 1, 1 , 0] Rl=O S 1 T=24
Pass!

Rl=l R2=1 0 T=25 L= [0, 1, 1, 1 , 1, 1, 1, 1, 1 , 1] S
Fail: L[9] = 1 R2 = 1

