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Abstract: The priority weight vectors of an intuitionistic fuzzy preference

relation (IFPR) with linear uncertainty distribution characteristics in group

decision making (GDM) are determined in this study. On the basis of an IFPR,

the assumptions of additive consistency and decision-making preference variables

obeying the uncertainty distribution are defined. Afterwards, a priority model is

constructed with a chance constraint, and the ranking relations of the member-

ship and non-membership matrices are analysed. The change in the confidence

level of the chance constraint controls the flexibility of realizing additive consis-

tency. Moreover, it is proven that if the individual decision makers’ IFPR has

a linear distribution, the group IFPR aggregated by the weighted methodology

still obeys this distribution. Finally, an uncertain linear ranking consensus model

of the IFPR is developed, and a numerical example is used to verify its feasibility.
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Introduction

Group decision making (GDM) refers to the alternatives (criteria, properties, and schemes) judg-

ment and GDM behaviour. Generally, the common solution achieved by the consensus process can

satisfy most of the expectations and preferences of the decision makers (DMs), and concrete priority

ranking makes the consensus more complete. Owing to the complexity of and uncertainty in decision

environments and the DMs’ behavioural choices, there is a great possibility that DMs cannot provide

a precise and exact judgment scheme. The fuzzy theory proposed by Zadeh (1965) overcomes the lim-

itation of accurate judgment well. DMs prefer using pairwise comparisons (PCs) in fuzzy situations,

which are expressed in the form of a preference relation matrix. This relation defines the fuzziness

and uncertainty in different formats such as the interval fuzzy preference relation (Meng, An, & Chen,

2016; Gong et al., 2015), linguistic fuzzy preference relation (Jin, Ni, Chen, & Li, 2016b; Zhao, Ma, &

Wei, 2017), IFPR (Zhang & Guo, 2017; Zhu & Xu, 2013), triangular fuzzy preference relation (Liu,

Zhang, & Zhang, 2014; Wang & Tong, 2016), and hesitant fuzzy preference relation (Zhang, Z., 2016;

Zhu & Xu, 2013). Unreasonable PCs will contribute to unacceptable consensus results, which means

that it is necessary to guarantee that PCs meet the consistency level. Therefore, measurement of

the decision consistency is a critical issue in GDM; it can check the logic of DMs and then estimate

whether or not the (group) conclusion is rational. To recapitulate, dealing with preference relations,

obtaining the priority weights, enhancing consistency, reaching a consensus, and selecting alternatives

are key points in GDM (Chu, Liu, Wang, & Qin, 2016; Dong, Li, Chiclana, & Herrera-Viedma, 2016;

Gong, Zhang, Forrest, Li, & Xu, 2015; Jin, Ni, Chen, & Li, 2016a; Meng et al., 2016).

Atanassov (1986) extended fuzzy theory and proposed an IFPR to describe the vagueness in

real life more effectively and accurately, and the advantage of an IFPR lies in representing inevitably

imprecise or not totally reliable judgments (Behret, 2014). Comprehensively dealing with membership,

non-membership and hesitancy, IFPRs simultaneously can translate an intuitionistic fuzzy matrix into

two equivalent interval matrices: membership and non-membership matrices (Gong, 2011). In the

process of handling incomplete fuzzy preference relations, existing models (Meng et al., 2016; Wang &

Li, 2015; Wu & Chiclana, 2014; Zhang, Wang, & Tian, 2015) were used to study the inherent properties

of IFPRs, interval fuzzy preference relations, and hesitant fuzzy preference relations to estimate missing

values. In order to obtain a priority ranking and consensus results, Wu and Chiclana (2014), and Zhang

and Guo (2017) measured the consensus and defined operators to grasp the characteristic information

of an individual IFPR and the collective IFPR, whereas Jin et al. (2016a), Wang (2013), Wang, Lan,

Ren, & Luo (2012), and Zhang, Z. (2016) constructed goal programming models to derive weight

vectors. Liao, Xu, Zeng, & Xu (2016) improved a model that removes the expert from the decision
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group to avoid the loss of valuable information. Many studies have designed weighted operators

(Ouyang & Pedrycz, 2016; Tan, Yi, & Chen, 2015; Wang & Li, 2015) and different algorithms (Chu,

2016; Jin et al., 2016b; Wang, 2015; Xu & Xia, 2014) on the basis of various preference relations to

reach a consensus.

Consistency is an effective instrument for judging whether or not the decision information is rea-

sonable. An analysis of the consistency is necessary in the process of decision checking; it can test if the

judgments aimed at multiple alternatives are in accordance with mathematical logic principles. The

purpose of studying an individual’s consistency is to evaluate an individual DMs’ judgment ability and

to obtain priority weights. The purpose of studying the collective consistency is to estimate the consen-

sus. Studies of consistency are mostly based on the additive-transitivity and multiplicative-transitivity

properties Tanino (1984) defined and developed respective applicable consistency definitions aiming

at different preference relations (Chen, Cheng, & Lin, 2015; Jin et al., 2016a; Jin et al., 2016b; Krejč́ı,

2017; Liu, 2014; Meng et al., 2016; Wang & Tong, 2016; Wu & Chiclana, 2014; Wu & Xu, 2016; Xu

& Xia, 2014; Zhang, HM., 2016; Zhang, Z., 2016; Zhang & Guo, 2017; Zhao et al., 2017). Chen, Lin,

& Lee (2014) applied additive consistency to estimate missing fuzzy numbers and hesitant numbers.

Dong et al. (2016) measured the average-case consistency and modified interval-valued reciprocal

preference relations based on the additive consistency. Krejč́ı (2017) defined two types of additive

consistency to avoid violating the reciprocity of PCs, and Jin et al. (2016b) probed the linguistic

expression, introduced order consistency and additive consistency, and then measured whether the

preference relation has an acceptable additive consistency by a consistency index. Moreover, the

multiplicative consistency has been investigated (Jin et al., 2016a; Liu et al, 2016; Wu & Chiclana,

2014; Xu & Xia, 2014; Zhang, 2015; Zhang, HM., 2016; Zhang, Z., 2016). Because the IFPR can be

transformed into interval fuzzy preference relations after the consistent IFPR proposed by Xu (2007),

consistency is increasingly applied to IFPRs. Recent studies include those by Chu et al. (2016), Jin

et al. (2016a) and Zhang & Guo (2017), which constructed consistency definitions to modify the

rationality of the PCs of objects. Wu and Chiclana (2014) also dealt with the missing information

in an IFPR, quantitatively proposed an acceptable consistency index, and provided new definitions.

Behret (2014) improved the consistency level by minimizing the deviations from the additive and

multiplicative consistency perspective respectively.

Mathematical programming models have been widely applied to priority ranking based on the

consensus in GDM. For example, Zhang, Z. (2016) derived the priority weights by combining incom-

plete preference relations and the multiplicative consistency linearly; Liao and Xu (2014), Wang et

al. (2012), Xu et al. (2014) and Zhang, HM. (2016) noted multiplicative and additive characteristics;
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and Behret (2014) constructed linear and nonlinear programming models considering the additive and

multiplicative consistency, respectively. In addition, the optimal deviation values between any provid-

ed IFPR and the converted multiplicative consistent IFPR obtained from a programming model can

improve the consistency (Jin et al., 2016a).

In the situation considered in this paper, the constraints in the programming model contain

random variables, and DMs should make a decision before recognizing the realization of these variables.

Considering that the constraints may not be satisfied under adverse situations, the following principle

adopted: allow the decision making not to meet the constraint conditions to some extent, but the

probability of a tenable constraint condition is no less than a certain confidence level (Liu & Zhao,

1998; Tan, Gong, Chiclana, & Zhang, 2017; Zhang, Gong, & Chiclana, 2017). This goal programming

is called chance-constrained programming.

There are two methods for solving chance-constrained programming: one is approaching the

effective solution to decision problems by a stochastic simulation or an intelligent algorithm (Ke &

Liu, 2007; Suo, Li, Wang, & Yu, 2017), and the other is transforming it into an equivalent programming

problem, such as introducing a goal programming model (Omidi, Abbasi, & Nazemi, 2017). In this

paper, we assume that the IFPR is equivalent to interval fuzzy preference relations, and the interval

is presented in the form of a range with lower and upper limits. Therefore, we may be able to

view the judgments as uncertain random variables obeying a uniform uncertainty distribution (the

normal distribution and other distributions are also feasible (Liu, 2015)) in the interval. Then, for

a certain confidence level, the deviation between the judgment of each DM and the ideal judgment

(satisfying consistency) should be minimized. Therefore, optimal weighting models based on the

uncertain constraints in the IFPR are constructed, and the optimal solution for decision making is

achieved by an equivalent goal programming model.

The paper is organized as follows. The next section reviews several related basic concepts of the

fuzzy preference relation, interval fuzzy preference relation, and IFPR and investigates the relation

between the IFPR and the interval fuzzy preference relation. In the following section, the definition

of an IFPR with a linear uncertainty distribution and its consistency concept are introduced. Then,

the next section presents the individual IFPR and its collective optimal priority weight vector, and

the relation between membership and non-membership is investigated. Next, a numerical example of

this new model is presented, and the conclusions and future plans are discussed in the last section.
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Preliminaries

The following sets are defined: N = {1, 2, · · · , n},M = {1, 2, · · · ,m}. Let X = {x1, x2, · · · , xn}

be a limited set of alternative judgments, where xi(i ∈ N) represents the decision-making judgment

of alternative i. DMs usually adopt PCs to obtain the priority weight vector by constructing different

types of fuzzy preference relations such as interval fuzzy preference relations and IFPRs.

Fuzzy preference relations and the corresponding weights

Definition 1: The matrix A
′
= (a

′
ij)n×n, i, j ∈ N is called a fuzzy preference relation, if

a
′
ii = 0.5, i ∈ N (1)

a
′
ij + a

′
ji = 1, i, j ∈ N (2)

The element a
′
ij in matrix A

′
implies the degree of membership of alternative xi over alternative

xj . If a
′
ij = 0.5, there is no difference between xi and xj ; if a

′
ij > 0.5, xi is superior to xj ; and if

0 ≤ a
′
ij < 0.5, xi is inferior to xj .

Definition 2: The fuzzy preference relation A
′
is called an additive consistency fuzzy preference

relation, if

a
′
ij + a

′
jk + a

′
ki = 1.5, i, j, k ∈ N (3)

Theorem 1: If the fuzzy preference relation A
′
= (a

′
ij)n×n has the weight vector ω

′
= (ω

′
1, ω

′
2, . . . ,

ω
′
n)

T , that satisfies

a
′
ij =

1

2
(ω

′
i − ω

′
j + 1), i, j ∈ N (4)

where
n∑

i=1
ω

′
i = 1, 0 ≤ ω

′
i ≤ 1, then A

′
is an additive consistency fuzzy preference relation.

Proof. Because a
′
ij + a

′
jk + a

′
ki =

1
2(ω

′
i − ω

′
j + 1) + 1

2(ω
′
j − ω

′
k + 1) + 1

2(ω
′
k − ω

′
i + 1) = 1.5, the

matrix A
′
satisfies additive consistency.

This paper adopts the commonly used consistency condition as Theorem 1 proposed by Tanino

in 1984. Several scholars discussed this condition by adjusting 0.5 in original mathematical expression

to uncertain coefficient (Hu, Ren, Lan, Wang, & Zheng, 2014; Liu, Pan, Xu, & Yu, 2012; Wang, 2016;

Wang & Li, 2016). However, constructing priority model with a chance constraint is the emphasis, we

still use the original one. The method for determining the priority weights is also applicable to the

consistency condition with unknown coefficient.

Interval fuzzy preference relations and the corresponding weights

A certain judgment (a
′
ij is crisp number) is not practical to be given when making PCs in a real

decision making situation. In order to achieve a more realistic decision, DMs use a range (namely, an
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interval) instead of a crisp number.

Definition 3: The preference relation Ā = (āij)n×n is an interval fuzzy preference relation, where

āij = [aijl, aiju], if

āii = [0.5, 0.5], i ∈ N (5)

aijl + ajiu = ajil + aiju = 1, i, j ∈ N (6)

The element āij = [aijl, aiju] in matrix Ā implies the degree of membership of alternative xi over

alternative xj . If āij = [āijl, āiju] = [0.5, 0.5], there is no difference between xi and xj ; if āij > [0.5, 0.5],

xi is superior to xj ; and if 0 ≤ āij < [0.5, 0.5], xi is inferior to xj .

The matrix Ā = (āij)n×n, where āij = [aijl, aiju], let āij = (1 − θij)aijl + θijaiju and āji =

(1 − θij)ajiu + θijajil, i < j for 0 ≤ θij ≤ 1, i, j ∈ N . Obviously, for any certain coefficient θij , there

exist āii =
1
2(aiil + aiiu) = 0.5 and āij + āji = (1− θij)aijl + θijaiju + θijajil + (1− θij)ajiu = 1, i < j.

Therefore, the interval preference relation Ā = (āij)n×n = ((1−θij)aijl+θijaiju)n×n can be recognized

as a fuzzy preference relation.

Definition 4: Ā is an additive consistency fuzzy preference relation, if there exists θij , 0 ≤ θij ≤ 1,

such that

āij + ājk + āki = 1.5, i, j, k ∈ N (7)

where āij = (1− θij)aijl + θijaiju, āji = θijajil + (1− θij)ajiu, i < j.

Similar to Theorem 1, the weight theorem of an interval fuzzy preference relation is as follows:

Theorem 2: If an interval fuzzy preference relation Ā = (āij)n×n has the weight vector ω̄ =

(ω̄1, ω̄2, . . . , ω̄n)
T and coefficient θij , and satisfies

āij =
1

2
(ω̄i − ω̄j + 1), i, j ∈ N (8)

where
n∑

i=1
ω̄i = 1, 0 ≤ ω̄i ≤ 1, and āij = θijaijl + (1 − θij)aiju, āji = (1 − θij)ajiu + θijajil, i < j, 0 ≤

θij ≤ 1, then Ā is additive consistent, and ω̄ is called the weight vector of Ā .

The proof is omitted.

Intuitionistic fuzzy preference relations

An IFPR can solve the dilemma that the DMs face when discussing the specific degree to which

one alternative is better than others; therefore, the degrees of membership, non-membership, and

hesitancy are adopted to express the affirmation, negation, and hesitation shown by DMs (Behret,

2014). Compared with interval judgment, an IFPR is in accordance with the DMs’ behavioural

characteristics and uncertain decision-making problem.
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Definition 5: R = {⟨(xi, xj), µR(xi, xj), νR(xi, xj)⟩|(xi, xj) ∈ X×X} is an IFPR with a universe

of discourse X, where µR : X × X ∈ [0, 1], νR : X × X ∈ [0, 1], µR : X × X indicates the degree to

which xi is superior (inferior) to xj , νR : X ×X indicates the degree to which xi is not superior (not

inferior) to xj , and 0 ≤ µR(xi, xj) + νR(xi, xj) ≤ 1 holds.

Definition 6: Let R be an IFPR with a universe of discourse X. If for any i, j ∈ N,µij =

µR(xi, xj), νij = νR(xi, xj), such that??

rii = (0.5, 0.5, 0); µij = νji, νij = µji, πij = πji; µij + νij + πij = 1 (9)

then

R = (µij , νij , πij)n×n =


(µ11, ν11, π11) (µ12, ν12, π12) · · · (µ1n, ν1n, π1n)

(µ21, ν21, π21) (µ22, ν22, π22) · · · (µ2n, ν2n, π2n)
...

...
...

(µn1, νn1, πn1) (µn2, νn2, πn2) · · · (µnn, νnn, πnn)


is called the intuitionistic judgment matrix, where µij is the degree of membership of alternative xi

over alternative xj , νij is the degree of non-membership of alternative xi over alternative xj , and πij

is the intuitionistic fuzzy index. If the value of πij is large, the degree of hesitancy of xi superior

(inferior) to xj is large. In fact, this hesitancy index is a ‘regulator’; DMs can modify judgments by

changing this index. This means that the degrees of membership and non-membership are included

in the range [µij , µij + πij ] and [νij , νij + πij ].

As a consequence, the IFPR R can be equivalently transformed into the membership interval

fuzzy preference relation A and non-membership interval fuzzy preference relation B as follows:

A = (aij)n×n = [aijl, aiju]n×n =


[µ11, µ11 + π11] [µ12, µ12 + π12] · · · [µ1n, µ1n + π1n]

[µ21, µ21 + π21] [µ22, µ22 + π22] · · · [µ2n, µ2n + π2n]
...

...
...

[µn1, µn1 + πn1] [µn2, µn2 + πn2] · · · [µnn, µnn + πnn]



B = (bij)n×n = [bijl, biju]n×n =


[ν11, ν11 + π11] [ν12, ν12 + π12] · · · [ν1n, ν1n + π1n]

[ν21, ν21 + π21] [ν22, ν22 + π22] · · · [ν2n, ν2n + π2n]
...

...
...

[νn1, νn1 + πn1] [νn2, νn2 + πn2] · · · [νnn, νnn + πnn]


Obviously,

[µii, µii + πii] = [0.5, 0.5], µij + (µji + πji) = (µij + πij) + µji = 1, i, j ∈ N (10)

[νii, νii + πii] = [0.5, 0.5], νij + (νji + πji) = (νij + πij) + νji = 1, i, j ∈ N (11)
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which indicate that both A and B are interval fuzzy preference relations. Therefore the discussion

about the equivalent matrices A and B can replace that about the IFPR R.

Evidently,

aijl + biju = 1, bijl + aiju = 1 (12)

The consistency theorem of an IFPR can be deduced from that of an interval fuzzy preference

relation (the IFPR R is transformed into the interval fuzzy preference relations A and B ) as follows:

Theorem 3: Assume that the interval fuzzy preference relations A = (aij)n×n and B =

(bij)n×n with coefficients θAij and θBij have the weight vectors ω̄A = (ω̄A
1 , ω̄

A
2 , . . . , ω̄

A
n )

T and ω̄B =

(ω̄B
1 , ω̄

B
2 , . . . , ω̄

B
n )

T respectively, such that

aij =
1

2
(ω̄A

i − ω̄A
j + 1), i, j ∈ N (13)

bij =
1

2
(ω̄B

i − ω̄B
j + 1), i, j ∈ N (14)

where
n∑

i=1
ω̄A
i = 1, 0 ≤ ω̄A

i ≤ 1;
n∑

i=1
ω̄B
i = 1, 0 ≤ ω̄B

i ≤ 1; aij = (1 − θAij)aijl + θAijaiju, āji =

(1 − θAij)ajiu + θAijajil, i < j; bij = (1 − θBij)bijl + θBijbiju, b̄ji = (1 − θBij )bjiu + θBijbjil, i < j. Then the

IFPR R satisfies additive consistency. ω̄A and ω̄B are called the weight vectors of A and B. ω̄A is

also regarded as the weight vector of R (from a membership perspective).

Regardless of the interval fuzzy preference relations or IFPRs, we assume that the PC judgment

[a, b] is an uncertain range and introduce the coefficient θ(0 ≤ θ ≤ 1) into this numerical range

to make it a crisp number: namely [a, b] = (1 − θ)a + αb. Now that [a, b] is uncertain, we can

assume that it obeys a certain distribution. In the next section, we consider that [a, b] is a linear

(uniform) uncertainty distribution and discuss the complementary preference relation and priority

ranking. Uncertainty theory was introduced by Liu (2007) as a branch of mathematics, and an

uncertainty distribution was proposed in order to describe the internal features of uncertain variables.

The uncertainty distribution is a carrier of the incomplete information of an uncertain variable. In

many cases, it is sufficient to know the uncertainty distribution rather than the uncertain variable

itself (Liu, 2015). Uncertain programming, also proposed by Liu (2009), is a type of mathematical

programming involving uncertain variables.
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IFPR obeying linear uncertainty distribution and corresponding con-

sistency concept

Definition 7 Liu (2015): Assume that the uncertain variable ξ obeys a distribution such that

ϕ(x) =


0, if x ≤ a

x−a
b−a , if a ≤ x ≤ b

1, if x ≥ b

(15)

Where a, b are specific numbers, and a < b . Then, ξ obeys a linear uncertainty distribution

within the range [a, b], expressed as ξ ∼ L(a, b). Figure 1 shows the linear uncertainty distribution

function.

Figure 1: Linear uncertainty distribution function

Definition 8 Liu (2015): Let ξ be an uncertain variable with the linear uncertainty distribution

ϕ(x). The inverse function ϕ−1(α) is called the inverse uncertainty distribution of ξ:

ϕ−1(α) = (1− α)a+ αb (16)

The inverse linear uncertainty distribution function is shown in Figure 2.

When the interval fuzzy preference relations A and B obey the linear uncertainty distribution,

we use Ã and B̃ to represent them. Considering the fuzzy preference relation Ã = (ãij)n×n, where

ãij = [aijl, aiju], if ãij is regarded as a random variable and the value point of ãij is equiprobable

within [aijl, aiju] , Ã = (ãij)n×n is a linear uncertainty distribution complementary matrix within the

range [aijl, aiju]. Similar to Theorem 3, the consistency condition of the IFPR R obeying a linear

uncertainty distribution is as follows:

Definition 9: Let the equivalent matrices Ã and B̃ of the IFPR R obey the linear uncertainty dis-

tribution, i.e. ãij ∼ L(aijl, aiju) and b̃ij ∼ L(bijl, biju). If their weight vectors ω
A = (ωA

1 , ω
A
2 , . . . , ω

A
n )

T

9



Figure 2: Inverse linear uncertainty distribution function

and ωB = (ωB
1 , ω

B
2 , . . . , ω

B
n )

T satisfy

1

2
(ωA

i − ωA
j + 1) ∼ L(aijl, aiju), i, j ∈ N (17)

1

2
(ωB

i − ωB
j + 1) ∼ L(bijl, biju), i, j ∈ N (18)

respectively, R is called an additive consistency IFPR obeying the linear uncertainty distribution.

Optimal priority modelling with an inconsistency preference relation

It is difficult for DMs to provide a consistent decision-making matrix under uncertain circum-

stances because of incomplete information and cognitive behavioural limitations. In this paper, we use

aij to express the actual judgment of DMs, and a∗ij is an ideal judgment representing a consistent one.

The deviation between aij and a∗ij should satisfy ‘the smaller, the better’ in evidence. In the following,

optimal priority modelling with an inconsistency interval fuzzy preference relation, modelling with an

optimal priority IFPR obeying a linear distribution with uncertain chance constraints, and the GDM

priority ranking model are presented.

Optimal priority modelling with an inconsistency interval fuzzy preference relation

without distribution characteristics

Previously, if Ā is an inconsistency interval fuzzy preference relation with ω̄ = (ω̄1, ω̄2, . . . , ω̄n)
T

as its weight vector, according to Equation (8), the deviation between āij and 1
2(ω̄i − ω̄j + 1) should

satisfy ‘the smaller, the better’; namely, the value of deviation εij = |āij − 1
2(ω̄i − ω̄j + 1)| follows

‘the smaller, the better’. The programming model for minimizing the deviation on the basis of the
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inconsistency interval fuzzy preference relation is constructed as follows:

Min
∑

i,j∈N,i ̸=j

εij

s.t.


|āij − 1

2(ω̄i − ω̄j + 1)| ≤ εij (19− 1)

āij = (1− θij)aijl + θijaiju (19− 2)
n∑

i=1
ω̄i = 1, 0 ≤ ω̄i ≤ 1, 0 ≤ θ̄ij ≤ 1 i, j ∈ N (19− 3)

(19)

The model in Equation (19) has the following equivalent linear form:

Min
∑

i,j∈N,i ̸=j

εij

s.t.



āij − 1
2(ω̄i − ω̄j + 1)− εij ≤ 0 (20− 1)

−āij +
1
2(ω̄i − ω̄j + 1)− εij ≤ 0 (20− 2)

āij = (1− θij)aijl + θijaiju (20− 3)
n∑

i=1
ω̄i = 1, 0 ≤ ω̄i ≤ 1, 0 ≤ θ̄ij ≤ 1 i, j ∈ N (20− 4)

(20)

Modelling the optimal priority of the IFPR obeying a linear distribution with an

uncertain chance constraint

In the light of the ideology of the chance constraint (Liu and Zhao, 1998), the deviation between

the ideal judgment and actual judgment is permitted to be no more than the minimum value to some

extent in this paper. However, the probability of this occurring should be no less than a certain level.

For the membership matrix Ã with an inconsistent linear uncertainty distribution, the corresponding

priority vector is ωA = (ωA
1 , ω

A
2 , . . . , ω

A
n )

T , assuming that the value of ãij ∼ L(aijl, aiju), i, j ∈ N is

independent. Under a certain confidence level, for any value of the stochastic decision variable ãij

obeying a linear uncertainty distribution, the deviation between it and 1
2(ω

A
i − ωA

j + 1) (namely, the

value of |ãij − 1
2(ω

A
i − ωA

j + 1)| ) follows ‘the smaller, the better’.

The optimal weighting model with the chance constraint is constructed as follows:

Min
∑

i,j∈N,i̸=j

εAij

s.t.


M{|ãij − 1

2(ω
A
i − ωA

j + 1)| ≤ εAij} ≥ α (21− 1)

ãij ∼ L(aijl, aiju) (21− 2)
n∑

i=1
ωA
i = 1, 0 ≤ ωA

i ≤ 1, i ∈ N (21− 3)

(21)

where the constraint (21-1) indicates that the probability of the deviation no more than εAij is no less

than the certain level α, where α is a given value denoting the probability of consistency reaching,

called consistency level. Evidently, the higher α is, the consistency level is higher. Here, α takes values

of 0.3, 0.5, 0.7, and 0.9, and the objective function minimizes these deviations.
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The optimal priority model with a chance constraint is constructed according to goal programming

theory (Liu & Zhao, 1998). Let dA+
ij denote the positive deviation between |ãij − 1

2(ω
A
i − ωA

j + 1)|

and εAij and dA−
ij represent the negative deviation between |ãij − 1

2(ω
A
i − ωA

j + 1)| and εAij . Evidently,

as mentioned above, the deviation satisfies ’the smaller, the better’. The chance-constrained goal

programming model is as follows:

Min
∑

i,j∈N,i ̸=j

εAij + dA+
ij + dA−

ij

s.t.


M{|ãij − 1

2(ω
A
i − ωA

j + 1)| − dA+
ij + dA−

ij = εAij} ≥ α (22− 1)

ãij ∼ L(aijl, aiju) (22− 2)
n∑

i=1
ωA
i = 1, 0 ≤ ωA

i ≤ 1, i ∈ N (22− 3)

(22)

In the constraint (22-1), the positive deviation dA+
ij and the negative deviation dA−

ij satisfy

M{dA+
ij ≥ ãij −

1

2
(ωA

i − ωA
j + 1)− εAij} ≥ α (23)

M{dA−
ij ≥ −ãij +

1

2
(ωA

i − ωA
j + 1)− εAij} ≥ α (24)

namely:

M{ãij ≤
1

2
(ωA

i − ωA
j + 1) + εAij + dA+

ij } ≥ α (25)

M{−ãij ≤ −1

2
(ωA

i − ωA
j + 1) + εAij + dA−

ij } ≥ α (26)

This model is an uncertain optimization model; thus, a genetic algorithm (Holland,1992) can be

adopted to obtain an approximate solution. In fact, it can be transformed into a deterministic model

according to uncertainty optimization theory.

Lemma 1 Liu (2009): Assume that h1(x), h2(x), . . . , hn(x), h0(x) are real-valued functions and

that ξ1, ξ2, . . . , ξg, g ∈ N are independent linear uncertain variables satisfying uniform distributions

L(a1, b1), L(a2, b2), . . . , L(ag, bg) separately with the regular uncertainty distributions ϕ1, ϕ2, · · · , ϕg.

For any confidence level α, the chance constraint has the form:

M{
n∑

i=1

ξghg(x) ≤ h0(x)} ≥ α, g ∈ N (27)

holds if and only if
n∑

g=1

h+g (x)ϕ
−1
g (α)−

n∑
g=1

h−g (x)ϕ
−1
g (1− α) ≤ h0(x) (28)

holds

If h1(x), h2(x), . . . , hn(x) are all non-negative, Equation (28) becomes
n∑

g=1
hg(x)ϕ

−1
g (α) ≤ h0(x),

If h1(x), h2(x), . . . , hn(x) are all non-positive, Equation (28) becomes
n∑

g=1
hg(x)ϕ

−1
g (1 − α) ≤ h0(x),

where ϕ−1
g (α) = (1− α)ag + αbg, ϕ

−1
g (1− α) = αag + (1− α)bg, g ∈ N.

12



The corresponding forms of the chance constraints in Equations (25) and (26) are:

(1− α)aijl + αA
ijaiju ≤ 1

2
(ωA

i − ωA
j + 1) + εAij + dA+

ij (29)

(1− α)(−aiju) + αA
ij(−aijl) ≤ −1

2
(ωA

i − ωA
j + 1) + εAij + dA−

ij (30)

The optimal goal programming model of the membership fuzzy preference relation Ã obeying a

linear distribution is given as

Min
∑

i<j,i,j∈N
εAij + dA+

ij + dA−
ij

s.t.


(1− α)aijl + αA

ijaiju ≤ 1
2(ω

A
i − ωA

j + 1) + εAij + dA+
ij (31− 1)

(1− α)(−aiju) + αA
ij(−aijl) ≤ −1

2(ω
A
i − ωA

j + 1) + εAij + dA−
ij (31− 2)

n∑
i=1

ωA
i = 1, ωA

i ≥ 0, i, j ∈ N (31− 3)

(31)

Analogously, the optimal goal programming model of the non-membership fuzzy preference rela-

tion B̃ obeying a linear distribution is given as

Min
∑

i<j,i,j∈N
εBij + dB+

ij + dB−
ij

s.t.


(1− α)bijl + αB

ijbiju ≤ 1
2(ω

B
i − ωB

j + 1) + εBij + dB+
ij (32− 1)

(1− α)(−biju) + αB
ij(−bijl) ≤ −1

2(ω
B
i − ωB

j + 1) + εBij + dB−
ij (32− 2)

n∑
i=1

ωB
i = 1, ωB

i ≥ 0, i, j ∈ N (32− 3)

(32)

Let xij = 1
2(ω

A
i − ωA

j + 1) and yji =
1
2(ω

B
j − ωB

i + 1) . Hence, the following theorems can be

obtained:

Theorem 4: The optimal solutions of chance-constrained programming models with membership

matrix Ã and non-membership matrix B̃ of the IFPR R under different probabilities satisfy: xij = yji,

εAij = εBij ,
∑

εAij + dA+
ij + dA−

ij =
∑

εBij + dB+
ij + dB−

ij ; and the optimal objective values are the same.

Proof. Substituting Equation (12) into Equations (32-1) and (32-2),

(1− α)(−aiju) + αB
ij(−aijl) ≤ −1

2
(ωB

j − ωB
i + 1) + εBij + dB+

ij (33)

(1− α)aijl + αB
ijaiju ≤ 1

2
(ωB

j − ωB
i + 1) + εBij + dB−

ij (34)

Owing to xij , yij we defined, the forms of Equations (33) and (34) coincide with those of Equations

(31-2) and (31-1), the theorem is proved.

Theorem 5: The priority ranking solutions of the equivalent membership matrix Ã and non-

membership matrix B̃ of the IFPR R with different additive consistency levels derived by chance

constrained programming models have an inverse relationship.

13



Proof. From Theorem 4, 1
2(ω

A
i − ωA

j + 1) = 1
2(ω

B
j − ωB

i + 1), namely, ωA
i − ωA

j = ωB
j − ωB

i .

Hence for Model (31), if there exist weight vectors ωA
σ1 ≥ ωA

σ2 ≥ · · · ≥ ωA
σi ≥ · · · ≥ ωA

σn, i ∈ N, because

ωA
i −ωA

j = ωB
j −ωB

i , the weight vectors of Model (32) satisfy: ωB
σ1 ≤ ωB

σ2 ≤ · · · ≤ ωB
σi ≤ · · · ≤ ωB

σn, i ∈

N.

Optimal weighting IFPR model with uncertainty chance-constrained linear distri-

bution

Suppose that there are m(m ∈ M) DMs having given interval uncertain preference relations

obeying the linear independent distribution Ak = (akij) = [akijl, a
k
iju], k ∈ M in a multi-criteria GDM

system, whose corresponding weights are ωk, k ∈ M . The DMs’ group interval uncertain judgment is

A∗ = (a∗ij), where a∗ij =
m∑
k=1

ωkakij . Next we prove that a
∗
ij still obeys a linear uncertainty distribution.

First, we consider the following lemma.

Lemma 2 Liu (2015): Assume that ξ1, ξ2 are independent linear uncertain variables, presented

in the form L(a1, b1) and L(a2, b2).

Then (1) ξ1 + ξ2 is also a linear uncertain variable, i.e. L(a1, b1) +L(a2, b2) = L(a1 + a2, b1 + b2).

(2)The dot product of the linear uncertainty distribution is still a linear uncertain variable, namely,

there exist a scalar number l > 0, l ∈ R such that: l · L(a, b) = L(la, lb).

On the basis of (1) and (2), let λ = λ1+λ2; then λL(a, b) = (λ1+λ2)L(a, b) = L((λ1+λ2)a, (λ1+

λ2)b) = L(λ1a+ λ2a, λ1b+ λ2b) = L(λ1a, λ1b) + L(λ2a, λ2b) = λ1L(a, b) + λ2L(a, b) holds.

According to the addition and multiplication rules of a linear uncertainty distribution and assum-

ing ωk is unknown, a∗ij =
m∑
k=1

ωkakij ; then, a
∗
ij ∼ L(

m∑
k=1

ωkakijl,
m∑
k=1

ωkakiju).

Theorem 6: The uncertain GDM judgment a∗ij obeys a linear uncertainty distribution.

Proof. By Lemma 2, it can be deduced that uncertain GDM judgment a∗ij obeys the linear

uncertainty distribution.

If the variable a∗ij within the linear uncertainty distribution preference relation satisfies additive

consistency, a∗ij ∼ 1
2(ω̂i − ω̂j +1) can be obtained. Analogously, the optimal goal programming model

with an inconsistency IFPR obeying a linear uncertainty distribution in the GDM problem is given as

follows. The optimization model of the membership matrix is expressed as

Min
∑

i,j∈N,i ̸=j

εA
∗

ij

s.t.


M{|a∗ij − 1

2(ω
A∗
i − ωA∗

j + 1)| ≤ εA
∗} ≥ α (35− 1)

a∗ij ∼ L(
m∑
k=1

ωkakijl,
m∑
k=1

ωkakiju) (35− 2)

n∑
i=1

ωA∗
i = 1, 0 ≤ ωA∗

i ≤ 1, i ∈ N (35− 3)

(35)
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Moreover, the optimization model of the non-membership matrix is

Min
∑

i,j∈N,i ̸=j

εB
∗

ij

s.t.


M{|b∗ij − 1

2(ω
B∗
i − ωB∗

j + 1)| ≤ εB
∗} ≥ α (36− 1)

b∗ij ∼ L(
m∑
k=1

ωkbkijl,
m∑
k=1

ωkbkiju) (36− 2)

n∑
i=1

ωB∗
i = 1, 0 ≤ ωB∗

i ≤ 1, i ∈ N (36− 3)

(36)

Similar to the process presented in an earlier section, let x∗ij =
1
2(ω

A∗
i − ωA∗

j + 1), y∗ji =
1
2(ω

B∗
i −

ωB∗
j + 1), the following theorems can be proven.

Theorem 7: If each IFPR satisfies a linear uncertainty distribution in GDM, the collective IFPR

also obeys this distribution, and optimal solutions of the chance-constrained programming models

with the membership matrix A∗ and non-membership matrix B∗ of this IFPR with different additive

consistency levels satisfy: x∗ij = y∗ji,
∑

εA
∗

ij =
∑

εB
∗

ij ; and the optimal objective values are the same.

Theorem 8: The priority ranking solutions of the equivalent membership matrix A∗ and non-

membership matrix B∗ of the ideal IFPR R∗ with different additive consistency levels derived by

chance-constrained programming models have an inverse relationship.

The proofs are omitted. The membership weight vector derived by the above-mentioned chance-

constrained programming model is a priority ranking solution of GDM.

Numerical examples

Case description

Assume that three DMs (Dk, k = 1, 2, 3) in a decision making system compare four objects

(x1, x2, x3, x4) in a pairwise manner by IFPRs (Rk, k = 1, 2, 3) as follows:

R1 = (µ1
ij , ν

1
ij , π

1
ij) =


(0.5, 0.5, 0) (0.3, 0.5, 0.2) (0.5, 0.4, 0.1) (0.4, 0.6, 0)

(0.5, 0.3, 0.2) (0.5, 0.5, 0) (0.5, 0.3, 0.2) (0.2, 0.7, 0.1)

(0.4, 0.5, 0.1) (0.3, 0.5, 0.2) (0.5, 0.5, 0) (0.3, 0.5, 0.2)

(0.6, 0.4, 0) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) (0.5, 0.5, 0)



R2 = (µ2
ij , ν

2
ij , π

2
ij) =


(0.5, 0.5, 0) (0.35, 0.5, 0.15) (0.2, 0.7, 0.1) (0.5, 0.4, 0.1)

(0.5, 0.35, 0.15) (0.5, 0.5, 0) (0.6, 0.2, 0.2) (0.4, 0.5, 0.1)

(0.7, 0.2, 0.1) (0.2, 0.6, 0.2) (0.5, 0.5, 0) (0.3, 0.5, 0.2)

(0.4, 0.5, 0.1) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) (0.5, 0.5, 0)


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R3 = (µ3
ij , ν

3
ij , π

3
ij) =


(0.5, 0.5, 0) (0.3, 0.5, 0.2) (0.5, 0.45, 0.05) (0.4, 0.5, 0.1)

(0.5, 0.3, 0.2) (0.5, 0.5, 0) (0.6, 0.1, 0.3) (0.5, 0.4, 0.1)

(0.45, 0.5, 0.05) (0.1, 0.6, 0.3) (0.5, 0.5, 0) (0.35, 0.5, 0.15)

(0.5, 0.4, 0.1) (0.4, 0.5, 0.1) (0.5, 0.35, 0.15) (0.5, 0.5, 0)


Let Ak, Bk, k = 1, 2, 3 represent the corresponding membership matrix and non-membership

matrix of the IFPR Rk given by the DM Dk and ωAk
i , ωBk

i , i ∈ N be the priority ranking of the

different judgment relations Ak and Bk made by Dk. Table 1 summarizes the results for the weight

vectors of the membership and non-membership matrices (α =0.3, 0.5,0.7 and 0.9).

Table 1: Weights of the Membership and Non-membership Matrices

A 0.3 0.5 0.7 0.9 B 0.3 0.5 0.7 0.9

ωA1
1 0.1835 0.1746 0.1732 0.1732 ωB1

1 0.3158 0.3246 0.3256 0.3254

ωA1
2 0.2804 0.3254 0.3268 0.3268 ωB1

2 0.2203 0.1754 0.1744 0.1746

ωA1
3 0.1525 0.1254 0.1268 0.1268 ωB1

3 0.3482 0.3754 0.3744 0.3746

ωA1
4 0.3835 0.3746 0.3732 0.3732 ωB1

4 0.1158 0.1246 0.1256 0.1254∑
εA1
ij 0.38 0.5 0.66 0.82

∑
εB1
ij 0.38 0.5 0.66 0.82

ωA2
1 0.1759 0.2015 0.1968 0.1972 ωB2

1 0.3263 0.2978 0.3027 0.304

ωA2
2 0.3447 0.3515 0.3486 0.3472 ωB2

2 0.1546 0.1478 0.1527 0.154

ωA2
3 0.1658 0.1235 0.1264 0.1278 ωB2

3 0.3331 0.3772 0.3723 0.371

ωA2
4 0.3136 0.3235 0.3264 0.3278 ωB2

4 0.186 0.1772 0.1723 0.171∑
εA2
ij 0.45 0.55 0.72 0.89

∑
εB2
ij 0.45 0.55 0.72 0.89

ωA3
1 0.1625 0.1875 0.1875 0.1875 ωB3

1 0.3375 0.3125 0.3125 0.3125

ωA3
2 0.4425 0.3875 0.3875 0.3875 ωB3

2 0.0575 0.1125 0.1125 0.1125

ωA3
3 0.0925 0.1375 0.1375 0.1375 ωB3

3 0.4075 0.3625 0.3625 0.3625

ωA3
4 0.3025 0.2875 0.2875 0.2875 ωB3

4 0.1975 0.2125 0.2125 0.2125∑
εA3
ij 0.015 0.125 0.305 0.485

∑
εB3
ij 0.015 0.125 0.305 0.485

From Table 1, the optimal solutions of the membership and non-membership preference relations

obtained by uncertain programming are obviously the same. Moreover, taking IFPR R1 as an example,

the priority ranking of the membership matrix A1 for different consistency levels is x4 ≻ x2 ≻ x1 ≻ x3,

whereas that of the non-membership matrix B1 for different consistency levels is x3 ≻ x1 ≻ x2 ≻ x4,

illustrating the reverse relationship with A1. Thus, we can verify that Theorem 4 and 5 are correct.

Let the weights be ω1 = 0.4, ω2 = 0.3 and ω3 = 0.3 for these three DMs respectively. The ideal
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preference relation and its priority vector achieved are as follows (α =0.3, 0.5,0.7 and 0.9):

R∗ = (µ∗
ij , ν

∗
ij , π

∗
ij) =


(0.5, 0.5, 0) (0.315, 0.5, 0.185) (0.41, 0.505, 0.085) (0.43, 0.51, 0.06)

(0.5, 0.315, 0.185) (0.5, 0.5, 0) (0.56, 0.21, 0.23) (0.35, 0.55, 0.1)

(0.505, 0.41, 0.085) (0.21, 0.56, 0.23) (0.5, 0.5, 0) (0.315, 0.5, 0.185)

(0.51, 0.43, 0.06) (0.55, 0.35, 0.1) (0.5, 0.315, 0.185) (0.5, 0.5, 0)



Table 2: Priority Vectors of the Ideal Preference Relation

A∗ 0.3 0.5 0.7 0.9 B∗ 0.3 0.5 0.7 0.9

ω∗
1 0.1693 0.1596 0.1608 0.1607 ω∗

1 0.3308 0.3403 0.339 0.3389

ω∗
2 0.3255 0.3446 0.3458 0.3457 ω∗

2 0.1744 0.1553 0.154 0.1539

ω∗
3 0.1545 0.1554 0.1542 0.1543 ω∗

3 0.3455 0.3447 0.346 0.3461

ω∗
4 0.3507 0.3404 0.3392 0.3393 ω∗

4 0.1493 0.1597 0.161 0.1611∑
ε∗ij 0.1875 0.2825 0.4515 0.6205

∑
ε∗ij 0.1875 0.2825 0.4515 0.6205

From Table 2, the optimal solutions of the ideal membership and non-membership preference

relations obtained by uncertain programming are the same. Meanwhile, with the same confidence

level, the rankings of the two preference relations have an inverse relationship. Thus, we can verify

that Theorem 7 and 8 are correct. And the group decision priority ranking can be achieved with

different confidence(consistency) levels.

Analysis of the results

Computation results are presented in chart form. Figure 3 shows the change of relationships

between the minimum sum of the deviation derived from chance constrained programming models

based on four membership preference relations A1, A2, A3, A∗ and the consistency level α. In this

Figure, the minimum deviation increases as consistency level increases for both individual preference

relation and collective group preference relation. The higher confidence level indicates more stringent

conditions for realizing an ideal judgment. In this circumstance, the consistency can only be guaranteed

if the deviation between the ideal judgment and the actual judgment can be increased (namely, the

actual judgment deviation threshold is permitted to increase).

Hence, the chance constraint proposed in this paper can be regarded as an effective method for

controlling the degree of consistency of preference relations.
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Figure 3: Relationships between the minimum sum of the deviation and the consistency level

Conclusion

This paper investigates the optimal ranking models of individual and group IFPRs obeying a lin-

ear uncertainty distribution; for a certain confidence level, the equivalent deterministic programming

models contribute to obtaining the priority weights of the alternatives by exploring the equivalence

relations of the IFPR and the interval membership and non-membership fuzzy preference relations

based on additive consistency, thereby reducing the cost of stochastic simulation for uncertain pro-

gramming. Moreover, the introduction of the chance-constrained uncertainty distribution variables

based on additive consistency realizes the more reasonable simulation of the uncertainty and fuzziness

of a real environment. The contributions of this study are as follows:

(1) An interval fuzzy preference relation equivalent to an IFPR obeying a linear uncertainty distri-

bution is defined, and uncertain programming models with a chance constraint are developed to

study the ranking of the alternatives in the IFPR.

(2) The deviation between the ideal consistency judgment and the actual judgment is proposed, and

the flexibility of consistency realization can be controlled by adjusting the consistency level.

Moreover, different values of α can be regarded as different risk decision-making levels.

Apart from linear uncertainty distribution model, study can consider other distribution such as

uncertain normal distribution. In addition, this research could be extended to consensus decision-

making models based on multiplicative consistency IFPR.
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