

Ontological Approach for Database

Integration

 Ph.D. Thesis

 Nasser Alwan Alalwan

 This thesis is submitted in partial fulfilment of the

 requirement for the Doctor of Philosophy

Awarded by

 Faculty of Technology

 De Montfort University

 United Kingdom, England

March 2011

II

Declaration

I declare that the work described in this thesis is original work undertaken by

me for the degree of Doctor of Philosophy, at the Software Technology

Research Laboratory (STRL), Faculty of Technology, at De Montfort

University, United Kingdom. No part of the material described in this thesis

has been submitted for the award of any other degree or qualification in this or

any other university or college of advanced education.

III

Dedication

To my parents,

my wife,

my children Abdullah, Mohammed, and Munira,

my brothers and my sisters

The thesis is dedicated to my loving father, Mr. Alwan Alalwan, who has been a

great source of motivation, inspiration and endless support throughout my life, and

who sacrificed a lot for me to be what I am now.

It is also dedicated to my loving mother, who gave her love and support, for

everything she sacrificed in her life for me. Without her loving care, prayers and

support, it would have been very difficult for me to achieve my goals.

I owe everything I have achieved or will achieve to them.

I hope that by obtaining my PhD I can put smiles on their faces.

IV

ACKNOWLEDGEMENTS

First of all, I would like to start by praising Allah (God) Almighty for all his bounties and

blessings and for providing me with faith, patience and commitment to complete this

research. Without him, none of this work would have been possible.

Also I would like to express my sincere gratitude to my supervisors, Professor H. Zedan,

for his patient guidance and persistent support and encouragement throughout this research.

Moreover, he gave me both the motivation for starting my new topic and freedom in my

research interests.

I would like to thank Dr. F. Siewe for his expert guidance. I am grateful for his careful

reading and constructive comments on our joint papers.

I would like to thank Professsor M. Maskarinec whose comments on my queries have

added to the success of this project.

I would also like to express my thanks and appreciation to my friends, Dr. Mohammad

Taye and Eng. Sayed Saad-Aldeen for their valuable comments, constructive criticism,

scientific support, insightful comments, guidance and suggestions, without which this thesis

could not have been produced in the present form.

I would also like to express my thanks and appreciation to my loyal friend Dr. Ahmed

Alzahrani for his helpful advice.

I wish to thank all researchers, colleagues and staff of the STRL. During this work, I have

collaborated with many colleagues for whom I have great regard, and I wish to extend my

warmest thanks to all those who have helped me with my work in STRL. Especially I

would like to thank my colleagues, Dr. Mohamed Sarrab, Mohammed Al-Sammarrie,

Abdulmalik Al-Hammad and Murad Megableh, for their continuous encouragement.

http://www.tech.dmu.ac.uk/STRL/people/staff/siewe.html

V

I wish to express my love and gratitude to all my family, whose love and support have

always been with me. In particular, I would like to give my special thanks to my beloved

parents for their love and their continuing moral support throughout my studies. They had

more faith in me than could ever be justified by logical argument. My special gratitude is

due to my dearest brothers Abdul-Aziz, Ibrahim, Abdullah, Weal, and Bader and to my

lovely sisters and their families for their loving support, concern and encouragement

through all these years.

I would also like to express my thanks and appreciation to my father-in-law Mr

Mohammed Aleid and my mother-in-law for their support, prayers, concern and

encouragement through all these years. My special gratitude is due to my dearest brother-

in-law Khalid Alkhuraiji for his help, concern and support.

Last, but certainly not least, I am indebted to my lovely wife Gadah for her endurance and

unconditional support which provided vital encouragement during the period of my PhD

study. Without her love and devotion, this research would have been impossible. Finally, I

would like to mention my beloved children, Abdullah, Mohammed, and Munira who

have given me happiness during the difficult period of my study.

Thank you all.

 Leicester, England, March / 2011

 Nasser Alalwan

VI

ABSTRACT

Database integration is one of the research areas that have gained a lot of attention from

researcher. It has the goal of representing the data from different database sources in one

unified form.

To reach database integration we have to face two obstacles. The first one is the distribution

of data, and the second is the heterogeneity. The Web ensures addressing the distribution

problem, and for the case of heterogeneity there are many approaches that can be used to

solve the database integration problem, such as data warehouse and federated databases.

The problem in these two approaches is the lack of semantics. Therefore, our approach

exploits the Semantic Web methodology. The hybrid ontology method can be facilitated in

solving the database integration problem. In this method two elements are available; the

source (database) and the domain ontology, however, the local ontology is missing. In fact,

to ensure the success of this method the local ontologies should be produced. Our approach

obtains the semantics from the logical model of database to generate local ontology. Then,

the validation and the enhancement can be acquired from the semantics obtained from the

conceptual model of the database.

Now, our approach can be applied in the generation phase and the validation-enrichment

phase. In the generation phase in our approach, we utilise the reverse engineering

techniques in order to catch the semantics hidden in the SQL language. Then, the approach

reproduces the logical model of the database. Finally, our transformation system will be

applied to generate an ontology.

VII

In our transformation system, all the concepts of classes, relationships and axioms will be

generated. Firstly, the process of class creation contains many rules participating together to

produce classes. Our unique rules succeeded in solving problems such as fragmentation and

hierarchy. Also, our rules eliminate the superfluous classes of multi-valued attribute relation

as well as taking care of neglected cases such as: relationships with additional attributes.

The final class creation rule is for generic relation cases. The rules of the relationship

between concepts are generated with eliminating the relationships between integrated

concepts. Finally, there are many rules that consider the relationship and the attributes

constraints which should be transformed to axioms in the ontological model.

The formal rules of our approach are domain independent; also, it produces a generic

ontology that is not restricted to a specific ontology language. The rules consider the gap

between the database model and the ontological model. Therefore, some database

constructs would not have an equivalent in the ontological model.

The second phase consists of the validation and the enrichment processes. The best way to

validate the transformation result is to facilitate the semantics obtained from the conceptual

model of the database. In the validation phase, the domain expert captures the missing or

the superfluous concepts (classes or relationships). In the enrichment phase, the

generalisation method can be applied to classes that share common attributes. Also, the

concepts of complex or composite attributes can be represented as classes.

We implement the transformation system by a tool called SQL2OWL in order to show the

correctness and the functionally of our approach.

The evaluation of our system showed the success of our proposed approach. The evaluation

goes through many techniques. Firstly, a comparative study is held between the results

VIII

produced by our approach and the similar approaches. The second evaluation technique is

the weighting score system which specify the criteria that affect the transformation system.

The final evaluation technique is the score scheme. We consider the quality of the

transformation system by applying the compliance measure in order to show the strength of

our approach compared to the existing approaches. Finally the measures of success that our

approach considered are the system scalability and the completeness.

IX

PUBLICATIONS

1. Nasser Alalwan, H. Zedan, and F. Siewe, “Generating OWL Ontology for

Database Integration”, In proceedings of Third International Conference on

Advance in Semantic Processing, 2009, Sliema, Malta, pp.22-31.

2. M. Taye, and N. Alalwan, “Ontology Alignment Technique for Improving

Semantic Integration”, In proceedings of The Fourth International Conference

on Advances in Semantic Processing „SEMAPRO 2010’ , Florence, Italy ,

October 2010.

X

Table of Contents
ACKNOWLEDGEMENTS ... IV

ABSTRACT ... VI

PUBLICATIONS ... IX

LIST OF TABLES .. XVI

LIST OF FIGURES .. XVIII

LIST OF ABBREVIATIONS .. XIX

1 CHAPTER ONE: INTRODUCTION ...1

1.1 Introduction ..1

1.2 Problem Statement and Motivation ..1

1.3 Research Question ..5

1.4 Contribution to knowledge ...6

1.5 Research Methodology ...7

1.6 Thesis Outline (Organization of the Thesis) ..8

Chapter 4: Overview of Existing Approaches Transforming Database to Ontology9

2 CHAPTER TWO: DATABASE OVERVIEW .. 11

2.1 Introduction .. 11

2.2 Preface .. 11

2.3 Databases and data models ...13

2.4 Database Creation...14

2.5 Phase-1 Conceptual modelling ...14

2.5.1 Entity Relationship model ...14

2.5.2 Basics of Entity Relationship model ...15

2.5.3 Entity ...15

2.5.4 Attribute ..16

2.5.5 Relationship ..19

2.6 Extended Entity Relationship (EER) ..21

2.6.1 Specialisation ..22

2.6.2 Generalisation ...22

2.6.3 Constraints on generalisations and specialisation ...23

2.7 Phase-2 Implementation Phase relational model-structure query language (SQL)25

2.7.1 Structure of Relational databases ..25

2.7.2 The algorithm of mapping the ER model to the relational model26

XI

2.7.3 Structure Query Language ..28

2.8 Comparison between Entity Relationship and Relational Model30

2.9 Choosing approach source between database models ..31

2.10 Reasons for choosing the relational database instead of using the object database

 34

2.11 Summary ...34

3 CHAPTER THREE: SEMANTIC WEB AND ONTOLOGIES- STATE OF THE ART

 35

3.1 Introduction ..35

3.2 Semantic Web ...35

3.2.1 Semantic Web layers ...36

3.3 Ontology ...38

3.3.1 Ontology Definition ..39

3.3.2 Ontology Objectives ...39

3.3.3 Ontology Representation...40

3.3.4 Structure of Ontology..41

3.3.5 Criteria for ontology design ..43

3.3.6 Steps in Ontology Creation ...44

3.3.7 Challenges in Building Ontologies ...46

3.3.8 Ontology Description Languages..47

3.3.9 Ontology Applications ..51

3.4 Summary ..52

4 CHAPTER FOUR: OVERVIEW OF EXISTING APPROACHES FOR

TRANSFORMING DATABASE TO ONTOLOGY ..54

4.1 Introduction ..54

4.2 Approaches based on the analysis of relational schema...55

4.2.1 The Approach used by Stojanovic et al. ...55

4.2.2 The Approach used by Li et al. ...57

4.2.3 Other Database Schema Approaches ..59

4.3 Approaches based on an analysis of tuples ..60

4.3.1 The Approach used by Sonia et al. [43] ..60

4.3.2 The Approach used by Astrova et al. ..62

4.4 Approaches based on HTML pages ...62

4.4.1 The Approach used by Benslimane et al. ..62

XII

4.4.2 Astrova‟s HTML Approach ...64

4.5 Approaches based on entity relationship (ER) or Extended Entity Relationship

model (EER) ...65

4.5.1 The Approach used by Upadhyaya et al. (ERONTO)65

4.5.2 The approach used by Xu et al. [47] ...66

4.6 Approaches based on Structure Query Language (SQL).67

4.6.1 The approach used by Tirmizi et al. [45] ..67

4.6.2 The approach used by Astrova et al. ...68

4.7 Summary ..69

5 CHAPTER FIVE: APPROACH ARCHITECTURE ..70

5.1 Introduction ..70

5.2 Model Framework ..70

5.3 Database integration phases ...73

5.3.1 Transformation System Architecture ..74

5.3.2 Ontology Alignment ..75

5.4 General Disparities between Relational Databases and Ontologies77

5.4.1 Aim of Modelling and Object to Model ..77

5.4.2 The Effects of Open/Closed World Assumptions ...78

5.5 Comparison between Ontology and Conceptual Data Model80

5.6 Comparison between Ontology and Relational Data Model81

5.6.1 SQL Evolutionary Stages and Ontology Layers ...81

5.6.2 General Disparities between RM and OWL ...82

5.6.3 Inheritance Modelling Disparities between Relational Databases and

Ontologies ...83

5.7 Database and Ontology Capabilities ..84

5.8 The Transformation criteria ..86

5.9 The Transformation process ...88

5.10 Summary ...89

6 CHAPTER SIX: TRANSFORMATION FROM DATABASE TO ONTOLOGY90

6.1 Introduction ..90

6.2 Overview ..90

6.3 The rule source ...91

6.4 Transformation Rules ...91

XIII

6.4.1 Assumptions ..93

6.4.2 Predicates and Functions ...94

6.4.3 Producing Unique Identifiers (URIs) and Labels ...95

6.4.4 Class and Data type property Creation Rules ...96

6.4.5 Rules for the creation of object properties .. 118

6.4.6 Rules for instances ..131

6.5 Summary ..131

7 CHAPTER SEVEN: TRANSLATING AN EXTENDED ENTITY

RELATIONSHIP MODEL TO OWL ONTOLOGY ...133

7.1 Introduction ..133

7.2 Translating extended entity relationship to OWL ontology133

7.2.1 Translating Method ...134

7.3 Examples ..140

7.4 The Algorithms of Translating an EER to OWL Ontology144

7.4.1 Notations ...145

7.4.2 EER model structure rules ..145

7.4.3 Class and Datatype Creation Algorithm..146

7.4.4 Relationships ...148

7.5 Advantages and Disadvantages of EER as an Ontology source152

7.6 Validation and enhancing ...154

7.6.1 Validation Procedure ...155

7.6.2 Enriching the Ontology ...156

7.7 Summary ..157

8 CHAPTER EIGHT: CASE STUDY AND PROTOTYPE IMPLEMENTATION159

8.1 Introduction ..159

8.2 University database example ..159

8.2.1 University database requirements ...160

8.2.2 University EER diagram ...161

8.2.3 University relational schema ...163

8.2.4 SQL statement for University database ...165

8.3 Ontology generation: ..165

8.3.1 Producing Unique Identifiers (URIs) and Labels ...165

8.3.2 Applying our rules on University example ...166

XIV

8.3.3 Rules for the creation of object properties ..180

8.4 Implementation ...186

8.4.1 Part 1: menu bar ..188

8.4.2 Part 2: Load part ..188

8.4.3 Part 3: database analysis ...189

8.4.4 Part 4: Options part ...190

8.4.5 Part 5: The activity part: ..192

8.4.6 Part 6: The ontology produced ..192

8.5 Summary ..193

9 CHAPTER NINE: EVALUATION ..194

9.1 Introduction ..194

9.2 General Comparison ...194

9.3 Experimental ..201

9.3.1 Experimental Specification ...201

9.3.2 Abstract Syntax (Normative) ..203

9.3.3 Experimental Evaluation ...204

9.3.4 Score scheme evaluation ...213

9.3.5 Precision, Recall, and F-measure ..218

9.4 Quality of Transformation ..224

9.4.1 Reverse Transformation Algorithm: ..225

9.4.2 The Lexical Overlap Measure ...226

9.5 Completeness of Transformation..228

9.6 Other Measure of Success ..232

9.6.1 Formality ...233

9.6.2 Accuracy and Correctness ...233

9.6.3 Flexibility and Functionality ...233

9.6.4 Efficiency and Scalability ...234

9.7 Summary ..236

10 CHAPTER TEN: CONCLUSION AND FUTURE WORK238

10.1 Introduction ...238

10.2 Thesis summary ..238

10.2.1 Main Contributions..239

10.3 Evaluation of our approach ...241

XV

10.4 Criteria for achieving success ...242

10.5 Limitations ..242

10.6 Future work ...243

REFERENCES..245

Appendix A ...258

Appendix B ...260

Appendix C ...263

Appendix D ...269

XVI

LIST OF TABLES

Table 2-1: comparison between different database modelling‟s languages31

Table 3-1: Comparison between ontology languages ..51

Table 5-1: Comparison between EER, RM (SQL) and OWL Models ...85

Table 6-1: Data type between the Database and XML...98

Table 6-2: Schema for Attributes on relationship .. 113

Table 6-3: Schema for ternary relationship .. 115

Table 7-1: Translating Examples from an EER to OWL Ontology ...140

Table 7-2: Algorithm 7.1(entity and attributes representation) ..147

Table 7-3: Algorithm 7.2(Relationship Representation) ..149

Table 7-4: Algorithm 7.2(Relationship Representation) ..149

Table 8-1: The University Database Schema ...163

Table 8-2: Foreign keys participate in University class creation ...180

Table 8-3: Foreign keys participate in object properties ..182

Table 9-1: Transformation Approaches General Characteristic ...195

Table 9-2: Transformation Approaches Rules Characteristic ...196

Table 9-3: Transformation Approaches with Weighted Criteria ..199

Table 9-4: Table Transcript Added to University Database ...203

Table 9-5: Result of Class Creation Comparison ...205

Table 9-6: Result of Object Property Creation Comparison ..207

Table 9-7: Object Property of University Ontology ...208

Table 9-8: Result of Datatype Property Creation Comparison ..210

Table 9-9: Datatype Property of University ontology ..212

Table 9-10: Score Points Awarded ...215

Table 9-11: Score Points Subtracted ..216

Table 9-12: Scoring Scheme compared to SDO ..216

Table 9-13: Scoring Scheme compared to EDO ..218

Table 9-14: Precision compared to SDO ..219

Table 9-15: Precision compared to EDO ...220

XVII

Table 9-16: Recall compared to SDO ..221

Table 9-17: Recall compared to EDO ..222

Table 9-18: F-measure compared to SDO ..223

Table 9-19: F-measure compared to EDO ...223

Table 9-20 : Original Database and Inverse Database Constructs ...227

XVIII

LIST OF FIGURES

Figure 3-1: Semantic Web Architecture [8] ...36

Figure 5-1: Database Integration using Ontology vision framework adapted from [64] and

modified. ...72

Figure 5-2: The Visionary phases Architecture for Database Integration ..73

Figure 5-3: Database Transformation Architecture ..75

Figure 5-4: Mapping Techniques between Ontologies ..76

Figure 5-5: Mapping between Relational Models and Ontology Models Adapted from [61]82

Figure 6-1: Classes and Data-type Rules Algorithm ..92

Figure 6-2: Representation of Multi-Valued Attributes ... 111

Figure 6-3: Many-to-many relationships with additional attributes .. 114

Figure 6-4: Ternary relation after decomposing ... 115

Figure 6-5: Data type Axioms Algorithm .. 117

Figure 6-6: Unary relationships ...121

Figure 6-7: Binary Relationship with additional attribute ...123

Figure 6-8: Object properties characteristic algorithm ..125

Figure 7-1: Translating Entity and Attributes of the EER model to OWL Ontology144

Figure 8-1: EER Diagram of the University Database ...162

Figure 8-2: SQL and OWL Equivalent ..180

Figure 8-3: Prototype snapshot parts ...188

Figure 8-4: Prototype snapshot ..192

Figure 9-1: Partial of University Domain Expert Ontology ...203

Figure 9-2: The Different Hierarchy Results for the University Ontology Experiment205

Figure 9-3: subject approaches result compared to SDO ...217

Figure 9-4: subject approaches result compared to EDO ...217

Figure 9-5: result of the approaches compared to SDO ...223

Figure 9-6: result of the approaches compared to EDO ...224

Figure 9-7 : The Space of Relation Tree ..232

XIX

LIST OF ABBREVIATIONS

DB Database

DBMS Database Management System

ER Entity Relationship

EER Extended Entity Relationship

RM Relational Model

SQL Structure Query Language

DDL Data definition Language

DML Data Manipulation Language

OWL Web Ontology Language

AI Artificial Intelligence

DAML DARPA Agent Markup Language

DL Description Logic

FOL First Order Logic

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

OIL Ontology Inference Layer

RDF Resource Description Framework

RDFS Resource Description Framework Schema

URI Uniform Resource Identifier

URL Uniform Resource Locater

XX

UML Unified Modelling Language

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

SPARQL Simple Protocol and RDF Query Language

SWRL Semantic Web Rule Language

API Application Programming Interface

http://www.w3.org/Submission/SWRL/

Chapter 1 Introduction

1

1 CHAPTER ONE: INTRODUCTION

Objectives

 Enumerate the motivation for our research.

 Propose the general solution architecture.

 Provide the research methodology.

 Illustrate how the thesis is divided into chapters.

1.1 Introduction

This chapter provides an introduction to the thesis: beginning by describing the main

problem addressed; followed by the research questions; a description of the overall

research goals and objectives; an analysis of the main contributions of the research; and

a description of the research methodology and practice. Finally, the structure of the

thesis will be presented.

1.2 Problem Statement and Motivation

At the present time with the rapid growth in use of the Web, there is an increasing

demand for the ability to effectively exchange data. Although current approaches have

focused on exchanging data they have only partially succeeded due to the lack of

semantics in the areas of data storing and data representation. Therefore a mechanism is

required to enable the integration of data from many different sources whilst also

retaining the capability of presenting them in a semantically uniform way.

Three big challenges must be overcome to realise this endeavour and upgrade the

current Web. One of these stems from the Web representation language (HTML) and

the second challenge originates from the nature of database which is responsible for

data storing. The third challenge is the need to integrate data from multiple web sites.

Chapter 1 Introduction

2

To consider the first challenge; HTML is the language used to create Web pages and

define its formatting specifications. One advantage in using HTML has been that it

offers a simplified maintenance process, since it provides separation between data and

the layout of the Web design, another advantage is the automated updating of Web

content. However HTML legacy language suffers from the following problems:

 HTML is considered to be a machine-readable language; i.e. HTML

concentrates on the information‟s appearance not on its meaning.

 Lack of semantic representations vocabularies.

 Parsing HTML is possible, however it is difficult to automate this since HTML

forms could contain multiple frames (optional, multivalued, merged), attributes

or attributes as values and (factored, duplicate) data.

 HTML is intended for user consumption; i.e. user “head knowledge” only.

Consequently it is not considered as one of the semantic Web languages.

 Web sites change rapidly.

 HTML is a static language and the information dynamically generated at the

time of user requests is stored in other places.

In the case of the second issue; database has many characteristics such as:

 Providing scalability.

 Facilitating powerful query language.

 Assisting rapid operations such as search and retrieval.

 Utilising the benefits of relational databases and management systems such as

transaction management, security and integrity control.

Indeed, since vast amounts of Web information are stored in databases, they are

therefore considered the backbone of the current Web. In addition, databases are

responsible of producing the dynamic elements of Web sites. In fact, large portions of

content referred to as “Deep Web” are stored in relational databases [66, 67, and 69].

More precisely about 77.3% of the data on the current Web is stored in relational

databases [5]. However databases are not a knowledge representation language and

Chapter 1 Introduction

3

therefore they would not be a suitable replacement for HTML. It is also the case that

database have certain problems with regard to the Web:

 Data stored in database is not accessible to Web search engines. The majority of

the world‟s data today is still locked in data stores and is not published as an

open Web resource (information on demand).

 Lack of semantic for naming tables and attributes.

The third challenge is the need to integrate the data that resides in relational databases in

the Web environment, i.e. the Deep Web. This problem results from database

heterogeneity, which includes many problems such as:

 Different specifications lead to different database designs.

 Designers have different viewpoints regarding concepts, structures and

assumptions.

 Data itself may be stored in a variety of databases having different data models,

formats and platforms.

The success of the Web crucially depends on semantic representation, and semantic

database integration. Therefore, to address the first challenge current Web language

needs to be upgraded from HTML legacy language to an expressive language, which is

also a machine-understandable language. This need is considered to be one of main

forces driving the move to invent a Semantic Web. A promising solution to the problem

is to apply ontology languages, which are at the core of Semantic Web, since they

satisfy the two conditions. An ontology language (e.g. OWL) can be used to annotate

the current Web in order to add semantic to the data and prepare the information so that

it can be processed. In the case of the second challenge using an ontology language to

represent the semantic hidden in database structure is the best solution, since databases

are not data representation language. To overcome the third challenge, database

integration, using global ontology which plays the same role of domain schema in

federated databases is the key solution. The methodologies typically used to seek

to resolve database integration issues, such as a database warehouse and a federated

database, [70] are inappropriate in this case since the need here is to create a system to

Chapter 1 Introduction

4

take care of both the semantic database and data representation in the Web too.

Therefore the need is to produce a methodology that could integrate databases with the

Semantic Web. For these challenges we propose using a hybrid ontology approach since

it provides both semantic and shareability. Thus, it is appropriate to address the first two

challenges using local ontologies and the third with a global ontology.

To ensure the success of the proposed approach the ontologies should be available.

Domain ontologies are readily available whereas local ontologies are unavailable. The

option of building local ontologies manually would be impossible due to the scale of the

Web sites that might be expected to participate in the integrated system. Moreover the

manual constrictions on creating new ontologies suffer are as follows:

 Labour-intensive.

 Error-prone.

 Time consuming.

Therefore we propose producing ontologies from relational database as an alternative

technique to high cost manual ontology creation. The proposed approach benefits from

reusing the vast amount of information available on databases and the semantic hidden

in database schema. The goal in this case is to produce a methodology that can readily

integrate databases and merge them with the Semantic Web. In order to accomplish the

goal of interoperability ontology based architecture is sufficient, since ontology can

explicitly and semantically describe data and this allows it to perform a significant role

in resolving semantic heterogeneity problem.

The goal of this thesis is to integrate databases in web environment in order to enhance

the current Web. This will include upgrading the current web through building

ontologies from databases, since the isolated creation of ontology without consideration

of databases will generate a need for a new method to create relationships between

ontologies and databases.

It is significant that we seek to differentiate between data and database integration.

While data integration involves joining data together that exists in different sources,

providing users with a combined impression of this data, database integration involves

http://en.wikipedia.org/wiki/Data

Chapter 1 Introduction

5

combining data that resides in relational and non-relational database sources in a unified

manner. Therefore database integration is an aspect of data integration.

Now we can conclude reasons that motivate our research:

 Using the semantic Web for database integration requires the existence of

ontologies. However, most ontology does not exist therefore we need an

automatic system to construct ontology and to remove the excess burden of

constructing ontology manually from scratch.

 Ontology design swings between subject description and size; ontology shapes

its design in a direct and natural way, better than database model. However, the

size of ontology is more often very large, since it has a large number of concepts

which need numerous relationships to link them. Furthermore, these

relationships are tangled and complicated. Consequently, the construction of a

new ontology from scratch, without considering existing data storage (database),

would not be a good candidate for a Semantic Web environment, because many

Web sites rely heavily on storing their data in a relational database.

 Current database integration methods are concerned with syntax and structure

schema heterogeneity, whereas the need is for a method to resolve the semantic

heterogeneity problem, where ontology can be considered as a best solution

[71].

 All existing ontology-based annotation tools can only be used to annotate static

HTML pages thus far [47].

1.3 Research Question

The overall research question this thesis tries to answer is:

What is the best way to integrate databases utilising Semantic Web methodologies?

This question results in the following ones:

- How can we bridge the gap between the database model and the

ontology model?

Chapter 1 Introduction

6

- How can we integrate databases into a Semantic Web?

- How can we obtain high quality ontology from database sources?

- What is the best database source for producing better ontologies?

- How can we combine semantics obtained from more than one database

source?

1.4 Contribution to knowledge

The main contribution of this thesis is the development of a methodology that integrates

both relational and conceptual models of databases in order to generate robustness

ontology. The other major contributions of the study undertaken and reported on in this

thesis can be briefly summarised as follows:

 Constructing a transformation system (relational model to ontological model).

 Creating a transformation system (conceptual database model to ontological

model).

 Building a system to integrate both logical and conceptual database models to

produce ontology.

 Implementing an automatic tool to transform SQL-DDL to OWL ontology.

Other aims and objectives (achievements) of this research are:

 Moving the representation of legacy system (database) to a richer semantic

expression system (ontology) with preserving data.

 It is possible to reuse the existing database models to enrich the evolution of

web ontologies, since both the Extend Entity Relationship (EER) model and

relational schema are fully of an implicit domain knowledge which can be

extracted in order to support the development of web ontologies.

 It is also possible to generate an ideal starting point for constricting complete,

standard and effective ontologies that fulfil Semantic Web criteria.

 Discovering database semantics by employing reverse engineering

methodologies.

Chapter 1 Introduction

7

 Identifying different database design, which includes the clarification of the

differences between relational model and the extended entity relationship model.

 Identifying the differences between database modelling and ontology modelling

so as to reduce the gap between the two.

 Combining the advantages from both the database schema and the database

conceptual model which helps in identifying reliable categorisation patterns

hidden in the data. Our fully automated algorithm is influenced through various

types of semantic constraints filled with semantic.

 Developing a framework using the semantics of database schemas to develop a

solution for bridging the gap between database and Semantic Web.

 A tool is developed to translate correct semantics obtained from a database

model into an ontology model. A fully automated tool would not be able to

capture semantics in both database modelling; however, we propose a solution

which will require as little human interference as possible.

 Ensuring the transformation system from database to ontology can be applied to

any application domain.

 Illustrating the effective use of our system through a case study.

1.5 Research Methodology

The research method used in this approach is a typical scientific research technique. As

in the majority of the computer science approaches that describe research belonging to

the constructive research field, the constructive approach refers to contributions to

knowledge being developed as a new framework, theory, model or algorithm. The

methodology of the proposed approach consists of four main steps and this section

summarises the research methodology steps and outlines the reason behind using each

part of them. The approach presented was realised by following the steps laid out

below:

Step 1: critical engagement with existing literature

Background research was conducted initially with a theoretical literature review to

enhance understanding of all the approaches related to the research question. To achieve

Chapter 1 Introduction

8

the required understanding from this stage papers in learned journals and digital

resources were used.

Step 2: Architecture

This phase focused on the design of the framework architecture to capture the research

objectives in order to solve the research question. This phase specified all components

of the proposed framework and identified the technology used in the framework,

explicitly stating how the framework components interact to achieve the research

objectives.

Step 3: Algorithmic Development

This research step investigates each phase of ontology creation (classes, datatype

properties, object properties, and instances). The main focus here was on providing a

new algorithm that combines the advantages of both relational model and the conceptual

database model to provide a flexible mechanism that will be applicable to any database

source.

Step 4: Evaluation and conclusion

In this stage the prototype was built based on the proposed method and the experiments

were conducted and the result evaluated. The evaluation step demonstrated the practical

applicability of the research presented. A conclusion was provided from the experiences

of the evaluation phase and a number of potential extensions for this research study

were raised to motivate further investigation in the field of transforming database to

ontology.

1.6 Thesis Outline (Organization of the Thesis)

The remainder of this thesis has been arranged according to the following framework.

Chapter 2: Database Overview

Chapter 1 Introduction

9

This chapter supplies an overview of database definition, structure, database modelling,

advantages, and disadvantages.

Chapter 3: Semantic Web and Ontologies- State of the Art

Here we provide an overview of a Semantic Web, and introduce the definition and the

structure of ontologies and ontology applied areas. Then the chapter explains ontology

description languages such as Resource Description Framework (RDF), Resource

Description Framework Schema (RDFS), and Web Ontology Language (OWL), and

offers a clear comparison between them.

Chapter 4: Overview of Existing Approaches Transforming Database to Ontology

In this chapter the classifications are described based on sources from existing

transformation systems. Then the current transformation approaches are examined, to

capture the advantages and disadvantages of each approach.

Chapter 5: Approach Architecture

This chapter give an insight into general architecture systems. It also presents the main

components of our framework with a full description, and describes how these

components will interact with each other in order to provide good results. Following

this, the disparities between database modelling and the ontological modelling are

discussed in order to solve the transformation challenges and to bridge the gap between

the two modelling systems. Then the existing sources are discussed, in particular to

determine which of them will be able to produce a high quality outcome and why.

Chapter 6: Transformation from Database to Ontology

This explains in detail all the heuristic rules that are required for generating OWL

ontology from a relational model written in Structure Query Language-Data definition

Language (SQL-DDL) language. The rules are obtained by reverse engineering

methodologies in order to generate a complete ontology structure.

Chapter 1 Introduction

10

 Chapter 7: Translating an Extended Entity Relationship (EER) Model to OWL

Ontology

In this chapter the proposed rules are able to translate an EER model to OWL Ontology.

This chapter also provides a systematic method to utilise the ontology produced from

the Relational Model (RM) source and augment it with further semantics obtained from

the EER model.

Chapter 8: Case study and Prototype Implementation

This chapter offers a full description for our system prototype. In addition, it provides

an experiment case study in order to reveal our system capability in producing high

quality results.

Chapter 9: Evaluation

This chapter offers an expository comparison between our approach and the capabilities

of other current approaches. The evaluation which takes place in this chapter compares

the ontologies produced by different approaches with the ontology developed by

domain experts as a benchmark test. Then we examine our approach against many

success criteria, such as completeness, flexibility etc.

Chapter 10: Conclusion and Future Work

The final chapter concludes the work done in the thesis, presents the limitations of our

work and offers suggestions for future work.

Chapter 2 Database Overview

11

2 CHAPTER TWO: DATABASE

OVERVIEW

Objectives

 Introduce the database: definition and advantages.

 Show data modelling in the database.

 Discuss EER model creation and criteria.

 Map EER model into relational model.

 Demonstrate SQL characteristics.

 Compare EER model to relational model.

2.1 Introduction

This chapter presents the main ideas relevant to the subject of databases. Firstly, it gives

an overview of the database concept and related important features. Secondly, it

classifies database types based on their data models. Thirdly, it focuses in detail on how

to design relational databases. Fourthly, it presents a comparison between conceptual

models and relational models in order to specify the best database representation source.

Following this the final section concludes the chapter.

2.2 Preface

At the current time databases are indispensable, due to the many applications we use in

this knowledge-based society. For example, search engines and websites utilise

databases to store and identify information requests from people. Therefore, databases

are now considered an integral part of the information revolution. The significance of

databases is derived from decades of intensive research on the evolution of database

design and technology [3].

Chapter 2 Database Overview

12

A database can be defined as a collection of persistent data used by the application

programs of some enterprise. Persistent data can be described as data that is truly stored

in the database, as opposed to input or output data [1].

Each database is managed by a Database Management System (DBMS), shortly to

become known as a Database System, which is a powerful tool for creating and

managing large amounts of data efficiently. In addition to controlling data, the DBMS is

also designed to deal with hardware, software and users. The functions of a database

system include:

1- Dealing with user requests to:

- Create new databases and specify the structure of the data.

- Modify the data structure.

- Query data.

2- Dealing with software to perform integrity and security checks etc.

3- Controlling hardware to physically store data.

4- Controlling data by showing how the data is stored, accessed, and linked to

each other [3].

Generally, databases are useful due to the following characteristics:

1- Storing data once (centralised control).

2- Having multiple locations.

3- Making “backing up” easier.

4- Having multiple layers of security.

5- Being scalable.

6- Enforcing Standards.

Chapter 2 Database Overview

13

2.3 Databases and data models

Each database must be built upon a data model, which is a “collection of concepts that

can be used to describe data, data relationships, data semantics and consistency

constraints” [2].

A data model for database design can be categorised into:

- Legacy models which were common in the past:

 Network model.

 Hierarchical model.

- Relational model which is the most commonly accepted model.

- New models:

 Relational-object model.

 Object model.

The classification of databases is based upon the data models. Therefore, each data

model has its own database type, e.g. network database, relational database, object

database etc.

In the last three decades the relational model, which is the heart of a relational database,

has become the dominant model compared to old-fashioned models – the hierarchical

model and the network model. This acceptance can even be applied to the new database

models, such as object databases and object-relational databases. Now relational

databases are popular and accepted by users, database designers and database vendors.

Therefore, about 77.3% from data available today in the Internet is stored in relational

databases [5]. Additionally the functions of and domain experts in relational databases

are obtainable, whereas new models (i.e. object-relational databases or object databases)

lack both these functions and domain experts.

Chapter 2 Database Overview

14

2.4 Database Creation

The creation of relational databases has two phases. First, the conceptual model phase,

which is done through either the Entity Relationship (ER) model or Extended Entity

Relationship (EER) model. With the former model the designer specifies the entities,

attributes and finally the relationships. The latter model includes all the steps identified

in the former model, with the addition of some enhanced issues such as specialisation

and generalisation etc. Second is the implementation phase, which initially converts the

conceptual model to a relational schema, after which the implementation can be

executed using Structure Query Language (SQL).

2.5 Phase-1 Conceptual modelling

A conceptual data model specifies the type of data the database stores, similarly to the

way people perceive data in daily life. A conceptual data model uses concepts such as

entities, attributes, and relationships. It hides the details of physical storage structures.

This phase has three steps:

- Starting with an English description (requirements or specification).

- Developing a set of entities and relationships (ER model).

- Drawing an ER diagram (conceptual schema).

2.5.1 Entity Relationship model

The Entity Relationship(ER) model is a widely used data model for the conceptual

description of databases. This model admits the specification of an enterprise, and then

represents it with a high-level logical database structure. The ER model is significant

for three reasons: first, it helps with mapping real world activities into a conceptual data

model. Second, it is independent from database management systems. Third, it

represents many semantic aspects of data meanings. Thus, the ER model can be

considered to be one of the semantic data models [2, 3].

The Entity Relationship model can be represented by an ER diagram which is a

diagrammatic notation associated with the ER model. It is used to express graphically

Chapter 2 Database Overview

15

the overall logical structure of a database. Moreover, it focuses on schema

representations rather than individual data. This criterion is helpful in designing

databases, since the concepts are rarely changed whereas the contents are frequently

changeable in entity types. Besides that an ER diagram can be characterised as a simple,

clear, and widespread graphical model.

2.5.2 Basics of Entity Relationship model

An ER model includes three main elements:

- Entity;

- Attribute;

- Relationship.

2.5.3 Entity

An entity can be defined as a thing or object in the real world with self-sufficient

existence; i.e. it is distinguishable from all other objects [4]. An entity might be a thing

with natural existence (e.g. a person) or it might be a thing with a conceptual existence

state (e.g. a job).

There are many terms that are usually used to describe an entity, such as entity type or

entity set. We can define the entity type (entity set) as a data model representation that

corresponds to a category of real-world objects. The entity is the actual set of values

corresponding to the entity type, also called an individual entity.

Usually for simplicity the term „entity‟ in the ER model is used to express the entity

type, unless there is a need to distinguish between entity as individual or as type.

The entity type manifests in two forms [2]:

- Strong entity: this form does not need another entity to exist.

- Weak entity: the existence of this form depends upon another entity.

Chapter 2 Database Overview

16

A classic example to demonstrate the difference between a strong and a weak entity is

the entity 'child of an employee', the existence of which is based on the existence of the

entity 'employee'. So we consider the employee a strong entity and the child of an

employee a weak entity. Each entity has many properties that describe it and these

properties can be represented by a set of attributes.

2.5.4 Attribute

An attribute is a descriptive property owned by each member of an entity set. Each

attribute has a domain, and the domain of the attribute is a group of allowed values [4].

For example, the domain of the attribute x might be the group of all positive integers, or

it might be a text of a certain length etc. So the attribute of an entity is a function that

maps the entity into a domain. Also, in an ER model, each attribute has its own domain

type. For example Employee-Id: integer, Name: string, and Married: Boolean.

The question that could be raised here is:

- How can we distinguish between the entity and the attribute?

The distinction mainly depends on two conditions:

- The structure of the real world enterprise being modelled;

- The semantics associated with the attribute [2].

For example, the 'Name' can sometimes be considered an entity for a telephone book

database, whereas the Name of a student in a university database can be represented as

an attribute.

2.5.4.1 Attribute classification

The attribute can be distinguished as follows:

 Simple or composite attribute:

The attribute can be simple (atomic) which cannot be divided into sub-parts.

However a composite attribute can be divided into sub-parts (many attributes)

Chapter 2 Database Overview

17

which represent more basic (simple) attributes with independent meanings. The

use of composite attributes depends on the user specification. For example, if the

user wishes to refer to an entire attribute on some occasions and only a

component of the attribute on other occasions. The benefit of using composite

attributes is that it helps group together related attributes and thus makes the

modelling cleaner. Additionally the composite attribute may appear as a

hierarchy. For instance, the Address of a person is a composite attribute,

although it could be considered an atomic attribute if its sub-parts do not have a

valuable purpose, e.g. in designing a query. In this case, we can only refer to it

as a unit. On the other hand, for a delivery company, the Address is considered a

composite attribute because each part has a significant value.

 Single-valued or multi-valued attribute:

The single-valued attribute would refer to only one value for a specific entity

instance. However, the multi-valued attribute is an attribute which has a set of

values for a specific entity instance. For example each person has only one name

so the attribute Name will be a single-value attribute. Conversely each person

may have more than one hobby. So the attribute Hobby can be considered a

multi-valued attribute.

 Derived attribute:

The value of this attribute can be deducted from the values of other associated

attributes or entities. For example, the attribute Age is not necessarily stored.

Still it can be computed if the required attribute Date-of-Birth exists.

 Complex attribute:

A complex attribute is a composite and multi-valued attribute nested arbitrarily.

 Null value:

A special value called Null is created when we do not know the value for an

attribute, or the attribute is not applicable for the entity. For example, a College-

Chapter 2 Database Overview

18

Degree attribute will be assigned the null value when applied to persons without

college degrees, or when we do not know the person‟s specific college degree

even if he has one.

 Keys:

- Super key:

No two individuals (instances) in one entity are allowed to have exactly

the same value for all attributes. Therefore each entity would have a

unique identifier; in practice one or more of its attributes. Those

attributes whose value uniquely identifies the entity will be the super key

[5]. Thus, the super key attribute(s) distinguish the individuals from each

other. However, the concept of the super key is not practical since it may

contain extraneous attributes and this leads us to the idea of the candidate

key.

- Candidate key:

A candidate key is a super key for which no proper subset is a super key.

The candidate key must satisfy two conditions:

1. Uniqueness: no two tuples in the instances of an entity

type have the same values for all the attributes of the key.

2. Minimal: none of the attributes of the key can be

removed without destroying the uniqueness property.

- Primary key:

A primary key is a candidate key that is chosen by the database designer.

Here the database designer considers the following criteria when

choosing the primary key of an entity:

 Unique and minimal.

 Not null: it must have value.

Chapter 2 Database Overview

19

 Protects sensitive data.

 Invariant: it is rarely or never changed.

 Meaningful key.

- Alternate Key:

An alternate key is a candidate key that has not been chosen to be the

primary key.

2.5.4.2 The primary key of strong and weak entities:

Each entity must have a primary key to distinguish each instance from the other. A

strong entity has sufficient attributes to form a primary key. In contrast, a weak entity

does not have sufficient attributes to form a primary key, except for a discriminator,

which is a set of attributes that allows a distinction to be made in the case of one

particular strong entity. In other words the discriminator uniquely identifies one single

individual of the weak entity for one individual of a strong entity - thus the

discriminator could only be considered to be a partial key. Therefore the weak entity

must be associated with another entity called the identifying (owner) entity to be

meaningful. To construct the primary key for the weak entity, we combine the primary

key of the identifying entity with the discriminator of the weak entity.

2.5.5 Relationship

A relationship is the association of several entities [1]. Each relationship is defined

according to degree, which shows the number of entities that participate in that

relationship. Therefore the relationship can be classified based on relationship degree as

below:

 Unary relationship: this is a relationship between an entity and itself.

 Binary relationship: this is the most often used relationship, between two

entities.

Chapter 2 Database Overview

20

 N-ary relationship: relationships exist between N entities, where N>2. The most

popular case of N-ary is the ternary relationship, which is when a relationship

exists between three entities.

Two different constraints can be applied to a relationship: cardinality ratios and

participation constraints.

2.5.5.1 Cardinality ratio constraints

Cardinality ratios could be defined as the number of individual relationships that exist

between the participating entities [2]. In other words the cardinality ratio constraints

declare the number of individuals to which another entity can be linked via a

relationship. Cardinality will take one of the following forms in mapping between

entities:

- One-to-One.

- One-to-Many.

- Many-to-One.

- Many-to-Many.

The appropriate mapping cardinality for a particular relationship obviously stems from

the real world situation.

Besides the relationship mapping types above, there are some other types of

relationships such as:

- Functional relationships: relationships such as “AVERAGE” or “SUM” may

exist between entities. However these are not possible to represent in the

relational model.

- Recursive relationships: relationships such as “ANCESTOR” may be recursive.

This is not possible to implement directly in a relational model.

Chapter 2 Database Overview

21

2.5.5.2 Participation constraints

The second constraint is the participation constraint which specifies whether the

existence of an instance of an entity type depends on another instance existence via a

particular relationship or not. This constraint defines for each entity type the minimum

number of participant relationship instances. The participation constraints can come in

two forms:

- Total: Every individual entity must participate in the relationship. For example

each relationship between the owner entity and the weak entity (i.e. identifying

relationship) always has total participation constraints towards the weak entity.

- Partial: Some individual entities can participate in the relationship.

Another way to express the participation constraints is by using the (min, max) notation

of Jean-Raymond Abrial. This notation involves associating a pair of integer numbers

for specifying structural constraints on relationships which are used to specify the

minimum and maximum participation of each entity. When the minimum is 0 the

implication is that the relationship will have partial participation, whereas if the

minimum is > 0 this implies total participation [4].

2.6 Extended Entity Relationship (EER)

Many database schemas for database applications can be adequately represented by the

ER model. However, the higher concepts are not covered by the ER model which needs

to be designed to express some advance constraints and data properties in a proper,

accurate and precise way in order to reflect newer applications requirements in database

technology. Therefore there is a need for new concepts such as inheritance,

specialisation, and generalisation. These concepts will be integrated into the ER model

to form the new conceptual data model. For this purpose the Extended Entity

Relationship, also known as Enhanced Entity Relationship (EER), was developed for

adding semantic concepts to the ER data model.

Chapter 2 Database Overview

22

2.6.1 Specialisation

Specialisation is the process of designing sub-groupings within entity types. An entity

type includes sub-groupings of entities that are distinct in some way from other entities

in the set. In other words, a subset of entities within an entity type may have attributes

that are not shared by all the individuals in the entity type [2, 4]. Hence specialisation

can be applied when there are sub-groupings of individuals for an entity type, where

each group shares the same meaning and can be distinguishable from other groups.

Therefore, if sub-groupings are of significance to the database application, then it can be

explicitly represented by specialisation; otherwise there is no need to complicate

database design.

An entity type can be categorised by using one or more distinguishing features. When

more than one specialisation is formed in an entity type, a particular entity may belong

to multiple specialisations. In term of the EER diagram an ISA relationship is used to

depict the specialisation. Moreover the ISA relationship may be referred to as a

superclass-subclass relationship. The entity type sub-groupings are called subclasses,

and the entity type itself is called the superclass.

 Why do we need to add specialisation to the ER model?

There are two reasons for adding specialisation to a data model, i.e. superclass-subclass

relationships: The first reason is that the superclass might have certain attributes shared

by only some instances. The second is that members of subclass entities participate in a

particular relationship type where the other entities do not [4].

2.6.2 Generalisation

Specialisation represents a top-down design process. In the bottom-up design process,

multiple entity types are synthesised into a higher-level entity type on the basis of

common features. If two or more entity types have several attributes with the same

concepts across them, this can be expressed by generalisation, which is a containment

relationship that exists between higher level entity types and one or more lower level

entity types. Higher and lower entity types also may be designated by the terms

Chapter 2 Database Overview

23

superclass and subclass respectively [2]. Generalisation could be considered a process

of abstraction. So the steps in generalisation are:

- Suppress the differences between several entity types.

- Identify their common feature.

- Generalise them into one single superclass.

- Make the original entity types subclasses.

For all practical purposes generalisation is a simple inversion of a specialisation. In

terms of the EER diagram itself we do not distinguish between specialisation and

generalisation.

 Attribute and relationship inheritance:

Attribute inheritance is a significant property of higher and lower level entities. It is

created by specialisation or generalisation. That is to say, the attributes of higher entity

types are inherited by lower level entity types. The attribute inheritance applies through

all tiers of lower level entity types. Additionally, lower level entity types inherit

participation in the relationship types in which their higher level entity participates. In a

hierarchy of entity types, lower entity types may be involved in only one ISA

relationship; that is entity types have only a single inheritance. If an entity type is a

lower level entity type which has more than one ISA relationship, then the entity type

has multiple inheritances and produces a resulting lattice structure [2].

2.6.3 Constraints on generalisations and specialisation

We discuss constraints that apply to a single specialisation or a single generalisation. In

brief, we refer only to generalisation even though it applies to both of them.

2.6.3.1 Membership

This constraint determines which entities can be members of a given lower level type.

There are two kinds of membership:

Chapter 2 Database Overview

24

i. Condition-defined: The membership of lower level entity types is evaluated on

the basis of whether or not an entity satisfies an explicit condition or predicate.

In other words the entity will become a member of a subclass by placing a

condition on the value of some attribute of the superclass. If all lower level

entities are evaluated on the basis of the same attribute, the generalisation here is

known as 'attribute-defined'.

ii. User defined: In user-defined situations, lower level entity types are not

constrained by a membership condition; rather the database user assigns entities

to a given entity type [2, 4].

2.6.3.2 Disjointness constraints

This determines whether or not an entity may is a member of more than one lower

entity type within a single generalisation [2, 4]. Disjointness can occur in two situations:

i. Disjoint: This constraint requires that an entity belongs to no more than one

lower level entity type.

ii. Overlapping: The same entity may belong to more than one lower level entity

type within a single generalisation. The overlapping constraint is the default.

2.6.3.3 Completeness constraints

This specifies whether or not an entity of the higher level type must belong to at least

one of the lower level entity types within a generalisation [2, 4].

i. Total generalisation: Each higher level entity must belong to a lower level

entity type.

ii. Partial generalisation: Some higher level entities may not belong to any lower

level entity type. This is the default.

The disjointness and the completeness are independent so there are four possible

constraints on generalisation:

i. Disjoint and total.

ii. Disjoint and partial.

Chapter 2 Database Overview

25

iii. Overlapping and total.

iv. Overlapping and partial.

2.7 Phase-2 Implementation Phase relational model-structure

query language (SQL)

The implementation phase can be carried out using the Relational Model (RM). The

relational model uses a “collection of tables to represent both data and the relationships

amongst these data, also called the relational schema” [1]. Subsequently, the relational

schema can be implemented in the Structure Query Language (SQL) [3].

2.7.1 Structure of Relational databases

Here we present the relational model elements with their equivalent SQL terms:

 Relation (table)

The relational data model takes its name from the mathematical concept of

'relation' which corresponds to the concept of 'table'. A relational database

consists of a collection of tables each of which is allocated a unique name.

 Tuple (row)

A row in a table represents a relationship among a set of values. The order in

which tuples appear in a relation is irrelevant.

 Attribute (Column)

The column header is the attribute; for each attribute, there is set of allowed

values called a domain.

 Keys

- Primary key: a super key with minimal attributes.

Chapter 2 Database Overview

26

- Foreign key: a primary key of another relation which represents the

relationship between relations.

 Database schema

The database schema is the logical design of the database, as distinct from a

database instance which is a snapshot of the data in the database [3].

2.7.2 The algorithm of mapping the ER model to the relational model

This mapping algorithm converts the basic ER model into the relational model over

many steps. These steps consist of mapping entity types (strong and weak), binary

relationships, N-ary relationships and attributes (simple, composite, and multi-valued)

etc. [2].

2.7.2.1 Mapping the entities

i. Mapping of strong entity types

Each strong entity type creates a relation that includes:

- All simple attributes of the strong entity.

- Simple component of composite attributes of the strong entity.

- The primary key chosen in the ER will be the primary key of the relation. The

candidate keys can be considered to be unique or index keys.

ii. Mapping of weak entity types

For each weak entity type, create a relation and include:

- All simple attributes of a weak entity.

- Simple component of composite attributes of the weak entity.

- The primary key of the relation corresponding to the weak entity will contain the

primary key of the owner entity type, in addition to the partial key

(discriminator) of the weak entity type.

Chapter 2 Database Overview

27

2.7.2.2 Mapping the relationship

Here we use the term relation which represents the participating entity type in all the

following mapping procedures.

i. Mapping of binary 1:1 relationship types

There are two possible approaches:

- Foreign key approach

This is the most used approach. First we add the primary key of the partial

participation relation to the relation with total participation. Then we include all

simple attributes and simple components of composite attributes of the

relationship type as attributes to the relation with total participation.

- Merged relation approach

When both relations participate totally in the relationship it is possible to

combine the two entity types and the relationship into a single relation.

ii. Mapping of binary 1: M relationship types

This is for each binary relationship (cardinality of 1: M) that does not involve

weak entities. We identify the relation at the M-side of the relationship type;

include as the foreign key to this relation the primary key of the relation at the 1-

side participating in this relationship.

iii. Mapping of binary N: M relationship types

For each binary N: M relationship type we create a new relation that includes:

- Simple attributes or simple component of the composite attributes of the N: M

relationship.

- The primary keys of the relations participate in the relationship as foreign keys.

Chapter 2 Database Overview

28

- The combination of the foreign keys will form the primary key of the new

relation.

iv. Mapping of N-ary relationship types

For N-ary relationship types, where N>2, create a new relation to represent this

relationship which includes:

- Any simple attributes or simple component of the composite attributes of the

relationship.

- The primary keys of the relations participating in the relationship as foreign

keys.

- The primary key of the new relation will be the combination of all the foreign

keys which refer to the relations that participate in this relationship.

v. Mapping unary relationship

When a relationship exists between the entity type and itself, then we add the

primary key of the relation to the relation itself as a foreign key with a new

name.

 Mapping the multi-valued attributes

For each multi-valued attribute, create a new relation. This relation will include:

- The multi-valued attribute.

- The primary key of the owner relation as a foreign key plus the multi-valued

attribute.

- The new relation (multi-valued relation) primary key is the combination of both

the multi-valued attribute and the primary key of the owner relation.

2.7.3 Structure Query Language

One of the major reasons for the success of relational databases is the use of SQL

language, because SQL is a standard for all relational database systems. Thus, a

Chapter 2 Database Overview

29

database designer is less concerned when converting from one database system to

another since both systems follow the same language standards. In practice, there are

many differences between commercial database systems, however most systems truly

support the standard SQL [1, 3].

SQL can be categorised into two types, Data Definition Language (DDL) and Data

Manipulation Language (DML). SQL-DDL includes creating schemas, tables and data

types. However, SQL-DML is used for managing data within schema.

SQL has many features. For example it is based on relational calculus and it includes

some features from relational algebra, although SQL syntax is more user-friendly than

both of them. SQL is also a comprehensive database language, since it includes DDL,

DML languages and queries. Furthermore SQL provides a higher declarative language

interface which makes the user less concerned about the actual execution.

2.7.3.1 SQL commands related to our work

 CREATE TABLE: is used to specify

- Table name to represent a relation.

- Attributes: name, data type, domain values, and attribute constraints.

- Initial table constraints: keys, referential integrity.

 INSERT INTO: is used for inserting records into tables.

2.7.3.2 Attribute data types in SQL

 Numeric data types include:

- Integer numbers of various sizes (INTEGER or INT and

SMALLINT).

- Real numbers of varying precision (FLOAT, REAL and DOUBLE).

 Character string:

Chapter 2 Database Overview

30

- Fixed length (CHAR, or CHARACTER).

- Varying length (VARCHAR).

 Boolean data type has values of TRUE or FALSE.

 DATE and TIME and TIMESTAMP.

2.7.3.3 Attribute constraints

- NOT NULL: if NULL value is not permitted for the attribute.

- DEFAULT: a default attribute value for a new tuple.

- CHECK: to restrict attribute values to clause conditions.

2.7.3.4 Keys

- PRIMARY KEY

- FOREIGN KEY

- UNIQUE

2.7.3.5 Referential integrity

- ON DELETE CASCADE

- ON UPDATE CASCADE

2.8 Comparison between Entity Relationship and Relational

Model

Both the extended entity relationship model and the relational model are abstract logical

representations of real world enterprises. Since the two models employ similar design

principles, we can convert an EER model into an RM. However not all the semantics

present in the EER model can be translated to the RM. For example some information

might be lost, such as inverse role relation and composite attributes while translating ER

Chapter 2 Database Overview

31

diagrams into a relational schema [6]. Another issue is that the information might be

represented implicitly, which means that one design can represent more than one case

such as class hierarchy, multiple inheritance etc.

Moreover, the ER model and the RM model are different in their representation of a

connection between entities. The ER model uses a relationship to express explicitly that

connection, while the RM model represents the connection via an attribute in an implicit

way by putting the primary key in a relation as an attribute of another relation. This

implicit way of representing a connection results in the loss of more semantics in the

process of transforming from the ER model to the RM model.

In addition, the EER model is different from the RM model since the EER model shows

explicitly some semantics such as specialisation and generalisation. In contrast, the RM

model shows specialisation implicitly or indirectly, that is, all individual entities will be

stored in one entity table. Query statements are then used in SQL to determine the

membership of each individual entity, so only the query conditions can categorise each

individual entity. However, the case of generalisation is not applicable because each

attribute that appears in different tables will have a different label name. The semantics

of commonality are impossible to infer [2].

2.9 Choosing approach source between database models

This section explains the strength and weakness criteria in different database modelling

in order to choose the suitable sources for our approach. This comparison will help us to

understand the abilities of each model and how can we relate database models to

ontological concepts. In the comparison of all database models, the conceptual models

can be represented by the ER diagram or the EER model, and the relational model can

be represented by the relational schema or the SQL-DDL language. Table 2.1 shows a

comprehensive comparison between the four models.

Table 2-1: comparison between different database modelling’s languages

Model Conceptual Model Relational Model

Criteria ER EER RM Schema SQL-DDL

Chapter 2 Database Overview

32

Model Conceptual Model Relational Model

General modelling

concept

Conceptual

model is closer

to the “semantic”

ontology design.

Conceptual model

is closer to the

“semantic”

ontology design.

Strong

mathematical

foundation closer to

the description logic

(the basis of OWL

ontology).

Is built upon RM

model and is more

powerful,

since it adds some

expressive power

that is not available

in the theoretical

RM.

Availability
Hard to obtain Hard to obtain Can be obtained

indirectly

Easy to obtain

Design

Graphical

representation is

difficult to parse.

(It can be

converted into a

set of formal

definitions).

Graphical

representation is

difficult to parse.

(It can be

converted into a

set of formal

definitions).

Facts easy to parse Definitions easy to

parse

Representation of

Concepts (entity,

relationship)

Clear distinction

between entity

and relationship

Clear distinction

between entity

and relationship

Tables mixing up

entity and

relationships

Tables mixing up

entity and

relationships

Participation and

Cardinality

Explicit

declarations

for participation

and cardinality

of the

relationships.

Explicit

declarations

for participation

and cardinality of

the relationships.

NA Foreign key can

represent cardinality

in an implicit way by

uniqueness and not

null; however, the

exact cardinality

restrictions cannot be

obtained from the

SQL/DDL-code.

Inheritance

NA The best

modeling for

inheritance

concept

Indirect

representation

through foreign

keys

Indirect

representation

through foreign keys

Instances Not available Not available Not available Available

A
tt

ri
b

u
te

 c
h

a
ra

ct
er

is
ti

c

Domain of

attribute

Not available Not available Available Available and

attribute domains

can be more specific

than RM schema

Keys

- Keys (super

key, alternative

key, primary key,

discriminator(

partial key)

- Keys (super key,

alternative key,

primary key,

discriminator(

partial key)

Primary key,

discriminator,

foreign key,

however alternative

key indirect way

Primary key,

discriminator,

foreign key, however

alternative key

indirect way

Attribute

constraints

NA

NA NA Explicit declarations

(using more complex

techniques in

defining constraints,

such as the use of

assertions or

triggers)

Chapter 2 Database Overview

33

Model Conceptual Model Relational Model

Enumerate

d attribute

NA

NA

NA

Possible

Attribute

value

restriction

NA

NA

NA

Possible

Sub

property

Possible Possible Not possible Not possible

General disadvantages

A lot of changes

in the

implementation

level do not

update in the

original ER.

A lot of changes

in the

implementation

level do not

update in the

original EER.

- -Tables do not

represent entity but

also relationship,

multi-valued

attribute.

- -Not clear

hierarchy

(fragment tables

look like ISA

relationship)

- Using the

theoretical design of

RM. So it has some

of the disadvantages

that appear in RM.

The conceptual model in database can be divided into two models ER and EER, where

the logical model was represented by a relational schema in the past and SQL-DDL

depicts the physical model now. From Table 2.1, it is obvious that both the conceptual

model and the logical model share some of the concepts with the ontological model. It

is easier to obtain semantics from logical model since each database stores the source

code of its table‟s definitions. However the conceptual model is represented by a

graphical model whereas the relational model is represented by facts or definitions. One

of the criteria that distinguish between the two models is the clear distinction between

concepts and relationships in the conceptual model; the logical model uses tables to

represent concepts and some relationships‟ cases. Also, only the EER model from the

four database models has a clear inheritance hierarchy. The cardinality constraints are

rich in the conceptual model, in contrast with the relational model which represents the

cardinality in an implicit way. The relational model represented by SQL-DDL is the best

way to describe attributes‟ characteristics and preserve the data.

After balancing the four models we reach the conclusion that our system needs a source

that is always reliable. Reliability here includes two conditions; the first is the

accessibility of the source, and the second is its ability to represent the current database.

These two conditions are available only in the SQL source, and, in addition to all the

Chapter 2 Database Overview

34

other SQL features it is easy to parse, which supports automating our approach.

However in order to reach all the semantics of the database we utilise the EER source to

validate and enhance the ontology produced by SQL.

2.10 Reasons for choosing the relational database instead of

using the object database

There are many disadvantages for using object databases, as listed below:

i. Any changes to the schema caused by creating, updating or modifying a

persistent class will necessitate a system recompilation.

ii. It can take a long time to update all the instance objects depending on the size of

the database.

iii. Language dependence - data only accessible from a specific language using a

specific Application Programming Interface (API).

iv. Lack of ad hoc queries i.e. the query in the object database is dependent on the

system design, so the query is customised by the designer, which leads to

reduced flexibility in the object database. In other words ad hoc queries go

against the principle of encapsulation.

2.11 Summary

In this chapter we introduce the database definition and the advantages of using it. After

that the focus on the data modelling effect in database modelling is discussed. Then the

chapter concentrates on the conceptual model of database by explaining the design steps

of both ER model and EER model. Then the mapping algorithm from conceptual model

to relational model was elaborated. Then the comparisons between database modelling

were held to show the strengths and the weaknesses in each model. Finally the chapter

provides the reasons behind choosing the logical model written in SQL-DDL script over

other database models.

Chapter 3 Semantic Web and Ontologies- State of the Art

35

3 CHAPTER THREE: SEMANTIC

WEB AND ONTOLOGIES- STATE

OF THE ART

Objectives

 Define semantic web and ontology.

 Introduce ontology structure and languages.

 Show ontology applications.

3.1 Introduction

This chapter gives a brief introduction to the subject of the Semantic Web, as well as

definitions of ontology. Also in this chapter, many ontology languages are explained in

order to give an indication of the strengths and weaknesses of each language, which will

help in determining the most suitable language for our purpose. The main concepts and

structure of ontology are provided in order to specify the criteria of ontology design.

Finally, the usability of ontologies in different software areas is discussed.

3.2 Semantic Web

The easiest definition of Semantic Web is a Web with meaning or, to simplify, it can be

seen as a Web of data where the data can be shared and cannot be owned by a

standalone application. Most people believe that the Semantic Web is merely a way of

making connections between web pages. However, the Semantic Web is concerned with

establishing relationships between different data objects in a Web distributable

environment. Moreover, Semantic Web determines data properties.

The Semantic Web is an extension of the current World Wide Web. Its main purpose is

to allow people to share information, regardless of which application or website they are

using. In fact, the Semantic Web will provide a common framework which makes data

available for reusing and sharing. This can be done applying two methods. The first

Chapter 3 Semantic Web and Ontologies- State of the Art

36

method is to create common formats for data from different sources. This method is

different from the way current websites exchange information because data in Semantic

Web environments is ready to be integrated. The second method involves generating

languages that show the relationship between data and real world objects. Current

efforts are being done by researchers and other businesses (e.g. W3C) to produce such a

general framework and languages for the Semantic Web with the ability to share and

reuse data. Tim Berners-Lee (WWW inventor) stated that the Semantic Web is “an

extension of the current Web, in which information is given a well-defined meaning,

better enabling computers and people to work in cooperation.” [8].

Therefore, the Semantic Web [16, 28] has the ability to represent data in a rich,

meaningful and readable form, which can be utilised by both humans and machines.

Furthermore, in order to facilitate knowledge sharing, the Semantic Web provides

different services such as publishing, discovering, and automatic annotation.

Consequently, many tools and applications have been implemented to achieve the

interoperability aim of Semantic Web.

3.2.1 Semantic Web layers

The Semantic Web [31] has evolved to cope with the heterogeneous and the distributed

environment of the Web. To ensure the success of upgrading the current Web to a

superior standard, the content should be reformatted in a machine understandable style.

Data annotation is the mechanism which facilitates this aim. The Semantic Web

architecture is depicted in Figure 3.1.

Figure 3-1: Semantic Web Architecture [8]

Chapter 3 Semantic Web and Ontologies- State of the Art

37

The description of architecture layers is clarified below [8, 16, 28, and 31]:

 URI and Unicode: these layers have two functions: first, identifying objects and

resources available in the Web, and locating them; a uniform system of

identifiers (URIs) can facilitate these functions. They are also responsible for

granting unique names to the resources. The Unicode is a standard encoding

system which represents computer characters.

 Extensible Markup Language (XML) is a machine-readable markup language.

One of the many reasons for this language being widely accepted in the WWW

community is the flexibility of its format. Therefore it facilitates the current Web

services such as e-businesses and e-commerce. It also helps in expanding the

activity of software. XML Namespace is the document declaration. Users utilise

the freedom of the XML format in arranging their documents with any arbitrary

structure. However, the XML structure does not provide any semantic

indication. In fact, XML language can be utilised by its syntax only.

 Resource Description Framework (RDF) is considered to be the first Semantic

Web layer. Since RDF can describe some semantic representation for

information, metadata about Web resources will gain machine- accessibility. In

fact, RDF is a graphical model that can utilise the URI Web resources

definitions in representing relations among resources. The developed version of

RDF is an RDF Schema which supplies the class hierarchy structure and the

relationship between classes and objects. A deficiency in the RDF Schema stems

from relying on informal semantic representation for some RDF Schema

primitives which eventually cause error-prone interpretation.

 Ontology Vocabulary is a language layer which describes data grammatically

by use of common vocabularies. This layer is concerned with both syntax and

semantic representation of data in order to create ontologies that allow the

inference process. In short, ontology satisfies the aim of providing data with a

semantic description in a uniform method, thus making the exchange of

information easy between different parties. There are many languages currently

proposed to represent ontology. DARPA Agent Markup Language and Ontology

Inference Layer (DAML+OIL) language is an extending to RDF and RDF

Chapter 3 Semantic Web and Ontologies- State of the Art

38

Schema. Furthermore DAML+OIL language has rich modelling and efficient

reasoning since it is built on description logic. Web Ontology Language (OWL)

is another example of an ontology language which has inherited all the features

of DAML+OIL language and whose logic is developed from Description Logic.

More details about ontology languages are presented in section (3.3.8)

 Logic and Proof: these are Semantic Web layers in which the structure of

ontology is considered while building the systems. To ensure consistency and

remove any redundancy that might occur in some ontology concepts, a reasoner

can be used for checking and resolving these purposes. Also, the reasoner can be

utilised in producing new inference results. The difference between the logic

layer and the proof layer is that the former is involved in producing rules for

inferences, whereas the latter is more concerned with providing clarifications for

the result deduced by a reasoner. A reasoner is usually used as a built-in function

in Web agents which need to translate its techniques into a proof representation

language.

 Trust is the top layer of the proposed Semantic Web architecture. This layer

concerns the reliability of Web information. Consequently, the quality will be

assured.

3.3 Ontology

Today the Internet websites need to be enhanced by formal semantic representations for

the current web content. When this happens, the Web will be semantic and suitable for

both human and machine use.

One of the Web‟s roles is to build a source of reference for information on several

subjects, while the Semantic Web is intended to annotate the current Web with semantic

meaning. The essential part that facilitates the Semantic Web is ontology, since it allows

distributed systems to share information. This means that ontologies can help unrelated

applications to collaborate with each other.

Chapter 3 Semantic Web and Ontologies- State of the Art

39

3.3.1 Ontology Definition

Gruber defined ontology early on as “an explicit specification of a conceptualisation”

[48]. Since then the definition has been amended to express other features. The new

definition of ontology is: a formal explicit specification of a shared conceptualisation

[26], where:

I. Formality means building ontologies in machine understandable language; it

should be defined using logic-based languages. Formality is essential to

eliminate the vagueness of informal notations (e.g. natural language).

II. Explicit specification stands for providing descriptive names (i.e. terms) for

ontology concepts and clear characterisation for the constraints on these

concepts. It also includes the definition of the relation which shows how a

concept relates to other concepts.

III. Shared indicates that different communities across the Web are generally agreed

on the meaning of domain concepts (consensual knowledge), thus allowing

applications to exploit and reuse ontologies.

IV. Conceptualisation means ontology concepts appear in comprehensible form;

i.e. domain knowledge is defined in an abstract model. This abstract model

focuses on how to capture people‟s ideas about objects from real world, usually

in a specific subject in a particular domain.

3.3.2 Ontology Objectives

- To agree on the understanding of the shared concepts of information structure

among different communities.

- To make a domain knowledge analysable and reusable.

- To specify domain assumptions in an explicit manner.

- To make a partition between operational knowledge and domain knowledge.

- To analyse domain knowledge.

Those objectives [107] can only be applied on domain ontologies (i.e. global ontology).

While application ontologies (i.e. local ontologies) can benefit from these characteristic

after mapping them to the global ontologies.

Chapter 3 Semantic Web and Ontologies- State of the Art

40

3.3.3 Ontology Representation

Ontology consists of four principal elements: concepts, relations, axioms, and instances.

The definitions of each element are presented below:

 A Concept (also known as a term or a class) is the essential abstract component

of a domain. Typically, the class represents a group of common properties

owned by many members. Also, classes are arranged in hierarchical graphs on

two levels. Higher level classes are called parent classes and the subordinate

levels are called child classes. A graph of concepts might organise classes in a

lattice or taxonomic view; for example, the class „Faculty‟ could have many

subclasses, such as „Department‟ and „College‟. Moreover, the concepts might

have many different distinguishable properties.

 A Relation (also known as a slot) is used in ontology structure to provide a

declaration for the relationships between concepts in a specific domain. In order

to specify the two classes involved in a particular relationship, one of them will

be described as a „Domain‟ and the other one as a „Range‟; for instance the

relationship „Work‟ can have the concept of „Employee‟ as a domain and

„Faculty‟ as a range.

 An Axiom (sometimes called a facet or role restriction) is utilised in ontology

by forcing restrictions on values of both classes and instances. Logic-based

languages, such as first-order logic, have been developed in order to express

these constraints. Furthermore these languages can be facilitated as the

verification process for the consistency of ontology structure.

 An Instance (also known as an individual) is a relationship between ontology

concepts and relation and their real values; for instance, „Saudi Arabia‟ could be

an instance of the class „Asian countries‟, or simply „countries‟.

Chapter 3 Semantic Web and Ontologies- State of the Art

41

5-tuple O: = (C, H
C
, R, H

R
, I),

Ri R and Ri C × C.

H
C
 C × C,

H
R
 R×R,

3.3.4 Structure of Ontology

 The general and formal structure of ontology is demonstrated as follows:

Where:

- C: refers to a set of concepts (“rdf:Class”). These concepts are organised in a

class/subclass (subsumption) hierarchy.

- R: stands for a set of relations that connects concepts (“rdf:Property”). All

relations in ontology are binary types between only two concepts.

- H
C
: represents the hierarchy of ontology concepts by using the special case of

relation. (“rdfs:subClassOf”).

where H
C
 (C1, C2) denotes that C1 is a sub-concept of C2.

- H
R
: depicts a relation hierarchy in the form of a relation (“rdfs:subPropertyOf”).

where H
R

(R1, R2) denotes that R1 is a sub-relation of R2

- I: supplies the concepts with instances in a particular domain (“rdf:type”).

Generally, taxonomies, thesauri, and ontologies are types of methods that represent the

Semantic Web classification of domain concepts.

First, taxonomy is a way of organising the vocabulary of concepts in tree form or

hierarchical models; this includes an explicit definition of domain concepts and their

relationships. In the taxonomy method, only the relation of “subclass” and its inverse

Chapter 3 Semantic Web and Ontologies- State of the Art

42

“superclass” are allowed. A real world example which can be considered as taxonomy is

Yahoo! categories.

Second, thesaurus is used to represent vocabularies while considering relations between

terms [25]. In fact, these terms are the relationships obtained by taxonomy methods with

richer conceptual descriptions. Therefore, a thesaurus can be considered as an extension

to the taxonomy method with more semantics and expressive features. Therefore a

thesaurus includes some relationship characteristics, such as homography, equivalence

and hierarchy. Any lexicon database, such as WordNet, can be considered as a

thesaurus, since it captures concepts and preserve their semantic relationships.

Third, ontologies extend the taxonomies idea with rich relations between concepts and

properties; also the axioms play a significant role in presenting ontology restrictions.

Moreover, ontologies describe a domain by defining its concept set; therefore they can

be seen as the skeletal establishment for a knowledge base.

The ontology community categorises ontologies in terms of their structure into two

types: lightweight and heavyweight ontologies. Both types share some contents which

include concepts, relationships between concepts, and attributes. However, axioms and

constraints are considered only in heavyweight ontologies. Many kinds of languages

can participate in implementing both lightweight and heavyweight ontologies [18]. In

terms of language formality, ontologies can be divided into four groups:

- Highly informal: mostly described by natural language; however, this type of

language might not be considered as an ontology if it lacks machine-readability;

- Semi-informal: a natural language used to describe ontology structure, and it can

be utilised as machine-readable language;

- Semi-formal: a language such as RDF expresses ontology structure and some

restrictions in formal definitions;

- Rigorously formal: ontologies provide definitions of terms with formal

semantics, as well as properties with essential characteristics; also, it shows a

notion of a completeness theorem (e.g. Web Ontology Language OWL) [106].

Chapter 3 Semantic Web and Ontologies- State of the Art

43

Also ontology can be classified to global and local ontology. Global ontology can be

seen as shared vocabularies between many local ontologies. Also, it represents the

global schema of a domain. However, local ontologies concentrate on different sub-

domain fields. Moreover, a local ontology function is to express more specific

information whereas a global ontology contains only general level of concepts. Finally,

a local ontology allows different groups to use their own terminology whereas a global

ontology utilises the agreed terminologies.

In fact the expressiveness of ontology measured by the degree of explicit metadata is

captured from the domain knowledge. Usually, ontologies try to catch the semantics of

a particular domain, and the more relations and constraints can be captured, the more

ontology may be considered expressive. The important factor that affects the

expressiveness of ontology is language specifications which limit the language abilities

[32]. In order to provide ontology with a formal semantic structure, it should be

expressed in knowledge-based language. After that, ontology can capture domain

knowledge specifications and become machine-processable, and eventually appear in a

well-defined design [8].

3.3.5 Criteria for ontology design

We need objective criteria to control the ontology design, since each designer makes his

own design decisions in representing anything in the ontology. Therefore the criteria

given below can be utilised in assessing ontology design.

 Clarity:

The ontology should express the intended meaning of the defined terms. In order

to reach this aim, the definitions should be independent from social cases or

computational specifications.

 Coherence:

Coherence implies that the inferences should be consistent with the ontology

definitions.

Chapter 3 Semantic Web and Ontologies- State of the Art

44

 Extendibility:

New concepts can be defined while considering the existing terms without

requiring ontology amendments.

 Minimal encoding bias:

To insure this aim, we separate the ontology concepts from specific symbol

encoding. Also, the definition of ontology terms should be formalised, since

many knowledge agents may use different encoding systems.

 Minimal ontological commitment:

An ontology should capture the minimal sufficient vocabularies for describing a

domain. Nevertheless, it should give the participants freedom for customisation

[48].

3.3.6 Steps in Ontology Creation

In designing an ontology we should consider that:

- Devolving ontologies should go through iterative procedures.

- Any domain does not have one correct modelling design, since specifications

vary from one application to another, and the future extensions might have new

requirements.

The method used for creating ontologies, as described below, consists of a set of steps,

with corresponding heuristics. The ontology designer should go through a series of steps

which are known as the lifecycle of ontology:

- Specify the scope and the domain of the ontology;

- Reuse concepts residing in existing ontologies;

- Identify the significant concepts of the ontology;

- Define the class hierarchy;

- Enumerate properties for each class;

Chapter 3 Semantic Web and Ontologies- State of the Art

45

- Define the facets of relationships;

- Create ontology instances.

A class hierarchy can be created using three approaches [32]. These approaches concern

the method of producing classes and class hierarchy; however, the creation of properties

is not considered. These approaches focus on building the taxonomy aspects of ontology

classes, as the majority of ontologies designs do. The three design approaches are [64]:

i. Top-down:

This process determines the general terms of the domain, and then creates a

specification of each term. In other words, we create the most general classes,

and subsequently create the subclasses. Also, this process includes a

categorisation for each subclass. Here each ontology designer tries to create the

best classification to represent the application needs from his perspective.

ii. Bottom-up:

This process defines the most specific concepts, followed by the grouping of

these concepts into more general concepts. In other words, the leave classes of

the hierarchy are defined, then generalised into a common superclass which

could be a subclass of another superclass and so on.

iii. Combination:

This process is based on the idea of integrating both bottom-up and top-down

approaches. First, it defines the most significant concepts, and afterwards applies

taxonomy methods by generalising or specialising these defined concepts: for

example, dividing classes into three levels; top level, middle level, and specific

level. Finally, we relate top level classes and specific level classes through

middle level classes.

None of these three approaches is superior to the others. Rather, the choice of approach

depends on the designer‟s personal view of the domain: if the designer establishes the

design by the grounded specific terms then the bottom-up methodology is more

Chapter 3 Semantic Web and Ontologies- State of the Art

46

appropriate, whereas if the designer has a system where the most general concepts are

first in the hierarchy, then the top-down methodology is better. Some researchers claim

that the easiest way to develop an ontology is by using the combination approach, since

the middle concepts are more descriptive in the domain. In our method we chose the

top-down approach, because the concepts already existed from the entities in the

database model.

3.3.7 Challenges in Building Ontologies

There are many challenges in building an ontology. These challenges might affect

global or local ontology, or both.

The main challenge is the completeness of the ontology design, which means making

sure all the relevant concepts in the domain are included. There are many suggestions

for overcoming this challenge. The first is to enlist the participation of a domain

ontology expert, especially for designing the global ontology. However, in the case of

local ontology, the conceptual design of the database is sufficient and there is no need

for a domain expert; any developer familiar with the domain is suitable. The second

suggestion is to identify the most frequent concepts, which involves applying this

technique to different real cases. Using real cases and analysing them will help the

designer to infer all the related concepts of the domain. The third suggestion is to

identify the synonyms of each concept with the help of a thesaurus e.g. WordNet: this

will help in limiting the problem.

The second challenge is ontology evolution, which refers to the changes in ontology

over time. These changes include the adding, modifying, and deleting of some concepts.

Since the domain itself evolves over time, the design of the ontology will be affected.

The third challenge is the risk that the domain is too large. Hence the expert should

determine the scope of the domain. This can be done by breaking down the domain into

sub-domains; then for each sub-domain a local ontology can be created. The idea of

local ontologies is to help manage the relationships between concepts. Further to this,

local ontologies can be mapped to a global ontology which shows the whole domain.

Another way to provide a view of the whole domain is to integrate local ontologies with

Chapter 3 Semantic Web and Ontologies- State of the Art

47

the global ontology. With either method, the domain expert should ensure that the

relationship between concepts is consistent.

3.3.8 Ontology Description Languages

In fact, ontology languages are considered to be the foundation of knowledge-based

systems. Also, they can express knowledge specification in a rich and intuitive way, and

in a machine understandable form.

3.3.8.1 Resource Description Framework (RDF)

RDF language [9, 19, and 22] is a standard Semantic Web language which provides a

description for Web resources; also, it is frequently used to represent data, properties,

and Web resources content in order to exchange knowledge over the Web. It has been

developed in a machine-understandable way in order to achieve interoperability

between applications.

RDF is recommended by the W3C. It utilises the URIs in identifying resources, and it

adopts the XML syntax. However, RDF has been designed for representing semantics.

Many applications utilise the RDF language; for instance, the improvement of search

engines qualification stemmed from RDF‟s ability in discovering Web resources.

Another example is the intelligent software agents which facilitate RDF in exchanging

and sharing knowledge.

The syntax of RDF model is built on three elements: subject, predicate, and object. In

fact, the subject is any resource that can be defined by URI. The RDF statement would

have the following interpretation, which is <subject> has a property <predicate> valued

by <object>.

3.3.8.2 Resource Description Framework Schema (RDFS)

This ontology language adopts XML syntax and is built on top of an RDF model. The

RDF Schema provides additional vocabularies to the core of RDF in order to gain more

expression.

Chapter 3 Semantic Web and Ontologies- State of the Art

48

RDF Schema is effective in defining vocabularies required by applications. In fact it is a

set of RDF resources which express properties exists in other RDF resources in

machine-understandable format. Moreover, the RDF Schema expresses descriptions for

classes and properties, as well as determining specifications for relations between

properties and classes.

In general, RDFS may be identified by the URI reference of

http://www.w3.org/2000/01/rdf-schema#, as well as a defined namespace „rdfs‟,

whereas the RDF namespace is „rdf‟ and its URI reference is

http://www.w3.org/1999/02/22-rdf-syntax-ns#.

Class, property and property constraint are the three elements of ontology which can be

described by RDF /RDFS.

RDF is a good basic language foundation which can be utilised in building other

languages. However, it has a limited ability in resource description such as cardinality,

domain and range localised constraints, existence descriptions, and property

characteristics (transitive, symmetrical, and inverse). For example, „male‟ and „female‟

are two subclasses of the human class, and separating them from each other is

impossible since RDF lacks the disjointed vocabulary. Therefore, we consider the

expressive power of RDF to be limited, as mentioned in [7]. To overcome these

limitations, RDFS was invented. RDFS can be utilised in building class hierarchies

(subclasses) and property hierarchies (sub-properties); also, it enables relationship

construction and restricts domain and range, besides providing instances for classes

However, RDFS is not sufficiently expressive in further aspects. It is unable to describe

equality and inequality between properties. Also, it cannot define enumeration. Union,

intersection, unique, symmetric, transitive and inverse are relation characteristics which

cannot be expressed by RDFS. Consequently, many ontology languages, such as

DAML+OIL, and OWL, have been developed to tackle these deficiencies.

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/1999/02/22-rdf-syntax-ns

Chapter 3 Semantic Web and Ontologies- State of the Art

49

3.3.8.3 Ontology Interchange Language (OIL)

Ontology Interchange Language: OIL is a markup language built upon RDFS. One of

its important features is providing modelling primitives which have been utilised by

frame-based ontologies [15].

3.3.8.4 Annotated DAML+OIL Ontology Markup

DARPA Agent Markup Language (DAML) + Ontology Inference Layer (OIL), or

DAML+OIL [17, 24] is a semantic markup language. It is an extension of RDF which

tries to reduce some of the RDF deficiencies through building richer primitives. Also, it

has the ability to provide a description for domain structure in terms of classes and

properties. One of its powerful characteristics is that it can formalise the meaning of

language terms by applying the theory of a Description Logic (DL) model [21].

The production of DAML+OIL is to amalgamate European languages with the

American proposal.

Like other Semantic Web languages, DAML+OIL has its own limitations, one of which

is the lack of property descriptions; for example, DAML+OIL does not offer

composition or transitive closure, and does not allow comparison between data values.

Moreover, it represents collection type by sets only; i.e. it does not offer lists or bags.

3.3.8.5 Web Ontology Language (OWL)

OWL language [7, 13, 23, 29, 30, 51], is a standard Semantic Web language for

processing information over the Web, recommended by W3C. It facilitates RDF

vocabularies and XML syntax. However, it overcomes drawbacks appearing in other

languages such as RDFS and DAML+OIL. It also has the ability to provide an

interoperable data environment for different domains and communities.

If a comparison takes a place between OWL and RDF, we would find some similarity

between them; however, OWL shows more capabilities with regard to semantic

language vocabulary which enables it to provide machine interpretability. Evidently,

Chapter 3 Semantic Web and Ontologies- State of the Art

50

OWL vocabularies have richer semantics than RDF and RDFS in representing property

characteristics and the hierarchy of classes and properties.

Overall, OWL was invented to utilise XML syntax and to adopt RDF and RDFS

primitives; for example, it uses RDF terms and meaning in defining classes and

properties. It was also designed to overcome RDF weaknesses.

 OWL language is classified into three sublanguages, with various aspects to supply

different goals: OWL Lite, OWL Description Logic (OWL DL) and OWL Full [28].

The simple version of OWL is OWL Lite which provides classifying hierarchies and

forms the constraints in a simple way. It expresses only maximum cardinality of

relationships in a value of 0 or 1, and thus produces an easy design. The restriction is

limited in OWL Lite, since it lacks some terms such as „union‟ and „negation‟.

Therefore, it has the lowest expressiveness of OWL sublanguages. OWL Lite is

considered as a sublanguage of OWL DL.

OWL DL utilises Description Logic in describing relations between objects and their

properties. It tries to preserve the completeness of computational properties; therefore it

is most expressive in describing concepts and relationships.

The sublanguage OWL Full provides the most expressiveness and the syntactic freedom

of RDF but without preserving guarantees on computational complexity. OWL Lite and

OWL DL are sublanguages of OWL Full.

 OWL Syntax

OWL has two kinds of syntactic representation forms. The first one, which Chapter 6

uses this syntax throughout the examples, is known as the exchange syntax. This form

represents ontology as a set of XML or RDF triple which is ready to be published and

shared over the Web. However, the exchange syntax form is difficult to trace since it

contains a large number of syntactic constructs for each class or property. The second

form of OWL syntactic forms is the abstract syntax. This form is abstracted from the

exchange syntax and appears similar to relational schema. One of the characteristics of

this form is the frame-like style which constructs all the information about class or

Chapter 3 Semantic Web and Ontologies- State of the Art

51

The expression RDF/RDFS DAML+OIL OWL

Class

rdf: Property

rdfs: subClassOf

Rdfs: subPropertyOf

Rdfs: domain

Rdfs: range

Individual x

Same Class As x

Same Property As X

Same Individual As X

Different Individual From X

Inverse Of X

Transitive Property X

Symmetric Property X

Functional Property X

Inverse Functional Property X

All Values From X ToClass

Some Values From X hasClass

Min Cardinality

Max Cardinality

Cardinality

One of X

Disjoint with X

Complement of X

property in one collection. Thus it facilitates the assessment steps of the produced

ontologies. The evaluation chapter utilises this syntax.

Table 3.1 shows a comparison between the above discussed ontology languages, as well

as the limitations of RDF, DMAL+OIL in contrast to OWL language. Therefore, OWL

is considered to be the most expressive among Semantic Web languages.

 Table 3-1: Comparison between ontology languages

3.3.9 Ontology Applications

To build a common understanding and consensus in knowledge areas, ontologies have

become a „hot topic‟ of research. Ontology first appeared in Artificial intelligence (AI)

laboratories, before being used in other fields. The following are examples of ontology

use:

I. Semantic Web [8]: Ontology is the key enabling technology in the Semantic

Web to support information exchange across distributed environments. It meets

Chapter 3 Semantic Web and Ontologies- State of the Art

52

the promise of the Semantic Web in representing data in a machine-processable

way.

II. Semantic Web Service Discovery [8]: Ontology helps in describing the

merchandise in the E-Business services, which also includes trying to discover

the most suitable match for the requester obtained and establishing a

communication between buyer and seller. These facilities are also applicable in

an E-Commerce environment [16].

III. Artificial Intelligence [26]: The AI research community was first to develop the

idea of ontology. The intended goal of ontology is to produce sharing and

reusable facilities for knowledge that will ensure communication between

services, programs, or organisations across a given domain.

IV. Multi-agent [16]: in order to ensure the success of agent communications, there

is a need for common understanding for domain knowledge and shared

vocabularies. These requirements are offered in ontology models and any

misunderstanding is thereby reduced.

V. Search Engines [16, 28]: Ontologies help Internet search engines in capturing

common terms and defining synonyms for terms which usually exist in thesauri.

VI. Interoperability [12]: In the Web, systems have two aspects, heterogeneous and

distributed, and are thus called the „interoperability problem‟. In order to resolve

this problem, ontology can be used to facilitate interaction between

heterogeneous systems by explicating the concept terms of each system in the

form of a sharable and machine-understandable ontology.

VII. Systems Engineering: Ontology can be exploited in defining system

requirements, and even for the developed systems; it helps in determining the

extension purpose or maintenance specifications. Further, it can be used to

resolve inconsistency in any system design.

3.4 Summary

This chapter introduced the topic of Semantic Web and its importance in upgrading the

current Web. Moreover, it discussed the Semantic Web layer. After that, ontology

definition was presented. The elements that participate in building the ontology were

elaborated. Also the formal structure of ontology was discussed. Then we described the

Chapter 3 Semantic Web and Ontologies- State of the Art

53

criteria that ensure the success of ontology design and the challenges which need to be

overcome. After that, the three methods of building ontology, top-down, bottom-up and

combination were mentioned. Then we showed that the preferable method is the top-

down and how our approach will utilise it in designing an ontology. There are many

ontology languages; this chapter has explained each language advantages and

disadvantages. Finally, we chose the OWL language for our approach since it

overcomes the defects appeared in other ontology languages.

Chapter 4 Literature Review

54

4 CHAPTER FOUR: OVERVIEW OF

EXISTING APPROACHES FOR

TRANSFORMING DATABASE TO

ONTOLOGY

Objectives

 Examine existing transformation systems and classify them.

 Detail the advantages and disadvantages of each approach.

4.1 Introduction

The early work undertaken on extracting semantics out of database schema by reverse

engineering methodologies dealt with converting the relational model to the Object-

Oriented model [33, 34]. However, this work is unlike the approaches of transforming

relational databases to ontologies because there are many missing semantics required to

construct a full ontology which are not obtained by these methods.

Since ontology is able to search and share data drawn from various sources, it is the

ideal Semantic Web solution for database integration. Generally, there are two global

methods to integrate databases into the Semantic Web. The most researched method is

the mapping between a database and an existing domain ontology through a wrapper

[45]. The drawback of wrapper systems is their labour-intensity, but little work has been

done towards automating them. The second method is more concerned with building

automatic transformation from database schema to produce Semantic Web

representations such as RDF and OWL ontologies. This method is the focus of our

research.

There are different approaches which utilise the idea of this second method; the reverse

engineering target for a relational database is ontologies for these approaches. Based on

the centred source type, they are roughly classified into one of the five categories given

below:

Chapter 4 Literature Review

55

I. Approaches based on an analysis of relational schema.

II. Approaches based on an analysis of tuples.

III. Approaches based on HTML pages.

IV. Approaches based on Entity Relationship (ER) or Extended Entity Relationship

models (EER).

V. Approaches based on Structure Query Language (SQL).

This chapter will explain each category through presentation of one or more detailed

examples; first with a brief description and then by detailing the advantages and

disadvantages of each category.

4.2 Approaches based on the analysis of relational schema

In this category, all the approaches use relational schema as the database source. Here,

we differentiate between database schema and SQL as the source. Database schema is

more theoretical, whereas SQL is for the actual implementation of the schema.

However, approaches in this category utilise some characteristics from both models.

4.2.1 The Approach used by Stojanovic et al.

This is the first work produced with the intention of writing transformation rules from

relational database schema to ontology [36]. This approach sought to transform

relational databases to Frame Logic (F-Logic) and then represent the F-Logic model by

RDFS. Using F-logic can be considered simultaneously both advantageous and

disadvantageous. The advantages of F-logic are:

 There are many components which draw on the Frame Logic language; these

include object identity, complex objects, inheritance, polymorphic types,

methods, and encapsulation; also, the language has the ability to integrate

functions into a logic-based framework.

 The higher-order of Frame Logic syntax enables both data and schema to be

integrated in one view.

 The same declarative language is used for manipulating data and schema

together.

Chapter 4 Literature Review

56

Whilst the disadvantages of using F-logic are:

 Frame Logic does not distinguish between different basic types; it treats all of

them as objects.

 Attributes and associations are not distinguishable in F-Logic.

 F-Logic uses parameters to model N-ary relationships, but this feature cannot be

utilised as RDF cannot express it.

The Disadvantages of the Approach used by Stojanovic et al.

The main problem with this approach is using a middle process; i.e. it requires the

generation of two models. The first model is in F-logic then this is mapped to RDF

Schema ontology. The second problem of this approach is targeting RDF Schema

ontology which has many drawbacks such as:

- Modelling primitives of RDF Schema lack formal semantics and use of these

primitives may cause an interpretation problem which might be used in an error-

prone process.

- Targeting RDF ontology forces the approach to introduce a new class for each

basic type.

- RDF Schema does not have an inference model.

The third problem is that the approach mentions the importance of evaluating and

validating the process however it did not apply them. In addition, although the approach

is automated, the generation of the ontology requires the administration and revision of

the designer with some steps relying on user interactions. Additionally, the approach

shortcoming is apparent since it neglects database evolvement and data updates. The

approach is designed to admit SQL statements as input, but in reality, it is based on

database schema.

Some general drawbacks in the transformation rules of this approach include:

- The user decides between a specialization relationship or a fragmentation

relationship and makes the decision depending on individual experience.

- There is no distinction between strong and weak entities.

Chapter 4 Literature Review

57

- The approach does not consider the case of the multivalued table.

- The approach does not consider an N: M relationship with attributes.

- The approach does not solve the problem of N- ary relationship tables.

4.2.2 The Approach used by Li et al.

This approach [41] looks at acquiring OWL ontology automatically from databases in

relational models by applying a group of learning rules instead of using a middle model.

One of the characteristics of this approach is that it involves obtaining a complete OWL

ontology, which includes; classes, properties, property characteristics, cardinality and

instances. The second feature of this approach is that the resultant ontology is produced

in OWL language. OWL language is enriched with formal semantics vocabularies

which enable it to facilitate better machine understanding for Web content than the

earlier languages such as XML, RDF and RDF Schema.

 This approach requires knowledge of some SQL features; e.g. primary key, foreign

key, UNIQUE, NOT NULL which help in building axioms.

The Disadvantages of the Approach used by Li et al.

An appraisal of their rules found these negative aspects:

- The first learning class rule of integrating the information, which is spread

across several relations (vertical fragmentation) into one ontological class is

confused because the condition rule can be satisfied for the specialisation

(inheritance) situation as well. This means the condition does not distinguish

between fragmentation and inheritance. As a result, this rule will confuse a

reader that is applying it manually.

- The rules have many deficiencies, an example of which can be found in the

second learning class rule which contains these conditions:

“Create a class if one of the following conditions can be satisfied and the first

rule cannot be applied:

i. |pkey(Ri)| = 1;

Chapter 4 Literature Review

58

ii. |pkey(Ri)| > 1, and there exists Ai, where Aipkey(Ri) and Aifkey(Ri)”.

This rule presents the following problems:

- The first part of the condition, which compares the number of primary keys in the

database table to the number one, is incorrect. As is known, there is only one

primary key for each table. As the primary key can contain a simple or composite

attribute, the condition must specify the number of primary key attributes in order to

be accurate. Furthermore, there is no need to count the number of primary key

attributes since the rule concerns whether or not the foreign key is part of the

primary key. In other words, there is no inclusion dependency based on the primary

key.

- The authors move between formal notation and English description in their rules

when they should be written in formal notation only. For instance, the part of the

condition “Rule 1 cannot be satisfied” described in English could be rewritten to

exclude all tables which satisfy fragmentation or inheritance as below.

|pkey(Ri)| = 1 , and pkey(Ri) fkey(Ri).

Here we present the argument of what benefits will be gained if the system rules

utilise formality. And the answer would be: if the rules written in English description

or mix formal notation with English description; it might lead to an ambiguous

interpretation. Therefore formal rules will have a precise meaning and clear

understanding. Also, formality unified the rules interpretation.

- The rule of instances is not applicable for all different instances of classes. At this

point, it is obvious they only used a very general rule. However, the instances rule

must include different procedures of learning instances from strong entity, weak

entity, N-ary relationship or multivalued attribute and must avoid using a very

general rule.

Chapter 4 Literature Review

59

 To summarise, the problems associated with this approach are:

 The rules of Li et al. are not defined in a full formal notation; however, it is a

combination of English language and formal notation. We believe the

shortcomings of this approach are due to this lack of a formal system.

 The rules are designed for their specific example of University database and not

generalised to deal with different situations which could result in concepts being

inaccurately depicted across domains or database modelling choices. Therefore,

the approach must be examined through different examples to capture the

variety of modelling choices in various domains.

 Handling the N-ary relation by using only object properties will not ensure that

the group of binary relations exists as a whole.

 The approach does not consider the case of a weak entity, multivalued attribute

or relationship with attribute.

 The approach includes instances with the target ontology, which detrimentally

necessitates the ontology to be recomputed each time we change the data in the

database. The solution proposed by Stojanovic et al. is the separation of the

ontology and the knowledge base (ontology with instances) which allows the

knowledge base, if needed, to be computed on demand.

There are some semantics offered by the relational schema, such as constraints on

foreign keys, which are missing in their rules.

4.2.3 Other Database Schema Approaches

The next section will briefly explain some of the approaches which use the schema

method.

- Dogan & Islamaj [37] utilise reverse engineering methods to provide a simple and

fully automatic approach which contains mapping relations to classes: a relation‟s

attributes to the datatype properties of a class; the relationship to object properties;

and records of tables to individuals. However, this approach neglects the significant

Chapter 4 Literature Review

60

of inheritance in ontology design, which results in producing a flat ontology or an

ontology which has an appearance similar to that of a „relational‟ model.

- Rubin et al. [38] propose an approach for extracting instances and attributes values

from relational database source, and then filling these data into ontology

individuals. One of the characteristics of this approach is the use of an interface

implemented in an XML schema in order to declare the relationship between the

database source and the ontology. However, this approach requires many

components beside the XML schema interface; for example, an ontology template

and an XML translator require to be automated.

- Kashyap [35] analysed a database schema in order to capture semantics; then he

improved the result by user queries, and finally constructed an ontology based on

the refined result. However, this approach misses database constraints which build

an ontology without axioms.

- Astrova et al. provided an automatic system which transforms relational schema to

OWL Full. This system is based on explanatory informal rules. There are several

shortcomings, since the approach goal is OWL Full ontology which would not be

able to be reasoned. Besides, the rules lack formality; many of them are based on

specific examples which cannot be generalised and might lead to ambiguous rules

[46].

4.3 Approaches based on an analysis of tuples

Acquiring database schema from the content of database tuples is the main inspiration

behind approaches which fall into this category.

4.3.1 The Approach used by Sonia et al. [43]

The R2O is a system that aims to analyse database content in order to build an artificial

relational schema in the absence of a metadata code of database. This approach

considers the database content to be the source to produce the conceptual model of a

database. Then it transforms the database conceptual model to an OWL ontology.

Moreover, it can handle the N-ary relationship; M: N relationship with additional

attributes and multivalued attributes.

Chapter 4 Literature Review

61

The Disadvantages of the Approach used by Sonia et al.

Overall, the weaknesses in this approach are:

 The main disadvantage of this approach is its dependence on metadata which is

changeable. Any new records added to the database can damage the consistency

of the derived characteristics.

 It does not specify how to obtain database relations.

 It does not consider the relation of multivalued attributes in the analyses in the

first phase. However it builds a transforming rule in the second phase.

 The authors claim that their approach relies on the feature of extracting the

metadata from data sources in absence of structure of the relation and only

depending on the content. However the approach required the NOT NULL

constraint to be given for attributes, which is an SQL expression.

 The approach does not consider that the problem of generalization/specialization

and fragmentation where both have the same conditions.

After appraising their rules we find there are many limitations in the approach to

transforming rules as follows:

 The rule of specifying the secondary relation which represents the M: N

relationship and the N-ary relationship has the notation of PK=FK ∧ PK=X.

Where X denotes the entire attributes of a relation. We can observe from the

notation that the rule does not consider any relationship with additional

attributes.

 The rule of sub-type relation does not distinguish between superclass-subclass

and fragmentation.

 One of the most common mistakes in this approach is the erroneous ordering of

rules that may not have considered that the rule of creating a primary relation

must take precedence over the rule of weak primary relations. The reason for

that is the weak primary relation needs the primary key of primary relation to be

included to its key.

Chapter 4 Literature Review

62

 Each rule has included generating the classes, the datatype, the object properties

and the axioms. However we cannot generate an object property between two

classes where one of them might not be created.

 The approach states incorrectly that for all unary relationships, create an object

property with symmetric property. We shall discuss this idea in more detail in

section 6.4.4.4.

 The rules are mostly English description with some notations which might

mislead the reader. In addition, the rules are not formally defined.

 The approach does not consider merging relations of fragmentation as stated in

the authors‟ conclusion.

4.3.2 The Approach used by Astrova et al.

This approach [39] was originally based on relational schema. However the approach

claims that the relational schema has few clear explicit semantics; therefore there is a

necessity to detect the obscure semantics (e.g. inheritance), which can be captured by

analysing relational database tuples. However, this approach has a varying time based

on the number of tuples that require analysing in order to create a database conceptual

model. Also, the success of this approach relies on the assumption that changing the

content would not change the semantics derived from this content.

4.4 Approaches based on HTML pages

Most databases available online have HTML pages, which when analysed will

reproduce or enrich database schema. This is the core idea behind the approaches

classified in this category.

4.4.1 The Approach used by Benslimane et al.

The authors utilise a reverse engineering method in a semi-automatic system which

obtains OWL ontology from relational databases. The approach [42] capture semantics

hidden in HTML forms then use the extracted information to rebuild or to augment the

Chapter 4 Literature Review

63

relational schema. After that, the enriched schema will be the source description for

their transformation system in order to produce OWL ontology.

The main features of this approach are:

- It can be useful in a situation where the owner of the database is uncooperative.

- The approach considers using a semi-automatic approach as a feasible solution

for producing ontologies from relational database, since the fully automated

approaches suffer from the problem of missing some semantics which cannot be

obtained by automatic analysis.

- The procedure of transforming the XML schema to a hierarchical schema can

help in identifying the class-subclass relationship which has a major influence in

the structure of ontologies.

- Constructing OWL ontology from the enriched relational schema using a set of

transformation rules without demanding a middle model.

The Disadvantages of the Approach used by Benslimane et al.

The main disadvantages of using this approach are:

 The design of HTML pages requires regular restructuring - more than twice a

year - so any changes to the structure of HTML can disrupt the constructed

ontologies.

 This approach suffers from modelling overhead since producing the ontology

requires going through five engines; also, the system needs to manage between

three language models that are used as sources to generate the target ontology.

For example, besides the relational model schema there are three schemas -

Form model schema, XML schema, and the structure schema - generated during

the application applying the algorithm. After being generated, they expand the

relational model schema by the semantic derived from the structure schema.

 In the analysis part of the extraction engine, the rules for identifying linked

attributes and structural units depend totally on visual cues. Additionally, all the

rules in this engine do not include detailed instructions explaining how to apply

http://dictionary.reference.com/browse/regularly

Chapter 4 Literature Review

64

them. Furthermore, all rules in this engine are user dependent. All of which

makes the approach tedious and time-consuming.

 The generation of the XML schema part of the extraction engine includes many

rules, one of which unrealistically assumes that all filling fields are mandatory.

 Most steps generated by the extraction engine and the enrichment engine

produce redundant information which can be obtained by using the relational

schema only.

 The steps of extracting the functional dependency and the inclusion dependency

are only applied on the Form instances; and therefore, make unclear decisions

since the structure unit of the Form does not always represent a relation in actual

database schema. For instance, the node of the hierarchal structure may be

equivalent or similar to several relations in the underlying database.

 In this approach the main transformation rules from relational schema to an

ontological model are identical to those in the approach used by Li et al., which

we already discussed, whilst the rules of constricting the instances are already

proposed by Stojanovic et al.

 Most steps in this approach rely on the analyst‟s observation to catch the

semantics, and this will raise questions about whether it is easier to build

ontologies from scratch or if it is preferable to make the effort to capture the

semantic of a legacy system.

 The approach has many algorithms which need to be verified and evaluated.

 With rules based on English description rather than notation, readers have

different opinions when making design decisions which suggests that the

approach needs to be formalised.

4.4.2 Astrova’s HTML Approach

Another approach using the same method of HTML analysis is Astrova‟s HTML

approach [40], which analyses HTML-forms in order to produce a form of schema

model, before transforming the extracted model into an ontology. After that, the

ontology is filled with instances obtained from the database behind the HTML form.

Despite using HTML as the main source, there are other drawbacks, such not offering

Chapter 4 Literature Review

65

any method to acquire an inheritance relationship, which is considered to be one of the

important aspects in the ontology development process.

4.5 Approaches based on entity relationship (ER) or

Extended Entity Relationship model (EER)

The originality of the approaches which fall into this category is based on the idea that

both database and ontology have a conceptual model and that translating from one

conceptual model to another is easier and could preserve more semantics.

4.5.1 The Approach used by Upadhyaya et al. (ERONTO)

The aim of this approach [44] is to build domain ontologies in OWL from Extended ER

diagrams. This reduces the developmental efforts by automating the process and by

showing the differences and the similarities between the expressive capabilities of these

two conceptual modelling methods.

In the process of translating EER diagrams into relational schema certain semantic

information is lost. Therefore, the approach focuses on capturing conceptual semantics

from an EER diagram in order to construct a corresponding ontology. The fact that

both extended entity relationship and ontological models represent conceptual models

makes this approach distinguishable from others. The EER model makes an important

contribution since both EER and ontology models can be considered as semantic

modelling. The system requires a domain expert which helps in capturing more

semantic information in order to gain an enhanced ontology.

The main advantage of using this approach is that it covers different cases such as

Many-To-Many relationships with additional attributes; N-ary relationship; aggregation;

and multiple inheritance. More semantics information (e.g. cardinalities) are preserved

in case of translating EER models into ontologies better than relational schema.

The Disadvantages of the Approach used by Upadhyaya et al.

There are many deficiencies regarding this approach:

Chapter 4 Literature Review

66

 The main problem is that, in most cases, the conceptual model (e.g. EER model)

is not created during the database designing process, or this model has now been

lost.

 The second problem is that, even if the ER is available, most changes will be

done on the active database model (SQL) without modifying the essential ER

model.

 The approach mainly depends on the domain expert to analyse the extended

entity relationship model and to use his/her knowledge to enhance the generated

ontology.

 There are some problems in representing the entities and attributes method:

- The approach does not consider the complex attribute.

- The claim: “An attribute, which is a primary key, will be represented as a data

type property, with functional and inverse functional property characteristics,

together with cardinality restriction set to one” has many problems, such as:

i. The primary key can be represented as a data type for a strong entity while,

for a weak entity, the attribute(s) corresponding to the primary key of owner

entity can be represented as an object property with the discriminator

represented as a data type property.

ii. Forcing the primary key to be represented as a functional data type is

acceptable but the tools do not support the feature of inverse functionality

for a data type.

4.5.2 The approach used by Xu et al. [47]

This approach derives its strength from formal rules which translate an ER model into

OWL ontology. It provides an automated tool that can read and analyse the ER schema

script coded in XML, produced by CASE tools such as Power-Designer. Then the

approach employs its mapping rules in order to translate the ER schema to OWL-DL in

both OWL abstract -syntax and exchange syntax (RDF/XML syntax).

The approach has many drawbacks:

Chapter 4 Literature Review

67

 Its formal method builds upon the assumption that all attributes are single-

valued and mandatory, which is not the case in reality.

 It takes into account the simple-attribute keys only; however, it ignores the

composed key formed from composite attributes.

 It does not consider composite or complex attributes where they available in the

ER model.

 It proposes rules for transforming ER to OWL (Abstract Syntax) then to produce

OWL (exchange Syntax), in order to reach the target ontology.

 The tool, Power-Designer, used in the implementation has limitations as it

currently neither supports N-ary relationships where N>2 nor attributes on

relationships; therefore, it does not support the features available in the ER

diagram.

4.6 Approaches based on Structure Query Language (SQL).

Approaches from this category derive their power from the database creation language.

Since each database reserves the structure of its tables in structure query language

(SQL), an easy way to obtain any semantic information could be from this source.

4.6.1 The approach used by Tirmizi et al. [45]

The approach proposes a First-Order Logic (FOL) based system which automatically

transforms the SQL-DDL schema into OWL ontology. The transformation rules are

formal and stratified, which enables the integration of the system in Datalog interpreters

that support database environments, or it can be easy implemented in Prolog editors.

The Disadvantages of the Approach used by Tirmizi et al.

 To remove ambiguous syntax and semantics, the First-Order Logic (FOL) is

used, however it is very complicated to trace or predict the result.

 The approach disapproves of other work using domain-specific examples which

can lead to incorrect rules. However, they fall at the same hurdle.

Chapter 4 Literature Review

68

 The approach ignores the fragmentation of two or more tables representing one

entity because they claim that the database will not be in the third normal form.

However, there are no obvious functional dependencies that would violate 3NF

in the vertical partitioning of tables. Any decomposition of a relation does not

harm first normal form and second normal form and would not harm third

normal form; but that is not the case in reverse. Therefore, there is no proof for

excluding the case of fragmentation.

 The rule for creating classes does not consider the relation of multivalued

attributes.

 The rule also states that if an object property is functional, then its inverse is

inverse functional, represented by the function IFP; but this argument is not

true, since OWL specification states that if a property is inverse functional then

the inverse of the property is functional but the reverse is not so.

 There are no rules to migrate the instances.

 There are many problems with data type rules such as:

i. Since the approach does not consider the multivalued attribute all attributes

created as datatype properties are functional.

ii. Not considering the attribute with UNIQUE characteristics.

iii. In the part of completeness, proof that the relation has more than two foreign

keys does not imply that this relation represents N-ary as the approach stated.

The condition here is whether the foreign keys are part of the primary key or

not.

4.6.2 The approach used by Astrova et al.

This approach [46] proposes an automatic system that is capable of transforming a

relational database model written in SQL to ontologies written in OWL Full. The

approach based on explanatory rules influenced from real world examples. The

approach also considers a Many-To-Many relationship with additional attributes.

Chapter 4 Literature Review

69

The Disadvantages of the Approach used by Astrova et al.

The approach suffers from many shortcomings. Neglecting the formal definition would

lead to ambiguous transformation rules. The approach has many limitations as it does

not consider multivalued tables or fragmentation tables.

Using general rules, examples of which are mapping all the One-To-One relationships

to inheritance, or making all unary relationships represent a symmetric data type,

weakens the approach.

4.7 Summary

After examining the existing approaches that tried to transform relational database to

ontology, we classified them based on their database source to five categories. The

sources for databases can be relational schema, SQL-DDL, ER, EER, or HTML. In

each category we explained the shortages of the source itself. Then the popular

approaches of each category were discussed in term of advantages and disadvantages.

After that we reach to a conclusion that the best source to represent database model is

the logical model written in SQL-DDL. And to overcome this source shortcoming, we

utilise the conceptual model (EER) in order to validate and enhance the results from the

SQL-DDL source.

Chapter 5 Approach Architecture

70

5 CHAPTER FIVE: APPROACH

ARCHITECTURE

Objectives

 Show the general framework for database integration.

 Demonstrate the architecture for our approach.

 Explain the disparities between the ontology model and the database

model.

 Defines the significant feature and main components essential for a

transformation system.

 Defines the success criteria.

5.1 Introduction

This chapter consists of two parts. The first part discusses the architecture that we have

proposed to solve the database integration problem, followed by an introduction to our

system design, which concentrates on a transformation system design, and a brief

recommendation for a design for alignment and mapping between ontologies. The

second part of the chapter focuses on unifying the theory between database models and

ontology models in order to successfully produce the most efficient ontology.

5.2 Model Framework

Databases hold much of the data on the Web currently despite database not being a

knowledge representation language. In contrast, ontology would be a practical provider

of data representation language as it has the capability to capture semantic offered by

the domain. However ontology does not have database‟s ability in storing and retrieving

data. The architecture proposed to solve the database integration problem is based on

the concept of Semantic Web. Therefore in order to accomplish our aim of database

integration we should integrate database and Semantic Web systems; and since ontology

is the core of Semantic Web we can utilise it in semantic integration.

Chapter 5 Approach Architecture

71

There are three approaches for ontology–based integration, the single ontology

approach, the multiple ontology approach, and the hybrid ontology approach [64]. We

avoid using the single ontology approach since it requires all database sources to be

integrated to provide a unified view of a domain. The other approach avoided is the

multiple ontology approach which lacks use of a common vocabulary level, which is

responsible for resolving the problems of semantic heterogeneity. Our architecture is

inspired by the hybrid ontology approach since the hybrid ontology approach is

characterised by the following criteria:

 Reasonable implementation effort.

 Support heterogeneity view.

 In case of adding or moving a source it can provide alternative source ontology.

 Mapping between multiple ontologies is easier since ontologies share a common

vocabulary.

Figure 5.1 shows the proposed framework formed in three layers: the bottom layer

contains the database sources; the middle layer consists of local ontologies

corresponding to the sources; and the top layer is the global ontology. It is necessary to

combine three approaches to fulfil the emerging requirements of database integration.

The approaches are the mapping approach, the alignment approach, and the

transformation approach.

In fact, global ontology facilitates the common understanding of a structure in sharing

information among ontologies from different domains. We utilise these advantages by

mapping local ontologies to global ontology. In the case of local ontology, we benefit

from its ability to exchange information across distributed environments to build an

alignment methodology between local ontologies. However in order to guarantee the

success of our proposal framework we need a comprehensive system which can be

responsible for producing local ontologies that reflect the data stored in relational

databases.

Chapter 5 Approach Architecture

72

Figure 5-1: Database Integration using Ontology vision framework adapted from [64] and

modified.

Notice that the framework utilises global ontology instead of global schema, since

global ontology is more appropriate as far as domain modelling is concerned. In

addition, ontology is more expressive when compared to relational schema. Moreover,

ontology can capture more semantic than relational global schema, e.g. relational global

schema lacks the ability to express the property characteristics such as symmetry and

transitiveness.

To ensure the success of this framework the system needs to fulfil these criteria

 Be a scalable system.

 Have limited maintenance overheads.

This methodology aims to provide methods for producing and managing ontologies

from a database design, since it exploits the semantics and the constraints of the domain

applications captured through databases. Consequently, this methodology will yield to

an affluent modelling approach. The outcome of this methodology is an accurate

ontology which represents the world events, and is created with less effort on the part of

the designer. In addition, it will enable databases to evolve and to be utilised and reused.

Although our system of ontologies is not fully automatic, it captures most semantics

DatabaseDatabaseDatabaseDatabase

Global Ontology

Ontology Alignment

Ontology Mapping

Transformation

Local OntologyLocal Ontology Local Ontology Local Ontology

Chapter 5 Approach Architecture

73

hidden in databases in a systematic way. Besides that, it enables us to manage

ontologies less manually and to reduce the time-consuming factor.

5.3 Database integration phases

We assume complete cooperation from the database owner who seeks to integrate his

database with others. The framework of our approach is depicted in Figure 5.2.

Ontology

alignment

Phase 3

Validating and

refining

ontology

Phase 2

Generating

OWL

 ontology

Phase 1

initial

Ontology

enhanced

Ontology

Local

ontologyER

diagram

Relational

Database

SQL

Phase 4

Global

Ontology

Relational

Database

Local

Ontology

Mapping

Level 1 Level 2 Level 3

Figure 5-2: The Visionary phases Architecture for Database Integration

Our proposed system is divided into four phases:

 Generating the OWL ontology from SQL statements.

 Validating and refining the produced ontology via a comparison with the EER

diagram; these two phases are our primary focus in this thesis.

 Aligning the produced ontology with the local ontologies.

 Linking the global ontology and the local ontology with database instances

through a query language (we will address the third and fourth phases in future

work).

Chapter 5 Approach Architecture

74

 Our system therefore needs to be provided with two database inputs in order to

generate an ontology reflecting the database schema. The first input is the SQL-DDL,

which represents the database structure, and the second is SQL-DML, which holds

database instances. We can obtain this information from the database dump process,

which is a way of finding the structure of the table and the INSERT data in the tuples

statement. This input is central to process the first phase, after which our system applies

the rules explained in chapter 6 to generate an initial OWL ontology. This initial

ontology is complete from the structure design perspective since it contains all the

ontology definitions (classes, datatypes, and object properties). The second input is

therefore the EER model, which is responsible for validating and enriching the initial

ontology produced by phase one, in order to reach an optimal result. However, the

second phase involves two options; first to produce the ontology from scratch as an

alternative solution, and second to utilise the EER model in the validation and

enrichment process regarding the ontology generated in phase one. Here the resulting

OWL ontology from phase one also acts as an input in phase two (Chapter 7); the goal

from this phase is to reach an optimal result with the help of a domain expert. In the

third and fourth phase, an expert will choose appropriate local and global ontologies

with which to integrate the database.

5.3.1 Transformation System Architecture

Figure 5.3 explains in detail the first and second phases. There are five steps to produce

the ontology in our approach. The classes-datatype creation and the object properties

creation deal with the relational model of the database, more precisely SQL-DDL; the

result is an initial OWL ontology. Next there is ontology validation, followed by the

enrichment of the ontology. These last two steps deal with both the EER model and the

ontology produced by the first two steps. Finally there is the data migration step, which

populates the refined ontology with instances obtained from SQL-DML in order to

generate a knowledge base.

Chapter 5 Approach Architecture

75

Class

 / Datatype

Creation

Rule

Object

Property

Creation

Rule

Other Classes

Strong entity table

Weak entity table

M-N relationship

with attributes

table

N-ary relationship

table

Relational schema

SQL-DDL
Database

instances

EER Digarme

Class integration

Entity fragmentation

relations

Multivalued relation

Class inheritance

Class hierarchy

Class Multiple

inheritance

M-N relationship

1-M relationship

Self -relatioship

1-M relationship

general

1-1 relationship

Ontology Validation

Rule

Ontology Enrichment

Rule

Migration Rule

Initial Ontology

Enhanced Ontology

Ontology with

Instances

Figure 5-3: Database Transformation Architecture

5.3.2 Ontology Alignment

The second and third phases can be accomplished through a combination of techniques

suggested by [62]:

Chapter 5 Approach Architecture

76

 String Matching is used to compute similarities based on the names of class

and property. It can also be used to compute the similarity between two classes

by computing the similarities between the names of their properties.

 Linguistic-based Strategies match the strings with a thesaurus in order to

obtain synonyms and hyponyms.

 Structural Matching is a method used to compute the similarities between two

classes using graph information, i.e. computing the similarities between the

super-classes of the two classes.

 Heuristic-based Strategies combine several features of the string matcher with

those of iterations, computing the similarities in order to achieve high-quality

results (see Figure 5.4).

Figure 5-4: Mapping Techniques between Ontologies

In this thesis we concentrate only on the first two of the database integration phases,

leaving the third and fourth phases for future work.

Chapter 5 Approach Architecture

77

There are many important points to be addressed:

 Typically database integration systems contain local databases and one global

schema. In our approach we use ontologies instead of global schema, which

includes local ontologies and a global ontology.

 Databases convert to local ontologies which can have instances.

 The global schema will be represented by a global ontology.

5.4 General Disparities between Relational Databases and

Ontologies

Here we discuss some key matters that may affect our transformation system, which

focus on disparities between the database and the ontology models. The first matter is

the aim of modelling, and object to model for the two models, and the second is the

open/closed world assumptions for each model.

5.4.1 Aim of Modelling and Object to Model

According to Fonseca [57] there are two principles that allow us to distinguish between

ontologies and database models; the aims of modelling and the objects to model. Using

the first principle, ontologies concentrate on the description of the constant

characteristics, whereas database models link between the domain-constant

characteristics with a set of specifications defined within problem space. Using the

second principle, objects to model, the ontology describes a domain structure which

enables information integration. In contrast, the objects being modelled in the database

represent individual events linked to a certain domain [56]. We can additionally

distinguish between the two models from a different perspective since a relational

database is designated to deal with a large amount of data; its main goal is therefore to

manage this data in an efficient way by building a strong data structure, whereas the

target of an ontology is to represent knowledge. In other words, databases tend to be

more dynamic in representing real events, whereas ontologies are of a static trend.

Accordingly, each model will require different domain specifications.

Chapter 5 Approach Architecture

78

5.4.2 The Effects of Open/Closed World Assumptions

There are two kinds of assumptions about the control of constraints in any model: the

closed world assumption and the open world assumption. Databases run under the

closed world assumption, meaning anything not in the database is identified as false. In

contrast, knowledge bases (ontologies with instances) usually run under the open world

assumption, meaning knowledge not contained within the ontology is considered

unknown. Some researchers therefore refer to the knowledge base as an incomplete

database, with unknown knowledge that can grow incrementally. Consequently integrity

constraints can mean different things according to the two different world concepts.

Databases, for example, use constraints to validate the input data, whereas ontologies

declare constraints to augment classes and relationships with certain characteristics for

consistency checking. These constraints would not prevent declaration of any facts;

however, during the inference process some declarations may produce unexpected

(unintuitive) results. For example, in the Person table we add some information about

people, including Social Security Number (SSN), Name and Address, etc. The primary

key of this table is the SSN; therefore each person must have a unique SSN. In order to

capture these characteristics we utilise constraints of the primary key which have both

the NOT NULL and the UNIQUE constraints. When we try to add a new person

without an SSN, the insertion step will consequently be rejected. Additionally if we

manipulate a person's record by deleting his SSN, this action would not be updated - the

integrity constraints in databases work as data verification to check whether or not the

information satisfies certain conditions. This feature gives databases powerful

capabilities to store and retrieve large-scale data. However, ontologies do not formally

interpret axioms and assertions as database integrity constraints. For example when we

create a Person class to represent a Person table, the SSN attribute can form a datatype

property. Similarly, to express the dependency in OWL we impose the cardinality of

one and the existential restriction to represent the primary key integrity constraints.

However, ontologies do not force individuals to have a unique SSN and do not force the

datatype not to accept a Null value. Further, they would accept the missing information

and the Null value, i.e. the unknown information is accepted in knowledge bases.

Therefore B. Motik, et al. [58] suggest omitting the integrity constraints during the

Chapter 5 Approach Architecture

79

transformation since their corresponding axioms do not check the correctness of the

input data; they also claim that these axioms may cause performance overload during

reasoning, and they suggest OWL extension with true database-like integrity

constraints. However, we suggest transforming database integrity constraints which can

be utilised through the use of Semantic Web Rule Language (SWRL) languages. Some

database constraints can be expressed only by triggers. Therefore, these constraints are

suitable only for consistency checking, but not suited for reasoning, since this type of

constraints is expressed in an imperative form.

In order to utilise integrity constraints in an ontology we suggest that the two models

work together. The database takes on the role of storing, retrieving and validating data

while the ontology takes the role of representing information in the knowledge

representation mode. This leads us to the conclusion that an ontology is not a

substitution for a database.

While generating ontologies from a relational model, we therefore have to keep in mind

considerations of the above-mentioned differences between the two models. As a result

we have to face the question of whether the produced ontology would belong to the

closed world or not. The answer is based on the domain and the application

requirements, although we generate our ontologies with an open world assumption. For

example the default of database tables is disjoint, whereas OWL considers classes to be

overlapping. In order to produce a typical ontology we would not close the open world;

therefore we bypass the declaration of pair-wise disjoint classes' axioms.

 It may be asked whether these differences between the two models, addressed by [57

and 58], affect our rules. Indeed these differences must be taken into consideration

during the transformation process; however, since our target is to produce local

ontologies (application ontologies) these differences would not be obstacles to our rules,

since the local ontology is nearer to event modelling than to domain ontologies (global

ontologies). In fact the local ontologies may even cooperate with each other as 'siblings'

for their parent global ontology.

We consider the mismatch between the relational model and the ontological model in

our transformation rules. In addition there are some slightly different design choices

Chapter 5 Approach Architecture

80

depending upon domain requirements and model capabilities, which should receive

careful attention while we transform them.

5.5 Comparison between Ontology and Conceptual Data

Model

This section explores similarities and differences between ontology models and

conceptual data models. There are some similarities between conceptual data models

and ontologies; both share similar designs in representing concepts, for example entity

sets in conceptual data models correspond to classes in ontologies. Both models also use

relationships to link between concepts. Moreover EER and ontological modelling could

both design the specialisation and generalisation inheritance by ISA and subclass

constructs respectively. Here we have to distinguish between the two conceptual data

models EER and ER, since the former supports inheritance concepts whereas the latter

does not. Thus, the methodologies for developing EER models and ontology models

have a lot in common [56].

While ontologies and conceptual data models share common features, they also have

some differences. All the differences explained above (5.4.1 and 5.4.2) are at the

concepts level, but there are also some differences at the details level.

Firstly EER has strong representation for higher-degree relationships, while ontology

handles them indirectly through classes and object properties. OWL is more expressive

than EER in some aspects, for example, OWL focuses on property characteristics such

as value constraints, transitiveness, and symmetry, which are absent in EER. In contrast,

conceptual models have focus in capturing structural constraints such as keys and

cardinality constraints. The cardinality concept is represented by OWL terms, better

than the EER model, since OWL are rich with expressive power terms in general. If

EER uses the notation of (1 and M) cardinality then ontology will surpass it. However if

EER cardinality is based on the notation of (min, max), then both models are equally

good at cardinality representation.

Chapter 5 Approach Architecture

81

5.6 Comparison between Ontology and Relational Data

Model

Here we need to discuss the evolution of relational modelling before focusing on the

disparities between the two models.

5.6.1 SQL Evolutionary Stages and Ontology Layers

Before SQL was invented, relational models only had relational schema syntax with

which to consider the representation of data. SQL then took its place in representing

relational models in three parts: Data Definition Language (DDL), query language, and

Data Manipulation Language (DML). SQL-DDL is described as a declarative language

for defining both the physical and logical representation of data in databases, which is

our concern.

SQL evolved during the last two decades and has many standard versions, from SQL-86

until SQL-2008. The most important features that play a major role in SQL are:

- Table definition (SQL-86).

- Data integrity constraints (SQL-92).

- Triggers which are used to maintain correctness (SQL-1999).

- XML-related features, however these do not add any specific semantic

components to the DDL features (SQL-2003).

Our approach concentrates only on table definitions and data constraints. Figure 5.5

shows SQL-DDL features. The development of SQL-DDL has an equivalent

corresponding language in a semantic web layer cake. Each super feature in a semantic

web layer cake offers more semantics than the previous one.

Indeed our approach does not consider the full SQL constructs for two reasons, the first

being that not all database systems fulfilled the SQL standard during their

implementation, and the second being that many parts of full SQL-DDL are vendor

specifications. We therefore devote our approach to handling only the primitives of

relational models.

Chapter 5 Approach Architecture

82

Triggers

Constraints

Table definations

Relational schema

Rules (SWRL)

OWL

RDFS

RDF

SQL Semantic Web

Figure 5-5: Mapping between Relational Models and Ontology Models Adapted from [61]

Consequently there are parts that cannot be mapped to a corresponding model in OWL

language such as:

- SQL ordering constructs.

- Built-in functions (e.g. count, min, max... etc).

- Because of ontologies static nature, all dynamic aspects, i.e. behavioural parts

(stored procedures, triggers, assertions and referential actions) cannot be

translated to a corresponding ontologies terms [36].

Here also there are some common characteristics shared by both OWL ontology models

and relational data models; the RM model has a mathematical base similar to the

description logic (the foundation of OWL ontology).

5.6.2 General Disparities between RM and OWL

 Databases use integrity constraints to capture cardinality ratios of the

relationships between entities. For example, imposing NOT NULL to a foreign

key restricts the cardinality to one. However databases lack expressive

definitions of relationships, i.e. there are no logical characteristics such as

symmetry and transitivity etc. Ontology, however, expresses the concepts of

relationships' logical characteristics naturally. More details about this are given

in section (6.4.5.4). Generally information about data is not explicitly stored in a

database. Sometimes it is hidden in the entity declarations; at other times, as

Chapter 5 Approach Architecture

83

with triggers, it is implicitly expressed in an unclear part of a database, or in

Procedural Language (PL-SQL), whereas ontology explicitly represents all the

domain knowledge [59].

 One aspect that can differentiate between databases and ontologies is the

relationship between the model and the real world. Usually, a database bases its

design on real world enterprise analysis and draws the design from user

specification, while the ontology design tends to be abstract, having an absence

of specified user needs. Thus it is more appropriate to express database design in

a close world assumption.

 Database design is more powerful with regard to structuring an N-ary

relationship as a complete unit. However, an ontology handles an N-ary

relationship indirectly through binary relationships. OWL does not provide a

construct which would be able to combine the binary relationship groups in one

whole unit.

 RM cannot deal indirectly with multi-valued attributes since RM requires

auxiliary tables to represent it, but an ontology can present multi-valued

attributes properly.

5.6.3 Inheritance Modelling Disparities between Relational Databases

and Ontologies

We have dedicated this section to discussing the inheritance in both models since

inheritance is crucial when representing an ontology. Therefore we will demonstrate

different ways of modelling inheritance, and explore how it will affect our

transformation system.

Relational models declare inheritance implicitly. Inheritance hierarchies can be

identified in various ways in SQL-DDL. The problem stems from a variety of methods

in modelling inheritance relationships: each modelling pattern is not restricted to

represent a unique relationship; therefore the inheritance patterns could be used to

represent other relationship types such as one-to-one relationships. Even using the

reverse-engineering methodology would not help in deciding whether or not this

relationship was originally designated for subclass relationships. It is therefore difficult

Chapter 5 Approach Architecture

84

to infer the correct model choice automatically. There are two patterns to model

inheritance:

 A foreign key is a primary key too: this is the usual design in the formation of

subclass relationships. Database designers misuse this pattern, however, to

represent the vertical partitioning of an entity represented by more than one

table, although the pattern is considered a unique way to identify inheritance.

 Foreign key and primary key are disjoint: this pattern is in fact used to

represent one-to-many relationships. However in this case we impose the foreign

key by the NOT NULL and UNIQUE constraints to represent an inheritance.

These kinds of relationships are needed to represent the shared entity, for

example if an entity 'Engineer-Manger' is a subclass of a 'Salaried Employee'

entity and a 'Manger' entity simultaneously. We use the first pattern for one

single inheritance between 'Manager' and 'Engineer-Manager'. In modelling the

second inheritance, we use this pattern to represent the multiple inheritance since

there is no way to represent the shared entity by the single-inheritance pattern.

Some approaches such as [45] consider that the foreign key subset of the primary key

(the „part of‟ relationships) could model an inheritance, however we do not consider this

to be the case as this pattern is usually for modelling either weak relationships or multi-

valued attributes only.

Conversely ontological models exploit the subsumption relationship (subclass) to

represent single and multiple inheritance explicitly in a single way.

5.7 Database and Ontology Capabilities

We now give an introduction of different database source characteristics in an ontology

context. As seen in Table 5.1 there are two database sources, which include the

conceptual model of EER and the logical model of RM. The table shows the limitations

of each source. Since we consider the two database models as being the sources to our

approach, our system can capture any ontology context as long as it is available in one

of the sources.

Chapter 5 Approach Architecture

85

Table 5-1: Comparison between EER, RM (SQL) and OWL Models

No Context EER diagram RM
Our

system
OWL

1 Concepts (human) Possible

(entity)

Possible

(table)

Possible

Possible

(class)

2 Roles (has child) Possible

relationship

Possible

relationship

Possible

Possible

Object

Properties

3 Inheritance Possible

(ISA)

Not Possible Possible

Possible

(sub of)

4 Multiple

inheritance

Possible Not directly Possible Possible

5 Cardinality

restriction

Possible Possible Possible Possible

6 Value restriction Not Possible Possible Possible Possible

7 has value

restriction

Not Possible Possible Possible Possible

8 Transitive

property

Not Possible Not Possible Not

Possible

Possible

9 Symmetric

property

Not Possible Not Possible Not

Possible

Possible

10 Inverse property Possible Possible Possible Possible

11 Functional

property

Possible Possible Possible Possible

12 Inverse functional Not Possible Not Possible Not

Possible

Possible

13 Equivalent

class/property

Not Possible Not Possible Not

Possible

Possible

14 Enumerated

property

Not Possible Possible

(check in)

Possible Possible

15 Disjoint class Possible Not Possible Possible Possible

16 Individuals Not Possible Possible Possible Possible

17 Same/different

individual

Not Possible Not Possible Not

Possible

Possible

18 Sub properties Possible Not Possible Possible Possible

19 Keys Possible Possible Not

directly

Not

directly

20 Ternary and

higher order

relations

Possible Not directly Not

directly

Not

directly

The context available in the RM model will be captured automatically whereas the

context available only in the EER model can be obtained manually by the procedure

suggested in Chapter 7. Using only the relational model (SQL) makes our

transformation system automatic. Conversely using the conceptual database model

(EER) with RM can add more semantics to the ontology, however this makes our

system semi-automatic.

Chapter 5 Approach Architecture

86

From the table above we can detect that if any one of the database sources (EER or RM)

is capable of representing an ontological context, our approach can acquire these

semantics. Generally our approach extracts the semantic from the RM source if it is

accessible, otherwise the semantic will be obtained from the EER source; this ensures

that there is no conflict between the results obtained by the two sources. Consequently,

the need to merge the two sources results no longer exists, since the semantics obtained

from the RM model are different from those obtained from the EER model.

 The table also shows the limitations of our system. For example there are many

different modelling contexts which could not be obtained from both sources, e.g.

transitive property, symmetric property and equivalent (class/property). This clearly

shows that the automatic transformation from database models to ontological models

has some limitations, as there are many disparities between the two models.

Finally with all the advantages of a database, there are still some general limitations

which might affect the extraction of semantics from database sources, such as the

meaningless names of some tables or attributes, poor semantics and bad design intended

to improve the performance. Our system tries to overcome these limitations.

5.8 The Transformation criteria

We differentiate the terms used to describe the process of converting database to

ontology, such as mapping and transformation, and translating. The mapping process

assumes the existence of both relational database and ontology. Here the approaches

seek to obtain and set the corresponding variables between the two model structures,

whereas transformation only assumes the existence of relational database. Therefore, the

input of the transformation system is the source of the database and the result will be

ontology; with the translating terms also being the assumption of the database existence.

Where translating is referred to each aspect of database will receive a related

corresponding construct without any modification to the source process, however,

transformation usually involves some modification to the source before the

correspondences matching the construct are found.

Chapter 5 Approach Architecture

87

The criteria that should be considered by any approach, while transforming relational

database into ontology are:

 Preserve data: The transformation should sufficiently depict the original data

with its data types.

 Preserve semantic: only translate those constructs that have semantic

equivalents.

 Maintain the structure: besides transforming tables and relationship, it should

include constraints and a mechanism to migrate data.

 Generality: the system is not restricted to a specific domain.

 Correctness: the mechanism should prove the transformation accuracy. Mostly

lack of correctness is caused by informal specifications in the transformation

system.

 Completeness: the transformation rule should contain space in all possible cases

of relations and relationship. Therefore, the transformation system needs a proof

of completeness and the quality of the transformation should be evaluated.

The current approaches involve at least one or more of the following deficiencies.

 Loss of inheritance: The system should learn inheritance (hierarchy, multiple

inheritances), because if the system fails in obtaining this characteristic then the

ontology will have a flat structure.

 Loss of constraints: The system is unable to capture constraints on

relationships.

 Results are deduced based on erroneous database analysis: Correct analysis

for tables should include a multivalued table. Additionally, the correct analysis

should differentiate between fragmentation case and hierarchy case.

 Superfluous structure: Additional tables representing fragment entities or

multivalued table transformed to classes etc.

 Theoretical transformation system: Not implemented.

 Domain expert dependent: The system requires user intervention to decide

between analysis options, which lead to a semi-automatic process while these

Chapter 5 Approach Architecture

88

choices can be resolved and automated if the database were to experience

a correct analysis.

 Not considering the disparities between the two modelling: Therefore, some

constructs which shape the database structure can be translated into ontology

constructs.

 Not avoiding domain specific example influence: This means approaches try

to obtain some semantics from domain specific examples or from enumerating

examples, then generalise their deductions which leads to incorrect rules. For

example [46] use specific examples to represent symmetric and transitive

properties, however their rules for generating property characteristics cannot be

generalised.

5.9 The Transformation process

This section explains our proposed procedure to generate ontology from a relational

database. This procedure consists of seven steps:

I. Using reverse engineering methodologies on a logical model written in SQL in

order to capture syntax and schema structure (relations, attributes, inclusion

dependences etc) and the hidden semantics.

II. Analyse the structures obtained and semantics in order to infer the best

corresponding match constructed from the ontology side.

III. Apply the transformation rules to generate a complete ontology schema which

includes classes, subsumption relationships, object properties and datatype

properties.

IV. Checking the ontology‟s consistency through an ontology reasoner. In order to

detect the superfluous relationships, and to remove redundant data.

V. Validate and refine the produced ontology by the information obtained from the

conceptual database model.

VI. Evaluate the ontology.

VII. Migrate data in order to produce a knowledge base.

Chapter 5 Approach Architecture

89

Our approach co-exists in semantic annotation in Semantic Web community and is

known by the database community as reverse engineering [36].

5.10 Summary

This chapter showed the visionary framework (hybrid ontology approach) and how we

utilise it in solving database integration problem. Then our approach architecture was

demonstrated with the mechanism of creating each ontology elements and when and

how each database source can be utilised. After that, the chapter mentioned the

disparities between the database model and the ontology model in terms of aims and

assumptions. Also it showed how that will affect the transformation system. Moreover,

we compared between the semantics obtained by the EER model and The SQL-DDL

source and the approach target ontology language (OWL) in order to specify the

contexts that can be transformed and the ones that cannot. Finally, we addressed the

criteria that ensure the success of the transformation system and our algorithm of

applying them in our approach.

Chapter 6 RM Transformation Rules

90

6 CHAPTER SIX:

TRANSFORMATION FROM

DATABASE TO ONTOLOGY

Objectives

 Specifying the assumptions.

 Explaining the formal rules from relational model to ontology

model.

6.1 Introduction

This chapter will present the main rules for transforming the database to ontology.

Section 2 gives an overview of the important features of our transformation rules.

Sections 3 and 4 explain the transformation rules in detail and section 5 concludes the

chapter.

6.2 Overview

Our system has many critical elements, which distinguish it from other works such as:

 Formal transformation rules eliminating syntactic and semantic ambiguities.

 The transformation rules in our system satisfy the completeness concept, since

they cover all feasible relation cases encrypted in SQL-DDL, while considering

the space of keys cases in terms of the interactions between the relations of

primary key and foreign keys.

 Comprehensive rules, which contained all the possible situations in the database.

 Automatic approach with minimal requires user interactions.

Our system avoided the drawbacks of other approaches such as:

 The rules only being explained in the description in English.

Chapter 6 RM Transformation Rules

91

 Expository rules without formality.

 Rules influenced by domain specific examples.

6.3 The rule source

We choose to establish our approach on the logical model of a database, instead of the

conceptual model, since the database conceptual model (i.e. the ER model) is to a large

extent not implemented during database design process, or the model had been lost.

Another possible explanation may relate to undocumented changes altering the structure

of the database. The logical data model has been written by SQL-DDL, which is used to

represent physical schema part of relational databases for an enterprise in a standard

way. In fact, SQL-DDL is not meant to be a knowledge representation language,

although it is able to acquire some of the application domain semantics.

The assumption here is that our approach is capable of recovering the logical model of a

database application, through analysing the syntactic elements of SQL-DDL which

represent the physical code of the database model.

In their design, modern software programs have adopted the standard SQL language in

order to express domain semantics in a rich way. However, SQL is not a representation

form language, therefore inference procedures cannot utilise it. Thus the influence of

our approach has been to convert SQL-DDL to the latest ontology language OWL

which is already suitable to acknowledge a representation language.

6.4 Transformation Rules

This section has given formal rules for transformation of relational databases to OWL

ontologies. First of all the predicates are defined; and subsequently an ontology has

been constructed in three stages. The first stage, has built classes with their data type

properties; whilst the second and third stages have successively explained how object

properties are created and instances migrated respectively.

The transformation rules partition the database relations in such a way that no two rules

can be applied to a single relation and no relation exists without a rule.

Chapter 6 RM Transformation Rules

92

During the transformation process, we aimed to derive and preserve the semantics of

database original model described by the definition of relations. Figure 6.1 shows the

algorithm for applying the first stage of the transformation rules.

Apply

Rule_C1

Rule_DP1

Apply

Rule_C2

Rule_DP2

Apply

Rule_C3

Rule_DP3

IF Rule_C1 is

applicable

IF Rule_C3 is

applicable

Is there new

Ri, Rj, PK Rel

Strat

Finish

No

Yes

Yes

No

No

Yes

Apply

Rule_DP4

No

Yes

Enter

Ri, Rj

PK Rel

Apply

Rule_C4

Enter All R

do not

create

classes

IF Rule_C1 is

applicable

Figure 6-1: Classes and Data-type Rules Algorithm

Chapter 6 RM Transformation Rules

93

6.4.1 Assumptions

In order to enhance our transformation rules from relational schema into ontology, we

have adopted only the reasonable assumptions of other accomplished works, but have

modified them to accommodate more database cases:

i. Relations are in the second normal form (2NF), available in SQL-DDL. Most

extant approaches based their rules on 3NF database [36, 41, and 46]. See

appendix A for more information about normalisation.

ii. New tuples added to the database are consistent with the derived metadata [43].

This condition only applied for bad designed databases.

The following explains the reasons behind the choice of these assumptions:

 The precise form which represents the current relational schema is available

only in SQL DDL code.

 Any database necessitates changes in order to adapt the new requirements of the

real world. The physical model should therefore be modified in order to express

database evolvement. Also, as SQL DDL is the exclusive reflection of a

database physical model, it should be the precise source representing database

structure.

 Requiring the database to be in the third normal form is an impractical

condition, since most available databases barely satisfy 2NF requirements and

force database designers to apply normalisation algorithms [4] to capture

functional dependencies. Then they must use them when changing the database

structure to make the database qualify as the third normal form. Therefore we

have modified our assumption to require databases to satisfy the second normal

form only. The only exception for our approach is databases in the first normal

form, which is not usually recommended by database designers since it has a lot

of redundant data. However demoralised database, database in first normal form

or second normal form would not lose any semantics. The real purpose of using

demoralised database is to enhance the performance since it reduces the natural

join between relations.

Chapter 6 RM Transformation Rules

94

6.4.2 Predicates and Functions

We have enriched our transformation rules with some functions and predicates which

clarify our system definitions.

Database predicates are defined in one or more arguments. Their purpose is to examine

the relational database schema in order to capture a suitable construct that will satisfy

the predicates‟ conditions. The list of predicates is shown below:

 PK(x, R): x is the (single or composite) primary key of the relation R and has

been represented as a set of attributes.

 FK(x, R, y, S): x is a (single or composite) foreign key belonging to the R

relation and refers to the primary key y of relation S.

 Attr(x, R): x is an attribute in relation R.

We have also defined the following functions:

 OCC(v, x, R): there is a tuple in R for which the value of x is v ∈ Type(x).

 IsFK(x, R) = ∃ y, S: FK(x, R, y, S).

IsFK (x, R) means that x is a (single or composite) foreign key in the relation R.

 NonFK(x, R): x is an attribute belonging to the R relation which satisfies the

condition of not participating in foreign keys.

 NN(x,R) x is an attribute part of the R relation constrained by NOT NULL; e.g.

NN(ID ,Employee) holds.

 UNQ(x,R) x is an attribute belonging to the R relation constrained by the

UNIQUE clause.

From another standpoint, ontology predicates are defined to represent the OWL

ontology construct that has satisfied a set of conditions. These predicates are:

 Class(c) c is a class.

 ObjP(p,d,r) p is an object property with domain d and range r .

 𝐷𝑃 𝑥, 𝑐, 𝑡𝑦𝑝𝑒(𝑥) x is a data type property with domain c and range type(x).

Chapter 6 RM Transformation Rules

95

 Inv(p,q) when p and q are object properties, p is an inverse of q.

 FP(p) p is a functional property.

 IFP(p) p is an inverse functional property.

 Crd(p,m,v) the (max and min) cardinality of property p for class m is v.

 MinC(p,m,v) the min cardinality of property p for class m is v.

 MaxC(p,m,v) the max cardinality of property p for class m is v.

 SubClass(m,n) m is a subclass of class n.

We have also defined the following ontology functions:

 Type(x) maps an attribute x to its appropriate XML data type, as recommended.

 one of(x) is a function maps an attribute to the permitted values list; this function

can be applied only when the constraint of CHECK IN is valid.

 ← Means the corresponding (relation or relationship or attribute).

 ≪ Means the class already exists from its corresponding relation.

However an Inverse functional property (x) where x is a data type is not available as it

is part of OWL-Full. Tagging Inverse Functional to a data type property is permitted in

OWL-Full only, which guarantees the uniqueness of an attribute. However, OWL-DL

does not enable a datatype property to have an Inverse Functional clause, since the

literals of OWL-DL are disjointed from owl:Thing.

6.4.3 Producing Unique Identifiers (URIs) and Labels

Producing unique identifiers for ontology constructs is essential in building ontology

structures. OWL ontologies define their concepts, including classes and properties, by

unique identifiers which are considered to be unique names. As in database each table

and attribute has a unique identifier implied in its name. However database allows

reusing attribute names as long as they belong to different tables.

Since the relational schema labels its concepts; therefore it is possible to use them in the

ontology with an exception of no duplication is allowable.

Chapter 6 RM Transformation Rules

96

There are two ways to resolve the duplication problem. The first idea has been to

append the name borrowed from relational schema with random numbers to make it

unique. The second solution to produce URIs based on fully qualified names of schema

elements. User intervention is needed to ensure second solution success. Here a domain

expert is preferable to specify qualified names to ontology constructs. We preferred the

second solution since most database designers abridge names of relations and attributes

in database relational schema. Consequently, these abridged names might have a

meaning indication and sometimes it is difficult to infer the meaning. The second reason

behind this choice was to make the ontology human readable and prepare it for the

ontology alignment step.

6.4.4 Class and Data type property Creation Rules

Our transformation rules have the form: IF condition THEN action. In the following

rules, relation symbols are assumed to be universally quantified. The rules consider

maintaining all predicts of relational database in the conditional side; and all ontological

predicts in the action side. This characteristic has distinguished our rules from others

[45]; whereby their database predicates appeared in both the head and body of a rule.

6.4.4.1 Fragmentation rules

In this rule we discussed both class and data type creation for this case.

 Rule C1: Fragmentation class rule

If the information of one entity type has spread across more than one relation, known as

fragmentation (vertical partitioning of a table), then it should be integrated into one

class.

There are three ways to deal with fragmentation tables. Firstly, if the database has been

correctly and completely specified; then the fragmentation could be distinguishable

from inheritance, as Rule-C1cc showed the specification. Whereas, if the database has

not been completely specified, but has complete and available data, then the number of

records in the master and the slave tables must be identical to consider the relationship

Chapter 6 RM Transformation Rules

97

as fragmentation. The third way has been to treat fragmentation as inheritance as far as

database in the third normal form as long; and as the relationship from type One - To -

One.

Details on how to choose the better way can be gleaned in the discussion section.

𝑅𝑢𝑙𝑒_𝐶1𝑐𝑐

− Class condition:

∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾(𝑥,𝑅1) ∧ 𝑃𝐾(𝑦,𝑅2) ∧

 𝑏 𝐹𝐾 𝑦,𝑅2, 𝑥,𝑅1 ∧
 𝑐 𝐹𝐾 𝑥,𝑅1,𝑦,𝑅2

− Class Action:
𝑐𝑙𝑎𝑠𝑠 (𝐶) ← 𝑅1⋃𝑅2

 (1)

The need for fragmentation of an entity to more than one table arises when one entity

has many attributes. Some of these attributes are mainly optional; not applicable for all

tuples and usually for the majority of time assigned a NULL value. Therefore the

database designer can split the information into more than one table. The important

fields are then assigned to the main table which will be accessed more often; and the

insignificant fields can be stored in another table(s). The benefit associated from this

procedure can be improved performance.

Another need for fragmentation has been when one entity has two parts of information.

The classified (confidential) fields need to be stored within high level security; and can

only be accessed or manipulated by the administrator. The other part can be the public

fields accessible by all users. The third need for the fragmentation technique is for the

distributed database. When part of one entity has been manipulated in the branches of

the database; then the update could take place at a later stage in the main database. For

example the employee entity may have all the following attributes: employee SSN,

employee-id-number, first-name, family-name, DOB, address, speciality, extension

number, home phone number, mobile phone number, fax number, employee website

and email etc.

These attributes or important information could be assigned to one table such as the

employee table; and the rest could be assigned to an employee - details table.

Chapter 6 RM Transformation Rules

98

 Rule DP1: Fragmentation data type property rule

All present attributes in each relation participating in the fragmentation rule, and not

forming a foreign key, will be allocated to the integrated class created from Rule C1cc,

as depicted in equation 2. For example, if the entity employee has two tables. The first

table - Employee - have the attributes: (SSN, employee-id, first-name, family-name,

DOB, speciality); all of which do not form foreign keys except the (SSN) attribute.

Similarly, the second table - Employee Details - have the attributes: (SSN, address,

speciality, extension number, home phone number, mobile phone number, fax number,

employee homepage and email) of which all the attributes do not form foreign keys,

except the (SSN) attribute in the - Employee Details - table. The repeated attributes

appear once in the integrated class which is the primary key of the two tables. A data

type property can then be created for each attribute in these two tables and allocated to

the one class – Employee - which correspond to both - Employee - and - Employee

Details - tables. These data type properties will thus consider the class - employee- as

their domain, and the corresponding data type in Table 6.1 as their range. We have

referred to them by type(x) in our rules. For example, first-name will have class -

employee - as its domain and the range of xsd: string.

𝑅𝑢𝑙𝑒𝐷𝑃1𝑐𝑐

− Datatype condition:

𝐴𝑡𝑡𝑟 𝑥,𝑅1 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑥,𝑅1 𝐴𝑡𝑡𝑟(𝑃𝐾(𝑅1))

(𝐴𝑡𝑡𝑟 𝑦,𝑅2 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑦,𝑅2)

− Datatype action: 𝑐𝑟𝑒𝑎𝑡𝑒

𝐷𝑃 𝑥, 𝑐, 𝑡𝑦𝑝𝑒(𝑥)

 (2)

Table 6-1: Data type between the Database and XML

Type DB XML Schema data

type

number

smallint Xsd:short

integer/int
Xsd: integer

float
Xsd:float

real

decimal
Xsd:decimal

numeric

Double precision Xsd:double

Char char /varchar/vchar Xsd:string

date/time time Xsd:time

Chapter 6 RM Transformation Rules

99

Type DB XML Schema data

type

date Xsd:date

Date/time(TIMESTAMP) Xsd:datetime

interval duration

Boolean Bit/Boolean Xsd:Boolean

** Bit varying byte

6.4.4.2 Hierarchy rules

This rule has represented the case of inheritance for both class creation and its data

types.

 Rule C2: Hierarchy class rule

One of the most important stages in building the ontology is the construction of the

hierarchy. The term „hierarchy‟ referred to the specification of the relationships between

classes and subclasses. The class-subclass relationship appeared as an IS-A relationship

between entities in the EER model. Rule- C2 demonstrated the conditions and the action

for this rule.

𝑅𝑢𝑙𝑒_𝐶2

− Class condition:

∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾(𝑥,𝑅1) ∧ 𝑃𝐾(𝑦,𝑅2) ∧

 𝑏 𝐹𝐾 𝑦,𝑅2, 𝑥,𝑅1

− Class action: 𝑐𝑟𝑒𝑎𝑡𝑒

1) 𝑐𝑙𝑎𝑠𝑠 (𝐶1) ← 𝑅1

2) 𝑐𝑙𝑎𝑠𝑠 (𝐶2) ← 𝑅2
3) 𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 (𝐶2,𝐶1)

𝑤ℎ𝑒𝑟𝑒

𝐶1 𝑎𝑛𝑑 𝐶2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

 (3)

Some approaches [41] [42] failed to distinguish between the fragmentation of one entity

into more than one relation; and the IS-A relationship, which represented two different

entities, with the idea of super-entity and sub-entity (generalisation /specialisation).

Other approaches have enabled the user to decide [36]. This failure came from incorrect

specifications of the fragmentation case and therefore the fragmentation and hierarchy

case have the same representation.

Chapter 6 RM Transformation Rules

100

However our approach distinguished between the two cases by the foreign key

restriction. Both fragmentation and hierarchy had the same first condition of tables

sharing the same primary key. The fragmentation case required the primary keys to act

as foreign keys referring to each other; whereas the hierarchy case required only one of

the primary keys to act as a foreign key to others. Even if there was a chain of class and

subclass hierarchies for more than two levels; the condition remained true for

inheritance, since the two tables do not refer to each other. There was noticeably no

restriction on the master relation primary key, whether it was a foreign key or not,

which allowed the master relation to be subclass from a superclass. This meant the rule

was applicable even if the master relation preceded its primary key as foreign key or

not. This provided this rule power to build many level inheritance hierarchies.

Suppose we had three tables T1, T2 and T3. The primary key of these three tables are

identical; whilst at the same time the T2 primary key referred to T1 and T3 primary key

referred to T2. When the rule is applied between T2 and T3 the result is class for T2 and

subclass for T3. Subsequent applying the same rule between T1 and T2; T1 would be

superclass and T2 as subclass. The third probability with regards to the relationship

between T1 and T3 was not applicable.

In addition our approach, through good observation, inferred an implicit IS-A

relationship even when the foreign key was disjointed from the primary key; for

instance the two tables below depicted by Person and Student. Here a foreign key

Student table has two restrictions of UNIQUE and NOT NULL and whenever these two

characteristics combined in a foreign key it could form an IS-A relationship.

Person (P-ID (Primary Key), DOB, Name...)

Graduate Student (St-ID (Primary Key), Research- topic, ID UNIQUE NOT NULL

FOREIGN KEY REFERENCES Person (P-ID))

Generally placement of a foreign key into a table has been the standard way to model a

relationship for (One-To-Many), and (One-To-One) relationships including the IS-A

relationship.

Chapter 6 RM Transformation Rules

101

However Tirmizi et al [45] argued that if the IS-A relationship was modelled; but the

primary key of the superclass did not become the primary key of the subclass, then,

there could be no assumption of the existence of an IS-A relationship. However from

the example of Student and Person tables, Graduate Student IS-A Person. Nonetheless

because the primary key of the Person table (P-ID) did not become the primary key of

the Graduate Student table, we cannot assume the existence of an IS-A relationship.

Conversely (P-ID) was placed in the Graduate Student table as a foreign key

referencing Person table, at the same time, declared to be UNIQUE and NOT NULL.

This effectively declared that (P-ID) was an alternate key and thus, should declare an

ISA relationship.

The Rule_C2nu thus represented the NOT NULL and UNIQUE relationship as outlined:

𝑅𝑢𝑙𝑒_𝐶2𝑛𝑢

− Class condition:

∃𝑥,𝑦 ∶

 𝑎 𝑃𝐾(𝑥,𝑅1) ∧ 𝑃𝐾(𝑦,𝑅2) ∧
 𝑏 𝐹𝐾 𝑦,𝑅2, 𝑥,𝑅1 ∧
 𝑐 𝑁𝑁 𝑦,𝑅2 ∧

 (𝑑)𝑈𝑁𝑄(𝑦,𝑅2)

− Class Action:

1) 𝑐𝑙𝑎𝑠𝑠 (𝐶1) ← 𝑅1

2) 𝑐𝑙𝑎𝑠𝑠 (𝐶2) ← 𝑅2

3) 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠 (𝐶2,𝐶1)

 (4)

Using this case has been rare; however to model multiple inheritance this can be

considered the only solution. If we define the table of Student and redefine Graduate

Student table as:

Student (St-ID (Primary Key), Major, Degree)

Graduate Student (St-ID (Primary Key), Research- topic,

ID unique not null FOREIGN KEY REFERENCES Person (P-ID),

St-ID FOREIGN KEY REFERENCES Student (St_ID))

Chapter 6 RM Transformation Rules

102

The class of Graduate Student will thus inherit all the properties of class Person and

class Student.

i. Rule DP2: Hierarchy data type property rule

The order of building the hierarchy chain was therefore very important for this step. For

example if we had three relations: T1 super-relation; T2 sub-relation; and T3 sub of the

sub-relation then the first relationship to deal with would be, between T1 and T2, since

T1 does not refer to other relation. The approach thenceforth deals with the relationship

between T2 and T3.

The reason behind this procedure was to ensure there was no repetition attributes

assigned to both the super-class and sub-class. Here the difference between database

design and ontology design, in maintaining the inheritance, was the database need to

repeat the primary key throughout relations. The primary key performs as foreign key

referring to its super relation in order to represent generalisation; whereas ontology only

used the term of subclass.

Rule DP2 demonstrated the data type property rule for relations, participating in

hierarchy rules. From the class hierarchy Rule C2, we created two classes, one for the

master relation and the other for the sub-relation. This ensured that all the attributes

present in each relation would be moved to the corresponding classes without repetition.

𝑅𝑢𝑙𝑒𝐷𝑃2

− Datatype condition:

𝐴𝑡𝑡𝑟 𝑥,𝑅1 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑥,𝑅1

𝐴𝑡𝑡𝑟 𝑦,𝑅2 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑦,𝑅2

− Datatype action ∶ 𝑐𝑟𝑒𝑎𝑡𝑒

1) 𝐷𝑃 𝑥,𝐶1, 𝑡𝑦𝑝𝑒 𝑥

2) 𝐷𝑃 𝑦,𝐶2, 𝑡𝑦𝑝𝑒 𝑦

 (5)

Chapter 6 RM Transformation Rules

103

 Discussion:

Both fragmentation and hierarchy shared the same specification in many incorrect

relational schemas and a relationship of type One-To-One. This type of relationship was

mandatory from both sides, in which the EER diagram has shown explicitly the

hierarchy situation. However, after converting the EER of the database to relational

schema; the hierarchy relationship became ambiguous. For example a table can be a

result of an entity or a relationship; and one entity can be articulated in more than one

table.

There are therefore three solutions to determine whether the One-To-One relationship

belong to the fragmentation or hierarchy case.

The first solution considers fragmentation as a type of hierarchy. It is therefore

acceptable to treat the vertically partitioned table as inheritance as the assumption of

database is in the third normal form (3NF) and could be applied by Rule-C2. This is true

from a database perspective; but not acceptable from an ontology perspective.

The approach [45] claimed that partition of one entity into more than one table would

violate the third normal form. However there were no obvious functional

dependencies that would violate 3NF for decomposing a table. Violations of 3NF, not

violations of 1NF, would not alter the primary keys in any way upon decomposition.

However, a violation of 1NF would technically be a violation of 3NF; and could cause a

designing problem. The following example shows how normalisation can affect the

database design:

Professor-Teaching (Prof-ID (Primary Key), department, <List of Courses Taught>)

Professor-Personal-Details (Prof-ID (Primary Key), DOB, Spouse-Name, FOREIGN

KEY Prof-ID REFERENCES Professor-Teaching)

Chapter 6 RM Transformation Rules

104

In the above example the two tables meet the requirement of hierarchy; however clearly,

the Professor-Personal-Details table is not a subclass of the Professor-Teaching table.

Furthermore, if the Professor-Teaching table was properly normalized, (Prof-ID) would

not be its primary key and thus (Prof-ID) could not be a foreign key in Professor-

Personal-Details table.

Other approaches have claimed that there is no way to distinguish between tables

produced from entities with an ISA relationship; and one entity representing vertical

partition. We would argue that, if the database has been correctly and completely

specified, their claim is invalid. For example the two tables below:

 Professor-Personal-Details (Prof-ID (Primary Key), DOB, SpouseName)

 Professor-Teaching (Prof-ID (Primary Key), department, NumberOfCoursesTaught ,

FOREIGN KEY Prof-ID REFERENCES Professor-Personal-Details).

Both tables share the same primary key. The second table primary key is a foreign key

referring to the first table. The argument is that we cannot specify whether this

relationship represents an ISA or a vertical Partition. However, if the database has been

well designed and completely specified; the Professor-Personal-Details table would also

need to specify (Prof-ID) as a foreign key, referring to Professor-Teaching table to

represent vertical partition. Thus, the above form should only be interpreted as an ISA

relationship. The vertically partitioned version should be specified as:

Professor-Personal-Details (Prof-ID (Primary Key), DOB, SpouseName,

FOREIGN KEY Prof-ID REFERENCES Professor-Teaching)

Professor-Teaching (Prof-ID (Primary Key), department, NumberOfCoursesTaught,

FOREIGN KEY Prof-ID REFERENCES Professor-Personal-Details)

Chapter 6 RM Transformation Rules

105

Thus, it was possible to distinguish the two cases in a completely specified database.

The second solution of tables representing fragmentation must identify the shared

primary key as a foreign key in all tables. Unfortunately, this solution has not usually

been utilised in practice due to the fact that we would have needed to insert a record into

two tables simultaneously in order to preserve referential integrity.

The third solution related to counting table records, if the database had complete and

available data. The fragmentation rule would be rewritten for record counting as:

𝑅𝑢𝑙𝑒_𝐶1𝑐𝑜𝑢𝑛𝑡

− Class condition
∃𝑥1, 𝑥2,… , 𝑥𝑛 ∶

(𝑎) 𝑃𝐾(𝑛

𝑖=1 𝑥𝑖 ,𝑅𝑖) ∧ 𝑖𝑠𝐹𝐾(𝑥1,𝑅1) ∧

 𝑏 𝐹𝐾(𝑛
𝑖=2 𝑥𝑖 ,𝑅𝑖 , 𝑥1 ,𝑅1) ∧

 𝑐 ∀ 𝑣 ∈ 𝑡𝑦𝑝𝑒 𝑥1 : (𝑂𝐶𝐶 𝑣, 𝑥1,𝑅1 ⇒ 𝑂𝐶𝐶(𝑣, 𝑥𝑖 ,
𝑛
𝑖=2 𝑅𝑖))

− Class action: 𝑐𝑟𝑒𝑎𝑡𝑒

 𝑐𝑙𝑎𝑠𝑠 (𝐶) ← 𝑅𝑖
𝑛

𝑖=1

(6)

To apply this rule, all participating relations must satisfy all the conditions to be merged

into one class.

i. There are two or more relations sharing the same primary key.

ii. There is a master relation whereby:

a. its primary key is not a foreign key.

b. the primary keys of all the remaining relations also act as foreign keys

referring to the master relation.

iii. All the primary key values present in the master relation must exist in all

remaining relations.

If all these three conditions are satisfied then we can merge these tables into one class in

the ontology.

Chapter 6 RM Transformation Rules

106

This relationship was of the One-To-One cardinality ratio and total participation

constraint. In (min, max) notation is (1, 1) on each side. The rule for data type needed to

be altered to:

𝑅𝑢𝑙𝑒𝐷𝑃1𝑐𝑜𝑢𝑛𝑡

− Datatype condition:

 (𝐴𝑡𝑡𝑟 𝑥,𝑅𝑖

𝑛

𝑖=1

 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑥,𝑅𝑖)

− Datatype action: 𝑐𝑟𝑒𝑎𝑡𝑒

 𝐷𝑃 𝑥, 𝑐, 𝑡𝑦𝑝𝑒(𝑥)

 (7)

To extract the inheritance relationship, we required the analysis of tuples in each

relation to satisfy the conditions.

The condition and the action illustrate the rules for inheritance:

𝑅𝑢𝑙𝑒_𝐶2 𝑐𝑜𝑢𝑛𝑡

− Class condition:

∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾(𝑥,𝑅1) ∧ 𝑃𝐾(𝑦,𝑅2) ∧
 𝑏 𝐹𝐾 𝑦,𝑅2 , 𝑥,𝑅1 ∧
 𝑐 ∃ 𝑣 ∈ 𝑡𝑦𝑝𝑒 𝑥 : (𝑂𝐶𝐶 𝑣, 𝑥,𝑅1 ∧ 𝑂𝐶𝐶(𝑣, 𝑦,𝑅2))

− Class action: 𝑐𝑟𝑒𝑎𝑡𝑒

1) 𝑐𝑙𝑎𝑠𝑠 (𝐶1) ← 𝑅1

2) 𝑐𝑙𝑎𝑠𝑠 (𝐶2) ← 𝑅2
3) 𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 (𝐶2,𝐶1)

𝑤ℎ𝑒𝑟𝑒

𝐶1 𝑎𝑛𝑑 𝐶2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

 (8)

To apply this rule, all participating relations must satisfy all the conditions to create two

classes (superclass, subclass).

1. There are two relations sharing the same primary key.

2. There is a master relation where

a. Its primary key is not a foreign key or one referencing third relation; for the

former case it became a master relation. Otherwise there would be hierarchy

inheritances. The hierarchy inheritances are allowable in our rule since there

are no conditions on the master relation primary key preventing it from

referencing a third relation.

Chapter 6 RM Transformation Rules

107

b. The primary key of the other relation also works as a foreign key (referring

to the sub-master or to the master relation).

3. Not all the primary key values present in the master relation must exist in the

other relation.

When this rule was applied, we could build a superclass from the master table and the

other table would be a subclass in the ontology.

We considered this relationship to have one-to-one cardinality. The participation ratio

must be (1, 1) in the master relation and (0, 1) in the other relation. There was no need

for any modification to the data type rule for the hierarchy case.

This solution has been based on table record counting. From rules 𝑅𝑢𝑙𝑒_𝐶1 𝑐𝑜𝑢𝑛𝑡 and

𝑅𝑢𝑙𝑒_𝐶2 𝑐𝑜𝑢𝑛𝑡 the preconditions (a) and (b) are the same for two relations, so the key

solution is in the precondition (c).

At the implementation level, our approach used a number of tuples to represent the

precondition (c), without need for user participation.

We considered the number of tuples to check for both the fragmentation of an entity or

the IS-A relationship. Thus, record counting could be facilitated by using the SQL query

statement to represent the precondition (c) in 𝑅𝑢𝑙𝑒_𝐶1 𝑐𝑜𝑢𝑛𝑡 and 𝑅𝑢𝑙𝑒_𝐶2 𝑐𝑜𝑢𝑛𝑡 as below:

NT = Select count (*) from table name;

Function (NT) will therefore return the number of tuples of the relation. We used the

comparison with the number of tuples:

If rule (a, b) in Rule C1count satisfied and NT (R1) = NT (R2).

The system subsequently integrated all relations into one class. For each record in the

first relation there existed a record corresponding to it in the other relations, whereas:

If rule (a, b) in Rule C1count satisfied and NT (R1) > NT (R2),

Chapter 6 RM Transformation Rules

108

the system successively built two different classes and created a subclass relationship

between them.

For example, the tables of Professor and Professor -Photo have the same primary key

and represent one entity.

Professor (Prof-ID (Primary Key), DOB, Name, Address...)

Professor-Photo (Prof-ID (Primary Key), DigitalPhoto,

FOREIGN KEY Prof-ID REFERENCES Professor)

Sharing the same primary key between the two tables, and that of the Professor-Photo

table refers to the primary key of the Professor table, thus representative of the One-To-

One relationship.

For each tuple in the Professor table, there must be a tuple in the Professor-Photo table:

NT (Professor) =NT (Professor -Photo),

The equality of fragment tables can be handled by assuming the data entry required for

each new record in the Professor table and that there will be an entry of (ID, NULL) to

Professor-Photo table if no picture yet exists. Therefore for each new primary key value,

inserted in the master table, there would be an insertion for the primary key value in the

slave table simultaneously. This could be easily completed by a trigger as shown:

CREATE OR REPLACE TRIGGER Audit_Prof

 AFTER INSERT ON Professor

 FOR EACH ROW

BEGIN

 insert into professor –Photo (Prof-id) values (:new. Prof-id);

 insert into professor –Photo (DigitalPhoto) values(Null);

END;

Chapter 6 RM Transformation Rules

109

The count option could not be utilised unless there was a condition allowing the

insertion in both fragment tables, as seen by the trigger above. Conversely, if there were

tables for Student and Graduate-Student represented by two different entities from the

specification below, the two tables both satisfy rule (a, b) in Rule C1count.

Student (St-ID (Primary Key), DOB, Name, Major...)

Graduate-Student (St-ID (Primary Key), Research-Area, FOREIGN KEY St-ID

REFERENCES Student)

At this point NT (Student) > NT (Graduate-Student) is therefore true,

This was obvious because the Student table had the Bachelor, Master and PhD student

records; whilst the Graduate-Student table only had the Master and PhD students.

However, if someone claimed that, the number of tuples in the Student table was equal

to the number of tuples in the Graduate-student, then all the preconditions in Rule-

C1count could be satisfied, and the two tables would merge into one class. From this we

decided that this university only had graduate students, so there was no need to build

two classes for student entity.

The completeness and availability of data was our only concern in using the row counts

to distinguish between the IS-A relationship and vertical partitions. Incomplete data

meant there were records related to other records not yet added to the database. For

instance in the example of Professor and Professor-Photo tables the row count of the

two tables may have been an exact match in the creation time. However, it would be

possible to have a record for Professor without yet entering the picture. If the picture

had not yet been added, then the counts and results would be different; unless the

approach activated dealing with triggers. Conversely, the counts could be different

when the database was first created, but updated shortly thereafter.

Chapter 6 RM Transformation Rules

110

From Student and Graduate-Student, examples the row counts should be different if

there were undergraduate students. The concern here would be if there were

undergraduate students; but their information had not yet been entered.

Therefore there might be two slightly different cases:

i. There are master records that have no relationship with the slave records not yet

entered. Therefore the numbers of records match; when they should not.

ii. There are slave records that have not yet been entered, which should have been;

therefore the numbers of records do not match when they should.

We overcame the second problem by requiring the existence of a simultaneous insertion

trigger. For both cases we rejected the incomplete database by the assumption of the

derived metadata are consistent and would not be affected by any new tuple added to

the database.

6.4.4.3 Multi-valued rules

Most approaches neglected the fact of the existence of the relation corresponding to

multivalued attribute; only the EER based approach took care of this case. However all

the SQL and database schema approaches did not mention this case.

 Rule C3: Multi-valued class rule

Databases cannot deal directly with a multi-valued attribute; whilst ontologies have an

efficient way to directly deal with this. For example, the table of Student has the

attribute Hobbies as in Fig. 6.2. Here the database designer had two choices to represent

this attribute. The first choice was to put all the hobbies for each student into one field,

separated by commas (see Figure. 6.2A). The Database designer considered this choice

as bad design since it violated the first normal form, adopting instead the second choice,

which put the multi-valued attribute in separate relation to avoid duplication of tuples.

The designer then linked the multi-valued relation, with the master, by placing the

primary key of the master relation as part of the primary key of the multi-valued

attribute relation as in Figure. 6.2B.

Chapter 6 RM Transformation Rules

111

ST_id

1

2

3

4

… Hobbies

Reading

Writing

Drawing, Photography

Skiing, Cooking, Travel

Student relation with bad design

A

Hobbies

B

Student

0..M

FK

St_id Hobbies

1 Reading

2 Writing

3 Drawing

3 Photography

4 Skiing

4 Cooking

4 Travel

PK

St_id

PK

Name Sex M_id Dept_id

St_id Hobbies...

1..1

 Figure 6-2: Representation of Multi-Valued Attributes

From our example, the attributes (st_id, hobby) form the primary key of the hobbies

relation. Hence, the multi-valued attribute relation appeared as a weak entity. However,

the difference between the weak entity and the multi-valued attribute relation was

simple; because the multi-valued attribute relation had just one attribute besides the

primary key of the master relation. Conversely, the weak relation had more than one

attribute to describe the relation, as well as the primary key of the master relation.

Therefore, in order to represent an entity with a multi-valued attribute in ontology, we

merged the master relation and the multi-valued relation into one class. This was

facilitated by the ability of OWL to combine a single valued attribute with a multi-

valued attribute in the same instance. Rule C3 has clarified this idea:

𝑅𝑢𝑙𝑒_𝐶3

− Class condition:

∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾(𝑥⋃𝑦,𝑅2) ∧
 𝑏 ∃𝑧 ∶ 𝐹𝐾 𝑥,𝑅2, 𝑧,𝑅1 ∧
 𝑐 𝐴𝑡𝑡𝑟 𝑦,𝑅2 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑦,𝑅2

−Class Action: 𝑐𝑟𝑒𝑎𝑡𝑒
 𝑐𝑙𝑎𝑠𝑠 (𝐶) ← 𝑅1⋃𝑅2

 (9)

Chapter 6 RM Transformation Rules

112

The difference between the multi-valued case and that of the fragmentation rule was the

type of relationship involved. In the fragmentation case, the relationship was of the

One-To-One type; whilst in the multi-valued attribute, the relationship would be of the

One-To-Many type.

 Rule DP3: Multi-valued data type property rule

The multi-valued relation had two attributes, one holding the relationship with the

master relation and the other representing the multi-valued attribute. Here we integrated

the multi-value attribute into the class which corresponded to the master relation. In our

example, the relation Hobbies represented the multi-valued attribute which contained

the attributes (st_id, hobby_name); whereby the relation Hobbies branched from the

relation Student. Thus, the attribute hobby_name would be assigned to the class Student

and considered as its domain. In addition the repeated attribute only appeared once in

the main class. In our example the st_id would not be repeated in Student class. The

data type property representing the multivalued attribute must not be functional and

does not have cardinality restriction.

𝑅𝑢𝑙𝑒𝐷𝑃3

− Datatype condition:

𝑎.𝐴𝑡𝑡𝑟 𝑥,𝑅1 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑥,𝑅1

𝑏.𝐴𝑡𝑡𝑟 𝑦,𝑅2 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑦,𝑅2
− Datatype action: 𝑐𝑟𝑒𝑎𝑡𝑒

 𝐷𝑃 𝑥,𝐶, 𝑡𝑦𝑝𝑒 𝑥

𝐷𝑃 𝑦,𝐶, 𝑡𝑦𝑝𝑒 𝑦 ∧ 𝐹𝑃(𝑥)

 (10)

6.4.4.4 Default rules

All tables which do not satisfy the previous rules will automatically direct to the default

rule.

 Rule C4: Default class rule

The condition and the action below demonstrate the default rule. Where rules C1, C2 and

C3 are inapplicable, then all remaining relations, not representing a binary relationship

Chapter 6 RM Transformation Rules

113

with many-to-many cardinality, form a class. The default rule will form classes for

strong and weak entities. Strong entities forming classes are obvious; however weak

entities can be treated like strong entities, since they may have relationships to entities

other than their corresponding strong entity.

𝑅𝑢𝑙𝑒_𝑐4

− Class condition:

 ∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾(𝑥⋃𝑦,𝑅) ∧ 𝑖𝑠𝐹𝐾(𝑥,𝑅) ∧ 𝑖𝑠𝐹𝐾(𝑦,𝑅) ∧

 𝑏 x y = ∅ ∧ ∀𝑧 ∶ 𝑖𝑠𝐹𝐾 𝑧,𝑅 ⇒ 𝑧 ∈ 𝑥,𝑦 ∧
 𝑐 ∀t ∶ 𝐴𝑡𝑡𝑟 𝑡,𝑅 ⇒ 𝑡 ∈ 𝑥 ∪ 𝑦

− Class action: 𝑐𝑟𝑒𝑎𝑡𝑒
 𝑐𝑙𝑎𝑠𝑠 (𝐶) ← 𝑅

(11)

Besides the cases of strong and weak entities, this rule was applicable for the two

following cases as well.

 Case 1: Binary relationships with additional attributes

Most approaches do not consider the existence of additional attributes describing a

Many-To-Many relationship, for example the Result relation having a Many-To-Many

cardinality ratio with the grade attribute (see Table 6.2 for the schema).

Table 6-2: Schema for Attributes on relationship

Relation Primary

 Key(s)

Foreign

 Key(s)

Result (st_id, c_id,

grade)

st_id, c_id,

st_id (Student)

 c_id (Course)

Here we proposed to create a new class for this kind of relationship with two pairs of

inverse object properties; and to create a data type property for the additional attribute

(see Fig. 6.3). The creation of object properties has been discussed in detail in

subsection (6.4.5).

Chapter 6 RM Transformation Rules

114

Course

entity
Result

MM

Course

Class

Result Class

Grade Data type property

Has_course Object property

Has_student Object property

Domain: Result

 Range: integer

Domain: Result

 Range: Course

Domain:Result

 Range: Student

Ontological Model

ER Model

Grade

Student

Class

Student

entity

Figure 6-3: Many-to-many relationships with additional attributes

Noticeably the approach dealt with the number of referenced relations instead of the

number of attributes in the foreign key to avoid the composite attribute. This would

remove any confusion caused by a foreign key formed by more than one attribute.

[36] [41] failed to provide a general rule to decide whether a relationship was of the

type Many-To- Many or not; because their rules supposed that each relation had just

one attribute for the primary key. They did not consider the Many-To-Many relationship

between a strong entity whose primary key might have one attribute and a weak entity

with a primary key having more than one attribute.

 Case 2: N-ary relationships

OWL did not deal with N-ary relationships when N>2, so some approaches such as [41]

[42] suggested decomposing any ternary or N-ary relationship to a binary relationship.

Our approach first created a class to deal with ternary or higher relationships, and then

decomposed the ternary or the N-ary relationship to binary relationships with cardinality

set to one [50]. This was the only way to ensure that such a relationship existed as a

whole.

Chapter 6 RM Transformation Rules

115

An example will thus explain the necessity of creating a class for an N-ary relationship.

Suppose we have the ternary relationship Teach which includes the Student and the

Course and the Staff as in Table 6.3.

Table 6-3: Schema for ternary relationship

Relation Primary

 Key(s)

Foreign

 Key(s)

Teach (st_id, c_id,

Staff_id)

st_id, c_id,

Staff_id

st_id

(Student)

 c_id

(Course)

Staff_id

(Staff)

When we decompose this to binary relationships, we would get three relations (see Fig.

6.4). The figure illustrates the repetition of data in all three tables, which violate the

characteristic of the relational model by duplicating tuples, thus affecting the design of

the ontology as well. Therefore each N-ary relationship will be represented by a class

and two object properties with cardinality set to one for each binary relationship part of

N-ary decomposition.

S_id

1111

1111

1111

1122

1122

C_id

101

102

101

102

101

Staff_id

101

102

101

102

101

Staff_id

101

102

101

102

101

C_id

101

102

101

102

101

S_id

1111

1111

1111

1122

1122

C_id

101

102

101

102

101

S_id

1111

1111

1111

1122

1122

Staff_id

101

102

101

102

101

S_id C_id Staff_id

S_id C_id Staff_idS_id C_id Staff_id

Figure 6-4: Ternary relation after decomposing

Chapter 6 RM Transformation Rules

116

 Rule DP4: Default data type property rule

For all relations, not participating in any of the rules DP1, DP2 or DP3, data type

properties could be created from their attributes which did not form foreign keys as

well. Each data type property would be allocated to its corresponding class.

𝑅𝑢𝑙𝑒_𝐷𝑃𝟒

− Datatype condition:

𝐴𝑡𝑡𝑟 𝑥,𝑅 ∧ 𝑁𝑜𝑛𝐹𝐾 𝑥,𝑅
− Datatype action ∶ 𝑐𝑟𝑒𝑎𝑡𝑒

 𝐷𝑃 𝑥,𝐶, 𝑡𝑦𝑝𝑒 𝑥

(12)

We did not use a general rule for creating data type property for all cases as in [41, 46];

instead we made specific data type property rules for each class rule. This insured each

class had its own data type property; and thus preserved the multivalued and

fragmentation table attributes.

 Applying other SQL aspects to data type property rules

Specifying the SQL constraints was possible (like DEFAULT, NOT NULL, UNIQUE

etc.) to OWL language. In fact, our approach attempted to map database constraints into

OWL axioms, while preserving the semantics of the original database schema.

 General Data type axiom algorithm:(13)

All attributes below must first satisfy the two conditions:

i. Not a foreign key

ii. Not a multivalued attribute

We could then apply the SQL aspects as outlined:

I. If the attribute x is NOT NULL then gloss the attribute x with MinC =1.

II. If the attribute x is UNIQUE then make it MaxC =1.

III. If the attribute x is a primary key or (NOT NULL and UNIQUE) then make

it Crd=1.

IV. If the attribute x is DEFAULT then make it Functional and hasValue.

Chapter 6 RM Transformation Rules

117

V. If the attribute x is CHECK IN then make it oneOf.

VI. Otherwise any attribute annotate with Functional.

DT(x) is

oneOf (v1,v2,v3...)

DT(x) is

Crd= 1

DT(x) is

MaxC= 1

DT(x) is

MinC= 1

DT(x) is

 hasValue (v)

IF Attr(x) is

 FK(x) Ù

 MVA

DT(x) is

Functional

IF Attr(x) is PK(x)

(NN(x) Ù UNQ(x))

IF Attr(x) is

UNQ(x)

IF Attr(x) is

NN(x)

IF Attr(x) is

Default (v)

IF Attr(x) is

Check in

(v1,v2,v3..)

Strat

Finish

No

Yes

Yes

No

No

No

Yes

No

No

Yes

Yes

Yes

Figure 6-5: Data type Axioms Algorithm

Chapter 6 RM Transformation Rules

118

 Explanation:

Figure 6.5 has shown the algorithm of applying SQL aspects. We created a data type for

each attribute in each relation, except attribute that represented a FOREIGN KEY. In

multivalued attribute a corresponding data type would be created, but without any

axiom. We could subsequently annotate the data type with some axioms based on that

obtained from the attribute constraints. Therefore if the attribute corresponding to the

data type was representing a PRIMARY KEY we could assign the data type to

cardinality of one. The same axiom was applied to an attribute with (NOT NULL and

UNIQUE) constraints.

However if the attribute had the UNIQUE constraint we added to its corresponding data

type maximum cardinality of one. For the attribute with NOT NULL constraint case the

data type corresponding to that attribute would have minimum cardinality of one.

In case the attribute had a DEFAULT value, then the data type corresponding to it

would have the functor hasValue. Whereas if there were many values to choose from

for one attribute then the functor oneof would gloss to the data type. Any attribute could

have more than one constraint such as NOT NULL and UNIQUE. However some

constraints could not meet together for one attribute. For example the primary key or the

attribute with UNIQUE constraint were neither a DEFAULT value nor CHECK IN

constraint; whereas the attribute with NOT NULL constraint could have DEFAULT

value but not CHECK IN constraint.

SQL-DDL is rich with dynamic features, such as triggers and assertions. Unfortunately,

we are not able to convert these features to OWL ontology since the description of

ontology is static.

6.4.5 Rules for the creation of object properties

There are two main types of OWL properties, object properties and data type properties.

Object property is a relation that can connect an instance to another instance residing in

two different classes in a particular direction, whereas data type properties connect an

instance to a value with a specific XML Schema type. This subsection has presented the

Chapter 6 RM Transformation Rules

119

rules of object properties creation as the rules of creating data type properties have been

discussed aforementioned.

Indeed object properties in OWL are deemed similar to relationships in database. In

fact, the general object property creation rule is that each relationship could be

represented by a class with two pairs of inverse object properties or by only a pair of

inverse object properties. In our approach, when we represented a relationship by an

object property, which implicitly meant that we created an inverse of that property.

However there were different relationships where our approach did not need to

represent them by object properties such as:

 The relationship between vertical relations; since they integrated into one

ontological class.

 The relationship between multivalued attribute relation and the owner relation;

since both relations integrated into one class.

 The relationship representing the inheritance between two relations; since the

subclass functor was adequate to represent this kind of relationship.

Before progressing, we have to distinguish between the degree of relationships and their

cardinalities. For example, a relationship of degree one exists in one entity, and has

been called a unary relationship; a relationship of degree two is a binary relationship

between two entities etc. In terms of cardinality, relationships can therefore be of three

types: One-To-One (1-1); One-To-Many (1-M) or Many-To-Many (N-M). We dealt

with the One-To-One relationships with mandatory participation by either the

fragmentation rule or the inheritance rule (IS-A relationship). Therefore Rule_ OP1

below has concerned the Many-To-Many relationship; whilst rules Rule_OP2 and

Rule_OP3 apply to two different cases representing One-To-Many relationships,

including N-ary relationships.

6.4.5.1 Rule OP1: Object property rules for binary relationships (Many-To-

Many)

This rule was applied to relations built on top of a binary relationship relation with

Many-To-Many cardinality. This rule declares the binary relationship relation state. If

Chapter 6 RM Transformation Rules

120

there is a relation, R holds two foreign keys referring to other relations, for instance R1

and R2. Also, both R1 and R2 originally represent entities, not a relationship. It is

noticeable that all attributes are part of the foreign keys, and each foreign key of R is a

subset of the primary key of R. In an informal way, a Many-To-Many relationship is

represented by a relation whose attributes relate between two entity relations, and the

primary key of the Many-To-Many relationship is a concatenation of the two entity

relations‟ primary key.

For the case of the binary relationship relation with additional attribute, the need of

class creation was done through Rule_C4. The Rule_OP3 has considered the object

properties creation for this case.

𝑅𝑢𝑙𝑒_𝑜𝑝1

𝑂𝑏𝑗𝑒𝑐𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

∃𝑥, 𝑦, 𝑥 ′,𝑦 ′ ∶
 𝑎 𝐹𝐾(𝑥,𝑅, 𝑥 ′,𝑅1) ∧ 𝐹𝐾(𝑦,𝑅,𝑦 ′,𝑅2) ∧ 𝑃𝐾(𝑥⋃𝑦,𝑅) ∧
 𝑏 𝑥 𝑦 = ∅ ∧ ∀𝑧 ∶ 𝑖𝑠𝐹𝐾 𝑧,𝑅 ⇒ 𝑧 ∈ 𝑥, 𝑦 ∧
 𝑐 ∀𝑡 ∶ 𝐴𝑡𝑡𝑟 𝑡,𝑅 ⇒ 𝑡 ∈ 𝑥 ⋃𝑦

𝑂𝑏𝑗𝑒𝑐𝑡 𝐴𝑐𝑡𝑖𝑜𝑛 𝐶𝑟𝑒𝑎𝑡𝑒 (14)
1)𝑂𝑏𝑗𝑃(𝑂𝑃1,𝐶1,𝐶2)

2)𝑂𝑏𝑗𝑃 𝑂𝑃2,𝐶2,𝐶1

3)𝐼𝑛𝑣 𝑂𝑃1,𝑂𝑃2
𝑤ℎ𝑒𝑟𝑒

𝑐𝑙𝑎𝑠𝑠(𝐶1) ≪ 𝑅1

𝑐𝑙𝑎𝑠𝑠(𝐶2) ≪ 𝑅2

We notice here that there was no class creation to represent the relationship relation.

Furthermore, the rule implies that Class (C1) and Class (C2) should already exist, thus

ensuring the correctness of the relationship creation. Therefore, both the corresponding

domain class and range class can represent the relationship with a pair of object

properties.

6.4.5.2 Rule OP2: Object property rules for a relation with unary relationship

(self-relation)

There are two cases for the (One-To-Many) cardinality relationship. This rule was

representative of the first case of object properties creation, and indicative of the unary

relationship. The next section will discuss the second case.

Chapter 6 RM Transformation Rules

121

For a relation R having a foreign key referencing the primary key of R itself, we created

two inverse object properties, as shown in the condition and action below in Rule-OP2.

Creating two object properties was the natural way of representing the two sides of the

relationship. Therefore all cases of the One-To-Many relationship were represented by

two inverse object properties; regardless of the degree of the relationship.

For example (see Figure 6.6) the Manager of the Staff was also a staff member and

therefore obvious that Manages was a unary relationship. For every staff member there

was one manager; whilst at the same time the manager could be supervisor to many

staff members. We thus created two inverse object properties for this relationship. The

first object property was Superior, with maximum cardinality set to one or Functional,

to ensure that each staff had only one manger. Whilst the second object property was

Subordinate with no cardinality restriction.

staff MANAGES

Subordinate N

Superior 1

Figure 6-6: Unary relationships

𝑅𝑢𝑙𝑒_𝑜𝑝2

Object condition ∶

∃𝑥,𝑦 ∶
 𝑎 𝑃𝐾 𝑥,𝑅 ∧

 𝑏 𝐹𝐾 𝑦,𝑅, 𝑥,𝑅 ∧ x y = ∅

Object Action ∶ 𝐶𝑟𝑒𝑎𝑡𝑒 (15)

1)𝑂𝑏𝑗𝑃 𝑂𝑃1,𝐶,𝐶

2)𝐹𝑃 𝑂𝑃1

3)𝑂𝑏𝑗𝑃 𝑂𝑃2,𝐶,𝐶

 4) 𝐼𝑛𝑣 𝑂𝑃1,𝑂𝑃2
𝑤ℎ𝑒𝑟𝑒

𝑐𝑙𝑎𝑠𝑠 (𝐶) ≪ 𝑅

Chapter 6 RM Transformation Rules

122

6.4.5.3 Rule OP3: Object default rule

For relations R1 and R2, if there was an attribute A part of R1 referencing R2, and

regardless of whether A was part or not of the primary key of R1, then an object

property (OP1) and its inverse object property (OP2) could be created between the

classes C1 and C2 corresponding to R1 and R2 respectively. The OP1 domain was C1 and

the range C2; and vice versa for OP2. Indeed the default rule (Rule_OP3) excluded both

the self-relationship and Many-To-Many relationship.

𝑅𝑢𝑙𝑒_𝑜𝑝3

Object condition:

∃𝑥,𝑦 ∶ 𝐹𝐾 𝑥,𝑅1,𝑦,𝑅2 ∧ 16

∃𝑥,𝑦, 𝑥 ′,𝑦 ′ ∶
 𝑎 𝐹𝐾 𝑥,𝑅, 𝑥 ′,𝑅1 ∧ 𝐹𝐾 𝑦,𝑅,𝑦 ′,𝑅2 ∧ 𝑃𝐾 𝑥⋃𝑦,𝑅 ∧

 𝑏 𝑥 𝑦 = ∅ ∧ ∀𝑧 ∶ 𝑖𝑠𝐹𝐾 𝑧,𝑅 ⇒ 𝑧 ∈ 𝑥,𝑦 ∧
 𝑐 ∀𝑡 ∶ 𝐴𝑡𝑡𝑟 𝑡,𝑅 ⇒ 𝑡 ∈ 𝑥 ⋃𝑦

Object Action: 𝐶𝑟𝑒𝑎𝑡𝑒

1)𝑂𝑏𝑗𝑃(𝑂𝑃1,𝐶1,𝐶2)

2)𝑂𝑏𝑗𝑃 𝑂𝑃2,𝐶2,𝐶1

3) 𝐼𝑛𝑣 𝑂𝑃1,𝑂𝑃2
𝑤ℎ𝑒𝑟𝑒

𝑐𝑙𝑎𝑠𝑠(𝐶1) ≪ 𝑅1

𝑐𝑙𝑎𝑠𝑠(𝐶2) ≪ 𝑅2

Some approaches such as [41] differentiated between a relationship existing between

two relations R1 and R2, when an attribute A was a subset of the primary key of R1

(weak entity case), referring to the primary key of R2; or if A was disjoint from R1

primary key. For the former case they created two object properties, OP1 and OP2;

whereas the second case created just one object property, OP, with domain C1 and range

C2. We chose to represent each relationship by a pair of inverse object properties

because defining object properties in both directions is a practical choice, since each

direction implies a specific role, and this allows more semantic detail to be held. One of

the useful aspects of OWL is that it provided a term to represent the inverse of an object

property; therefore, it is possible in OWL to create a pair of object properties and

impose them to be inverses of each other.

Chapter 6 RM Transformation Rules

123

This rule will also include the cases of:

 Binary relationships of cardinality (Many-To-Many) with additional attributes.

 Ternary and higher relationships.

In the case of the binary relationship (Many-To-Many) with additional attributes, we

have already created a class to represent the binary relationship relation Rule_C4. The

relationship will then be changed to two one-to-many relationships between the three

classes, as shown in Figure. 6.7. Thus, in this case, the relationship has shown two pairs

of inverse object properties with a class.

Figure 6-7: Binary Relationship with additional attribute

This rule will also treat a ternary or higher relationship in the same manner. For

example, when we had a ternary relationship, we firstly created a class for it, using

Rule_C4, then decomposed the ternary relationship to a binary one, before creating two

inverse object properties between each of the corresponding classes. The number of

object properties in the N-ary relationship will therefore be: N*(N-1).

Each object property in this case will also have such criteria:

 Inverse (OP1, OP2).

 OP1and OP2 Cardinality restriction set to one [50].

OWL allows the restriction of an object property by both Functional and Inverse

Functional functors, thus ensuring the relationship of type one to one. Moreover,

Course

Class

Student

Class

M1
1M

Result

Class

Chapter 6 RM Transformation Rules

124

imposing cardinality constraints to one allows the property to only have one instance.

However OWL granted each instance with a unique identifier and therefore uniqueness

between instances was not applicable; unless we used both Functional and Inverse

Functional for the same object property.

 Applying other SQL aspects to object property default rule

There are many different cases which combine uniqueness and null restrictions into

foreign keys. The following is the algorithm for applying them as depicted in Figure

6.8.

In database design, the foreign key refers to only one record of the range side relation;

consequently its corresponding object property will be considered as Functional, and the

inverse of the produced object property is inverse Functional However this generality

was not applicable for object properties representing the (Many – To - Many)

relationship; as each object property could have more than one instance in one time.

Applying maximum cardinality restriction to inverse property is not applicable, since

there might be an individual from the range class referenced by any member of the

domain individuals.

6.4.5.4 General object properties characteristic algorithm :(17)

Before applying any of attributes characteristic for foreign keys we had to exclude all

the foreign keys belonging to the binary relation of (Many-To-many) cardinality and a

self- relation. The approach would then create two inverse object properties (OP1, OP2)

representing each foreign key by Rule-OP3.

i. If the attribute x is a FOREIGN KEY and NULL and not UNIQUE then make

the OP1 and OP2 correspond to the attribute x with Functional (OP1) and

Minimum Cardinality OP2 =0.

ii. If the attribute x is a FOREIGN KEY and NOT NULL but not UNIQUE then

make its cardinality (OP1) =1, and Minimum Cardinality OP2 =0.

iii. If the attribute x is a FOREIGN KEY and NULL and UNIQUE then make it

Functional (OP1) and Functional (OP2).

Chapter 6 RM Transformation Rules

125

iv. If the attribute x is a FOREIGN KEY and NOT NULL and UNIQUE, but not a

primary key then apply Rule_C2nu.

v. If the attribute x is a FOREIGN KEY and part of the PRIMARY KEY for weak

entity table or N-ary relations; or (Many-To-Many) relationship relation with

additional attribute, then assign, cardinality (OP1) =1,and cardinality (OP2)=1

It is noticeable that the first four above rules prevent foreign keys from being part of the

relation primary key. In fact, in order to fulfil that, we utilised the negation of UNIQUE

or NOT NULL constraints.

Rule_Cnnu

FP(OP1)

MinC(OP2,0)

Crd(OP1,1)

MinC(OP2,0)

FP(OP1)

FP(OP2)

Crd(OP1)= 1

Crd(OP2)=1

IF FK(x is

 BinRel Ù

 selfRel

Rule-OP3

IF FK(x) is

(NN(x) Ù

UNQ(x))

IF FK(x) is

(NN(x) Ù

UNQ(x))

IF FK(x) is

(NN(x) Ù

UNQ(x))

IF FK(x) is

 Pk(x)(N-ary

BinRel +attr

Weak entity)

IF FK(x) is

(NN(x) Ù

UNQ(x))Ù

Pk(x)

Strat

Finish

No

Yes

Yes

No

No

No

Yes

No

No

Yes

Yes

Yes

Figure 6-8: Object properties characteristic algorithm

Chapter 6 RM Transformation Rules

126

 Discussion:

Some property characteristics could be obtained from SQL terms such as functional,

inverse functional and inverse of. However not all property characteristics could be

obtained from SQL such as symmetric and transitive. Therefore domain experts should

sometimes be involved in the designing decisions; especially when there are no obvious

rules that could decide whether this characteristic was applicable or not for a property.

For example an object property could have a symmetric characteristic or a transitive

characteristic, both or none of them based on the specification of the relationship it

represents.

Using a general rule could cause a design problem. For instance, Astrova et al‟s

approach [46] mapping all the One-To-One relationship to inheritance; or all unary

relationships to object properties, with symmetrical characteristics. On occasion using

specific examples would not show all the probabilities for representing property

characteristics and may cause error in the modelling.

 Symmetric Claim

Astrova et al‟s approach [46] claimed that all unary relationships can represent object

properties with symmetric characteristic. However this generalisation is considered

wrong.

 Disproof

To further explain this problem, three different examples are hence provided. The first

example is university-course-offering with three tables (University table, Course table,

and Offering table). Many universities often have the same course offered in different

departments (the politics of this are to ensure departments receive student-credit-hour

(SCH) numbers for their students taking a course in their department; even if it is the

same as a course in another department). For example, if a university had a course "WS

310 “Black Women in America" offered in the Women's Studies Department, cross-

listed as "AAS 310", and offered in the African-American Studies Department; and

there was a History Course, "HIST 310" which was also cross-listed with the above

Chapter 6 RM Transformation Rules

127

two; these would be taught in the same room, by the same instructor, with all of the

same requirements.

 The universities course offering table could be modelled as:

Offering Table instances:

Offering (O# = 1234, CNO = "WS 310"..., CONO = 5678)

Offering (O# = 5678, CNO = "AAS 310", ... , CONO = 9012)

Offering (O# = 9012, CNO = "HIST 310"... , CONO = 1234)

or as

Offering (O# = 1234, CNO = "WS 310"... , CONO = 5678)

Offering (O# = 5678, CNO = "AAS 310", ... , CONO = 1234)

Offering (O# = 9012, CNO = "HIST 310"... , CONO = 1234)

or even as

Offering (O# = 1234, CNO = "WS 310"... , CONO = 5678)

Offering (O# = 5678, CNO = "AAS 310", ... , CONO = 9012)

Offering (O# = 9012, CNO = "HIST 310"... , CONO = 5678)

...

All three of the above scenarios satisfy referential integrity and model the basic idea that

these three course numbers form a set. The problem is that this cannot be differentiated

syntactically from something like Person/Father table (the second example).

Person Table instances:

person(ID = 3456, Name = "Joe Smith", , FatherID =7890)

person(ID = 7890, Name = "John Smith", ... , FatherID = 2345)

person(ID = 2345, Name = "Paul Smith", ... , FatherID = NULL)

Chapter 6 RM Transformation Rules

128

Or as a third example, consider a Parts table:

Parts Table instances:

Part(PartID = 6789, PName = "CPU", SubPartOfPart# = 0123)

Part(PartID = 0123, PName = "Motherboard", SubPartOfPart# = 4567)

Part(PartID = 4567, PName = "Computer", SubPartOfPart# = NULL)

In all these three examples, we have a self-relationship modelled in these tables. In all

cases, the sample data given has maintained referential integrity, and therefore they are

valid. However, for the purposes, they are thus modelling different concepts and the

explanation has hence been given.

 The Offering example is symmetric ("if course A is offered with course B then

course B is offered with course A"); and transitive ("If A is offered with B and B

is offered with C then A is offered with C").

 The Parts example is not symmetric ("if A is a subpart of B, then B is a subpart

of A" is FALSE); however, it is transitive ("If A is a subpart of B and B is a

subpart of C, then A is a subpart of C").

 The Person/Father example is neither symmetric ("if A is the father of B, then B

is the father of A" is FALSE); nor transitive ("If A is the father of B and B is the

father of C, then A is the father of C" is FALSE).

Here the need to domain expert interferes is significant since it helps to decide whether

characteristics are applicable or not.

In the area of deductive databases research this addressed problem could be solved.

 Tables deductive databases are used as in relational databases; however we augment

them with rules written in Predicate Calculus that allow us to derive new information

from the stored table. The rules could be used to define the types of restrictions under

discussion.

Chapter 6 RM Transformation Rules

129

For example, in the Person/Father example, we may write,

Father(X,Y) :- Person(X, ..., Y).

This means "X has Father Y if X appears as the first column of a tuple in the Person

relation, and Y appears as the last". Certainly, this is true for any X and Y that meet the

requirement. This would only be the rule for "Father".

For the Parts example, we may write,

HasSubPart(X,Y) :- Part(X, ..., Y).

HasSubPart(X,Y) :- HasSubPart(X,Z) , Part(Z, ..., Y).

Here, we had two ways of determining if X had Y as a subpart: one is the direct linkage,

and the other is a recursive definition. The second rule allowed for transitivity.

For the offering example, we may add a third rule to model the symmetry,

OfferedWith(X,Y) :- OfferedWith (X, ..., Y).

OfferedWith(X,Y) :- OfferedWith(X,Z) , OfferedWith (Z, ..., Y).

OfferedWith(X,Y) :- OfferedWith(Y,X).

This highlighted the limitation of the way a self-relation is modelled in a relational

model. Knowing a foreign key referring to the primary key in the same table would not

help in deciding the property characteristic. The semantic of symmetric and transitivity

need a domain expert to be obtained since they are same syntactically.

 Transitive Claim

The second claim for transitive case, Astrova et al.‟s approach [46] considered the self-

relation as transitive if the constraint of ON DELETE CASCADE applied.

Chapter 6 RM Transformation Rules

130

 Disproof:

We used counterexamples that disproved the generality of using transitive with the self-

relation characteristic.

The approach of [46] provided the example of the Spouse relationship representing self-

relationship and it could be defined as symmetric object property. Conversely the

Manager relationship was also a self-relationship from (Figure. 6.6) however it could

not represent a symmetric object property.

For a transitive case, the Astrova et al. approach [46] only considered the self-relation

as transitive if the constraint of ON DELETE CASCADE applied. And the transitivity

rule said if X is related to Y and Y is related to Z then there was certainly an existent-

dependent relationship between X and Y and subsequently a relationship between Y and

Z. Applying “ON DELETE CASCADE” meant if X was deleted, Y would be deleted,

and successively Z would be deleted, and that implied deleting X and consequently

deleting to Z.

However, we could not be entirely sure if the relationship that was being modelled was

always transitive. The typical example we used to illustrate a non-transitive relationship

would be something like "Parent" in a genealogy database. Here, X could be the parent

of Y, and Y the parent of Z; but X is not the "Parent" of Z, although “ON DELETE

CASCADE” constraint was yet applicable for this case.

In general, the problem is whether self-relationships imply an ordering or subclass-type

of relationship. The "Task/Sub-Task" example mentioned by the Astrova et al.

approach [46] to support their claim was a subclass-type of relationship and transitive

axiom is therefore suitable. However what if we had "Next-Task" instead of “Sub-

Task”, specifying the next task to complete after this task was finished. In this case, X

could have Y as its next task, and Y would have Z; but Z would not be the next task of

X. The condition of “ON DELETE CASCADE” would be applicable here since the

order of the task was important. Therefore deletion of the first task would imply

deletion of the next task and eventually all the chain would be deleted.

http://dictionary.reference.com/browse/suitable

Chapter 6 RM Transformation Rules

131

From these two examples we substantiated that there was no guarantee of transitivity

whilst using the clause ON DELETE CASCADE with self-relationship.

6.4.6 Rules for instances

This step was optional in our system because some web designers preferred that the data

stayed in the database; which is more powerful for storing large-scale data sets than the

ontology. However they needed a system to move queries from the global ontology

website to the database tuples. Conversely others have preferred to create a knowledge

base for the ontology produced by this rule in our system. We will discuss the

advantages and disadvantages of both choices in the evaluation chapter.

We can use a two-step algorithm to migrate database tuples to ontological instances:

i. Each tuple is given a unique label name and migrated with all its data

attributes except for the foreign keys.

ii. A natural join link between the label tables and the foreign keys to make

instances for each object property with its corresponding individual.

For cases of fragmentation and multivalued attribute we needed to create a database

VIEW to represent the integrated tables.

6.5 Summary

Our technical approach was presented in this chapter. We first specified the

transformation assumptions. Then the predicates and the functions for the formal

notation were explained. After that we discussed the transformation rules and

demonstrated them by examples. The transformation rules depicted in a formal notation

of the form IF condition THEN action. The class creation rules included the cases of

fragmentation and inheritance. And we presented two solutions to solve the problem of

fragmented tables. The first unique solution is by using different specification to

represent the inheritance case and the fragmentation case. And the second solution is to

analysis the number of records in each table in order to distinguish between the two

cases. Also our approach is the only approach that can infer the multiple –inheritance

Chapter 6 RM Transformation Rules

132

case from the logical model. Also we eliminate the problem of superfluous classes that

produced from multi-valued attributes tables. Therefore from these new rules our

approach gains its novelty. This chapter also explained the datatype creation rules and

discussed the axioms obtained from SQL terms of attributes. Subsequently the rules of

object properties were presented. These rules include cases of self relationship and

Many-To-Many relationship and the binary relationship cases. Furthermore, we catch

the cases where most the approaches are missed in their rules such as Many-To-Many

relationship with additional attributes and binary relationship with additional attributes.

In addition, our unique solution for higher degree relationship was discussed. Then this

chapter disproved the claims of the symmetric or transitive characteristics of a self

relationship. Finally this chapter presented the algorithm for migrating database

instances.

Chapter 7 EER Transformation Rule

133

7 CHAPTER SEVEN: TRANSLATING

AN EXTENDED ENTITY

RELATIONSHIP MODEL TO OWL

ONTOLOGY

Objectives

 Building OWL ontology from an Extended Entity Relationship Model.

 Utilising an EER model in validating ontology produced from a RM

model.

 Utilising an EER model in enhancing ontology produced from a RM

model.

7.1 Introduction

This chapter informally provides general rules to generate OWL ontology from an EER

model. It will explain how we can benefit from the existence of an EER for validating

and enriching the OWL ontology produced automatically from the SQL source.

7.2 Translating extended entity relationship to OWL ontology

Since we consider both EER and ontological model are conceptual modelling [52], our

focus in this section has only related to EER, as the ER model is a pure relational

model. This means that the ER does not include advanced topics such as inheritance

(specialisation/ generalisation).

Database design goes through two types of modelling. The first is the conceptual model

(EER); and the second the RM model. Therefore, we can generate OWL ontology either

from an Extended Entity Relationship model or a Relational model. This section has

shown a way for producing OWL ontology from the conceptual model of the database

EER. In fact we have suggested using EER as an ontology source immediately after

Chapter 7 EER Transformation Rule

134

finishing the database conception stages, i.e. the new-born EER model is the best source

from which to obtain the semantic since the actual database structure does not

suffer from any modification.

7.2.1 Translating Method

The previous chapter concentrated on obtaining the ontological model from the

relational model. However; in this chapter we have focused on two aims: Firstly, how to

produce ontology from an extended entity relationship model, when the relational

model was not available; and secondly how to utilise both database models to enhance

the target ontology.

7.2.1.1 The general rule

The general rule for translating an EER model to an OWL model consisted of three

steps:

i. Entities are represented by OWL classes.

ii. Relationships are translated into a pair of object properties; or two pairs of

inverse object properties with a class, as may apply.

iii. Attributes can form datatype properties or a class with datatype properties, as

may apply.

Indeed these steps were also applicable to an ER model since EER contained all the ER

constructs. We therefore have to address an important point, which is the difference in

defining names between the database and the ontology. In the database, any ER

components are identified by their unique names; whereas for ontology, OWL

components are identified by URIs.

The following subsections will present the method used to obtain ontology, definitions

(classes, objects and datatypes) and their structure from the EER model in detail.

7.2.1.2 Creation of Classes

The process consisted of many steps:

Chapter 7 EER Transformation Rule

135

 All entities (strong or weak) will be translated into an owl: class (see example

1(a, b) in Table 7.1).

 All composite attributes will be transformed into an owl: class(see example 2

(a, b) in Table 7.1).

 All n-ary relationships where n >2 will be transformed into an owl: class.

 All (Many-To-Many) relationships with supplementary attributes will form

an owl: class (see example 5(a, b) in Table 7.1).

7.2.1.3 Datatypes creation

The process of producing datatypes obtained from entity attributes or relationship

attributes is outlined below:

 All attributes of an entity will be converted to datatype properties. Moreover

their domain will be the class corresponding to their owner entity. The range is

their equivalent XML types. There are no constraints for the attributes in EER

such as NOT NULL or UNIQUE, therefore we treat attributes as outlined:

a. Owl: Cardinality equal to one for primary key, the alternative key and

the discriminator attribute of a weak entity. In addition this restriction is

applicable for all the attribute parts of a composite attribute.

b. All other attributes will be assigned to the functor owl: Functional,

except the multivalued attribute part of an entity or a complex attribute.

c. Complex attribute is an arbitrary nested composite and multivalued

attribute. We would not represent each internal composite attribute of the

complex attribute here by a class; instead we represent its leaf node with

Functional restriction, and for the multivalued attribute case we

represent it without restriction. For example a person who could have

more than one residence and each residence could have a single address

and multiple phones. The composite attributes were shown between

parentheses (); their components separated by commas and the

multivalued between braces {}. The following example demonstrates a

complex attribute:

Chapter 7 EER Transformation Rule

136

{Address-phone ({Phone (Area-code, Phone-number)}, Address (House-

number, Street-name, City, Postcode)}

 For relationship attributes, if the relationship is converted to a class, then each

attribute belonging to this relationship will be assigned to the class

corresponding to it as its domain and the equivalent XML types as its range.

However there were two cases of a relationship that did not form a class:

a. For (1-M) relationship, the attributes belonging to this type of relationship

will be allocated to the class corresponding to the entity of the M-side as

their domain.

b. For (1-1) relationship, the attributes belonging to this type of relationship

can be allocated to either class involved in the relationship.

7.2.1.4 Object properties creation

Each relationship is represented by a pair of object properties and this implicitly means

they will be inverse properties of each other except the special cases. We have three

cases of relationships:

 Representing the Binary Relationship (General Case):

Each relationship will have pair of object properties each the inverse of the

other; the domain and the range represented by the classes corresponds to the

entities participating in this relationship.

a. For (1-1) relationship both object properties will be Functional.

b. For (1-M) relationship the 1-side is Functional.

 Representing Self-Relationship

Self-relationship is a case of a binary relationship in which both the domain and

range refer to the same entity. Object properties representing this relationship

could use the class corresponding to the entity holding self- relationship as

domain and range.

Chapter 7 EER Transformation Rule

137

 Binary Relationships between weak and strong entity

In this case the existence of an instance of a weak entity was based on the

existence of its instance record in the strong entity. We thus created this

relationship by an object with cardinality of one. The domain was the class

corresponding to the weak entity; and the range was the class corresponding to

the strong entity.

 Binary Relationships (M-N) Cardinality (special case)

This relationship implied two relationships. We created only a single object

property for each relationship without its inverse; and there would be only two

object properties, instead of four object properties, for the general case. The first

one would be assigned to the class corresponding to the M-side entity as its

domain and the range is the class of N-side. The second object property would

have the class corresponding to the N-side entity as its domain and the range as

M-side class. Finally, the two objects would possess the inverse properties of

each other.

 Representing Relationships with class

Here we have many cases as illustrated:

a. Binary Relationships (M-N) with additional attributes

In this case there is a class and two relationships. One relationship is

between the relationship class and the first entity class; and the second

relationship between the relationship class and the second entity class.

For the first relationship we created two inverse object properties. The first

object used the class corresponding to the binary relationship class as its

domain; the other class corresponding to first entity as its range and its

inverse was vice versa with regards to the domain and range.

Chapter 7 EER Transformation Rule

138

The second relationship was similar, treating with the other entity involved

in this relationship. We created four object properties at the end and each

two were inverse properties from each other (see Table 7.1(5.a, 5.b)).

b. Higher Degree:

Since each n-ary relationship was represented by class, we decomposed the

n-ary relationships to binary relationships. Each binary relationship would

then be represented by a pair of object properties known as inverse

properties.

One object used the n-ary corresponding class as its domain and the range

was the class corresponding to the entity participates in this binary

relationship as its range; and the inverse object property was vice versa. This

work would be completed for all n relationships. In addition we restricted all

object properties considering the class corresponding to n-ary relationship as

their domain to cardinality of one.

c. Ternary relationship (special case)

If the ternary relationship formed with (1- M- N) cardinality then we could

decompose it into two relationships. The first relationship between M and N

entities should be represented by a class. The (1-M) relationship is

subsequently represented by a binary relationship between the new class and

the class holding the 1 cardinality (see example 6.a and the translation in 6.b

in Table 7.1 for more clarification). In the example, three entities were

sharing one relationship (Supply). Two edges of the relationship were

(Many), and the third (One). The best modelling for this case was to

represent the part of the relationship holding (Many-To-Many) by a class.

 In our example the combination of the primary keys of Part and Project

entities formed the new class Project-Part. We subsequently treated the third

relationship that held the one-side as treating the binary relationship of (1-

M). Here the domain of the object property is the new class (Project-Part)

Chapter 7 EER Transformation Rule

139

and the range is class corresponding to the entity of one-side (Supplier). Its

inverse object is vice versa with respect to the domain and the range.

 Representing a Relationship for Composite Attribute (special case):

This relationship does not exist in the original EER. However though the

creation of a separate class for composite attribute we had to connect it with its

owner entity. Therefore we created one object property between the class

corresponding to the owner entity as the object property domain; and the class of

composite attribute as its range (see 1.a and 1.b in Table 7.1).

 Representing a Relationship for Complex Attribute (special case):

This relationship looked like the previous one. Here we created one object

property between the class corresponding to the owner entity, as object property

domain, and the class of complex attribute as its range(see 2.a and 2.b in Table

7.1).

 Representing Inheritance

We had different cases of inheritance

a. Single Inheritance

For all class/subclass relationships (ISA) between two entities created

superclass-subclass relationships (subsumption relationships) between their

corresponding classes. This solution worked for specialist hierarchy cases

whereby each entity had only one parent (class/subclass relationship).

b. Multiple Inheritance

We had to distinguish between hierarchy and multiple inheritance. The

former represented specialisation hierarchy; whilst the later the specialisation

lattice.

Chapter 7 EER Transformation Rule

140

If the child entity had more than one parent entity, then the owl: intersection

of term would make the shared sub-class inherit the characteristics of all its

parent classes. This case thus represented the specialisation lattice.

c. Specifying constraints on specializations

We can now represent the disjoint and complete constraints. The default of

the owl: subClassOf construct is overlapping and partial. The disjoint and

total constraints are thus outlined:

1. Disjoint is mapped to owl: disjointWith construct.

2. Total specialisation is mapped to owl: unionOf construct.

7.3 Examples

The examples in Table 7.1 contain a selection of cases from the EER model. It includes

strong entity; weak entity; simple attribute; composite attribute; multivalued attribute

and complex attribute. Furthermore there are examples for different kinds of

relationship such as (1-M), (M-N), (1-M-N). And the cases corresponding modelling in

OWL ontology are presented in the (b) rows.

 Table 7-1: Translating Examples from an EER to OWL Ontology

(1.a) Strong entity and weak entity with different attribute types

Staff

Name

First Name Last NameMinit Name
Staff-id SSN Hobby

Salary

Has

Dependent Dependent-Id

Name

Staff Class

Chapter 7 EER Transformation Rule

141

(1.b) Class and datatype representation in OWL for case (1.a)

Name: Owl:class
First Name: datatype cardinality =1
Minit Name: datatype cardinality =1
Last Name: datatype cardinality =1

Staff: Owl:class
Staff-id : datatype cardinality =1
SSN: datatype cardinality =1
Hobby: datatype
Salary: datatype Functional
Has-Name: Object Property
Has-Name Domain: Staff
Has-Name Range: Name
 has-dependent: Object Property
has-dependent inverse of: Depend on
has-dependent Domain: Staff
has-dependent Range: Dependent

Staff Class

Name ClassDependent: Owl:class
Dependent-id :datatype cardinality =1
Name: datatype
Depend on: Object Property (Has-staff)
Depend on inverse of: has-dependent
Depend on Domain: Dependent
Depend on Range: Staff

Dependent Class

Has Name
Depend on

Has

dependent

(2.a) Composite attribute

Phone-Address

Street name Post-codecity Pone

Phone NumberArea-code

House number

(2.b) Representing Composite attribute in OWL

Phone Address: Owl: class
House Number: datatype cardinality =1
street Name: datatype cardinality =1
city: datatype cardinality =1
Post code: datatype cardinality =1
Area-code: datatype
Phone Number: datatype

Staff : Owl:class
Has Phone Adress: object proprty

Staff Class

Phone Adress Class

(3.a) Binary Relationship (1-M) with attribute

Staff has

Over Time Hour

Department
M 1

Chapter 7 EER Transformation Rule

142

(3.b) Representing Relationship (1-M) with attribute in OWL

Staff: Owl:class
Work-For: object property
(Work-For) Inverse of : has-Staff
Work-For Domain: Staff
Work-For Range: Department
Over Time Hour: Datatype

DepartmentStaff

Work-For

Has-Staff

Department: Owl:class
Has-Staff: object property, Cardinality = 1
(Has-Staff)Inverse of: Work-For
Has-Staff Domain: Department
Has-Staff Range: Staff

(4.a) Self relationship

StaffManger

1

M

(4.b) Representing Self relationship in OWL

Staff: Owl:class
HasManger: object property, Cardinality = 1
(hasManger) Inverse of : Subordinate
hasManger Domain: Staff
hasManger Range: Staff
hasSubordinate: object property
hasSubordinate Domain: Staff
hasSubordinate Range: Staff

(5.a) Binary Relationship (M-N) with attribute

Staff Work on Project
M N

Hour

Chapter 7 EER Transformation Rule

143

(5.b) Representing Binary Relationship (M-N) with attribute in OWL

ProjectStaff

Is-Work-Of

Has-Project

Work-On

has-Worker

Is-Project-Of

Staff: Owl: class
Is-Work-For: object property
(Is-Work-For) Inverse of :has-worker
Is-Work-For Domain: Staff
Is-Work-For Range: Work-On

Work-On: Owl: class
has-Worker: object property
(has-Worker) Inverse of : has-worker
has-Worker Domain: Work-On
has-Worker Range: Staff
Has-Project: object property
(Has-Project) Inverse of : Is-Project-For
Has-Project Domain: Work-On
Has-Project Range: Project
Over Time Hour: Datatype

Project: Owl: class
Is-Project-For: object property
(Is-Project-For) Inverse of :has-Project
Is-Project-For Domain: Project
Is-Project-For Range: Work-On

(6.a) Ternary relationship (1:M:N)

Supplier
supply Part

Project

M

1

N

(6.b) Representing Ternary Relationship (1:M:N) in OWL

ProjectPart

Is-Part-Of

Has-Project

Project Part

Is-Project-Of

has-Part

Supplier

h
a

s-
S

u
p

p
lie

r

h
a

s-P
ro

je
ct -P

a
rt

Chapter 7 EER Transformation Rule

144

7.4 The Algorithms of Translating an EER to OWL Ontology

The algorithms of creating OWL ontology from an Extended Entity Relationship model

contained two steps. Firstly, to deal with the entities and attributes (see Figure 7.1); and

secondly, to handle the relationships. Before we carried out these steps there was one

requirement in order to ensure successful implementation of fixing the model

representation; since EER was a graphical representation and it was difficult to parse

unless we reformatted it into a formal definition. Therefore we chose to present the EER

diagram in terms of facts (schema way) which were easy to parse.

The second option was to obtain the schema from the EER diagram through tool

packages. Using EER specification packages (CASE tool) such as Power Designer was

not preferable, since these tools did not support all the semantics of the EER model. For

example Power Designer did not currently support attributes on relationships or higher

degree relationships [47]. Therefore, we chose the first choice in order to apply the two

algorithms of creating ontologies.

Entity Class

XML schema type

Datatype

Attr

PAttr

MAttr

Cattr

Coattr

Functional

Card =1

Class

Attr

MAttr

Functional
Datatype

Object Property Range

Range

Range

Domain

Domain

Domain

 Figure 7-1: Translating Entity and Attributes of the EER model to OWL Ontology

Chapter 7 EER Transformation Rule

145

7.4.1 Notations

Before the translating can take place, the EER diagram should be converted into a set of

formal definitions or facts. For example the EER schema is a means of facts

representation, however representing the model only by a schema would not help in

designing the ontology. Therefore we appended some notations to the EER schema

constructs in order to add semantic to the EER model.

We used the idea of prefixing the names of database constructs in the follow manner:

 E: for strong and weak Entity;

 R Relationship;

 Attr: a set of single attributes of entity or relationship;

 Pattr: is primary key attribute;

 Alattr: set of alternative key attributes;

 Cattr: set composite attributes;

 Coattr: set complex attributes;

 Mattr : set of multivalued attributes;

 Crd : the E:card is a cardinality ratio of relationship toward a

specific entity;

 ISA: represent inheritance relationship and

 No: number of.

We suffixed each attribute with its type:

 Type: the A: Type the domain of all possible values of an Attribute, i.e.

integer, string etc.

7.4.2 EER model structure rules

 Each entity could have any number of attributes, including multivalued

composite and complex attributes.

 For the keys of an entity, only one primary key is allowed. This primary key can

be represented be either simple or composite attributes.

Chapter 7 EER Transformation Rule

146

 The entity can have any number of alternative keys.

This means:

 For an entity E Es such that Attr (E) = [..., A : Type, ...],Where A is the

attribute name, and Type is the type domain of the attribute such as integer. In

addition the A includes simple and (Mattr) multivalued attributes.

 For a composite attribute of an entity Catter E such that (Catter) = [..., A :

Type, ...].

 For complex attributes of an entity Coattr E such that (Coattr)= [..., A : Type,

...] + Atts (Catter).

 For an entity E Es such that Pattr Es Ù |Pattr| =1. Also Pattr Catter (

A Attr).

Noticeably there was no need to represent the derived attribute since it was a simple

type attribute.

7.4.3 Class and Datatype Creation Algorithm

Table 7.2 shows the Algorithm 7.1 and its sub-functions. This algorithm has

demonstrated all the possible cases for an entity with its different kinds of attributes. In

addition it was written in Pseudo Code and could be implemented with any

programming language. In accordance with the type of the attribute, the input for each

sub-function varied. The algorithm presented took one entity at a time, with its own

attributes; and subsequently for each attribute that had the prefix of attr create the

datatype corresponding to it with Functional constraint (see Function 1). However, if

the prefix was Mattr then only create the datatype with its class domain corresponding

to its own entity without a restriction (see Function 2).

For the composite attribute each component would be a datatype with cardinality of

one. For the primary key, there were two cases. The first case was a primary key as a

simple attribute; however it was restricted with cardinality of one, instead of Functional,

and the alternative key was handled as this case of primary key as well. The second case

was the primary key as a composite attribute; and we called the composite attribute

Chapter 7 EER Transformation Rule

147

function to handle it. As for a complex attribute, which may have contained multivalued

or composite attributes, we created only one class to represent it; and for the internal

composite attribute we also created a class. The other levels of nested composite

attributes the algorithm considered only the leaf nodes.

 Table 7-2: Algorithm 7.1(entity and attributes representation)

Algorithm 7.1(entity and attributes representation)
Input: entity and its attributes of the EER

Output: class and datatypes creation
Steps:
 For all E.name create class.name with

For all A E then
 if A attr then fuction1 (E, A);

Else if A (Pattr or Alattr) then fuction2 (E, A);
Else if A Mattr then fuction3 (E, A);

Else if A = Cattr then fuction4 (E, A);
Else fuction5(E, A);

Endif;
Endif;

Endif;
Endif; EndFor;

 EndFor;
End Algorithm.
Function 1
/* for normal attribute */

Input: entity name E and attribute name A

Output: datatype creation
Steps:

For all attr.name: Type then
 datatype(A) functional (A), domain(E) , range (Type (A))
EndfFor;

End;
Function 2
/* for primary or alternative key attribute */

Input: entity name E and (primary key or alternative key A)

Output: datatype creation
Steps:

If (Pattr.name: Type or Alattr. name: Type Attr then let
 Datatype (A) cardinality =1, domain (E), range (Type (A));
Else call function4;
EndfiF;

End;

Function 3
/* for multivalued attribute*/

Input: entity name E and multivalued attribute A

Output: datatype creation
Steps:

For all Mattr.name: Type then

Chapter 7 EER Transformation Rule

148

 datatype(A) domain(E) , range (Type (A));
EndFor;

End;

Function 4
/* for composite attribute */

Input: entity name E and composite attribute X, attributes A

Output: datatype creation, class creation
Steps:

Create class for X
For all attr(A) Cattr(x) then

Datatype (A) cardinality =1, domain (x), range (Type (A));

EndFor;
Create an object properties OP (has-x)
OP(has-x) functional, OP(has-x) domain E, OP (has-x) range X;

End;

Function 5
/* for complex attribute */

Input: entity name E and complex attribute X, composite attribute Z, attributes A,
multivalued attribute M

Output: datatype creation, class creation
Steps:

Create class for X
For all attr(A) Coattr(x) then

Datatype (A) cardinality =1, domain (X), range (Type (A));

EndFor;

For all Mattr(M) Coattr then
Datatype (m), domain (X), range (Type (m));

EndFor;
For all Cattr (Z) Coattr then
Call function 4(X,Z);
EndFor;

Create an object properties OP (has-x)
OP(has-x) functional, OP(has-x) domain E, OP (has-x) range X;

End;

7.4.4 Relationships

Each relationship could connect between any numbers of entities. This number

represented the degree of the relationship. Each entity participate in any relationship

would have one cardinality ratio of type one or many. Moreover the relationship could

have any number of attributes. Finally the special case of the (One-To-One) relationship

was the inheritance relationship (ISA).Thus meaning:

 For a relationship R Rs ((... ,Ei :crd ,..,)Ù(..., Attrj(A) : type(A), ...) , E1 is-a E2)

where i = 2..n, j=0..n.

Chapter 7 EER Transformation Rule

149

The degree of the relationship would have one type of (unary, binary, or n-ary)

relationship. In order to specify the degree of a relationship we counted the distinct

number of entities participates in this relationship. Moreover the special type of a binary

relationship was the ISA relationship, which linked the two entities with the (One-To-

One) cardinality ratio.

Table 7.4 has shown Algorithm 7.2 and its sub-functions for relationships

representations in the ontological model. It has considered both the cardinality of the

entities and the degree of the relationship. Noticeably E represents both the entity in the

EER model and its corresponding class in the ontology model. We had eleven cases to

represent a relationship in the EER model which Table 7.3 has demonstrated.

 Table 7-3: Algorithm 7.2(Relationship Representation)

Relationship cardinality ratio Relationship attribute Function

Unary (1-1) Function 5

Unary (1-M) Function 6

Binary (1-1) No Function 7

Binary (1-1) Yes Function 7 and Function 1

Binary (1-M) No Function 8

Binary (1-M) Yes Function 8 and Function 1

Binary (M-N) No Function 9

Binary (M-N) Yes Function 10

N-ary No Function 11

N-ary Yes Function 11 and Function 1

ISA Function 12

We used Function one from Algorithm 7.1 to create the functional attributes. In addition

each n-ary relationship was decomposed to binary relationships.

 Table 7-4: Algorithm 7.2(Relationship Representation)

Algorithm 7.2(Relationship Representation)

Input: relationship with its entities names and their cardinalities ratio

Output: object property creation

Steps:
For all R Do

If degree of R =1 Ù crd1 =1 Ù crd2 = 1
Then Function 5;

EndIf;
Else If degree of R =1 Ù crd1 =1 Ù crd2 = M

Then Function 6;
EndIf;

Chapter 7 EER Transformation Rule

150

Else if degree of R =2 Ù crd1 =1 Ù crd2 = 1 ÙNo(attr)= 0
Then Function 7;

Else if degree of R =2 Ù crd1 =1 Ù crd2 = 1 ÙNo(attr) 1
Then Function 7;
For all

A R Function 1(E1,attr, attr:type);
EndFor;

Else if degree of R =2 Ù crd1 =1 Ù crd2 = M ÙNo(attr) = 0
Then Function 8;

Else if degree of R =2 Ù crd1 =1 Ù crd2 = M ÙNo(attr) 1
Then Function 8;
For all

A R Function 1(E2,attr, attr:type);
EndFor;

EndIf;
Else if degree of R =2 Ù crd1 =M Ù crd2 = N Ù No(attr)=0

Then Function 9;
EndIf;
Else if degree of R =2 Ù crd1 =M Ù crd2 = N Ù No(attr) 1

 Then Function 10
For all

A R Function 1(R,attr, attr:type);
EndFor;

EndIf;
Else if degree of R >2 Ù No(attr) =0

Then Function 11;
Else if degree of R >2 Ù No(attr) 1

Function 11;
For all

A R Function 1(R,attr, attr:type);
EndFor;

Endif;
Else if R= isa

Then Function 12;
EndIf;

Endfor;
End Algorithm;
Function 5
/* self relationship cardinality (1-1)*/

Input: relationship R, cardinality crd1=1,crd 2=1, entities names E

Output: object property creation
Steps:

Create 2 inverse OP1, OP2:
OP1 domain E Range E card= 1;
 OP2 domain E Range E card= 1;

End;
Function 6
/* self relationship cardinality (1-M)*/

Input: relationship R, cardinality crd1 =1,crd 2= M, entities names E

Output: object property creation

Steps:

Chapter 7 EER Transformation Rule

151

Create 2 inverse OP1, OP2:
OP1 domain E Range E card= 1,
OP2 domain E Range E;

End;
Function 7
/* binary relationship cardinality (1-1) */

Input: relationship R, cardinality crd1=1,crd2=1, entities names E1,E2

Output: object property creation
Steps:

Create 2 inverse OP1, OP2:
OP1 domain E1 Range E2 card= 1;
 OP2 domain E2 Range E1 card= 1;

End;
Function 8
/* binary relationship cardinality (1-M) */

Input: relationship R, cardinality crd1=1,crd 2=M, entities names E1,E2

Output: object property creation

Steps:
Create 2 inverse OP1, OP2: OP1 domain E1 Range E2 card= 1,

OP2 domain E2 Range E1;
End;
Function 9
/* binary relationship cardinality (M-N)*/

Input: relationship R, cardinality crd1=M, crd2=N, entities names E1,E2

Output: object property creation

Steps:
Create 2 inverse OP1, OP2: OP1 domain E1 Range E2,

OP2 domain E2 Range E1;
End;

Function 10
/* binary relationship cardinality (M-N) with attribute(s) */

Input: relationship R, cardinality crd1=M, crd2=N, entities names E1,E2

Output: object property creation, class creation

Steps:
Create class R
Create 2 inverse OP1, OP2: OP1 domain E1 Range R crd =1,
OP2 domain R Range E1 crd =1;
Create 2 inverse OP3, OP4: OP1 domain E2 Range R crd =1,
 OP2 domain R Range E2 crd =1;

End;

Function 11
/* higher degree relationship */

Input: relationship R, cardinality crd1, crd 2, entities names E1,E2, ...En

Output: object property creation, class creation

Steps:
Create class R
For i=1 to degree
Create 2 inverse OPi, invOPi: OPi domain Ei Range R crd =1,
invOPi domain R Range Ei card =1;
EndFor;

End;

Function 12

Chapter 7 EER Transformation Rule

152

/* binary relationship of is-a type*/

Input: relationship, cardinality, entities names E1,E2

Output: object property creation, class creation

Steps:
Create E1subclass E2
/* Note: E1 and E2 classes do exist */

End;

7.5 Advantages and Disadvantages of EER as an Ontology

source

There are many advantages in utilising an EER model as the main source of our

approach compared with the RM model. These have thus been demonstrated:

i. Clear hierarchical tree which show the disjoint between entities and the shared

sub-class of multiple inheritance.

ii. Easy to identify the kind of attributes such as composite or multivalued etc.

iii. Easy to generalise group of entity sets to one super entity.

iv. Naturally translating EER models to ontology preserves more information [36],

by the distinction between entities and relationships.

v. Explicit participation and cardinality of relationships.

Both [6] and [36] claimed that the EER model was better for producing ontology than

the RM for the following reasons:

 Since mapping from an EER model to the RM includes losing some semantics.

As a result the RM is poorer in semantics than the EER.

 Since both the EER model and ontological model share many characteristics of

conceptual modelling.

Due to these reasons translating from the EER model to ontological model would

preserve more semantics. At this point this argument is partially true. However there are

many disadvantages of using the EER model which would disprove the above claim

such as:

Chapter 7 EER Transformation Rule

153

i. The model is difficult to parse since it is a graphical model. Obtaining all the

information from the EER diagram and entering such into a program to produce

a facts model is a monotonous and error-prone process.

ii. There are three possibilities which reflect the failure of the EER model in

representing the current database:

a. There was no conceptual model created during the process of generating

the database.

b. Creating the conceptual model was only achieved in the first stages; i.e.

the evolution of the database which included many modifications

supposed to be documented and not fulfilled. Therefore the EER model

was not updated. In reality many of these modifications change at the

implementation level usually do not take place in the original EER.

c. Designers create conceptual models without much effort in the designing

process, since they keep their focus on producing the logical model of

the database. Therefore the EER model might not present the real

implementation of the database.

iii. The model is available during the conception of the database however it is now

lost.

iv. The available database conceptual modelling tools do not support all the

characteristics of an EER.

Moreover, the EER model was unable to create a full ontology because of the following

factors:

i. There are no explicit declarations of datatypes (domains of the attributes).

Therefore the database designers have to add them manually. There are no

attribute constraints such as NOT NULL and UNIQUE.

ii. Some attribute characteristics are unavailable such as (symmetric, transitive and

enumerated).

iii. There is no value restriction (i.e., no restrictions like, “age is a positive integer”).

Chapter 7 EER Transformation Rule

154

iv. There are no instances. Consequently we would not be able to produce a

knowledge base.

If we consider the disadvantages we specifically mentioned, the absence of the EER

occurs in many databases. We found the above argument for an EER model producing

better ontology than the RM which is weak.

If both an EER model and RM were available which source would we start with? Why?

There are two possibilities, either starting with an EER model then subsequently an RM,

or vice versa. Indeed we have to start with the richer semantic. However there are no

obvious criteria to specify which model would be better in designing the ontology.

Logically we have to start with the original model (EER). However our approach does

not start from the EER model as expected, as other approaches have claimed it to be

easier for obtaining information.

However we started with the RM; since the process could be achieved in a fully

automatic way as SQL-DDL is the source, whereas it was not possible to automate the

complete process of the EER model due to the graphical representation which makes it

difficult to parse. Moreover the EER model per se could not produce a complete

ontology; whilst conversely the RM model was able to.

Other reasons that effected our decision were the availability of the SQL-DDL in each

database making it easy to obtain; and finally it reflected the current database. By

considering both the advantages and the disadvantages of EER and RM we decided to

gain the benefit from both sources, if indeed both existed. We therefore suggested

producing the initial ontology automatically from the RM, then using the EER model as

a validation and enhancing method in order to catch additional or missing semantics.

7.6 Validation and enhancing

The previous chapter concentrated upon producing OWL ontology from the logical

model written in SQL-DDL statements; whereas the first part of this chapter has

focused on generating OWL ontology from the conceptual model of database i.e. EER

Chapter 7 EER Transformation Rule

155

model. In order to utilise the two sources of the database, we suggest using the RM to

produce the initial ontology; and subsequently using some aspects of the EER in both

the validating and enhancing procedures.

In Section (7.6.1) we will explain the procedure of validating steps; whereas the next

section will describe the procedure for enhancing the steps.

Before both validating and enhancing processes can take place we have to ensure that

the EER model is representing the current real (updated) database. This is the

responsibility of the database designer to check if both the RM and the EER model

share the same concepts. In case, there is a lack of constancy between the two models,

the database designer could analyse the RM to obtain the undocumented concepts.

The analysis here does not seek to produce a complete conceptual model for the

database by using reverse engineering, but rather to extract some information which

could be utilised in the validation process. Indeed requiring the involvement of the

database designer is considered very important since they would be responsible for

applying both validation and enhancement procedures. Two procedures demand a

database designer and not an ontology expert for the following reasons:

 Since the analysis will be conducted on a database model.

 Applying the two procedures can be handled by a database designer even if they

are not aware of ontology design.

 The numbers of available database designers are greater when compared with

those in ontology.

7.6.1 Validation Procedure

We have to validate the ontology model to ensure the correctness of the transformation

method. This means all the conceptual parts of the database should correctly correspond

in the ontology.

The validation contained two stages. The first stage was to locate the concerns which

may have led to incorrect ontology representations. Such as:

Chapter 7 EER Transformation Rule

156

i. Multivalued attributes.

ii. Shared entities.

iii. Class hierarchy.

iv. Relationship of (1-1).

These concerns could easily be obtained from an EER model. All entities in the EER

model were now represented by tables in the RM model with the exception of the

vertical partitioning for tables. To verify the correctness of this mapping between the

EER model and the Relational model we accumulated the number of all entities; higher

degree relationships; (Many-To-Many) relationships and multivalued attributes, and this

number should have matched the number of tables. Otherwise there were fragmentation

tables for some entities. The database designer had to specify the superfluous tables and

their crossholdings at this stage.

The second stage involved the database designer starting to refine the produced

ontology by following the outlines validation steps:

i. All fragmentation tables of an entity should be represented by a class.

ii. Check that the multivalued attribute is represented by datatype property with

no restriction i.e. no class, and no functional restriction. Multivalued

attribute merges with its owner class.

iii. For all IS-A relationship there will be a subclass relationship.

iv. Check the subclass hierarchy; which includes tracking the IS-A chain

between classes.

v. For the One-To-One relationship, there is no subclass relationship, instead

treated as object properties.

vi. The RM model specify the shared entity indirectly, therefore the database

designer makes sure to catch the multiple parent inheritance.

7.6.2 Enriching the Ontology

There were two ways to enhance the ontology produced. One of them was by extracting

some semantic from the EER model, whilst the other was based on the experience of the

database designer.

Chapter 7 EER Transformation Rule

157

7.6.2.1 Analysing the EER Model

This procedure included obtaining the additional context of the relational model in order

to enrich the target ontology. The remaining semantic features that were the

responsibility of the domain expert; to be obtained manually from the EER model are

hence outlined:

 If an entity contains a composite or a complex attribute, the best modelling for

this case is to build a new class corresponding to it; and subsequently adding an

object property to link between the new class of composite or a complex

attribute and its owner class. This was similar to the case carried out with the

Name attribute in Table 7.1 (1.b).

 The database designer adds cardinality participation for each object property,

because the cardinality restrictions cannot be obtained from SQL.

 N-ary relationship with cardinality ratio of (1-M-N) can be partially represented

as a class for the relationship of (M- N) cardinality and the other part of

relationship (1- M) side can be represented by object properties.

7.6.2.2 General enhancing advice

i. Provide proper names to classes, object and datatype properties since most

database designers use abbreviations in naming database components.

ii. Specify the quantifier restrictions such as “allValuesFrom” or

“someValuesFrom” to properties, depending on the semantics of these properties,

since these restrictions could not infer from the SQL statements or the EER

diagram.

iii. Augment the relationship with the characteristics achieved such as transitive or

symmetric or both of them as the case may be.

iv. Generalise the classes that share common attributes by superclass.

7.7 Summary

This chapter focuses on two parts. The first part is the translation system from EER

model to OWL ontological model. In this part, the general method was explained, and

Chapter 7 EER Transformation Rule

158

the rules of class and datatype and object properties are discussed. Here we emphasis on

the concepts that are not available in the logical model such as composite attribute,

complex attribute and multiple inheritance. Then the examples take place in order to

explain the graphical representation of the EER model and its equivalent in OWL

syntax. After that, this chapter provided the algorithms written in Pseudo Code for

creating all the ontology elements. The final section of the first part showed the reasons

behind choosing the logical model over the conceptual model. The second part of this

chapter focused in using the EER model to enhance the ontology produced by the

logical model. Also it provided the validation steps for the ontology produced by the

logical model through utilising the semantics obtained from the EER model.

Chapter 8 Case Study

159

8 CHAPTER EIGHT: CASE STUDY

AND PROTOTYPE

IMPLEMENTATION

Objectives

 Apply all the rules from Chapter 6 to a complete example.

 Explain the prototype features.

8.1 Introduction

This chapter shows all the stages for generating OWL ontology. It begins with an

analysis of the database. This step is followed by the production of the Extend Entity

Relationship model and subsequently converting the EER model to the Relational

model scripted in SQL-DDL. Ultimately the SQL will be transformed to OWL

ontology.

8.2 University database example

For our model example we considered capturing a variety of modelling choices.

Moreover our expository University example provided many different cases that

typically existed in the real database. For instance our example included strong and

weak entities; vertical partitioning of tables; multivalued attributes; composite

attributes; the IS-A relationship; multiple inheritance; and all different relationships

with a cardinality ratio (One-To-One; One-To-Many and Many-To-Many). Moreover

the University example included different degrees of relationship such as unary (self

relationship), binary and ternary relationships.

The University database has stored information about students and courses offered by a

specific department for particular degree programs. However for simplicity, the

example would not cover the entire University system. Therefore we excluded the

collage entity and considered the module entity as attributes because there was no need

Chapter 8 Case Study

160

to enlarge the database with repetition of cases. From another standpoint the database

was also considered for the purpose of storing the faculty member‟s information,

including academic staff. Our database example illustrates part of the University

database, which mainly concentrates on the student and staff entities and their

relationships.

8.2.1 University database requirements

The following are the database requirements suggested from the analysis phase:

8.2.1.1 University entity

 The university is organised into colleges, each with many departments. Each

department has a unique department number, department name, phone number

and a particular staff member who works for the department.

 The department offers many different courses, each of which has a unique

course number and course name and course credit hour.

 We keep track of the staff information including full staff name, date of birth,

address, email and sex.

 The academic staff are all members of the college workforce. Besides storing

staff information, we also store information regarding their present post, one of

which must be of this type:

(„Teaching Assistance‟, „Instructor‟, „Assistant Professor‟, „Associate

Professor‟, „Professor‟) and their specialty, and national identify number.

 The database is also keeping track of staff dependent names and their staff

relationships.

 For the student stores information the name, student identification number,

address, sex and national identify number are required. Moreover each student

has many hobbies.

 The graduate students‟ include Master and PhD students. In addition to student

attributes they have a research field attribute.

Chapter 8 Case Study

161

8.2.1.2 University relationships

 Staff and students, with specific major modules, work and study within each

department. Furthermore during each semester the department offers many

courses.

 Each member of staff must work for one department and has a specific manager.

In contrast the manager can supervise more than one staff member.

 The staff might have many dependents such as a spouse or children.

 An academic staff member is also a member of staff. Academic members of

staff teach many different courses.

 Two offered courses could be co-offered, and recorded as a self-relation in the

course entity set.

 A student registers in each semester for many courses; and the course therefore

has many students. At the end of the semester the students acquire grades for

their course.

 Each section has a student register associated with it; academic staff who teach,

and a course which will be offered.

 Graduate students who study Master or PhD qualifications need not have a job

in the university.

 The post-graduate student can help in the teaching of some courses. The post is

considered that of „Teaching Assistance‟.

We postponed adding some attributes to the initial database. We subsequently used

them to show their effects on the model.

8.2.2 University EER diagram

The EER diagram represents all the component of the conceptual model of the database.

Here is the summary of the ER diagram notation:

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets; and entity sets to relationship sets.

Chapter 8 Case Study

162

 Line with triangle head represent the (IS-A) relationship.

 Ellipses represent attributes.

o Double ellipses represent multivalued attributes.

o Dashed ellipses denote derived attributes.

o Underline indicates primary key attributes.

Figure 8.1 shows the corresponding entity relationship diagram for our university

example. Here we only focused on the entity and the relationships. The diagram also

shows the cardinality ratio. However for simplicity the diagram has eliminated the

attributes of entities.

Course
Student

Post-

Graduate

student

Staff

Registered

offer

work

Section

M M

1

1

M

M

1

Department

M

M

1Academic

staff

1

1

Manages

Subordinate

Superior

M

1

Dependent

1

M

Has

Major

1

M

1
1

M

Graduate

student

Module

1

Co-offer

M

Figure 8-1: EER Diagram of the University Database

Chapter 8 Case Study

163

8.2.3 University relational schema

After generating the EER representing the database requirements, we used the algorithm

as explained in Chapter Two, to convert the EER model to RM schema. The results are

represented in Table 8.1 below.

 Table 8-1: The University Database Schema

Tables Primary key Foreign key

Department(dept_id, dept_name,

dept_phone),

dept_id NA

Staff(staff_id, staff_ family_name,

n-id, dept_id , manager_id,)

staff_id dept_id (department)

staff_id(staff-details)

manager_id(staff)

staff-details(staff_id

,staff_first_name staff_mid_name,

DOB, address, email, homephone,

university extension phone)

staff_id staff_id (staff)

academic-staff(staff_id,

Post-held, specialty)

staff_id staff_id (staff)

student(st_id, st_name, sex, module-

name, dept_id)

st_id dept_id (department)

graduate-student(st_id,

research_area)

st_id st_id (student)

post- graduate (st_id, staff_id,

project_ group)

st_id st_id (graduate-student)

staff_id (staff)

Chapter 8 Case Study

164

Tables Primary key Foreign key

hobby(st_id , hobby_name) (st_id, hobby_name) st_id (student)

Dependent(d_id , staff_id

dependent_name, relationship)

(d_id, staff_id) staff_id (staff)

course (c_id, course_name, dept_id,

course credit hour, co-offer)

c_id dept_id(department)

co-offer (course)

Registered(st_id, c_id) (st_id, c_id) st_id(student),

c_id (course)

Section (st_id, c_id, staff_id)

(st_id, c_id, staff_id) st_id(student),

c_id(course),

staff_id(staff)

Here are some design decisions made by the database designer:

 Consider the dependent entity as a weak entity.

 Dependent is a weak entity. Its primary key will have the owner entity (staff)

primary key added to the discriminator which is dependent-id.

 We exclude the attribute grade, year and semester from the relationship

registered temporary. We will add them on later to show the effectiveness of

relationship attribute in ontology design

 The important information about staff is to be placed in one table and the

remaining in another table.

 Determine that the Id number given by the university is the primary key for

entities that has an alternative key. For instance the national number (n-id) in

both academic staff and graduate student is a candidate key; even if the national

number is restricted by not null and unique, the university id has meaning.

 The hobby is a multivalued attribute which needs to have a separate table.

Chapter 8 Case Study

165

8.2.4 SQL statement for University database

Our example in Appendix B, therefore, shows the corresponding SQL statements for the

University database schema.

8.3 Ontology generation:

The generation of OWL ontology passed through many steps. Firstly the most important

step was producing a unique identifier for the ontology and its definitions (classes and

properties). Subsequent class creation steps would include applying the fragmentation,

hierarchy, multivalued and default rules with their simultaneous datatype rules. Object

properties would take place as a final step which would include the (Many-To-Many)

relationship, self- relationship and default rules.

8.3.1 Producing Unique Identifiers (URIs) and Labels

Before discussing applying the transformation rules for our University example, we

need to clarify the different role of names in databases and ontologies. Databases use

the unique names of tables to identify them, whereas ontologies use a different concept

in producing names and identifiers for ontologies constructs, including classes and

properties.

The unique identifiers concept is considerable in OWL ontologies design. Therefore,

each ontology construct, including classes and properties, should be identified uniquely.

There are two methods to label concepts in ontologies: the first is using the names and

attributes of tables, and names to label the corresponding classes and properties

respectively. However, while database tables names are unique, the attribute of different

tables can share the same name. Also, since ontology would not accept duplication

names, the domain expert is responsible for revising ontology construct names, and for

machine readability and semantic interoperability, the ontology elements‟ names should

be given qualified names. The second possible solution is producing random names.

Because of the need for domain expert participation in choosing fully qualified names,

our approach used only the names suggested from relational schema, and when

Chapter 8 Case Study

166

required, appending a database construct name with an integer in order to gain

uniqueness (e.g. ID1, ID2 etc.).

Supposing the st-id is representing the student identification number in the Student table

and st-id is the staff identification number in the Staff table; each one of these two

attributes would be referring to different attribute meanings in the database design.

However in ontology design they must have different name spaces.

8.3.2 Applying our rules on University example

We applied our heuristic rules for transforming database schema-to-ontology

automatically.

8.3.2.1 Fragmentation rules

Before applying this rule, the user had to decide which solution was preferable as

explained in Chapter 6. There are three solutions for fragmentation:

1- The database is correct and complete specified.

2- Using the row record method.

3- Consider it as a hierarchy.

In our example we chose the first case which was the default. Therefore:

 Rule C1: Fragmentation class rule:

The fragmentation rule had two conditions. The first condition represented two tables

sharing same primary key. The second condition represented the two tables‟ primary

keys referring to each other table. Here we must indicate that the two primary keys are

equal which means the condition does not accept the tables that have partial primary

keys. The following tables are those that satisfied the first condition:

Staff-details Staff,

Academic-staff Staff,

Chapter 8 Case Study

167

Graduate-student student,

Post -Graduate Graduate-student

To eliminate all tables, which did not represent fragmentation tables, we applied the

second condition and the result would be thus:

Staff-details Staff

Therefore after applying the fragmentation rule to the University example the result was

the creation of one class (Staff) for Staff and Staff-details tables.

 Rule DP1: Fragmentation datatype property rule

The rule states that for all tables merged in one class create datatype property for each

attribute. Not forming a foreign key except for those attributes which are part of the

primary keys of the two tables and should therefore appear only once. For example the

primary keys of the two tables Staff, Staff-details were represented by one datatype

property. This datatype property subsequently used class Staff as a domain, since we

integrated the Staff table and Staff-details table into Staff class. The following attributes

would also have class Staff as their domain:

Staff (staff_id, n_id, staff_ family_name, staff_first_name staff_mid_name , DOB,

address, email, home phone, university extension phone).

Noticeably dept_id, manager_id which are the foreign attributes would not have a

datatype property corresponding to them.

8.3.2.2 Hierarchy rules

The hierarchy rule takes care of the inheritance between two tables or multiple

inheritances for more than two parent tables.

Chapter 8 Case Study

168

 Rule C2: Hierarchy class rule

The first condition is two tables sharing the same primary key. After applying this

condition we achieve the same fragmentation results which are:

 Staff-details Staff, excluded by (fragmentation rule)

Academic-staff Staff,

Graduate-student student

Post -Graduate Graduate-student

Here our tool already excludes all relationships applied for the fragmentation rule and

the tables that have partial part of the primary key such as:

Dependent Staff,

Hobby Student,

Registered Student,

Registered course,

Section Student,

Section course,

Section academic-staff,

The second condition, which is one of the tables primary keys will refer to the primary

key of the other table and this condition is applicable for:

Academic-staff Staff,

Graduate-student student,

Post -Graduate Graduate-student

Chapter 8 Case Study

169

Here the creation for classes does not exist, such as Academic-staff, Student, Graduate-

student and Post-Graduate. The system then maintained for each (IS-A) relationship the

term subclass between the parent child classes in the ontology. The master class is Staff

and the slave is Academic-staff. Therefore Academic-staff is a subclass of the Staff

class. Similarly the Graduate-student will be subclasses of Student class; and Post-

Graduate subclasses of Graduate-student.

The second case related to when the foreign key was disjoint from the primary key.

Here we considered the inheritance existing of an implicit (1 -1) relationship between

the two tables. This is true if and only when the foreign key has both UNIQUE and

NOT NULL characteristics. From our example we had the two tables Staff and Post-

Graduate where the Post-Graduate table holding the relationship between the foreign

key was disjoint from the primary key. It is therefore obvious that the Post-Graduate is

an Academic-Staff from database analysis. However the primary key of table Post-

Graduate is not sharing the primary key of the Staff table. Although the foreign key

(Staff-id attribute) in the Post-Graduate table represent an implicit inheritance since it is

UNIQUE and NOT NULL. Therefore we defined the Post-Graduate class as subclass of

the Academic-Staff class.

vii. Rule DP2: Hierarchy datatype property rule

This rule played an important role insuring that each attribute would be assigned its

according child or parent class, i.e. each class would have its own datatypes. The classes

created by this rule were: Academic-staff, Student, Graduate-Student and Post-

Graduate; whereas the Staff class already existed from the previous rule. In addition the

attributes of class Staff were already assigned from the fragmentation datatype property

rule.

The class Academic-staff will be the domain for the attributes Post-Held, Specialty

which do not form a foreign key. The class Student will be considered as a domain for

the attributes St_Id, St_Name, Sex and Module-Name and do not form a foreign key

either.

Chapter 8 Case Study

170

Since the class Graduate-student is a subclass from Student class it will inherit all its

attributes. The Post- Graduate class will inherit all the datatype properties of both

Student class and Graduate-student class. Here the datatype property Project-Group

assigned to the Post- Graduate class as a domain.

One of the distinctive ontological features is that child class inherit all the attributes of

the parent class automatically; whereas the database enforces the designer to repeat the

attributes manually.

Academic-staff (all Staff datatype properties, plus Post-Held, Specialty

Student (St_Id, St_Name, Sex, Module-Name)

Graduate-student (all student datatype properties and Research _Area)

Post -Graduate (all student datatype properties, all Academic-staff datatype properties

and Graduate-student, Project-Group)

OWL classes „overlap‟ until they have been stated to be disjoint from each other. Thus

the post-graduate class can have two parent classes and will consider being a

specialisation lattice with the subclass of (Graduate-student, Academic-Staff). As long

as the disjoint axioms are not created between Academic-staff class and Student class,

the reasoner would not detect inconsistencies in the ontology. The integrity of the

ontology could be checked by the reasoner to ensure that our ontology was built

correctly. In addition the class Post –Graduate shows the hierarchy inheritance since it

subclass of Graduate-student and Graduate-student is also subclass of Student class.

8.3.2.3 Multi-valued rules

The multivalued attribute in a well-designed database will have its own table. The

relationship between the owner table and multivalued table will have the cardinality

ratio of (One-To-Many).

Chapter 8 Case Study

171

 Rule C3: Multi-valued class rule:

There are two conditions that distinguish the multivalued relationship from other

relationships. Firstly the primary key of the multivalued table is a range of composite

attributes that will satisfy the relationship between tables below:

Dependent Staff

Hobby Student,

 Registered Student,

Registered Course,

 Section Student,

Section Course,

Section Academic-Staff,

The second condition is the part the primary key of the table is playing and the other

part of the primary key is only one attribute which is not participating in inclusion

dependency. All relationships representing (Many-To-Many), weak entities or n-ary

will be eliminated by the second condition. After that the only table satisfying our rule

is the relationship below:

Hobby Student,

Since the class of student already exists no actions are executed.

 Rule DP3: Multi-valued datatype property rule

Since the two tables are merged in one class, all the attributes will use the class created

from the previous step as their domain. For our example all the student attributes were

already allocated to the class Student, and for the Hobby table the attribute Hobby-name

forming a multivalued attribute will also be allocated to class Student. Noticeably this

Chapter 8 Case Study

172

attribute could not have the feature of Functional property since it definitely had more

than individual.

Student (all student datatype properties, Hobby-name)

8.3.2.4 Default rules

 Rule C4: Default class rule

This step ensured all the remaining tables that did not participate in the previous rules

(fragmentation, hierarchy, multivalued) would be examined by the default rule

condition. The condition is creating classes for all remaining tables except the table

representing the (Many-To-Many) relationship without attributes. In our example the

remaining tables which did not satisfy the previous rules were:

Department, Dependent, Course, Registered, and Section

From such tables the only one to represent the (Many-To-Many) relationship was the

Registered table. Therefore the tool would create classes for strong and weak entity; and

the ternary (higher) relationship not involved in other rules.

Department, Course strong entities,

Dependent weak entity,

Section ternary relationship

The default rule would take care of the following two cases.

 Case 1: Binary relationships with additional attributes

If we slightly modify the specifications of the table Registered to include additional

attributes such as semester and grade the table would subsequently form a class

according to the default rule.

 Case 2: N-ary relationships

Chapter 8 Case Study

173

For those tables that represented the ternary or higher relationship the default rule took

care of creating corresponding classes on the ontology side.

 Rule DP4: Default datatype property rule

The rule was concerned about assigning all attributes from the original table to its

corresponding datatype properties, except the foreign keys. For the University example

the classes created by the default rule would have the following datatype properties:

Department dept_id, dept_name, dept_phone

Course c_id, course_name, dept_id, course-credit-hour

Dependent d_id , staff_id ,dependent_name, relationship

Section c_id, staff_id, st_id

In addition, the tables of the University database which did not form a class were:

Staff-details merge with Staff class

Registered many –to-many relationship

Hobby merges with Student class

At the end of this phase the need for the domain expert participation was important. All

datatype properties of classes therefore needed to be given a proper name before

proceeding.

Finally, classes were created from Table 8.1 by class creation rules:

 Fragmentation rule (Staff+ Staff-details) = Staff

 Hierarchy rule (Academic-Staff, Staff), (Graduate-student, Student) (Post-

Graduate, Graduate-Student), (Post- Graduate, Academic- Staff)

 Multivalued rule(Hobby+ Student) = Student

 Default rule Department, Course, Dependent, Section

Chapter 8 Case Study

174

The corresponding code below represents the header of the ontology which includes the

name space for OWL, RDF, RDFS and XML. However the header varied from

application to application and hence we adopted the one able to work with Protégé –

OWL.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1290365199.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1290365199.owl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

The following script represents the class creation (first stage). OWL segments for class

creation are:

<owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Academic_staff">

 <rdfs:subClassOf rdf:resource="#staff"/>

 </owl:Class>

 <owl:Class rdf:ID="course"/>

 <owl:Class rdf:ID="department"/>

Chapter 8 Case Study

175

 <owl:Class rdf:ID="Dependent"/>

 <owl:Class rdf:ID="Graduate_Student">

 <rdfs:subClassOf rdf:resource="#Student"/>

 </owl:Class>

 <owl:Class rdf:ID="Post_Graduate">

 <rdfs:subClassOf rdf:resource="#Student"/>

 <rdfs:subClassOf rdf:resource="#Academic_staff"/>

 </owl:Class>

 <owl:Class rdf:ID="staff"/>

 <owl:Class rdf:ID="Student"/>

 <owl:Class rdf:ID="Section"/>

</rdf:RDF>

For attribute representation we selected samples from University ontology. The first

sample was the definition for the datatype property staff_family_name and had the class

Staff as its domain; and the range was xml datatype property equivalent to database

attribute type. The other samples introduced in the next section.

<owl:DatatypeProperty rdf:ID="staff__family_name">

 <rdfs:domain rdf:resource="#Staff"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

For full ontology classes and datatype properties creation refer to Appendix C.

One approach [41] has mixed ontology and database design. For example, if there were

two classes represented in a hierarchical structure, the subclass would inherit all the

datatype properties present in the superclass, so there would be no need to define the

datatype property domain from the union of the superclass and the subclass.

Chapter 8 Case Study

176

For instance the Staff_id datatype presented in both Staff and Academic-Staff classes

did not mean that we aggregated the two attributes by the collection term. However if

we preferred to link the relationship between the weak and strong entity we could use

the OWL term - Collection - since this relationship was tighter than the normal (One–

To-Many). For example the relationship between the strong entity Staff and the weak

entity Dependent can have the following code.

<owl:DatatypeProperty rdf:ID="staff_id">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Staff"/>

 <owl:Class rdf:about="# Dependent "/>

 <owl:Class rdf:about="# staff_id "/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

From the example Staff_Id this is a datatype property of the class Staff. Therefore the

Academic-Staff class would not need to define the staff_id again since the subclass term

granted all datatype properties of the parent class to be inherited by the child class.

8.3.2.5 Applying other SQL aspects to datatype property rules

For all attributes that did not participate in foreign keys could be one of seven cases:

 Firstly, an attribute will be Functional if it is not representing a multivalued datatype

property. In the University example the representation for the name of a student will

be Functional since each student has only one name.

 <owl:DatatypeProperty rdf:ID="Student_name">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="&xsd;string"/>

Chapter 8 Case Study

177

 </owl:DatatypeProperty>

 The second case is the attribute standing for multivalued; and thenceforth this

datatype property must not be restricted with Functional axiom. In University

ontology, only the datatype property of student Hobby cannot be functional.

 The third case is if the attribute is a primary key or have the NOT NULL and

UNIQUE constraints together; the corresponding datatype property will thus have

the minimum cardinality and maximum cardinality of one. The attribute Staff_Id

represent a primary key in the Staff table and therefore the datatype property

Staff_Id of class Staff will have both minimum cardinality of one and maximum

cardinality of one.

<owl:Restriction>

<owl:onProperty rdf:resource="# staff_id "/>

<owl:minCardinality>1</owl:minCardinality>

<owl:maxCardinality>1</owl:maxCardinalit>

</owl:Restriction>

For the case of minimum cardinality equal to maximum cardinality then

cardinality restriction is enough for specification. So the previous code could

easily be rewritten as:

owl:Restriction>

 <owl:onProperty rdf:resource="# staff_id "/>

 <owl:Cardinality>1</owl:Cardinality>

</owl:Restriction>

The same thing is applicable for the attribute which have NOT NULL and

UNIQUE constraints, and will be restricted to cardinality of one. The national

number of the staff will satisfy these conditions.

<owl:Restriction>

 <owl:onProperty rdf:resource="# national_id " />

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

Chapter 8 Case Study

178

 The fourth case is the attribute with Not Null constraint, the corresponding datatype

property to this attribute will be assigned with minimum cardinality of one.

<owl:Restriction>

 <owl:onProperty rdf:resource="# staff_ family_name" />

 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

 The fifth case if the attribute is holding UNIQUE constraint; thenceforth the

corresponding datatype property will have an additional cardinality restriction on

that property with maximum cardinality of one.

<owl:Restriction>

 <owl:onProperty rdf:resource="# module-name" />

 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

 The sixth case for representing the database attribute characteristic is the check in

and thus can be represented by an enumerated datatype property. The attribute Post-

Held in the Academic-Staff table is an example of enumerated datatype property in

University ontology. The following is the OWL matching segment for the options

(„Teacher_Assistance‟,„Instructor‟,„Assistant_professor‟,„Associate_professor‟ and

„Professor‟).

<owl:DatatypeProperty rdf:ID="Post-hold">

 <rdfs:domain rdf:resource="#Academic-Staff"/>

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf>

 <rdf:List>

 <rdf:firstrdf:datatype="&xsd;string"> Teacher Assistance</rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first rdf:datatype="&xsd;string">Instructor</rdf:first>

 <rdf:rest>

Chapter 8 Case Study

179

 <rdf:List>

 <rdf:first rdf:datatype="&xsd;string">Assistant_professor</rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first rdf:datatype="&xsd;string"

 >Associate_professor</rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first rdf:datatype="&xsd;string">Professor</rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

 </owl:oneOf>

 </owl:DataRange>

</rdfs:range>

 The last case for representing the database attribute is the SQL term default. The

corresponding datatype attribute will have the Owl:hasValue term. The following

Owl syntax shows the example of the relationship of class Dependent.

<owl:Restriction>

 <owl:onProperty rdf:resource="#Relationship" />

 <owl:hasValue rdf:resource="#Parent" />

</owl:Restriction>

The Figure 8.2 below has summarised all SQL characteristics applicable to database

attributes and their equivalent ontological constraints.

Chapter 8 Case Study

180

Attribute

Not Foreign key

Primary key

Unique and

Not Null

Unique

Not Null

Cardinality=1

maxCardinality=1

minCardinality=1

Not Functional

Cheak in

oneOf

default

hasValue

Functional

Multivlaued

otherwise

 Figure 8-2: SQL and OWL Equivalent

8.3.3 Rules for the creation of object properties

The foreign keys in database schema played the role of building the relationships

between tables. Since some class rules take care of some foreign keys cases. Therefore

only the foreign keys that do not participate in any of class rules (fragmentation,

hierarchy, or multivalued) can be checked by the following object property rules.

The foreign keys, for the university database, which participated in class creation, have

been defined in Table 8.2. These did not require an object property to represent them.

 Table 8-2: Foreign keys participate in University class creation

table Foreign key Reference table Situation

Staff- details Staff_id Staff Staff- details integrate into Staff

Staff Staff_id Staff- details Staff- details integrate into Staff

Academic- Staff Staff_id Staff Academic- Staff subclass Staff

Graduate-student St_id Student Graduate-student subclass Student

Post- Graduate St_id Graduate-Student Post- Graduate subclass Graduate-

Student

Post- Graduate Staff_id Academic-

Staff

Post- Graduate subclass Academic- Staff

Hobby St_id Student Hobby integrate into Student

Chapter 8 Case Study

181

8.3.3.1 Rule OP1: Object property rules for binary relationships (many-to-many)

The rule is creating a pair of inverse object properties between the two classes

corresponding to the two tables involving in Many-To-Many relationship. In the

University example the Registered table represents the (Many-To-Many) relationship,

not represented by a class. Therefore we can create (student-registered) object property

with class Student as its domain and class Course as its range. In addition we created

another object property with name (course-available); Course class domain, and the

range of Student class. The two object properties are inverse of each other. The object

properties of this case cannot be functional since each student can register on more than

one course and each course can have more than one student. The following is the OWL

segment representing each class object properties.

For Course Class:

 <owl:ObjectProperty rdf:ID="course_available">

 <rdfs:domain rdf:resource="#course"/>

 <rdfs:range rdf:resource="#Student"/>

 <owl:inverseOf rdf:resource="#student_registered"/>

 </owl:ObjectProperty>

For Student Class:

 <owl:ObjectProperty rdf:ID="student_registered">

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="#course"/>

 <owl:inverseOf rdf:resource="#course_available"/>

 </owl:ObjectProperty>

8.3.3.2 Rule OP2: Object property rules for a relation with unary relationship

(self-relation)

The self-relationship is represented by two inverse object properties in the ontological

side. The relationship of Manager is an example for this matter. In University ontology

the object property (has-superior) will be Functional with Staff class domain and range.

The inverse to it is (has-subordinate) with same domain and range class, although

without assigning the Functional characteristic to it.

Chapter 8 Case Study

182

The corresponding OWL descriptions are as follows:

<owl:ObjectProperty rdf:ID="has_subordinate">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="#staff"/>

 <owl:inverseOf rdf:resource="#has_superior"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_superior">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="#staff"/>

 <owl:inverseOf rdf:resource="#has_subordinate"/>

 </owl:ObjectProperty>

8.3.3.3 Rule OP3: Object property default rule

The default object property rule takes care of all foreign keys that are not participates in

class creation nor participates in the two former object property rules. The default rule

will handle the foreign keys of the One-To-Many relationship; the n-ary relationship

foreign keys and the Many-To-Many relationship with additional attributes as well and

the strong –weak entity relationship.

From the Table 8.3 below, which contained the foreign keys not participates in class

creation, we noticed that Registered foreign keys are handled by Rule-OP1 Manager_Id

of Staff table; and Co-offer of course are handled by the Rule-OP2. Whereas, the

remaining foreign keys, representing different relationships between tables, would be

handled by the default object rule.

 Table 8-3: Foreign keys participate in object properties

Table Foreign key Reference table Relationship name

Staff Dept_id Department Work for

Staff Manager_id Staff Managed by

Student Dept_id Department Major

Course Dept_id Department Offer

Chapter 8 Case Study

183

Table Foreign key Reference table Relationship name

Course Co-offer course Co-offer

Dependent Staff_id Staff Has Staff

Registered St_id Student Student Registered

Registered C_id course course Registered

Section St_id Student Student Section

Section C_id course course Section

Section Staff_id Academic-staff Academic-staff Section

We noticed that all foreign keys created by the tool did not have proper names. For

example the foreign keys of table Registered had the names Student-Registered-course

and course-Registered-Student which included the domain and the range with the

relationship. Therefore we modified the names to be rational.

The default rule would handle the foreign keys of tables Staff, Student, and Course and

referred to table Department by two inverse object properties. For example the

relationship work between tables Staff and Department would have the following OWL

description for the corresponding classes.

<owl:ObjectProperty rdf:ID=" work_in">

 <rdfs:domain rdf:resource="# Staff "/>

 <owl:inverseOf rdf:resource="# has _worker "/>

 <rdfs:range rdf:resource="# department "/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=" has _worker">

 <rdfs:domain rdf:resource="# department "/>

 <owl:inverseOf rdf:resource="# work_in"/>

 <rdfs:range rdf:resource="# Staff "/>

</owl:ObjectProperty>

The description above is therefore demonstrating the relationship as Staff work in

Department and Department has worker Staff. The foreign key between the strong

entity table Staff; and the weak entity table Dependent would have the same treatment

of the One-To-Many relationship.

Chapter 8 Case Study

184

The third case considered the (Many-To- Many) binary relationship with additional

attributes and higher degree relationships. Since in this case the class for the

relationship existed and subsequently each foreign key will have two object properties

to represent it.

From the University database, Section table is a ternary relationship, therefore the

foreign key referring to Student table will be represented by two inverse object

properties (is- taught-by, has-student). For the foreign key referring to Staff table, the

two inverse object properties (has-staff, staff-Section) will demonstrate it. Finally the

foreign key referring to Course table will have the two inverse object properties (has-

course, course-taught-by); and for all higher degree (n>2) relationships represented by

class will have n* (n-1) object properties.

8.3.3.4 Applying other SQL aspects to object property rule

Object properties identified from foreign keys and their characteristics could be

obtained from various combinations of uniqueness and null restrictions. The default rule

took care of object properties creation. Our tool simultaneously applied the algorithm of

object property restrictions obtained from SQL aspect. There were two categories of

foreign keys.

The first category related to when the foreign key was disjoint from the primary key of

its table. Here we had three cases. The first case, if the foreign key is null and not

unique, and therefore the corresponding object property will be functional and its

inverse will have minimum cardinality of 0. An example of that is the Offer relationship

between Course and Department. The second case, if the foreign key is not null and not

unique; and subsequently the corresponding object property will set its cardinality to

one and set its inverse minimum cardinality to 0. The Major relationship between the

Student and Department table has been demonstrated by the syntax below.

For Student Class:

</owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="Major">

 <rdfs:domain rdf:resource="#Student"/>

Chapter 8 Case Study

185

 <rdfs:range rdf:resource="#department"/>

 <owl:inverseOf rdf:resource="#invMajor"/>

</owl:ObjectProperty>

<owl:Restriction>

 <owl:onProperty rdf:resource="#Major"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

For Department class:

</owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="invMajor">

 <rdfs:domain rdf:resource="#department"/>

 <rdfs:range rdf:resource="#Student"/>

 <owl:inverseOf rdf:resource="#Major"/>

</owl:ObjectProperty>

<owl:Restriction>

 <owl:onProperty rdf:resource="#invMajor"/>

 <owl:minCardinality rdf:datatype="&xsd;int">0</owl:minCardinality>

</owl:Restriction>

The third case shows whether the foreign key is null and unique; and subsequently the

relationship for (one-to-one) will be represented by two Functional object properties

inverse from each other. The last case when the foreign key is not null and unique, at

this point the hierarchy rule will take care of it.

The second category when the foreign key is part of the primary key, such as in the

tables Section and Dependent. Here the corresponding object property and its inverse,

both will set their cardinality to one. The syntax below shows the Section class object

properties:

<owl:Class rdf:ID="Section">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_course_Section"/>

Chapter 8 Case Study

186

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_student_Section"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_staff_Section"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

Since the primary key is restricted to being not null and unique therefore the question

here is if the foreign key is part of the primary key this makes it eligible to inherit the

primary key characteristics. However clarification for this issue is the primary key of

the relationship table as a concatenation of the foreign keys. . Therefore the restriction

of uniqueness would not be applicable for each foreign key independently. However it

is applicable for the entire component of the primary key. This is the reason behind not

assigning the two object properties representing the foreign key the functor of

Functional which represent the one-to-one relationship.

As for the Not Null restriction it was applied for each foreign key which let us set the

cardinality of one to the corresponding object properties. We could not force the

combination of all object properties part of n-ary class to be UNIQUE and NOT NULL,

since OWL did not support restrictions on combination. Therefore we could use an

alternative way to express such constraints. For example use of SWRL language or any

other language rules to express these facts.

8.4 Implementation

Our transformation rules approach was applied on a prototype tool. This tool considers

automatic transformation of relational databases to ontologies, where the quality of

Chapter 8 Case Study

187

transformation is also considered. The prototype has been implemented in the tool

named SQL2OWL. This tool can be applied to any relational database management

system that supports SQL, because the tool does not rely on any SQL dialect. The

function of the tool has been to find a best candidate for each relational database

construct and its matching in ontology. This excludes any construct that does not have

an equivalent match in the ontology side, such as triggers. More precisely this tool has

the capability of automatic transformation of a relational database (written in SQL) to

an ontology (written in OWL). The complete set of our transformation rules was

arranged stepwise, and that enables our approach to be executed directly by our

prototype.

As its core, the tool is considered a transformation engine that parses an SQL script and

generates an OWL file; that construct an ontology, including definitions (classes,

properties and restrictions) and instances (values and individuals). The tool required

minimum user interaction as participation included only selecting or specifying the

name of an SQL script file and the name for an OWL file.

 Prototype structure:

The tool implementation was based on Java 2 v1.4.2 platform. We parse the database

schema file and stored the schema data as Java ArrayList classes.

Our tool was functional and flexible as we considered these characteristics during the

implementation process. In addition the prototype was user friendly with an intuitive

interface (graphical user interface), also easy to use, as shown in Figure 8.3. The

prototype consisted of six parts:

 Part 1: menu bar,

 Part 2: loading SQL statement,

 Part 3: database analysis,

 Part 4: the rule options part,

 Part 5: rules activities,

 Part 6: result ontology.

Chapter 8 Case Study

188

Part1: Menu Bar

Part2: SQL

loading

Part3: database

Analysis

Part6: the result

ontology

Part5: applying the

rules activities

Part4: options Bar

 Figure 8-3: Prototype snapshot parts

The following section will explain the functions of each part.

8.4.1 Part 1: menu bar

This part allowed the user to specify the SQL file as a source, and to save the produced

OWL ontology as target.

8.4.2 Part 2: Load part

This part was responsible for showing the loaded SQL file script. It also highlighted

each command of SQL statements with bold text. In the case that the SQL file was not

available we dump the source database in order to obtain the SQL statements which

included:

 CREATE table commands.

Chapter 8 Case Study

189

 INSERT records into tables.

The create commands described the relational schema of database, whereas the insert

command represented the last stored data records for each table.

8.4.3 Part 3: database analysis

After loading the database statement, the tool would subsequently parse the SQL

statements, to group each command part together in order to analyse the database. The

tool could begin to analyse the database in order to capture the following components:

 Name

The Name of relation will be considered as the name of class in the ontology.

Here the column The Name of Part 3 specifies every relation in the database

tables, even tables which represent relationships or multivalued attributes.

 Type

This column will classify tables to either class or relation. Those tables which

can result in a class or integrate into other class will have a class type. As for

binary relationship tables without additional attributes, they will be assigned

relation as a type which means this type of relations would not convert to a

class.

 Subclass of

This will consider the tables which are sharing the same primary as subclasses

unless the fragmentation rule is applicable.

 Rows

Rows indicate the number of rows held by a relation. This can be done by

counting the number of insert statements of each table.

 Primary keys

Chapter 8 Case Study

190

All the attributes form the primary key of each relation.

 Foreign keys

All attributes participate as foreign keys of each relation.

Each component would be facilitated in one of the creation rules. For example Name of

relation would be assigned to be the name of classes in the ontology. The primary keys

and foreign keys were utilised in verifying that exactly one rule was applicable on each

relation, i.e. which means there are no two rules applicable on one relation; and there is

no relation without a valid rule. The foreign keys will also be facilitated in creating

object properties.

8.4.4 Part 4: Options part

This part included three push buttons options:

i. Apply rules (standard order)

This option would follow the approach rules order which meant applying class and

datatype creation rules as our approach suggested by the order of the fragmentation

rule; thenceforth the hierarchy, the multivalued rule and eventually the default rule.

Following on from this, the tool started to build object properties axioms, starting

with Many-To-Many relationships, then unary relationships and finally the rest of

the relationships.

Here the order was important and manipulating of the order may have resulted in an

incorrect outcome. In addition some rules could not be applied before another. For

instance the hierarchy rule could not be applied prior to the fragmentation rule.

ii. Apply rules (defined order)

This choice allowed the user to try each rule independently to determine its

outcome. Another purpose of this option was to give the user the ability to omit the

rule of fragmentation if it was considered out of database interest. This option also

signified the flexibility of our tool.

iii. Export to OWL

Chapter 8 Case Study

191

The third option was to produce the final Owl ontology in the exchange syntax.

Discussion:

We considered the order suggested by our approach, since following the order

procedure in applying the approach rules would enhance the tool performance; and thus

reduce the time of generating the target ontology by narrowing the set of tables applied

for each rule, especially for large scale databases. Therefore the procedure of applying

the transformation rule contained four steps:

a. Identifying tables of Many-To-Many relationship without an additional attribute

which would not have a corresponding class.

b. Identifying tables sharing the same primary key. Therefore other tables that do

not satisfy this condition will be eliminated from the fragmentation and

hierarchy rule. The system subsequently applies the fragmentation rule if it is

applicable; otherwise applying the hierarchy rule in sequence.

c. Identifying tables in which part of their primary key refer to other tables. Thus

weak entity and multivalued tables will be nominated and the n-ary relationship

will be eliminated. The tool applies the multivalued attribute rule afterward.

d. The remaining tables will create corresponding classes.

The procedures of other approaches [36, 41, 45, and 46] for applying their class creation

rules have only considered eliminating the binary relationship of Many-To-Many

cardinality. Therefore they would only have one rule to represent class creation and one

rule for class hierarchy. Omitting fragmentation problem and excluding multivalued

tables from their rules would enhance the runtime; however it would also affect the

result ontology. This has shown therefore the functionality of our rules which have been

able to cover the space of all possible relations cases.

Another distinguished feature of our system was the procedure of applying the

fragmentation rule as below.

The three options whilst applying the fragmentation rule are outlined:

a. Complete and correct specification database where each table refers to the other.

Chapter 8 Case Study

192

b. Using the count method for database data.

c. Treat fragmentation as hierarchical.

Our system applied these three options in sequence looking for tables which referred to

each other. If not available, the count method to calculate the record of each table would

be used. If the first option was not applicable and data not offered then all one-to-one

relationships sharing the same primary key were to be treated as a hierarchy.

Any result could be modified after generating the OWL ontology.

8.4.5 Part 5: The activity part:

This shows the activity of applying each rule and its status and whether it was

applicable or not.

8.4.6 Part 6: The ontology produced

This part showed a complete OWL ontology including all the definition of classes and

properties and axioms. Figure 8.4 has shown a snapshot of the tool after applying the

rules and receiving the result.

 Figure 8-4: Prototype snapshot

Chapter 8 Case Study

193

8.5 Summary

This chapter focuses on two parts. The case study is the first part which includes

specifying a University database as an example. This specification process goes through

three steps. The first step is the conceptual model depicted in the EER diagram. Then

the second step is to produce the relational schema. After that the physical model

produced by SQL-DDL language. The second phase is producing the ontology starting

by class creation rules along with datatype creation rules then the object property rules.

In the second part we built a tool that applied our transformation rules. This tool accepts

an SQL-DDL script then transforms it to OWL ontology language.

Chapter 9 Evaluation

194

9 CHAPTER NINE: EVALUATION

Objectives

 Compare our approach and other transformation approaches.

 Define criteria for evaluation.

 Evaluate the results of our approach compared to a manual one.

 Show the extent of the success of our approach.

9.1 Introduction

This chapter will assess our approach with a multi-faceted evaluation. It begins with a

general evaluation including a comparison between our approach and other potential

approaches. The second technique applies a Score Scheme. After this the approach is

tested against a variety of criteria including; quality of transformation, completeness,

and scalability.

The evaluation process must consider all the disparities between database and

ontological modelling presented in Chapter 5.

9.2 General Comparison

This stage of the assessment evaluates our approach by comparing it to other possible

approaches. Table 9.1 shows the source, target and the technique for each approach, in

addition to specifying formality. The approaches included in this comparison

concentrate on the transformation of a database to ontology, where ontology does not

already exist.

Chapter 9 Evaluation

195

 Table 9-1: Transformation Approaches General Characteristic

Approach Source Target Transformation Formal/

Informal

Stojanovic, et al. SQL F-logic Automatic Formal

Astrova, et al. SQL OWL-Full Automatic Informal

M. LI ,et al. Relational schema OWL-DL Automatic Informal

Upadhyaya et al.(

ERONTO)

EER OWL-Full Semi- automatic Informal

Sonia et al. (R2O) Metadata + SQL OWL-DL Automatic Informal

Tirmizi, et al. SQL OWL-DL Automatic Formal

Benslimane, et al. HTML+SQL OWL-DL Semi- automatic Informal

Our approach

SQL2OWL(source

SQL)

SQL alone OWL-DL Automatic Formal

Our approach

SQL2 OWL (source:

SQL+EER)

SQL & EER +

Metadata

OWL-DL Semi- automatic Formal

Some approaches defined their transformation rules with mapping rules. As has been

previously stated, mapping requires the existence of both database and ontology.

Therefore all these techniques are considered regarding transformation. The procedure

applied here aims to maintain a general comparison between our approach (SQL2OWL)

and different approaches through multiple design criteria, as shown in Table 9.2. The

comparison given focuses on the strengths and weaknesses of each approach and its

limitations.

Chapter 9 Evaluation

196

 Table 9-2: Transformation Approaches Rules Characteristic

 Approach

Criteria

Stojanovi

c, et al.

Astrov

a, et al.

LI ,et al. Upadhyay

a et al.

ERONT

O

Sonia et

al.

R2O

Tirmizi,

et al.

Benslimane,

et al.

SQL2OW

L

C
la

ss

Fragmentati

on

User

decide

Uncov

er

Mix with

hierarchy

Not

applicab

le

Not

applicab

le

Excluded

by

assumpti

on

Mix with

hierarchy

hierarchy Mix with

Fragmentati

on

 Mix with

Fragmentati

on

Multiple

inheritance

Multi-valued
Uncover Uncov

er

Uncover Uncover Uncover

Binary (M-

M)relationsh

ip with

additional

attribute

Uncover Uncover Uncover

Ternary and

higher

relationship

O
b

je
ct

 P
ro

p
er

ti
es

Binary (M-

M)relationsh

ip

Ternary and

higher

relationship

Partial

solution

Partial

solutio

n

Partial

solution

 Partial

solution

Partial

solution

Partial

solution

Unary

relationship

Uncover Wrong

solutio

n

Uncover Uncover Uncover

D
at

at
y

p
e

P
ro

p
er

t

ie
s Functional

Uncover Partial

solution

 Wrong

solution

Uncover

Chapter 9 Evaluation

197

 Approach

Criteria

Stojanovi

c, et al.

Astrov

a, et al.

LI ,et al. Upadhyay

a et al.

ERONT

O

Sonia et

al.

R2O

Tirmizi,

et al.

Benslimane,

et al.

SQL2OW

L

Cardinality
Uncover

Value

restriction

Uncover Uncover Uncover

Enumerated

property

Uncover Uncover Not

Possible

Uncover Uncover

Composite

attribute

Uncover Uncov

er

Uncover Uncover Uncover Uncover EER

Transitive &

symmetric

Not

Possible

Not

general

solutio
n

Not Possible Not

Possible

Not

Possible

Not

Possible

Not Possible Not

Possible

Table 9.2 shows a general comparison between different approaches which tried to

transform relational model to ontological model using different database sources. We

base our comparison on the three elements that built an ontology (classes, object

properties and datatype properties). In the class creation phase, most approaches fail in

distinguishing between fragmented tables and hierarchy tables, however, our approach

success in solving this problem by obtaining a correct analysis which differentiate the

specifications of each case. The second problem is that most of the approaches neglect

the case of multi-valued tables while our approach considers it. The third problem is

that many approaches do not consider the binary relationship having (Many-To-Many)

cardinality ratio with additional attribute in their specifications. The approaches such as

ERONTO and the R2O would not face the problems of fragmentation and multi-valued

tables since they are using the conceptual model (EER) as their source.

In object property creation phase, most of the approaches decompose a higher degree

relationship to binary relationships in order to represent the object properties. However

they miss characteristics such as Inverse Functional and Functional which ensure that

the relationships exist as a whole. In the case of the unary relationship, most of the

approaches do not consider it. In datatype property creation phase, there are different

Chapter 9 Evaluation

198

criteria to compare between the approaches. First of all, the Functional characteristic,

since each field in database have only single value, then all datatype properties should

be Functional. This assumption is not true for datatype obtained from multi-valued

attribute. Many approaches facilitate the logical model only; however, logical model

cannot obtain all the semantics in the conceptual model such as composite and complex

attribute characteristics. Finally Astrova, et al. approach fails in the same aspect by

using a general solution in representing the transitive and symmetric cases.

Table 9.3 provides an explanation of each approach in terms of its strength and its

limitations. It is clear that the ERONTO approach has a lot of strengths since it obtains

more semantic characteristics of the ontology from the EER source directly; thus, the

problem is not with the approach itself, rather with the availability of source data.

Therefore we cannot rely on this source alone, even though the results show more

semantics than the RM. For this reason, in our approach we used the conceptual model

for the validation process.

There are some criteria, which can affect the overall evaluation of each approach, that

are important to consider besides the creation of the ontology components. One of these

is availability and the other is the automation of the approach. These have the most

significant influence on the evaluation process, in addition to the formality of the

approach. There is no objection if the source is hard to obtain; the opportunity for

constructing a new ontology from scratch is less complex. Therefore we give the above

criteria a weight, which makes the evaluation more scalable.

Criteria are classified into three levels. First level is a very important criterion which

can get the score of three. Availability of the source and the structure of the ontology

classified from this category. The second level of criteria will gain the score of two. The

automation is the only criterion considered from the second level. The last level with

score of one contains the less important criterion or the supplementary criterion.

Formality represents the less important criterion. Also, an additional source utilised by

an approach can be considered as an additional criterion too. Now, we base our

weighting on five criteria. And in order to get the total weight of 100 percentages, each

criterion score weight will be multiply by 10. So the availability and structure of the

Chapter 9 Evaluation

199

ontology will get 60 for both of them. And the automation would have the weight of 20.

Finally, the weight of 10 will be granted to formality and the same weight to the

additional source. For the weighting of the availability of each main source we can

derive 30% for SQL-DDL or meta-data, since it is available by requesting a database. In

the case of using an EER model as a source the approach the score is just 20% as it

difficult to obtain. Using more than one source adds an extra 5% to the approach if the

source is data or EER, and 10% extra will be given to an approach based on HTML,

with the condition that the total weighting for availability does not exceed 40%. Notice

that no single approach gets the full percentage for availability since all of them require

some information to be attained by the database owner. For the automation weighting; if

the approach was fully automated this would be 20%. If there is some a user

intervention required (user decision) then there will be 5% exclusion, whereas semi-

automatic approaches will receive 10%. For the ontology concepts we assign 2% for

each component in table 9.3 with a total of 30%. Finally formal approaches will get

score 10%.

 Table 9-3: Transformation Approaches with Weighted Criteria

 Criteria Weight

Approach

Availabil

ity

40%

Automation

20%

Ontology

concepts

30%

Formality

10%

Total weight

100%

Stojanovic, et al. 30% 15% 12% 10% 67

Astrova, et al. 30% 20% 20% 0 70

LI ,et al. 30% 15% 14% 0 59

Upadhyaya, et al. ERONTO 20% 10% 24% 0 54

Sonia, et al. (R2O) 35% 20% 24% 0 79

Tirmizi, et al. 30% 20% 19% 10% 79

Benslimane, et al. 40% 10% 10% 0 60

SQL2 OWL(SQL source) 30% 20% 26% 10% 86

SQL2 OWL(EER &SQL) 35% 15% 28% 10% 88

Chapter 9 Evaluation

200

 Explanation:

There are two kinds of sources that can represent a database: (i) loosely descriptive

sources such as HTML and meta-data; (ii) tightly descriptive sources such as relational

models written in SQL, EER.

The easiest source, which can be obtained without the need for database owner

cooperation, is HTML. However, HTML creates links between forms of websites and

the deep web database. Therefore we cannot count it as an actual database model, since

it does not capture the hidden structure of the database. For case of data availability we

consider retrieving all database records through a website to be an impossible task.

Therefore data alone cannot represent the whole structure of a database. For the two

actual database models we require database owner cooperation, which is available at

different levels according to sources, as shown below:

 SQL alone;

 EER alone;

 Data alone;

 SQL with Data;

 SQL with EER;

 SQL, EER, and Data.

After dumping a database we can catch both SQL structure and data. However, most

time data is confidential therefore the database administrator can eliminate this to avoid

sharing it with other parties. Alternatively it may be shared after some precautions have

been implemented, e.g. filtering some fields of tables in order to maintain security.

Theory: while the extend entity relational model is semantically richer than the RM

model, the relational model written in SQL-DDL is the better source for transforming

database to ontology for the following reasons:

 Availability.

Chapter 9 Evaluation

201

 Accurate representation of the current database with the most recent

modifications.

 It can produce the target ontology automatically with minimal user interaction.

The conceptual model (EER) can fail to guarantee availability for either one of these

reasons:

 Missing model.

 Primarily not implemented during the database conception.

Additionally, it may not represent the current database as there is no documentation for

any alteration to the database. These limitations with using EER sources lead us to the

conclusion that; although obtaining ontology from a conceptual model might be better

than that obtained from a relational model, it is not appropriate to rely on missing or

unavailable sources.

Depending on three different sources gives our approach the ability to capture more

semantics without a need for filtering the redundancy. Since our system relies on SQL

source alone in order to produce the initial ontology, we can utilise the second source (if

it exists) for the enriching and validation stage. The third source can then be used for

filling in the ontology (knowledge base generation).

9.3 Experimental

9.3.1 Experimental Specification

The objective of this experiment is to evaluate the automatic approaches to producing

ontologies in comparison to manual ones. This test will also show whether our heuristic

rules can generate good quality ontologies or not.

The experimental phase includes many steps:

1- Choose database schema specification.

2- Generate a corresponding ontology by domain expert.

3- Generate automatically the corresponding ontology using three different

approaches based on their SQL-DDL source.

Chapter 9 Evaluation

202

4- Generate a corresponding ontology with our approach using SQL-DDL as the

only source.

5- Assess the results of the four approaches compared to the domain expert

ontology benchmark.

The manually created domain ontology is a non-trivial “benchmark”, since it includes

merging tables and creating classes to represent some concepts, such as composite

attribute (a trivial transformation involves mapping from a single source table to a

single target class). Also, we consider the manually-created domain ontologies as a

“gold standard” to evaluate our approach result, compared with the other transformation

approaches results.

We choose the approaches that totally depend on SQL-DDL as a source and can

automatically produce ontology. Li et al.[41], Tirmizi et al. [45], and Astrova et al. [46]

approaches are the three most comprehensive SQL-DDL approaches and their resulting

ontology is automatically produced. We have avoided any approach that ignores the

hierarchy rule. For instance Dogan and Islamaj‟s approach [37] which produces a flat

ontology, since they disregard building inheritance their ontology looks relational. For

our approach we use the automatic element, which totally depends on information

obtained from the SQL source alone. This ensures the fairness of the evaluation process,

since all participatory approaches use the same source applied without user

interventions.

In this section the comparison between all the approaches participating in the evaluation

for the same input (SQL-script) with determined specification is given. We use the

example of the University database from Chapter 7. However, a Transcript table is

added to represent the relationship of (Many-To-Many) cardinality with additional

attribute Grade to University schema; as shown in Table 9.4. Thus our evaluation

example is deemed comprehensive, since it includes all possible relationship cases.

Chapter 9 Evaluation

203

 Table 9-4: Table Transcript Added to University Database

Table Primary key Foreign key

Transcript (st_id, c_id,grade) (st_id, c_id) st_id(student),c_id (course)

9.3.2 Abstract Syntax (Normative)

The ontologies have been produced in abstract syntax for all four approaches participant

in the evaluation phase, in addition to domain expert ontology. Figure 9.1 shows part of

the domain expert ontology in abstract syntax, and the full version ontologies are

demonstrated in Appendix C in exchange syntax.

Ontology(<urn:sql2owl>

Class(<Person> partial ...)

Class(<Department> partial ...)

Class(<Student > partial ...)

Class(<Staff > partial ...)

Class(<Dependent > partial ...)

Class(<Section > partial ...)

Class(<Course > partial ...)

Class(<Name > partial ...)

Class(<Address > partial ...)

Class(<Transcript > partial ...)

Class(<Post- Graduate> partial < Academic-Staff > ...)

Class(<Post- Graduate> partial <Graduate-STUDENT > ...)

Class(<Academic-Staff> partial <Staff> ...)

Class(<Graduate-STUDENT> partial <STUDENT> ...)

 Figure 9-1: Partial of University Domain Expert Ontology

Chapter 9 Evaluation

204

9.3.3 Experimental Evaluation

In this section the evaluation concentrates on different aspects of building ontology

structure, which can be obtained from SQL, including creation of classes, subclasses,

object and data type properties, as well as, properties domain and range; in addition to

determining the cardinality restriction. However; some axioms cannot be obtained

directly from SQL syntax, i.e. all Values From, Some Values From, Intersection of,

which need to be verified by a domain expert. This explains the reasoning behind

avoiding addressing them with all approaches; as we were able to reduce the range of

our discussion to OWL commands that can only be obtained by SQL or mentioned by

any one of participant approaches.

The domain expert, while converting the University database, decided to generate two

ontologies. The first one is restricted to database specification (Specific Domain

Ontology –SDO-); and the second one generalises some classes and enhances the

overall ontology (Enhanced Domain Ontology –EDO-). An example of enhancing class

is the Person class which is a generalised class representing the common elements

between Student and Staff classes. Another method of enhancing involves creating a

class for composite attributes. For instance the attributes Name and Address will have

their own classes. Indeed generalisation carried out by the domain expert is valid, since

this does not modify the originality of the database, although it cannot be obtained from

SQL-DDL; however, we have incorporated both SDO and EDO ontologies in the

evaluation process with all participant approaches.

9.3.3.1 Class Creation Evaluation

Figure 9.2 shows the class hierarchy of the enhanced and restricted domain expert

ontologies, in addition to the participant approaches and class hierarchy results.

Chapter 9 Evaluation

205

Complete Domain expert

ontology
Li et al.Tirmizi et al. &Astrova et al.

Restricted Domain expert

ontology &

SQL2OWL

Figure 9-2: The Different Hierarchy Results for the University Ontology Experiment

From Figure 9.2 we can conclude that no approach is able to predicate the generalised

class Person, since database attributes‟ names are often abbreviated and that causes

difficulty in deducing the meaning of those names. For instance the attribute St-Id from

the Student table differs from the attribute St-Id meaning Staff table and each one of

these contains a different and significant meaning; another example of misleading

attributes‟ names is that of the attribute SSN and the attribute National-Id which have

the same meaning with different names. Therefore there is no system for acquiring

generalisation between tables beyond user interference. In addition, the database

designer does not consider composite attribute cases when structuring the relational

model. They pick only its leaf components as attributes. Therefore there is no way to

capture composite attributes from SQL-DDL. Table 9.5 concludes the correction and

error results from applying class creation rules for each approach compared to restricted

domain expert ontology SDO.

 Table 9-5: Result of Class Creation Comparison

Approach criteria Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

C
la

ss

Fragmentation More class (staff-

details)

More class (staff-details) More class (staff-

details)

Hierarchy More sub- class

between staff, staff-

details

More sub- class between

staff , staff-details

More sub- class

between staff, staff-

details

Chapter 9 Evaluation

206

Approach criteria Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Multiple

inheritance

Multi-valued One more class

(Hobby)

One more class (Hobby) One more class

(Hobby)

Binary (M-M)

relationship

with additional

attribute

 One class missing

(Transcript)

Ternary and

higher

relationship

From the above table we can observe that all three approaches fail to override the

fragmentation problem. We can also see that all of them treat a multivalued table as a

class. According to Li et al.‟s approach, the fragmentation rule and hierarchy rule share

the same conditions, which in this situation requires user involvement to decide which

rule is applicable. If we choose a fragmentation rule as a default, the approach will

result in failure. This is because all three tables; Staff, Academic –Staff, and Staff-

Details will be assembled into one class, and Student, Graduate-Student, and Post-

Graduate tables will be represented by one class also. Thus, we decided to omit use of

the fragmentation rule and apply only the hierarchy rule in order to prevent user

intervention. A useful general rule, to which any approach should adhere to succeed, is

“no two rules are applicable for a relation at the same time”.

9.3.3.2 Object property creation evaluation

Table 9.6 provides explanatory comparison between object properties creation and the

criteria for evaluation approaches. Some approaches represent the foreign key with two

inverse object properties and others only employ one. Our evaluation is concerned only

with whether the foreign key is represented by an object property or not. The numbers

do not matter in this case. The only exception is for the Many-To-Many relationship

case, which should be represented by only two inverse object properties.

Chapter 9 Evaluation

207

From the table we can observe that Astrova, et al.‟s approach fails as a result of its

generalisation in terms of treating each unary relationship as either symmetric or

transitive; and as proven in Chapter 6 methods for obtaining such information cannot be

learned from SQL directly. This requires domain expert involvement. Additionally, this

approach did not succeed in defining the object property to represent the foreign key

part of n-ary relationship‟s primary key. Put another way; forcing the object property to

be InverseFunctional will ensure the domain and range will have a One-To-One

relationship. However the foreign key here only represents part of the primary key.

Therefore, the uniqueness exists only for whole primary key composite attributes which

cannot be obtained by OWL. So we can only restrict the primary key to be Not Null by

assigning it a cardinality of one. The approach of Li, et al. fails as it states that all

foreign keys will have minimum cardinality of one. As is obvious, some foreign keys

could have null value. Tirmizi, et al. describe an approach which contains contradictory

actions, specifying an object property to be Functional and at the same time imposing it

with cardinality of one. As is known, Functional means a minimum cardinality of zero

and a maximum cardinality of one.

 Table 9-6: Result of Object Property Creation Comparison

Approach

criteria

Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

O
b

je
ct

 P
ro

p
er

ti
es

Binary (M-

M)relationship

2 inverse OWL Object

Property

 2 inverse

OWL
Object

Property

 2 inverse OWL

Object
Property

 2 inverse

OWL Object
Property

Ternary and
higher

relationship

OWL Object Property

InverseFunctionalProperty

 OWL
Object

Property

minCrd=1,
maxCrd=1,

 OWL Object
Property

Functional

Property

OWL Object
Property,

Card =1

Unary

relationship

OWL Symmetric Property

OWL Transitive Property

 OWL

Object

Property

 OWL Object

Property

OWL
Cardinality of

1

OWL Object

Property

Functional
Property

Chapter 9 Evaluation

208

Approach

criteria

Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Default
foreign key

OWL Object Property

 OWL
Object

Property

minCrd=1

OWL Object
Property

 OWL Object
Property

O
b

je
ct

 P
ro

p
er

ti
es

 c
h

ar
ac

te
ri

st
ic

Not null minCrd=1, minCrd=1, Card =1, minCrd=1,

unique InverseFunctionalProperty maxCrd=1, Functional maxCrd=1,

Not null and

unique

minCrd=1,

InverseFunctionalProperty

 maxCrd=1,

minCrd=1,

 OWL Object

Property

OP Functional,
Card =1

Invers

OP(Functional)

 subclass

weak entity OWL Object Property

Card =1,

 OWL
Object

Property

Card =1,

 OWL Object
Property

 OWL Object
Property

Card =1,

FK PK (N-
ary)

OWL Object Property

InverseFunctionalProperty

minCard =1,

OWL
Object

Property

minCrd=1,
maxcrd=1,

 OWL Object
Property

OP1

Functional,
Card =1

OP2Functional

OWL Object
Property

Card =1,

All the corresponding object properties for all foreign keys in the University database

example are summarised in Table 9.7. Indeed; the foreign keys participating in

hierarchy or fragmentation or multivalued tables are not present in this table since they

are handled by another class rule.

 Table 9-7: Object Property of University Ontology

Object Domain Range
Database

restriction

Function

al

Invers

e

Card

=1
Symmetric Transitive

Has Name person Name Not null

Chapter 9 Evaluation

209

Object Domain Range
Database

restriction

Function

al

Invers

e

Card

=1
Symmetric Transitive

Has Address person Address Not null

Co-offer course course

manger staff staff

Has student

transcript
transcript student FK PK

Has course

transcript
transcript course FK PK

Has student

section
section student FK PK

Has ac-Staff

section
section ac-Staff FK PK

Has course

section
section course FK PK

Has staff department staff

Has course department course

Student belong

dept
Student

departmen

t

Student register Student course FK PK

Course register Course Student FK PK

Has dependent staff dependent

9.3.3.3 Datatype property creation evaluation

The attribute in the database can appear in one of the following shapes, single valued or

multivalued, simple or composite and the attribute can be accompanied by various

combinations of null and uniqueness restrictions. Table 9.8 illustrates the reaction

towards each attribute‟s criteria using a correct or false evaluation for participant

approaches.

Chapter 9 Evaluation

210

 Table 9-8: Result of Datatype Property Creation Comparison

Approach

criteria

Astrova, et al. LI ,et al. Tirmizi,

et al.

 SQL2OWL

D
at

at
y
p

e
P

ro
p

er
ti

es
 c

h
ar

ac
te

ri
st

ic

Not null minCrd=1, minCrd=1, Card =1, minCrd=1,

Unique InverseFunctionalProperty maxCrd=1, Functional maxCrd=1,

Not null and unique minCrd=1,

InverseFunctionalProperty

maxCrd=1,

minCrd=1,

 Functional Card =1

Primary key minCrd=1,

InverseFunctionalProperty

maxCrd=1,

minCrd=1,

 Functional Card =1,

Check in oneOf == oneOf oneOf

Check Has Value

== == ==

Primary key in two

tables

subclass unionOf Subclass Subclass

Multivalued Functional Functional Functional Non

functional

Default attribute Maxcar=1 == Functional Functional

Interestingly, Astrova et al.‟s approach is different from the other approaches in

defining some attribute characteristic. For instance it uses the functor (Inverse

Functional Property) to restrict datatype to UNIQUE or NOT NULL and UNIQUE; the

reason behind this is an approach targeting OWL-Full. Therefore their result cannot be

checked for inconsistency by OWL reasoner. Another problem arises in Astrova et al.‟s

approach in determining the result of the all check constraint. However we will prove

that there is no general rule for handling different methods for using check constraints.

 Proof:

Here the term check in SQL can occur in different cases.

 Case 1: Check has a value

Chapter 9 Evaluation

211

Check can have a specific value and it could be represented by a (hasValue) term in the

ontology structure. The example below shows an attribute and it is analogous OWL

segment.

Create TABLE Customer

type Varchar CHECK (type=„Software‟))

And the corresponding OWL will be:

DatatypeProperty(<type > Functional domain(<Customer>) range(hasValue

“Software”) range xsd: string))

 Case 2: Part of XML domain

The check constraint can limit the domain of the attribute with a condition. This is the

SQL sentences

Create TABLE Customer

(SID integer CHECK(SID > 0),

And the corresponding OWL will be:

DatatypeProperty(<SID> Functional domain(<Customer>) range(xsd:

positiveInteger))

 Case 3: Nested condition

In this case, the example below shows the usage of check in more than one condition.

Create TABLE Person

(P_Id int Not Null,

City varchar(255),

CONSTRAINT chk_Person CHECK (P_Id>0 AND City=‟Leicester‟))

Here there is no equivalent OWL segment. Consequently, we proved that there is no

way to limit the use of check with a specific rule. Table 9.9 demonstrates all data type

Chapter 9 Evaluation

212

attributes and their characteristics in both database and ontology sides for the University

example.

 Table 9-9: Datatype Property of University ontology

Datatype Domain Range

Datatype

Characteristic

Pk Not null Unique

Not

Null&

Unique

Dept_id department int Card=1

Dept Name department string minCard=1

Dept Phone department string Functional

n-id person int Card=1

Family name person string minCard=1

Mid-name person string Functional

First Name person string minCard=1

Staff-id staff int Card=1

DOB staff date Functional

Email staff string Functional

Ext phone staff string Functional

Home phone staff string Functional

Post held Academic- staff string One of

Specialty Academic- staff string Functional

Student id Student int Card=1

Sex Student string Functional

Module name Student string maxCard=1

Hobby Student string ===

Research area Graduate-Student string Functional

Project group Post- Graduate string Functional

Dependent id Dependent int Card=1

Chapter 9 Evaluation

213

Datatype Domain Range

Datatype

Characteristic

Pk Not null Unique

Not

Null&

Unique

Dependent name Dependent string minCard=1

Course id Course int Card=1

Course name Course string minCard=1

Course credit hour Course int Functional

Grade transcript int Functional

9.3.4 Score scheme evaluation

9.3.4.1 The Quality of Score scheme

The scoring scheme is a criterion that can be used to evaluate the correctness of the

ontology design. In the Scoring Scheme, each ontology context (classes, relationships

and datatype properties) will have a specific score.

We focus on the class and the object properties context in ontology structure with

considering the overall quality of the ontology. Each subject approach generates an

ontology with same specification source which can be measured in term of its classes

and relationships. The domain expert is responsible for developing the correct solution

for each case in order to assess the subjects‟ ontologies against a benchmark. The

Scoring Scheme is a simplified procedure that utilises the score mechanism and assesses

the ontology model quality. Based on the problem space description, the Scoring

Scheme therefore identifies the correct and suitable match for ontology constructs,

including classes and relationships. Although the quality of ontology model relies on

many different factors of modelling design, many researchers address that by adding

each single context score to the total score in order to reflect that the overall quality is

incorrect, since the total score does not consider the absence the construct validity.

However, we overcome this issue in our evaluation by applying the following criteria:

 The analysis of model quality is managed for both individual context, and the

connections between ontology contexts. The structure model of the ontology is

Chapter 9 Evaluation

214

built on these connections. Therefore connections between classes such as

subclass, and object properties are highly scored in our evaluation system. In

addition, our evaluation considers connections between datatype attributes and

their classes by scoring their domain. Therefore our evaluation handled both

individual context and design context.

 Before the matching process take place, each ontology output is validated using

OWL reasoner to remove any inconsistence structure.

 A single measure is not sufficient to measure the quality of a model; therefore

there is a need for a composite measure for different ontology contexts.

 We maintain the evaluation, using the OWL syntax model, which can obtain an

understanding of the ontology, to assist in choosing appropriate classes and

relationships. Moreover, applying OWL syntax during the evaluation process

helps us to identify correct or relevant class-relationship constructs easily.

9.3.4.2 Matching Process:

After generating target ontologies from each approach, the matching process starts

between the approaches‟ ontologies and the domain expert ontologies. Each ontology

model was compared to two domain ontologies. Therefore each approach output goes

through one matching with SDO and another matching with EDO to generate their

matching scores. During the matching process each approach output was examined to

determine the correct match with the domain ontology, and simultaneously the missing

or superfluous context will affect the total score. In other words for each context, We

endeavour to achieve similar pair matching, and the context which does not have a

corresponding match in the benchmark can be considered as superfluous.

 Each approach may have alternative solutions; therefore they have been tested, and the

nearest to best solutions have been selected in our experiments. This makes the

evaluation equal across all the approaches.

Chapter 9 Evaluation

215

9.3.4.3 Score Method

Each output ontology was measured according to the steps below:

 For every correct class or relationship (object property) included in the ontology,

subject to the evaluation, one point is awarded.

 For every correct datatype property included in the ontology, 0.5 point is

awarded.

 For every correct representation for a property (object or datatype) included in

the ontology, 0.25 point is awarded.

 If the approach fails to identify a class or a relationship including a subclass

relationship that should be part of the ontology, one point is subtracted from the

score.

 If the ontology structure contains superfluous classes or superfluous

relationships, a penalty of −0.5 points is assessed, whereas for a superfluous

datatype property the penalty will be −0.25 points.

 If the Approach identifies incorrect representation for a property, −0.25 point is

applied.

 See Tables 9.10 and 9.11 for awarded and subtracted points respectively.

 Table 9-10: Score Points Awarded

Facet
Correct

Points

Maximum

Possible

Points

Class +1 +1

Subclass +1 +1

Relationship (object property) +1 +1

Datatype property +0.5 +0.5

Property representation +0.25 +1.25

Chapter 9 Evaluation

216

 Table 9-11: Score Points Subtracted

Facet

Error Classification and Points Maximum

Possible

Points

Major Error

(−1.0 Points)

Medium Error

(−0.5 Points)

Minor Error

(−0.25 Points)

Class Class Missing Superfluous Class -1.5

Subclass Subclass Missing Superfluous Subclass -1.5

Relationship (object

property)

Relationship

Missing

Superfluous

Relationship

Incorrect

representation
-1.75

Datatype
Datatype

Missing

Incorrect

representation
-0.75

In the table we can observe that property is given to include both object and datatype.

The common representation of property includes domain, range, different type of

cardinality, and functional. However there are some representations that are applied

only to object property such as symmetric, transitive, inverse, and inverse functional

whereas for datatype property representation include the term “one of”. The common

elements between object and datatype properties are domain, and range. All these

criteria are countable for the purposes of our evaluation.

9.3.4.4 Data Analysis and Results from the Experiment

The analysis was obtained manually for each approach and two score outputs given for

each approach. The first result score is shown in Table 9.12 after the comparison occurs

between the subjects and the strict domain ontology.

 Table 9-12: Scoring Scheme compared to SDO

 Approach

Facet

Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Specific

domain

ontology

class 10.5 8.5 10.5 14 14

Object

property
11 11.5 11 14 14.5

Datatype

property
16.75 12.5 15 19.5 19.5

Total 38.25 32.5 36.5 47.5 48

Chapter 9 Evaluation

217

Figure 9.3 depicts the comparison of three criteria of the ontology including classes,

object properties and datatype properties and their characteristics. The figure shows that

SQL2OWL achieves the highest scores in all three fields of comparison. Thus proving

that our transformation system is better.

 Figure 9-3: subject approaches result compared to SDO

Figure 9.4 shows the comparison between the subjects and the enhanced domain

ontology, which contains extra classes and relationships. Since capturing these new

generalised concepts is impossible, without background knowledge, SQL2OWL cannot

discover the generalised class (Person) between Staff and Student classes. Although

SQL2OWL proved that it could obtain the best score when compared to the other

approaches, even with enhanced domain ontology.

 Figure 9-4: subject approaches result compared to EDO

0

20

40

60

80

100

120

class Object
property

Datatype
property

average

I.Astrova, et al.

M. LI ,et al.

S.H. Tirmizi, et al.

SQL2OWL

0
10
20
30
40
50
60
70
80
90

100

class Object
property

Datatype
property

avrage

I.Astrova, et al.

M. LI ,et al.

S.H. Tirmizi, et al.

SQL2OWL

Chapter 9 Evaluation

218

The exact score for each subject is shown in Table 9.13 and the full details of how these

scores were obtained for all contexts in University ontology is shown in tables in

Appendix D. This score scheme substantiates that SQL2OWL has a decent performance

in determining the structure ontology model, especially classes and relationships.

 Table 9-13: Scoring Scheme compared to EDO

 Approach

Facet
Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Enhanced

domain

ontology

class 10.5 8.5 10.5 14 19

Object

property
8.5 9 8.5 11.5 17.5

Datatype

property
15.75 11.5 14 18.5 19.5

Total 34.75 29 33 44 56

9.3.5 Precision, Recall, and F-measure

The three techniques are part of a compliance measure which is considered as standard

information retrieval metrics which can be used in evaluating the results of different

approaches in order to specify the degree of matching. Precision, recall and F-measure

are widely accepted and considered. Their role is to provide estimation values for the

quality matching process. It is necessary here to provide brief details about how these

measures were calculated.

9.3.5.1 Precision:

Precision is a function to measure the amount of correct matching discovered, versus

the total amount of mapping achieved by a particular approach. Given a reference

context R, the precision of some matching A is a function P : Λ × Λ → [0, 1] such that:

Chapter 9 Evaluation

219

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
number of correct matchings found

number of matchings retrieved by a certain approach
 × 100%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|A ∩ R|

|A|
 × 100%

Alternatively, it can be defined as follows:

where R is the set of context with correct reference matching and A is the set of all

matching retrieved by a particular approach. Gaining the value of 1 in the precision

function only indicates that all obtained contexts find a correct match; however this

does not imply that all the target contexts have a corresponding match. Therefore, in

order to balance the precision function, we suggest using the recall measure. Here Table

9.14 and Table 9.15 showed the precision in 100 percent of each subject approach

compared to SDO and EDO respectively.

 Table 9-14: Precision compared to SDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Class &subclass relationship 13/16 12/15 13/16 15/15

Object 13/14 13/14 13/14 13/13

Object domain 12/14 8/14 12/14 13/13

Object characteristic 10/18 12/13 7/11 13/13

Datatype 26/26 25/25 26/26 26/26

Datatype domain 25/26 24/26 25/26 26/26

Datatype characteristic 25/31 12/13 18/25 25/25

Precision SDO total 124/145 106/120 114/132 131/131

Precision SDO 85% 88% 86% 100%

Chapter 9 Evaluation

220

𝑅𝑒𝑐𝑎𝑙𝑙 =
number of correct matchings found

number of existing context

× 100%

𝑅𝑒𝑐𝑎𝑙𝑙 =
|R ∩ A|

|R|
 × 100%

 Table 9-15: Precision compared to EDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Class 13/16 12/16 13/16 14/14

Object 12/15 12/15 12/15 12/14

Object domain 12/15 8/15 12/15 12/14

Object characteristic 9/22 9/14 7/20 15/15

Datatype 26/26 25/25 26/26 26/26

Datatype domain 21/26 20/26 21/26 22/26

Datatype characteristic 12/25 24/25 18/25 25/25

Precision EDO 105/145 110/136 109/143 126/134

Average 72% 80% 76% 94%

9.3.5.2 Recall

Recall is a function to measure the number of correct discovered matchings, versus the

total correct context matchings and not limited to the matching obtained by the

approach. Given a reference context R, the recall of some matching A is a function R: Λ

× Λ → [0, 1] such that:

Alternatively, it can be defined as follows:

Chapter 9 Evaluation

221

The drawback of the recall function is that it does not provide any indication of a false

match number. So the high value reveals only the actual correct match found. Here

Table 9.16 and Table 9.17 show the recall value for each approach compared to SDO

and EDO respectively.

In most cases, the approach applied found all the contextual possibilities in the specific

domain ontology. However it omitted the contextual mapping of symmetric and

transitive for the Co-offer relationship and Astrova, et al.‟s approach to capture it. At

the same time Astrova, et al.‟s approach failed when applying their general symmetric

and transitive rules for defining the self relationship Manger. Due to this most

approaches avoid defining a general rule for self relationship characteristics. From

Table 9.16 we see both LI et al. and SQL2OWL have the best two recall numbers

amongst the other approaches. Table 9.17 shows SQL2OWL is dominant in all different

facets.

 Table 9-16: Recall compared to SDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Class &subclass relationship 13/15 12/15 13/15 15/15

Object 13/13 13/13 13/13 13/13

Object domain 13/13 8/13 13/13 13/13

Object characteristic 10/16 12/16 7/16 14/16

Datatype 26/26 25/26 26/26 26/26

Datatype domain 25/26 24/26 25/26 26/26

Datatype characteristic 25/25 12/25 18/25 25/25

Recall SDO total 125/134 106/134 115/134 132/134

Recall SDO 93% 97% 85% 98%

Chapter 9 Evaluation

222

F−measure =
2 × precision × recall

precision + recall
 × 100%

 Table 9-17: Recall compared to EDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Class 13/19 12/19 13/19 14/19

Object 12/14 12/14 12/14 12/14

Object domain 12/14 8/14 12/14 12/14

Object characteristic 9/15 9/15 7/15 15/15

Datatype 26/26 25/26 26/26 26/26

Datatype domain 21/26 20/26 21/26 22/26

Datatype characteristic 12/25 24/25 18/25 25/25

Recall RDO 105/139 110/139 109/139 126/139

Average 75% 79% 78% 90%

9.3.5.3 F-measure

The concept of the F-measure function is to provide an efficient single measure that

represents the combination of precision and recall. It is also utilised in measuring

approach performance:

The result of the F-measure and the other measures were demonstrated in Table 9.18 for

all four approaches, and the average result was compared to specific domain ontology

for all three measures.

Chapter 9 Evaluation

223

 Table 9-18: F-measure compared to SDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Precision SDO 85 88 86 100

Recall SDO 93 97 85 98

F-measure SDO 88 92 85 99

The outcomes shown in Table 9.19 also reveal that there are considerable differences

between the measures for each approach, compared with SQL2OWL.

 Table 9-19: F-measure compared to EDO

Approach Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Precision EDO 72 80 76 94

recall EDO 75 79 78 90

F-measure EDO 73 80 77 92

Figure 9.5 depicts all three measures including Precision, Recall, and F-measure for

subject approaches where the benchmark is SDO; whereas Figure 9.6 used EDO as the

benchmark. The evaluation example was created to test each subject to see if it had

overall model quality. It also shows that each context has a significant influence on its

model.

 Figure 9-5: result of the approaches compared to SDO

75

80

85

90

95

100

105

I.Astrova, et al. M. LI ,et al. S.H. Tirmizi, et
al.

SQL2OWL

Precision

recall

F-measure

Chapter 9 Evaluation

224

 Figure 9-6: result of the approaches compared to EDO

9.4 Quality of Transformation

The last section illustrated that our transformation system is total and comprehensive;

since its rules include all the possible cases of relations. This final test will exploit

another technique to test the quality of the system rules. To do this a reverse

transformation from ontology to database is done. If the reverse transformation can be

guaranteed to reproduce the original database source then the system is correct.

Therefore the inverse database must include all original components extracted by

analysing tables, attributes, relationships, and constraints. Here we assume only the

information maintained by the transformation process can be reproduced. A trigger is an

example of non transformed information.

Indeed any transformation process includes some loss of semantic. It is expected that as

a result of this rounded transformation not all information will be preserved. For

instance the fragmentation tables convert to one class and after reverse transformation

all the information will be appear in one table. We do not consider this to be an error as

this is the right representation for a single entity. Another problem relates to specifying

the primary key of a table. If the table has an alternative key, which can be characterised

by UNIQUE and NOT NULL constraints, then the system would not distinguish

0

10

20

30

40

50

60

70

80

90

100

I.Astrova, et al. M. LI ,et al. S.H. Tirmizi, et
al.

SQL2OWL

Precision

recall

F-measure

Chapter 9 Evaluation

225

between a primary key and an alternative key. This is because both datatype properties

will have a cardinality of one constraint.

There is an algorithm suggested by [63] for transforming from ontology to database.

However we cannot utilise it since the goal of our reverse transformation is different

from the target of this algorithm.

9.4.1 Reverse Transformation Algorithm:

Generally:

- All classes convert to tables.

This step includes all classes corresponding to strong entity, weak entity, n-ray

relationship and Many-To-Many with additional attributes relationship.

- Both the two inverse object properties in two different classes will form a table.

And this table will represent the Many-To-Many relationship case.

- If a datatype without cardinality constraints that is not Functional creates a table

for a multivalued attribute and makes it part of the primary key, this will also

create a link between a multivalued table and the original table by making the

primary key of the original table part of this new table‟s primary key. And at the

same time make it would become a foreign key.

- All datatype with a minimum cardinality of one is assigned the corresponding

attribute NOT NULL.

- All datatype with a maximum cardinality of one is assigned the corresponding

attribute UNIQUE.

- All datatype with a cardinality of one assigns the corresponding attribute

primary key. If there is more than one in the original class pick one as a primary

key and the assign the others as NOT NULL and UNIQUE.

- All object properties with cardinality = 1 generate a foreign key that is part of

the primary key for the corresponding table.

- If object property has a minimum cardinality of one assign the corresponding

foreign key NOT NULL.

- If the object property has maximum cardinality of one assign the corresponding

foreign key UNIQUE.

Chapter 9 Evaluation

226

- For each subclass generate a foreign key to act as a primary key in the child

table, referencing the primary key of the parent table.

9.4.2 The Lexical Overlap Measure

The idea of this test was mentioned by [39] theoretically; however, the approach does

not produce any outcome for this measure to compare it with our results, since it does

not apply it. As has been stated, not all relational database model constructs can be

transformed to an ontological model. Therefore we need to see how much semantic loss

occurs during the transformation process.

In a formal way,

- Let T1 be the transformation of a relational database R1 to ontology O.

- Let T2 be the reverse transformation of the ontology O to an inverse relational

database R2.

That is, T1(R1) O T2(O)R2

The transformation T1 could be considered as reversible if it assures the equivalence

between the two relational databases R1, R2. That is, R2 R1.

If a lexical overlap measure [54] is denoted as L(R1, R2), it produces a value of 1, then

we can say R1 and R2 are equivalent.

That is, L(R1,R2) = 1 R2 R1.

The lexical overlap measure is calculated as follows: L(R1, R2) = |L1 L2| / |L1|

Where

- L1 is a set of all constructs in the relational database R1 and,

- L2 is a set of all constructs in the relational database R2.

Table 9.20 shows original database constructs and their matching ontology and the

inverse database.

From the table:

- L1 =56, L2 = 52

- L (R1, R2) = 52/56=0.92

Chapter 9 Evaluation

227

The missing Table includes Staff-details and its primary key foreign key is St-Id. The

change of the domain for the attributes of staff-details table is not counted, since we

consider the fragmentation tables to originally represent one entity; in addition no

attribute is missing. Attributes N-Id or Staff-Id can represent the primary key of the

Staff table after reverse transformation. Here the system picks one of them randomly.

 Table 9-20 : Original Database and Inverse Database Constructs

Database context No Ontology context No Inverse Database No

Table for strong entity +

Fragmentation table

6+1 Class 6 Table 6

Table Weak Entity 1 Class 1 Table 1

Table for M:M relationship

with two FK

1 Object property 2 Table +2 FK 1

Table for M:M relationship

with attribute

1 Class 1 Table+2 FK 1

Table for N-ary relationship 1 Class 1 Table +3 FK 1

Foreign key (subclassof) 4 Sub class of 4 Sub class of 4

Foreign key attributes (not

part

primary key)

6 Object property 6 Foreign key

Primary key attribute (not

foreign key)

6 Datatype with cardinality of

one

6 Primary key 6

Multi-valued attribute 1 Datatype nil Multi-valued Table 1

Non key not null 5 Datatype with mincard =1 5 Non key not null 5

Non key unique 1 Datatype with maxcard=1 1 Non key unique 1

Check in 1 One of 1 Check in 1

Non key 12 Functional 12 Non key 12

Non key not null and unique 1 Datatype with cardinality of

one

1 Non key not null and

unique

1

Foreign key attributes (not

part

primary key)

6 Object property 6 Foreign key 6

Chapter 9 Evaluation

228

9.5 Completeness of Transformation

The idea of completeness for our transformation rules is based on specifying all the

possible range of relations described by the relational model. In addition to that our

rules have to cover different types of relationship that exist between these relations. Our

system can successfully identify all types of relations and relationships; therefore the

transformation rule can then partition those relations such that each relation

accommodates precisely one rule which implies that no relation satisfies more than one

rule, nor is a relation not applying any rule from the class creation rules. This would

ensure the completeness of our system.

The basic idea of translating a relation to a class is trivial, without considering the

challenges of the variety of relationship types for any transformation system. A

relationship based on a cardinality ratio appears as One-To-One, One-To-Many or

Many-To-Many. Since each relation might have more than one relationship; there are

multiple foreign keys in SQL schema, which makes relations appear somehow

complicated. The mutual action between the primary keys and foreign keys of relations

provides clues to creating classes and relationships as well as enriching relationships

with their characteristics.

Hypothesis:

The space of relations described in the relational model using key combinations include

the interaction of primary key and references between relations represented by the

foreign key which can be classified in 10 disjoint situations.

Proof:

The proof contains applying a closure operation to relation space and enumerated

syntactic to the possible cases.

First, the space of different possibilities is partitioned according to the number of

foreign keys contained in relations. This means that each relation will be examined and

Chapter 9 Evaluation

229

E’ E

E PK+T | C-PK +T

E S-FK

E N-FK

T S-FK | N-FK

then categorised into the space of relations in agreement with its foreign key number.

Figure 9.7 will provide a notion of various possibilities for relation space.

 Preface:

The primary key can have one or more attributes (composite key). Also the foreign key

can have one or more attributes. The database relation has only one primary key and any

number of foreign keys.

Predicates:

 PK: is a single attribute primary key of a relation.

 C-PK: is a composite primary key of a relation C-PK can contain x amount of

attributes where x 2.

 S-FK: is a single foreign key for a relation.

 N-FK: a relation with at least two foreign keys.

Notice that there is a distinction between single foreign key and foreign key with single

attribute. We consider the number of foreign keys in a relation, and the number of

attributes does not matter. However this is not applicable to the primary key since each

table has only one primary key.

Each relation only has one primary key. This primary key does not necessarily represent

only one attribute since the primary key can be a composite attribute.

 Initially we can start with:

Chapter 9 Evaluation

230

The entity schema contains many entities, and each entity can be represented by a table

with one primary key (single or composite). In addition the entity can have one single

foreign key or N number of foreign keys.

Then by applying the closure operation of the LR(0) item set, the following elements

are obtained:

1. PK + S-FK: a relation has a Primary Key and only one Foreign Key

a) PK S-FK = 0: the Foreign Key and the Primary Key do not share any

attributes.

b) PK = S-FK: the Foreign Key is the Primary Key

2. PK + N-FK: a relation has a Primary Key and at least two or more Foreign Keys

a) PK N-FK = 0: the Foreign Key and the Primary Key do not share any

attributes.

b) PK N-FK: one of the Foreign Keys is also the Primary Key.

3. C-PK + S-FK: a relation has a Composite Primary Key and only one Foreign Key.

a) C-PK S-FK = 0: the Foreign Key and the Primary Key do not share any

attributes.

b) S-FK C-PK: the Foreign Key is part of the Primary Key for weak entity

and multivalued.

4. C-PK + N-FK: a relation has a Composite Primary Key and at least two or more

Foreign Keys.

a) C-PK N-FK = 0: all the Foreign Keys and the Primary Key do not share

any attributes.

b) N-FK C-PK: all the Foreign Keys are part of the Primary Key.

c) C-PK N-FK ≠ 0, C-PK – N-FK ≠ 0, N-FK – C-PK ≠ 0: The Foreign

Keys and Primary Key share common attributes.

Chapter 9 Evaluation

231

Sequeda‟s report [53] also proved that the combination between a primary and foreign

key can have ten cases above. However it fails when applying these cases because the

problem solving process is based on a false generalisation. The approach for any

relation assumes there are more than two foreign keys representing n-ary relationship.

Also the approach does not cover the entire spread of relations since the case of the

single foreign key part of a composite primary key covers only a weak entity table and

does not cover the multivalued attribute relation.

Figure 9.7 shows all ten possible combinations of primary key and foreign keys. The

eleventh case represents a relation without foreign keys. All rule sets must apply

property characteristics, which can be obtained from SQL aspects. For attributes and

foreign keys characteristics, we apply rule 16 and rule 17 respectively. The space of the

relation in Figure 9.7 utilises the assumption of the existence of complete and correct

specification for fragmentation. However if we want to use the record count technique

then the pair rule (1, 2) will be replaced by the pair rule (6, 7) in order to deal with the

fragmentation case. The pair rule (8, 5) substitutes the rule (3, 5) for the hierarchy rule

case; the figure includes the OR circle which means one of the two cases is true based

upon another relation specification. Therefore we have to apply more conditions in

order to specify if the case is designed for hierarchy or fragmentation. Therefore the

solution is based on the referenced relation interaction. In addition to the condition FKi

= PKi the differentiation rules will have the following conditions:

 Fragmentation condition: FKj=PKj and FKj refer to PKi and FKi refer to PKj.

 Hierarchy condition: we have two cases

o If FKj≠PKj and FKj refer to PKi then the relation of PKi is master and the

other one is subclass from it.

o If FKj=PKj, but FKj do not refer PKi then this case of a multiple

inheritance.

It is also evident that mainly rule sets 11, 12 are used, since they represent the class and

datatype default rules. The cases, such as tables from strong entity, weak entity, and n-

ary relationship are covered by these two rules. The rules also apply both hierarchy and

fragmentation for any combination of foreign keys.

http://thesaurus.com/browse/substitute

Chapter 9 Evaluation

232

Space of

relations

0 FKs

PK Ù S-FK

C-PK Ù S-FK

PK S-FK=0

Rule set 11,12

C-PK S-FK=0

Rule set 11,12,15

Rule set

11,12(14 and/or 15)

Rule set 9,10

 S-FK C-PK

All Attrs in C-PK

Has Attrs non C-

PK

PK Ù N-FK Rule set

1,2 (14 and/or 15)

Rule set

3,5 (14 and/or 15)

PK = S-FK

Rule set

11,12(14 and/or 15)

Rule set 3,5

Rule set 1,2

OR

PK N-FK=0

 PK N-FK OR

C-PK Ù N-FK

Rule set

1,2 (14 and/or 15)

Rule set

3,5 (14 and/or 15)

C-PK N-FK=0

 C- PK N-FK OR

Rule set 11,12,15

Rule set 13

 C-PK= N-FK

N= 2 Ù

All Attrs in C-PK

Otherwise

N-FK C- PK Rule set 11,12,15

Rule set

11,12(14 and/or 15)

Rule set

11,12(14 and/or 15)

 Figure 9-7 : The Space of Relation Tree

9.6 Other Measure of Success

For the success of our system we consider the following criteria.

 Formality;

 Accuracy and Correctness;

 Flexibility and Functionality;

 Scalability and efficiency.

Chapter 9 Evaluation

233

The following section briefly describes how our system realises these criteria.

9.6.1 Formality

The use of formality helps us to clarify our system from ambiguous transformation

rules. We use the well known notation of IF condition THEN action. Since this notation

is easy to comprehend it makes implementation easier. Any transformation rules that

incorporate lack of formality might confuse the reader, and create an uncertain system.

The only two approaches used to complete a formal notation are Stojanovic et al. [36],

and Tirmizi et al. [45]. The former one is not capable of capturing richer semantics,

since its target is RDFS; whereas the latter one used FOL expression which is easy to

implement in Datalog interpreters or Prolog environment. However, it is not simple to

comprehend the nested complex rules and therefore it is not simple to modify. As for

other approaches they either use English descriptive rules [39, and 55] or they switch

between some formal notation and the English language [41, and 43].

9.6.2 Accuracy and Correctness

To test the system‟s result against accuracy and correctness criteria we followed the

steps below:

 A comparison between the correct representation of ontology and the human

analysis to check the measure of accuracy.

 An inverse transformation of the outcome ontology to database schema to check

the measure of correctness.

 Validate the result ontology using the reasoner to catch any inconstancy.

And all these steps accomplished by the techniques of Score scheme, Precision, Recall,

F-measure, and the Lexical Overlap measure during the evaluation process.

9.6.3 Flexibility and Functionality

Another distinguished feature of our system is the method for adjusting the

fragmentation rule applied based on the information given.

Chapter 9 Evaluation

234

There are three options for applying the fragmentation rule as given below:

a. For a complete and correct specification database, where each table refers to the

other the system we use a normal method.

b. If option one is not applicable then the system uses the count method if the

meta-data for the database is available.

c. Treat fragmentation as a hierarchy for other cases.

Our system applies these three options in a sequence to search for tables referring to

each other if not available; then uses a count method to calculate the record of each

table participate in fragmentation rule. If the first option is not applicable and data is not

offered then a One-To-One relationship is given, sharing the same primary key as the

hierarchy; thus, proving our system‟s functionality, since it deals with a well designed

database in the first instance. Whereas a badly-designed system would be managed

according to the other two options. For flexibility criterion our system is domain

independent, which means it will accept any type of relational database as input then

build the corresponding ontology.

9.6.4 Efficiency and Scalability

One aspect that enhances the efficiency of our rules is database normalisation. This step

is incorporated in the implementation process and can reduce the redundancy of the

database sources before applying the transformation rules.

In addition, the order of our rules is significant. Following this order in applying the

approach rules will enhance our tool performance and reduce the time required for

generating the target ontology, by narrowing the set of tables applied for each rule,

especially for large scale databases. Therefore the procedure for applying the

transformation rules contains two steps in order:

a. Identifying tables sharing the same primary key. Then other tables that do not

satisfy this condition will be eliminated from fragmentation and hierarchy rules.

After that the system applies the fragmentation rule if it is applicable, otherwise the

hierarchy rule is applied.

Chapter 9 Evaluation

235

b. Identifying the two cases of tables that do not form classes then using the rest to

convert to classes.

i. Identifying tables of a Many-To-Many relationship without additional

attributes which cannot be taken from a class.

ii. Identifying tables with part of their primary key referring to other tables.

Such weak entity tables and multivalued tables will be nominated and other

tables will be eliminated. Then the tool applies a multivalued attribute

condition.

The execution times vary from one database type to another. Here is the combination of

database size and the rate of changes the time is based on:

 Small size database with frequent data change;

 Large scale database with frequently data change;

 Small size database with a few updates;

 Large scale database with a few updates.

The last two cases would not cause any problems. However, to solve the first two cases

there are two different techniques for producing the final resultant ontology. The first

technique involves transforming the database schema, while the data still resides in its

original database. In this case the transformation time is counted in milliseconds.

However querying the database through ontology might take time, since it translates a

query from SPARQL to SQL Query language in a database; then the system will

generate the answer instantly as needed. In this process the time factor is significant,

although this process allows the content of databases to be accessed with acceptable

response times as long as it is not exponential [60]. In another technique the system is

generating an OWL ontology and populating the ontology with data instances in order

to produce a knowledge base. In this process all the transformation is done off-line, here

the time factor is not significant. For updates the system needs to reproduce its

knowledge base periodically. Therefore time would not be considered as an obstacle.

This insures the scalability of the system; therefore this technique has been applied to

our system. Both techniques utilise a powerful database for storing large scale data. In

fact there are two factors that might affect our system scalability:

Chapter 9 Evaluation

236

 The number of databases participating in the approach simultaneously.

 The size of the database.

Since our approach processes only one database at a time, and the transformation is

done off line, both factors would not affect our system. Therefore our system can be

considered scalable.

There are many other factors that have been taken into consideration when testing the

efficiency of our approach:

- Number of tables.

- Number of subsumption (IS-A).

- Number of mutual property (relationship).

- Data size (number of instance in all tables).

The number of tables in the database is not relevant for measuring the ability of the

system‟s efficiency. However the number of relationships is the more effective factor,

since all the rules have to check the relationship between tables. Indeed if the number of

tables increases the number of relationships increases too. Additionally the type of the

relationships is an important factor here. For example if the number of (one–to–one

relationships is big then the time will increase, since we have proposed three different

solutions regarding whether the database is well defined or not, although our system

took an acceptable time to manage large scale database.

The system has been tested using different databases from different domains to confirm

both its efficiency and the scalability. The sample contained databases from the ER

conceptual model, which do not have class inheritance; meaning that relational design

occurred and not hierarchal design. Another sample includes databases from an EER

conceptual model.

9.7 Summary

The evaluation in this chapter goes through many steps. First of all we held a

comparative study between our approach and other similar approaches. This comparison

based on showing the ontology elements production in each approach. Also it showed

Chapter 9 Evaluation

237

the uncovered cases from the database model in each approach or the fault solution

based on wrong analysis for the specification of some database cases. Then the

weighted criteria evaluation technique is utilised in order to show that not only the

ontology elements are the most affect criteria in the transformation system. However

there are other criteria such as availability which means that the semantics can be

obtained easily from the source or not. Also the automation of the approach can affect

system, since manual transformation system would be considered as building ontology

from scratch. The final criterion that gets weighted is the formality of the approach.

Another evaluation technique is score method that showed the superiority of our

approach compared to other extant approaches. We utilise the compliance measures

such as precision, recall and F-measure in order to examine the quality of the

transformation result. Another technique is applied in order to ensure the quality of the

transformation system is the reverse transformation algorithm .This chapter also proved

the notion of completeness of our transformation system formally. Moreover this

chapter showed some criteria that our transformation system satisfied flexibility,

scalability and accuracy.

Chapter 10 Conclusion

238

10 CHAPTER TEN: CONCLUSION

AND FUTURE WORK

Objectives

 Present the thesis conclusion.

 Show the limitations of the approach.

 Highlight areas for future research.

10.1 Introduction

This chapter provides a brief summary of our work and concludes the thesis, addressing

the limitations of the approach and discussing potential directions for further

development.

10.2 Thesis summary

Database interoperability is the ultimate target that our research tried to solve. This

considers allowing different databases to be integrated in a semantic method. To this

aim, the thesis presented a framework explaining how databases can be transformed into

ontologies. More specifically, it built a semi-automatic generic approach that provides a

transformation system from a relational database to an ontology with minimal human

effort. The significant contribution of this thesis has therefore been to demonstrate a

novel stratified methodology with multi-database source mechanism that can

significantly produce the ontology with the most database characteristics.

We have contributed the fundamental innovations in developing the solution to database

integration are through the use of semantic web methodologies. Our proposed solution

is to rely on information from the database relational model tables, primary and foreign

key structure and the extended relationship model (cardinality restrictions, IS-A

hierarchies). Theoretically our approach infers all, and only, the semantics implied by

the table‟s schema based on the EER model.

Chapter 10 Conclusion

239

Contrary to the legacy solutions for database integration such as database warehouses,

federated databases focus more on physical mapping between databases, neglecting the

semantic issues. However, in our approach we have analysed database schema in order

to acquire explicit semantics that are necessary in constructing a transformation system,

and we utilised ontology capabilities in improving semantic database integration.

10.2.1 Main Contributions

This thesis discusses many major contributions:

 Constructing a transformation system (relational model to ontological model).

 Creating a transformation system (conceptual database model to ontological model).

 Building a system to integrate both logical and conceptual database models to

produce ontology.

 Implementing an automatic tool to transform SQL-DDL to OWL ontology.

Other secondary contributions:

- An intensive review of database models is provided, including definitions and

structures.

- A comprehensive overview of ontological languages - their importance,

structure and capabilities – is given.

- A comparative analysis of database models in order to show the limitations of

each model.

- A comprehensive review of existing database transformation approaches.

Several existing transformation approaches were analysed and compared in

order to fully understand their strengths and weaknesses, and to create a new

improved approach that is successful in both utilising the strengths of the

approaches and overcoming their weaknesses. This analysis includes both

theoretical work and existing practical transformation approaches.

- A comparison of database models with the ontological model, in order to

discover the disparities in the concepts and aims of the two models in order to

improve our transformation rules.

- Improvement of our transformation rules system through:

Chapter 10 Conclusion

240

 Formal methods eliminating the possibility of syntactic and semantic

ambiguities.

 The use of IF THEN forms in our rules, allowing the reader to easily

comprehend the rules and enabling the designer to implement and modify

the rules more easily.

 The discovery of common mistakes in the analyses of relational design.

 Completeness with respect to all possible relations and relationships.

 Implementation of all components of our system based on a relational

source.

 Definition of our transformation rules in a way that ensures suitability

between SQL-DDL from the database side, and OWL-DL from the or

ontological side.

- Illustration of the application of our system to a case study.

- Achievement of high-quality, efficient results throughout the application of the

system to real-world scenarios.

- Production of an OWL-DL ontology which promises decidability in the

reasoning process.

- Substantiation with evidence of counter-examples that many approaches omit,

mapping the SQL primitives to their corresponding OWL terms.

- As many approaches base their rules on enumerating examples their results may

have produced incorrect rules, using special cases from a particular domain

which cannot be generalised to comprise all possible cases. We therefore avoid

the influence of domain-specific examples by building our rules on formal proof

for all possible cases of both relations and relationships.

- Our rules are not domain-specific, and can therefore work with any relational

schema.

- The capture of the semantics available in the relational model (SQL-DDL), and

the capture of the missing semantics from the EER model are our rule

contribution.

- The involvement of domain experts is required in capturing the semantics of the

EER model that cannot be obtained from the relational model. Only two cases

Chapter 10 Conclusion

241

of relationship identification need database designer participation; in the case of

a well-designed database there is no need for domain expert intervention.

- Database integration is significant; to attain this objective we enrich our system

with formal, scalable, functional and accurate criteria in order to construct a vital

ontology.

- The consideration by our system of more complex constraints in a database in

order to determine the inheritance and multiple-inheritance relationships among

classes.

10.3 Evaluation of our approach

The main obstacle to evaluating our result was the absence of a benchmark, since there

is no optimal model for any problem space, and there is no gold design for both

database and ontology. Specification is the important factor that shapes database design,

whereas ontology design tends to be more abstract; the best solution was therefore to

create an ontology manually through a domain expert and use it as benchmark.

Consequently we provided a domain expert with a relational database schema (SQL-

DDL) and database specification or a conceptual mode of database, enabling him to

generate an OWL ontology manually. A domain ontology developed two suggested

benchmark ontologies; the first was an optimal solution considering high-level

modelling; e.g. generalisation and multiple-inheritance, whereas the second suggested

ontology was restricted to database specification. The two ontologies were subsequently

developed by a domain expert and used as benchmarks for the evaluation process; the

comparison then took place between the outcome of our system and the results of other

approaches.

We proved that our transformation system is complete, as it takes into consideration all

the possible interaction combinations between primary and foreign keys in our rules.

We additionally analysed the loss of semantics caused by the transformation, and used

reverse transformation, which transforms the resulting ontology back to the relational

database in order to see if the transformation is reversible or not. If reverse

transformation yields the original relational database then we can consider the system to

be accurate. Indeed, some of the semantics captured in a relational database will

Chapter 10 Conclusion

242

necessarily be lost once the transformation is applied, however the percentage of lost

semantics is trivial and does not require exploration. We therefore prove that our system

is correct, as it is total and injective.

10.4 Criteria for achieving success

There are many criteria that prove our approach‟s success. Firstly, our approach is

domain independent, therefore, any relational database can utilise our system to be

published in Semantic Web. Secondly, our approach‟s rules produce a generic ontology

design not restricted by a specific language. Thirdly, our approach is maintained to be

scalable therefore the size of database would not affect our approach‟s performance.

Fourthly, our approach contains a notion of completeness since it is built upon all the

possible cases of the database model. Finally, the validation system of our approach will

guarantee the correctness.

10.5 Limitations

The limitations of this thesis can be divided into two groups; the first based on the

limitation of the sources' capability and the second being the general limitations of the

approach.

The initial deficiencies of our approach stemmed from the disparities between database

modelling and ontological modelling, as an ontology is semantically richer than a

database. One of the disparities considered to be a major obstacle to our rules was the

fact that databases operate in a 'closed world' scenario, whereas ontologies are usually

based on an 'open world' assumption. Another crucial factor limiting the resulting

ontology is the difference in the expressive power of the two languages used in SQL-

DDL (database) and OWL (ontology) in terms of their capabilities [45]. In the

evaluation chapter, we therefore observed the superiority of the manual ontology

produced by the domain expert compared to the ontologies produced by automatic

transformation systems. Another limitation may arise due to the original database

design, meaning the database is built upon a pure relational model (ER) linked with the

inheritance concept. Indeed this kind of database design will generate a database-

Chapter 10 Conclusion

243

wearing ontological template. We therefore concede that the quality of ontologies built

from the transformation system would not successfully match that of manual ones.

However it takes too long and requires more effort to create an ontology from scratch,

compared to the time needed to improve the ontology produced by our system.

The general limitations of the research are as follows:

 The focus of this study was predominantly on relational database applications,

which are prone to schema modifications.

 The success of the transformation system is based on the amount of semantics

obtained from database sources which in turn is associated with the age of the

database and the experience of its developers.

 For the purposes of this study, the system is concerned with and restricted to

SQL-DDL primitives owing to the vendor-based specifications of many SQL

statements.

10.6 Future work

The following list highlights areas of research that are worth pursuing:

i. We would like to reduce human intervention in our transformation system to the

minimal unavoidable cases; this can be achieved by identifying the cases that

can be converted from semi-automatic to automatic without compromising the

quality of the system's result.

ii. We also plan to extend the automatic transformation system to include de-

normalised databases by capturing functional dependencies from database

content.

iii. We plan to use Word.net in the enhancement process, which provides a rich and

suitable nomenclature for classes and properties in order to utilise them in both

string and linguistic matching within the ontological alignment methodology.

iv. We would like to modify the system to include a wrapper system, which is

capable of rationalising the schema modification and propagating changes.

Chapter 10 Conclusion

244

v. This research would involve working across non-database sources, e.g. HTML,

XML etc.

vi. Making further research in ontology alignment and ontology mapping techniques

in order to integrate them to our system.

There are interesting challenges with advanced SQL topics, in addition to SQL-DDL

primitives, which are worth future investigation. These include:

i. Converting SQL queries from the database side to SPARQL from the

ontology side.

ii. Using SWRL to represent database triggers and embedded procedures

(PL/SQL).

References

245

REFERENCES

 1- C. J. Date, “An introduction to database systems”. Boston, MA; London,

Pearson/Addison-Wesley, 2004.

2- R. N. Elmasri, and B. Shamkant, “Fundamentals of database systems”, Boston, MA

London, Addison Wesley, 2007.

3- H. Garcia-Molina, J. D. Ullman, and J.Widom, “Database Systems”, Upper Saddle

River, N.J.: Pearson Prentice Hall, 2009.

4- A. K. Silberschatz, F.Henry, and S. Sudarshan, “Database system concepts”, New

York, London, McGraw-Hill, 2006

5- W. Hu, and Y. Qu, “Discovering Simple Mappings Between Relational Database

Schemas and Ontologies”, Springer-Verlag Berlin Heidelberg, 2007,pp. 225–238.

6- S. Upadhyaya, and P.Kumar, “ERONTO: A Tool for Extracting Ontologies from

Extended E/R Diagrams”, SAC‟05 ACM Symposium on Applied Computing, Santa Fe,

New Mexico, USA, March 2005.

7- G. Antoniou, and F.V. Harmelen, "Web Ontology Language: OWL", Presented at

Handbook on Ontologies, pp.67-92, 2004.

8- T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web", Scientific Am, May

pp. 34–43, 2001.

9- D. Beckett, "The Design and Implementation of the Redland RDF Application

Framework", In Proceedings of 10th International World Wide Web Conference, Hong

Kong, May 2000.

References

246

10- T. Bray, J. Paoli, and C.M. Sperberg-McQueen, "Extensible Markup Language

(XML)", Presented at World Wide Web Journal, pp.27-66, 1997.

11- D. Brickley, and R. Guha, "Resource Description Framework (RDF) Schema

specification", 2000. http://www.w3.org/TR/RDF-schema.

12- O. Corcho, and A. Gómez-Pérez, "Solving Integration Problems of E-Commerce

Standards and Initiatives through Ontological Mappings", In Proceedings of IJCAI

2001 Workshop on E-Business & the Intelligent Web, Seattle, USA, 2001.

13- M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L.

McGuinness, P. F. Patel-Schneider, and L. A. Stein, "OWL Web Ontology Language 1.0

Reference", http://www.w3.org/TR/owl-ref/, 2002.

14- D. Dou, D. McDermott, and P. Qi, "Ontology Translation on the Semantic Web",

Presented at on Data Semantics Journal, 3360:35–57, 2005.

15- D. Fensel, F.V. Harmelen, I. Horrocks, D.L. McGuinness, and P.F. Patel-Schneider,

"OIL: An Ontology Infrastructure for the Semantic Web", Presented at IEEE Intelligent

Systems, pp.38-45,2001.

16- D. Fensel, "Ontologies: Silver Bullet for Knowledge Management and Electronic

Commerce", Springer, 2001.

17- F. van Harmelen, P.F. Patel-Schneider, and I. Horrocks (Editors), "Reference

Description of the DAML+OIL Ontology Markup Language",

http://www.daml.org/2000/12/reference.html, 2000.

18- O. Gotoh, "An Improved Algorithm for Matching Biological Sequences", Presented

at Journal of Molecular Biology, 162:705-708, 1982.

19- O. Lassila, and R. Swick, "Resource Description Framework (RDF) model and

syntax specification", 1999. http://www.w3.org/TR/REC-rdf-syntax.

References

247

20- M. Li, and M. Baker, "The Grid: Core Technologies", John Willey & Sons England

, 2005.

21- A. Maedche, and S. Staab, "Ontology Learning for the Semantic Web", Presented at

IEEE Intelligent Systems, pp.72-79, 2001.

22- B. McBride, S. Staab, and R. Studer (eds.), "The Resource Description Framework

(RDF) and its Vocabulary Description Language RDFS, in: The Handbook on

Ontologies in Information Systems", Springer-Verlag, 2003.

23- D.L. McGuinness, and F. van Harmelen, "OWL Web Ontology Language

Overview", Technical report, W3C, http://www.w3.org/TR/owl-features/, February

2004.

24- D.L. McGuinness, R. Fikes, L.A. Stein, and J.A. Hendler, "DAML-ONT: An

Ontology Language for the Semantic Web", In Proceedings of Spinning the Semantic

Web, pp.65-93, 2003.

25- G.A. Miller, ―WordNet: A Lexical Database for English", presented at Commun.

ACM, pp.39-41, 1995.

26- H. Mihoubi, A. Simonet, and M. Simonet, "An Ontology Driven Approach to

Ontology Translation", In Proceedings of DEXA, pp.573-582, 2000.

27- R. Neches, R. Fikes, T.W. Finin, T.R. Gruber, R.S. Patil, T.E. Senator, and W.R.

Swartout, "Enabling Technology for Knowledge Sharing", Presented at AI Magazine,

pp.36-56, 1991.

28- M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara, "Semantic Matching of

Web Services Capabilities", In Proceedings of International Semantic Web Conference,

pp. 333-347, 2002.

29- P. F. Patel-Schneider, P. Hayes, and I. Horrocks, "OWL Web Ontology Language:

Semantics and Abstract Syntax", W3C Recommendation, February, 2004. (Available

References

248

via http://www.w3.org/TR/2003/WD-owl-semantics-20030331/ , last visited March

2009).

30- M. Smith, C.Welty, and D. McGuinness, "OWL Web Ontology Language Guide",

http://www.w3.org/TR/2003/WD-owl-guide-20030331/.

31- D. Tidwell, "Web Services-The Web’s Next Revolution", IBM Web Service Tutorial,

29 Nov. 2000, http://www-106.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html.

32- M. Uschold and M. Gruninger, "Ontologies: Principles, Methods and Applications",

Knowledge Engineering Review, vol. 11, no. 2, June 1996.

33- M. Vermeer, and P. Apers, “Object-Oriented Views of Relational Databases

Incorporating Behaviour”, Proceedings of the 4th International Conference on Database

Systems for Advanced Applications (DASFAA), Singapore, April 11-13, pp. 26-35,

1995.

 34- A. Behm, and A. Gepper,t K. Dittrich, “On the Migration of Relational Schemas

and Data to Object-Oriented Database Systems”, in Proceeding of the 5th Int.

Conference on Re-Technologies for Information Systems Klagenfurt, pp. 13-33,

December 1997.

35- V. Kashyap, “Design and creation of ontologies for environmental information

retrieval", 12th Workshop on Knowledge Acquisition, Modeling and Management

(KAW'99), Banff, Canada, October 1999.

36-Stojanovic, L., Stojanovic, N., and Volz, R. “Migrating Dataintensive Web Sites into

the Semantic Web”, Proc. 17th ACM Symposium on Applied Computing, Madrid,

2002.

37- G. Dogan, and R. Islamaj,“Importing Relational Databases into the Semantic Web”,

URL:http://www.mindswap.org/Webai/2002/fall/Importing_20Relational_20Databases

_20into_20the_20Semantic_20web.html

http://www.mindswap.org/Webai/2002/fall/Importing_20Rel

References

249

38- D.L. Rubin, M. Hewett, D.E. Oliver, , T.E. Klein, and R.B. Altman, “Automatic

data acquisition into ontologies from pharmacogenetics relational data sources using

declarative object definitions and XML”. In: Proceedings of the Pacific Symposium on

Biology, Lihue, HI, 2002.

39- Astrova, I. “Reverse Engineering of Relational Databases to Ontologies” , Proc. 1st

European Semantic Web Symposium (ESWS), Heraklion, Crete, Greece, LNCS, 327–

341, 2004.

40- I. Astrova, and B. Stantic, “An HTML Forms driven Approach to Reverse

Engineering of Relational Databases to Ontologies”, In: proceeding of the 23rd

IASTED International Conference on Databases and Applications (DBA), eds. M. H.

Hamza, Innsbruck, Austria, pp. 246- 251, 2005.

41- M.li, X.Du, and S.Wang “Learning Ontology from Relational Databases” Machine

learning and Cybernetics, volume 6, pp3410-3415, 2005.

42- S. Benslimane, D. Benslimane, And M. Malki, “Acquiring OWL Ontologies from

Data-Intensive Web Sites”, USA.ACM, Palo Alto, California, July 11-14, 2006.

43- K. Sonia, and S. Khan, “R2O Transformation System: Relation to Ontology

Transformation for Scalable Data Integration”, in Proceedings of IDEAS08, Coimbra,

Portugal, September 2008.

44- S. Upadhyaya and P.Kumar, “ERONTO: A Tool for Extracting Ontologies from

Extended E/R Diagrams”, in Proceedings of SAC‟05 ACM Symposium on Applied

Computing, Santa Fe, New Mexico, USA, March 2005.

45- S.H. Tirmizi, J. Sequeda and D. Miranker, “Translating SQL Applications to the

Semantic Web” In S.S. Bhowmick, J. Küng, and R. Wagner (Eds.) DEXA 2008, LNCS

5181, Springer-Verlag, Berlin, pp. 450 – 464, 2008.

References

250

46- I. Astrova, , N. Korda, , and A. Kalja, “Rule-Based Transformation of SQL

Relational Databases to OWL Ontologies”, In: Proceedings of the 2nd International

Conference on Metadata & Semantics Research, October 2007.

47- Z. Xu, X. Cao, Y. Dong, and W. Su, “Formal Approach and Automated Tool for

Translating ER Schemata into OWL Ontologies”, LNAI 3056, Springer-Verlag Berlin

Heidelberg, pp. 464–476, 2004.

48- T. Gruber, “Toward Principles for the Design of Ontologies Used for Knowledge

Sharing”, In International Journal Human-Computer Studies 43, pp 907-928, March,

1993.

49- V. Sugumaran, and V. C. Storey, “The Role of Domain Ontologies in Database

Design: An Ontology Management and Conceptual Modelling Environment”, ACM

Transactions on Database Systems, Vol. 31, No. 3, Pages 1064–1094, September 2006.

50- N. Noy, and A. Rector, “Defining N-ary Relations on the Semantic Web”. W3C

Working Group Note (13/12/2010), http://www.w3.org/TR/swbp-n-aryRelations/

51- M. Dean, and G. Schreiber, “OWL Web Ontology Language Reference”. W3C

Recommendation (13/12/2010), http://www.w3.org/TR/owl-ref/

52- V. Sugumaran, and V. C. Storey, “Ontologies for Conceptual Modelling: their

Creation, Use, and Management”, Data & Knowledge Engineering No.42, Pages 251–

271, 2002.

53- J. F. Sequeda, S.H. Tirmizi, O. Corcho, and D.P. Miranker, “Direct Mapping SQL

Databases to the Semantic Web”. Technical Report 09-04, The University of Texas at

Austin, Department of Computer Sciences.

54- M. Sabou, “Extracting Ontologies from Software Documentation: A Semi-

Automatic Method and Its Evaluation” in Proc. Workshop on Ontology Learning and

Population, Valencia, Spain, August 2004.

http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/owl-ref/

References

251

55- A. Buccella, M. R. Penabad, F. J. Rodríguez, A. Fariña, A. Cechich, “From

Relational Databases to OWL Ontologies”. Procs of the 6th Russian Conference on

Digital Libraries. Pushchino, Rusia, 2004.

56- H.E. Ghalayini, M. Odeh, R. McClatchey, “Engineering conceptual data models

from domain ontologies: A Critical Evaluation”, in Proc. 4th International Conference

on Computer Science and Information Technology, Amman, Jordan, April 2006.

57- Fonseca, F. and J. Martin, "Learning the Differences Between Ontologies and

Conceptual Schemas Through Ontology-Driven Information Systems" in Proc. Journal

of the Association for Information Systems - Special Issue on Ontologies in the Context

of IS Volume 8, Issue 2, Article 3, pp. 129–142, February 2007.

58- B. Motik, I. Horrocks , and U. Sattler, “Bridging the Gap between OWL and

Relational Databases”, Proceedings Journal of Web Semantics Web Semantics:

Science, Services and Agents on the World Wide Web, Volume 7, Issue 2, pp. 74-89,

April 2009.

59- N. Guarino , “Formal Ontology and Information Systems”, Proceedings of FOIS‟98,

Trento, Italy, pp. 3-15, June 1998.

60- C. Bizer ,and R. Cyganiak “D2R Server – Publishing Relational Databases on the

Semantic Web”, In Poster at the 5th International Semantic Web Conference, (2006) ,

(30/10/2010), http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

61- J F. Sequeda, S. Tirmizi, and D. Miranker, “SQL Databases are a Moving Target”.

Position Paper for W3C Workshop on RDF Access to Relational Databases”,

Cambridge, MA, USA, 2007.

62- M. Taye, N. Alalwan, “Ontology Alignment Technique for Improving Semantic

Integration”, Proceedings in the Fourth International Conference on Advances in

Semantic Processing, Florence, Italy, pp. 13-18, October 2010.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2312925%232009%23999929997%231099087%23FLA%23&_cdi=12925&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a53d29012f52f96c4395ea83634444cb
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

References

252

63- I. Astrova, N. Korda, and A. Kalja, “Storing OWL Ontologies in SQL Relational

Databases”, international journal of electrical, computer, and systems engineering,

volume 1, number, pp. 242- 2474 ,2007.

64- H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and

S. Hübner, “Ontology-based integration of information - a survey of existing

approaches”, In Workshop: Ontologies and Information Sharing, pp. 108-117, 2001.

65- N. Chatterjee, and M. Krishna, “Semantic Integration of Heterogeneous Databases

on the Web” Proceedings of the International Conference on Computing: Theory and

Applications, 2007.

66- R. Volz , S. Handschuh , Siegfried H , S. Staab , L. Stojanovic, and N. Stojanovi,

“Unveiling the Hidden Bride: Deep annotation for Mapping and Migrating Legacy

Data to the Semantic Web”, Proceedings of Web Semantics: Science, Services and

Agents on the World Wide Web, pp. 187–206, 2004.

67- Y. An, Alex Borgida, and J. Mylopoulos. “Refining the Semantic Mappings from

Relational Tables to Ontologies”. In Proceedings of 2nd International workshop on

Semantic Web and Databases in conjunction with Very Large Databases, Toronto,

Canada, LNCS 3372, Springer-Verlag, pages 84-90, 2004.

68- Y. An, A. Borgida, and J. Mylopoulos. “Discovering and Maintaining Semantic

Mappings between XML Schemas and Ontologies”, Proceedings of Journal of

Computing Science and Engineering. Korean Institute of Information Scientists and

Engineers, 2008.

69- D. Jurić, M. Banek, and Z. Skočir, “Uncovering the Deep Web: Transferring

Relational Database Content and Metadata to OWL Ontologies”, In Proceedings of

Knowledge-Based Intelligent Information and Engineering Systems 12th International

Conference, Zagreb, Croatia, September, pp. 456–463, 2008.

70 – O. Jautzy, “Interoperable Databases: a Programming Language Approach”, in

Proceedings from International Symposium on Database Engineering and Applications,

Montreal, Que., Canada, pp. 63 – 71, August 1999.

http://www.citeulike.org/user/Salma/author/Wache:H
http://www.citeulike.org/user/Salma/author/V%5c%22ogele:T
http://www.citeulike.org/user/Salma/author/Visser:U
http://www.citeulike.org/user/Salma/author/Stuckenschmidt:H
http://www.citeulike.org/user/Salma/author/Schuster:G
http://www.citeulike.org/user/Salma/author/Neumann:H
http://www.citeulike.org/user/Salma/author/H%5c%22ubner:S

References

253

71- S. Ram, and J. Park “Semantic Conflict Resolution Ontology (SCROL): An Ontology

for Detecting and Resolving Data and Schema-Level Semantic Conflicts”, IEEE

Transactions on Knowledge and Data Engineering, vol. 16, no. 2, February 2004.

72- A.S. Aparicio, O.L.M. Farias, and N. Santos, “Applying Ontologies in the

Integration of Heterogeneous Relational Databases”. In Proc. Australasian Ontology

Workshop, Sydney, Australia, vol. 58, pp.11-16, 2005.

73- M. Baglioni1, M. Vittoria Masserotti, C. Renso, and L. Spinsanti, “Building

Geospatial Ontologies from Geographical Databases”, LNCS 4853, Springer-Verlag

Berlin Heidelberg, pp. 195–209, 2007.

74- J. Barrasa, O. Corcho, and A. Gómez-Pérez, “Fund Finder: A Case Study of

database-to-ontology mapping”, Proceedings Semantic Integration Workshop (ISWC),

Sanibel Island, US, 2003.

75-D. Yeh, and Y. Li, “Extracting Entity Relationship Diagram from a Table-based

Legacy Database”, in Proceedings of the Ninth European Conference on Software

Maintenance and Reengineering (CSMR), 2005.

76- R. Alhajj, “Extracting the Extended Entity-Relationship Model from a Legacy

Relational Database”, Elsevier Science, Information Systems 28, pp 597–618, 2003.

77- Y. An, A. Borgida, and J. Mylopoulos. “Inferring Complex Semantic Mappings

between Relational Tables and Ontologies from Simple Correspondences”, In

Proceedings of On The Move to Meaningful Internet Systems, Agia Napa, Cyprus,

LNCS 3761, Springer Verlag, pp. 1152-1169, 2005.

78- j. Trinkunas, and O. Vasilecas. “Building Ontologies from Relational Databases

Using Reverse Engineering Methods”. In Proceedings of the International Conference

on Computer Systems and Technologies (CompSysTech '07), Bulgaria, 2007, pp.1-6.

79- C. Bizer and F. U. Berlin, “D2R MAP – A Database to RDF Mapping Language”,

Budapest, Hungary, May, pp 20-24, 2003.

http://crpit.com/confpapers/CRPITV58Aparicio.pdf
http://crpit.com/confpapers/CRPITV58Aparicio.pdf

References

254

80- P.A. Champin, G.-J. Houben, and P. Thiran, “Cross: An OWL Wrapper for

Reasoning on Relational Databases” LNCS 4801, pp. 502–517, 2007.

81- R. Ghawi and N. Cullot, “Database-to-Ontology Mapping Generation for Semantic

Interoperability”, VLDB ‟07, Vienna, Austria, September, 2007.

82- N. Cullot, R. Ghawi, and K. Yétongnon, “DB2OWL : A Tool for Automatic

Database-to-Ontology Mapping”, In SEBD, pp.491-494, 2007.

83- Z. Xu, S. Zhang, and Y. Dong, “Mapping between Relational Database Schema and

OWL Ontology for Deep Annotation”, Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence (WI), 2006.

84- C. Hu, H. Li, X. Zhang, and C. Zhao, “Research and Implementation of Domain-

Specific Ontology Building from Relational Database”, The Third China Grid Annual

Conference, pp 289-293, 2008.

85- G. Shen, Z. Huang, X. Zhu, and X. Zhao, “Research on the Rules of Mapping from

Relational Model to OWL”, Proceedings of the Workshop on OWL: Experiences and

Directions, Athens, Georgia, USA, November, 2006.

86 – I. Astrova, “Towards the Semantic Web – An Approach to Reverse Engineering of

Relational Databases to Ontologies”, proceedings of the 9th East-European Conference

on Advances in Databases and Information Systems (ADBIS), Tallin, September, 2005.

87- D. Jurić, M. Banek, and Z. Skočir, “Uncovering the Deep Web: Transferring

Relational Database Content and Metadata to OWL Ontologies”, LNAI 5177, Part I,

pp. 456–463, 2008.

88- C. Nyulas , and S. Tu, “DataMaster – a Plug-in for Importing Schemas and Data

from Relational Databases into Protégé”, In Proceedings of 10th International Protégé

Conference.

http://www.citeulike.org/user/stephane-jean/author/Cullot:N
http://www.citeulike.org/user/stephane-jean/author/Ghawi:R
http://www.citeulike.org/user/stephane-jean/author/Y%5c%27etongnon:K
http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=B943B2B8DCDEC5F45C5C3344952158AA?venueId=11779
http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=B943B2B8DCDEC5F45C5C3344952158AA?venueId=11779

References

255

89- M. Korotkiy , and J. L. Top, “From Relational Data to RDFS Models”,

International Conference on Web Engineering, LNCS, Vol. 3140, 2004.

90- C. Perez, d. Laborda and S. Conrad, “Relational.OWL - A Data and Schema

Representation Format Based on OWL”, the Second Asia- Pacific Conference on

Conceptual Modelling (APCCM), New-castle, Australia, 2005.

91- E. Vysniauskas, and L. Nemuraite, “Transforming Ontology Representation from

Owl To Relational Database”, Information Technology and Control, Vol.35, No.3A,

pp. 333 – 343,2006.

92- A. Ranganathan, and Z. Liu, “Information Retrieval from Relational Databases

using Semantic Queries”, CIKM‟06, Arlington, Virginia, USA, pp. 820-82, November,

2006.

93- F.Cerbah, “Learning Highly Structured Semantic Repositories from Relational

Databases: the RDBTOONTO Tool”, Proceedings of the 5th European Semantic Web

Conference (ESWC) on The Semantic Web: research and applications, 2008.

94- B. Habegger, “Mapping a database into an ontology: an interactive relational

learning approach”, IEEE 23rd International Conference on Data Engineering, pp.

1443-1447, 2007.

95- H. Zhuge, Y. Xing And P. Shi, “Resource Space Model, OWL and Database:

Mapping and Integration” ACM Transactions on Internet Technology, Vol. 8, No. 4,

Article 20, September 2008.

96 M. Krishna, “Retaining Semantics in Relational Databases by Mapping them to

RDF”, Proceedings of the IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, 2006.

97- S. Das, E. I. Chong, G. Eadon, and J. Srinivasan, “Supporting Ontology-based

Semantic Matching in RDBMS”, Proceedings of the 30th VLDB, Conference, Toronto,

Canada, pp. 1054- 1065, 2004.

http://portal.acm.org/author_page.cfm?id=81100018474&coll=DL&dl=ACM&trk=0&cfid=8498474&cftoken=72463782

References

256

98- J. Xu, and W. Li, “Using Relational Database to Build OWL Ontology from XML

Data Sources”, Proceedings in International Conference on Computational Intelligence

and Security Workshops, pp 124-127, 2007.

99- N. Konstantinou, D. Spanos, M. Chalas, E. Solidakis and N. Mitrou, “VisAVis: An

Approach to an Intermediate Layer between Ontologies and Relational Database

Contents”, Proceedings in International Workshop on Web Information Systems

Modelling (WISM), 2006.

100- Wei Hu, and Yuzhong Qu “Discovering Simple Mappings Between Relational

Database Schemas and Ontologies”, In Proceedings of the 6th International Semantic

Web Conference and 2nd Asian Semantic Web Conference ISWC/ASWC2007, Busan,

South Korea, pp. 225-238, November, 2007.

101- A. C. Muñoz, and J. L. Aguilar “Architecture for an Intelligent Distributed

Database”, Proceedings of the 13th Euromicro Conference on Parallel, Distributed and

Network-Based Processing, 2005.

102- Olivier Jautzy, “Interoperable Databases : a Programming Language Approach”,

Proceedings from IDEAS '99 International Symposium on Database Engineering and

Applications,1999.

103- Goksel Aslan, and Dennis McLeod “Semantic Heterogeneity Resolution in

Federated Databases by Metadata Implantation and Stepwise Evolution”, The VLDB

Journa,l vol. .8, pp 120–132, 1999.

104- F. M. Al-Wasil W. A. Gray, and N. J. Fiddian, “Establishing an XML Metadata

Knowledge Base to Assist Integration of Structured and Semi-structured Databases”,

the Seventeenth Australasian Database Conference (ADC), Hobart, Australia ,Vol. 49,

2006.

http://www.bibsonomy.org/author/Hu
http://www.bibsonomy.org/author/Qu
http://www.bibsonomy.org/bibtex/f17209ae1f2b8b36f25557fbbfed84b4
http://www.bibsonomy.org/bibtex/f17209ae1f2b8b36f25557fbbfed84b4
http://www.bibsonomy.org/bibtexkey/http:/data.semanticweb.org/conference/iswc-aswc/2007/proceedings
http://www.bibsonomy.org/bibtexkey/http:/data.semanticweb.org/conference/iswc-aswc/2007/proceedings
http://www.bibsonomy.org/bibtexkey/http:/data.semanticweb.org/conference/iswc-aswc/2007/proceedings

References

257

105- H. Müller J. Freytag, U. Leser, “Describing Differences between Databases”

Proceedings Conference on Information and Knowledge Management (CIKM),

Arlington, Virginia, USA, November 5–11, 2006.

106- M. Taye, “Ontology Alignment Mechanisms for Improving Web-based Searching”,

PhD thesis, De Montfort University, Leicester, UK, 2009.

107- N. Noy and D. McGuinness, “Ontology Development 101: A guide to creating

your first ontology”, Technical Report, Stanford University, Stanford, CA, US.

Appendices

258

Appendix A

Normalisation:

The design of relational schema requires a way for evaluating its quality. Therefore, the

normalisation can be a formal measure which show why one grouping of attributes into

a relation schema may be better than other. This measure demonstrates the

appropriateness or the goodness of database design.

 Why we need normalisation?

 To minimise the redundancy data.

 To minimise anomalies update (insertion, deletion, and modification).

Before explaining the different level of normalisation we need to define some related

concepts.

- Functional Dependencies (FD): for a given relation R, attribute set Y of R is

functionally dependent on attribute set X of R if and only if each x-value in R

has associated with it exactly y-value in R. in formally whenever two tuples

agree on their X value, they also agree on their Y value.

 Denoted by, X→ Y.

- Normalisation of relations: a process of analysing a given relation schemas

based on their FDs and primary keys to satisfies a certain condition.

- Prime attribute: given a relation R, an attribute A is a prime if A is

contained in some key of R.

- transitive dependency: Given a relation R, an attribute A of R is

said to be transitively dependent on attribute set X of R if there exists

an attribute set Y of R such that

 X→ Y,

 Y→ A,

 𝑌 ↛ 𝑋 And A X Y.

 Normalisation Forms:

o First normal form:

Appendices

259

A relation is said to be in First Normal Form (1NF) if the domain of all its

attributes are atomic.

o Second normal form:

The relation R is in Second Normal Form (2NF) if it is in 1NF and every non-

prime attribute is fully functionally dependent on every key of R.

o Third normal form:

A relation is said to be in third normal form (3NF) if it is in 1NF and no non-

prime attribute in R is transitively dependent on any key of R.

o The other normal forms:

There are other types of normal forms such as BOYCE-CODD Normal (BCNF),

Forth Normal Form (4NF), and Fifth Normal from (5NF).

However, Database designers today pay attention to normalise their database to

the 3NF. The reason for that is 1NF and 2NF database suffer from performance

problem. Also the higher forms are hard to understand or difficult to detect.

Appendices

260

Appendix B

The university SQL-DDL

Department table:

Create table department(dept_id int, dept_name varchar(70) not null,dept_phone

varchar(20),

 primary key(dept_id));

Staff table:

Create table staff(staff_id int, staff_ family_name varchar(50) not null,dept_id int,

manger_id int, n_id int not null unique,

primary key(staff_id),

foreign key (dept_id) references dept(dept_id)

foreign key (manger_id references staff(staff_id));

foreign key (staff_id) references staff-details (staff_id));

Staff-details table:

Create table staff-details(staff_id int,staff_first_name varchar(10), staff_mid_name

varchar(15), DOB date,address varchar(50),email varchar(50),ext phone

varchar(10),homephone varchar(20)

primary key(staff_id),

foreign key (staff_id) references staff(staff_id));

Academic-staff table:

Create table academic-staff(n-id int unique not null, staff_

Post-held varchar check (Post-held in („ Teacher Assistance‟, „Instructor‟, „Assistant

professor‟, „Associate professor‟, „Professor‟)

 specialty varchar (40),

primary key(staff_id),

foreign key (staff_id) references staff(staff_id));

Student table:

Create table student(st_id int, st_name varchar(70) not null, sex char(1), module-name

varchar(70) unique ,dept_id int not null, n-id unique not null,

primary key(st_id),

Appendices

261

foreign key (dept_id) references department (dept_id));

Graduate-student table:

Create table graduate-student(st_id int, research_area varchar(70),

primary key(st_id),

foreign key (st_id) references student(st_id)

Post-Graduate

Create table post- graduate (st_id int, project_ group varchar(70), staff-id unique not

null

primary key(st_id),

foreign key (st_id) references student(st_id)

foreign key (staff-id) references academic-staff);

Hobby table:

Create table hobby(st_id int, hobby_name varchar(70),

primary key(st_id, hobby_name),

foreign key (st_id) references student(st_id));

Dependent table:

Create table dependent(d_id int, dependent_name varchar (20) not null, relationship

varchar (20) DEFAULT „Parent‟,

primary key(d_id, staff_id),

foreign key (staff_id) references staff(staff_id));

Course table:

Create table course(c_id int, course_name varchar(70) not null, dept_id int,

course-credit-hour int, co-offer int,

primary key(c_id)

foreign key (dept_id) references department (dept_id)

foreign key (co-offer) references course (c_id));

Registered table:

Create table registered(st_id int, c_id int,

primary key(st_id,c_id),

foreign key (st_id) references student(st_id),

foreign key (c_id) references course(c_id));

Appendices

262

Section table:

Create table Section (st_id int, c_id int, staff_id int,

primary key(st_id,c_id,staff_id),

foreign key (st_id) references student (st_id),

foreign key (c_id) references course(c_id),

foreign key (staff_id)

references academic-staff (staff_id));

Appendices

263

Appendix C

<owl:Class rdf:ID="Academic_staff">

 <rdfs:subClassOf rdf:resource="#staff"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="annotationProperty_1">

 <rdf:type rdf:resource="&owl;AnnotationProperty"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="belongTo">

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="#department"/>

 <owl:inverseOf rdf:resource="#invBelongTO"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="course"/>

 <owl:ObjectProperty rdf:ID="course_available">

 <rdfs:domain rdf:resource="#course"/>

 <rdfs:range rdf:resource="#Student"/>

 <owl:inverseOf rdf:resource="#student_registered"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="course_id">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#course"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="course_name">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#course"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="course_taught">

 <rdfs:domain rdf:resource="#course"/>

 <rdfs:range rdf:resource="#Teach"/>

Appendices

264

 <owl:inverseOf rdf:resource="#has_course_teach"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="department">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#invBelongTO"/>

 <owl:minCardinality rdf:datatype="&xsd;int">0</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Dependent"/>

 <owl:Class rdf:ID="Graduate_Student">

 <rdfs:subClassOf rdf:resource="#Student"/>

 </owl:Class>

 <Graduate_Student rdf:ID="Graduate_Student_18"/>

 <owl:ObjectProperty rdf:ID="has_course_teach">

 <rdfs:domain rdf:resource="#Teach"/>

 <rdfs:range rdf:resource="#course"/>

 <owl:inverseOf rdf:resource="#course_taught"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_staff_teach">

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="#Teach"/>

 <owl:inverseOf rdf:resource="#staff_is_teaching"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_student_teach">

 <rdfs:domain rdf:resource="#Teach"/>

 <rdfs:range rdf:resource="#Student"/>

 <owl:inverseOf rdf:resource="#taught_by"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_subordinate">

Appendices

265

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="#staff"/>

 <owl:inverseOf rdf:resource="#has_superior"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_superior">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="#staff"/>

 <owl:inverseOf rdf:resource="#has_subordinate"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="invBelongTO">

 <rdfs:domain rdf:resource="#department"/>

 <rdfs:range rdf:resource="#Student"/>

 <owl:inverseOf rdf:resource="#belongTo"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Post_Graduate">

 <rdfs:subClassOf rdf:resource="#Student"/>

 <rdfs:subClassOf rdf:resource="#Academic_staff"/>

 </owl:Class>

 <Post_Graduate rdf:ID="Post_Graduate_19"/>

 <owl:DatatypeProperty rdf:ID="spacilty">

 <rdfs:domain rdf:resource="#Academic_staff"/>

 </owl:DatatypeProperty>

 <owl:Class rdf:ID="staff">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#staff_is_teaching"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

Appendices

266

 <owl:DatatypeProperty rdf:ID="Staff_id">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#staff"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="staff_is_teaching">

 <rdfs:domain rdf:resource="#Teach"/>

 <rdfs:range rdf:resource="#staff"/>

 <owl:inverseOf rdf:resource="#has_staff_teach"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Student">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_student_teach"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 </owl:equivalentClass>

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#belongTo"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="Student-id">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Student_name">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

Appendices

267

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="student_registered">

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="#course"/>

 <owl:inverseOf rdf:resource="#course_available"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="taught_by">

 <rdfs:domain rdf:resource="#Student"/>

 <rdfs:range rdf:resource="#Teach"/>

 <owl:inverseOf rdf:resource="#has_student_teach"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Teach">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_course_teach"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#has_student_teach"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#staff_is_teaching"/>

 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

Appendices

268

 </owl:Class>

</rdf:RDF>

Appendices

269

Appendix D

Table for object properties score of University ontology

object domain range I. Astrova,

et al.

M. LI ,et

al.

S.H.

Tirmizi, et

al.

SQL2OWL Domain

SQL

specific

Domain

enhanced

Has Name person Name (-1,-0.25) (-1,-0.25) (-1,-0.25) (-1,-0.25) (1,0.25)

Has Address person Address (-1,-0.25) (-1,-0.25) (-1,-0.25) (-1,-0.25) (1,0.25)

Co-offer course course (1,0.5) (1,-0.5) (1,-0.5) (1,-0.5) 1,.5 1,.5

manger staff staff (1,-.05) (1) (1,0.5) (1,0.5) (1,0.5) (1,0.5)

Has student
transcript

transcript student (1,-0.25) (1,-0.5) (1,-0.25) (1,0.25) (1,0.25) (1,0.25)

Has course

transcript

transcript course (1,-0.25) (1,-0.5) (1,-0.25) (1,0.25) (1,0.25) (1,0.25)

Has student
section

section student (1,-0.25) (1,0.25) (1,-0.25) (1,0.25) (1,0.25) (1,0.25)

Has ac-Staff

section

section ac-Staff (1,-0.25) (1,0.25) (1,-0.25) (1,0.25) (1,0.25) (1,0.25)

Has course

section

section course (1,-0.25) (1,0.25) (1,-0.25) (1,0.25) (1,0.25) (1,0.25)

Has staff department staff (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25)

Has course department course (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25)

Student
belong dept

Student department (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25) (1,0.25)

Student reg Student course 1 1 1 1 1 1

Course reg Course Student 1 1 1 1 1 1

Superfluous

Relationship
Has hobby

student hobby -0.5 -.05 -.05 -- -- --

total 11 – 8.5 11.5 – 9 11- 8.5 14-11.50 14.5-12 17.5

DO Sp 11/14.5

75%

11.5/14.5

79%

11/14.5

75%

14/14.5

96%

DO EN 8.5/17.5

48%

9/17.5

51%

8.5/17.5

48%

11.5/17.5

65%

Table for datatype properties score of University ontology

Datatype

domain range Datatype

characteristi
c

P

k

Not

nul
l

uniqu

e

Not

null&
uniqu

e

I.Astrova

, et al.

M. LI

,et al.

S.H.

Tirmizi
, et al.

SQL2OW

L

Dept_id departmen

t

int Card=1 .5+.25-

.25

.5+.25 .5-.25 .5+.25

Dept

Name

departmen

t

strin

g

Card=1 .5 +.25 .5+.25 .5+.25 .5+.25

Dept

Phone

departmen

t

strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

n-id person int Card=1 .5+.25-

.25-.25

.5+.25

-.25

.5-.25-

.25

.5+.25-.25

Family
name

person strin
g

Card=1 .5+.25-
.25

.5+.25
-.25

.5+.25-
.25

.5+.25-.25

Mid-name person strin

g

Functional .5-

.25+.25

.5-.25 .5-.25 .5-.25+.25

First
Name

person strin
g

Card=1 .5+.25-
.25

.5+.25
-.25

.5+.25-
.25

.5+.25-.25

Staff-id staff int Card=1 .5+.25-

.25

.5+.25 .5-.25 .5+.25

DOB staff date Functional .5+.25 .5-.25 .5+.25 .5+.25

Email staff strin
g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Ext phone staff strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Home
phone

staff strin
g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Post held Academic- strin One of .5+.25 .5 .5+.25 .5+.25

Appendices

270

staff g

Specialty Academic-

staff

strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Student id Student int Card=1 .5+.25-

.25

.5+.25 .5-.25 .5+.25

sex Student strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Module

name

Student strin

g

maxCard=1 .5-.25 .5+.25 .5-.25 .5+.25

hobby Student strin

g

=== .5-.25-

.25

.5-.25 .5-.25-

.25

.5+.25

Research

area

Graduate-

Student

strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Project

group

Post-

Graduate

strin

g

Functional .5+.25 .5-.25 .5+.25 .5+.25

Dependen

t id

Dependent int Card=1 .5+.25-

.25

.5+.25 .5-.25 .5+.25

Dependen

t name

Dependent strin

g

Card=1 .5+.25 .5+.25 .5+.25 .5+.25

Course id Course int Card=1 .5+.25-

.25

.5+.25 .5-.25 .5+.25

Course

name

Course strin

g

Card=1 .5+.25 .5+.25 .5+.25 .5+.25

Course

credit
hour

Course int Functional .5+.25 .5-.25 .5+.25 .5+.25

grade transcript int Functional .5+.25 -.25 .5+.25 .5+.25

TOTAL 16.75-
15.75

12.5-
11.5

15-14 19.5-18.5

DO Sp /19.5 85% 64% 76% 100%

DO EN /19.5 80% 58% 71% 94%

Precision SDO

Approach I.Astrova, et al. M. LI ,et al. S.H. Tirmizi, et al. SQL2OWL

Class &subclass

relationship

13/16 12/15 13/16 15/15

Object 13/14 13/14 13/14 13/13

Object domain 12/14 8/14 12/14 13/13

Object

characteristic

10/18 12/13 7/11 13/13

Datatype 26/26 25/25 26/26 26/26

Datatype domain 25/26 24/26 25/26 26/26

Datatype

characteristic

25/31 12/13 18/25 25/25

Precision SDO

total

124/145 106/120 114/132 131/131

Precision SDO 85% 88% 86% 100%

Appendices

271

Recall SDO

approach I.Astrova, et al. M. LI ,et al. S.H. Tirmizi, et al. SQL2OWL

Class &subclass

relationship

13/15 12/15 13/15 15/15

Object 13/13 13/13 13/13 13/13

Object domain 13/13 8/13 13/13 13/13

Object

characteristic

10/16 12/16 7/16 14/16

Datatype 26/26 25/26 26/26 26/26

Datatype domain 25/26 24/26 25/26 26/26

Datatype

characteristic

25/25 12/25 18/25 25/25

Recall SDO total 125/134 106/134 115/134 132/134

Recall SDO 93% 97% 85% 98%

Precision EDO

Precision I.Astrova, et al. M. LI ,et al. S.H. Tirmizi, et al. SQL2OWL

Class 13/16 12/16 13/16 14/14

Object 12/15 12/15 12/15 12/14

Object domain 12/15 8/15 12/15 12/14

Object

characteristic

14/22 6/14 7/20 15/15

Datatype 25/25 26/26 26/26 26/26

Datatype domain 21/26 20/26 21/26 22/26

Datatype

characteristic

12/20 25/25 18/25 25/25

 109/139 109/137 109/143 126/134

Average 78% 79% 76% 94%

Recall EDO

Recall Astrova, et al. LI ,et al. Tirmizi, et al. SQL2OWL

Class 13/19 12/19 13/19 14/19

Object 12/14 12/14 12/14 12/14

Object domain 12/14 8/14 12/14 12/14

Object

characteristic

9/15 9/15 7/15 11/15

Datatype 26/26 25/26 26/26 26/26

Datatype domain 21/26 20/26 21/26 22/26

Datatype

characteristic

24/25 24/25 18/25 25/25

 117/139 110/139 113/139 122/139

average 84% 79% 81% 87%

