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Abstract 

Operating faraway from maximum power point decreases the generated power from 

photovoltaic (PV) system. For optimum operation, it is necessary to continually 

track the maximum power point of the PV solar array. However with huge changes 

in external influences and the nonlinear relationship of electrical characteristics of PV 

panels it is a difficult problem to identify the maximum power point as a function of 

these influences. Many tracking control strategies have been proposed to track max- 

imum power point such as perturb and observe, incremental conductance, parasitic 

capacitance, and neural networks. These proposed methods have some disadvantages 

such as high cost, difficulty, complexity and non-stability. 

This thesis presents a novel approach based on Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to predict the maximum power point utilising the actual field data, 

which is performed in different environmental conditions. The short circuit current 

and open circuit voltage are used as inputs to PV panels instead of solar irradiation 

and cell junction temperature. 

The predicted Vmax from ANFIS model is used as a reference voltage for fuzzy logic 

controller (FLC). The FLC is used to adjust the duty cycle of the electronic switch 

of two types of DC-DC converter. These DC-DC converters are used to interface 

between the load voltage and PV panels. The duty cycle of the electronic switch of 

the DC-DC converter is adjusted until the input voltage of the converter tracks the 

predicted Vmax of the PV system. 

FLC rules and membership functions are designed to achieve the most promising 

performance at different environmental conditions, different load types and different 

rate of changes in the duty cycle of Buck-Boost and Buck converters. The mem- 

bership functions and fuzzy rules of FLC are designed to balance between different 

required features such as quick tracking under different environmental conditions, 

high accuracy, stability and high efficiency. 
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Chapter 1 

Introduction 

1.1 Overview 

Solar energy has become an essential source for many applications in the last four 

decades. It is difficult to supply electrical energy to small applications in remote 

areas from the utility grid or from small generators. Stand alone photovoltaic (PV) 

systems are the best solutions in many small electrical energy demand applications 

such as communication systems, water pumping and low power appliances in rural 

areas [76] [8]. In general, the cost of electricity from the solar array system is more 

expensive compared to electricity from the utility grid [27] [52]. For that reason, it 

is necessary to study carefully the efficiency of the entire parts to design an efficient 

PV system to cover the load demands with lower cost. 

There are many external and internal influences which have an effect on the effi- 

ciency of the PV panel. Solar irradiance, ambient temperature and wind are the main 

external influences, which affect the maximum power and the voltage of maximum 

power point of PV panel. These external influences also change the position of the 

maximum power point on the current voltage (I-V) curve. Furthermore, load is the 

main internal factor that can drive the PV panels to operate at a strict point on 

the I-V curve in direct coupled systems. The intersection between the different load 

line and I-V curves under different environmental conditions identifies the operating 

point on I-V curves. Hence, it is necessary to continually track the maximum power 

point (MPP) of the solar array [49]. However, the tracking control of MPP is a 

complicated problem. Many tracking control strategies have been proposed to over- 

come this problem such as: perturb and observe, incremental conductance, parasitic 

capacitance, constant voltage and neural networks [86] [73]. The drawbacks of these 

methods comes from their high cost, difficulty, complexity, and non-stability [70]. In 
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1.2 Motivation 

the main methods these controlling mechanisms use is to adjust the duty cycle of 
the shunt metal oxide semiconductor field effect transistor (MOSFET) of maximum 

power point tracking (MPPT) converter. The MPPT converter is used to maintain 

the PV array's operating point at the MPP. MPPT controller does this by controlling 

the PV array's voltage or power independently of the load. 

1.2 Motivation 

The cost of electricity from the PV system is more expensive than from the utility 

grid. The PV panels are the main part and cost of a PV system, of the system. Poor 

operation of PV panels obliges the designers to increase the number of PV panels to 

cope with the energy demand for the load. This leads to the design of an uneconomic 

system. Studying the influences that affect the maximum power operation assists in 

building the optimum PV system. A large amount of power is saved by the optimum 

design of PV system thus reducing the total cost of PV system. Accordingly, the PV 

system becomes feasible for many applications, especially in rural areas. 

In addition, during monitoring a Grundfos solar water pump in Yemen a high 

fluctuation is observed in MPPT control system that is used with this solar pump in 

cloudy days. The control system which use a traditional MPPT system also fluctuates 

during the wind movements [11]. This high oscillation in MPPT system decreases 

the live time of electronic devices, which control the duty cycle of DC-DC converters 

which interface between the PV panels and the loads. Hence, the developed approach 

in this thesis is designed to overcome this problem. 

Generally, the designers add a constant percentage drop in power generated to 

compensate the drop in power due to temperature effect [27] [26]. However, there are 

high differences in the generated power from PV panels in different ambient temper- 

atures. These differences in power generated can be more than 30% in enclosed areas 

[12]. Hence, studying the behaviour of PV panels in different regions is essential to 

improve the performance of PV panels in different environmental conditions. Suffi- 

cient data in different environmental conditions will help model the behaviour of PV 
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1.3 Research Hypothesis, Aims and Objectives 

panels. 

Insufficient input parameters, the lack of data and the difficulty in measuring 
the cell temperature and solar irradiance are drawbacks in many 'DIPPT approaches. 
Hence, these provide additional motivation to introduce an approach that has suffi- 

cient and appropriate parameters to solve the above mentioned problems. In addition, 

the difference between actual MPP and computed MPP at different environmental 

conditions in several approaches gives encourage for introducing an approach which 

tracks the maximum power point with low error between actual MPP and predicted 

point. 

1.3 Research Hypothesis, Aims and Objectives 

The research hypothesis addressed in this thesis can be summarised in five questions: 

" How can the MPP of PV panels be located in different environmental condi- 

tions? 

" What are the problems associated with locating the MPP? 

" Is it possible to collect data that will help the MPPT system model the be- 

haviour of PV panels? 

" Has the adaptive neuro-fuzzy inference system (ANFIS) approach the ability 

to overcome the drawbacks of locating MPP in other techniques? 

9 Can fuzzy logic provide a good MPPT system that operates in different envi- 

ronmental conditions and with different types of load? 

The main aim in this thesis is to introduce an MPPT system which can predict and 

track the MPP of PV system under high changes of environmental conditions in short 

time with minimum error and low oscillation. This aim is achieved by the following 

seven objectives. 
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1.4 Significant research contributions 

1. Collect adequate data which represents the behaviour of PV panel under dif- 

ferent environmental conditions. 

2. Analysing the core data of PV panels by using statistical analysis tools to clarify 

the relationships between different parameters of PV panels and confirming the 

use of short circuit current (Isc) and open circuit voltage (Voc) to predict 
the MPP location. In addition, the statistical analysis assists in initiating the 

primary membership functions (MFs) of ANFIS models. 

3. Developing the ANFIS models to reach the minimum error between the actual 

data and predicted data. 

4. Using the initial output of the ANFIS model with test data to determine the 

gaps in the data and improve the collected data to provide a feedback for the 

ANFIS model. 

5. Improving the developed ANFIS model with per unit (PU) data to be applied 

with all single crystal and polycrystalline PV system. 

6. Utilising the experiences in different components of MPPT system to identify 

the problems of the PV system with MPPT. Consequently, utilise this identifi- 

cation to design the MFs and rules of fuzzy logic controller (FLC). 

7. Use simulation models to evaluate the performance of FLC with different types 

of load and with Buck-Boost and Buck converter to improve and generalise the 

MPPT system. 

1.4 Significant research contributions 

There are four major contributions: 

1. A novel ANFIS based approach applied to predict the MPP utilising 

the actual field data in different environmental conditions. A number of ANFIS 

models are tested to reach the best model that can predict accurate V,,, ax. 
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1.4 Significant research contributions 

Subtractive clustering is applied to determine the number of rules and the 

best values of antecedent membership functions parameters, and then uses a 

linear least squares estimation to determine each rule's consequent parameters. 

Furthermore, the ANFIS models were tested three times during data collection. 

More data was added after evaluating the performance of ANFIS models in 

different irradiance levels and PV cell temperatures. 

In addition, to avoid the limited implementation of the developed ANFIS model 

the selected ANFIS model with a few rules is developed and generalised with 

PU data. The developed general ANFIS model is tested with the data of two 

panels, and the predicted output voltage error is less than 2%. Moreover, the 

general model is tested with different PV panels and it has an error of only 1% 

with three types of PV panels. 

2. The novelty of the developed FLC is the methodology of utilising 

the MFs design incorporate with rules to provide a solution for several 

problems that can be solved by increasing the number of rules. The MFs of the 

developed FLC are selected and designed to give a solution for problems faced 

by the MPPT system. The FLC has been developed with minimum number 

of rules to provide fast and stable tracking for MPP of PV system. The FLC 

rules and MFs are designed to work well with the large changes in weather 

conditions. In addition, the MFs are modified related to the rate of changes 

in duty cycle of Buck-Boost converter and Buck converter at different input 

voltages. 

The developed FLC can be adjusted easily to control the duty cycle of DC-DC 

converters depending on the requirements of each converter and the appropriate 

converter that should be used to interface between the PV panel and different 

types of load. 

Furthermore, the membership functions and fuzzy rules of FLC are designed to 

balance between different required features like quick tracking under different 
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1.4 Significant research contributions 

environmental conditions, high accuracy, stability, and high efficiency. 

3. A systematic design of data collection and it is evaluation in this 

thesis presents sufficient and appropriate parameters to give a solution for the 

shortage in parameters, the lack in data and the difficulty in measuring the 

cell temperature and solar irradiance, which demonstrate the drawbacks in 

many approaches. The evaluation of data in different environmental conditions 

and different seasons provide a comprehensive learning data set for the NIPPT 

system. 

4. The fourth contribution is the methodology of selecting the inputs 

and outputs of the ANFIS model and FLC in this thesis. The behaviour 

of the PV panels in different environmental conditions during data collection 

and the statistical analysis methods are utilising to study the PV parameters 

relationships. Hence, the short circuit current and open circuit voltage are used 

as inputs to PV panels instead of solar irradiation and cell junction temperature. 

The reason for this substitution is the difficulty of measuring the cell junction 

temperature. In addition, the simplicity of 'Sc measurement gives a solution 

for the problem of having to deploy a solar irradiance external sensor. 

In addition, the input and output parameters of FLC are selected to recognise 

the behaviour of all parts of MPPT system. Moreover, the input and output 

of FLC are selected carefully to give sufficient and simple information for the 

FLC. The input voltage of DC-DC converters and the predicted output of 

ANFIS model Vmax are used to detect the deflection of operating point on the 

I-V curves. In addition, ISC is utilised to recognise the irradiance level and the 

amount of power that can be generated from the PV panels. Furthermore, 'Sc, 

is utilised in assembling the activated rule at certain irradiance level. 
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1.5 Research methodology 

1.5 Research methodology 

The following five phases form the methodology of achieving the objectives of this 

research: 

" The research started with a literature review. Thus, the drawbacks in differ- 

ent literature are recognised. In addition, three publications that I have been 

published in [11] [12] [10] before starting the PhD research provided an under- 

standing of the problems of locating the MPP and the research requirements. 

" The data is collected in two seasons in four areas. These choices have been 

made to provide comprehensive learning data. In addition, the behaviour of 

PV panels under different environmental conditions is observed. After that the 

data is sorted and the core data is obtained. 

9 The data is analysed using statistical tools to study the relationships between 

various parameters of PV panels. 

9 The ANFIS model is established and it is evaluated by the test data to confirm 

the performance of ANFIS model and determine the gaps in collected data. 

9 The actual data is evaluated more than one time. During these evaluations 

the ANFIS models are tested with new points and learning data is added until 

reaching wide-ranging ANFIS models. 

" After that the subtractive clustering is used to generate new ANFIS models to 

be compared with other models. 

" The final selected model is improved by Least square estimation using ANFIS 

function in Matlab. 

9 The selected ANFIS model is developed and generalised with PU data of two 

types of PV panels. 

9 The final general ANFIS model is tested with different types of PV panels. 
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1.6 Thesis outline 

" The output of the developed ANFIS model is used as a reference voltage of 
FLC. The FLC is designed to achieve the best promising performance in dif- 
ferent environmental conditions, different load types, and two types of DC-DC 

converters. The developed controller is modified to apply for all single crystal 

and polycrystalline PV models. A few modifications are executed to construct 

an extensive FLC for all PV system with mentioned panels. 

" Two simulation models using Matlab tools are designed to test and improve the 

performance of final FLCs. Hence, the MFs and rules are modified to achieve 
the best performance and to provide the MPPT system requirements. 

9 Check data is used to test the performance of all parts of MPPT system. In 

addition, the developed MPPT system is compared with the direct coupled 

system. 

1.6 Thesis outline 

This thesis is organised into eight chapters: 

Chapter 2 presents the background of the MPPT configuration and the tools 

used in the developed approach. The following items are included in this chapter: PV 

system, DC-DC converter, fuzzy inference system, ANFIS, linear correlation analyses 

and clustering methods. 

Chapter 3 investigates other MPPT approaches reported in the literature. It 

starts with conventional searching techniques such as perturb and observation meth- 

ods, incremental conductance methods and computational methods. Furthermore, 

the chapter introduces three applied artificial intelligent techniques for the I\IPPT 

system. In addition, a comparison between on line and off line fuzzy methods is 

discussed in this chapter. Finally the chapter gives an introduction to the developed 

approach. 

Chapter 4 discusses data collection. 
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1.6 Thesis outline 

Chapter 5 introduces several ANFIS models, which are assembled to predict 

the maximum power point voltage of PV panels. Furthermore, statistical analysis 

methods are utilised to identify the relationships between different parameters of PV 

panels. 

In chapter 6 the FLC is developed to solve the problems that face the I\IPPT 

system of PV system. In addition, the maximum power point problems are described 

in this chapter. Finally, the two general FLC are designed to control the duty cycle 

of Buck-Boost converter and Buck converter. 

Chapter 7 includes the MPPT system simulation models description and the 

test of developed maximum power point tracking system results which take account 

of the different situations of input data. 

Chapter 8 highlights the conclusions, recommendations and future work. 
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Chapter 2 

Background 

2.1 Solar energy and solar electricity 

Solar radiation is composed of discrete packets of energy known as photons. The range 

of wavelengths that the sun emits is known as the solar spectrum. The majority of 

solar radiation lies within the wavelength range of 0.2 and 2.5 mm. The intensity of 

solar radiation (J/s or W/m2) is known as the Radiant Flux Density, often referred 

to as irradiance or insolation. The irradiance level outside the Earths atmosphere is 

approximatelyl. 367 kW/m2. The surface of the Earth irradiance levels is lower than 

this value. For example, the equator at sea level irradiance is approximately 1kW/m2 

[40]. Solar radiation reaching the surface of the Earth has two components - direct 

or beam radiation and diffuse radiation. The beam radiation is the radiation that 

arrives directly from the sun. The diffuse radiation is the portion of solar radiation 

which is scattered in the Earth's atmosphere. On a clear day beam radiation makes 

up about 90% of the total reaching the Earth's surface [40]. The ratio of direct and 

diffuse radiation changes with the quantity of cloud and haze in the atmosphere. 

The solar collectors that convert radiation into electricity can be either flat-plane 

collectors or focusing collectors [52] [40]. 

Solar electricity is the technology of converting solar radiation into electricity. 

This electricity is generated using photovoltaic (PV) cells. PV refers to an elec- 

tric voltage caused by light. Solar electricity is already used in many applications 

such as lighting, water pumping, and powering telecommunications stations [76] [8]. 

Photovoltaic systems are solar energy supply systems, which either supply power di- 

rectly to the electrical equipment or feed energy into the public electricity grid. The 

PV system in many applications generally consists of three main parts: PV panels, 

loads, and control unit. The PV panel is the most important part of a PV system 
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2.1 Solar energy and solar electricity 

[76] 
. 

Photovoltaics are generally considered to be an expensive method of producing 

electricity. However, in the off -grid situations photovoltaics are very often the most 

economic solution to provide the required electricity service. The growing market all 

over the world indicates that solar electricity has entered many areas in which its 

application is economically viable [8] [76]. 

2.1.1 Photovoltaics cells and photovoltaic generator 

Photovoltaic materials produce electrical power from sunlight. The basic component 

of photovoltaic power conversion is the solar cell. The most common solar cell is a 

p-n junction, where the p-type is a semiconductor positive material and the n-type 

is a semiconductor negative material. Solar cells are most commonly fabricated from 

silicon, however other materials such as cadmium and gallium may also be used. Four 

types of silicon semiconductor devices are in use: single crystal, polycrystalline, thin 

film polycrystalline and amorphous [51]. Single crystal silicon has a highly ordered 

atomic structure and cells made from it have the highest photovoltaic conversion 

efficiencies (18%). Polycrystalline silicon consists of many crystalline grains; the 

conversion efficiency of a solar cell manufactured from polycrystalline silicon is around 

13%. A standard solar cell is typically cut from a large ingot of polycrystalline silicon 

and is typically between 200 and 400 microns thick. The photovoltaic (PV) cell is 

simply a diode of large area forward bias with photovoltaic as explained in [8] [76]. 

Photovoltaic cell operation 

Kirchoff's law states the relationship between three main variables voltage (V), cur- 

rent (I) and resistance (R). The mathematic expression of Kirchoff's law is: 

IR (2.1) 

The electrical current I changes linearly with V. The slope of this linear relationship 

depends on electrical resistance R, which equals (1/R). The voltage of main electricity 
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2.1 Solar energy and solar electricity 

remains constant; therefore, the current changes according to resistance magnitudes. 
The power delivered to the load is being calculated from Equation 2.2: 

P=V*I (2.2) 

The relationship between current, voltage and power of PV panels is not simple 

as in electrical traditional sources. The load resistance affects the output voltage and 

current of the PV cell. When the resistive load is decreased the voltage decreases 

and current increases. Hence, when the resistance equals zero, the terminal voltage 

of PV cell equals zero and current is maximised. This point is called the short 

circuit current point (IsC). Point M on Figure 2.1 represents the short circuit current 

point. In addition when the resistance is increased until high Ohms value, the current 

decreases until it reaches zero and the voltage is maximised. The maximum voltage 

point is called open circuit voltage point (Voc). Point N on Figure 2.1 represents 

the open circuit voltage point. The current flow from the PV cell is affected by the 

load voltage. The relationship between load voltage and cell current is a decreasing 

relationship and this relationship is not linear as seen on the current voltage curve 

(I-V curve) of PV cell in Figure 2.1. When the PV cell is loaded, the created load 

voltage acts as a reverse voltage opposite the PV cell voltage. This voltage generates 

a reverse current called a dark current (ID), which flows in the opposite direction of 

the generated photo current (IPh) from the PV cell. Accordingly, the output current 

of PV cell is the difference between these two currents. 

PV cell, equivalent circuit and characteristics 

The simplified equivalent circuit of a PV cell that is shown in Figure 2.2 consists of 

a current source which is connected parallel with a diode, internal series resistance 

of PV cell (RS) and a shunt resistance (Rp). This resistance represents the electrical 

resistance between the PV solar cell and the PV panel frame. The current source 

generates the photo current IPh, which is directly proportional to the irradiance level. 
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Isc 

Imax 

Figure 2.1: I-V curve and P-V curve of a PV cell 

Figure 2.2: The simplified equivalent circuit of a PV cell 
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2.1 Solar energy and solar electricity 

The relationship between PV cell current and load voltage is an exponential re- 
lationship as seen in Equation 2.3 and Equation 2.4: 

I=IPh - ID (2.3) 

I= IPh - lo exp(q(V 
+ RsI)) 

-1-V+ 
IRs 

(2.4) 
AKBTC Rp 

Where 

ID = Is 
[exp(q(V + RsI)) 

-1_V+ 
IRs 

(2.5) 
AKBTC RP 

Where I is output current, ID is the diode current which equals the dark current. Is is 

the saturation current, A is the ideality factor, q(C) is the electronic charge, KB(J/K) 

is Boltzmann's gas constant and Tc is the cell junction temperature. The simplified 

equivalent circuit in Figure 2.2 can be represented in Equation 2.4. The output 

current of solar cell in Equation 2.4 is a function of output cell voltage considering 

all constant parameters shown in Figure 2.2 [51] [52]. Normally, the series resistance 

is very low. Also, with good isolation between the PV cell and the panel frame, Rp 

becomes very high at normal operating voltage. Therefore Rs and Hp is neglected 

in Equation 2.4. Hence, the ideal PV cell equation can be expressed as: 

I= Iph - Io exp( 
q(V) )-1 (2.6) 

AKBT 

The PV cells are connected in series and parallel to generate a sufficient voltage 

and current for the load. These connected cells are called a PV generator or PV. 

Photovoltaic Generator 

The PV generator is normally composed of N panels in series and M panels in parallel. 

The most common panels have 30 to 36 crystalline silicon cells in series. All cells in 

PV panels are identical [76]. When PV cells are connected in series, the total current 

remains constant, which is equivalent to the current of one cell, however the voltage is 

multiplied. In contrast, if the cells are connected in parallel, the current will increase 
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2.1 Solar energy and solar electricity 

and the voltage remains constant. Hence, I-V curve characteristics of one panel can 
be derived by scaling the characteristic of one cell voltage with the number of cells in 

series. In addition, the I-V characteristics of the whole generator can be derived by 

scaling the characteristics of one panel with a factor N in voltage and Ivi in current. 

2.1.2 Electrical I-V curve characteristics 

I-V curve characteristics describe the PV cell electrical terminal characteristics under 

the influence of environmental conditions such as irradiance and ambient tempera- 

ture. The PV cell can operate at any point on the I-V curve depending on the 

intersection between I-V curves and load line curves. Short circuit current, open 

circuit voltage and maximum power point (MPP) are three significant points that 

identified the I-V curve and P-V curve of PV cells. 

Short circuit current and Open-circuit voltage 

When the positive terminal is connected with the negative terminal directly the 

operating voltage of PV cell is approximately zero. Therefore, the output current 

is the short circuit current. At normal level irradiance and ambient temperature, 

the short circuit current equivalents the IPh. So the short circuit current is directly 

proportional with the irradiance level G (W/m2) as seen in Equation 2.7 

ISC=IPh=K*G (2.7) 

Where K is a constant depending on cell area and PV cell type efficiency and G 

is the irradiance level (mW/cm2) 

When the PV cell is disconnected from any external load, the external current I 

equals zero and the generated photovoltaic current by the incident radiation circulates 

back through the diode. 

Let I=0 in Equation 2.6 the open circuit voltage of the PV cell can be obtained 

15 



2.1 Solar energy and solar electricity 

from Equation 2.8: 

AKBTc 'ph + IS Voc =q In( 
Is 

) (2.8) 

The open-circuit voltage corresponds to the voltage drop across the p-n junction 

when it is traversed in the IPh. The photo current increases linearly with irradiance, 

therefore the open circuit voltage in Equation 2.8 increases logarithmically with irra- 

diance level. Also, from Equation 2.8 the open circuit voltage decreases linearly with 
increases in cell junction temperature. 

Maximum-power operation 

Maximum power point (Pmo,., ) is obtained when the multiplication of voltage and 

current is maximum. The maximum operation voltage and current at this point are 

Vmo,, and 'max As shown in Figure 2.1, the PV cell operates at maximum power 

point at only one point on I-V curve. When the solar cell is loaded, the PV cell 

can operate at any point on I-V curve. The power delivered to the load changes 

according to the intersection between PV curves and load curves. Matching between 

PV systems is very difficult due to continuous changes in maximum power point with 

different environmental conditions. 

2.1.3 Effect of environmental influences on PV curves char- 
acteristics 

Irradiance level, ambient temperature and wind speed are the main environmental 

factors that affect PV systems. Ise, Voc, Vmax and 'max are the main characteristics 

that specify the I-V curves of PV panels [51] [52] 
. 

I-V curve characteristics and cell 

junction temperature of PV panels are adjusted due to any changes in environmental 

conditions. This section will demonstrate how PV output characteristics and cell 

junction temperature changes with environmental conditions. Furthermore, the effect 

of cell junction temperature on electrical characteristics of PV curves panels will be 

addressed in this section. 
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2.1 Solar energy and solar electricity 

Effect of irradiance level on PV curves characteristics 

There is a directly proportional relationship between irradiance level and the output 

power of PV panels [51] [26]. Figure 2.3 shows how I-V curves change with irradiance. 

In addition, Figure 2.3 shows how maximum output power increases with the irra- 

diance level when the cell temperature remains constant. The change in irradiance 

level leads to changes in voltage and current those specify the MPP. Generally, any 

increment in solar radiation increases 'max Maximum power voltage increases theo- 

retically with solar radiation when there are no changes in cell junction temperature 

[51] [52] 
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Figure 2.3: I-V and P-V curves at different irradiance level 

The short circuit current of solar cells depend exclusively and linearly on the 

irradiance level [52]. It is of the order of 30mA/cm2 for an irradiance of 1kW/m2 for 

single-crystal silicon cell at 25 °C. The photocurrent increases 0.1% per °C which is 

neglected at normal operating conditions [51]. The I-V curve in Figure 2.3 shows how 

Isc increases with solar irradiation. Equation 2.8 shows a logarithmic relationship 

between V°C and irradiance level [511. After sunrise the Voc increases slightly with 

increase in irradiance level. It is of the order of 590mV for 1KW/m2 of irradiance 

and 25 °C cell temperature for a single crystal silicon cell [27] [51] 
. 
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Effect of environment conditions on cell junction temp 

"The working temperature of the PV cells depends exclusively on the irradiance and 

ambient temperature, according to the following linear relationship" E. Lorenzo, page 

number 96 [52]. 

Ts =Ta+C*G 

" TS Cell temperature in OC 

" TQ Ambient temperature in °C 

9G Irradiance level (mW/cm2) 

(2.9) 

The value of the constant C is between 0.27 and 0.32°C/(mW/cm2) for modules 

currently in the market. This assumption leaves aside the effect of wind velocity 

on Ts. There is a constant increase in PV cell temperature with solar irradiation 

when the wind effect is neglected. In other words, heat dissipation from the cells to 

the environment is taken to be dominated by conduction through the encapsulation, 

rather than convection from the surface by wind effect. Generally, the wind decreases 

the surface temperature of the solar cell which finally decreases the cell junction 

temperature [52]. 

Effect of cell junction temperature on MPP and V0 

Ambient temperature and current flowing through PV solar cells increases the PV 

cell junction temperature. Junction cell temperature is the main factor that reduces 

the maximum power output of the PV panel [51]. Figure 2.4 shows how the I-V 

curves and power curves (P-V curves) change with surface temperature of PV cell as 

a result with cell junction temperature. It is observed from power curves in Figure 

2.4 how maximum power generated from a PV panel decreases due to the increase 

in cell temperature when the irradiance remains constant. In addition, Figure 2.4 

shows how V,,,, Q, x decreases with cell junction temperature [51] [52]. 
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Figure 2.4: I-V and P-V curves at different surface temperature 

The cell junction temperature increases due to ambient temperature and solar 

irradiance in Equation 2.9. Therefore, this increase in junction temperature reduces 

the Voc as shown in Figure 2.4. There is strong linear dependence between Voc 

and cell junction temperature as shown in Equation 2.8. The Voc would decrease 

by 2.3mV/°C between 20°C and 100°C when irradiance remains constant [51] [52]. 

Neglecting the wind effect at constant irradiance it is easy to compute the cell junction 

temperature from the drop in VOC of PV cell. 

To compute the operating points on I-V curves it is necessary to measure the 

irradiance level and cell junction temperature. The irradiance level can be measured 

using an external sensor. However, the problem is the difficulty of measuring or 

deducing the cell junction temperature from different environment factors or electrical 

parameters. 

There are three main difficulties in finding a relationship between Voc and irra- 

diance level and cell junction temperature: 

1. A nonlinear relationship between irradiance and open circuit voltage. 

2. Effect of ambient temperature and irradiance level on cell junction temperature. 

3. The difficulty of measuring wind effect on the cell junction temperature as a 

result on Voc 
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2.1 Solar energy and solar electricity 

2.1.4 Load effect in operating point of PV solar panels curves 

The load has no effect on I-V curve characteristics, however the load affects the 

operating point on I-V curves. When the load is directly coupled to the PV panel 

this leads to a mismatch between the actual and the optimum operation voltage 

of the solar generator which decreases the generated power from PV panels. 
Operating voltage (Vop) and operating current (lop) on I-V curves are load dependent 

points. The intersection between the different load line and I-V curves under different 

environmental conditions identifies the operating point on I-V curves as shown in 

Figure 2.5 for resistive and battery loads. If there are any changes in environmental 

conditions, the I-V curve is modified, as a result the operating voltage and current 

continuously changes. Mostly, these intersection points are not the Pmax as shown in 

Figure 2.5. Hence, the load drives the PV panels to operate faraway from maximum 

power point as will be discussed in chapter 7. 
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Figure 2.5: I-V curves with different types of load 

Type of load strongly affects the range that locates the operating point in I- 

V curves. There are two main types of load that can be supplied from the PV 

system: constant voltage load such as battery load, and resistive load such as DC 

pumps. Battery is the most common load in a stand alone PV system. When 
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12V lead acid battery is at full discharge, the open circuit voltage is approximately 

11.5V. During charging time the battery voltage raises to 14.6 V when the battery 

is in full charge [26] [22]. Maximum power point voltage of 36 series single crystal 

panel and polycrystalline panel at normal environment operating is between 12V 

and 18V. Figure 2.5 shows the intersection between battery load curves and I-V 

curves in different situations. It is observed from the constant linear voltage curves 

of the battery load that the battery voltage is varied in the range near to the I`IPP 

location. However, resistive load drives the PV panel to operate in a wide interval on 

I-V curves due to the linear relationship between current and voltage that concludes 

from Kirchoff's law as seen in Equation 2.10: 

_I 
I 
RV 

(2.10) 

Thus, the I-V curves of PV panels and the resistive load curves can only intersect at 

MPP when Vma, x and Imax pass through a value that is given in Equation 2.11: 

R_ 
Umar 

I 
max 

(2.11) 

The changes in Vma, x and I.,,,, ax position due to continuous changes in environmental 

conditions leads to low chance of operating the PV system in the maximum power 

point that is recognised in Equation 2.11. In addition, Figure 2.5 shows how resistive 

load curves could operate the PV panels faraway or close to the maximum power 

point. 

2.2 DC-DC converters 

DC-DC converters are widely used in photovoltaic generating systems as an interface 

device between the photovoltaic panel and the load. It is used for matching between 

load voltages and maximum power point voltages of PV panels. The main role of the 

DC-DC converter is primarily to convert an input power Pm= V,, *IZ7,, into output 

power Po= Vo*Io with the best possible efficiency. The DC-DC converter is used to 
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step up or step down the input voltage. The efficiency (i') of the DC-DC converter 

can be calculated from equation 2.12: 

Po Vo*Io 
(2.12) Pin Vin * Iin 

Therefore, the relationship between input and output parameters can be expressed 

as in Equation 2.13 

VO * 10 =, q*V, * I2T,, (2.13) 

The efficiency remains roughly constant at certain values of converter voltage and 

current. Any increase in Vi, or Ij,., in Equation 2.13 lead to either increase in V0 or 

Io. Three converters demonstrate the main types that have been used to step up 

and step down the input voltage of DC-DC converter: 

1. Buck converter or step down converter. 

2. Boost converters or step up converter. 

3. Buck-Boost converter or step up/ step down converter. 

All of the above converters have an inductor capacitance (LC) electrical circuit. The 

LC circuit in different types of DC-DC converters is governed electronically. The 

duty cycle (D) of the electronics switch is controlled using a pulse width modulator 

(PWM). The duty cycle of the electronics switch can be expressed in Equation 2.14: 

D= 
ton 
T 

Where 

(2.14) 

"T is the switch oscillation period or time period of square pulse that controls 

the electronics switch. 

" t, is the on time of controlling square pulse. 
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The DC-DC converters can operate in two separate modes: continuous current 

conduction and discontinuous current conduction. These two modes have significantly 
different characteristics. The relationship between duty cycle of electronics switch 

and voltage ratio is simpler in continuous mode operation. If the current through the 

inductor remains greater than zero, the converter will operate in continuous mode. 
The frequency of PWM pulse signal times the inductor inductance (L) should be 

enough higher than the load resistance to prevent the current of inductor to reach 

zero value. Hence, the converter parameters and its control frequency should be 

designed to operate in selected mode. This design has to consider the maximum 

and minimum required current and voltage of appliances. In most applications, the 

converter is designed to operate in continuous current conduction. To operate in 

this mode, the converter parameters are selected to maintain the current through the 

inductor does not reach the zero stipulation. [65]. 

The following summary specifies the three earlier mentioned DC-DC converters. 

It has assumed the converters are designed to operate in continuous mode conduction 

[88] [62]. 

2.2.1 Buck converter step-down converter 

This type of converter is used in applications that required stepping down the input 

voltage. A simple relationship between voltages is obtained by supposing that no 

voltage drops across a transistor or diode in Figure 2.6 during the on time. Applying 

the Buck converter in circuit that is shown in Figure 2.6 the voltage ratio (!. O) can 

be obtained from Equation 2.15: 
VO 
Vin 

Where D lays between 0 and 1 

(2.15) 

A linear relationship between voltage ratio and duty cycle can be observed From 

Equation 2.15. That means the duty cycle changes with constant rate with respect 

to the change in voltage ratio. 
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V 

i 
Figure 2.6: Buck converter circuit 

2.2.2 Boost converter step-up converter 

) 

The schematic in Figure 2.7 shows the basic boost converter. This circuit is used when 

a higher output voltage than input is required. The voltage ratio can be obtained 

from Equation 2.16: 

Vo 
_1 Vz, Z 1-D 

(2.16) 

The duty cycle in Equation 2.16 changes between 0 and 1. Therefore, the voltage 

ratio is always greater than 1 and that means this converter is used to step-up the 

input voltage. The relationship between voltage ratio and duty cycle is shown in 

Figure 2.8. 

Figure 2.8 shows a nonlinear relationship between voltage ratio and duty cycle 

of Boost converter. This relationship shows a higher change in voltage ratio due to 

changes in the duty cycle when voltage ratio becomes bigger. 

2.2.3 Buck-Boost converter 

With continuous conduction operation the voltage ratio of Buck-Boost converter in 

the Figure 2.9 is expressed in Equation 2.17: 

VII 
=D 

(2.17) 
V in 1-D 
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Figure 2.8: Relationship between duty cycle and voltage ratio of Boost converter 

25 

Figure 2.7: Boost converter circuit 



2.2 DC-DC converters 

"1 

Ip 

This type of converter can be used to step up and step down the input voltage. 

The main application of the buck-boost converter is in regulated power supplies, 

where the output load voltage can be either higher or lower than the power supply 

voltage. The converter works as a step up when the duty cycle change between 0.5 

and 1 and as a step down when the duty cycle changes between 0 and 0.5. Figure 

2.10 shows how the voltage ratio changes with changes in the duty cycle. 

2.2.4 Select and sizing of DC-DC converters 

To select the appropriate DC-DC converters that is required to interface between the 

PV panels and the desired load voltage, five main criteria should be studied carefully 

[62] [65]. 

1. Maximum and minimum input voltage of PV system. 

2. Maximum and minimum output load voltage. 

3. Maximum and minimum input and output current. 

4. Efficiency and cost of DC-DC converters that is useful for a specific load. 
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Figure 2.10: Relationship between duty cycle and voltage ratio of Buck-Boost con- 
verter 

5. The energy that can be saved by different available converters. 

"Practically, the Buck-Boost converter which has a MOSFET electronics switch 

and a very low resistance inductor, achieving efficiencies in regards to input power 

higher than 95% and hardly 2 or 3% lower than the buck and boost topologies" 

J. M. Enrique et al, page number 18 [25]. This difference in efficiency comes from 

electronics switch utilisation factor Po/PT, where Po is the output power and PT 

is the rated power of the electronics switch. "The switch utilisation of the Buck 

and the Boost converter is very good. However, the Buck-Boost switch has a poor 

utilisation factor. The maximum switch utilisation factor is 0.25 at D=0.5, which 

corresponds to the unity voltage ratio" Mohan et al, page number 195 [65]. If it is 

necessary to compare both higher and lower output voltages with the input voltage, 

the Buck-Boost converter should be used. Otherwise it is preferable to use buck 

or boost converters depending on the application requirements. The design of DC- 

DC converters requires compromise among switching frequency, inductor sizes, and 

switching losses [25]. 
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Most PV system applications need the Buck-Boost converter which can be used 
for step up/step down the voltage of PV systems. In addition, the Buck converter 

can be used for the battery load applications which can be operated on voltages less 

than Vma, 
i. especially in low ambient temperature regions. Moreover, Buck converters 

is more efficient than Buck-Boost converters. Hence, we will focus on these two 

converters in chapter 6 for the above reasons. 

DC-DC converters are applied in PV systems to match between load voltage and 

the V�lo, x of the PV system. Different techniques are implemented to control the duty 

cycle of the electronics switch such as perturb and observation, incremental con- 
ductance, computational and computational artificial intelligence. Fuzzy logic is an 

artificial intelligence technique which achieves a good performance in several appli- 

cations. It can be applied to control the duty cycle of different DC-DC converters to 

track the maximum power point at different load types and in different environmental 

conditions. The FLC is nonlinear and adaptive in nature. Morevere, the FLC gives a 

robust performance under parameter variations. In next section we will introduce an 

overview of fuzzy inference system, which can be utilised as a control system for the 

duty cycle of DC-DC converters. 

2.3 Fuzzy inference systems 

Fuzzy logic deals with the concept of the values between completely true and com- 

pletely false. Fuzzy logic has mostly been applied in control systems [79]. Fuzzy 

controllers apply decision rules (if-then rules) by making use of critical variables to 

interpolate the output between the crisp boundaries [79] [83]. 

Fuzzy rule based systems or fuzzy inference systems are the most important mod- 

elling tool based on fuzzy set theory. The systems can be applied in many applications 

such as automatic control, expert systems, pattern recognition, data classification and 

time series prediction [79] [39]. The main five construction operations of fuzzy rules 

based system can express as follow[38] [36] [79]: 

1. A database which defines the membership functions of the fuzzy sets used in 
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the fuzzy rules. 

2. A fuzzification interface which transforms the crisp inputs into degrees of match 

with linguistic values. 

3. A rule base containing a number of fuzzy if-then rules. 

4. A decision-making unit which performs the inference operations on the rules. 

5. A defuzzification interface which transform the fuzzy results of the inference 

into a crisp output. 

The block diagram in Figure 2.11 shows the construction operations of fuzzy inference 

system (FIS) [39] [79]. 

1Fuzzificn [__RuIeJ_. 
*1_[0_PJDefuzzificatian autpu 

Figure 2.11: The block diagram of FIS system 

2.3.1 Fuzzification 

Fuzzification is the process of converting crisp inputs to fuzzy memberships in order 

for them to be used in a fuzzy inference system. Fuzzy memberships functions(N'IFs) 

can takes various form of fuzzy set shapes such as triangular MFs which have many 
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shapes like normal fuzzy and subnormal or convex or nonconvex. In addition, fuzzy 

MFs can takes other forms such as Gaussian MFs, General bell MFs and sigmoidal 

MFs [79]. The MFs that are used to give a good response in the fuzzy system are 

determined by the expertise knowledge. 

Here we describe the general Bell MF. Three parameters that specify the bell 

MF in Figure 2.12 are a, b and c. The centre of bell is determined by the constant 

c. When constant a increases the width of bell MF will increase. Third constant 

b controls the slope of the step up and step down of bell MF. This slope can be 

obtained from: (slope=2 ). The MF of crisp x can be obtained from Equation 2.18: 
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Figure 2.12: Bell MF 

(2.18) 
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2.3.2 Fuzzy rule-based systems 

The antecedents of the rules may include any number of terms conjoined by "and" or 

disjoined by "or". The fuzzy rules are used in the area of automatic control, a fuzzy 

controller has to able to act on fuzzy input data to create fuzzy output data. In this 

case the rule base which comprises the process information comes in the form [79]: 

Rulei If xl is Ali and x2 is Ali 
................. and xn, is A,,, i Then yZ is Bi 

Where Abi, Bi are fuzzy sets and xj, y2 are crisp values in these sets. 

We can write many rules if there are many antecedents and as a result many conse- 

quents. Furthermore, the rules can state multi antecedents and multi consequent. 

2.3.3 Fuzzy Inferencing 

Fuzzy outputs need to be converted into a scalar output quantity so that the nature 

of the action to be performed can be determined by the system. Within the process of 

converting the fuzzy output, there are several types of fuzzy reasoning [36]. Here two 

types of fuzzy inference system will be introduced. These two types have been widely 

employed in various applications. The differences between these two fuzzy inference 

systems lie in the consequents of their fuzzy rules, and thus their aggregation and 

defuzzification procedures differ accordingly [39] [79]. 

The Mamdani approach 

There are different types of t-norm which can be used for the connectives of an- 

tecedents. The Mamdani method gives up different fuzzy collective consequents for 

the rules used. For example max-min is used as the inference method in the Mamdani 

approach using either scalar values or graphical techniques. The Mamdani inference 

system has two rules and two inputs as inputs (x and y) that are fuzzified by two 

MFs groups of sets, (A1, A2) and(B1, B2), and one output of MFs sets (C1, C2). The 

inference system can be expressed in scalar technique as follows: 

Rule,: If x is Al and y is Bl Then z is Cl 

Rule2: If x is A2 and y is B2 Then z is C2 
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By applying min Conjunction connective (A) the output Wl and TI'2 can be obtained 
from: 

Wl =pA1 (x) AµB, (y) 

W2 =µA2 (x) Aµ B2 (y) 

and 

µ Cfi (x)= Wl Aµ C1 (z) 

µ Cf2 (x)= W2 Aµ C2 (z) 

Where p is the membership function of different variables. 

Finally max Disjunction connective (V) is applied: 

µC (z)= µ Ch (x) Vµ Ch (x) 

This can be applied for n numbers of fuzzy sets and k numbers of rules. 

In addition, the graphical Mamdani (max-min) inference methods with two crisp 

inputs and two rules is shown in Figure 2.13 [39]. The overall fuzzy output is derived 

by applying Mamdani operation to the qualified fuzzy outputs and it uses the appro- 

priate defuzzification method to find the crisp output. The different defuzzification 

techniques will be explained later in this section [39] [79]. 

The Takagi-Sugeno approach 

The Takagi-Sugeno method is a type of a fuzzy system, which avoids defuzzification. 

This method was proposed to develop a systematic approach to generate fuzzy rules 

from a given input-output data set [36] [78]. Typical rules in a Takagi-Sugeno model 

have two inputs xl and yl, and outputs zl and z2 have the form: 

Rule 1 xl is Al and yl is Bl Then z1= fi(xi, yi) 

Rule 2 xl is A2 and yl is B2 Then z2= f2(xl)yl) 

Where z1iz2 are crisp functions in the consequent which are usually polynomial. The 

output level ZZ of each rule is weighted by the firing strength WZ of the rule. For 

example, for an AND rule with input xl and input yl, the firing strength is: 

W1 = IL A1(xl) A it B1(yl) 
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Figure 2.13: Maindani max-min fuzzy inference model 

W2=µA2(xl )A B2(y1) 

Z=ZI *Wl +Zz*IY2 (2.19) 

Where Wi and W2 are obtained using the same method that was shown in the 

Maindani approach in Figure 2.13. It is devious from Equation 2.19 that there is no 

need for defuzzification, because we get a crisp value in the output. This method 

avoids the time consuming process of defuzzification [36]. 

2.3.4 Defuzzification 

The process of converting the fuzzy output to crisp values is called defuzzification. Be- 

fore an output is defuzzified all the fuzzy outputs of the system are aggregated with 

union operator as described in the Mamdani approach. There are many different 

methods of defuzzifying fuzzy output function such as: max membership principle, 

centroid method (centre of area method), weighted average method, mean max mem- 

bership, centre of sums method, centre of largest area and first or last of maxima [791 
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[47]. Two important defuzzifications methods will be presented in this section. 

Centre of area method 

The most common method is the centre of area method which finds the centre of 

gravity of the solution fuzzy sets. This technique was developed by Sugeno in 1985 

[79]. This is the most commonly used technique and is very accurate[79]. 

The centroid defuzzification technique can be expressed as: 

X* = 
f µ; (x)xdx 

(2.20) 
µ; (x)dx 

Where x* is the defuzzified output, µi is the aggregated membership function and x is 

the output variable. The boundary of integration is determined as the accumulative 

integration of each underline area in Figure 2.13. 

Max membership principle 

The max membership principle gives the output with the highest membership func- 

tion as seen in Figure 2.14 [95]. This defuzzification technique is very fast but is only 

accurate for peaked output [79]. This technique is given by Equation 2.21: 

ýýA(x*J ? /tA(x) 
for all xcX where x* is the defuzzified value 

(2.21) 

2.4 ANFIS: Architecture and learning algorithm 

"An innovative approach to constructing a computationally intelligent system has 

just come in to the limelight. These intelligent systems are supposed to possess hu- 

manlike expertise within a specific domain, adapt themselves and learn to do better 

in a changing environment such as; Neural networks that recognise patterns and a 

adapt themselves to cope with changing environment; fuzzy inference system that 

incorporate human knowledge and perform inferencing and decision making. The 
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Figure 2.14: Max membership 

complementary approaches, when used together with certain derivative-free optimi- 

sation techniques, result in a novel discipline called neuro-fuzzy and soft computing" 
Jang, page number 1 [39]. 

2.4.1 ANFIS architecture 

ANFIS has a network-type structure similar to that of a neural network, which maps 

inputs through input membership functions and associated parameters. ANFIS uses 

a hybrid learning algorithm to identify parameters of Sugeno-type fuzzy inference 

systems [36]. Figure 2.15 represents the ANFIS architecture with x and y inputs and 

f output. Al and A2 are the fuzzy memberships that fuzzified input x. In addition, 

Bl and B2 are the fuzzy memberships that fuzzified input y [36] [39]. Sugeno ANFIS 

has rules of the form [71]: 

If x is Al and y is Bl THEN fl = p1x + qly + rl 

If xis A2 andyisB2 THEN f2=p2x+q2y+r2 

For the training of the network, there is a forward pass and a backward pass. We 

now look at each layer in turn for the forward pass. The forward pass propagates the 
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Figure 2.15: An ANFIS architecture for a two rule Sugeno system 

input vector through the network layer by layer. In the backward pass, the error is 

sent back through the network in a similar manner to backpropagation [711. 

Layer 1: 

The output of each node is: 

Oi, i = PAS (x) for i=1,2 

°1, i = ILB, -z 
(X) for i=3,4 

So, the O1, i(x) is essentially the membership grade for x and y. The membership 

functions could be any shaped function like that described before. The parameters 

of membership function are called the premise parameters. 

Layer 2: 

Every node in this layer is fixed. This is where the t-norm is used to `AND' the 

membership grades - for example the product: 

°2, 
i = Wi - liAy(X) llBz(X) )i=1,2 

Layer 3: 

Contains fixed nodes which calculate the ratio of the firing strengths of the rules: 

Wi 03i=w 
i =wi +wa 
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Layer 4: 

The nodes in this layer are adaptive and perform the consequent of the rules: 

04, i = wifi =J (pzx + qjy + rZ) 

The parameters in this layer (p2, qj, ri) are to be determined and are referred to as 
the consequent parameters. 

Layer 5: 

There is a single node here that computes the overall output: 

Ti 
wz i 05, 

i = fi = 
ýZ 

(2.22) 

2 
Ei wi 

2.4.2 Learning algorithm 

In general, ANFIS is used to predict the output data parameters from inputs. ANFIS 

uses training data to adapt the Sugeno-type model to perform a high accuracy in 

output data prediction. The Sugeno-type model has two type of parameters [37] [39]: 

" Nonlinear parameters or membership functions parameters (premise parame- 

ters). 

" Linear parameters or rules parameters (consequent parameters). 

The input output training data is used with different learning algorithm strate- 

gies to adapt the premise parameters and consequent parameters. The least-squares 

estimate (LSE) method and the backpropagation gradient descent method are used 

for training FIS membership functions parameters to estimate a given training data 

set [39]. 

LSE learning algorithm calculates the square error between training data output 

and predicted output that is obtained from the Sugeno-type model. This error is 

utilised to adapt the consequence parameters of the Sugeno parameters. 
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The backpropagation gradient descent method uses the error between output 

training data and predicted output in backward pass to calculate the error in different 

nodes. Accordingly, the learning rate is calculated to adapt the Sugeno parameters. 
There are four methods are used to update the parameters. These methods are listed 

below according to their computational complexities [39] [44]: 

1. Gradient descent only: all parameters are updated by the gradient descent. 

2. Gradient descent and one pass of LSE: the LSE is applied only once at the very 

beginning to get the initial values of the consequent parameters and then the 

gradient descent takes over to update all parameters. 

3. Gradient descent and LSE: this is the proposed hybrid learning rule. 

4. Sequential approximate LSE only. 

The selection of above methods should be based on the trade-off between com- 

putation complexity and resulting performance. Jang in [36] used the third method, 

which achieves a high performance. In hybrid learning rule algorithm, ANFIS uses a 

two pass learning algorithm: 

1. Forward pass: here consequent parameters are computed using a LSE algorithm 

and premise parameters are unmodified. 

2. Backward pass: here premise parameters are computed using a gradient descent 

algorithm and consequent parameters are unmodified. 

2.5 Statistical analysis 

Statistical techniques are very important in data analysis. Correlation analysis and 

data clustering are two important statistical techniques which are utilised to analyse 

and group data in many control strategies. Dividing the data into different numbers 

of clusters helps to reduce the complexity of understanding the system behaviour. 

Correlation analysis can inspect the relationship between different data that affect 
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each other in the system boundary. In this section, these two statistical methods are 
discussed. 

2.5.1 Correlation analysis 

Correlation analysis is a statistical technique that evaluates the relationship between 
two variables. In linear correlation analysis there is a mathematical approach that 

compute a constant called a correlation coefficient which represents the degree of 
linear functionality between two variable parameters in specific system [89] [90]. The 

correlation coefficient is computed in the following stages: If one parameter is X and 
the second is Y and the two parameters have n time values. The sum of the products 

of the deviations of the two distributions is computed from covariance Equation 2.23 
[91] : 

E(Xi - X)(Y - Y) (2.23) 
Z=1 

Where X and Y are the average value of X and Y values. The sum of squared 
deviations of the X distribution and the Y distribution is computed from: 

(E(X - X)2)(E(Yi - Y)2) (2.24) 

Finally the correlation coefficient is computed from a combination of above Equations: 

ýi 1(XZ - X) (Y - Y) 
(2.25) 

(Ei 1 (X - (En ß(y.. - Y)2) 

The value of a correlation coefficient lies in a range of between +1.0 and -1.0. The 

correlation coefficient is dimensionless. The positive sign means that the two variables 

vary in the same direction. The negative sign means that the two variables vary in 

opposite directions [91]. If the absolute value of correlation coefficient is close up 

unity that means a high relationship between variables. 
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2.5.2 Data clustering 

Cluster analysis is a technique used to examine similarities and dissimilarities of 

observations or objects [94]. The main objetive of clustering is to identify natural 

groupings of data from a large data set to produce a concise representation of a 

system's behaviour. Several fields of study, such as engineering, medicine, linguistics 

and marketing, have contributed to the development of clustering techniques and 

the application of such techniques [58]. The literature describes several kinds of 

clustering analysis. These kinds of clustering analysis have different features. The 

kind of clustering that can be utilised to deal with data in different systems depends 

on following influences[39] [58]: 

1. Volume of data and estimated data relationships. 

2. The specifications of clusters that we need to assemble. 

3. The purpose that we need to achieve from using data clustering analysis. 

This is a summary of some of the popular kinds of clustering: 

1. "Subtractive clustering, is a fast, one-pass algorithm for estimating the number 

of clusters and the cluster centres in a set of data" Matlab help, Fuzzy clus- 

tering [58]. In this type of clustering we should have a clear idea of how many 

clusters there are for a given set of data. Also the radius of the cluster centre 

is determined, and the ratio between clusters radii. The first cluster centre is 

determined by iteration. This centre is determined by counting a point that 

has the highest potential of points within setting radius. After that the point in 

the first cluster is removed to compute the second cluster centre depending on 

the radii ratio and the process that has been applied to the first cluster. This 

type of clustering is a one-pass method to take input-output training data and 

generate a Sugeno-type fuzzy inference system that models the data behavior. 

[19] [58] [39] [92]. 
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2. Fuzzy C-means is a data clustering technique where in each data point belongs 

to a cluster to some degree that is specified by a membership grade. This 

technique was originally introduced by Jim Bezdek in [14] as an improvement 

on earlier clustering methods [58] [77]. 

3. K-means clustering can best be described as a partitioning method. "K-means 

is more suitable for clustering large amount of data. K-means clustering is a 

partitioning method that treats observations in your data as objects having 

locations and distances from each other. It partitions the objects into K mu- 

tually exclusive clusters, such that objects within each cluster are as close to 

each other as possible, and as far from objects in other clusters as possible. 

Each cluster is characterised by its centroid, or centre point. The distances 

used in clustering often do not represent spatial distances" Matlab help, Fuzzy 

clustering [58]. 

2.6 Summary 

This chapter discussed the PV system and MPPT system. The PV panels and DC- 

DC converter are the main parts that are required to discuss in the MPPT system 

design. Fuzzy logic inference system, ANFIS and statistical analysis are the tools 

that are required in assembling the MPPT system in chapter 5 and chapter 6. In 

chapter 3, several MPPT approaches that have been implemented in literature will 

be discussed. 
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Chapter 3 

Tracking Maximum Power Point 
Approaches for PV panels 

This chapter reports on MPPT approaches in the literature. It starts with conven- 
tional searching techniques such as perturb and observation methods, incremental 

conductance methods and computational methods. Furthermore, this chapter in- 

troduces three applied computational artificial intelligent techniques in DIPPT. In 

addition, a comparison between on-line and off-line methods is included in fuzzy 

inference system approaches. Finally this chapter gives an introduction to the devel- 

oped approach in this research. 

3.1 Introduction 

The cost of electricity from the solar array system is generally more expensive com- 

pared to electricity from the utility grid [27] [8]. For this reason, it is necessary to 

study carefully the efficiency of the entire solar system to design an efficient system 

that meets the load demands with lower cost. Solar irradiance, ambient temperature 

and speed of the wind are the main external influences that affect the maximum 

power that can be generated from a PV panel. These external influences also change 

the position of the maximum power point on the I-V curve as explained earlier in 

chapter 2. Furthermore, in direct coupled systems, load is the main internal factor 

that can drive PV panels to operate at a strict point on I-V curve, as demonstrated 

in Figure 2.5. If there is any small change in external influences, the position of maxi- 

mum power point changes. Operating faraway from maximum power point decreases 

the output power of PV system. Therefore, it is necessary to continually track the 

maximum power point of a PV solar array. However, with huge changes in external 

influences the electrical parameters of PV panels are modified continuously and thus 
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there is a difficulty in measuring these parameters. Accordingly, it is difficult to locate 

the maximum power point mathematically as a function of the internal and exter- 

nal influences. Many control techniques have been proposed to track the maximum 

power point of a PV system with traditional and artificial intelligence techniques. 

3.2 MPPT approaches 

For many years, research has focused on many maximum power point control al- 

gorithms to extract the maximum power of PV panels. These techniques mostly 

utilise different research methods with different control strategies. The main direc- 

tions of these MPPT techniques can be categorised in four main methods; perturb 

and observation, incremental conductance, computational and computational artifi- 

cial intelligence. 

The characteristics that are required in the MPPT techniques can be expressed 

as follow: 

1. Has low tracking iterations under different environmental conditions. 

2. Stability 

3. Simplicity 

4. Low cost 

5. Efficiency. 

6. Has been evaluated in different climatic conditions. 

7. Can be used with different types of loads and can be adapt for different types 

converters. 

3.2.1 Perturb and observation method 

The perturb and observation method has been widely used because of the simple 

feedback structure and there are few measured parameters [85]. This method 
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is an iterative approach [72] [50]. In this method the operating voltage of PV 

panel is decreased or increased to find the correct direction of change toward 

maximum power point. The output power of PV panels is measured in each 

voltage stage. Power in each stage is compared with the previous perturbation. 
If the output power is increased the voltage will change in this direction, other- 

wise the voltage will change in the other direction. Maximum power is achieved 
by forcing the derivative of the power to be equal to zero under power feedback 

control [20]. Three main problems are associated with this method: 

(a) This method needs to measure the PV current in each stage and this 

increases the power losses in the control unit. As a result, these losses 

decrease the system efficiency. 

(b) This method needs a high number of iterations to track the MPP and it 

oscillates around the MPP [55] [33]. 

(c) Fluctuation around maximum power point due to the difficulty of the zero 

derivative calculation of dP or dP 
. 

Many techniques are proposed to defeat these problems. Hsiao in [98] developed 

a three-point weight comparison method that avoids the oscillation problem of 

the perturbation and observation algorithm. Also, the perturbation and obser- 

vation method is proposed in [42] and [43] with an identification of capacitor 

for the maximum power point tracking in a photovoltaic power system. Capac- 

itance is estimated and is used to correct the variations of duty ratio to obtain 

the highest performance of MPPT along with avoiding the degradation of PV 

panels. 

The incremental conductance method in [1] [55] is an attempt to improve the 

perturb and observation method under rapid change in environmental condi- 

tions [33]. 
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3.2.2 Incremental conductance method 

Incremental conductance method is independent of device physics. It uses the 

source incremental conductance dý of PV panel as its maximum power point 
locating [85]. This method depends on a positive slope of P-V curve below 
V,,, ax and negative slope of P-V curve above V,, o, x. To demonstrate how this 

algorithm of incremental conductance works, the power equation (P=I*V) is 
differentiated as shown in Equation 3.1: 

dV -I+V*V (3.1) 

Dividing by V 

1 dP_ I dl 
(3.2) 

V* dV V+ dV 

In Equation 3.2 is a positive quantity. The slope of I-V curve of PV panels 
is always negative. Therefore, we can conclude from Equation 3.2 three rules 

as follow: 

" If V< Vmax dp > 0, therefore >I d j7 ý 

" If V> V,,, dV < 0, therefore 1-, <I dl ý 

" If V= V,,,,; P = 0, therefore =I dý 

The three rules above are used to track the maximum power point of PV pan- 

els. The incremental conductance method is proposed in [1] [55] [16]. The 

method has better performance than perturb and observation method in the 

case of rapid changes of environmental conditions. However, the current has 

to be measured continuously and that leads to more losses in the generated 

power. This method tracks the maximum power point without reference point. 

Therefore, the traditional controller which depends on perturb and observation 

or incremental conductance still takes a long time to reach the maximum power 

point, especially with rapid changes in environmental conditions. In addition, 

this type of controlling unit can be oscillated around the maximum power point. 
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A combination of the modified constant voltage control and the incremental 

conductance method is introduced in [41], which provides good efficiency, espe- 

cially at low irradiance level [49]. 

The high power consumption, the oscillation around V,,,, o, x and instability due 

to changes in environmental condition are the main problems that are observed 

with perturb and observation and incremental conductance. Avoiding these 

problems in these methods leads to more complexity with the conventional 

control unit [66] [85] [67] [57]. Control approaches with the computational 

method are the best ways to minimise the problems in perturbs and observation 

and incremental conductance methods. 

3.2.3 Computational methods 

In computational methods, electrical parameters of maximum power point are 

obtained using different influences that affect the PV cells. Locating the max- 

imum power point voltage and current is the main aim in this method. This 

method has good performance with rapid changes in the environmental con- 

ditions [15]. This method works with different search methods to locate the 

maximum power point such as hill climb search. The main problem with this 

method is the degree of accuracy of locating maximum power point parame- 

ters. The degree of accuracy depends on the influences which are used to obtain 

the maximum power point parameters. In addition, stability and quick max- 

imum power point tracking depend on the approach that is used along with 

computational methods. 

The curve-fitting technique is a computational method which depend on the 

solar panel characteristics, so an explicit mathematical function describing the 

output characteristics can be predetermined [20]. This method is proposed in 

[46] and [84], which is based on fitting the operating characteristic of the panel 

to the loci of the maximum power point of the PV systems. Although this 

technique attempts to track the maximum power point without computing the 
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voltage-current product explicitly for the panel power, it cannot predict the 

characteristics including other complex factors such as aging, temperature, and 

a possible breakdown of individual cells [20] [461. 

Maximum power points are computed at different environmental conditions in 

many approaches as a function of either irradiance level or cell open circuit 

voltages or cell short circuit currents. In [57] Masoum analysed theoretically 

and experimentally two different computational techniques. A voltage-based 

approach is the first technique that is proposed in [32], which calculates V,,,, 

as a function of VOC. A current-based approach is the second technique which 

is proposed in [34], which calculate Imdx as a function of IsC. Masoum in [57] 

has concluded two important aspects which are summarised as follows: 

" The current-based maximum power locating is a more accurate approxi- 

mation of the actual nonlinear PV characteristics compared to the linear 

voltage function of the voltage-based technique. 

" The voltage-based maximum power locating is naturally more efficient and 

has less circuit losses. 

The low accuracy of voltage-based techniques comes from neglecting the irra- 

diance level effect on open circuit voltage at different temperatures. 

Solar radiation is used in [29] instead of short circuit current to obtain a refer- 

ence P,,,,, and Vm,,, a, x. The reference voltage (Vma, 
x) is also obtained in [53] as a 

function of VOC. 

Generally, there is a nonlinear relationship between I-V electrical characteris- 

tics of PV panels and external influences. Therefore, computing the maximum 

power point parameters as a function of one or more of environmental influences 

or as a function of the PV electrical parameters suffer from low accuracy espe- 

cially with large changes in environmental conditions. In addition, it is difficult 

to continuously measure the environmental conditions and PV cell tempera- 

ture. A statistical analysis with field data in chapter 5 will investigate the 
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relationships between these parameters and the method of improving the re- 
lationships between electrical parameters of PV panel. Neural networks as an 

artificial intelligence method is also used to improve the accuracy of locating 

the maximum power point in PV systems. 

3.2.4 computational artificial intelligence methods 

Generally, artificial intelligent approaches are used to map highly non-linear 

relationships between input and output to the system. Neural networks, fuzzy 

logic inference systems and adaptive neuro fuzzy inference systems which are 

implemented in several pieces of research are used to track maximum power 

point parameters. 

Neural networks 

A neural network is an example of artificial intelligence systems which are 

composed of simple elements operating in parallel. These elements are inspired 

by biological nervous system [39]. As in the nature, the network function is 

determined largely by the connections between elements. A neural network 

can be trained to perform a particular function by adjusting the values of 

the connections (weights) between elements. A neural network is commonly 

adjusted, or trained, so that a particular input leads to a specific target output 

[36] [58]. 

Neural networks have been used to estimate maximum power point parameters 

in several articles. Mashaly et al proposed a neural network to locate Vmax 

from Pm, ax in [56]. The maximum power is computed as a function of irradiance 

level. In addition, the estimated Vmax is used as a reference voltage to track 

maximum power point using FLC. This approach has been achieved better than 

conventional controller approaches. 

In [23] Alexis used the same technique to locate maximum power point, however 
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with VOC as an input parameter of the neural network instead of irradiance level. 

The convergence in error from neural networks in this approach reaches to 2.2% 

after training process. 

Hiyama presented a neural network application in [31] to identify the maxi- 

mum power point of PV modules and design a PI-type controller for real-time 

maximum power tracking. Maximum power point voltage is identified through 

the proposed neural network using the open circuit voltages from monitoring 

cells. The proposed neural network has provides a highly accurate estimation 

of maximum power point from the PV modules. 

Mummadi et al developed a feedforward maximum power point scheme in [66] 

[80]. Mummadi et allocated the maximum power point voltage by an off-line 

trained neural network. In these two approaches a three layer feedforward neu- 

ral network with back-propagation algorithm is utilised to estimate the reference 

voltage from irradiance. Neural network model with FLC is implemented to 

track the maximum power point in [66] [80]. A comparative study of noncou- 

pled and coupled interleaved Boost converter supplied PV systems is made in 

these approaches. The improvement in the efficiency is about (2-5)% and the 

observed reduction in load voltage ripple is about (50-70)%. 

Generally, the neural networks approaches performs better than the simple 

mathematical computing methods if the input parameters are sufficient to de- 

scribe the behaviour of the PV panels. However neural networks transact ran- 

dom data with a lack of human knowledge. It depends on data to learn the 

network which can lead to a long and complicated process of learning. Thus, 

the neural networks approach is used as a final alternative that can be selected 

to solve problems of poor knowledge. 
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Fuzzy inference system research 

Fuzzy logic is appropriate for nonlinear control systems. Therefore, a fuzzy 

logic controller is used to provide a solution to control problems that cannot be 

described by mathematical models or need a complex mathematical model [85]. 

However, the fuzzy logic controller behaviour depends on the membership func- 

tions, their distribution, and the rules that influence the relationship between 

different fuzzy variables in the system. There is no formal method to determine 

accurately the parameters of the fuzzy controller [85]. Several approaches are 
implemented using the fuzzy logic controller to track the maximum power point 

of PV systems [2] [68] [30] [63]. Two main strategies are implemented in the 

reported research to track the maximum power point. The first strategy tracks 

the maximum power point directly without reference point like perturb and ob- 

servation method (on-line approach) [73] [86] [6]. In this method the searching 

starts from previous point and move toward the target point step by step. In 

each step new input about current point and the relation between current point 

and previous point is delivered to the system. The power increment is observed 

till it reaches the maximum power point. All input parameters are modified 

in each step. This process is continued until reaching the specification of the 

target. The second strategy is the off-line approaches [44]. In this approach the 

maximum power point parameters are located as a reference point using differ- 

ent computation techniques [53] [66]. In this approach the target is delivered 

only one time and the searching starts from current point until reaching the 

target. In the rest of this section a brief overview of these approaches which 

describe MPPT using FLC is provided. 

On-line approaches 

The approaches that present a FLC to track maximum power point without 

computing the reference point are called on-line approaches. These approaches 
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concentrate on minimising the tracking time needed by perturb and observation 

and avoiding the fluctuation that may occurs in the traditional methods [7]. 

In [85] Bogdan and Li described two traditional methods for MPPT; the per- 
turbation and observation and incremental conductance methods. The paper 
describes the benefits of the fuzzy logic controller approach. Bogdan and Li did 

not give any details regarding the FLC approach. 

Altas and Sharaf implemented an FLC in [2] to extract maximum power point 
from stand alone PV to feed a three phase induction motor. The fuzzy controller 

that is introduced in [2] uses the change in generated power with respect to 

current change dP and its variations A dp as input to FLC. The output of FLC 

is the change in duty cycle of MPPT converter. In this approach, the min- 

max rule is implemented as a fuzzy inference system to determine the changes 

in duty ratio AD using a pulse width modulator inverter, which controls the 

electronic switch of the DC-DC converter. 

In [73] Senjyu and Uezato proposed a MPPT system using a fuzzy controller to 

overcome the problem of constant increment in hill climbing methods. Change 

in power due to variation in duty cycle and rate of change in power at different 

irradiance. The fuzzy rules are designed to avoid fluctuation in perturb and 

observation method. This method used the change in power with respect to the 

duty cycle dD and the change in the slope of P-V curve at different irradiance 

level to provide a fast tracking. This method provides a good performance 

with the step-down chopper converter but with a limited operating range and 

with constant resistive load only. Also, it needs a continuous current measuring 

which dissipated the generated power from PV system. 

Chung et al proposed an MPPT in [86] using a fuzzy logic control with step 

up converter. There are two input variables of the proposed controller in [86], 

namely error (e) and change of error (De) at a sampling instant K where: 

e(k) =AP 
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De = AP(k) - OP(k - 1) 

The output of fuzzy union is used to control duty ratio of the Boost con- 

verter. This approach uses the centre of gravity method to obtain a crisp value 

of FLC. The simulation and experimental results show the tracking maximum 

power point performance of fuzzy controller. The FLC in [86] is compared with 

a controller based on hill climbing method and shows better performance. This 

method reduces the time required to track the maximum power point and re- 
duces fluctuation of power around during tracking process. The experiment is 

implemented using a 16 bit microcontroller (80c196kB). More power is gener- 

ated from PV array compared with the power generated using controller based 

on hill climbing method. 

In [74] Simoes et al described analysis, modelling and implementation of fuzzy 

based PV peak power tracking. The power circuit in [74] is based on a Boost 

converter while the controller used an RISC microcontroller with fuzzy algo- 

rithm that searched for the optimum duty cycle to track the peak power from 

the solar array. In [74] the rules of the fuzzy controller are divided in to four 

groups. The first group controls the normal system operation. The second 

group is used when I-V curves of PV panels is changing due to environmental 

conditions only. A third group is implemented when AP has constant output 

in a small interval, which is not maximum power point. The last rules group is 

implemented when the maximum power point is reached. This approach uses 

the change in duty cycle OD(k-1) and the change in power AP as input param- 

eters of FLC. The new result of change of duty ratio is used as the output of the 

FLC. A simple centre of gravity method is used to get a crisp value for the con- 

verter in this approach. The system was implemented in Matlab under different 

temperatures, different resistive loads and different levels of irradiance. Also, 

it was implemented in the laboratory with RISC controller type (PIC16174) 

under different levels of irradiance. 

In [75] Simoes et al added experimental results curves to the previous mentioned 
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approach to show the response of pulse width modulator (PWNI) cycles at 
different light-intensity steps. This approach provides fast convergence and 
robust performance against parameters variation. 

In [87] Wu and Chen presented a FLC which controlled a single stage converter 

with the integration of a bidirectional Buck Boost charger/discharger and a 

class-d series resonant parallel loaded inverter. The system adjusts the duty 

cycle by comparing the maximum current ('max) that can be reached by FLC 

and the direction of the new currents that mutate with environmental condi- 
tions. The fuzzy rules are built depending on whether the operating point is 

under or above the desired value. In addition, the current values are in diver- 

gence to the desired value or convergence regarding the slope of current curve 
toward maximum power point. The min-max operation is adopted to obtain 

the output fuzzy set. In this approach the MPPT system is implemented in 

a single-chip microprocessor. The proposed system needs about 70s to reach 

the maximum power point in which fluctuation in PV array output has been 

minimised. 

In [68] Patcharaprakiti and Sirisuk and in [69] Patcharaprakiti et al proposed 

FLC with lookup table for light-flasher and battery charger applications. Two 

input variables of the proposed controller, namely error(e = -)and a change 

in error (De) are used to adapt the duty cycle of a DC-DC converter switch. 

The lookup table divides the input and output fuzzy parameters to help the 

FLC realising rules that are designed for MPPT system. 

Off-line approaches. 

Off-line approaches are the techniques that firstly locate one or more parameters 

(voltage-current-power) which are affected by the environmental conditions. 

After that, it compares the current point on the I-V curve of a PV system to 

give the proper decision for decreasing the tracking time of the maximum power 

point in on-line techniques. The fuzzy controller in on-line approach starts its 
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search for new maximum power point, by using a previous maximum power 

point as starting point to track the new maximum power point. The off-line 

approach devolvement reduces the number of iterations that is required to reach 

the MPP, especially if this new MPP is located faraway from the previous one. 

Hence, the approaches based on off-line techniques avoid the energy wasted in 

on-line techniques [15] [97]. Generally, the FLC rules are designed to reduce 

the number of iterations in different approaches that use off-line techniques as 

seen in the following literatures: 

Rohan and Adel introduce in [30] a rule-based fuzzy logic controller to control 

a PWM inverter. This approach locates Pmox as a polynomial function of 

irradiance level. This approach extracts and tracks the MPP from the PV 

array at different irradiance levels. In [30] power error (e= Pmax-POP) and rate Pmax 

of change in this error (De) are used as input signals to FLC. This FLC controls 

the duty cycle of the PWM inverter. This approach applied 49 fuzzy rules to 

change the modulating index, which controls the angle and the duty cycle of the 

PWM inverter. The proposed fuzzy rule-based controller in [30] is introduced 

in a software package. 

In [28] Gwon et al described the effect of temperature on locating the maximum 

power point. In this approach the temperature is calculated as a function of 

voltage using a voltage transducer and the temperature values are used to 

calculate V,,,,, , 
(t) as a function of Vmax at standard test conditions. The value 

of Vmax(t) is used in the fuzzy controller as voltage reference (Vref) to calculate 

the first input of FLC (e= Vre f -Vop(t)), where Vop(t) is the current operating 

voltage point of the PV panel. The second input of FLC is (De). These 

two inputs are used to modify duty ratio as output of FLC. The experiments 

compare the proposed FLC with a traditional controller without giving any 

detail of the results. 

Khashab and Nashed presented in [53] a simulation study and an experimental 

implementation of FLC for a Cuk converter in a stand alone PV energy scheme. 
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DC-DC converters were used to convert unregulated DC input into a regulator 

DC output at a desired voltage level. At certain irradiance, the V0 in this 

approach is obtained as a function of irradiance and ISc. Accordingly, the 

reference voltage V,, f is obtained as a linear function of Voc. This reference 

voltage is used to calculate the error: 

= Vref - VP 

Error (e) is used as a first input of FLC in this approach. De is used as a 

second input of FLC. These two inputs are used to control the duty cycle of 

PWM which feeds a switch to the Cuk converter. The system is implemented 

with different resistive loads and at different irradiance levels. In addition, this 

approach demonstrates a comparison between the output power of PV panels 

of direct coupled system and the power of proposed MPPT controller. 

In [66] and [80] Mummadi et al introduced a feed forward maximum power 

point scheme which is developed for the interleaved dual Boost converter which 

feeds a FLC. In this approach the reference voltage is obtained using a neural 

network. The first input of the FLC is: 

e=VTef - Vop 

The second input is De. These two inputs are used to modify the duty cycle of 

PWM that feeds a switch of interleaved dual Boost converter. In this approach 

the controller does not need the tuning of parameters like the conventional con- 

troller. The experimental result gives a good result with different types of load 

(resistive load, battery load and both types). The paper presents a comparison 

between the proposed controller and the conventional Boost converter. The 

efficiency about (2-5)% higher than conventional Boost converter and about 

(15-35)% less ripple content in voltage is achieved in this approach. 

In [63] Games and Abdul presented a FLC scheme for the optimal power re- 

quirement of a PV system with and without energy storage. In this approach 
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the MPP is located using a genetic algorithm to track it using fuzzy logic con- 

troller. The second and third inputs of FLC are the state of charge of the 

battery and the load current. The FLC rules are designed in [63] to control the 

following parameters: 

" The output load elements (load curtailment or addition) depending on the 

optimal power tracked and the rating of the PV panel. 

" The injection of optimal current into the battery to achieve the optimal 

operating conditions of the PV system during the storage of energy. 

In addition, the fuzzy design scheme in this approach is developed around an in- 

house PV program using Matlab software. The normalised control variable for 

the FLC is used to control the duty cycle of the PWM converter. In addition, in 

[4] Altas presents simulated load matching for maximum power utilisation. This 

approach introduces a PV standalone energy utilisation scheme feeding hybrid 

DC electric loads and fully controlled by a dual controller using dynamic multi 

loop online error driven classical PI controller and FLC. The proposed hybrid 

PI and FLC action is studied in two cases for maximum power point tracking 

and specific load control. 

In [48] and [49] Kottas et al presented a novel MPPT method, which uses fuzzy 

sets theory in close cooperation with fuzzy cognitive maps (FCMs). The FCM 

represents essential operational (voltage, current, irradiance level, temperature) 

and it controls the current of PV system. The node interconnection weights 

are determined using data, which covers the operation of a PV system under 

a wide range of different simulated climatic conditions. The nodes values in 

FCMs are fuzzy and the weights of the interconnections belong in [1, -1]. The 

proposed system was trained by a simulated climatic data of a one year. It 

had a 0.78% error in energy production when compared with the theoretical 

expected production of a commercially available photovoltaic array. 
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A comparison of on- line and off-line methods 

Udayakumar et al in [97] introduced a comparison between different strategies 

of tracking maximum power point. This paper studies the benefits of the MPPT 

controller with reference point (off-line approaches) and without reference point 
(on-line approaches). Furthermore, the paper proposed a FLC with different 

numbers of MFs to prevent overshooting from maximum power point and it 

designed the rules to control the rate of change of the duty cycle. The controller 

uses the following parameters as input of a FLC: 

AV(k) 

and 

AV(k) - ov(k - 1) 
The FLC in this approach tracks the maximum power point under rapid changes 

of environmental conditions. In addition, this approach confirms the prob- 

lems of power wasted in on-line techniques. However, a complicity of max- 

imum power point computing in many techniques and the external environ- 

ment sensors in other techniques represent the drawbacks in off-line approaches. 

Udayakumar et al prefer the simplicity of on-line techniques. On the other hand, 

Mummadi in [66] and Theodores in [15] choose the off-line method due to the 

high accuracy in maximum power point prediction, such as the neural network 

that was proposed in [66] and fuzzy cognitive maps in [15]. 

Adaptive neuro fuzzy inference system 

In [59] Mellit, in [60], Mellit and Kalogirou and in [61] Mellit and Benghanem 

proposed an ANFIS models to estimate the output of PV systems. In these 

papers, an ANFIS model is used for modelling the different components of the 

PV system. Additionally, the ANFIS was developed to model the delivered 

and consumed power by the PV system. The ANFIS model trained using data 
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from the various input signals of the PV system. This database is created 

from an experimental data acquisition. The developed model can predict and 

simulate the different electrical signals of the PV power supply system from 

only the ambient temperature, solar irradiation and humidity. Results obtained 

indicate that a satisfactory accuracy is obtained between the measured and 

estimated electrical signals. The papers conclude that the ANFIS system can 

be implemented to help the maximum power point tracker controller deliver 

the maximum energy from the PV array. 

In [67] and [68] Patcharaprakiti and Premrudeepreechacharn proposed a method 

of MPPT using adaptive FLC for a grid connected PV system. This approach 

is an on-line search technique. The proposed system in this approach composes 

of a Boost converter single phase inverter which is connected to the utility grid. 

The MPPT control is based on adaptive fuzzy logic to control the MOSFET 

switch of the Boost converter and the single phase inverter uses to predict cur- 

rent control. The grid connection PV system that is presented in this approach 

can directly feed energy into the existing Ac grid system. The MFs in this 

approach are assigned to the linguistic variables using seven fuzzy subsets. The 

inputs parameters are: e= öP and change of error De. These two inputs are 

normalised by the input scaling factor ß and 0*. In this approach the inputs 

are scaled between 1 and -1. The purpose of the learning mechanism is to learn 

the environmental parameters as a result modifying the fuzzy logic controller 

parameters. Accordingly, the outcome of the overall system is close to the op- 

timum operation point. The learning is composed of an inverse fuzzy model 

and knowledge base modifier. The basic operation of the inverse fuzzy modifier 

is to change the shape of membership to make fast tracking under different 

irradiance levels. The simulation results show, how the proposed system has 

fast response and good transient performance insensitive to variations in exter- 

nal disturbances. In addition, the results of simulation show how the MPPT 

controller by using adaptive FLC has provided more power than simple fuzzy 
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logic controller. 

MPPT approaches summary 

Several approaches that were mentioned earlier in this chapter compute the 

maximum power point parameters depending on irradiance level. However, 

the solar irradiance cannot describes the behaviour of the maximum power 

point voltage, as we will clarify in the statistical analysis in chapter 5. In 

addition, there is more than one approach with includes the temperature effect 

on electrical parameters of P-V and I-V curves. These approaches were used to 

test the system in a limited range of solar radiation and ambient temperature. 

However, these approaches do not consider the wind effect on cell temperature, 

which strongly affects the maximum power point voltage. 

The high power consumption, the oscillation around Vmax and instability due 

to changes in environmental condition are the main problems that are observed 

with perturb and observation and incremental conductance. Avoiding these 

problems in these methods leads to more complexity with the conventional 

control unit. 

Neural networks provide a high precision in estimation systems. The neural net- 

works approaches performs better than the simple mathematical computing 

methods if the input parameters are sufficient to describe the behaviour of the 

PV panels. However neural networks transact random data with a lack of hu- 

man knowledge. It depends on data to learn the network which can lead to a 

long and complicated process of learning. A lack of human knowledge in neural 

network leads to complex structure of the neural network, especially with a low 

correlation between inputs and outputs data. 

The fuzzy logic controller behaviour depends on the membership functions, 

their distribution, and the rules that influence the relationship between dif- 

ferent fuzzy variables in the system. Therefore, fuzzy logic inference system 
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reduces the time of tracking maximum power point compared with approaches 
that depend on the simple perturb and observation method [85] [97]. Also, it 

avoids the fluctuation in power around the maximum power point. "Generally, 

the FLC is nonlinear and adaptive in nature. Therefore, it gives a robust per- 
formance under parameter variation" Mummadi et al, page number 970 [66]. 

"It does not require precise, noise-free inputs and can be programmed to fail 

safely if a feedback sensor quits or is destroyed. The output control is a smooth 

control function despite a wide range of input variations" Udayakumar R. et 

al, page number 1421 [97]. 

Also, different peak power tracking schemes have been proposed by different 

fuzzy logic researchers . 
There are three main factors which play a crucial role 

on the fuzzy logic controller approaches trends. The first factor is regarding 

the technique of moving towards the MPP whether by using off-line techniques 

or on-line techniques that are discussed in section 3.2. The second factor is the 

type of converter that is used. The third factor is the type of fuzzy MFs and 

the ability of rules to handle the problems under different conditions and, con- 

sequently adjusting the rate of duty cycle according to the location of operating 

point on P-V curves and the slope of the curves under different conditions. 

ANFIS is used in maximum power point tracking publications as an on-line 

searching system. The self-adaptation of ANFIS parameters with different sys- 

tem configuration is very important when the controlling system will be gen- 

eralised [39]. However, the feedback effect of the load voltage on the output of 

converter and the type of converter that is used will increase the parameters 

that are required as input of the ANFIS structure. A large structure of ANFIS 

makes it more complicated. Therefore, the ANFIS model will be used with 

fuzzy logic controller in the developed MPPT system as off-line approach. 
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3.3 Introduction to the developed approach ap- 
plying ANFIS prediction and FLC tracking 

Maximum power point tracking techniques are applied to extract the maxi- 

mum available power from the PV panel at different environmental conditions 

and different types of load. It is difficult to design a system that encompasses 

completely all required characteristics .A successful approach is one that can 
balance between different features to acquire the best promising performance. 
On-line systems are generally simpler than off-line systems. However a contin- 

uous current measuring during iteration searching time decreases the system 

efficiency. Furthermore, it is difficult to perform stability in on-line techniques 

at partially cloudy days. Off-line system precision depends on the accuracy of 

computational methods that provide the FLC by the reference maximum power 

point parameters. 

The proposed system will use ANFIS to predict the maximum power point 

voltage with two inputs and one output. The two inputs and output data 

are selected depending on actual data analysis in chapter 4 and chapter 5. A 

number of ANFIS models are tested to reach the best model that can predict 

the accurate Vmax" 

3.3.1 Motivation for using ANFIS 

The low CC between 'Sc and V,,,,, and between Voo and Vmox in chapter 5 

confirm the nonlinear relationship between these variables. Moreover, clustering 

analysis with correlation analysis clarifies the improvement of CCs between Voc 

and Vma, x when the input data is clustered with respect to ISc. In addition, 

it is observed the improvement in CCs when there is an overlapping between 

different clusters. Takagi and Sugeno's fuzzy if-then rules are used when the 

output of each rule is a linear combination of input variables plus a constant 

term. The final output is the weighted average of each rule's output [36]. In 
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addition, as mentioned earlier ANFIS has the ability to adapt MFs and reach 

the best MFs that can predict the output with minimum error between actual 

data and predicted data. 

3.3.2 Introduction to the developed FLC 

The final output of the ANFIS model is used as input parameters of FLC. The 

FLC will be used to track the maximum power point. A novel FLC is designed 

to achieve the most features that are mentioned above in this section. In addi- 

tion, the FLC is designed to avoid the shortages in several MPPT techniques. 

The MFs of the developed FLC are designed to help solve the problems of the 

MPPT and reducing the rules that are required in FLC. Thus, the FLC be- 

come simple and it overcomes the problems that are ignored in most existing 

approaches. In addition, the proposed FLC can be adjusted easily to control 

the duty type of DC-DC converters depending on the requirements of each 

converter and depending on the appropriate converter that should be used to 

interface between the photovoltaic panel and different types of load. Two sim- 

ulation models will be applied to study the behaviour of FLC. The developed 

MPPT system will be compared with the direct coupled system. Figure 3.1 

shows the sequence of MPPT of PV system. The developed system has the 

following five main features. 

" The PV system behaviour is studied and tested with different climatic 

field data 

" The system has been deduced using statistical analysis and mathematical 

tools. 

" Had sufficient time in testing to determine the gaps in learning data and 

completing these gaps. 

" System has been evaluated using the different Matlab tools and simulation 

models. 
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" Does not need external sensors to locate and track the maximum power 
point. 

Load Solar radiation 

T ANFIS 

PU System MODEL 
DG-DC 

Converter 

P 'WM I, I FLC 

Figure 3.1: Proposed system architecture 

3.4 Summary 

This chapter presented an overview of the approaches that have been imple- 

mented in MPPT system. In addition, This chapter gives an introduction to the 

developed ANFIS prediction and FLC tracking approach. In the next chapter 

we present the collected data from different environmental conditions for two 

types of PV panels. In addition, the data will be analysed in chapter 4 to 

provide core data for the ANFIS model in chapter 5. 
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Chapter 4 

Data Analysis 

4.1 Introduction 

PV panels are traditionally tested under standard test conditions (STC). (Ir- 

radiance: 1000 W/m2; Spectrum: AM1.5; and Cell temperature: 25°C). The 

main parameters that are measured at STC are Isc, Voc, Vmax and 'max which 

are always included in the manufacturers data sheets. Furthermore, character- 

isation of the PV module is accomplished by measuring the nominal operating 

cell temperature (NOCT), which is defined as the temperature that the cell can 

reach when the PV module is submitted to an irradiance of 800 W/m2 and an 

ambient temperature of 20 °C [51] [26]. 

To compute the operating points theoretically on I-V curves, it is necessary 

to measure the irradiance level and cell junction temperature. The irradiance 

level, as a result a photocurrent, can be measured using an external sensor or 

by means of the linear relationship between short circuit current and irradiance 

levels in Equation 2.7. However, the problem is the difficulty of measuring or 

deducing the cell junction temperatures by using the different environment or 

electrical parameters. 

On sunny days, the ambient temperature increases from 20°C to 45°C, and 

the irradiance level can reach 100mal/cm2. By applying Equation 2.9, the 

100mW/cm2 irradiance increases the PV cell temperature to about 30 °C over 

the ambient temperature when neglecting wind effect. The PV panel cells 

temperature is affected environmentally in the different regions as follows: 

9 Increased due to the irradiance level. 
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4.2 Field data 

" Increased proportional to the increase in ambient temperature and high 

humidity. 

" Decreased due to the decline in ambient temperature in high altitude re- 

gions. 

9 Decreased due to wind velocity. 

The solar radiation affects directly PV panels due to solar power being dissi- 

pated in the PV cells. In addition, the high irradiance level lead to increases 

in the ambient temperature especially in high humidity regions. A high speed 

of wind movement improves the convection factor effect, which increases the 

heat dissipation from the surface of the PV panel to the surrounding. It is 

difficult to measure the convection factor, which strongly affects the PV cell 

temperature. Furthermore, the generated current in PV cells increases the cell 

junction temperature of the PV cells. This current increases with increasing in 

irradiance level. 

Any change in environmental conditions affects the PV cell temperature and 

photo current. If there is a small change in the external influences, the charac- 

teristics of the I-V curve are modified. With a huge change in the environmental 

conditions and the difficulty of measuring the cell junction temperature, it is 

difficult to predict the maximum power point voltage mathematically. 

To study the behaviour of a PV panel, it should be tested in all possible envi- 

ronmental conditions. Considering most environmental conditions that affect 

cell temperature and electrical parameters of PV panels, field data is collected 

to be utilised in MPPT, which will be discussed in chapter 5 and chapter 6. 

4.2 Field data 

Wind, humidity, irradiance level and ambient temperature are the main factors 

that should be considered when introducing a comprehensive learning data for 
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4.2 Field data 

the MPPT system. The field data was collected from different environmental 

conditions in different seasons. Yemen has three main regions with different 

climates, the first region is the mountain areas, the second is the desert areas, 

and the third is the coastal areas. All of these areas were considered for data 

collection. Sanaa and Shuayb are high altitude areas with low ambient temper- 

ature, Marib is a desert area with high ambient temperature in summer and 

Aden is a coastal area with high humidity. 

Two thirty-six single crystal and polycrystalline photovoltaic (PV) solar panels 

were used to obtain the actual field data. The characteristics of these two panels 

under standard test conditions are shown in Table 4.1. These two types are the 

most widely used PV solar panels [8]. Two electrical ammeters, two tempera- 

ture sensors, solar irradiance sensor and humidity sensor are used to measure 

the output electrical characteristics of PV panels, environmental parameters 

which affect these PV panels and surface cell temperatures. 

Table 4.1: Characteristics of solar panel under standard test conditions 
Single crystal panel Polycrystalline panel 
Voc 22 V Voc 21.2 V 

'Sc 5.5 A Isc 3.25 A 
I.. ax 4.91 A Irnax 3.02 A 
Vmax 17.4 V Vmax 16.9 V 
P 

, ax 85.5 W Pmax 51 W 

4.2.1 Assumptions of collecting data 

The developed system is designed to simulate the results based on the field 

data described. Table 4.2 describes the acquisition choice for the data. The 

first three rows in Table 4.2 include normal situations which concern a high 

proportional relationship between the surface temperature of PV panels with 

ambient temperature and irradiance level. The next four cases in Table 4.2 

consider the effect of the wind and altitude on ambient temperature and the PV 
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4.2 Field data 

cell temperature. The last two cases in Table 4.2 related to the high humidity 

area which is associated by low and medium irradiance level and these cases 

are usually found in coastal areas. These situation are selected to provide the 

majority of circumstances that can affect the external influences, as a result 
Isc, Voc and MPP parameters of PV panel. 

Table 4.2: Data acquisition choice 
G T. TS influences Regions 
High High High No Desert 
Medium Medium Medium No General 
Low Low Low No General 
High High Miduim Wind General 
High Medium Medium Wind and altitude Mountain 
High Medium Low Wind and altitude Mountain 
Medium Low Low Wind and altitude Mountain 
Low Medium Miduim High humidity Coast 
Medium Medium High High humidity Coast 
TS 
T. 
G 

Cell temperature in C 
Ambient temperature in °C 
Irradiance level (mW/cm2) 

4.2.2 Core data extracting 

The voltage and current of PV panels is measured at different resistance values. 

This process is done quickly to obtain all points on I-V curves in the same 

environmental conditions. The actual Vma, x and Pmo, x are extracted from I- 

V curves and voltage power P-V curves using polynomial curve fitting in the 

Matlab toolbox. Figures 4.1 and 4.2 illustrate the method of extracting the 

maximum power point voltage and power from P-V curves. If either 'Sc or Voc 

change, I-V and P-V curves will modify and as a result the location of MPP 

will be changed. Change in Ise takes place if the irradiance level changes. Voc 

is affected by any change in irradiance level or photovoltaic cell temperatures. 

In addition, the ambient temperature (Ta) and the surface temperature (TS) 
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4.2 Field data 

are both obtained during data collection. 
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Figure 4.1: Extracting maximum power point from the I-V curve of the 85W panel 

Table 4.3 and Table 4.4 represent the core data for the two tested panels. 

This data was extracted data, collected in different selected times between June 

2005 and February 2007. The data was collected in high ambient temperature 

season during June and July 2005 in hot climate regions (Aden and Marib). 

However, in high irradiance level and low ambient temperature region (Shuayb) 

the data was collected three times in December and January (winter) and in 

July (summer) during years 2005 and 2006. In Sanaa the data was collected 

in several times within 2 years because of variety of environmental conditions 

in Sanaa during the year. Data was evaluated during this interval and more 

data has been added later to fill some detected gaps in previous data according 

to assumptions listed in Table 4.2 and after evaluating the performance of 

ANFIS models at different irradiance levels and PV cell temperatures. The 

data was collected in about 35 selected days in different regions and different 

environmental conditions in the mentioned interval. The data will be utilised 
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4.3 Effect of deviating from maximum power point voltage 
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Figure 4.2: Extracting maximum power point from the I-V curve of the 51W panel 

in predicted MPP using ANFIS models in chapter 5 and it will be used in the 

FLCs design. 

4.3 Effect of deviating from maximum power 
point voltage 

As explained in section 2.1 the load drives the PV panels to operate on strict 

point on I-V curves. When the PV panels operate faraway from V,,,,, the 

generated power decreases. The voltage deflection (Vd) and the percentage 

drop in operating power against MPP (%Pd) can be calculated from Equation 

4.1 and Equation 4.2: 
Vd =Vop - 

Vmax (4.1 

%F) 
d- 

Pmax 
- Pop (4.2) 

Pmax 

Where V0P and Pop represent the operating voltage and power on I-V curves. 
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4.3 Effect of deviating from maximum power point voltage 

Table 4.3: Core data of 85W Panel from different environmental conditions 
Isc Ts Voc Vmax Pr, ax Isc Ts Voc Vmax Pmax 
0.26 22 18 12 1.92 4.22 52 19.31 14.47 53.84 
0.49 24 19.44 15.4 5 4.25 37 20.14 15.5 58 
0.57 25 19.27 15.16 6.3 4.3 54 18.95 14.25 56.5 
0.67 22 20.05 16.9 7.77 4.45 55 19.2 14.35 55.7 
0.78 22 20.02 16.4 9.85 4.45 52 19.65 15.1 60 
0.89 25 19.95 16.29 11 4.45 31 20.75 16 64.1 
1 40 18.8 14.8 12.5 4.62 43 19.7 14.87 60.5 
1.1 36 19 15 13.2 4.65 27 20.95 16.28 67 
1.14 35 19.05 15.1 13.56 4.73 45 20.18 15.4 64.23 
1.25 18 20.75 16.85 17.8 4.78 57 19.1 14.15 62.1 
1.3 24 20.15 16.6 17.52 4.8 58 18.82 13.93 58.9 
1.56 26 19.83 16.7 21.7 4.85 33 20.98 16.35 70.1 
1.65 40 19.3 16 21.9 4.88 57 18.86 14.11 61.5 
1.82 21 20.81 16.83 26.28 4.88 40 20.16 15.2 65.65 
2.08 25 20.5 16.5 29 4.95 54 19.45 14.72 64.23 
2.23 41 19.55 15.65 30.4 5.13 39 19.92 14.88 64.6 
2.3 24 20.96 17 34 5.2 34 20.9 16.11 75.2 
2.35 30 19.72 15.8 32.6 5.3 31 20.9 15.95 76.3 
2.45 28 20.35 16.22 35 5.39 45 19.72 14.85 69 
2.78 42 19.76 15.7 38.1 5.44 53 19.44 14.65 71.5 
2.95 27 21 16.7 44.2 5.5 34 20.7 15.82 77.65 
3.2 45 19.49 15.2 42.87 5.5 25 22 17.4 85.5 
3.25 40 20.33 15.85 46.2 5.56 51 19.62 14.76 72.6 
3.53 40 20 15.53 48 5.9 33 21 16 86.4 
3.73 49 19.54 15.32 50.8 5.92 29 21 15.95 85 
3.75 21 21.83 16.9 56.5 6.85 34 20.95 16.24 100.84 
3.8 47 19.6 15.35 51.6 
4.2 35 20.3 15.66 58.6 
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4.3 Effect of deviating from maximum power point voltage 

Table 4.4: Core data of 51W panel from different environmental conditions 
Isc Ts VOC Vmax Pmax 'Sc TS VOC Vmax Pmax 

0.25 24 18.95 17.15 3.6 2.7 31 19.85 15.53 39.2 
0.38 19.05 19.05 16.07 5.77 2.75 33 19.87 15.45 39.4 
0.42 22 19.65 16.5 6.6 2.8 39 19.12 14.77 38.36 
0.42 24 19.3 16.2 6.3 2.84 57 17.8 13.35 34.52 
0.5 30 18.95 17.6 7 2.84 40 19.18 14.87 38.75 
0.61 25 19.3 16 9.44 2.86 57 17.76 13.36 34.52 
0.76 40 18.39 15 10.6 2.86 55 18.1 13.64 34.2 
0.95 40 18.46 14.85 12.96 2.87 39 19.1 14.76 39 
1.15 18 20.15 16.36 18.48 2.88 53 18 13.55 35.15 
1.18 25 19.75 16.1 18.2 2.93 51 18.25 13.8 36.66 
1.27 26 19.6 16.14 19.12 2.98 43 19.24 14.93 40.86 
1.42 40 18.7 15 19.8 3.05 45 19.09 14.62 41.24 
1.52 21 20.1 16.28 23.37 3.05 46 18.9 14.6 40.4 
1.55 42 18.6 14.66 20.75 3.1 33 20.03 15.7 44.44 
1.7 32 19.53 15.8 25 3.12 54 18.15 13.6 38.46 

1.78 43 18.74 14.8 24.1 3.15 31 20.05 15.59 45.1 
1.9 33 19.44 15.5 27.2 3.25 56 18.2 13.62 40.29 
1.9 35 18.96 14.9 26.5 3.3 34 19.81 15.36 47.2 
2.07 35 19.05 15 28.5 3.35 34 19.92 15.47 47.4 
2.08 38 19.15 15.15 29.36 3.35 28 20.13 15.55 48.6 
2.16 21 20.6 16.4 33.75 3.4 35 19.82 15.22 48.22 
2.35 37 19.18 14.94 33.16 3.95 34 20 15.6 56.3 
2.4 51 18.34 14 30.6 4.19 34 19.95 15.24 60.7 
2.46 38 19.17 14.85 34.3 
2.63 54 17.9 13.52 32.32 
2.67 53 18.14 13.8 32.9 
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4.3 Effect of deviating from maximum power point voltage 

Figure 4.3 shows the relationship between Vd and %Pd in Equations 4.1 and 
Equation 4.2. Figures 4.3. a and 4.3. b show the power drop due to +1V and -1V 
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Figure 4.3: Relationship between voltage deviation and percentage decline in gen- 
erated power 

deviation from V,,, °, x when the PV panels operates at high surface temperature 

(TS=55°C and Voc =18.82V). Also, Figures 4.3. c and 4.3. d show the drop in 

power due to +1V and -1V deviation from Vmax when the PV panel operates 

at low surface temperature (Ts= 25°C and Voc = 20.96 Volt). In addition, 

Figure 4.3 shows how the decline in power due to positive deviation is greater 
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4.4 Effect of wind on TS and Voc 

than that by negative deviation. 

4.4 Effect of wind on TS and V0 

At certain irradiance, the linear relationship between cell temperature, ambient 

temperature and irradiance level in Equation 2.9 can be utilised to calculate 
TS values. Hence, Voc can be calculated approximately from the TS value as 
described in section 2.1 using the 2.3 mV drop in Voc that caused by increasing 

Ts by 1°C. Field data demonstrates the high effect of wind movement on surface 

temperature of PV panels and consequently on junction temperature and Vor. 

Wind movement improves the convection factor which decreases TS and as a 

result increases the value of VOC. Accordingly, the generated power at maximum 

power point is improved. 

In high altitude regions, the wind usually increases, the ambient temperature 

decreases and irradiance becomes higher. The wind has strong effect on the 

surface temperature of PV panels. This improvement appears in the low values 

of TS and high values of Voc in mountain areas. 

Table 4.5 and Figure 4.4 show how Ts, VOC and Pm, °, x change in different climate 

regions with approximate constant irradiance. The wind effect can be observed 

in Table 4.5. This effect appears from the differences between ATS and AT°, in 

different regions. For example, when the irradiance level remains constant in 

equation 2.9, /. TS should be equal to AT,,, however ATS = 26°C when AT,, = 

18°C as shown in Table 4.5. ATS is greater than ATQ by 8°C between Marib 

desert and Shuayb Mountain. Moreover, the wind effect can be observed from 

surface temperature in the Aden region, which is lower than that in Marib, in 

spite the fact that the ambient temperature in Aden was higher than that of 

Marib during data collecting. 

Measuring TS needs an external sensor which can have contact problems with 

PV cell surface and it also require a delay time to give a response. At constant 
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4.4 Effect of wind on TS and Vac 

irradiance level, if 2.3mV drop in Voc due to the 1°C increases in TS is applied, 

this relationship gives a true result compared with the actual data in Table 4.5. 

The following calculation confirms this relationship. 

Voc (Shuayb)= Voc (Marib)+ A TS (26)* 2.3mV *36 cells 
Voc = 18.82V + 2.15V = 20.97V 

Also, this relationship is true when this relationship is applied between Marib 

and Aden. Therefore, the open circuit voltage can be used as an indicator 

for cell junction temperature when the solar radiation changes in small ranges. 

Measuring open circuit voltage is simple and gives a correct and fast response 

during changes in the cell junction temperature. 
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Figure 4.4: Effect of surface temperature on P�fax and Voc in different regions 

74 



4.5 Maximum power generated in different climate regions 

Table 4.5: Temperature effect on Pte.,,,,,,, and Vnc of PV panels 
Region T. 

(°C) 
Ts 
(°C) 

Isc 
(A) 

Voc 
(V) 

Pinax 
(W) 

Marib(1000m) 38 58 4.8 18.82 58.9 
Shaiyb(3317m) 20 33 4.85 20.98 70.1 
Aden(see level) 40 57 4.88 18.86 61.5 
Sana'a(2300m) 32 52 4.95 19.4 64.23 

4.5 Maximum power generated in different cli- 
mate regions 

The cooling factor in different regions changes due to ambient temperature 

and wind velocity. This factor affects the maximum power generated from PV 

panels. For example, with constant irradiance level in Figure 4.4 there is an 

18% gain in output power from the lowest Pmq, x in Marib area to the highest 

P. l., ax in Shuayb mountain. 

This difference in generated power due to ambient temperature and wind ve- 
locity should be considered in PV system design. The standard test conditions 

of PV panels give an ideal output of PV panels called a nominal output power 

(Pn). Actually, the actual generated power of PV panels is less than the nom- 

final output. Table 4.6 and Table 4.7 demonstrate the percentage average of 

the power drop of the 85W single crystal panel and 51W polycrystalline panel 

in two different climate regions. The actual output is compared with nominal 

output in Table 4.6 and Table 4.7. In addition, Figure 4.5 shows how this drop 

in power increases due to increasing in the surface temperature of the 85W sin- 

gle crystal PV panel and 51W polycrystalline PV panel in two different climate 

regions. 

This drop in output power is considered when the PV system is designed as a 

constant percentage [26] [27]. However, the average drop in power generated 

shown in Tables 4.6 and 4.7 of two types of PV panels is more than 16% in high 
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4.5 Maximum power generated in different climate regions 

Table 4.6: Maximum power compared with nominal power of 85W single crystal 
PV panel 

85W PV panels at low ambient temperature and wind effect 
ISC TS VoC Vmax Pmax Pn %(Pmax-Pn) 

/Pn 

1.82 21 20.81 16.83 26.28 28.1 -6.57 
2.3 24 20.96 17 34 35.55 -4.35 
2.95 27 21 16.7 44.2 45.59 -3.05 
4.45 31 20.75 16 64.1 68.77 -6.79 
5.3 31 20.9 15.95 76.3 81.90 -6.85 
5.5 34 20.7 15.82 77.65 85 -8.65 
5.92 29 21 15.95 85 91.49 -7.09 
Average of percentage power drop -6.2 

85W PV panels at high ambient temperature 
ISC TS VoC Vmax Pmax Pn %(Pmax-Pn) 

/Pn 

1.1 36 19 15 13.2 17 -22.35 
1.14 35 19.05 15.1 13.56 17.6 -23.03 
2.23 41 19.55 15.65 30.4 34.46 -11.79 
3.2 45 19.49 15.2 42.87 49.45 -13.3 
3.73 49 19.54 15.32 50.8 57.65 -11.87 
3.8 47 19.6 15.35 51.6 58.73 -12.14 
4.22 52 19.31 14.47 53.84 65.22 -17.45 
4.78 57 19.1 14.15 62.1 73.87 -15.94 
4.88 57 18.86 14.11 61.5 75.42 -18.45 
Average of percentage power drop -16.23 
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4.5 Maximum power generated in different climate regions 

Table 4.7: Maximum power compared with nominal power of 51W Polycrystalline 
PV panel 

51W PV panels at low ambient temperature and wind effect 
ISC TS VOC Vmax Pmax Pn %(P. 

max-Pn) /Pn 
1.15 18 20.15 16.36 18.48 18.05 2.40 
1.27 26 19.6 16.14 19.12 19.93 -4.060 
1.52 21 20.1 16.28 23.37 23.85 -2.02 
2.16 21 20.6 16.4 33.75 33.89 -0.43 
2.7 31 19.85 15.53 39.2 42.37 -7.48 
3.15 31 20.05 15.59 45.1 49.43 -8.76 
3.3 34 19.81 15.36 47.2 51.78 -8.85 
3.35 28 20.13 15.55 48.6 52.57 -7.55 
3.4 35 19.82 15.22 48.22 53.35 -9.62 
Average of percentage power drop -5.15 

51W PV panels at high ambient temperature 
ISC TS VOC Vmax Pmax Pn %(Pmax-Pn) 

/Pn 

0.76 40 18.39 15 10.6 11.92 -11.12 
0.95 40 18.46 14.85 12.96 14.9 -13.065 
1.55 42 18.6 14.66 20.75 24.32 -14.69 
1.78 43 18.74 14.8 24.1 27.93 -13.72 
2.4 51 18.34 14 30.6 37.66 -18.75 
2.63 54 17.9 13.52 32.32 41.27 -21.69 
2.67 53 18.14 13.8 32.9 41.9 -21.48 
2.84 57 17.8 13.35 34.52 44.57 -22.54 
Average of percentage power drop -17.8 
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4.5 Maximum power generated in different climate regions 
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Figure 4.5: Temperature effect on maximum power of 51W PV panels 

ambient temperature regions and about 6% in low ambient temperature regions. 

This drop in power becomes very high in massive ambient temperature areas 

such as desert areas. The ambient temperature may reach to 50°C in several 

regions. In these regions a high increasing in cell junction temperature can 

cause a high drop in the generated power from PV panels, which can be more 

than the estimated value. Moreover, if the PV system is installed in high solar 

radiation areas that have low ambient temperature, the estimated energy drop 

of PV system is greater than the actual drop, which leads to additional cost in 

system capacity. 
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4.5 Maximum power generated in different climate regions 

The location in which the PV system is installed is very important. This as- 

pect is shown in Figure 4.6, which shows the gain in maximum power generated 

at midday in different regions. Generally, the differences in altitude affect the 

irradiance level and cooling factor which finally affects the power generated 

from PV panels. In high mountain areas, the solar energy increases due to 

the low solar energy dissipated in atmosphere[40]. In addition the wind de- 

creases the cell temperature of PV panels. In summer, the gain in maximum 

output power of PV panels reach to 63% between Shuayb and Aden as shown 

in Figure 4.6. Also, the gain in maximum output power of panels reach to 40% 

between Shuayb and Sanaa, despite that Shuayb and Sanaa are in the same 

area. However Shuayb is 1000m higher than Sanaa in altitude. To maintain 

this acquisition in the generated power, PV panels have to operate at MPP. If 

the PV panel has more than 1Volt deviation from Vmax, most generated power 

will be lost. Hence, operating at V, ma,, is necessary to generate maximum power 

from PV system. 
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Figure 4.6: P-V curves of 51W PV panel at midday in different climate regions. 
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4.6 Power Gain of PV System with Sun tracker 

4.6 Power Gain of PV System with Sun tracker 

The gain in solar energy that is acquired by using a sun tracker is very high, 

especially in sunny days. Two main advantages are achieved by using one or 

two axis tracker. The first one is a high gain in total generated power from 

PV panels. The second to provide sufficient irradiance for the loads that need 

a high threshold operating irradiance level such as direct coupled DC pumps. 
Accordingly, a high submitted irradiance level in tracking system during the 

morning and afternoon time helps on increase the operating time of the resistive 

load [26] [81]. Figure 4.7 shows the solar radiation incidence per meter square 

in Sanaa city 15.5° latitude in the begging of December when the solar sensor 

is tilted at 15° toward the south with sun tracker and without it. A 35% gain 

is computed from the area under the curves between tracking system and fixed 

angle system in Figure 4.7 [10]. 

In addition, the optimum south north angle should be considered in PV system 

design to improve the generated power from PV panels at optimum angle in 

different latitude regions. Figure 4.8 shows the solar radiation incidence per 

meter square in Sanaa city 15.5° latitude in the begging of December when 

the sun tracker is tilted at optimum angle 31° towards the south with the sun 

tracker. In addition, Figure 4.8 shows the submitted irradiance when the sensor 

is fixed at optimum angle toward the south without the sun tracker [9]. A 28% 

gain is computed from the areas under the curves between tracking system and 

optimum angle system [10] [82]. 

4.7 Summary 

This chapter presented the core data of two types of PV panels which extracted 

from a lot of data that is collected in four different regions in Yemen in different 

selected times in two years. In addition, the maximum generated power from 

PV system in different environmental conditions is investigated in this chapter. 
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4.7 Summary 
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4.7 Summary 

The core data that is presented in this chapter will be utilised in chapter 5 to 

predict Vma, x. In addition, the presented data will help in result discussion in 

chapter 7. 
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Chapter 5 

ANFIS Model 

In this chapter, several ANFIS models are assembled to predict the maximum 

power point voltage of PV panels. Furthermore, statistical analysis methods are 

utilised to identify the relationships between different parameters of PV panels. 
This statistical analysis helps us to understand the behaviour of PV panels in 

different environmental conditions, and therefore, helps with the ANFIS design. 

5.1 Introduction 

As discussed in chapter 2, the short circuit current of a solar cell depends exclu- 

sively and linearly on the irradiance level. In addition, the short circuit current 

measures solve the problem of the solar irradiance external sensor. Therefore, it 

is used as an input to ANFIS models instead of irradiance level. Furthermore, 

the open circuit voltage is used instead of cell junction temperature due to the 

difficulty of cell junction temperature measured and the simplicity of measur- 

ing the open circuit voltage. In addition, the open circuit voltage is used as a 

second input of solar panels instead of cell temperature due to the linear rela- 

tionship between VoC and cell junction temperature when irradiance roughly 

remains constant. Therefore, it is necessary to study the relationships between 

input and output parameters of PV system to understand the behaviours of 

PV panels in different environmental conditions. Correlation analysis and data 

clustering are utilised to find the degree of association between short circuit 

current and open circuit voltage with maximum power point parameters. In 

addition, it helps clarify the relationship between different PV parameters. 
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5.2 Correlation analysis of input data and MPP parameters 

5.2 Correlation analysis of input data and MPP 
parameters 

Many methods have been used to find the relationships between input and 

output variables of different control systems. Statistical techniques such as cor- 

relation analysis are the most commonly used [17]. Linear correlation analysis 
is the most direct and simple method that can be used to measure the associ- 

ation of different variables. To investigate the relationships between different 

parameters of PV panels in Tables 4.3 and 4.4, correlation coefficients (CCs) 

between these parameters are computed by applying a linear correlation cal- 

culation. Tables 5.1 and 5.2 show the correlation coefficients between different 

output parameters of two panels. 

The CCs between 'Sc and Pmax of 85W and 51W PV panels are 0.993 and 

0.987 respectively. Even though the PV panels are tested in different surface 

temperatures in four climatic regions, these two values imply high CCs between 

input 'Sc which represent the irradiance level and Pma, x. The slight drop of 

linear relationship between ISC and P,,,, o, x values is due to the drop in Vmax in 

high ambient temperature regions which finally reduces the maximum generated 

power from PV panels at high temperature. Electrically, to operate the PV 

panels at Pmax, the panels have to operate at V,,,., and I�2ni. 

It is easier and more efficient within maximum power point tracking systems to 

measure and adjust continuously the operating voltage of PV panels until they 

get in touch with the maximum power point voltage. Therefore, it is essential 

to investigate the correlation between the two selected inputs that affect the 

maximum power point voltage and power. 

A poor CC between 'Sc and Amax appears in Tables 5.1 and 5.2. Hence, it is 

difficult to find a linear relationship between 'Sc and Vmax as shown in Figures 

5.1 and 5.2. 

The CC between Voc and Vm, ax is 0.837 for 85W single crystal and 0.717 for 51W 
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5.2 Correlation analysis of input data and MPP parameters 

Table 5.1: Correlation coefficients of the single crustal panel 
Correlation coefficient between 85 W Panel parameters 

Character 'Sc Ts Voc V. ý, ax 
Pnax 

'Sc 1.000 
Ts 0.534 1.000 
Voc 0.290 -0.538 1.000 
Y . ax -0.131 -0.638 0.837 1.000 
Pmax 0.993 0.450 0.383 -0.046 1.000 

Tnh1P 5-2: Correlation coefficients of the nolvcrvstalline panel 
Correlation coefficients between 51 W Panel parameters 

Character Isc Ts Voc Vmax Pmax 
'Sc 1.000 
Ts 0.531 1.000 
V. 0.065 -0.776 1.000 
Vmax -0.559 -0.934 0.717 1.000 
Pmax 0.987 0.398 0.216 -0.436 1.000 

18 
1 7.5 

17 
aý ++; 

4"r + 1 6.5 
16 4+ 

'++ 

15.5 *e 

14.5 + ++ý. 
+ ;+ t+ fC C= -0.13 

14 

1 3.5 
13 

12.5 
12 

0468 
Isc 

Figure 5.1: Plot of 'Sc and Vm, ax 85W Panel parameters 
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Figure 5.2: Plot of 'Sc and Vma, x 51W Panel parameters 

polycrystalline panel. Based on these low CCs that are also observed in Figures 

5.3 and 5.4, Vmax changes widely when Voc remains constant. Therefore, the 

CCs are not sufficient to set up a linear relationship between the inputs and 

outputs of PV panels. Within a small range of Isc, the effect of the logarithmic 

relationship between Voc and irradiance level can be reduced. Therefore, the 

linear relationship between cell temperature and VoC becomes more effective 

and as a result, the association between Voc and V,,,, o, x of PV panels will be 

improved. 

Generally, when a mutual effect between inputs is reduced, the individual rela- 

tionship between input and outputs becomes more understandable. Hence, the 

relationship between Voc and V,,,,, becomes more apparent when the effect of 

Isc is reduced by dividing the data in small groups depending on 'Sc values. 

With a small change in ISC a CC between Voc and V,,,, is improved. Improv- 

ing the CCs between VoC and VmQ, x can be confirmed by classifying the input 

data of PV panels and recognising the increments in the CCs of different clus- 

ters. Studying the CC of different appropriate clusters is essential to initiate 

an outstanding control method for locating and tracking the maximum power 
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Figure 5.3: Plot of Vor and Vm, ax 85W Panel parameters 

5.3 Input data clustering 

"Clustering of numerical data forms the basis of many classification and system 

modelling algorithms. The purpose of data clustering is to identify natural 

groupings of data from a large data set to produce a concise representation of a 

system's behaviour. Cluster analysis also helps in creating balanced treatment 

and control groups for a designed study" Matlab help, Fuzzy clustering [58]. 

The K-means clustering function that was described in chapter 2 partitions the 

observations of data into K mutually exclusive clusters. However, with different 

range variations of 'Sc and Voc, it is necessary to normalise the input data for 

clustering analysis [24]. 

Clustering functions should deal with homogenous per unit data of 'Sc and 

Voc. Table A. 1 in Appendixes shows how the input per unit data is clustered 

for two types of panels depending exclusively on short circuit current when 

either data is sorted by Isc or Voc. 
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Figure 5.4: Plot of Voc and Vmax 51W Panel parameters 

To understand how input data is distributed in different clusters, it is important 

to clarify how Voc changes when ISC changes in small ranges. With small 

changes in Iss (irradiance level), Voc is affected only by cell temperature. For 

that reason, Voc changes at this irradiance level in a limited range. On the 

other hand, the limited changes in Voc can be caused by the following two main 

reasons: 

" The association between high irradiance level and high temperature which 

forces Voc to change into two directions. The first is increasing due to 

high irradiance and the second is decreasing with high temperature. 

" The temperature decreases with low irradiance, therefore, Uoc decreases 

due to the low irradiance and increases owing to the low temperature. 

For these reasons, when the open circuit voltage changes in a small range, there 

are no limitations for short circuit current changes. Therefore, the result of K- 

means clustering function in Table A. 1 shows how the data is clustered in two 

cases with respect to 'Sc. 

The Matlab program shown in Program B. 1 in Appendix B is used to normalise 
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5.3 Input data clustering 

'Sc and Voc data of two panels, and then, it applies the K-means function to 

group the data in a number of clusters that are set in the program. Finally, the 

program draws the separate cluster groups of both panels as shown in Figures 

5.5 and 5.6 for four clusters, and Figures 5.7 and 5.8 for six clusters. 
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Figure 5.5: Clustering the 85W PV input data in four clusters 

When the input data of two panels is clustered into different numbers of clusters, 

the input data is always clustered regarding ISc. This fact appears when data 

is clustered in four groups as shown in Figures 5.5 and 5.6. Furthermore, 

clustering with ISc is recurring when data is clustered in six clusters as shown 

in Figures 5.7 and 5.8. 

In addition, clustering the input data by means of short circuit currents is tested 

by using CCs between Voc and Vrna, x in different clusters. Tables 5.3 and 5.4 

show the CCs between Vor and Vmo, x in these clusters. 

According to Tables 5.1 and 5.2, the CCs between Voc and V.,,,, o, x are 0.837 for 

85W PV panel and 0.717 for 51 W PV panel. These values are improved when 

the CCs between VOC and V,,,,,, x are computed in small cluster groups as shown 
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Figure 5.6: Clustering the 51W PV input data in four clusters 
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Figure 5.7: Clustering 85W PV input data into six clusters 

90 



5.3 Input data clustering 

0.155 T 

0 

0.145 
c 

0.15 
o+ 

ö 
o °E 

p -------------------------- --------------------------------- 

0 
---------- ag -- ---------------- II 

p ib 
d0 

--------------- ----------------- -------------- ö--Qz23 ------ö ---------------- 

Q) s U 

0.14 

0.135 

0.13 
0 u. ub 0.1 0.15 0.2 0.25 

Isc(per unit) 

Figure 5.8: Clustering 51W PV input data into six clusters 

in Tables 5.3 and 5.4. From Table 5.3, it can be observed the CCs between Voc 

and Vmo, x of the 85W panel are greater than 0.93 for all groups. In addition 

the CCs increase at high short circuit current groups. Generally, the CCs are 

greater than 0.95 for all clusters of the 51W polycrystalline panel except in the 

lowest irradiance level cluster. A low CC at low Isc cluster is caused by a high 

effect of logarithm relationship of irradiance level on Voc at low irradiance level. 

At the last two points in this cluster it is not easy to measure the exact Imax and 

Vmax, as a result Pax when the irradiance changes under 100W/m2. Moreover, 

at low irradiance level one point has abnormal reading of Vmax, hence, when 

this three point is removed the CC of the other points becomes more than 0.96 

in this cluster. Generally, the CCs in small groups are very high compared 

to the CC of whole data. In addition, the CC at the high 'Sc cluster (high 

irradiance level) is close to unity. 

According to Tables 5.3 and 5.4, the CCs in the two cluster groups have unstable 

values in different clusters. Sometimes the CC is improved when the cluster 

becomes bigger and it decreases occasionally. This diversity in CCs can be 
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5.3 Input data clustering 

Table 5.3: CCs between Vne and V,,,,,. of the single crustal panel in different clusters 
CCs in four clusters CCs in six clusters 
Range of 'Sc CCs Range of ISC CCs 
0- 6.85 0.837 0- 6.85 0.837 
0.26 - 1.65 0.93 0.26 - 1.3 0.949 
1.82 - 3.25 0.945 1.65 - 2.78 0.956 
3.53 - 4.95 0.968 2.95 - 3.8 0.978 
5.13 - 6,85 0.984 4.2 - 4.95 0.99 

5.13 - 3.92 0.989 
6.85-6.85 1 

Table 5.4: CCs between Voc and V, ma, x of the polycrystalline panel in different 
clusters 

CCs in four clusters CCs in six clusters 
Range of 'Sc CCs Range of 'Sc CCs 
0-4.19 0.717 0-4.19 0.717 
0.18-0.26 0.5 0.18-0.76 0.35 
1.15 - 2.16 0.952 0.95 - 1.55 0.978 
2,35 - 3.12 0.996 1.7 - 2.35 0.96 
3.15 - 4.19 0.988 2.4 - 2.93 0.998 

2.98 - 3.4 0.989 
3.9 - 4.19 1 
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5.3 Input data clustering 

referred to the following four reasons: 

" Differences in irradiance levels. 

9 The unbalanced distribution of overall data. 

" The diversity of boundaries of Voc and Vma, x in different clusters. 

" Number of points in every cluster. 

The data is collected environmentally without applying a constant increments, 

thus, the amount of data in each cluster can not be organised straightforwardly. 

Therefore, when CCs is computed after increasing or decreasing the boundary 

of clusters, the CCs change randomly. The data group boundaries are change 

frequently with small adjustments and the CCs are computed every time, the 

CCs are increased sometimes and decreased in other times. The best data group 

distribution can be achieved with more and more iterations. In addition, there 

are overlaps between data groups, the best possible clusters can be achieved. 

The actual learning data is distributed randomly and the groups of data need 

to be modified frequently with overlapping between different groups. Conse- 

quently, the CC should be computed with every modification until it reaches 

to the best data groups to attain the highest CCs. These processes are time- 

consuming and required continuous evaluating. 

An adaptive neuro-fuzzy inference system is very efficient system, which can 

carry out this process with expert knowledge using a hybrid learning algorithm. 

Data fuzzification in different membership functions in ANFIS provides a solu- 

tion for the problem of frequent changes in cluster boundaries and it can change 

the overlaps between different clusters until reach the best linear relationships 

between input output parameters. 
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5.4 Locating MPP voltage using an ANFIS model 

ANFIS structure and adaptation process changes the proposed MFs of input 

learning data and output linear parameters to minimise the errors between 

ANFIS output and training data that is used to learn the ANFIS model. 

5.4.1 Proposed ANFIS Model analysis 

The ANFIS function in Matlab toolbox uses a hybrid learning algorithm to 

identify the MFs and output rules parameters is the major training routine 
for Sugeno-type fuzzy inference systems. Prior to apply in the Matlab ANFIS 

function, Genfisl (Generate a fuzzy inference system) function in the Matlab 

toolbox is applied to convert the input crisp data to the selected number and 

type of membership functions. Genfisl function generates a Sugeno-type Fuzzy 

inference system (FIS) structure which initialises the membership function pa- 

rameters [58]. The ANFIS function uses actual 'Sc and Voc of PV panels 

as input parameters and actual Vmax as output parameter to learn the AN- 

FIS model by adapting the nonlinear parameters of the MFs and output linear 

parameters of Sugeno output equations. 

The parameters of MFs and output linear parameters of a Sugeno-type FIS 

structure are modified by applying a hybrid learning rule algorithm that is 

described in chapter 2. All actual data is used as a learning data to train 

the ANFIS model. Also, this data is used as a test data to find the individual 

errors between actual data and predicted data. This process is continued in this 

chapter until achieve the best ANFIS model that give the minimum individual 

errors. The final selected ANFIS model will be tested by dividing the actual 

data into learning data and test data. In addition, the performance of final 

model is tested with new data in chapter 7. 

The ANFIS function in Matlab toolbox modifies the ANFIS model parameters 

according to the selected error criterion or the number of epochs that are set 
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5.4 Locating MPP voltage using an ANFIS model 

in the ANFIS function. Figures 5.9 and 5.10 show 4x1 Gaussians MFs as a 

first example of input data fuzzification before and after these MFs are adapted 

by ANFIS function. The number of generated rules can be computed from all 

possible connectives between MFs of inputs. Therefore, the number of rules 

equal the number of MFs of input1 times the number of MFs of input2. 
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Figure 5.9: 4x1 Gaussians MFs of 85W PV panel 
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5.4 Locating MPP voltage using an ANFIS model 

RMSE of different ANFIS models 

For different groups of inputs Gaussians MFs, Figures 5.11 and 5.12 show how 

the root mean square error (RMSE) between the actual Vma, x and the predicted 

outputs is improved after 100 epochs for 85W panel data and 50 epochs for 

51W panel data. 

When the data is grouped by means of Ise, the relationship between Voc and 
V , dam is improved as clarified in statistical analysis. Thus, when the input Ise 

data is fuzzified in more than two MFs the RMSE decreases rapidly after a 
few number of epochs as shown in Figures 5.11. a and 5.12. a. Conversely, a 

high RMSE is produced when the input data is grouped only by means of Voc 

as shown in Figures 5.11. b and 5.12. b. Also, there is a poor improvement of 

RMSE when the data is fuzzified according to Voe. 

When the control systems are assembled, two important requirements should 

be considered: 

" The system should be optimised with minimum number of rules to avoid 

the complexity in system design. 

"A maximum accepted error is associating with the system precision re- 

quirements according to maximum efficiency required in the control system 

which is determined by designers. 

When only 'Sc is fuzzified into 3MFs, 4MFs and 5MFs and VOC remains as 

a crisp, the RMSE reaches its minimum values after a few number of epochs 

as shown in Figures 5.11. a and 5.12. a. Furthermore, the RMSE is improved 

due to increasing the number of MFs and consequently, the number of rules, 

which in this cases equal the number of MFs of ISc. This means that the linear 

and nonlinear parameters are adapted until they reach their final values that 

provide these low RMSE values. Accordingly, the differences between actual 

Vma, x and the ANFIS models output are improved owing to the increasing the 

number of MFs as a result number of rules. 
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Figure 5.11: Root mean square error of the 85W panel at different MFs 
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5.4 Locating MPP voltage using an ANFIS model 

Individual errors of different ANFIS models 

Based on Figures 4.3. a and 4.3. b for the two types of PV panels, the generated 

power from PV panels decreases around 1% when the Vop deviate a 0.3V from 

V,,, ax. This small decline in power does not affect the maximum generated power 
from the PV panels. Also, this accessibility in voltage deviation is necessary 
for the MPPT system stability, which is clarified in the next chapter. 

According to the previous percentage drop in output power of PV panels due 

to voltage deviation from Vmax the individual errors between predicted ANFIS 

output and actual Vma, x should be computed. 

Generally, the RMSE is not high in most models that have been tested in 

Figures 5.11 and 5.12. A test data is applied in different ANFIS Models to 

predict Vmax. The outputs of the different proposed ANFIS models have been 

compared with the actual experiment output of the PV panels. Three models 

are selected to predict the Vmax regarding the low individual errors between 

the actual data and the predicted output from ANFIS models that is shown 

in Figures 5.13 and 5.14 and Table A. 2, A. 3, A. 4 and A. 5 . 
The Models that 

have 4x 1MFs, 5x1 MFs and 2x2 achieve high precisions with less than 2% 

absolute error between the predicted V,,,, o, x and the real measured data. On the 

other hand a high individual errors between the actual data and the predicted 

outputs from ANFIS models of more than one point is observed, especially with 

the models that have less than four MFs (less than four rules) and all ANFIS 

models that are grouped only by means of Voc data as shown in Figures 5.13 

and 5.14 for two panel types. 

The individual errors of ANFIS output is between 2% and 5% in many points 

when Voc only is fuzzified in more than one MFs and 'Sc data remains as a 

crisp input. These high errors confirm a low precision in the predicted Vmax of 

ANFIS models when dealing with a crisp data of ISc. Also, with the lowest 

number of MFs in a 2x1 model (minimum number of rules), the RMSE is 
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0.119 after 200 epochs for the 85W panel and 0.0946 after 50 epochs for the 

51W panel. Normally, these RMSE values are accepted, however as shown in 

Figures 5.13. a and 5.14. a the errors between the actual data and ANFIS output 

are more than 2% for many points of the 85 W panel data and near 2% for 

the 51W panel. Accordingly, more MFs of 'Sc in 4x1 model and 5x1 model 

reduce the error in these points. 
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Figure 5.13: Individual errors between the actual data and the outputs of ANFIS 
models of the 85W panel 

A good performance is achieved when the input 'Sc and Voc data is fuzzified 

into two MFs (2x2 model). This ANFIS model attains a low initial RMSE. The 

problem with 2x2 model is that the low improvement is achieved during the 

learning epochs. Figures 5.15 and 5.16 show how the MFs are modified after 50 

epochs and 100 epochs respectively. The RMSE decreases by only -0.004 due 

to this high modification in MFs parameters. 
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Figure 5.14: Individual errors between the actual data and outputs ANFIS models 
of the 51W panel 

5.4.2 Selected rules for the proposed ANFIS model 

By referring to the data point by point it can be observed that 4x1 model and 

5x1 model achieve a very low error in both types of PV panels, however to face 

the extending changes in cell junction temperatures which affect V0 values, it 

is necessary to use the 2x2 model, especially with irregular open circuit voltage 

points in high or low ambient temperature regions. 

The 4x1 ANFIS model and the 2x2 ANFIS model that are shown in Figure 

5.17 and Figure 5.18 respectively have low rules with high precision. The rules 

of the trained 4x1 ANFIS model of the 85W panel are: 

If Isc is very low and Voc is Crisp THEN fl = -3.18441sc+3.26Voc-46.86 

If Isc is low and Voc is Crisp THEN f2 = -0.49957Isc+0.5935Voc+5.4304 

If Ise is high and Voc is Crisp THEN f3 = -0.23808Isc+ 1.194Voc - 7.379 

If Isc is very high and Voc is Crisp THEN f4 = 0.4971sc+0.46333Voc+3.1816 
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Also, the training 2x2 MFs ANFIS model rules of the 51W panel are: 

If Isc is low and Voc is Crisp THEN fl = -3.8347Isc+0.076738Voc+13.354 

If Isc is low and Voc is Crisp THEN f2 = 0.465731sc-0.0.21236Voc+21.224 

If Isc is high and Voc is Crisp THEN f3 = -2.6635Isc+1.6051Voc-3.7389 

If Isc is high and Voc is Crisp THEN f4 = 0.396461sc+ 1.5309Voc - 17.223 

The two models mentioned above produce a good precision with the two panels 
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Figure 5.15: 2-2 Gaussians MFs of the 51W PV panel after 50 epochs. 

that have 36 PV cells in series. When ANFIS models starts their learning, the 

4x1 model produces higher RMSE than the 2x2 model. However, after few 

training epochs, the RMSE of 4x 1 model becomes lower than that of the 2x2 

model. The previous changes in RMSE take place in the two panel models as 

shown in Figures 5.11. a and 5.12. a. 

The low initial RMSE of the 2x2 model is due to the direct proportional rela- 

tionship between Voc and irradiance level when the temperature effect on Voc 

is neglected. Therefore, the Voc has a limitation range change, especially at low 

irradiance level. Thus, dividing the data of Voc in more than one MFs helps 
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Figure 5.16: 2-2 Gaussians MFs of the 51W PV panel after 100 epochs. 

the ANFIS model to learn the behaviour of PV panels at different irradiance 

level. 

However, increasing the number of MFs of the both input parameters leads 

to higher number of rules. The Genfisl function with more than two groups 

of two inputs generates many rules such as 9 and 16 rules, which leads to 

more complexity in the MPPT system. Moreover, in Genfisl function "the 

backward pass gradient descent algorithm, which modifies the nonlinear premise 

parameters of MFs does not perform any iterative optimisation" [58]. The small 

improvement comes from the forward pass linear least squares estimation (LSE) 

algorithm modification for consequent linear parameters of ANFIS model. 

Referring to data clustering, Genfis2 function in the Matlab fuzzy toolbox can 

generate an FIS structure using the clustering algorithm discussed in clustering 

methods in chapter 2. "The subtractive clustering method partitions the data 

into groups called clusters, and generates an FIS with minimum number of 

rules that are required to distinguish the fuzzy qualities associated with each 

cluster" [58]. 
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Figure 5.17: ANFIS model of 4x1MFs for the 85W PV panel 
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5.4.3 ANFIS models using Genfis2 function 

To overcome the problem of the iterative modification in premise parameters 

of MFs using a gradient descent algorithm in ANFIS function, Genfis2 (gen- 

erates an FIS using fuzzy subtractive clustering) function separates the input 

and output data in fuzzy sets when there is only one output. Genfis2 is used to 

generate an initial FIS for ANFIS training by applying subtractive clustering 

on the data set. This is accomplished by extracting a set of rules that models 

the data behaviour. The rule extraction method first uses the Subclust function 

in the Matlab toolbox to determine the number of rules and antecedent mem- 

bership functions and, then uses a linear least squares estimation to determine 

each rule's consequent equations. This function returns an FIS structure that 

contains a set of fuzzy rules to cover the feature space. [58] [6] [7]. 

Genfis2 function is a fast and one-pass method that does not perform any 

iterative optimisation. Moreover, it requires a specified cluster centres range. 

The cluster radius indicates the range of influence of a cluster. A small cluster 

radius usually yields many small clusters and as a result, many rules. However, 

large cluster radiuses usually yield a few large clusters and generate fewer rules. 

This means that the number of rules is associated with the number of clusters. 

Accordingly, this overcomes the problem of high number of rules in the Genfisl 

function, which are generated by number of inputl MFs multiplied by number 

of input2 MFs. Each cluster centre has a spherical neighbourhood of influence 

within the given radius. The Genfis2 function is applied using a cluster radius 

of 0.5 with 'Sc as inputl, VoC as input2 and Vma, x as output. 

Figure 5.19. a shows the actual data and predicted data of the 85W panel ANFIS 

model with cluster radius equal to 0.5. Also, Figure 5.20. a shows the actual 

data and the predicted data of the 51W panel ANFIS model with cluster radius 

equal to 0.5. The RMSE values are computed of the two models, they are 0.166 

and 0.09 respectively. In addition, the individual errors between the actual 
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data and the predicted outputs of ANFIS models are shown in Figures 5.21. a 
and 5.22. a. 
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Figure 5.19: The actual data, and predicted outputs of Genfis2 model data for the 
85W panel before and after ANFIS function training 

The two 0.5 cluster radius models have four generated rules. If the radiuses of 

clusters are decreased, the rules increase. The premise nonlinear parameters of 

the MFs are assembled by applying the subtractive clustering, which simulates 

the data behaviour. The Genfis2 function models achieve approximately the 

same RMSE compared with the selected 4x1 model and the 2x2 model that 

obtained with ANFIS function, which have been specified in Genfisl models. 

Moreover, the individual errors between actual data and predicted outputs are 

less than 2% in all points that are shown in Figure 5.22. a and are roughly 2% 

as shown in Figure 5.21. a. 

A Lower RMSE and individual errors can be achieved if the radius of cluster 

centre is reduced. However, decreasing the radius of clusters increases the 

number of clusters and, as a result, additional rules will be added. For example, 

if the radius of cluster centre decreases to 0.3 the RMSE decreases to 0.133 

and 0.056 for an 85W and a 51W panels respectively. However, the number 
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Figure 5.20: The actual data and predicted outputs of Genfis2 data for the 51W 
panel before and after ANFIS function training 
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Figure 5.22: Percentage errors between actual data and predicted outputs of Genfis2 
of the 51W panel. 

of rules increases to 7 rules for the 85W panel model and 6 rules for the 51W 

panel model. As mentioned before, optimisation with minimum number of rules 

is very important. Thus, the output FIS structure can use the optimisation 

capability of ANFIS to improve the model performance. The ANFIS function 

can improve the consequent linear parameters applying the actual data to train 

the 0.5 radius model. After 100 epochs, the RMSE of Genfis2 models decrease 

to 0.12 and 0.054, which are better than the 0.3 radius model. The predicted 

data move toward the values of the actual data as shown in Figure 5.19. b and 

Figure 5.20. b. Moreover, the individual errors are decreased to approximately 

1% in ANFIS model for 85W panel and, less than 1% in ANFIS model for the 

51W panel as shown in Figure 5.19and 5.20. b. respectively. 

Figures 5.23 and 5.24 show the MFs of Genfis2 models before and after applying 

ANFIS function training. In addition, The overall ANFIS model is shown in 

Figures 5.25 and 5.26. 

The very low individual errors of the previous two final models achieve a good 
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Figure 5.23: MFs of Genfis2 model for the 85W panel before and after ANFIS 
function training. 
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Figure 5.25: Final structure of Genfis2 ANFIS for the 85W after ANFIS function 
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Figure 5.26: Final structure of Genfis2 ANFIS for the 51W after ANFIS function 
training. 
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performance with their own data. However, the above ANFIS models can be 

used only with its panel separately. To test the possibility of using the above 

models as a general ANFIS model, the input data of one panel is used as a test 

data in the ANFIS model of another panel, the RMSE becomes very high. For 

example, when the data of 51W panel is applied with the 85W ANFIS model 

the RMSE increases to 0.76. Also, the RMSE increases to 0.81 when the data 

of 85W panel is applied with the 51W ANFIS model. These values are very 

high and they are not accepted in the MPP predication. Furthermore, the high 

individual errors in many points that are shown in Figure 5.27 confirms the 

disability of using a test data of one type of PV panel on ANFIS model of other 

type panel. Hence, it is necessary to deal with more homogenous data to create 

a general ANFIS model with accepted RMSE. For generalising ANFIS model, 

the per-unit data can normalise the two panel data to provide a solution for 

the MPP predicted system generalisation. Per-Unit (pu) data provides more 

homogenous data, therefore it helps the cluster analysis to find the clusters that 

have the best relationships between input output data. 
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Figure 5.27: Percentage error between actual data and predicted outputs data of 
the two panels 
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5.4.4 Generalising the ANFIS models using per unit data 

Single crystal PV modules and poly crystalline PV modules are the widely used 

PV solar systems in the market, thus, it is important to produce a general AN- 

FIS model that can predict the MPP for these types of PV modules. Moreover, 

the data of 36 cells panels are used to generate the mentioned above ANFIS 

models, so, the general ANFIS model should be implemented for panels that 

can have different numbers of PV cells. 

Table A. 6 in Appendix A shows the normalised PU data of Isc, Voc and Vmo, x 
data of the 85W panel and the 51W panel that is shown in Tables 4.3 and 4.4. 

The Genfis2 model that is improved by ANFIS function is applied with per 

unit data using 0.5 cluster radius model. Figures 5.28 and 5.29 show the actual 

data and predicted PU data of ANFIS models before and after 100 training 

epochs of ANFIS function. Also, Figures 5.30 and 5.31 show the percentage 

error before and after ANFIS training. Generally, the PU data is applied to 

generate all training Genfis2 models that were specified earlier with real data. 

The PU data models perform better than the models that are generated with 

real data. Figures 5.30 and 5.31 show these improvements in individual errors. 

As previously mentioned in this section, the ANFIS function uses a hybrid learn- 

ing rule algorithm, hence, more adaptation on consequent parameters using the 

LSE algorithm during forward learning improves the performance of the AN- 

FIS prediction model. However, the MFs parameters are modified by a gradient 

descent algorithm. The MFs parameters are assembled during the subtractive 

clustering by extracting a set of rules that simulate the data behaviour. There- 

fore, any modification within these parameters increases the error between the 

actual output and predicted output in one edge and decreases the error in other 

edge of the data as shown in Figures 5.30 and 5.31. The error in a few points 

at low 'Sc is decreased and increased at high ISC. To avoid this modification 
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Figure 5.28: Actual data and PU predicted outputs of Genfis2 data of 85W panel 
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in MFs parameters a very small gradient descent constant is set during the 

backpropagation training [45]. 
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Figure 5.30: Percentage error between actual data and predicted PU outputs of the 
85W panel. 

Generating more clusters using a smaller radius improves the error between ac- 

tual and predicted data of ANFIS models, however it decreases the associations 

of input MFs especially at low and high irradiance level. Generally, the clusters 

with big radiuses are more linked. A high linkage between large clusters of large 

radiuses produces two advantages: 

" Decreases the effect of the actual abnormal output points on output linear 

parameters of rules, accordingly, the ANFIS model corrects these abnormal 

Vmax points. 

" Achieves a good performance, when the system is generalised for different 

type of PV system panels. 

The above two advantages have been inferred from many models that have been 

tested with the 85W panel and 51W panel data. Tables A. 7, A. 8, A. 9 and A. 10 

in Appendix A show part of these results. 

ANFIS with a 0.5 radius predicts V,,, a, x with a good aspect such as: 
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Figure 5.31: Percentage error between actual data and predicted PU outputs of the 
51W panel. 

" provides a small error between actual and predicted output. 

" has few rules. 

" corrects the abnormal data. 

Figure 5.32 shows the individual voltage errors between actual data and pre- 

dicted PU outputs, when the ANFIS model is used to predict the V,,,, of other 

PV panel. The 85W panel ANFIS model gives lower errors than the 51W AN- 

FIS model. The predicted PU output data errors are around 2% in of 51W 

panel data using the 85W ANFIS model when the abnormal points are ne- 

glected. However, the predicated PU data error of 85W panel is more than 

5% using the 51W panel model. The ANFIS models are improved with few 

numbers of epochs, but the individual errors remained around 5%. Whereas, 

the 85W ANFIS models are improved with very low gradient descent constant 

to prevent the modification in MFs and applied the LSE improving in output 

parameters. Figure 5.33 shows these improvements at different training epochs. 

However, after high modifications in input MFs by increasing the number of 

epochs, the performance of the model is improved at low 'Sc (low irradiance 

level) and the error increases at high irradiance with 100 training epochs as 
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Figure 5.32: Percentage error between actual data and predicted PU outputs data 
of two panels 

shown in Figure 5.33. This unsteadiness in the performance is due to high 

modifications occurred in input MFs as shown in Figure 5.34. 

The 85W panel Genfis2 model with a 0.5 radius is improved after only 5 training 

epochs of ANFIS function. When this model is tested with PU data of 85W 

panel, the output predicted data is found with less than 2% error. Moreover, 

this error is roughly 2% for all normal PU predicted data of 51W panel as 

shown in Figure 5.35. Therefore, this ANFIS model can be use as general model 

for these two types of PV panels. 

Generalising the ANFIS models for PV systems 

The previous model can be generalised for the two tested 36 cells panel. How- 

ever, the PV system can include panels which have different numbers of single 

crystal or polycrystalline PV cells. In addition, the PV systems mostly have 

more than one series or parallel panels. Therefore, the general ANFIS model is 

modified to deal with irradiance level instead of the 'Sc to avoid the diversity 

of 'Sc for different PV cell areas. In addition, the system should transact with 
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Figure 5.33: Percentage error of PU output data of the 51W panel using 85W panel 
ANFIS model. 

only one PV cell instead of 36 cells. Hence, the learning data will be combined 

to provide more and common data for the general ANFIS model. To join the 

tested data and make it more useful in all PV systems, the following three 

procedures are applied. 

" The open circuit voltage and V,,, a are divided by 36 to handle the voltage 

of one PV cell. 

" The short circuit current of PV panels is divided by the short circuit cur- 

rent at standard test conditions. The result gives the fraction of irradiance 

level from 1000W/m2. 

9A per unit data is computed for the new standardised data. 

The Genfis2 function is used with whole data to generate the Genfis2 model. 

The Genfis2 model is improved with different training epochs of A\ FIS func- 

tion. The model that was trained by 20 epochs is selected from different models 

according to minimum average absolute error. Figure 5.36 shows the actual and 
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Figure 5.35: Percentage PU output error of the final 85W panel ANFIS training 
model. 

predicted PU V,,,. Also, Figure 5.36 shows the percentage error between ac- 

tual and predicted V�La,,. The final general ANFIS model is shown in Figure 

5.37. Also, the FIS structure of final general ANFIS model is shown in Ap- 

pendix B. 3. Generally, the individual errors are approximately less than 2% in 

all testing points and the average absolute percentage error is computed, which 

is less than 1.25%. 

5.5 Summary 

This chapter introduced the stages of developing the ANFIS models that are 

used in predicting V,, Q, x.. The final developed model is obtained by using subtrac- 

tive clustering to set the nonlinear parameters of MFs. This model is improved 

using the LSE algorithm modification for the consequent linear parameters. In 

addition, per unit data has been used to develop the final general model that 

is used with different types of single crystal and polycrystalline PV system. 

Furthermore, the final ANFIS model is tested with different types of PV panels 

and different data in chapter 7. In chapter 6 the predicted voltage Vmax is used 

as input for FLC. The FLC will be designed to track the maximum power point 

of PV system. 
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Chapter 6 

MPPT of PV systems using FLC 

In this chapter the FLC is developed to solve the problems that face the PV 

MPPT system. Two FLC are designed to control the duty cycle of Buck- 

Boost converter and Buck converter. The FLCs are generalised for all type of 

single crystal and poly crystalline PV panels. These two FLCs are designed for 

different types of load. 

6.1 Introduction 

The high percentage error between actual MPP parameters and estimated pa- 

rameters of MPP in many proposed techniques is caused either by the shortage 

of data used for locating MPP parameters, or by the weakness of techniques 

that are implemented to find out these parameters. The ANFIS models that are 

developed in chapter 5 provide a solution for the high errors between predicted 

and actual V. max in other approaches. 

The developed MPPT system includes three main parts: the ANFIS model, the 

FLC, and the DC-DC converter that can be adjusted by a square pulse signal 

of Pulse Width Modulation (PWM). The FLC with predicted ANFIS outputs 

is an off-line approach, which is described by the block diagram in Figure 6.1 

The predicted Vm, Q, x 
from the developed ANFIS model is used as a reference 

point for the FLC. The FLC is used to control the duty cycle of DC-DC con- 

verters. The output of FLC controls the rate of change in duration time of 

electrical square pulse which is generated by PWM. This pulse controls the 

duty cycle of the electronic switch of the DC-DC converter until the input volt- 

age of converter tracks the predicted Vmo, x. The developed FLC is designed to 
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6.2 Maximum power point tracking problems 
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Figure 6.1: Proposed system architecture 

Check Data 

overcome the problems in the conventional controllers and other methods based 

on artificial intelligence. Moreover, the developed MPPT system with the FLC 

is designed to balance different requisite features such as quick tracking under 

different environmental conditions, high accuracy, stability, simplicity, low cost, 

and high efficiency. The FLC is designed to achieve a good performance in dif- 

ferent environmental conditions, different types of load, and different types of 

DC-DC converters. 

6.2 Maximum power point tracking problems 

The maximum power point tracking techniques are applied to extract maxi- 

mum available power from the PV systems in different environmental condi- 

tions with different types of load. DC-DC converters are used to match the 

maximum power point of PV systems with different loads. The huge changes 

in the environmental conditions, different shapes of load line and the nonlin- 
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earity between duty cycle and voltage ratio of most types of converters are 

the problems that should be treated in MPPT systems. In this section these 

problems are addressed in detail. 

6.2.1 Problems related to environmental conditions 

Maximum power point changes on I-V curves due to any small changes in 

environmental conditions. These changes in environmental conditions affects 

the irradiance level and PV cell temperature and consequently 'Sc and Voc" 

Due to a fast and accurate measurment of the Ise and Voc the ANFIS model 

can predict Vma. for any modification in these parameters. Hence, under huge 

changes of environmental conditions, the values of V,,, ax provided from ANFIS 

model change quickly, which causes a rapid changes in the electrical pulse that 

controls the duty cycle of the electronic switch of DC-DC converter. Fast 

changes in the duty cycle reduce the life time of the electronic devices and 

generate undesirable harmonics. Three environmental influences have been 

detected during field data collection: wind movements, fast changes in ISC and 

Voc during cloudy conditions and sudden changes in the irradiance level. 

Typically, wind affects the surface temperature of the PV cells, which increases 

the heat convection factor that helps in increasing the heat dissipation from 

the PV cells to surroundings. This improvement in heat convection due to the 

increase in wind speed decreases PV cell temperatures, which leads to increased 

Voc and Vm, o, x. When the wind changes slightly, Voc and Vma, x change slightly 

within a small range. Mostly, a small change in Vma, x is less than 0.3V for a short 

time. The drop off in generated power is roughly 1% for 0.3V deviation in Vmo, x 

values as discussed in chapter 4. Therefore, to avoid the continuous oscillation in 

FLC system by wind, the FLC is designed to prevent this continuous oscillation 

as will be explained in section 6.3. 

In addition, the short circuit current changes continuously on cloudy days. 

Occasionally, clouds become wobbly and dark and as a result, the irradiance 
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fluctuates at a low level. Hence, 'Sc changes continuously, and consequently 

the Vm, o, x. This causes an oscillation in the MPPT system. As a result of low 

generated power and low percentage power losses at the low irradiance level, a 
higher deviation in Vmax value can be accepted in the designing of FLC at low 

'Sc to prevent the high oscillation in cloudy time. 

6.2.2 Problems related to types of load 

The type of load strongly affects the range of operating point on I-V curves, 

as discussed in chapter 2. Generally, a battery load has a constant voltage 

which varies within a small range, whereas the resistive loads drive the PV 

panel to operate in wide interval on I-V curves as shown in Figure 2.5. The 

resistive load voltage is linearly dependant on the output current of the PV 

panels. Therefore, when the irradiance level is decreased or increased suddenly 

during partial cloud, the output voltage varies within a wide range. Hence, 

it can exceed 15V in 36 cells PV panels. On the other hand, the battery 

voltage depends slightly on the PV current due to the low internal resistance 

of batteries. The battery voltage changes roughly from 1V to 2.5V above 12V 

during charge time. These divergences in operating voltage due to the different 

load types affect the required change of duty cycle of DC-DC converter switch. 

6.2.3 Problems related to DC-DC converters. 

Three types of converter can be used to match PV system with different types 

of load: step up converter, step down converter, and dual (step up/ step down) 

converter. These three types were described in chapter 2. Two problems face 

the FLC, which are related to DC-DC converters: 

" Type of the interface DC-DC converter that is needed between the load 

and the PV system. 
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" The nonlinear relationship between the change in duty cycle of the DC-DC 

converter and the load voltage ratio parameters. 

For the applications that need either a step down or step up converter it is 

more efficient to use the Buck converter or the Boost converter respectively. 

The reason for that is the high efficiency of these two converters as mentioned 

in section 2.2. The Buck-Boost converter is hardly 2 or 3% lower than the buck 

and boost converters. However, most PV system applications need a Buck- 

Boost converter which is used for step up/step down the voltage of the PV 

system to match the V. rnax and VO of the Buck-Boost converter. 

Figure 6.2 shows the three converters that were described in section 2.2. Due 

to the linear relationship between duty cycle and the voltage ratio, it is easy to 

determine the change in duty ratio that produces IV change in input or output 

voltage of the Buck converter. The difficulty encountered is computing of the 

change that is required in the duty cycle to produce 1V change in either Vo 

or V, of the Boost converter and the Buck-Boost converter. This difficulty is 

caused by a nonlinear relationship between duty cycle and voltage ratio. 
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Figure 6.2: Relationship between duty cycle and voltage ratio of three types of 
converters 
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Most applications require both step-down and step-up converters at the same 

time. Therefore, the relationship between duty cycle and voltage ratio of the 

Buck-Boost converter should be analysed to establish the FLC design require- 

ments for different load types. 

To keep the input voltage of the Buck-Boost converter at the maximum power 

point voltage, the input voltage should be adjusted when the predicted Vmax is 

changed by the variations in environmental conditions. In addition, the input 

voltage of the Buck-Boost converter can deviate from the value of V,,,, o, x when 

the output load voltage is changed. Therefore, it is essential to study the 

relationship between the rate of change of duty cycle and T/ to help in the 

FLC design 
. 

Referring to the Equation 2.17, the relationship between duty cycle and V,,, can 

be derived as in Equation 6.1: 

Vo 
D 

(Vo + Vin) (6.1) 

In addition, the rate of change of duty cycle in terms of Vi, can be derived as 

in Equation 6.2: 

OD -Vo (6.2) 
avi,, (Vo + Vin)2 

In reference to the Equation 6.2, the subfigures on Figure 6.3 and Tables A. 11 

and A. 12 show how the duty cycle changes with respect to V, when VO changes 

steeply from 1V to 22V. Also, Figure 6.4 shows the standard input voltage 

operation of the Buck-Boost converter according to effect of resistive loads on 

PV voltage operation. The input and output voltage can vary from 8V to 18V 

due to sudden changes in irradiance level as discussed earlier in this section. 

The output voltage range shown in Figure 6.4, clarifies a low effect of Vo on 

the duty cycle. In addition, a high effect of V, on the duty cycle observed in 

Figure 6.4. For example, when the Buck-Boost converter operates at Vin=12, 

the rate of change in duty cycle that is required to increase or decrease the Vi, 
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by 1V is roughly 50% more than the rate of change of duty cycle at Vin= 18V. 

Furthermore, it is observed from Figure 6.3, the output voltage has insignificant 

effect on AD when Vo changes from 6V to 18V. It is necessary to take these 

dissimilar variations into consideration the V in when MFs and rules of FLC 
dVin 

are designed to avoid low tracking rate or overshooting that can lead to an 

unstable MPPT system. 

The load drives the output voltage of the converter, and consequently the input 

voltage of the DC-DC converter. This process occurs before adjusting the duty 

cycle of the electronic switch of the DC-DC converter. In addition, V, varies 

due to changes in the PV output voltage, which is affected by environmental 

conditions. The duty cycle of the converter has been adjusted to track maxi- 

mum power point voltage as a result of different load values and huge changes 

in environmental conditions. 
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Figure 6.3: Rate of change of the duty cycle with respect to V,,, changes within 
wide range of Vo 
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6.3 Fuzzy logic controller design 

Most control strategies of fuzzy logic controller concentrate on designing the 

inference rules to solve the problems in conventional controllers. The MFs that 

are designed incorporate with rules to provide a solution for several problems 

that can be solved by increasing the number of rules. In addition, the bound- 

aries of input output MFs of FLC will be designed with minimum number of 

rules to provide a fast and stable tracking for MPPT of PV system. Further- 

more, the MFs are designed to help on tracking the maximum power point with 

different types of load. 

The FLC rules and membership functions are designed to face the changes in 

weather condition problems as a result to avoid the system fluctuation due to 

a small deviation of Vmax. In addition, the MFs are modified related to the 

rate of changes in duty cycle of Buck-Boost converter and Buck converter at 

different input voltage. 
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The MFs are designed taking into account the behaviour of the PV panels at 

a variety of environmental conditions. Moreover, the developed FLC can be 

adjusted easily to control the duty cycle of DC-DC converters depending on 

the requirements of each DC-DC converter. 

6.3.1 Parameters of FLC 

Referring to the problems that are related to the environmental conditions, load 

types and DC-DC converter discussed in section 6.2, the input parameters are 

selected to recognise the behaviour of all parts of MPPT system as follow: 

" The predicted Vma, x is the main parameter that denotes to the MPP posi- 

tion. 

" Isc is utilised to recognise the irradiance level and the amount of power 

that can be generated from the PV panels. 

" l/ of the DC-DC converter indicates the operating point on the I-V curves 

of PV panels. It specifies the load effect on the operating point before the 

tracking process. 

The input and output of FLC are selected carefully to give sufficient and simple 

information for FLC. The input voltage of DC-DC converters, and the predicted 

output of ANFIS model Vmo, x are used to detect the deflection of operating point 

on the I-V curves from Vma, x . 
Accordingly, the first input of the FLC is AV 

which is calculated from Equation 6.3: 

AV =Vn, - 
Vmax (6.3) 

The second input is the values of ISS, which represents the irradiance level. 

The output parameter of the FLC is the rate of change in the duty cycle dD. 

129 



6.3 Fuzzy logic controller design 

6.3.2 FLC rules and membership functions 

The Mamdani method is used in the FLC with max-min composition. This 

method is applied because it gives a steadiness response in control system and 
their ability to yield good results with reasonably simple mathematical oper- 

ations [58] [54] [79]. The centre of area method gives a balance between the 

different rules outputs which generates a smooth movement towards the target 

[79] [18]. 

The generalised bell membership function is used in the fuzzy inference system. 

Bell membership functions are used for two important points: 

" For smoothness and concise notation [58]. 

" The bell membership function has one more parameter than the Gaussian 

membership function, therefore it can approach a non-fuzzy set if the free 

parameter is tuned [58]. Hence, in the specific range a definite output is 

required with respect to a selected input, accordingly bell membership can 

give sufficient horizontal range with MF equals one [47]. 

The grid partition, tree partition and scatter partition are the main methods 

of partitioning input spaces to form the antecedents of fuzzy rules. The tree 

partition relieves the problem of an exponential number of rules. The scatter 

partition covers a subset of the whole input space. The grid partition is the 

main partition that is chosen for controller systems [39] [79]. Therefore, grid 

partition will be used in FLC in developed MPPT system. 

As shown in Table 6.1 seven fuzzy IFs levels are chosen to control the first 

input variable AV of the fuzzy controller and only three fuzzy levels are chosen 

for controlling the second input variable ISC. Also, seven levels are chosen for 

the output variable dD. 
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Table 6.1: MFs levels of input and output parameters of FLC 
MFs of input AV MFs of input 'Sc MFs of output dD 

NB Negative Big L Low NB Negative Big 
NM Negative Medium M Medium NM Negative Medium 
NS Negative Small H High NS Negative Small 
Z Zero Z Zero 
PS Positive Small PS Positive Small 
PM Positive Medium PM Positive Medium 
PB Positive Big PB Positive Big 

6.3.3 Fuzzy logic controller for Buck-Boost converter 

To overcome the problems that have been recognised in the previous section, 

two methods can be suggested for FLC design. The first method is to increase 

the number of rules to provide the appropriate decision for each problem. Con- 

sequently, this leads to more rules, as a result more complicated control system. 

The second method is by design of the MFs that are incorporated with rules to 

provide a solution for the problems that can be solved by increasing the number 

of rules. 

Handling the problems of environmental conditions 

As discussed in chapter 4 and section 6.2 there is an insignificant effect on 

generated power due to small deviation from Vm, Qx. This aspect is utilised to 

prevent instability due to small changes in Vmax by a slight wind movements or 

after sudden change in irradiance level. 

Furthermore, when the operating voltage of PV panels deviates from V, ", the 

dissipated power at high irradiance levels is more than that at low irradiance 

levels. Therefore, the errors between tracking voltage and V,,,,, at low 'Sc 

should be greater than at high 'Sc to prevent the high oscillation of MPPT 

system in cloudy time. 

To prevent the oscillation due to small change in predicted Vm... the Zero MF 
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of AV in Figures 6.5 and 6.6 are assembled without any interferences with 
other neighbours MFs for approximate 0.3V. In addition, the rules in Table 

6.2 provide a zero response in this interval. Accordingly, the FLC accepts a 

percentage deflection in Vm, a, x to avoid the system fluctuation. 

In addition, at sudden change of irradiance level the PV panels need an adequate 
time to reach the final TS, as a result final Voc. This leads to continuous 

change in the predicted V,,, Hence, this deflection margin in V�o, x has another 

advantage, which awards the FLC sufficient time to track the Vmay, as a result 

prevents the instability after sudden changes in solar radiation. 

Moreover, the rules in Table 6.2 discriminate the second input of FLC, 'Sc 

to give a suitable response at different irradiance level. Hence, it prevent the 

oscillation at low irradiance level (low ISc). The PS and NS MFs of AV are 

assembled without interferences with PM and NM for about 0.8V around zero 

AV. Therefore, in cloudy time the rules gives a Zero dD response if the operating 

voltage of PV panels deviates 0.4V greater or smaller than predicted Vmax. 

Consequently, within this accessibility in voltage deviation of around Zero MF 

of AV and low Isc, the FLC prevents the system fluctuation due to high changes 

in irradiance level in cloudy weather. 

Tah1ri R ?. T FT, O rules 

Isc ... 
OV NB NM NS Z PS PM PB 

H NM NM NS Z PS PS PM 
M NM NM NS Z PS PM PM 

1L NB NM Z Z Z PB PB 

The MFs of short circuit current are designed to provide a response (weight) 

equal one in most 'Sc bell MFs duration. Hence, the MFs of dD gives a 

response depending on AV, which change by either a change in V,,,, o, x due to 

environmental conditions or Vn, due to load effect (V0 of DC-DC converter). 

Consequently, the max-min composition of FLC mostly provides a decision 
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Figure 6.5: MFs of FLC system that control the duty cycle of the Buck-Boost 
converter for the 85W panel 
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Figure 6.6: MFs of FLC system that control the duty cycle of the Buck-Boost 
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according to the input variable AV MFs. The MFs of 'Sc are utilised mostly 

to discriminate the irradiance level; therefore the rules in Table 6.2 are designed 

to provide a proper decision at low irradiance levels and high irradiance levels 

to prevent the fluctuation in different environmental conditions. 

Handling problems of DC-DC converters 

The unequal rate of dD at different operating voltage V, of Buck-Boost con- 

verter is considered in FLC design. The MFs of output dD of FLC are assembled 

according to the mathematical analysis in section 6.2 which is represented in 

Tables A. 11 and A. 12 and Figure 6.4. This can be observed from the differences 

in negative dD and positive dD that are induced respectively by negative and 

positive AV. 

Generally, the V.,,,, ax of the two tested panels change roughly between 12V and 

17V, so from Equation 6.3 when AV is NM or NB this means V, has low values. 

Therefore, dD is selected carefully according to low input voltage data that is 

computed from Tables A. 11 and A. 12. Hence, according to low values of Vi, 

high dD values are assembled in medium and high negative MFs of AV. On the 

other hand, the PM and PB of AV imply high values of V,,,. For this reason, a 

low values of dD is required as shown in Tables A. 11 and A. 12 and Figure 6.4. 

In general, the data in Tables A. 11 and A. 12 is used to design the range of out 

MFs of dD at different MFs of input AV. The MFs of dD and AV are assembled 

carefully to give a suitable step voltage during tracking process. Accordingly, 

the number of rules are minimise. The MFs of dD and the inference rules are 

designed to generate less than IV change in Vi, to prevent an induced harmonics 

due to high dt 
. 

Furthermore to prevent the system overshooting the range of negative small 

and positive small MFs of dD are carefully selected from Tables A. 11 and A. 12 

to decrease the voltage steps when the MPPT system approaches from Vmax" 
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This process prevents instability around Vmax in the MPPT system. 

Handling problems of type of load 

The type of load affects the MFs and rules design. Resistive load drives the 

PV panel to operate within a wide interval on I-V curves. The three following 

points are considered when the MFs are designed. 

" The output load voltage which is produced by the intersection between 

the resistive load and the I-V curves in Figure 2.5 can reach 5V when the 

irradiance level decreases suddenly by cloud effect. However, the voltage 

ratio -VQL of Buck-Boost converter is less than one. As a result, the input 
Vi. 

voltage is roughly greater than 5V. 

" When the solar radiation increase suddenly, the input voltage can reach 

to values close to Voe, 

" The voltage range of the Vmax can change between 12V and 17V for two 

panel types in different environmental conditions. 

The output MFs design 

According to the above three mentioned points, the operating voltage of PV 

panels (Vi,, of DC-DC converter) can change from 6V to 22V and Vmax can 

change between 12V and 17V. Hence, the AV can changes from -11V to +10V. 

The MFs of AV and dD consider the above values and the data obtained from 

Equation 6.2 which is represented in Tables A. 11 and A. 12. Thus, the following 

points illustrate examples of these considerations: 

" The dD decreases with increasing U,,,. Therefore, the value of dD in output 

MFs are designed according to maximum possible value of input voltage 

in different MFs of AV. In addition, during maximum power tracking the 

rules in Table 6.2 and MFs consider a maximum 1V in each step. For 
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example, in the MF of NB AV in Figures 6.5 and 6.6 the maximum V, 

is 11V, thus to producing 1V change in Vi, toward V,,, x the required dD 

from Tables A. 11 and A. 12 is 0.02. While the minimum V, is 6V and to 

producing 1V response in V,, the required dD is 0.05. Hence the dD is set 

at 0.02 to avoid higher than 1V for every step. 

" If the V, is very low the required dD is around 0.05. Accordingly, when dD 

equals 0.02, the voltage step is around 0.5V for few steps and it increases 

until reaches 1V after few epochs. This solves the problem of a low input 

voltage with resistive load and applied the FLC for general applications. 

In addition, the rules consider this case when the irradiance is decreased 

suddenly by cloud to low levels by providing NB response from dD in this 

special situation. 

" The PB of AV takes place when the cloud moves out, the output voltage 

increases suddenly to high irradiance level. Consequently, the input volt- 

age can reach in this case to a value slightly less than Voc. As shown in 

Tables A. 11 and A. 12 the high Vi,, requires a low dD response to produce 

maximum 1V in V., as a result AV. Hence, the rules and MFs at high 

and medium 'Sc with positive big AV are assembled to give a positive 

medium dD response due to high values of Vi,,. 

" The PB response is only assembled with low ISc and positive big and 

positive medium AV to solve the problem of medium values Vn and to 

give a high response before interning the interval of Zero response region 

at low irradiance level. Moreover, the positive big and positive medium 

dD are carefully selected from Tables A. 11 and A. 12 to provide maximum 

1V step in Vi, toward Vmax" 

The battery has a constant voltage load which varies within a small range. 

Therefore, the FLC can be deigned according to Figure 6.4. Therefore, five 

MFs of AV that are described with resistive load are sufficient to give the same 

performance as the FLC that design for all types of load. Consequently, a FLC 
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with 15 rules can achieve a good performance for the system that is used for the 

battery load system instead of the 21 rules that are used for the wide-ranging 

system. 

6.3.4 General fuzzy logic controller for Buck-Boost con- 
verter 

Figures 6.5 and 6.6 show the MFs that are used in the FLC to track the max- 

imum power point of 85W panels and 51W panels separately. For general im- 

plementation of PV system application, it is necessary to design an FLC that 

has widespread implementation. The developed controller that has been de- 

scribed in the previous subsection can be implemented in all single crystal and 

polycrystalline PV models with few modifications. The required modifications 

can be described as follow. 

" The FLC input 'Sc should be divided by the short circuit current of PV 

panel at standard test conditions divided by number of parallel PV panels 

in PV system array. As a result, the quantities that are obtained represent 

a fraction of 1000 W/m2 irradiance level. 

" The FLC input AV should be divided by the number of PV panels that 

are connected in series, divided by the number of PV series cells in one PV 

panel. The results obtained from the last division represent the deviation 

operating voltage of the PV cell from its maximum power point voltage. 

Figure 6.7 shows the MFs of extensive FLC, which can be implemented for all 

single crystal and polycrystalline PV systems. In addition, Figure 6.8 shows 

the structure of the general FLC system. 

The performance of FLC with Buck-Boost converter and its response according 

previous MFs and rules design in different conditions will be shown in chapter 

7. 
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Figure 6.8: The general FLC system for Buck-Boost converter 

6.3.5 Fuzzy logic controller for Buck converter 

"The Buck-Boost converter achieve efficiencies as regards input rated power 

higher than 95% and hardly 2% or 3% lowers than the buck and boost topolo- 

gies" J. M. Enrique et al, page number 18 [25]. Buck and Boost converters 

are the most efficient topologies for a given price. While the voltage flexibility 

varies of Buck-Boost converter is always at efficiency or, alternatively, price 

disadvantage [25] [65]. 

Some electrical applications, like water pumps can be designed to operate at 

voltage less than the minimum expected Vma, x of PV panels. Also, it can be 

observed from the data collected in high mountain areas that Vmax is more than 

16V for 85W single crystal panel and more than 15.3 for 51 polycrystalline PV 

panel in different summer and winter data collecting times. The full charge 

battery voltage is 15V during charge time. Therefore, the battery applications 

in low ambient temperature areas can use the Buck converter because of its 

high efficiency. 
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Moreover, the duty cycle of the Buck converter has a wider-range than the 

Buck-Boost converter shown in Figure 6.2 and Table 6.3. Therefore, it is Baser 
to control the electronic devices of PWM, which control the rate of changes in 

duty cycle. 

All points that have been identified in the design of FLC for Buck-Boost con- 

verter are considered in the FLC for Buck converter. However, the main two 

differences are: 

" The output voltage does not exceed 15V according to the application and 

region that the Buck converter is implemented. 

" The input voltage of PV panels is always greater than output voltage of 

the load. 

According to equation 2.15 the rate of change in duty cycle in terms of V,,, can 

expressed as: 
aD 

_ -V 
aV, ý Vn 

(6.4) 

From Equation 6.4 the rate of change in duty cycle (dD) can be specified in 

Table 6.3, which is used to design the MFs and rules of FLC that is used in 

MPPT with Buck converter. Figure 6.9 shows the MFs of a general FLC for the 

Buck converter, which can be applied for all single crystal and polycrystalline 

PV systems. In addition, Figure 6.10 shows the structure of the FLC system. 

To evaluate the FLC rules and the MFs, a rule viewer in Matlab fuzzy toolbox 

is used to test the performance of FLC under different values of AV and 'Sc. 

The MPPT system performance is tested by applying two preceding simulation 

models. The early output data is utilised to develop the MFs and rules of two 

particular FLCs. The range of inputs \1Fs and the output MFs is modified 

to accomplish all specifications that are discussed in this section. Also, steady 

state movement during the tracking process is considered by modifying the MFs 
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Table 6.3: The rate of change in duty cycle (dD) of Buck converter at different 
input and output voltage 

vo (V) 
Vin 6 7 8 9 10 11 12 13 14 15 16 

6 -0.167 
7 -0.122 -0.143 
8 -0.094 -0.109 -0.125 
9 -0.074 -0.086 -0.099 -0.111 
10 -0.060 -0.070 -0.080 -0.090 -0.100 
11 -0.050 -0.058 -0.066 -0.074 -0.083 -0.091 
12 -0.042 -0.049 -0.056 -0.063 -0.069 -0.076 -0.083 
13 -0.036 -0.041 -0.047 -0.053 -0.059 -0.065 -0.071 -0.077 
14 -0.031 -0.036 -0.041 -0.046 -0.051 -0.056 -0.061 -0.066 -0.071 
15 -0.027 -0.031 -0.036 -0.040 -0.044 -0.049 -0.053 -0.058 -0.062 -0.067 
16 -0.023 -0.027 -0.031 -0.035 -0.039 -0.043 -0.047 -0.051 -0.055 -0.059 -0.063 
17 -0.021 -0.024 -0.028 -0.031 -0.035 -0.038 -0.042 -0.045 -0.048 -0.052 -0.055 
18 -0.019 -0.022 -0.025 -0.028 -0.031 -0.034 -0.037 -0.040 -0.043 -0.046 -0.049 
19 -0.017 -0.019 -0.022 -0.025 -0.028 -0.030 -0.033 -0.036 -0.039 -0.042 -0.044 
20 -0.015 -0.018 -0.020 -0.023 -0.025 -0.028 -0.030 -0.033 -0.035 -0.038 -0.040 
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6.3 Fuzzy logic controller design 
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Figure 6.9: MFs of the general FLC system for Buck converter 
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Figure 6.10: The general FLC system for Buck converter 
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6.4 Summary 

of AV and the MFs of the dD. The final MFs and rules are installed as final 

MFs in general FLC in this section. 

6.4 Summary 

The FLC and problems that face the MPPT system have been addressed in 

this chapter. The FLC is developed in this chapter to provide a general FLC 

that can be implemented with different types of PV system, different types of 

load and two types of DC-DC converters. The MFs of FLCs are designed with 

rules to generate a fast and steady state movement during the tracking process. 

In addition, the MFs of FLCs are designed to prevent oscillation, overshoot- 

ing and induced harmonics during tracking process. The MPPT systems with 

Buck-Boost converter and Buck converters have been evaluated in chapter 7 

using two simulation models to test and develop the performance of the whole 

system. The simulation models are implemented to demonstrate the result of 

final MPPT systems. 
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Chapter 7 

Maximum power point tracking system 
simulation models and results 

This chapter includes the ANFIS results and performance of simulation models 

of MPPT with FLC. The MPPT system simulation model with Buck-Boost 

converter and MPPT system simulation model with Buck converter are also 

discussed in this chapter. In addition, evaluating the MPPT system regard- 

ing a direct coupled system with constant voltage load and resistive load are 

presented in the end of this chapter. 

7.1 Introduction 

The actual short circuit current which represents the irradiance level is used as 

first input of ANFIS models. In addition, the actual open circuit voltage which 

represents the temperature effect at certain irradiance level is used as second 

input of ANFIS models. The actual voltage at maximum power point Vmax is 

used as output of ANFIS models. 

The selected ANFIS models are developed by applying the LSE algorithm dur- 

ing forward learning to improve the performance of the ANFIS model by im- 

proving the consequent linear parameters. However, the iterative change on 

the nonlinear does not achieve a good performance in Genfisl models. Hence, 

the subtractive clustering that used in Genfis2 function is used to overcome the 

shortage in the iterative modification in MFs premise parameters. Finally, the 

general ANFIS model is developed using all per unit (PU) data of the 85W 

single crystal panel and 51W polycrystalline panel. 

The behaviour of PV panels is studied in different environmental conditions dur- 
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7.2 The results of general ANFIS model 

ing data collection. The problems that are related to changes in environmental 

conditions are recognised. In addition, the DC-DC converters relationships are 

analysed at different load voltages. Hence, the FLC is designed to provide 
fast and stable maximum power point tracking with all variations related to 

environment, loads and DC-DC converters. 

The predicted Vmax from ANFIS model is used with actual 'Sc (irradiance 

level) as input to the FLC to control the duty cycle of DC-DC converters. The 

input voltage of DC-DC converter drives the operating voltage on I-V curves 

of PV panel. Therefore, the difference between input voltage and predicted 

V,.,,,. is the first input of FLC. Also, the measured ISC is used as second input 

of FLC. The FLC is used to control the rate of change in duty cycle (dD) of 

electronic switch of DC-DC converters. This rate of change in duty cycle is 

studied carefully in section 6.2 applying a mathematical analysis to utilise in 

MFs and rule design of FLC. 

Two FLCs are designed for 85W single crystal panel and 51W polycrystalline 

panels separately. The two models are tested using actual data and two simula- 

tion models in Matlab. Two general models with Buck-Boost DC-DC converter 

and Buck DC-DC converter are developed using PU data. The general FLCs 

are implemented for all PV single crystal and polycrystalline PV systems and 

different types of load. 

7.2 The results of general ANFIS model 

The final ANFIS model is tested by dividing the actual data into learning 

data and test data. Genfis2 function is applied with 75% of data to generate 

the ANFIS model. The generated ANFIS model is improved using the LSE 

algorithm modification for consequent linear parameters. The final model is 

tested using the remaining 25% of data. The 25% points are selected at different 

irradiance levels and different temperatures. Figure 7.1 shows the actual and 
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7.2 The results of general ANFIS model 

predicted PU Vma, x and the percentage error of between actual and predicted 
Vmax. The test data selected according to temperature and irradiance levels. 

Figure 7.2 shows the percentage error of between actual and predicted Vmax at 
low, medium and high temperatures. The percentage error is less than 2% in 

more than 90% and around 2.5% in remaining points. 
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Figure 7.1: Actual data and predicted outputs of PU test data 
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Figure 7.2: Percentage errors of PU output test data at different temperatures 

In addition, the validity of general ANFIS model is tested with different types 
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7.3 The performance of simulation models of MPPT with FLCs 

of PV panels as shown in Figure 7.3. This data is obtained by applying the 

general ANFIS model to predict the V, n, o, x 
from actual 'Sc and Voc and actual 

Vma,,, is obtained around the predicted Vmax. The general ANFIS model provide 

a low error with different types of panels as will be clarify in section 7.5. 
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Figure 7.3: Actual and predicted Vma, x for general ANFIS model 

7.3 The performance of simulation models of 
MPPT with FLCs 

At a certain 'Sc and Voc, the ANFIS model predicts Vma. of the PV system. 

The predicted voltage V.,,,, o, x with actual 'Sc are used as inputs to the FLC to 

adjust the duty cycle of the electronic switch of the DC-DC converter. 

The block diagram in Figure 7.4 shows the progression of matching the load 

voltage and maximum power point voltage of PV system. The MPPT system 

consists of the following three parts. 
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7.3 The performance of simulation models of MPPT with FLCs 

" The ANFIS model, which obtains its actual input 'Sc and Voc from the 

PV system and it predicts Vm, q, x as an input for FLC. 

" The FLC, which get inputs from the PV system, ANFIS model and DC- 

DC converter as shown in Figure 7.4. The actual 'Sc is measured from PV 

system and represents the irradiance level. The second input is the differ- 

ence between the simulated Vi, from DC-DC converter and the predicted 

V,,,,,, from ANFIS model. The output of FLC is the changes in duty cycle 

of DC-DC converter. 

" The DC-DC converter is controlled by the FLC and it interfaces between 

PV system and different types of load. The input voltage of DC-DC 

converter is a function of duty cycle and the load voltage (Vo) as shown in 

Equation 2.17 for Buck-Boost converter Equation 2.15 for Buck converter. 

The FLC changes the rate of change in duty cycle of DC-DC converter, 

consequently it controls the input voltage of converter. The PV panels are 

connected to input terminal of DC-DC converter. Therefore, the input 

voltage of DC-DC converter drives the operating point on I-V curve of PV 

system. 

V 
Pv 

system 

Load 

Figure 7.4: The block diagram of MPPT system 
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7.3 The performance of simulation models of MPPT with FLCs 

The predicted voltage Vm, Q, x changes if either Voc or 'Sc changes. Two sim- 

ulation models are applied in Matlab to inspect the behaviours of the FLC 

with Buck-Boost and Buck converters. In addition, the simulation results are 

utilised to improve the MFs of the FLC to reach the optimum performance of 

MPPT systems with two converters. 

The MPPT system is simulated in Matlab with Buck-Boost and Buck convert- 

ers. The simulation process is arranged according to the type of converter that 

is applied. Two simulation models are introduced in this section including a 

simulation of fuzzy logic controller and a simple DC-DC converter operation 

with constant adjusted output load voltage. The predicted output of the ANFIS 

model is used as input parameter in two simulation models. 

7.3.1 MPPT system simulation model with Buck-Boost 

converter 

The structure of the MPPT system simulation model with Buck-Boost con- 

verter includes a fuzzy logic controller and the simulation model of Equation 

2.17 which represents the behaviour of Buck-Boost converter. The parameters 

that are included with the simulation model are: the predicted voltage Vmax, 

the actual output voltage of converter Vo, the actual short circuit current of PV 

system Isc, the standard short circuit current that is obtained at standard test 

conditions of the PV panel, initial magnitude of duty cycle, the total number of 

series cells of the PV system and the number of parallel panels in the system. 

Figure 7.5 shows the simulation model of MPPT system with Buck-Boost con- 

verter. The subsystem includes the simulation of Buck-Boost converter. The 

subsystem of Buck-Boost converter is shown in Figure 7.6. 
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7.3 The performance of simulation models of MPPT with FLCs 
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Figure 7.5: MPPT system simulation model with DC-DC converter subsystem 
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Figure 7.6: Simulation model of the Buck-Boost converter 
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7.3 The performance of simulation models of MPPT with FLCs 

7.3.2 MPPT system simulation model with Buck con- 
verter 

The MPPT system simulation model with Buck converter has the same struc- 

ture of the MPPT system simulation model with Buck-Boost converter with 

two main differences: 

9 The enclosed subsystem simulates Equation 2.15 of the Buck converter. 

9 The fuzzy logic controller includes the fuzzy inference system that is de- 

signed for the Buck converter. 

Other variables that are mentioned in the simulation model of MPPT system 

with Buck-Boost converter are required in the simulation model of MPPT sys- 

tem with Buck converter. 

Also, Figure 7.5 shows the simulation model of MPPT system with Buck con- 

verter. The subsystem includes the simulation of Buck converter. The subsys- 

tem of Buck converter is shown in Figure 7.7. 

dD 

Figure 7.7: Simulation model of the Buck converter 
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7.4 Maximum power point tracking system results 

7.4 Maximum power point tracking system re- 
suits 

In this section three types of results will be introduced as follows. 

" The first type of result will show the performance of FLC in MPPT system. 

The main target in this type of result is to show how the input voltage of 

DC-DC converter is changed until get in touch with Vma, x. The simulation 

models are used to show how the FLC is tracking the predicted Vmax at 

different irradiance level (Ise) and different values of (Vin, -Vma, x). The 

tracking steps can be described as follow: 

- The ANFIS model predicts the Vmo, x at certain 'Sc and Voc" 

- The predicted Vmax with V, from DC-DC converter are used to com- 

pute the first input AV. Also, the measured 'Sc is used as second 

input of FLC to generate the output dD. 

- The output dD of FLC is used to compute the new duty cycle of 

DC-DC converter. 

- The new Vi, is modified toward Vma, x according to new duty cycle. 

- The input voltage of DC-DC converter drives the operating voltage of 

PV system. 

-A new AV is computed according to new V. As a result, the FLC 

generate the new dD. 

- This small simulated loop is continued until the input (V 
n, -Vmax) reach 

to approximately zero. 

" The second type of results will compare between the actual voltage and 

predicted voltage of ANFIS model and it compares between the actual 

power and tracked power of MPPT system. 

" The third results will evaluate the MPPT system with respect to the direct 

coupled system. 
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7.4 Maximum power point tracking system results 

A problem of nonzero response of bell membership functions encounters the 
MPPT simulation models at zero output MFs. This problem is solved by 

utilising the crossing area between positive and negative response of MFs to 

obtain approximately zero response. For this reason, the real zero response of 
dD should be determined. 

7.4.1 The performance of FLC with Buck-Boost con- 
verter at different inputs 

All possible situations in Table 6.2 have been tested. To test the FLC at differ- 

ent values of V, three procedures are performed during testing the performance 

of FLC 

9 The FLC is tested at low and high Vmax to driving the input voltage 

through all possible values of V, during tracking process. 

9 The input voltage is selected to provide all possible negative and positive 

values of U, - Vmax. 

9 The system is tested at low, medium and high ISc. These situations are 

all points that are required to identify the performance of FLC at different 

levels of irradiance levels. 

Figures 7.8 and 7.9 show the performance of the simulation model of MPPT 

system with Buck-Boost converter at high irradiance level and different posi- 

tive and negative magnitude of AV. In addition, Figures 7.10 and 7.11 show 

the performance of the simulation model of MPPT system with Buck-Boost 

converter at low irradiance level and different positive and negative magnitude 

of AV including special cases at low irradiance level. As shown in the Figures 

the FLC required few epochs to changes the values of (V, ) until get in touch 

with Vmax as a result zero Vi,, - V,,, o, x. 
The simulation model of MPPT system 

with Buck-Boost converter at medium irradiance level performs similar to that 

at the high irradiance level. 
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7.4 Maximum power point tracking system results 

7.4.2 The performance of FLC with Buck converter 

The simulation model of MPPT system with Buck-converter is executed at 

different irradiance level, V�, a,, and AV. The main difference between FLC 

with Buck converter and FLC with Buck-Boost converter are the output MFs 

of dD which are designed depends on data that was discussed in Buck converter 

in section 6.3 and shown in Table 6.3. In addition, the subsystem of Buck 

converter which is described earlier in section 7.3 is used in simulation model 

of MPPT with Buck converter. The Buck converter is step down converter, 

therefore the output voltage of Buck converter is always less than the input 

voltage. 

Figure 7.12 and Figure 7.13 show the performance of MPPT system with Buck- 

converter at low and high irradiance level and different values of (Vii,, - V,,, ). 
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7.4 Maximum power point tracking system results 
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7.4 Maximum power point tracking system results 
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Figure 7.11: Tracking maximum power point at low irradiance and V,,, a, x=14V 

7.4.3 FLC response discussion 

Generally, the MFs and rules in section 6.3 are designed to provide a step 

voltage in each epoch about 0.5V when AV is NB and around 0.8V when AV 

is PB. This value decreases continuously, when the Vi, converges from the V,,, ax. 
Therefore, steady state movement is achieved during the tracking process. 

There are an expected increment in V that can take place due to the incre- 

ment in the output current of the DC-DC converter during tracking process. 

This increasing in Vo leads to a more moving toward the Vo, x when the AV is 

negative and force the V,,, slightly away from Vmax when AV is positive. Ac- 

cordingly, there is sufficient voltage margin between the maximum step voltage 

and the actual step voltage, when AV is NB. 

As discussed in section 6.3 the MFs are designed to decrease the Zero dD region 

from about 0.8V around Vma, x at low irradiance level to approximately 0.3V at 

the medium and high irradiance level as shown in Figures 7.8 and 7.9 at high 

irradiance level and Figures 7.10 and 7.11 at low irradiance level. 
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7.5 Final results of the MPPT system with check data 

A roughly zero response of dD when AV changes in voltage range about 0.8V at 
low irradiance level and about 0.3V at medium at high irradiance level. Figure 

7.14 and Figure 7.15 show a 0.001 response of dD when V diverge in a, voltage 

margin equal to . 
8V around Vmo, x. Furthermore, it shows a high response of 

FLC, when Vi, is slightly move away from this margin. This high response is 

assembled in the designing the MFs and rules of FLC to strongly returns the 

V, to the depth of zero dD region at low irradiance level. In addition, the zero 

margin response awards the FLC sufficient time to track the V,,,, and as a 

result prevent instability due to continuous changes in Vmax at sudden change 

of solar radiation as mentioned in section 6.3. 
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Figure 7.12: Tracking maximum power point at high irradiance and Vmq, x=15V 

7.5 Final results of the MPPT system with 

check data 

The final proposed ANFIS model has been implemented with actual input check 

data to predict the V,,,,. Consequently, the actual Vmo, x data has been mea- 
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sured immediately around the predicted values. Few actual measured values 

are performed to get hold of position of P,,, a, x. Thus, P,,, a, x values are located 

using ANFIS model for three different types of PV panel. 

After we provide the simulation model of MPPT system with the specification 

of each panel separately, the simulation model of MPPT system tracks V,, " 

regardless the types of PV panel. Hence, the 1VIPPT system cope with data in 

Tables 7.1,7.2 and 7.3 as one group. Furthermore, if the PV systems consist 

of several numbers of parallel and series panels, the MPPT system handle only 

one PV cell. This process is accomplished after providing the MPPT system 

with numbers of PV panels in the system. 

The actual data of three panels is tested with the final general ANFIS model 

and FLC. These points arc obtained at low, medium and high irradiance level. 

The final tracking voltage is obtained using the actual 'Sc and predicted V,,,,, as 

input of FLC. The actual power is measured at tracking voltage and compared 

with the actual maximum power at MPP. 
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7.6 Evaluating the MPPT PV system along with direct coupled system 

7.5.1 Results discussion 

Vmax is predicted by final generalised ANFIS model with less than 1% deflection 

from the actual Vmax in all measured check data points that is shown in Tables 

7.1,7.2 and 7.3. 

The actual short circuit current and predicted V,,,., are applied to check the 

performance of whole MPPT system. The final tracking voltage by MPPT 

is compared with the actual Vmo, x as shown in Tables 7.1,7.2 and 7.3. The 

actual VmQ, x and P,,, x are extracted as explained in section 4.2. In addition, 

the tracking power at tracking voltage is compared with respect to the actual 
Pmax in these Tables. For different manufactured panels in Tables 7.1,7.2 and 

7.3, the MPPT system tracks Pmax with 1% maximum possible power losses at 

different check data. 

Table 7.1: Actual, predicted and tracking Vmax and Pmax of the Kyocera poly crys- 
talline 51W PV panel 

Actual 
Ise 

Actual 
Voc 

Actual 
Vmax 

Actual 
Pmax 

Predicted 
Vmax 

Tracking 
Vmax 

Tracking 
PmaX 

%Voltage 
deflection 

%Pmax 
losses 

3.35 19.35 14.7 46 14.751 14.9 45.9 0.35 -0.22 
3.4 19.12 14.5 45.9 14.473 14.8 45.6 -0.19 -0.65 
2.64 19.9 15.5 38.8 15.34 15.2 38.5 -1 -0.77 
2.6 20 15.6 38.4 15.423 15.3 38 -1.1 -1 
3.45 18.85 14.2 45.47 14.15 14.3 45.42 -0.35 -0.11 
2.72 19.5 15.2 38.3 14.99 14.9 38.2 -1.2 -0.27 
3.1 19.4 15 41.85 14.85 14.7 41.7 -1 -0.35 

7.6 Evaluating the MPPT PV system along 
with direct coupled system 

The developed MPPT system is compared with the direct coupled system. The 

MPPT system tracks the maximum power with less than 1% power losses in 

161 



7.6 Evaluating the MPPT PV system along with direct coupled system 

Table 7.2: Actual, predicted and tracking Vmax and P,,,,, of the Solavolt single 
crystal 80W PV panel 

Actual 
Ise 

Actual 
Voe 

Actual 
Vmax 

Actual 
P, -,, ax 

Predicted 
Vmax 

Tracking 
Vmax 

Tracking 
Pmax 

%Voltage 
deflection 

%Pmax 
losses 

5.08 19.85 15.1 63.722 15.229 15.4 63.35 0.85 -0.58 
4.23 20.26 15.5 56.11 15.61 15.35 55.8 0.7 -0.55 
2.36 20.65 16.7 31.563 16.561 16.4 31.25 -0.8 -0.99 
1.6 20.4 16.6 19.422 16.734 16.9 19.25 0.80694 -0.88 
4.1 20.3 15.6 54.29 15.653088 15.4 54.15 0.03 -0.25 
4.4 20.5 15.8 58.9 15.79 15.6 58.8 0.1 -0.22 
3.1 19.9 15.6 40.24 15.72 15.3 39.8 0.7 -1 

Table 7.3: Actual, predicted and tracking Vmax and P,,,., of Solec poly crystalline 
90W PV panel 

Actual 
ISC 

Actual 
VOC 

Actual 
Vmax 

Actual 
Pmax 

Predicted 
Vmax 

'lucking 
Vmax 

Tracking 
Pmax 

%Voltage 
deflection 

%Pmax 
losses 

3.2 18.73 13.9 38.9 14.079 14.2 38.5 1.2 -1 
5 18.5 13.4 57.75 13.301 13.2 57.5 -0.7 -0.43 
5.5 18.8 13.43 64.85 13.45 13.6 64.6 0.14 -0.38 
5.92 17.56 12.4 62 12.353 12.2 61.5 -0.38 -0.81 
6.4 19.5 14.5 80.3 14.429 14.3 80 -0.49 -0.37 
6.62 18.05 13.5 73.84 13.475 13.3 73.65 -0.18 -0.25 
4.2 17.95 13.6 48.7 13.78 13.9 48.2 1.3 -1 
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7.6 Evaluating the MPPT PV system along with direct coupled system 

different panel types as identified in section 7.5. The PV system can be loaded 

by a constant voltage load such as batteries or a resistive load system such as 
DC pumps. The direct coupled systems with two types of load are suggested 
to study the degenerated power of the PV system. 

7.6.1 Degenerated power with constant voltage load 

The battery voltage during charging time varies between 12V and 15V [26]. 

Three constant voltages are selected to evaluate the generated power from PV 

panels. According to additional voltage drop on the connected wires and block- 

ing diode drop, the power losses of two tested panels are computed with 13V, 

15V and 16V batteries load at a high and a low ambient temperatures. These 

three voltages represent the state of battery at low, medium and high battery 

voltage with additional voltage drop. Figures 7.16 and 7.17 show the output 

power of 85W single crystal panel and 51W poly crystalline panel at Pma, x, 13V 

and 16V operation. The output power is evaluated in high and low ambient 

temperature conditions as follows: 

" The average power losses is around 13% when the PV panels operate in low 

ambient temperature and low load voltage. However, the poly crystalline 

panel losses decrease to 3.5% when the PV panels operate in the high 

ambient temperature and low load voltage. However, the single crystal 

panel losses decrease to 6.6% in the same mentioned conditions. 

" The losses reach to 17% when the poly crystalline panel operates at high 

ambient temperature and 16V load voltage. 

Table 7.4 shows these average losses values at 13V, 15V and 16V at low and 

high ambient operation conditions. 

Practically, the generated power is more essential when the batteries operate 

at low voltage. Hence, the percentage average power losses at 13V should be 

considered during the system design. From Table 7.4, the average percentage 
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8 

losses at 13V arc around 13% at low ambient temperature regions. Accordingly, 

the MPPT system should be included with PV system to reduce these high 

losses. 

Including the 1% maximum power losses in PV system with the MPPT and 
2% to 5% power losses in the DC-DC converter, the degenerated power in 

the direct coupled system is much greater than the total power losses in PV 

system with the MPPT system. Nevertheless, the additional cost of the MPPT 

system should be investigated carefully before making any decision. The system 

capacity and environmental influences should be studied carefully to accomplish 

the best possible PV system. . 
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Figure 7.16: Generated power from the 85W PV at V,,,, 
, 13 and 16 output voltage 

7.6.2 Degenerated power with resistive load 

The PV systems which are loaded with resistive loads operate in extensive 

range of I-V curve as addressed in chapter 2 and chapter 6. Typically, the 
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, 13 and 16 output voltage. 

Tnh1P 7.4 PRrc entaee nower losses at three operating voltages 
PV panel Single crystal panel Polycrystalline panel 
Operating voltage 13 15 16 13 15 16 

At High Ta -6.67 -1.6 -6.7 -3.5 -5.1 -17.5 
At Low Ta -13.5 -3.8 -0.78 -12.8 -2.8 -1 
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direct coupled systems are useful when the centrifugal pumps are used. The 

positive displacement pumps usually required a MPPT or need to operate with 

electrical storage to perform effectively [26] [35]. Generally, the 20% dissipated 

power in batteries hold the system designer to use water tank storage instead of 

electrical storage on daytime. In addition, the mismatching between batteries 

and maximum power point position in different environmental conditions adds 

more power dissipation. Therefore, the PV pump system with MPPT is more 

efficient than PV system with batteries. 

Operation of solar pumps at low and high irradiance level 

The PV Pumps which are supplied by PV system require a minimum current 

to start its operation [26]. In direct coupled system, the motor current of the 

pumps is determined by the intersection point between load line and I-V curve 

of PV system as shown in Figure 7.18. Hence, solar pumps are designed to 

operate in wide voltage range. In addition, the irradiance level has to reach a 

threshold value before the pump starts its operation. 

The direct coupled PV pump system can be either designed to operate at low 

threshold irradiance, as a result a poor operation at high irradiance level. Oth- 

erwise it is designed to achieve a good performance at high irradiance level, 

consequently a high threshold and poor performance at medium and low irra- 

diance level as shown in Figure 7.18. It can be observed in Figure 7.18, the 

load line intersects the I-V curves of PV panel in high voltage at low irradiance 

level. This indicates to a significant threshold voltage at low irradiance level, 

however the operating point at high irradiance level is very far from the Pmax 

. 
On the other hand, the load line which performs a good operation at high 

irradiance level drives the PV panels to operate at the point bellow 10V, when 

the irradiance level is less than 600W/m2. This leads to more than 30% in 

maximum available power at these irradiance levels. 

When the PV system is designed with resistive load to operate at low threshold 
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irradiance level, the operating point is faraway from MPP as shown in Fig- 

ure 7.18. Therefore, a high percentage of available generated power is lost at 

medium and high irradiance due to the poor operation on the I-V curves. 

Operation of solar pumps at low and high ambient temperature 

Moreover, the deviation of the operating point due to the high variations in 

position of Vmo, x in different ambient temperatures leads to more degenerated 

power at constant irradiance level. Figure 7.19 shows the voltage deviation 

in operating voltage at low, medium and high surface temperature of 85W PV 

panel in different selected load lines. The voltage deflects more than 1V between 

minimum and maximum Ts at the same load line. 

Furthermore, when the load is selected according to I-V curves at a high ambient 

temperature, Vmax at low ambient temperature deviates about 2V as shown in 

Figure 7.19. Consequently, about 8% power drop from the maximum available 

generated power of PV panel. Additionally, 5% decline in maximum available 

generated power is computed when the load line is selected according to the 

low TS when PV panels operate in low ambient temperature regions. 

The significance of using MPPT system with solar pumps 

In solar pumps system, it essential to study carefully the capacity of PV system 

that generates the power for the solar pump. In addition, the effect of solar 

irradiance and ambient temperature on power generated should be considered 

during system designing. Thus, there are two main benefits of using MPPT 

system: 

" To operate the pumps for long time during daytime. 

" To operate the PV panel at MPP in different irradiance levels and ambient 

temperatures. 
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7.7 The developed MPPT features 

Finally, more than one recommendation will be included in chapter 8 depending 

on pervious analysis. 

7.7 The developed MPPT features 

The developed MPPT system with ANFIS model and FLC has the following 

features. 

" High efficiency due to less than 1% error in maximum power tracking and 
1% in predicting Vmax 

" Steady state movement is achieved during the tracking process. 

9 Low oscillation in maximum power tracking during quick changes in envi- 

ronmental conditions. 

" Avoids the fluctuation around MPP. 

" It doesn't need external sensors to locate and track the maximum power 

point. 

" Provides a fast and stable maximum power point tracking. 

" Avoids the undesirable harmonics due to the low voltage step in each 

epoch. 

" Has been evaluated in different environmental conditions. 

" Can be applied with different types of load and adapted for different DC- 

DC converters. 

7.8 Summary 

This chapter introduced several types of results. As been in the Table 4.2 

section 4.2 the result is used for validation purposes. The first type is the 

general ANFIS model result. The second type shows the performance of FLC. 

The third shows the final output of MPPT parts and it compared with actual 

169 



7.8 Summary 

output. In the fourth the MPPT system has been evaluated with respect to the 

direct coupled system. Finally, more than one recommendation are extracted 

from the results in this chapter will be introduced with conclusions and future 

work in next chapter. 
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Chapter 8 

Conclusion, Recommendations and 
Future Work 

8.1 Summary 

It is necessary to study the environmental conditions in which the PV system 
is installed. The high alteration in the environmental conditions affects the 
location of MPP. Hence, it is important to design the PV system depending on 

sufficient knowledge to perform the excellent PV design to save the generated 

power from PV panels. 

To study the behaviour of PV panels in different environmental conditions, the 

field data was collected in different seasons in Yemen. This data was collected 
from three main different regions in different climates for the period of two years. 
The first region is the mountain areas, the second is the desert areas, and the 

third is the coastal areas. Two thirty-six single crystal and polycrystalline PV 

solar panels were used to collect the field data. 

Actual Ise, Voc, Vmax and I�ýax are the main electrical parameters that were 

measured during data collection. The actual short circuit current and open 

circuit voltage are used as inputs of ANFIS models instead of solar irradiation 

and cell junction temperature to predict the maximum power point voltage. 

More than one ANFIS models are tested to reach the best model that can 

predict the accurate Vmax. The selected ANFIS models are developed with per 

unit data and learning algorithms to reach the final ANFIS model which can 

be implemented with different single crystal and poly crystalline PV systems. 

The predicted Vmq, x from ANFIS model is used with actual 'Sc as input for 

the FLC to control the duty cycle of DC-DC converters. The FLC is used 

171 



8.2 Contributions 

to control the rate of change in duty cycle of electronic switch of Buck-Boost 

converter and Buck converter. These DC-DC converters are used to interface 
between the load voltage PV panels. The duty cycle of the electronic switch of 
the DC-DC converter is adjusted until the input voltage of a converter tracks 
the predicted Vm, a, x of the PV system. 

Two simulation models are designed to test and improve the performance of 
final FLC. The simulation models are utilised to improve the IFs and rules of 
FLC to reach the best performance of MPPT system. The performance of final 

FLC model has been tested to show the maximum power point tracking per- 
formance at different irradiance levels and different values of Vmo, x. In addition, 
the performance of developed MPPT has been compared with direct coupled 
PV systems. 

The following contributions demonstrate the novelties in this thesis. 

8.2 Contributions 

The main contributions in this thesis are: 

" The contribution in the methodology of data collection and its evaluation 

in this thesis provides sufficient and appropriate parameters for the devel- 

oped MPPT system. The acquisition choice is accomplished in order to 

reach sufficient knowledge of PV panel behaviour in different environmen- 

tal conditions. In addition, data was evaluated three times after design 

the initial ANFIS models. More data was added to fill the shortage in 

the collected data and as a result the performance of ANFIS model is 

improved at different irradiance levels and PV cell temperatures. 

" The contribution in the methodology of utilising the statistical analysis 

methods and observation in the PV panels behaviour during data collec- 

tion is highly used to select the simple input parameters for the ANFIS 

models and FLC. 
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" The methodology of developing the ANFIS model is one of the main im- 

portant novelties in this research. More than one ANFIS model were tested 

to reach the best model that can predict the accurate V,,,., with minimum 

error. Subtractive clustering has been used to overcome the shortage in 

the iterative modification of MFs premise parameters which is performed 
by gradient descent learning algorithm. Furthermore, the selected ANFIS 

models is developed by applying the LSE algorithm during forward learn- 

ing to improve the accuracy of the ANFIS model prediction by modifying 

the consequent linear parameters of ANFIS model. 

" The novel MPPT system with FLC are designed to balance the different 

requirements features of PV system such as, quick tracking in different 

environmental conditions, high accuracy, stability and high efficiency. The 

FLC is designed to achieve the most promising performance in different 

environmental conditions, different types of load and two types of DC-DC 

converters. In addition, the MFs of the developed FLC are designed jointly 

with the rules to minimise the number of rules that are used in FLC. 

In the next section a number of recommendations will be introduced. These 

recommendations help in PV systems design. 

8.3 Recommendations 

The following recommendations are based on data analysis and final results in 

chapter 7: 

9 It is better to design the PV system that is used in solar pumps according 

to the highest possible TS at the highest possible irradiance level in certain 

region. This keeps Vmax over operating voltage at different environmental 

conditions. Hence, the MPPT system with Buck converter is preferred 

because it is more efficient than Buck-Boost converter. 
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8.4 Future work 

" It is more efficient to use the single crystal panels which have higher op- 

erating Vma, x, in high climate temperature regions. These high operating 

voltages help the PV panels to operate near the maximum power point 

especially with batteries load. 

" To overcome the problem of low V,,, ax at high ambient temperature, it is 

recommended to increase the PV cells in the PV panel to 40 cell to make 

Vmax higher than the load voltage. Hence, the step down voltage converter 

becomes more available in MPPT system especially with batteries load. 

On the other hand, in low ambient temperature regions it is better to use 

PV panels that have less than 36 cells to reduce the cost of PV system 

and as a result the total cost of PV system. 

" The cost of MPPT system and power losses in DC-DC converter are the 

critical features that should be studied carefully. In addition, the capacity 

of PV system and the total power saving by MPPT system should be 

considered in the feasibility study. 

" Two solutions are introduced for the small PV system to reduce the de- 

generated power. The first solution is by matching the number and type 

of PV panel cells with load voltage according to the range of V,,,, o, x that can 

be expected in this region. The second solution is by using a sun tracker 

especially with pumps load to maintain the irradiance at high levels during 

daytime. Consequently, the sun tracker prevents a poor operation at low 

and medium irradiance levels as discussed in section 4.6. 

In addition to these recommendations the next section will introduce the sug- 

gested future work for other researchers. 

8.4 Future work 

Four areas are recommended to enhance the developed MPPT system that is 

introduced in this thesis. 

174 



8.4 Future work 

" The developed MPPT system is implemented with single crystal and poly- 

crystalline PV panel which are the wide used panels in the market. An 

amorphous panel is a different type of PV panels which has different be- 

haviour from the two types that are investigated in this research. However, 

the proposed technique in this thesis can be modified to implement with 

amorphous panels and its data. 

" After a long time the PV panels will be degraded. Therefore, the be- 

haviour of PV panels will be slightly changed [26]. Accordingly, if PV 

panels are tested after 15 continuous operating years, the ANFIS model 

can be enhanced with a factor to adjust the output nonlinear parameters. 

Also, the Perturb and observation method can be utilised to modify the 

learning data of ANFIS model which is affected by degradation. Perturb 

and observation method can be used for sufficient time to renew the learn- 

ing data of ANFIS model. This operation can be performed one or two 

times during PV life time. 

" The behaviour of different PV pumps should be studied at different oper- 

ating power and voltage. The effect of environmental conditions on Vmo, x 

and Pmax can be matched with the operating voltage and power of PV 

pumps. Consequently, the PV pump can be selected according to the 

available options. 

" ANFIS can be used to design the MFs of FLC. The input-output data 

relationship can be determined by experts according to the system re- 

quirements. ANFIS can help on designing more options of MFs that can 

be used in FLC. In addition, ANFIS does not require a long time to reach 

the best MFs structure of FLC [5]. 

" The electronic simulation programs can provide more details about the 

behaviour of DC-DC converters. Hence, it can be used to determine the 

accurate effect of Vo on input voltage of DC-DC converter during the 

tracking process. 

175 



Bibliography 

[1] Abd El-Shafy A. Nafeh, Faten H. Fahmy, Osama A. Mahgoub and Essam 
M. Abou El-Zahab (1999), "Microprocessor control system for maximum 
power operation of PV arrays", International Journal of Numerical Mod- 
elling: Electronic Networks, Devices and Fields Jun 1999, Vol. 12, Issue 3, 
pp. 187-195. 

[2] Altas, I. H. Sharaf and A. M. (1994), "A novel fuzzy logic controller for max- 
imum power extraction from a PV array driving a three-phase induction 
motor", 7th Mediterranean Electrotechnical Conference, 12-14 Apr, Vol. 2, 
pp. 853-856. 

[3] I. H. Altas and A. M. Sharaf 1(1996), "A novel on-line MPP search algo- 
rithm for PV arrays", IEEE Trans. Energy Convers, Dec, Vol. 11, no. 4, pp. 
748-754. 

[4] Altas, I. H. Sharaf and A. M. (2007), "Novel Control Strategies Using Load 
Matching for Maximum Photovoltaic Energy Utilization", Canadian Confer- 

ence on electrical and Computer Engineering, 22-26 April, pp. 1578-1581. 

[5] Angelov P. P., V. I. Hanby, J. A. Wright (2000), "HVAC Systems Simula- 
tion: A Self-Structuring Fuzzy Rule-Based Approach, International Journal 

of Architectural Sciences, Voll, Not, 2000, pp. 30-39. 

[6] Angelov P., D. Filev (2004), "An Approach to On-line Identification of 
Takagi-Sugeno Fuzzy Models", IEEE Transactions on System, Man, and 
Cybernetics, part B- Cybernetics, Vol. 34, Nol, 2004, pp. 484-498. ISSN 
1094-6977. 

[7] Angelov P. P., "A Fuzzy Controller with Evolving Structure, Information 
Sciences, ISSN 0020-0255, vol. 161,2004, pp. 21-35. 

[8] Antonio Luque and Steven Hegedus (2003), "Handbook of Photovoltaic 
Science and Engineering", John Wiley and Sons Ltd, Chichester, West Sussex 

P019 8SQ, England. 

[9] A. Aziz Aldobhani (2001), "Study of the Factors Affecting the Efficiency 

of the Photovoltaic Systems", University of Science and Technology-Yemen, 

Master thesis, May. 

[10] A. Aziz Aldobhani (2004), "Power Output improvement by Using Two 

Axis Tracking Solar System", Yemen scientific research foundation, Science 

Conference 11-13 Oct.. 

176 



BIBLIOGRAPHY 

[11] A. Aziz Aldobhani (2002), "Solar pump in Yemen", Journal of Science and 
Technology, Vol. 12, no. 1, Issue 1, pp. 1670-1673. 

[12] A. Aziz Aldobhani, Fahr H. and A. R. Assad (2001), " Factors Affecting the 
efficiency of PV systems", Sharjah solar conference, 19-22 Feb, 189-PVPH08 

[13] A. B. G. Bahgat, N. H. Helwa, G. E. Ahmad and E. T. El Shenawy (2005), 
"Maximum power point tracking controller for PV systems using neural net- 
works", Renew. Energy, Vol. 30, pp. 1257-1268. 

[14] Bezdek and J. C. (1981), "Pattern Recognition with Fuzzy Objective Func- 
tion Algorithms", Plenum Press, New York. 

[15] Boutalis, Yiannis S. Karlis, Athanassios D. Kottas and Theodoros L. 
(2006), "Fuzzy Cognitive Networks + Fuzzy Controller as a self adapting 
control system for Tracking Maximum Power Point of a PV-Array", IEEE 
32nd Annual Conference on Industrial Electronics, IECON 2006, Issue Nov., 
pp. 4355-4360. 

[16] Brambilla, A. Gambarara, M. Garutti, A. Ronchi and F. (1999), "New 

approach to photovoltaic arrays maximum power point tracking", 30th An- 

nual IEEE Power Electronics Specialists Conference, Vol. 2, Issue 1999, pp. 
632-637. 

[17] Cai, C. H. Du, D. Liu and Z. Y. (2003), "Battery state-of-charge (SOC) 

estimation using adaptive neuro-fuzzy inference system (ANFIS)", The 12th 
IEEE International Conference on Fuzzy Systems, 25-28 May, Vol. 2, pp. 
1068-1073. 

[18] J. Casillas, O. Cordon, F. Herrera, L. Magdalena and J. V. De Oliveira 
(1999), "Semantic constraints for membership function optimization", IEEE 
Trans. Syst., Man, Cybern. Part A-Systems and Humans, Vol. 29, pp. 128- 
138. 

[19] Chiu S. (1994), "Fuzzy Model Identification Based on Cluster Estimation", 

Journal of Intelligent and Fuzzy Systems, Sept., Vol. 2, no. 3. 

[20] Chung, H. S. -H. Tse, K. K. Hui, S. Y. R. Mok, C. M. Ho and M. T. (2003), 

"A novel maximum power point tracking technique for solar panels using a 
SEPIC or Cuk converter", IEEE Transactions on Power Electronics, May, 

Vol. 18, Issue 3, pp. 717-724. 

[21] M. N. Cirstea, A. Dinu, J. G. Khor and M. MC (2000), "Neural and Fuzzy 

logic control of drives and power system", Newnes, Oxford, England. 

[22] David Linden and Thomas B. Reddy (2002), "Hand Book of Batteries", 

Third edition, MC Grow-Hill, USA. 

177 



BIBLIOGRAPHY 

[23] De Medeiros Torres, A. Antunes, F. L. M. dos Reis and F. S. (1998), "An 
artificial neural network-based real time maximum power tracking controller 
for connecting a PV system to the grid", Proceedings of the 24th Annual 
Conference of the IEEE, 31 Aug. -4 Sept., Vol. 1, pp. 554-558. 

[24] El-Sayed and M. A. H. (1997), "Fuzzy clustering and fuzzy sets for reliability 
analysis of recent distribution systems", IEEE International Conference on 
Intelligent Engineering Systems, 15-17 Sept., pp. 277-282. 

[25] M. Enrique, E. Duran, M. Sidrach-de-Cardona and J. M. Andujar (2007), 
"Theoretical assessment of the maximum power point tracking efficiency of 
photovoltaic facilities with different converter topologies", Solar Energy, Jan- 

uary, Vol. 81, Issue 1, pp. 31-38. 

[26] Florida solar energy center (1996), "Photovoltaic system Design", April 
1996. 

[27] Friedrich Sick and Thomas Erge (1996), " Photovoltaic in building", In- 

ternational Energy Agency. 

[28] Gwon-Jong, Yu Myung-woong Jung, Jinsoo Song, In-Su Cha and In-Ho 
Hwang (1996), "Maximum power point tracking with temperature compen- 

sation of photovoltaic for air conditioning system with fuzzy controller", 
Twenty Fifth IEEE Conference on Photovoltaic Specialists, 13-17 May, pp. 
1429-1432. 

[29] R. M. Hilloowala and A. M. sharaf (1992), "A Rule-Based Fuzzy Logic 

Controller for A PWM Inverter in Photovoltaic Energy Conversion Scheme", 

Proceedings of the IEEE Industry Application Society Annual Meeting, Oct., 

pp. 762-769. 

[30] Hilloowala R. M. and Sharaf A. M. (1996), "A rule-based fuzzy logic con- 
troller for a PWM inverter in a standalone wind energy conversion scheme", 
IEEE Transactions on Industry Applications, Jan/Feb, Vol. 32, Issue 1, pp. 
57-65. 

[31] T. Hiyama, S. Kouzuma and T. limakudo (1995), "Identification of optimal 

operating point of PV modules using neural network for real time maximum 

power tracking control", IEEE Trans. Energy Conversion, June, Vol. 10, pp. 

360-367. 

[32] T. Hiyama and K. Kitabayashi (1997), "Neural network based estimation 

of maximum power generation", IEEE Trans. Energy Conversion, Sept., Vol. 

12, pp. 241-247. 

178 



BIBLIOGRAPHY 

[33] C. Hua and C. Shen (1998), "Study of maximum power tracking techniques 
and control of dc-dc converters for photovoltaic power system", in Proc. 29th 
Annu. IEEE PESC, 17-22 May, Vol. 1, pp. 86-93. 

[34] C. Hua, J. Lin and C. Shen (1998), "Implementation of a DSP-controlled 
photovoltaic system with peak power tracking", IEEE Trans. Ind. Electron., 
Feb., Vol. 45, pp. 99-107. 

[35] Ibrahim, H. E. -S. A. Houssiny, F. F. El-Din, H. M. Z. El-Shibini and M. A. 
(1999), "Microcomputer controlled buck regulator for maximum power point 
tracker for DC pumping system operates from photovoltaic system", Fuzzy 
Systems Conference Proceedings, 22-25 Aug., Vol. 1, pp. 406-411. 

[36] J. S. R. Jang (1993), "ANFIS: Adaptive-network-based fuzzy inference 

systems", IEEE Transactions Systems, Man and Cybernetics, May, Vol. 23, 

no. 3, pp. 665-685. 

[37] Jang, J. -S. R. and N. Gulley (1994), "Gain scheduling based fuzzy con- 
troller design", Proc. of the International Joint Conference of the North 
American Fuzzy Information Processing Society Biannual Conference, the 
Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA 
Joint Technology Workshop on Neural Networks and Fuzzy Logic, San An- 

tonio, Texas, Dec.. 

[38] Jang, J. -S. R. and C. -T. Sun (1995), "Neuro-fuzzy modeling and control", 
Proceedings of the IEEE, March. 

[39] J. -S. R. Jang, C. -T. Sun and E. Mizutani (1997), "Neuro-Fuzzy and Soft 

Computing", Prentice Hall, USA. 

[40] John A. Duffie and William A. Beckman (1991), "Solar engineering thermal 

processes", second edition, A Wiley- international publication, USA. 

[41] G. J. Yu, Y. S. Jung, J. Y. Choi and G. S. Kim (2004), "A novel two-mode 

MPPT control algorithm based on comparative study of existing algorithms", 
Solar Energy, Vol. 76, pp. 455-463. 

[42] N. Kasa, T. lida and H. Lwamoto (2000), "Maximum power point tracking 

with capacitor identifier for PV power system", IEEE Procd-Electr. Power 

application, Nov., Vol. 147, no 6. 

[43] N. Kasa, T. lida and H. Lwamoto (2000), "Maximum power point tracking 

with capacitor identificator for PV power system", IEE Power electronic and 

variable speed drives 18-19 Sep.. 

179 



BIBLIOGRAPHY 

[44] N. Kasabov, Q. Song (2002), "DENFIS: Dynamic Evolving Neural-Fuzzy 
Inference System and Its Application for Time-Series Prediction", IEEE 
Trans. on Fuzzy Systems, Vol. 10 (2), pp. 144-154. 

[45] K. Kim, J. Baek, E. Kim, M. Park (2005), "TSK Fuzzy model based 
on-line identification, Proc. 11th IFSA World Congress, Beijing, China, pp. 
1435-1439. 

[46] A. Kislovski and R. Redl (1994), "Maximum-power-tracking using positive 
feedback", in Proc. IEEE Power Electron. Spec. Conz, pp. 1065-1068. 

[47] G. F. Klir and T. A. Folger (1988), "Fuzzy Sets, Uncertainty, and Infor- 
mation" Englewood Cliffs, NJ: Prentice-Hall. 

[48] T. Kottas, Y. Boutalis and M. Christodoulou (2005), "A new method for 

weight updating in Fuzzy cognitive maps using system feedback", in Proc. 
2nd ICINCO, Barcelona, Spain, Sep. 13-17, pp. 202-209. 

[49] Kottas, T. L. Boutalis, Y. S. Karlis and A. D. (2006), "New maximum power 
point tracker for PV arrays using fuzzy controller in close cooperation with 
fuzzy cognitive networks", IEEE Transaction on Energy Conversion, Sept., 
Vol. 21, Issue 3, pp. 793-803. 

[50] E. Koutroulis, K. Kalaitzakis and N. C. Voulgaris (2001), "Development of 
a microcontroller-based, photovoltaic maximum power point tracking control 
System", IEEE Trans. Power Electron, Jan, Vol. 16, no. 1, pp. 46-54. 

[51] F Lasnier and TG Ang. (1990), "Photovoltaic Engineering Handbook", 
IOP Publishing Ltd, Bristol, England. 

[52] E. Lorenzo (1994), "Solar Electricity- Engineering of Photovoltaic Sys- 

tems", PROGENSA, S. A., Sevilla, Spain. 

[53] A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, H. El Khashab and M. N. F. 

Nashed (2000), "Fuzzy Logic Implementation For Photovoltaic Maximum 

Power Tracking", Proceedings 9th IEEE International Workshop on Robot 

and Human Interactive Communication, pp. 155-160. 

[54] Mamdani, E. H. and S. Assilian (1975), "An experiment in linguistic syn- 
thesis with a fuzzy logic controller", International Journal of Man-Machine 

Studies, Vol. 7, no. 1, pp. 1-13. 

[55] Mashaly, H. M. Sharaf, A. M. Mansour, M. M. El-Sattar and A. A. 

(1993), "Fuzzy logic controller for maximum power tracking in line- 

commutated photovoltaic inverter scheme", Canadian Conference on Elec- 

trical and Computer Engineering, 14-17 Sep, pp. 1287-1290. 

180 



BIBLIOGRAPHY 

[56] Mashaly, H. M. Sharaf, A. M. Mansour, M. M. El-Sattar and A. A. (1994), 
"A photovoltaic maximum power point tracking using neural networks", 3rd- 
IEEE-Control application, 24-26 Aug., Vol. 1, pp. 167-172. 

[57] Masoum, M. A. S. Dehbonei, H. Fuchs and E. F. (2002), "Theoretical and 
experimental analyses of photovoltaic systems with voltage and current-based 
maximum power-point tracking", IEEE Transaction on Energy Conversion, 
Dec., Vol. 17, Issue 4, pp. 514-522. 

[58] MATLAB help (2004), Version 7, May 2004. 

[59] Mellit A. (2006), "Development of an expert configuration of stand-alone 
power PV system based on adaptive neuro-fuzzy inference system (ANFIS)", 
Electro Technical Conference, MELECON 2006. IEEE Mediterranean, Issue 
16-19 May, pp. 893-896. 

[60] Mellit, A. Kalogirou and S. A. (2006), "Neuro-Fuzzy Based Modeling for 
Photovoltaic Power Supply System", Power and Energy Conference, PECon 
'06. IEEE International, 28-29 Nov. 

[61] Mellit A. (2006), "Artificial intelligence based-modeling for sizing of a 
Stand-Alone Photovoltaic Power System: Proposition for a New Model us- 
ing Neuro-Fuzzy System (ANFIS)", 3rd International IEEE Conference on 
Intelligent Systems, Sept., pp. 606-610. 

[62] Mohan and Robbins (1989), "Power electronics converter application de- 

sign", John Willy, USA. 

[63] Momoh, J. A. Ofoli and A. R. (2001), "Load management and control of 
the photovoltaic (PV) system using fuzzy logic", Conference on Engineering 

Systems and Power Engineering, Issue 2001, pp. 184-188. 

[64] Muhammad Iqbal, Valnicek B. (1983), "An Introduction to Solar Radia- 

tion", Space Science Reviews V. 39. 

[65] Muhammdi H. Rashid (1993), "Power electronics- Converter application", 
Prentice Hall international edition, New Jercy, USA. 

[66] Mummadi Veerachary and Tomonobu Senjyuand Katsumi Uezato (2002), 

"Feedforward Maximum Power Point Tracking of PV Systems Using Fuzzy 

Controller", IEEE Transactions on aerospace and electronic system, July, 

Vol. 38, no. 3, pp. 969-981. 

[67] Patcharaprakiti and S. Premrudeepreechacharn (2002), "Maximum Power 

Point Tracking Using Adaptive Fuzzy Logic Control for Grid-Connected Pho- 

tovoltaic System", IEEE Power Engineering Society Winter Meeting, pp. 

372-377. 

181 



BIBLIOGRAPHY 

[68] Khaehintung, N. Pramotung, K. Tuvirat and B. Sirisuk (2004), "RISC- 
microcontroller built-in fuzzy logic controller of maximum power point track- 
ing for solar-powered light-flasher applications", 30th Annual Conference of 
IEEE Industrial Electronics Society, 2-6 Nov., Vol. 3, pp. 2673-2678. 

[69] Khaehintung, N. Pramotung, K. Sirisuk and P. (2004), "RISC microcon- 
troller built-in fuzzy logic controller for maximum power point tracking in 

solar-powered for battery charger", 2004 IEEE Region 10 Conference, 21-24 
Nov, Vol. D., pp. 637-640. 

[70] Khaehintung, N. Sirisuk and P. Kurutach W. (2003), "A novel ANFIS 

controller for maximum power point tracking in photovoltaic systems", The 
Fifth International Conference on Power Electronics and Drive Systems, 17- 
20 Nov., Vol. 2, pp. 833-836. 

[71] Robert John, "ANFIS note", Centre for Computational Intelligence, DE 
Montfort University, UK. 

[72] Salameh and Taylor D. (1990), "Step-up maximum power point tracker for 

photovoltaic arrays", Solar Energy Journal, Vol. 44, pp. 51-57. 

[73] Senjyu, T. Uezato and K. (1994), "Maximum power point tracker using 
fuzzy control for photovoltaic arrays", Proceedings of the IEEE International 
Conference on Industrial Technology, 5-9 Dec, pp. 143-147. 

[74] Simoes, M. G. Franceschetti, N. N. Friedhofer and M. (1998), "A fuzzy 

logic based photovoltaic peak power tracking control", Industrial Electronics, 

IEEE International Symposium, 7-10 Jul, Vol. 1, pp. 300-305. 

[75] Simoes, M. G. Franceschetti and N. N. (1999), "Fuzzy optimisation based 

control of a solar array system", IEE Proceedings on Electric Power Appli- 

cations, Sep., Vol. 146, Issue 5, pp. 552-558. 

[76] Simon Roberts (1991), " Solar electricity", Prentice Hall international, UK. 

[77] Spath H. (1985), "Cluster Dissection and Analysis: Theory, FORTRAN 

Programs, Examples", Translated by J. Goldschmidt, Halsted Press, New 

York. 

[78] Sugeno, M. (1985), "Industrial applications of fuzzy control", Elsevier Sci- 

ence Pub. Co.. 

[79] Timothy J. Ross (2004), "Fuzzy logic with engineering application", Wiley, 

Chichester, West Sussex P019 8SQ, England. 

182 



BIBLIOGRAPHY 

[80] Veerachary, M. Senjyu, T. Uezato and K. (2003), "Neural-network- 
based maximum-power-point tracking of coupled-inductor interleaved-boost- 
converter-supplied PV system using fuzzy controller", IEEE Transactions on 
Industrial Electronics, Aug., Vol. 50, Issue 4, pp. 749-758. 

[81] Wai, Rong-Jong Wang, Wen-Hung Lin and Jun-You (2006), "Grid- 
Connected Photovoltaic Generation System with Adaptive Step-Perturbation 
Method and Active Sun Tracking Scheme", 32nd Annual Conference on IEEE 
Industrial Electronic, Nov., pp. 224-228. 

[82] Wai, R. -J. Wang and W. -H. (2008), "Grid-Connected Photovoltaic Gener- 
ation System", IEEE 'I4tansactions on Circuits and Systems, April, Vol. 55, 
pp. 953-964. 

[83] Witold Pedry Cz. (1995), " Fuzzy Sets Engineering", CRC Press, USA. 

[84] S. Wolf and J. Enslin (1993), "Economical, PV maximum power point 
tracking regulator with simplistic controller", in Proc. IEEE Power Electron. 
Sep, pp. 581-587. 

[85] Wilamowski, B. M. and Xiangli Li (2002), "Fuzzy system based maximum 
power point tracking for PV system", 28th IEEE Annual Conference on 
Industrial Electronics Society, 5-8 Nov., Vol. 4, pp. 3280-3284. 

[86] C. -Y. Won, D. -H. Kim, S. -C. Kim, W. -S. Kim and H. -S. Kim (1994), 
"A new maximum power point tracker of photovoltaic arrays using fuzzy 

controller", in 25th IEEE PESC., 20-25 Jun., Vol. 1, pp. 396-403. 

[87] Wu, T. -F. Chang, C. -H. Chen and Y. -K. (1999), "A fuzzy logic controlled 
single-stage converter for PV powered lighting system applications", IEEE 
Conference on Industry Applications, Vol. 3, pp. 1685-1692. 

[88] www. powerdesigners. com/InfoWeb/design-center/articles/DC- 
DC/converter. shtm. 

[89] web. mit. edu/10.001/Web/Course-Notes/Statistics 
Notes/Correlation/node2. html. 

[90] www. nyu. edu/its/socsci/Docs/correlate. html. 

[91] www. statsoft. com/textbook/stbasic. html. 

[92] www. psychstat. missouristate. edu/multibook/mlt04. htm. 

[93] www. clustan. com/what is cluster analysis. html. 

[94] www. statsoft. com/textbook/stcluan. html. 

183 



BIBLIOGRAPHY 

[95] www4. eas. asu. edu/PowerZone/FuzzyLogic. 

[96] www. seattlerobotics. org/encoder/Mar98/fuz/flindex. html. 

[97] Yaragatti, U. R. Rajkiran, A. N. Shreesha and B. C. (2005), "A novel method 
of fuzzy controlled maximum power point tracking in photovoltaic systems", 
IEEE International Conference on Industrial Technology, 14-17 Dec., pp. 
1421-1426. 

[98] Ying-Tung and Hsiao China-Hong Chen (2002), "Maximum power tracking 
for photovoltaic power system", Industry Applications Conference, 37th JAS 
Annual Meeting, Oct., Vol. 2,13-18, pp. 1035-1040. 

184 



Appendix A 

Data Tables 

185 



Table A. 1: Clustering the PU data of the 85W PV panel and the 51W PV panel. 

PU data of the 85 PV solar panel pu data of the 51 PV solar panel 
Isc(pu) Voc(pu) Clus- 

Num 
Vmax Isc(pu) Voc(pu) Clus- 

Num 
Vmax 

0.042 0.151 6 14.67 0.057 0.154 5 14.85 
0.044 0.152 6 14.64 0.069 0.169 5 16.36 
0.048 0.165 6 16.85 0.076 0.164 5 16.14 
0.064 0.154 6 15.33 0.085 0.157 4 14.93 
0.070 0.166 2 16.59 0.091 0.168 4 16.28 
0.080 0.163 2 16.50 0.093 0.156 4 14.66 
0.085 0.156 2 15.65 0.102 0.163 4 15.80 
0.088 0.167 2 17.00 0.107 0.157 4 14.80 
0.090 0.157 2 15.80 0.114 0.163 4 15.50 
0.106 0.158 2 15.70 0.125 0.160 1 15.15 
0.113 0.167 4 16.70 0.130 0.172 1 16.40 
0.122 0.155 4 15.20 0.141 0.161 1 14.94 
0.124 0.162 4 15.85 0.144 0.153 1 14.00 
0.143 0.156 4 15.32 0.148 0.160 1 14.85 
0.143 0.174 4 16.90 0.158 0.150 2 13.52 
0.145 0.157 4 15.35 0.160 0.152 2 13.62 
0.161 0.154 5 14.47 0.162 0.166 2 15.53 
0.170 0.153 5 14.29 0.165 0.166 2 15.45 
0.170 0.157 5 15.10 0.168 0.160 2 14.77 
0.170 0.165 5 16.00 0.170 0.149 2 13.35 
0.177 0.157 5 14.87 0.170 0.161 2 14.87 

0.178 0.167 5 16.28 0.172 0.149 2 13.36 

0.181 0.161 5 15.40 0.172 0.151 2 13.50 

0.183 0.152 5 14.15 0.172 0.160 2 14.76 

0.184 0.150 5 13.93 0.173 0.151 2 13.55 

0.185 0.167 5 16.35 0.176 0.153 2 13.72 

0.187 0.150 5 14.11 0.179 0.161 2 14.93 

0.187 0.161 5 15.20 0.183 0.160 6 14.62 

0.189 0.155 5 14.72 0.186 0.168 6 15.70 

0.196 0.159 1 14.88 
-- - 

0.187 0.152 6 13.60 

. 199 0 0.167 -f - i 6.11 0.189 0.168 6 15.59 

0.203 0.167 1 15.95 0.195 0.152 6 13.62 

0.208 0.155 1 14.49 0.198 0.166 6 15.36 

0.210 0.165 1 15.82 0.201 0.167 6 15.47 

0.213 0.156 14.76 0.201 0.168 6 15.55 

0.226 0.167 3 16.00 0.204 0.166 6 15.22 

0.226 0.167 3 15.95 0.237 0.167 3 15.60 

0.262 0.167 3 16.24 0.252 0.167 3 15.24 
IOD 



Table A. 2: Actual and predicted Vm, a, x at different numbers of inputs MFs of 85W 
panel 

Actual Predicted output at different number of MFs of inputs 
Vrnax 2x1 

MFs 
3x1 
MFs 

4x1 
MFs 

5x1 
MFs 

1x2 
MFs 

1x3 
MFs 

1x4 
MFs 

2x2 
MFs 

12 12.049 12.006 12.009 12.002 12.049 12.04 12.002 12.014 
15.4 15.315 15.571 15.572 15.561 15.315 15.936 15.735 15.512 
15.16 15.169 15.047 15.04 15.063 15.169 15.625 15.423 15.055 
16.9 16.497 16.716 16.724 16.722 16.497 16.642 16.683 16.626 
16.4 16.504 16.486 16.488 16.498 16.504 16.577 16.625 16.59 
16.29 16.43 16.272 16.268 16.273 16.43 16.471 16.542 16.519 
14.8 14.896 14.625 14.61 14.602 14.896 14.542 14.794 14.678 
15 15.194 15.134 15.139 15.132 15.194 14.975 15.016 15.098 
15.1 15.266 15.276 15.288 15.288 15.266 15.069 15.021 15.218 
16.85 17.374 17.105 17.084 16.998 17.374 16.932 16.921 16.906 
16.6 16.612 16.531 16.531 16.496 16.612 16.522 16.526 16.573 
16.7 16.122 16.28 16.305 16.372 16.122 16.128 16.226 16.294 
16 15.484 15.883 15.941 16.095 15.484 15.399 15.222 15.798 
16.83 17.079 16.903 16.869 16.863 17.079 16.811 16.808 16.808 
16.5 16.595 16.574 16.558 16.599 16.595 16.537 16.516 16.548 
15.65 15.523 15.824 15.856 15.753 15.523 15.595 15.667 15.882 
17 16.962 16.812 16.771 16.896 16.962 16.782 16.794 16.775 
15.8 15.651 15.889 15.907 15.792 15.651 15.759 15.884 15.946 
16.22 16.259 16.304 16.291 16.292 16.259 16.302 16.28 16.324 
15.7 15.528 15.714 15.716 15.548 15.528 15.667 15.743 15.777 
16.7 16.716 16.598 16.57 16.682 16.716 16.686 16.699 16.626 
15.2 15.123 15.307 15.299 15.162 15.123 15.241 15.218 15.345 

15.85 15.946 15.961 15.948 15.923 15.946 16.022 15.997 16.012 

15.53 15.54 15.584 15.572 15.613 15.54 15.65 15.629 15.628 

15.32 15.034 15.114 15.094 15.304 15.034 15.145 15.222 15.103 

16.9 17.292 17.081 17.116 16.892 17.292 16.92 16.906 17.138 

15.35 15.077 15.137 15.118 15.323 15.077 15.188 15.32 15.131 

15.66 15.677 15.63 15.644 15.676 15.677 15.682 15.652 15.66 

14.7 -14.699 14.71 14.882 14.332 14.699 14.746 14.651 14.614 

15.8 15.509 15.468 15.477 15.494 15.509 15.529 15.488 15.492 

14.25 14.328 14.343 14.298 14.212 14.328 14.238 14.292 14.172 

14.35 14.544 14.518 14.487 14.432 14.544 14.553 14.437 14.409 

15.1 14.987 14.948 14.939 14.918 14.987 15.041 15.109 14.924 

16 16.068 15.998 16.045 16.106 16.068 16.074 16.078 16.026 

14.87 15.002 14.945 14.943 14.937 15.002 15.035 15.049 14.929 

16.28 16.224 16.165 16.229 16.286 16.224 16.307 16.311 16.185 

15.4 15.453 15.391 15.418 15.436 15.453 15.402 15.357 15.396 

14.15 14.383 14.3 14.271 14.254 14.383 14.348 14.233 14.261 
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Table A. 3: Actual and predicted Vma, 
x at different numbers of inputs MFs of 85W 

panel 
Actual Predicted output at different number of MFs of inputs 
Vmax 2x1 

MFs 
3x1 
MFs 

4x1 
MFs 

5x1 
MFs 

1x2 
MFs 

1x3 
MFs 

1x4 
MFs 

2x2 
MFs 

13.93 14.104 14.011 13.97 13.946 14.104 13.946 13.958 13.979 
16.35 16.215 16.176 16.246 16.283 16.215 16.315 16.317 16.185 
14.11 14.129 14.021 13.985 13.975 14.129 13.993 14.063 14.034 
15.2 15.405 15.341 15.37 15.387 15.405 15.335 15.286 15.34 
14.72 14.695 14.6 14.596 14.602 14.695 14.702 14.717 14.611 
14.88 15.124 15.046 15.069 15.08 15.124 15.058 14.991 15.044 
16.11 16.072 16.072 16.13 16.131 16.072 16.111 16.115 16.06 
15.95 16.054 16.068 16.117 16.112 16.054 16.089 16.093 16.051 
14.85 14.882 14.783 14.819 14.821 14.882 14.813 14.772 14.829 
14.65 14.598 14.468 14.515 14.516 14.598 14.555 14.584 14.649 
15.82 15.823 15.842 15.866 15.859 15.823 15.718 15.724 15.816 
17.4 17.097 17.274 17.252 17.243 17.097 17.388 17.397 17.245 
14.76 14.754 14.642 14.725 14.721 14.754 14.679 14.729 14.763 
16 16.049 16.177 15.999 15.985 16.049 16.16 16.156 16.136 
15.95 16.045 16.178 15.986 15.972 16.045 16.156 16.152 16.136 
16.24 15.843 16.149 16.238 16.239 15.843 15.867 15.864 16.133 
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Table A. 4: Actual and predicted Vma, x at different numbers of inputs MFs of 51\\' 
panel 

Actual Predicted output at different number of MFs of inputs 
Vmax 2x1 

MFs 
3x1 
MFs 

4x1 
MFs 

5x1 
MFs 

1x2 
MFs 

1x3 
MFs 

1x4 
MFs 

2x2 
MFs 

16 15.77 16.001 15.992 15.994 15.54 15.582 15.629 15.9 
16.07 16.06 16.076 16.091 16.09 15.967 16.013 16.003 16.108 
16.5 16.572 16.507 16.501 16.498 16.42 16.407 16.394 16.404 
16.2 16.252 16.217 16.225 16.223 16.174 16.194 16.176 16.246 
16 16.088 15.943 15.938 15.936 16.077 16.096 16.081 16.116 
15 15.121 14.984 14.995 15.003 15.09 15.032 15.038 15.06 
14.85 15.034 14.913 14.887 14.881 15.06 15.039 15.054 14.942 
16.36 16.492 16.485 16.473 16.47 16.344 16.348 16.351 16.406 
16.1 16.093 16.092 16.088 16.087 16.143 16.137 16.139 16.167 
16.14 15.894 15.927 15.933 15.949 15.997 15.998 16 16.001 
15 14.937 14.975 14.983 14.964 15.055 15.056 15.046 14.862 
16.28 16.238 16.328 16.337 16.397 16.218 16.216 16.214 16.282 
14.66 14.762 14.807 14.817 14.778 14.881 14.862 14.852 14.656 
15.8 15.592 15.658 15.666 15.674 15.735 15.743 15.754 15.717 
14.8 14.773 14.815 14.826 14.788 14.903 14.888 14.868 14.721 
15.5 15.411 15.453 15.459 15.471 15.553 15.565 15.578 15.519 
14.9 14.933 14.967 14.977 14.975 15.067 15.066 15.053 14.948 
15 14.948 14.965 14.967 15 15.07 15.071 15.063 14.989 
15.15 15.044 15.062 15.062 15.092 15.168 15.175 15.175 15.104 
16.4 16.479 16.496 16.472 16.434 16.41 16.396 16.401 16.381 
14.94 14.971 14.963 14.933 14.915 15.058 15.062 15.068 15.03 
14 14.091 14.081 14.059 14.074 14.148 14.052 14.02 14.056 
14.85 14.922 14.907 14.859 14.831 14.989 14.991 14.997 14.977 
13.52 13.546 13.535 13.502 13.516 13.562 13.506 13.501 13.513 
13.8 13.781 13.769 13.737 13.747 13.792 13.752 13.746 13.775 
15.53 15.555 15.527 15.489 15.486 15.607 15.615 15.628 15.554 
15.45 15.563 15.534 15.532 15.528 15.609 15.617 15.628 15.552 
14.77 14.762 14.743 14.769 14.764 14.757 14.748 14.751 14.797 
13.35 13.361 13.359 13.374 13.373 13.343 13.378 13.376 13.349 
14.87 14.813 14.794 14.84 14.833 14.801 14.798 14.809 14.843 
13.36 13.312 13.311 13.327 13.326 13.29 13.324 13.324 13.298 

13.64 13.67 13.665 13.689 13.688 13.646 13.676 13.681 13.68 

14.76 14.72 14.703 14.756 14.75 14.699 14.685 14.686 14.75 

13.55 13.558 13.555 13.578 13.577 13.531 13.604 13.604 13.562 

13.8 13.804 13.801 13.831 13.832 13.766 13.717 13.707 13.824 

14.93 14.837 14.823 14.881 14.884 14.794 14.796 14.816 14.847 
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Table A. 5: Actual and predicted Vmax at different numbers of inputs MFs of 51W 
panel 

Actual Predicted output at different number of MFs of inputs 
Vmax 2x1 

MFs 
3x1 
MFs 

4x1 
MFs 

5x1 
MFs 

1x2 
MFs 

1x3 
MFs 

1x4 
MFs 

2x2 
MFs 

14.62 14.658 14.65 14.685 14.693 14.593 14.574 14.574 14.667 
14.6 14.455 14.451 14.478 14.486 14.388 14.337 14.308 14.473 
15.7 15.646 15.627 15.68 15.689 15.672 15.666 15.655 15.592 
13.6 13.634 13.647 13.621 13.628 13.558 13.621 13.639 13.636 
15.59 15.655 15.64 15.673 15.681 15.681 15.673 15.658 15.6 
13.62 13.646 13.669 13.592 13.593 13.54 13.575 13.591 13.627 
16.9 16.868 16.84 16.865 16.869 16.889 16.898 16.9 16.899 
15.36 15.363 15.363 15.316 15.315 15.319 15.338 15.361 15.309 
15.47 15.469 15.471 15.404 15.398 15.445 15.453 15.459 15.415 
15.55 15.696 15.694 15.633 15.628 15.725 15.705 15.675 15.65 
15.22 15.349 15.357 15.264 15.252 15.292 15.311 15.333 15.293 
15.6 15.411 15.438 15.599 15.6 15.351 15.35 15.339 15.442 
15.24 15.291 15.31 15.24 15.24 15.187 15.195 15.195 15.361 
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Table A. 6: Per unit core data of solar PV na. n(-. ls 
Per unit test data of solar PV panels 

'Sc 

(pu) 
VOC 

(pu) 
Vmax 

(pu) 
'Sc 

(pu) 
VOC 

(pu) 
Vmax 

(pu) 
'Sc 

(pu) 
VOC 

(pu) 
V77-tax 

(pu) 
0.0074 0.0934 0.1029 0.0540 0.0986 0.1006 0.1374 0.1015 0.1000 
0.0156 0.0961 0.1033 0.0557 0.1057 0.1093 0.1394 0.0999 0.0979 
0.0172 0.0991 0.1061 0.0569 0.0994 0.1016 0.0855 0.1008 0.0999 
0.0172 0.0973 0.1042 0.0964 0.0967 0.0961 0.0904 0.0985 0.0985 
0.0119 0.0980 0.0990 0.0984 0.0925 0.0900 0.0909 0.1101 0.1087 
0.0138 0.0972 0.0975 0.0594 0.1026 0.1043 0.0921 0.0988 0.0987 
0.0250 0.0973 0.1029 0.1009 0.0967 0.0955 0.1620 0.1008 0.1003 
0.0162 0.1011 0.1087 0.1078 0.0903 0.0869 0.1718 0.1006 0.0980 
0.0312 0.0927 0.0964 0.1095 0.0915 0.0887 0.1018 0.1024 0.1007 
0.0189 0.1009 0.1055 0.1107 0.1001 0.1006 0.1023 0.0974 0.0930 
0.0216 0.1006 0.1047 0.1128 0.1002 0.1010 0.1030 0.1016 0.1016 
0.0390 0.0931 0.0955 0.0674 0.0996 0.1010 0.1042 0.0955 0.0916 
0.0242 0.0948 0.0952 0.1148 0.0964 0.0950 0.1078 0.0968 0.0923 
0.0267 0.0958 0.0964 0.1165 0.0897 0.0858 0.1078 0.0991 0.0971 
0.0276 0.0961 0.0971 0.1165 0.0967 0.0956 0.1078 0.1046 0.1029 
0.0472 0.1016 0.1052 0.1173 0.0895 0.0859 0.1127 0.1056 0.1047 
0.0484 0.0996 0.1035 0.1173 0.0913 0.0877 0.1146 0.1018 0.0990 
0.0303 0.1046 0.1083 0.1177 0.0963 0.0949 0.1163 0.0949 0.0896 
0.0521 0.0988 0.1038 0.1181 0.0908 0.0871 0.1175 0.1058 0.1051 
0.0315 0.1016 0.1067 0.1201 0.0920 0.0887 0.1182 0.0951 0.0907 
0.0582 0.0943 0.0964 0.0715 0.1059 0.1074 0.1182 0.1017 0.0977 
0.0623 0.1014 0.1047 0.1222 0.0970 0.0960 0.1199 0.0981 0.0946 
0.0636 0.0938 0.0943 0.1251 0.0963 0.0940 0.1243 0.1004 0.0957 
0.0378 0.1000 0.1074 0.1251 0.0953 0.0939 0.1260 0.1054 0.1036 
0.0400 0.0973 0.1029 0.1271 0.1010 0.1010 0.1284 0.1054 0.1026 

0.0697 0.0985 0.1016 0.1279 0.0915 0.0874 0.1306 0.0994 0.0955 

0.0730 0.0945 0.0952 0.1292 0.1011 0.1002 0.1318 0.0980 0.0942 

0.0441 0.1049 0.1082 0.0775 0.0983 0.0977 0.1333 0.1044 0.1017 

0.0779 0.0980 0.0997 0.0787 0.1025 0.1019 0.1333 0.1109 0.1119 

0.0779 0.0956 0.0958 0.1333 0.0918 0.0876 0.1347 0.0989 0.0949 

0.0849 0.0961 0.0964 0.1333 0.1069 0.1087 0.1430 0.1059 0.1029 

0.0504 0.1034 0.1061 0.1353 0.0999 0.0988 0.1434 0.1059 0.1026 

0.0853 0.0966 0.0974 0.1374 0.1004 0.0995 0.1660 0.1056 0.1044 

0.0886 0.1074 0.1055 
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Table A. 7: Percentage errors beween actual and predicted Vrnaa of 85W data 
85 ANFIS model 51 ANFIS model 

r=0.5 r=0.25 r=0.5 r=0.25 r=0.4 
0.46 -0.08 28.44 -9.05 27.49 
1.39 -0.03 6.37 -2.84 5.85 
0.99 0.00 6.68 -5.21 5.68 

-2.11 -1.71 -0.98 -1.63 -1.64 
0.56 0.99 1.33 0.31 0.43 
0.67 1.30 1.08 -1.06 0.02 

-1.70 -0.01 4.15 -18.96 1.51 
0.18 0.03 3.28 -16.65 0.93 
0.30 0.01 2.64 -16.53 0.38 
1.64 0.35 0.93 3.34 0.22 

-0.50 -0.21 -1.69 -2.23 -2.45 

-2.89 -0.67 -5.34 -11.87 -5.87 
-1.66 -0.05 -4.60 -20.80 -5.76 
0.59 -0.20 -0.12 2.36 0.03 
0.13 -0.57 -1.55 0.01 -1.04 
1.97 0.39 -3.92 -17.87 -3.69 
-1.01 0.10 -1.06 -0.03 -0.61 
1.26 0.15 -4.25 -15.38 -3.67 
0.18 0.78 -2.19 -2.26 -1.48 
0.72 -0.66 -4.48 -13.53 -4.02 

-1.19 -0.01 -0.62 -0.23 -0.67 
1.31 0.08 -3.49 -3.73 -3.30 
0.27 -0.45 -1.22 -1.73 -1.38 
0.24 0.66 -2.13 -2.16 -2.22 

-1.43 0.07 -4.16 -3.65 -4.02 
1.27 -0.16 0.71 -9.89 0.92 

-1.47 -0.20 -4.02 -3.56 -3.90 

-0.15 0.53 -1.22 -2.37 -1.46 
1.34 0.26 -0.36 -0.34 -0.39 

-1.95 -0.74 -3.40 -3.84 -3.58 

-0.17 -0.15 -0.89 -1.41 -1.26 
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Table A. 8: Percentage errors beween actual and predicted Vmo, x of 85W data 
85 ANFIS model 51 ANFIS model 

0.82 -0.14 -0.41 -0.63 -0.57 
-0.83 -0.79 -2.76 -2.65 -2.73 
-0.14 0.01 -0.60 -1.35 -0.67 
0.83 1.13 -1.16 -1.09 -1.13 
-0.82 0.00 -1.50 -1.52 -1.44 
0.29 0.13 -1.27 -1.59 -1.41 
0.79 0.32 0.02 -0.48 -0.28 
-0.13 0.66 0.08 -0.91 -0.57 
-1.14 -0.02 -2.00 -1.77 -1.92 
-1.19 -0.72 -1.09 -2.03 -1.70 
1.34 -0.26 -0.38 -0.63 -0.49 
-0.48 -0.44 -2.15 -2.27 -2.19 
1.70 0.33 -0.47 -0.52 -0.45 
-0.30 -0.41 -1.37 -0.85 -1.34 
0.67 0.43 -0.50 0.06 -0.49 
0.22 -0.46 -2.00 -2.05 -1.94 
-0.64 0.24 -2.42 -2.67 -2.47 
0.13 -0.01 -1.22 -0.22 -1.21 
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Table A. 9: Percentage errors beween actual and predicted V-, - of 51\x' data 
85 ANFIS model 51 ANFIS model 

r=0.5 r=0.25 r=0.5 r=0.25 r=0.4 
-0.67 0.01 -2.54 -2.31 -4.81 0.16 0.00 0.59 -0.63 -4.38 0.78 0.00 2.67 2.84 -7.32 
0.18 0.00 1.63 0.36 -5.21 0.76 0.00 2.06 1.23 -3.27 
0.54 -0.01 1.57 1.85 2.55 
0.59 -0.01 2.46 2.91 3.37 
0.23 -0.03 3.48 249.25 -3.74 
0.62 0.08 2.02 23.47 -2.14 
-0.47 -0.07 0.07 11.71 -2.33 
-1.01 0.01 0.78 0.39 1.24 

-0.10 0.01 0.50 340.69 -2.09 
-0.24 0.01 2.04 2.60 2.22 

-0.33 0.00 -1.15 35.45 -1.14 
-0.41 -0.12 0.64 0.16 1.33 
0.09 0.06 -0.76 10.30 -0.53 
0.60 0.40 0.55 -1.16 1.54 
0.08 -0.32 -0.21 -13.23 0.51 

-0.27 -0.22 -0.69 -25.74 -0.16 
-0.06 0.01 0.96 265.56 0.55 
0.43 0.16 0.40 -81.79 0.42 
0.47 0.08 2.19 1.71 2.77 
0.68 0.21 0.83 -60.76 0.75 
0.00 0.17 2.02 1.83 2.12 

-0.31 -0.25 1.66 2.64 1.69 

-0.42 -0.45 0.89 -367.86 0.78 
0.16 0.57 1.55 -429.10 1.44 
0.14 0.00 0.76 1.00 0.58 
0.15 0.14 1.93 1.58 1.74 

-0.27 -0.23 0.46 -3.09 0.30 

-0.23 -0.28 1.46 1.06 1.27 

0.11 0.14 2.14 2.91 1.88 

-0.04 -0.06 0.64 2.99 0.47 

-0.03 0.02 1.99 2.31 1.72 

-0.03 -0.12 1.92 2.57 1.62 

-0.59 -0.37 0.38 -7.80 0.28 

0.49 0.85 1.42 2.77 1.29 

194 



Table A. 10: Percentage errors beween actual and predicted Vmo, x of 51W data 
85 ANFIS model 51 ANFIS model 

r=0.5 r=0.25 r=0.5 r=0.25 r=0.4 
-0.62 -0.35 0.28 -7.33 0.09 

-0.59 -0.38 1.10 -390.86 1.01 
0.15 0.12 2.33 1.45 2.00 
0.22 0.17 1.97 -319.00 1.88 
0.05 0.01 2.33 -0.30 2.08 

-0.04 -0.48 2.20 673.54 1.73 

-0.17 -0.49 1.66 -277.49 1.65 

-0.13 0.40 1.77 -148.28 1.74 
0.88 0.04 2.84 14.95 2.75 
0.73 0.26 2.67 -151.40 2.67 

-1.11 -0.31 1.53 616.83 1.54 
0.51 0.19 3.55 302.82 3.59 
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Table A. 11: The rate of change in duty cycle (dD) of Buck-Boost converter at different input and output voltages 

vn 
Vin 1 2 3 4 5 6 7 8 9 10 11 

1 -0.250 -0.222 -0.188 -0.160 -0.1 9 --0.122 
-0.109 -0.099 -0.090 -0.083 -0.076 2 -0.111 -0.125 -0.120 -0.111 -0.102 -0.094 -0.086 -0.080 -0.074 -0.069 -0.065 3 -0.063 -0.080 -0.083 -0.082 -0.078 -0.074 -0.070 -0.066 -0.063 -0.059 -0.056 4 -0.040 -0.056 -0.061 -0.063 -0.062 -0.060 -0.058 -0.056 -0.053 -0.051 -0.049 5 -0.028 -0.041 -0.047 -0.049 -0.050 -0.050 -0.049 -0.047 -0.046 -0.044 -0.043 

6 -0.020 -0.031 -0.037 -0.040 -0.041 -0.042 -0.041 -0.041 -0.040 -0.039 -0.038 
7 -0.016 -0.025 -0.030 -0.033 -0.035 -0.036 -0.036 -0.036 -0.035 -0.035 -0.034 
8 -0.012 -0.020 -0.025 -0.028 -0.030 -0.031 -0.031 -0.031 -0.031 -0.031 -0.030 
9 -0.010 -0.017 -0.021 -0.024 -0.026 -0.027 -0.027 -0.028 -0.028 -0.028 -0.028 
10 -0.008 -0.014 -0.018 -0.020 -0.022 -0.023 -0.024 -0.025 -0.025 -0.025 -0.025 
11 -0.007 -0.012 -0.015 -0.018 -0.020 -0.021 -0.022 -0.022 -0.023 -0.023 -0.023 
12 -0.006 -0.010 -0.013 -0.016 -0.017 -0.019 -0.019 -0.020 -0.020 -0.021 -0.021 
13 -0.005 -0.009 -0.012 -0.014 -0.015 -0.017 -0.018 -0.018 -0.019 -0.019 -0.019 
14 -0.004 -0.008 -0.010 -0.012 -0.014 -0.015 -0.016 -0.017 -0.017 -0.017 -0.018 
15 -0.004 -0.007 -0.009 -0.011 -0.013 -0.014 -0.014 -0.015 -0.016 -0.016 -0.016 
16 -0.003 -0.006 -0.008 -0.010 -0.011 -0.012 -0.013 -0.014 -0.014 -0.015 -0.015 
17 -0.003 -0.006 -0.008 -0.009 -0.010 -0.011 -0.012 -0.013 -0.013 -0.014 -0.014 
18 -0.003 -0.005 -0.007 -0.008 -0.009 -0.010 -0.011 -0.012 -0.012 -0.013 -0.013 
19 -0.003 -0.005 -0.006 -0.008 -0.009 -0.010 -0.010 -0.011 -0.011 -0.012 -0.012 
20 -0.002 -0.004 -0.006 -0.007 -0.008 -0.009 -0.010 -0.010 -0.011 -0.011 -0.011 
21 -0.002 -0.004 -0.005 -0.006 -0.007 -0.008 -0.009 -0.010 -0.010 -0.010 -0.011 
22 -0.002 -0.003 -0.005 -0.006 -0.007 -0.008 -0.008 -0.009 -0.009 -0.010 -0.010 
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Table A. 12: The rate of change in duty cycle (dD) of Buck-Boost converter aat different input and output voltages 

Vo 
Vin 
(V) 

12 13 14 15 16 17 18 19 20 21 22 

1 -0.071 -0.066 -0.062 -0.059 0.055 -0.052 -0.050 -0.048 -0.045 -0.043 0.042 
2 -0.061 -0.058 -0.055 -0.052 -0.049 -0.047 -0.045 -0.043 -0.041 -0.040 -0.038 3 -0.053 -0.051 -0.048 -0.046 -0.044 -0.043 -0.041 -0.039 -0.038 -0.036 -0.035 
4 -0.047 -0.045 -0.043 -0.042 -0.040 -0.039 -0.037 -0.036 -0.035 -0.034 -0.033 
5 -0.042 -0.040 -0.039 -0.038 -0.036 -0.035 -0.034 -0.033 -0.032 -0.031 -0.030 
6 -0.037 -0.036 -0.035 -0.034 -0.033 -0.032 -0.031 -0.030 -0.030 -0.029 -0.02ýS 
7 -0.033 -0.033 -0.032 -0.031 -0.030 -0.030 -0.029 -0.028 -0.027 -0.027 -0.026 
8 -0.030 -0.029 -0.029 -0.028 -0.028 -0.027 -0.027 -0.026 -0.026 -0.025 -0.021 
9 -0.027 -0.027 -0.026 -0.026 -0.026 -0.025 -0.025 -0.024 -0.024 -0.023 -0.023 
10 -0.025 -0.025 -0.024 -0.024 -0.024 -0.023 -0.023 -0.023 -0.022 -0.022 -0.021 
11 -0.023 -0.023 -0.022 -0.022 -0.022 -0.022 -0.021 -0.021 -0.021 -0.021 -0.020 
12 -0.021 -0.021 -0.021 -0.021 -0.020 -0.020 -0.020 -0.020 -0.020 -0.019 -0.019 
13 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.018 -0.018 -0.018 
14 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.017 -0.017 -0.017 -0.017 
15 -0.016 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.016 -0.016 -0.016 -0.016 
16 -0.015 -0.015 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.015 -0.015 -0.015 
17 -0.014 -0.014 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.014 
18 -0.013 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 
19 -0.012 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 
20 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.013 -0.012 -0.012 
21 -0.011 -0.011 -0.011 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 
22 -0.010 -0.011 -0.011 -0.011 -0.011 0.011 0.011 -0.011 -0.011 -0.011 -0.011 
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Appendix B 

Programs and Codes 

B. 1 Clustering Program 

norm5l =normc(data) 
[cidx651, cmeans6] = kmeans(norm 51,6, 'dist', 'sgeuclidean') 

tsymb = {'Ks', 'K-', 'kd, 'ko', 'k+', k*'}; 

for i=1: 6 

clust = find(cidx651==i); 

plot (norm 5l(clust, 1), norm5l(clust, 2), ptsymb{i} ); 

hold on 

end 

plot (cmeans6(:, 1), cmeans6(:, 2), 'ko'); 

plot (cmeans6(:, 1), cmeans6(:, 2), 'kx'); 

hold off 

xlabel('Isc(per unit)'); ylabel('OCV(per unit)'); 

grid on 

B. 2 ANFIS Function Program 

x= [cdata85(:, 1) cdata85(:, 2)] 

y= cdata85(:, 3); 

trnData = [x y]; 

numMFs = [4 1]; 

mfType = 'gaussmf'; 

epoch -n = 200; 

in_fismat = genfis1(trnData, numMFs, mfType); 
[out 

_fisrnat, 
trnerror85Gauss5l_05] = ANFIS(trnData, in_fismat, [200 0.05]); 

cdata85(:, 6)=evalfis(x, out_fismat); 
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B. 3 FIS Structure 

[xl, mfinl] = plotmf(in_ismat, 'input', 1); 

subplot (2,2,1), plot (xl, mfin1); 

xlabel('inputI(Isc) (gaussmf)'); 

title('MFs befor training'); 
[x2, mfin2] = plotmf(in_fismat, 'input', 2); 

subplot (2,2,2), plot(x2, mfin2); 

xlabel('input2(OCV) (gaussmf)'); 

title('MFs befor training'); 

[x1, mfoutl) = plotmf(out . ismat, 'input', 1); 

subplot (2,2,3), plot (xl, mfout1); 

xlabel('inputI(Isc) (gaussmf)'); 

title('MFs after training'); 

[x2, mfout2] = plotmf(out_fismat �'input' �2); 
subplot (2,2,4), plot(x2, mfout2); 

xlabel('input2(OCV) (gaussmf )'); 

title('MFs after training'); 

B. 3 FIS Structure 

[System] 

Name=' G2G lstruutureG _thesis' 
Type='sugeno' 

Version=2.0 

Numlnputs=2 

NumOutputs=1 

NumRules=5 

AndMethod='prod' 

OrMethod='probor' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='wtaver' 

[Input 1] 
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B. 3 FIS Structure 

Name='inl' 

Range= [0.0073807 0.1718] 

NumMFs=5 

MF1='inlmfl': 'gaussmf', [0.0290888063512544 0.107814272589563] 
MF2='inlmf2': 'gaussmf', [0.0290686522123429 0.0483974255600078] 
MF3='inlmf3': 'gaussmf', [0.0290564204000468 0.120142120900253] 
MF4='inlmf4': 'gaussmf', 10.029061071480828 0.12599102547254] 
MF5='inlmf5': 'gaussmf', [0.0290381335173562 0.0242065385415515] 
[Input2] 

Name='in2' 

Range=[0.089547 0.11093] 

NumMFs=5 

MF1='in2mfl': 'gaussmf', [0.00370207049140138 0.0991266618360669] 

MF2='in2mf2' : 'gaussmf', [0.00390063435283954 0.0995501215896314] 

MF3='in2mf3': 'gaussmf', [0.00379855036537927 0.0920262581510554] 

MF4='in2mf4': 'gaussmf', [0.00378441738331047 0.10536153579982] 

MF5='in2mf5': 'gaussmf', [0.00372965408154444 0.0946462858535078] 

[Output1] 

Name=' out l' 

Range=[0.085837 0.11188] 

NumMFs=5 

MF1='outlmf1': 'linear', [0.0284587670940233 0.953426845771906 -6.29434793431661e- 
005] 

MF2='outlmf2': 'linear', [-0.0896684403252748 -0.1492005759235810.1300109566633891 
MF3='out lmf3' : 'linear', [-0.0467902100732748 0.759940337542289 0.0234497465379686] 

MF4='outlmf4': 'linear', [-0.00407218499437649 1.25867557269035 -0.0282479509226493] 
MF5='outlmf5': 'linear', [-0.25762807563357 -0.736976195520495 0.169417515183569] 

[Rules] 

1 1,1 (1) :1 
22,2(1): 1 

33,3(1): 1 

44,4(1): 1 

55,5(1): 1 
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