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Abstract—Correctly labelled datasets are commonly required. 

Three particular scenarios are highlighted, which showcase this 
need. When using supervised Intrusion Detection Systems (IDSs), 
these systems need labelled datasets to be trained. Also, the real 
nature of the analysed datasets must be known when evaluating 
the efficiency of the IDSs when detecting intrusions. Another 
scenario is the use of feature selection that works only if the 
processed datasets are labelled. In normal conditions, collecting 
labelled datasets from real networks is impossible. Currently, 
datasets are mainly labelled by implementing off-line forensic 
analysis, which is impractical because it does not allow real-time 
implementation. We have developed a novel approach to 
automatically generate labelled network traffic datasets using an 
unsupervised anomaly based IDS. The resulting labelled datasets 
are subsets of the original unlabelled datasets. The labelled 
dataset is then processed using a Genetic Algorithm (GA) based 
approach, which performs the task of feature selection. The GA 
has been implemented to automatically provide the set of metrics 
that generate the most appropriate intrusion detection results. 

Keywords—Automatic Labelling; Network Traffic Labelling; 
Unsupervised Anomaly IDS; Feature Selection; Genetic Algorithm 

I.  INTRODUCTION 
An Intrusion Detection System (IDS) is a security system 

that monitors information from the environment to be 
protected, e.g. a computer or a network system, to identify 
evidence of attacks or intrusion attempts. This type of 
protection systems are commonly applied in commercial and 
private networks, as well as tactical network infrastructures. 

IDSs are commonly classified as Misuse and Anomaly 
detection systems, or as Supervised and Unsupervised 
detection systems [1]. Misuse IDSs use predefined signatures 
of known attacks. By definition, misuse IDSs are supervised 
systems. On the other hand, anomaly IDSs create a reference of 
normal behaviour and consider malicious any information that 
significantly deviates from this reference. This type of IDS can 
be either supervised or unsupervised. Unsupervised IDSs are 
able to learn the difference between normal and malicious 
information autonomously, whereas supervised IDSs require 
training datasets to learn the difference. 

It has been shown that supervised IDSs tend to generate 
better attack detection results than unsupervised IDSs [1]. In 
terms of efficient detection results, supervised IDSs would be 
the preferred option. However, one of the main drawbacks of 

the supervised detection systems is the need for training 
datasets. The training datasets used in network security are 
commonly labelled datasets that contain both normal and 
anomalous information. The network traffic instances in the 
dataset have to be correctly labelled for supervised IDSs to 
learn the difference between the two types of information. If 
the training datasets is unlabelled, supervised IDSs assume that 
only non-malicious information is included. 

The efficiency of IDSs could be evaluated using multiple 
parameters, such as the amount of resources (CPU, Memory, 
etc.) the system consumes, or the required time to conduct the 
detection. Nonetheless, the most important aspect to evaluate 
IDSs is the number of messages that the system correctly 
identifies. Traditionally, the Detection Rate (DR), False 
Positive Rate (FPr), and False Negative Rate (FNr) have been 
the parameters used to evaluate the efficiency of IDSs. These 
parameters provide quantifiable evidence of how effective are 
the IDSs at making correct detections. 

For an IDS to be evaluated in terms of DR, FPr, and FNr, 
the real nature of the analysed information must be known. 
Whereas knowing the real nature of the analysed information is 
not needed during the intrusion detection process, this is 
necessary for the evaluation of the IDS efficiency. For 
performance evaluation tasks, the instances that compose the 
analysed information have to be labelled as normal or 
malicious. It is impossible to provide these parameters without 
correctly labelled datasets. Again, the need for correctly 
labelled datasets arises. Many researchers erroneously 
disregard this requirement of correctly labelled datasets when 
evaluating the efficiency of the IDSs, as they assume that the 
real nature of the analysed information is known. This could be 
because the detection systems are commonly evaluated off-
line, in a non-real time environment. 

A similar need for correctly labelled datasets arises when 
Feature Selection techniques are utilised. Feature Selection is 
used to minimise the number of metrics in a given dataset and 
to optimise the selection process of the most relevant set of 
metrics [2]. These techniques play an important role in 
improving the efficiency of IDSs, producing more accurate 
results. The use of feature selection is currently inappropriate 
for unsupervised IDSs, especially if the IDSs perform their 
detection in real-time. The implementation of automatic feature 
selection techniques for unsupervised IDSs is still a great 
challenge for researchers in intrusion detection [3]. One of the 
reasons for this is because feature selection works only if the 
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records in the datasets have been previously labelled [3]. 
Feature selection requires labelled datasets in order to be able 
to evaluate the relevance of each metric or combination of 
metrics. Again, the need for correctly labelled datasets arises. 

Unfortunately, collecting labelled datasets from real 
networks is highly complicated [4], and in many cases 
impossible. In normal conditions, real network traffic is not 
labelled. If researchers controlled the network conditions, or if 
the network traffic were artificially generated using network 
simulation software (e.g. OPNET [5]), the instances in the 
network traffic dataset could be labelled. However, this control 
of the network environment is not always possible. Even in 
controlled networks, assuring that the training datasets are 
correctly labelled or completely free of malicious information 
is extremely hard [6]. Training datasets are currently generated 
by implementing a previous off-line forensic analysis. 

A possible solution to this, similar to the one proposed in 
[4], could be to use an existing, unsupervised anomaly IDS as 
an automatic anomaly classifier. In this paper, a novel approach 
has been proposed to automatically generate labelled network 
traffic datasets using the unsupervised anomaly based IDS 
proposed in [7]. The resulting datasets are subsets of the 
original gathered datasets. In the presented results, the resulting 
labelled dataset has then been processed using a Genetic 
Algorithm (GA) based approach for metric selection. The 
resulting dataset could also be used to train supervised IDSs. 
However, this later activity is out of the scope of this paper. 

The paper is organised as follows. In section II, the most 
relevant work is reviewed. In section III, the description of the 
performance measures, an analysis of the processed datasets, as 
well as the definition of the approach for automatically datasets 
labelling are presented. A description of the GA in its task of 
feature selection and the results are presented in section IV. 
Finally, conclusions are given in section V. 

II. RELATED WORK 
The need for correctly labelled datasets has been 

acknowledged multiple times in the literature on intrusion 
detection. For instance, the authors of [10] highlight that one of 
the main requirements for IDS efficiency evaluation is to have 
access to network traffic data previously labelled as normal or 
malicious. They also highlight the complexity and time 
required to implement the labelling process. Another work that 
highlights the need for correctly labelled datasets is [11]. 
Similar to [10], the authors of this work highlight the 
complexity and time required for labelling network traffic data. 

There is limited work in this area. One of the few recent 
papers that target the automatic generation of labelled network 
traffic datasets is presented in [4]. The authors propose using 
unsupervised anomaly IDS to label datasets. Their approach is 
known as a self-training architecture. This solution is similar to 
the one proposed in this paper. As for our methodology, this 
work assigns a particular label to each packet based on the 
beliefs generated by the Dempster-Shafer Theory. Using these 
beliefs, the authors calculate a Reliability Index (RI), and label 
the packets according to this index. The outcome of the RI is a 
value in the range [-1,1] that determines the reliability of the 
packet label. The closer the value to each of the range ends, the 
higher confidence that the assigned label is correct. The closer 
to 0, the higher the doubt that the assigned label is correct. 

In [4], the authors define a guard region or rejection range. 
The packets with an RI value that falls in the guard region are 
rejected. Instead of using a guard region, in our work, only a 
single boundary threshold is defined. Whilst one of the main 
difficulties in [4] is to identify the appropriate limit values for 
the guard region, one of the main difficulties in our work is to 
identify the appropriate threshold value. One of the 
disadvantages of the approach in [4] is that the authors need to 
execute their algorithm multiple times, in order to find the 
appropriate guard region. An exhaustive search is required. 
Despite these multiple repetitions, it is not guaranteed that the 
selected guard region would be appropriate for future data. In 
our work, the boundary threshold is defined only once for the 
whole dataset. Therefore, our approach does not require an 
exhaustive search. Also, the labelled datasets that their 
approach generates are then used to train supervised IDSs, 
whilst our approach is used in tasks of Feature Selection. 

III. AUTOMATIC DATASET LABELLING 

A. IDS Performance Measures 
Traditionally, the efficiency of IDSs in making correct 

detections could be evaluated using four well-known 
parameters. These are True Positive (TP), which represents 
attack frames correctly classified as malicious; True Negative 
(TN), which represents non-malicious frames correctly 
classified as normal; False Positive (FP), which represents non-
malicious frames misclassified as malicious; and False 
Negative (FN), which represents attack frames misclassified as 
normal. Using these parameters is fundamental to calculating 
the following performance measures: 

• Detection Rate (DR), which is the proportion of 
malicious frames correctly classified as malicious 
among all the malicious frames. DR(%) = TP/(FN+TP) 

• False Positive Rate (FPr), which is the proportion of 
non-malicious frames misclassified as malicious 
among all the frames. FPr(%) = FP/(TP+FP+TN+FN) 

• False Negative Rate (FNr), which is the proportion of 
malicious frames misclassified as normal among all the 
malicious frames. FNr(%) = FN/(FN+TP) 

• Overall Success Rate (OSR), or Accuracy, which is the 
proportion of any frame correctly classified. 
OSR(%) = (TN+TP)/(TP+FP+TN+FN) 

B. IEEE 802.11 Network Datasets 
The experiments conducted as part of this work have been 

implemented in a real IEEE 802.11 testbed, deployed in our 
laboratory. Four devices compose the architecture of this 
network. An Access Point (AP), a wireless client accessing 
various websites on the Internet, a monitoring node and an 
attacker using the attacking tool Airpwn [12]. Further 
information about the architecture of the network and the attack 
can be found in [7]. Whilst this is a simplistic wireless network 
scenario, similar detection capabilities can be achieved in more 
complex scenarios. The unprocessed dataset gathered from this 
wireless network, which we refer to as original dataset, is 
composed of both malicious and non-malicious frames. The 
original dataset is composed of 14413 network frames or 
instances in total. 93.1% of this dataset, 13418 instances, are of 
non-malicious nature. The legitimate AP sent these frames. The 



 

 
             (a)                          (b) 

remaining 6.9% of this dataset, 995 instances, is malicious 
information. The attacker injected these frames, using Airpwn. 

It is appropriate to evaluate how well the detection system 
that we proposed in [7] could perform when analysing the 
original dataset. Using a post-gathering forensic analysis, the 
real nature of the instances in the original dataset has been 
identified. 99.9% of the original dataset was correctly detected. 
14398 instances, both malicious and non-malicious, were 
correctly detected. Only 15 instances, 0.1% of the dataset, were 
incorrectly detected. The results were already presented in [7]. 

C. Detection Results Analysis 
As mentioned above and in common with other anomaly-

based IDSs, our detection system [7] does not provide a perfect 
individual detection solution. For each analysed instance, the 
system provides three levels of belief. These are belief in 
Normal, which indicates how strong the belief is in the 
hypothesis that the current analysed frame is non-malicious, 
belief in Attack, which indicates how strong the belief is in the 
hypothesis that the current frame is malicious, and belief in 
Uncertainty, which indicates how doubtful the system is 
regarding whether the current frame is malicious or normal. 

The belief in Normal is assigned based on the degree of the 
dispersion of the data in the dataset, and the belief in Attack is 
assigned based on the distance from the currently analysed 
instance to the statistical reference of normal behaviour. The 
belief in Uncertainty is used as an adjustment parameter, and 
assigned based on the other two beliefs [7]. 

In an optimal situation, the detection system should provide 
a very high belief in Normal and very low belief in Attack 
when the currently analysed frame is a non-malicious frame 
transmitted by the AP. Similarly, when the current analysed 
frame is not from the AP, the detection system should provide 
a very high belief in Attack and very low belief in Normal. In 
both of these situations, the belief in Uncertainty should also be 
low. If the system were not consistent with these criteria, it 
would be reasonable to assume the result is not accurate. 

Fig. 1. Detection Results: Average Belief Outcome. 

The detection results were analysed to confirm that the 
different beliefs were consistent with what was expected. As 
can be seen in Fig. 1, the correct detection is produced by very 
strong beliefs in the appropriate hypothesis. In the cases of TP 
results, the average belief in Attack is 95.66%. In the case of 
TN results, the average belief in Normal is 93.3%. This gives 
strong reasons to trust the IDS, and in turn, trust that the 
different instances from the original dataset could be labelled 
according to the final results of the IDS. Another encouraging 
factor about the results is that none of the malicious instances 
were misclassified as non-malicious. No FN were generated. 

Different beliefs behaviour can be seen in the cases of FPs. 
In the cases in which none of the belief results provides strong 
support to one of the hypotheses, the non-malicious instances 
have been misclassified as malicious. The average belief in 
Normal is 44.38%, and the average belief in Attack is 55.5% 
for these frames. The ambiguous beliefs make the detection 
system produce erroneous results. This is a drawback for the 
idea of labelling the different instances of the original dataset 
simply according to the outcome of the detection system. The 
following section tackles this issue. 

D. Beliefs Difference Results Analysis 
The principal aim of this work is to propose a methodology 

to produce automatically labelled datasets. A possible solution, 
similar to the one proposed in [4], could be to use an existing, 
unsupervised anomaly based IDS as an automatic anomaly 
classifier, i.e. the one proposed in [7], to label the instances 
datasets according to these results. If it was assumed that strong 
belief results of the detection system were completely accurate, 
each instance in the original dataset could be labelled according 
to the decision results. However, it has been proved that this is 
not the case. False alarms do occur as shown below. 

From the detection results presented in the previous section, 
it can be understood that the actual difference between the 
belief in Normal and the belief in Attack plays an important 
role in the correct detection of the attacks. Therefore, if an 
appropriate threshold defining the boundary between strong 
and weak belief results could be found, misclassified instances 
could be discarded from the automatically labelled dataset. The 
instances with differences above this threshold would be 
included in the labelled dataset, whereas the instances with 
belief results differences below this threshold would not be 
included. The difficulty here is to find the right mechanism to 
automatically define the appropriate threshold. 

Fig. 2. Histogram and Boxplot - Beliefs Difference of Original Dataset, 
using Normal and Malicous Instances. 

In order to have a clearer idea of how the belief results are 
distributed, an analysis of these results is presented. Fig. 2 (a) 
shows a histogram that represents the frequency of the beliefs 
difference for all the instances in the original dataset, and Fig. 2 
(b) the boxplot that represents the distribution of the beliefs 
difference, using the actual nature of the frames as the 
distinction criteria. Although these are different methods, both 
are different representations of the same dataset values. 
Graphically, the results in Fig. 2 (b) show that there is no 
evident distinction between the distribution of the belief 
difference results for malicious and non-malicious information. 



  

 

The mean of the differences for the whole dataset is µtotal = 
0.8694, and the standard deviation is σtotal = 0.1125. This 
dataset includes both malicious and non-malicious instances. 
Considering only non-malicious information, 13418 instances, 
the mean value of the frequency of the beliefs difference is 
µnormal = 0.866, and the standard deviation is σnormal = 0.1152. 
Considering only malicious information, 995 instances, the 
mean value of the frequency of the belief difference is µattack = 
0.914, and the standard deviation is σattack = 0.0445. 

Fig. 3. Beliefs Difference - Correctly and Incorrectly Classified Instances. 

Fig. 3 shows another boxplot that represents the distribution 
of the beliefs difference. In this case, classification results 
assigned by the unsupervised anomaly based IDS to the frames 
are used as the distinction criteria. This is whether the frames 
are correctly or incorrectly classified instances in the dataset. 
Considering only correctly classified information, 14398 
instances, the mean value of the frequency of the beliefs 
difference is µcorrect = 0.8702, and the standard deviation is 
σcorrect = 0.1098. Considering only incorrectly classified 
information, 15 instances, the mean value of the frequency of 
the belief difference is µincorrect = 0.1112, and the standard 
deviation is σincorrect = 0.1154. In contrast to the previous 
representation of the belief difference results, there is a very 
clear distinction in the difference values between the correctly 
classified and the incorrectly classified instances. 

E. Automatic Dataset Labelling Methodology 
The methodology that has been used in this work to define 

the boundary threshold is based on the mean (µ) and standard 
deviation (σ) values. In the histogram presented in Fig. 2, the 
distribution of the belief difference results follows an 
asymmetric Normal distribution. The coefficient of Skewness 
value -2.706 and the Kurtosis value 10.488 prove the negative 
asymmetric skewed distribution. Using the properties of this 
distribution, the boundary threshold (γ) could be defined by (1). 
The definition of (1) as the threshold γ has been empirically 
defined. However, based on the statistical theory, (1) ensures 
that the labelled dataset will contain about 95.44% of the 
original dataset and, at the same time, it will assure that only 
correctly labelled instances are included in the new dataset. 

First, the wireless network traffic is gathered to create the 
original dataset. For each frame in the dataset, the IDS provides 
three belief values, based on the data. Each frame is initially 
labelled according to the belief with the highest value. Then, 
for each instance, the difference between the belief in Normal 
and Attack is calculated. Next, the µtotal and σtotal of the beliefs 
difference is calculated and the γ is calculated. Finally, each 

frame for which the belief difference is larger than γ is kept in 
the labelled dataset. Otherwise, the frame is removed from the 
labelled dataset. Using (1) over the actual values µtotal and σtotal 
of the original dataset, the boundary threshold value would be γ 
= 0.8694 – (2×0.1125) = 0.6444. For this dataset, any instance 
where the difference between the belief in Normal and Attack 
is larger than 0.6444 will be included in the labelled dataset. In 
contrast, any instance where the difference between the belief 
in Normal and Attack is smaller than 0.6444 will be discarded. 

γ = µtotal - 2σtotal   (1) 

The results obtained after filtering the information using the 
boundary threshold are presented in Fig. 4. This histogram 
represents the frequency of the beliefs difference only for the 
instances in the original dataset that satisfy the boundary 
threshold condition. For this new dataset, a subset of the 
original dataset, the mean of the differences is µ = 0.8883, and 
the standard deviation is σ = 0.071. For these values, the 
coefficient of Skewness is -1.309 and the Kurtosis is 1.138. In 
total, 13702 instances, both malicious and non-malicious, 
compose the new labelled dataset. This is, as expected, 
95.067% of the original dataset. All the incorrectly labelled 
instances have been discarded, as well as 696 correctly labelled 
instances. Nonetheless, this is a small number of instances, 
compared with the 13702 instances considered. This new 
correctly labelled dataset, composed of non-simulated IEEE 
802.11 frames captured from a real WiFi network, could be 
used to train supervised IDSs, or processed by a feature 
selection approach. 

Fig. 4. Histogram - Beliefs Difference of New Automatically Labelled 
Dataset, using Normal and Malicous Instances. 

As a recap, the process of gathering the wireless network 
traffic, the detection process, the generation of the new training 
dataset and the labelling process, are all implemented 
automatically and autonomously by the proposed system, 
without the mediation of any human administrator. In addition, 
both the training process of the supervised IDSs [4] and, as 
explained in Section IV, the selection of metrics could also be 
implemented automatically. In addition, the small subset of 
discarded instances could be manually classified and added to 
the automatically labelled dataset if required to ensure a 
consistent dataset. The manual effort required to do this would 
be much reduced. This approach enhances the capabilities of 
IDSs deployed in commercial, private and tactical network 
infrastructures by streamlining the process and reducing the 
cost for the need of an administrator. 



IV. FEATURE SELECTION 
Feature Selection refers to a group of techniques able to 

minimise the number of metrics in a given dataset and optimise 
the selection process of the most relevant set of metrics [2]. In 
the field of intrusion detection, these techniques play an 
important role in improving the efficiency of the IDSs, 
detecting the maximum number of attacks and producing the 
minimum number of false alarms. In [9], the authors show the 
benefit of feature selection techniques to improve the overall 
detection accuracy of their system. Ideally, all IDSs should 
implement feature selection as part of their framework to 
improve the attack detection accuracy. 

Nonetheless, the implementation of automatic feature 
selection techniques for unsupervised IDSs is still a great 
challenge for researchers in intrusion detection [3], especially if 
the IDSs perform the detection in real-time. One of the reasons 
is because feature selection works only if the datasets have 
been previously labelled [3]. Feature selection requires labelled 
datasets to be able to evaluate the relevance of each metric or 
combination of metrics. 

In our previous work [7], six metrics were experimentally 
selected after manual off-line analysis, as the most appropriate 
metrics for detecting the attacks. If appropriately analysed, the 
IDS can identify all the different attacks that we implemented. 
In this work, feature selection techniques have been employed 
to select the most appropriate set of metrics, using the 
automatically labelled dataset, from amongst all the six 
metrics. A Genetic Algorithm (GA) based approach has been 
employed to implement the feature selection tasks. The GA 
will automatically provide the most appropriate set of metrics, 
for each analysed dataset. Whilst six metrics does not entail 
high computational demand to the feature selection technique, 
and the metric selection could be done through exhaustive 
search, the GA could reduce the computational demand in 
situations in which a greater number of metrics is considered. 

A. Genetic Algorithm 
A GA is a stochastic search technique to find the optimum 

solution for an optimisation problem. It is a general technique 
that could be applied in many research areas [8]. It is 
particularly useful where other application techniques are not 
appropriate. An example would be where the search space was 
too large for exhaustive analysis. 

A GA uses the concept of chromosomes. A chromosome is 
a binary representation of solution vectors, a fixed length array 
with sequences of bits {0, 1}. In our system, each slot of the 
array represents one of the considered metrics. 1's mean that 
the metric is included, and 0's mean that the metric is 
discarded. The chromosomes evolve through successive 
iterations or generations. It is expected that after successive 
generations, the chromosomes with higher fitness function 
value (ffitness) prosper while those with lower ffitness disappear 
[8]. It is important to empathise that, since this is a stochastic 
technique, successive experiments of the GA over the same 
dataset will not always produce similar final results. The ffitness 
is a quality measurement that indicates how well each 
individual chromosome fits the design requirements. 

Before starting the process, the GA requires the 
specification of certain parameters. For our system, these are 
the Initial Population Size (n), Chromosome Length (l), 

Number of Repetitions (r), Crossover Probability (PC) and 
Mutation Probability (PM). The value l = 8 is established by the 
number of metrics, 6, and 2 additional parameters that compose 
the chromosome. The first six slots are the representation of the 
six different metrics. The 7th slot in the chromosome is the 
decimal indexation of the selected metrics, used only for 
evaluation purposes. The 8th slot is the ffitness for the particular 
selection of metrics. The PC commonly ranges between 0.6 and 
0.95, and the PM ranges between 0.001 and 0.01, according to 
[13]. In our experiments PC = 0.7, PM = 0.01 and n = 6 have 
been empirically chosen. These parameters were kept 
unchanged during the experiments. 

A GA follows a 6-steps process. In the first step, 
Initialisation, the GA randomly selects the initial population of 
n chromosomes. This is a subset of all the available 
chromosomes. Next, in the Evaluation step, the ffitness for each 
chromosome in the initial population is calculated. In the third 
step, Selection, the ffitness is used to select the chromosomes that 
will become parents for the next generation of chromosomes. 
Among other selection techniques that have been proposed in 
the literature, the Roulette Wheel has been applied in this work, 
due to its simplicity and good performance. The roulette wheel 
gives a biased weight to each of the selected chromosomes, 
based on the ffitness [8]. The chromosome with better ffitness has a 
higher probability of being selected. In the forth step, 
Crossover, it is decided if a pair of chromosomes mate, with 
probability PC, to produce a new pair of chromosomes. Using 
the One Point Crossover method, a number between 1 and l is 
randomly chosen, which defines the Crossover Point (Cp). The 
new pair is generated by leaving unmodified the portion of the 
chromosomes from the first bit to the Cp and interchanging the 
portion from the Cp to the last bit of the chromosomes. If the 
chromosomes do not mate, these remain unmodified. The last 
step, Mutation, adds random modifications to the new 
population of chromosomes to provide some level of diversity. 
With PM, one of the bits that comprise each chromosome will 
be reversed from 0 to 1, and vice versa. The process is repeated 
r times, from the 2nd to the last step. 

B. Genetic Algorithm Experiments and Results 
A diverse set of experiments has been conducted to 

evaluate the capability of the implemented GA based approach. 
The experiments evaluate the effect of changing some of the 
GA parameters in the final metric selection results. In 
particular, we focused on varying r and the ffitness. The value of 
r would have a direct effect on the time and computational cost 
to implement the GA process. The larger this value, the higher 
the cost, but a value of r that was too small might influence the 
metrics selection. A small value of r would not allow the GA to 
converge to a particular result. 

Initially, a succession of 50 GA experiments were carried 
out with r = 500, using both the original dataset and the new 
automatically labelled dataset. The original dataset was 
manually labelled through an exhaustive off-line forensic 
analysis for these experiments. The used ffitness, defined by (2), 
is based on the DR and FPr. One particular set of metrics was 
selected as the final result for each GA experiment. 

For the 50 experiments with the original dataset, the GA 
converged to the final result, on average, at the 369th repetition. 
Not all the resulting sets of metrics produced 100% DR and 0% 



 

FPr. Through all the experiments with the original dataset, the 
results with highest DR and lowest FPr would have been 
produced, on average, at the 194th repetition. For r = 500, 369 
and 194, the average DR(%) results are 99.79, 99.65 and 99.11, 
whereas the average FPr(%) results are 0.91, 1.96 and 1.74, 
respectively. For the 50 experiments with the new dataset, the 
GA converged to the final result at the 355th repetition, on 
average. For this dataset using (2), the results with highest DR 
and lowest FPr would have been produced, on average, at the 
155th repetition. For r = 500, 355 and 145, the average DR(%) 
results are 99.4, 99.66 and 99.44, whereas the average FPr(%) 
results are 1.38, 2.07 and 2.73, respectively. Comparing the 
results from these experiments show that the value of r does 
not have a major impact on the results performance of the GA. 

 ffitness = DR + (100–FPr)            (2) 

ffitness = DR + (100–FPr) + (MetricsTotal–MetricsSelected)   (3) 

The set of metrics selected in the different experiment has 
not always produced perfect detection. Only 18% of the 50 
experiments provided perfect detection with the original 
dataset, whereas 46% of the 50 experiments provided perfect 
detection with the new dataset, using the same ffitness, (2). These 
results also show an overall improvement in the selection of 
metrics by using the automatically labelled dataset instead of 
the manually labelled original dataset. This is because the 
automatically labelled dataset does not contain doubtful data, 
which reduce the overall risk of FP and increase the DR. 

By using an alternative ffitness it was intended to identify a 
set of metrics that effectively produce 100% DR and 0% FPr. 
In addition, obtaining these results with the fewest number of 
metrics would be also beneficial for the IDS. The ffitness in (3) is 
based on the DR, FPr and the total number of metrics. Also, 
two conditions were added, where DR = 0 if DR < 100% and 
FPr = 100 if FPr > 0%. By using (3) with the new dataset, all 
the resulting sets of metrics produce 100% of DR and 0% of 
FPr, as expected. Represented in Fig. 5, for the 50 experiments, 
sets of metrics with 1 metric have been selected 8% of the 
time; 2 metrics 34%; 3 metrics 24%; 4 metrics 24%; 5 metrics 
8%; and 6 metrics only 2% of the time. If we focus on the 
number of times each set of metrics is selected, the set with 1 
metric that is selected more frequently, 4 times, is Rate; the set 
with 2 metrics that is selected more frequently, 5 times, is Rate-
TTL; with 3 metrics is Rate-TTL-ΔTime, 4 times; with 4 
metrics is RSSI-Rate-TTL-NAV, 4 times; with 5 metrics is 
RSSI-Rate-TTL-NAV-SEQ; and the set with 6 metrics is 
selected only 1 time. These results are represented in Fig. 5. 

V. CONCLUSIONS 
This paper tackles the automatic generation of labelled real 

network traffic datasets, and the automatic selection of metrics. 
IDSs deployed in commercial, private and tactical network 
infrastructures may benefits from the developed approach. This 
approach labels datasets according to the results of an 
unsupervised IDS. We use the outcome beliefs of the IDS and 
consider correct only the cases in which the beliefs difference 
evidences strong support to one of the hypotheses. This 
approach filters out doubtful results and reduces the risk of 
misclassification. The new dataset is a subset of the original 
dataset. As the remaining portion of the dataset might contain 
valuable information, it would be feasible for the system 

administrator to manually classify and add these instances to 
the automatically labelled dataset to ensure a consistent dataset. 
It is seen that, using a GA, it has been possible to implement an 
automate feature selection approach using the labelled dataset. 
It has been experimentally proven that the number of 
repetitions does not have major impact on the final results. In 
the GA, the ffitness plays the most important role in the 
implementation of this technique. The ffitness allows the GA 
outcomes to be fine tuned, whether this is maximising the DR, 
minimising FPr, number of metrics, or some other parameter. 

Fig. 5. Bar Chart of the Resulting Set of Metrics Frequency 
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