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Abstract—Strength Pareto Evolutionary Algorithm 2 (SPEA2)
has achieved great success for handling multiobjective optimiza-
tion problems. However, it has been widely reported that SPEA2
gets subjected to a huge amount of computational effort while
pursuing a good distribution of approximated solutions. This
paper explores a new way to keep the good properties of SPEA2
and reduce its high computational burden simultaneously, with
the aid of predefined preference information. By incorporating
preference information, the proposed fast SPEA (FSPEA) can
efficiently perform individuals’ density estimation and environ-
mental selection, thus speeding up the whole running time of
the evolution process. Empirical studies show that the proposed
FSPEA algorithm can obtain very competitive performance on a
number of multiobjective test problems considered in this paper.

I. INTRODUCTION

After decades of research, evolutionary algorithms (EAs)
have demonstrated their effectiveness for solving various
mathematical and real-world optimization problems [3]. One
important class of those optimization problems in which they
are involved is multiobjective optimization problems (MOPs),
which have at least two objectives that conflict one another,
and the corresponding algorithms are generally called multiob-
jective optimization EAs (MOEAs). Compared with conven-
tional mathematical programming approaches, MOEAs do not
require any gradient information of problems to be optimized.
In contrast, they employ a population of candidate individuals
and evolve them simultaneously, producing a set of tradeoff
solutions, known as Pareto-optimal set (POS), in a single run.
Then, the POS provides decision-makers with a wide range of
options for balancing objectives, according to problem-specific
requirements. Thus, attainment of a set of well-converged and
well-diversified solutions is the fundamental goal of MOEAs.

Most early-developed MOEAs use Pareto-dominance rela-
tions [5] to induce discrimination between two solutions in
a population. For example, for two solutions z and y, x is
said to dominate y if and only if x is not worse than y on
all objectives and better than y on at least one objective,
and this is denoted as x > y. Without loss of generality,
minimization is considered throughout the paper. On the basis
of such relations, a number of Pareto-based techniques were
proposed in the mid-nineties, e.g., multiobjective optimization
genetic algorithm (MOGA) [6], niched Pareto genetic algo-
rithm (NPGA) [7], and nondominated sorting genetic algorithm
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(NSGA) [8]. These foundational techniques established the
utility of MOEAs for multiobjecitve optimization. A few years
later, MOEA developers began to recognize the importance of
elitism and subsequently proposed a couple of elitist MOEAs,
e.g., strength Pareto EA (SPEA) [9], Pareto-envelope based
selection algorithm (PESA) [11], and Pareto archived evolution
strategy (PAES) [10]. In addition to elitism, these evolutionary
algorithms also introduce diversity maintenance and external
archiving and have shown good performance in various studies.
Coincidentally, further contributions have been made by adapt-
ing the early version of MOEAs, for example, an improved
NSGA, i.e., NSGA-II [15], takes into account elitism, com-
putational burden, and enhanced diversity preservation, and
SPEA2 [18] uses an improved fitness assignment scheme, a
new density estimator, and an improved archive truncation
method, to augment algorithm’s performance.

Amongst Pareto-based MOEAs, NSGA-II and SPEA2 are
two most popular methods for multiobjective optimization and
have been regarded as benchmarks for algorithm compari-
son in various studies. The main difference between SPEA2
and NSGA-II lies in diversity maintenance. NSGA-II uses
crowding distance to maintain a well-spread nondominated
set whereas SPEA2 employs a k-nearest neighbour density
estimation technique. A number of studies have shown that
there is no much significant difference between the perfor-
mance of NSGA-II and that of SPEA2 on a wide range of
MOPs [18], [17], [2], although the former has better approx-
imation capability while the latter presents better diversity
performance. In high-dimensional problems, SPEA2 provides
a better distribution than NSGA-II [1], [16], [2], [4]. Despite
that, the former is yet to receive as much research interest as
the latter over the past years. One reason for this favouritism
is that SPEA2 [18] employs a k-th nearest neighbour method
to estimate individuals’ density, leading to a notable increase
in the computational load and thus inhibiting its application.

In this paper, a new version of SPEA2, called fast SPEA
(FSPEA), is presented, where we propose to substitute a set of
predefined preferences for the k-th nearest neighbour method
during the density estimation process. That is, individuals’
density is estimated by the closeness to the preferences, which
allows a more precise guidance of the search process. Besides
helping density estimation, the supplied preferences are also
beneficial for environmental selection. When there are too
many nondominated solutions in the archive population, the



preferences induce truncation in a way that the most diverse
solutions are preserved for the next generation. Given that
the constructed preferences are well-distributed enough, the
method practically provides a good spread of points along the
Pareto-optimal Front (POF).

The reminder of the paper is organized as follows. Section
II presents a brief review of related work in the literature. The
proposed algorithm is offered in Section III, and experimental
studies and comparison are presented in Section IV. Section
V concludes the paper and suggests some future research
directions.

II. RELATED WORK
A. The SPEA2 Algorithm

The SPEA2 [18] algorithm is an improvement over the
original SPEA [9], and we give a brief summary of the
algorithm here. For a more detailed description the interested
reader is referred to [18].

SPEA2 starts with an initial population P and an empty
archive Fy. In the ¢-th iteration, the current population P, and
the archive population P; are merged to form a combined
population P; U P,. Each member ¢ in P, U P, is first assigned
a strength value S(i), representing the number of solutions it
dominates:

S(i) = C({j € P UP]i = j}) (D

where C(-) denotes the cardinality of a set. The strength
value then contributes to computing the raw fitness R(i) of

an individual ¢ by
R(i)= )
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The raw fitness is determined by the strengths of its dominators
in the combined population, and a high R(¢) means that ¢ is
dominated by many individuals, while R(i) = 0 implies 7 is a
nondominated individual.

To discriminate individuals that have identical raw fitness
values, SPEA2 considers additional density information D (%)
of individual ¢, which is estimated by an adapted k-th nearest
neighbour method. SPEA2 calculates D(7) as follows:

1

D(i) = ——
Q of +2

3)
where oF is the distance to the k-th nearest neighbour (in
the objective space). A small D(7) value means ¢ resides in a
roomy area.

The final fitness F'(4) of individual ¢ is composed of the
raw fitness and additional density information, combining in a
compact form:

F(i) = R() + D(9) )

Afterwards, the archive is updated by saving all non-
dominated solutions (whose F'(i) values are lower than one)
from the combined population. If the updated archive size
exactly equals a predefined limit, the environmental selection is
completed. Otherwise, there can be two situations: the archive
is either too small or too large. In the first case, the archive is

filled with the best dominated solutions. In the second case, an
archive truncation procedure is invoked such that the solutions
with the minimum distance to other solutions are removed
iteratively until the archive size is equal to the predefined value.
If there are several individuals with an identical minimum
distance, the tie is broken by considering the second smallest
distance, and so forth.

If the stopping condition is not met, SPEA2 continues
with the mating selection where individuals from the new
archive are selected through binary tournaments. Finally, after
recombination and mutation, the old population is replaced by
the resulting offspring.

B. Work Related to SPEA2

Since its introduction, SPEA2 has received great research
interest and has been successfully applied to a variety of
theoretical and practical MOPs [18], [17], [16]. A major reason
for its success is that SPEA2 can provide a good spread of so-
lutions for both bi-objective and higher-dimensional problems

(1], [16], [2], [4].

On the other hand, there has been some work on the
improvement of SPEA2. In [19], neighbourhood crossover and
mating selection are introduced to improve search ability, and
two archives holding diverse solutions in the objective and
variable spaces are used to promote population diversity. In
[20], SPEA2 is integrated with cooperative coevolution for
solving three-objective problems. Li ef al. [21] proposed to
incorporate problem-specific local search strategies into SPEA
variants for a better exploiting capability. Another version of
SPEAZ2, proposed in [22], uses adaptive crossover and mutation
operators, together with a simulated annealing operation to
reduce the probability of converging toward local optima when
using the original SPEA2.

Recently, an interesting method to maintain the diversity
of SPEA2 for many-objective optimization was presented
in [23]. In that study, for fitness assignment, a shift-based
density estimation (SDE) technique takes into account both
the distribution and convergence information of solutions, thus
nondominated solutions with poor convergence are penalised
during the evolution process. It has also been reported that
SPEA2 with SDE (SPEA2+SDE) can offer significantly better
performance than the original SPEA2 algorithm.

III. PROPOSED FSPEA ALGORITHM
A. Description of the Algorithm

The basic framework of FSPEA remains the same as that
of SPEA2, except that a new density estimation method with
the aid of predefined preference directions for fitness assign-
ment and environmental selection is introduced. Algorithm 1
presents the general procedure of FSPEA, and the detailed
information regarding the proposed method will be interpreted
step by step as follows.

To begin with, an initial population of N candidate solu-
tions is created by uniformly sampling from the decision vari-
able space, followed by the generation of a set of preference
directions. The preference direction set is called preference
information, guiding the search along desired directions. To
make the resulting approximated POF well-diversified, which



Algorithm 1 Framework of FSPEA
1: Input: N (population size)

2: Output: approximated Pareto-optimal front

3: Create an initial parent population P;

4: Generate a set of preference directions W;

5: while stopping criterion not met do

6:  Apply genetic operators on P to generate offspring
population P;

7: Q=PUP,

8:  Associate each member of () with a preference direc-

tion;
9:  Calculate fitness values of members in @Q;
10:  Perform environmental selection on @) to update P;
11: end while

is also a main goal of multiobjective optimization, one must
ensure that the predefined preference directions are diverse
enough. For this purpose, we employ the systematic approach
proposed by Das and Dennis [12] to generate a set W of
evenly-distributed preference directions. Considering p divi-
sions alorjlv% ach objective coordinate, the approach generates

H = (p eru—1 1) preference directions on a unit simplex for M
objectives, each satisfying Zj\il wj; =1 where wj is the j-th

component of the preference direction w?.

In the main-loop (lines 6 to 10 in Algorithm 1), binary
tournaments are carried out on the parent population P to
fill the mating pool, on which combination and mutation
operators are applied to produce the offspring population Q. In
principle, any genetic operator can fulfil this goal. In this paper,
the simulated binary crossover (SBX) [13] and polynomial
mutation [14], which were also used in SPEA2 [18] and
SPEA2+SDE [23], are used as our recombination and mutation
operators, respectively. After that, the parent population and
offspring population are merged for further consideration.

Afterwards, each member ¢ of the combined popu-
lation () is associated with a preference direction. The
associated preference direction ¢ is calculated by ¢ =
Jj :argmin,,; ey (F(2%), w’), where F(z?) is the corresponding
objective vector of solution z°, and (a,b) denotes the acute
angle between the vectors a and b. This means that ¢ is
associated with its closest preference direction.

As for fitness assignment, the only difference between
FSPEA and SPEA2 lies in density estimation. First, similar
to SPEA2, each member i is assigned a raw fitness value R(%)
according to Eq. (2). Then, the density information D(i) of
© is estimated by its proximity to the associated preference
direction w?, in the following form:

b;

D(Z): 9i+7T/2

)
where 6; = (F(z%),w') and 7/2 is added to ensure that D(7)

is in the range [0, 1]. The final fitness value of ¢ consists of
the raw fitness value and density information by Eq. (4).

For environmental selection, FSPEA uses general operators
similar to SPEA2, but it differs in the truncation operation if
there are too many nondominated solutions. When the size of
nondominated solutions in @ exceeds the population size N,

FSPEA reasonably picks N elitists from the nondominated
set, with the aid of the predefined preference directions, to
replace the parent population. Specifically, for nondominated
members associated with each preference direction, if any,
the one having the lowest fitness value is preserved. In case
that a preference direction does not have any associated
nondominated solution, this preference direction is abandoned
for further discussion. This way, H preference directions take
turns at selecting the most diverse solutions until the number
of the selected solutions is equal to N, satisfying the diversity
requirement during the evolution.

B. Computational Complexity

FSPEA consumes the large proportion of computational
resources in its main-loop. Association of 2N members of
@ with H preference directions (line 8 of Algorithm 1)
requires O(M NH) computations, where M is the number
of objectives. Fitness assignment (line 9 of Algorithm 1)
takes O(M N?) computations. In line 10 of Algorithm 1,
the time complexity of environmental selection comes from
either selecting a number of best dominated solutions to
fill up the population (similar to SPEA2) or truncating too
many nondominated solutions. In the first case, it requires
a complexity of O(N log N) when sorting the list of fitness
values of dominated solutions, while in the second case, the
truncation procedure can be done in O(H) operations. Other
procedures spend smaller computational resources. Addition-
ally, N depends on the setting of H, i.e., N ~ H. Thus,
the average and worst-case time complexities are identical,
bounded by O(M N?).

Compared with SPEA2 and SPEA2+SDE, both of which
have a computational complexity of O(MN?) in the worst
case, the proposed FSPEA requires much less computational
consumption, leading to notably fast run-time performance for
multiobjective optimization.

IV. EXPERIMENTAL STUDY
A. Test Problems

The problem set chosen to perform the experiment is
the ZDT [24] test suite plus two DTLZ [4] instances. The
ZDT instances are all bi-objective problems, but they provide
a series of characteristics which may appear in real-world
applications, including concavity, convexity, disconnectivity,
bias, and multimodality. Two three-objective DTLZ instances
are used to test the performance of algorithms on higher-
dimensional problems.

B. Performance Metric

In our experiment, the inverted generational distance (IGD)
[26] is adopted as the performance indicator. IGD can provide
reliable information on both the diversity and convergence of
obtained solutions. Let PF' be a set of solutions uniformly
sampled from the true POF, and PF* be the approximated
solutions in the objective space, the metric measures the gap
between PF* and PF, which is calculated as follows:

> pepr dp, PF™)
|PF|

where d(p, PF™*) is the distance between the member p of PF
and the nearest member of PF'™*.

IGD(PF*,PF) = (©6)



TABLE 1. BEST, MEDIAN AND WORST IGD VALUES OBTAINED BY
THREE ALGORITHMS FOR ZDT AND DTLZ PROBLEMS
Prob. MOEA/D SPEA2 FSPEA

3.8740E-03 3.7850E-03 3.8680E-03
ZDTI 3.8755E-03 3.9120E-03 3.8985E-03
3.9310E-03 4.0060E-03 3.9390E-03
3.8020E-03 3.7850E-03 3.8030E-03
ZDT2 3.8030E-03 3.9070E-03 3.8145E-03
3.8080E-03 3.9580E-03 4.1030E-03
1.0695E-02 4.7100E-03 6.2800E-03
ZDT3 1.0741E-02 4.8665E-03 6.6005E-03
1.1457E-02 5.0240E-03 6.7870E-03
3.8970E-03 1.3566E-01 1.2536E-01
ZDT4 4.4500E-03 3.8886E-01 3.8908E-01
6.0630E-03 9.5859E-01 4.2744E-01
2.3770E-03 2.5460E-03 2.3760E-03
ZDT6 2.6285E-03 2.6620E-03 2.5920E-03
3.5050E-03 2.8820E-03 3.4340E-03
1.7010E-02 9.7340E-03 3.7800E-03
DTLZ1 1.7080E-02 1.0375E-02 1.0188E-02
1.7138E-02 1.1474E-02 1.1286E-02
4.0714E-02 2.8683E-02 4.9030E-03
DTLZ2 4.1156E-02 3.0077E-02 6.4965E-03
4.1373E-02 3.1819E-02 7.9530E-03

C. Experimental Settings

In the experiment, the original SPEA2 [18] and MOEA/D
[25] are tested for comparison. The widely-used Chebyshev
method is chosen as the decomposition function for MOEA/D.
The population size /N was set to 100 for bi-objective problems
and 300 for three-objective problems, respectively. This setting
exactly matches the condition involved in the generation of
preference directions, i.e., N = H = (pLA{ Il) For SPEA2,
MOEA/D and FSPEA, the crossover probability is p, = 1.0
and its distribution index is 7. = 20. The mutation probability
is p;m, = 1/n and its distribution 7,,, = 20, where n is
the number of decision variables. The archive size used in
SPEA2 equalled the population size, and the neighbourhood
size used in MOEA/D was set to 20. Other parameters were
set according to their description in the literature.

All the compared algorithms use the same stopping con-
dition, that is, they terminate after a pre-specified number of
generations. The maximum number of generations was 500 for
all the test instances. For statistical verification, each algorithm
was independently executed 31 runs and optimization results
were recorded.

D. Experimental Results and Analysis

Table I presents the experimental results of three algorithms
on the test problems. The best values for each instance are
marked in boldface. As ZDT1 and ZDT2 are very simple
continuous convex and concave test problems, respectively, the
IGD results obtained by the three algorithms are very similar,
implying all these algorithms can easily approximate the POF
with a good spread. For the discontinuous ZDT3 problem,
SPEA2 provides the best results in terms of the IGD metric,
followed by FSPEA, whose IGD values are slightly worse
than those of SPEA2. MOEA/D performs the worst on this
problem. ZDT4 is a multimodal problem with a large number
of local POFs, so it is not easy for algorithms to converge
toward the global POF. On this problem, MOEA/D converges
well, while both SPEA2 and FSPEA seem to have difficulties
in finding the true POF, as indicated by the large IGD values.
The ZDT6 problem introduces several potential difficulties for

algorithms. It has a non-convex POF shape and features a bias
in the solution distribution. All the tested algorithms show
good performance on this problem, and FSPEA is more likely
to give slightly better IGD values compared with the other two
algorithms.

The POF of DTLZ1 is a linear hyperplane, satisfying
Zi]\il fi = 0.5, but the presence of many local optima in the
search space causes difficulties for algorithms to converge to
the global POF. It can be clearly seen from Table I that FSPEA
produces much better IGD values than MOEA/D and SPEA2,
while the performance of MOEA/D is not as good as SPEA2.
On DTLZ2 whose POF is a hypersphere surface, FSPEA again
outperforms the other two algorithms by a clear margin. This
means, with the help of preference directions, FSPEA is very
promising for solving higher-dimensional problems.

For a visual understanding of these algorithms’ perfor-
mance, we plot their approximations in terms of the best
IGD metric over 31 runs. The approximations of ZDTI to
ZDT4 are displayed in Fig. 1 and the others in Fig. 2. We
can observe that, MOEA/D, SPEA2, and FSPEA perform
similarly on ZDT1, ZDT2 and ZDT6. Both SPEA2 and FSPEA
offer a better distribution than MOEA/D on ZDT3, where
the approximation obtained by MOEA/D is overcrowded to-
ward the z-axes. The ZDT4 approximations clearly show that
SPEA2 and FSPEA do not converge to the global POF as
what MOEA/D does. Nevertheless, FSPEA converges much
better than SPEA2 in this case. For the two three-objective
problems, both SPEA2 and FSPEA provide well-distributed
approximations whereas MOEA/D does not. If we take a close
look at the approximations obtained by SPEA2 and FSPEA
on DTLZ1 and DTLZ2, the distribution of FSPEA follows a
regular pattern and seems to be more uniform. In contrast,
there are outlier points (DTLZ1) and some sparse subregions
(DTLZ2) in the approximation of SPEA2.

From the aspects of the IGD metric and graphical visual-
ization, FSPEA keeps SPEA-related advantages, e.g., discrim-
inating solutions by Pareto-dominance relations, and provides
uniformly-distributed solutions while pursuing lower compu-
tational consumption than the original SPEA2 algorithm. It
shows competitive performance in comparison with the well-
known MOEA/D algorithm for the bi-objective cases and even
outperforms it for the three-objective instances considered
in this paper. Although both FSPEA and MOEA/D use a
similar idea to direct/guide the search, the results are different,
especially on the three-objective problems. In MOEA/D, even
if a set of uniformly-distributed weight vectors cannot result in
an even spread of POF points since decomposition approaches
control the search. However, with the aid of evenly-distributed
preference directions, FSPEA can guide the search along these
preference directions, finally generating an approximation as
uniform as the given preference direction set. Thus, FSPEA
provides a better distribution than MOEA/D on the tested
three-objective problems.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a fast version of SPEA2, denoted
FSPEA, which employs predefined preference information for
individuals’ density estimation and environmental selection. In
FSPEA, a number of preferred search directions are specified
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Fig. 1. Approximated POFs for ZDT1-ZDT4. The left column is with MOEA/D, the middle with SPEA2 and the right with FSPEA.
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to guide the search. Specifically, this preference information is
used to estimate individuals’ density, based on which FSPEA
can easily discriminate nondominated individuals and preserve
the most promising individuals in a new parent population for
the next generation. This way, the preference based density
estimation method can significantly alleviate the huge amount
of computational effort required in the original SPEA2, leading
to a fast optimization manner in terms of the running time
for solving multiobjective problems. Experimental results have
shown that FSPEA can achieve very competitive performance
in comparison with SPEA2 and MOEA/D on a number of test
problems considered in this paper.

Encouraged by the promising performance provided by
FSPEA on multiojective optimization, in future research, we
will extend the FSPEA framework to handling many-objective
problems that have at least four conflicting objectives. Besides,
it is also interesting to investigate the performance of FSPEA
for dynamic multiobjective problems.
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