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Abstract. Convergence and diversity are two main goals in mul-
tiobjective optimization. In literature, most existing multiobjective
optimization evolutionary algorithms (MOEAs) adopt a convergence-
first-and-diversity-second environmental selection which prefers nondom-
inated solutions to dominated ones, as is the case with the popular
nondominated sorting based selection method. While convergence-first
sorting has continuously shown effectiveness for handling a variety of
problems, it faces challenges to maintain well population diversity due
to the overemphasis of convergence. In this paper, we propose a general
diversity-first sorting method for multiobjective optimization. Based on
the method, a new MOEA, called DBEA, is then introduced. DBEA
is compared with the recently-developed nondominated sorting genetic
algorithm III (NSGA-III) on different problems. Experimental studies
show that the diversity-first method has great potential for diversity
maintenance and is very competitive for many-objective optimization.

1 Introduction

Multiobjective optimization problems (MOPs) widely exist in real-world appli-
cations, such as scheduling [11] and design [12]. MOPs often have several conflict-
ing objectives for which any improvement in one objective inevitably aggravates
another. Due to multiobjectivity, there is no single optimal solution. Instead,
the optima of MOPs is a set of trade-off solutions, known as Pareto-optimal set
(POS). Correspondingly, the image of the POS in the objective space is called
Pareto-optimal front (POF).

Multiobjective optimization evolutionary algorithms (MOEAs) are a class of
important methods for solving MOPs. MOEAs employ a population of candidate
individuals and optimize them in an evolutionary manner. As a result, a set of
solutions can be obtained in a single run. Besides, MOEAs do not necessarily
require any knowledge and information of the MOPs to be optimized, i.e., con-
tinuousness or differentiability. All these features make MOEAs very suitable for
solving MOPs. So far, a large number of MOEAs [2,9,10] have been proposed
in the evolutionary computation community.

In the design of MOEAs, two goals should be considered: (1) minimizing
the gap between candidate solutions and the true POS (convergence) and (2)
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maximizing the distribution of candidate solutions (diversity). However, these
two goals are generally assumed to be conflicting [13]. In practice, most existing
MOEAs achieve convergence by prior Pareto-based sorting of the evolving pop-
ulation and diversity by the additional calculation of individuals’ density infor-
mation. The well-known nondominated sorting genetic algorithm II (NSGA-II)
[2] and strength pareto evolutionary algorithm 2 (SPEA2) [10] are representative
examples of this method. Such a method actually performs environmental selec-
tion in a convergence-first-and-diversity-second manner. That is, nondominated
individuals [2] are preferable to dominated ones although dominated individ-
uals may contribute considerably to population diversity. While this method
works well in two- and three-objective optimization problems, it has encoun-
tered great difficulties in many-objective optimization where problems have four
or more objectives [6]. This is mainly because a large portion of the popula-
tion becomes nondominated as the number of objectives increases. In this case,
the convergence-first selection will consider only nondominated individuals and
leave little room for diversity selection. If all nondominated individuals are them-
selves not diversified, it would lead to a detrimental diversity loss due to the
convergence-first selection.

Inspired by the assumption that dominated individuals can contribute to pop-
ulation diversity, this paper proposes a new diversity-first sorting approach with
the aid of a set of diverse reference directions. The approach sorts the popualtion
into different fronts, each front representing a level of diversity and convergence.
Then, a diversity-first sorting based evolutionary algorithm (DBEA) is intro-
duced. Empirical studies and algorithm comparisons demonstrate the promise
of DBEA for multi- and many-objective optimization.

The remainder of the paper is organized as follows. Section 2 reviews the
classic nondominated sorting method. Section 3 presents a new diversity-first
sorting method, followed by our detailed implementation of DBEA in Sect. 4.
Experimental design and comparison results are presented in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Classic Sorting Methods

Most existing MOEAs are convergence-first based methods, such as NSGA-II [2]
and SPEA2 [10]. Convergence-first based methods prefer convergence to diver-
sity. They sort population depending mainly on individuals’ convergence1. One
of the most important sorting methods is the nondominated sorting used in
NSGA-II. In the following, we will briefly describe how nondominated sorting
works, followed by some discussions on its advantages and disadvantages.

2.1 Nondominated Sorting

In every generation, when the parent population (P) and offspring population
(Q) are combined to form a union population (R) of size 2N , environmental
1 Note that, although some algorithms like SPEA2 sort individuals by exploiting both

convergence and diversity, convergence is priorly considered and emphasised.
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(a) (b)

Fig. 1. Nondominated sorting.

selection should be carried out on R to construct a new parent population of size
N for the next generation. The nondominated sorting strategy can be used for
selection and works as follows. First, each individual is compared with all other
individuals in R, and all nondominated solutions of R are identified and assigned
to front L1. Then, individuals in L1 are removed from R, and the remaining
individuals in R are compared with each other to determine the nondominated
set, which are assigned to front L2. The procedure is repeated until no individuals
are left in R, i.e., all individuals have been assigned to a front.

Figure 1(a) gives a graphical illustration of the nondominated sorting. The
main idea behind the nondominated sorting is to classify the entire combined
population into different nondominated fronts according to individuals’ conver-
gence. After the non-dominated sorting, the new population can be constructed
by selecting solutions of different non-dominated fronts, one at a time. The selec-
tion starts with individuals of the first front L1 and continues with those of the
second front L2, followed by the rest of the fronts and so on. Since only N slots
are allowable in the new population, not all fronts can be considered. When
the last allowed front (e.g., Ll) is being considered, there may exist more indi-
viduals in Ll than the remaining slots in the new population. In this situation,
niche-preservation strategies, such as crowding distance [2], the-farthest-the-first
method [1], and nearest neighbour technique [10], are desirable for selecting the
remaining number of individuals from front Ll in order to maintain diversity.

2.2 Advantages and Disadvantages

Advantages. The nondominated-sorting based selection favours convergence
so that individuals in better fronts will be priorly preserved. The selection is
helpful for a fast convergence speed.
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Disadvantages. The nondominated-sorting based selection may undermine
population diversity if well-converged individuals are not diversified. Figure 1(b)
presents an example where diversity loss occurs if only six nondominated indi-
viduals are allowed to be preserved. The loss of diversity in the example could
further incur evolutionary stagnation where overcrowded boundary regions are
overexploited and intermediate regions are left unexplored.

3 Proposed Sorting Method

On the basis of discussions on convergence-first MOEAs, we propose and analyse
a diversity-first sorting method in the following subsections.

3.1 Diversity-First Sorting

The proposed diversity-first sorting method works as follows. First, the objec-
tive space is partitioned into a number of subspaces with the aid of a reference
direction set W . Reference directions in W are required to be uniformly dis-
tributed. Then, each individual (whose objective values need to be normalized
beforehand) in the combined population is associated with a subspace. This can
be done by identifying the nearest reference direction to the considered individ-
ual. In each subspace, individuals are assigned a fitness value that can reflect
its convergence level. Potential fitness assignment approaches for this purpose
can be scalarizing functions used in MOEA/D [9], strength fitness in SPEA2
[10], or nondominated ranks in NSGA-II [2], whichever is the easiest for users to
implement. An individual with the best fitness from each subspace is assigned
to front L1. After that, the individual in L1 are removed from the subspaces,
and another with the best fitness from each subspace is assigned to front L2.
If multiple solutions have the same fitness, a random one is considered. This
procedure continues until each individual in each subspace has been assigned to
a front. Note that, in case that a subspace is empty, this subspace is skipped.

Figure 2(a) illustrates the outcome of diversity-first sorting, where popula-
tion distribution is identical to that of Fig. 1(a). After the sorting, the new
population can be constructed by selecting solutions of different fronts, one at
a time. Similar to the nondominated sorting, not all fronts can be considered
due to the limited number of slots in the new population. If the last allowed
front (e.g., Ll) has more individuals than the remaining slots, random selection
on Ll can be performed to fill up the new population. Note that, it is advisable
to use techniques that are helpful for convergence to select individuals from Ll.
For example, fitness assignment can be performed on Ll, and individuals with
relatively good convergence are priorly selected.

3.2 Advantages and Disadvantages

Advantages. As can be seen from Fig. 2(b) (where the population distribution
is the same as that of Fig. 1(b)), the diversity-first sorting enhances local diversity



988 S. Jiang and S. Yang
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Fig. 2. Diversity-first sorting.

in each subspace. As a result, population diversity can be well maintained during
the evolution. Besides, population convergence is also properly considered in the
course of sorting. The sorting method can provide a good coverage and spread
of approximation.

Disadvantages. Since the diversity-first sorting employs a reference direction
set for population partition, the resulting population distribution depends largely
on the uniformity of the reference direction set. The potential drawbacks remain
unknown, and a future work will be devoted to these aspects.

4 Diversity-First Based Evolutionary Algorithm (DBEA)

In this section, we present an MOEA based on the proposed diversity-first sort-
ing, called DBEA for short. The framework of DBEA is described in Algorithm1.
Several key components of DBEA are explained as follows.

Reference direction set W : W can be constructed on a unit simplex using Das and
Dennis’s systematic approach [4] if the number of objectives is small. Otherwise,
W is constructed by two-layered approach mentioned in [6].

Objective normalization: similar to NSGA-III [6], DBEA identifies all extreme
points and then use them to construct a hyperplane. The intercepts of objective
axes and the hyperplane can be computed. DBEA uses these intercepts and the
utopia point to normalize the objective values of individuals.

Population partition: for each population individual, DBEA computes the acute
angle between its normalized objective vector and each reference direction. The
reference direction having the minimum acute angle is considered the right sub-
space that the individual should reside in.
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Algorithm 1. Framework of DBEA
1: Input: N (population size)
2: Output: approximated Pareto-optimal set
3: Generate a diverse reference direction set W :
4: Create an initial parent population P ;
5: while stopping criterion not met do
6: Apply genetic operators on P to generate offspring population P ;
7: Q := P ∪ P ; /*parent and offspring are combined*/
8: Normalize objectives of members in Q and partition Q into different subspaces;
9: (L1, L2, . . . ) :=diversity-first-sort(Q); /*diversity-first sorting is triggered*/

10: (S1, S2, . . . ) :=nondominated-sort(Ll); /*Ll is the last front to be included*/
11: Select continuously individuals from (S1, S2, . . . ) until P is filled up;
12: end while

Diversity-first Sorting: to facilitate sorting, individuals should be distinguishable
in terms of convergence. In this paper, DBEA simply applies nondominated sort-
ing in each subspace, leading to each individual having a rank. Individuals with
better rank values are priorly selected. In case there is a tie between individu-
als, those having the smallest perpendicular distance to the associated reference
direction are preferred.

Selection on the last front to be included: DBEA performs the nondomi-
nated sorting on the last allowed front Ll, resulting in a series of subfronts
{S1, S2, . . . }. Then, DBEA selects individuals on these subfronts, starting from
the first subfront S1. If the last subfront to be included has more individuals than
the remaining slots, individuals are randomly copied to the new population.

5 Experimental Study

To make a proper and fair comparison, algorithms to be considered should have
similar framework other than different methodologies. In our experiments, we
would like to compare DBEA with the recently-developed NSGA-III algorithm
[6]. DBEA and NSGA-III have very similar framework but differ mainly in
distinct sorting methods. For both algorithms, the simulated binary crossover
(SBX) [3] and polynomial mutation [5] are used as variation operators. As
suggested in [6], the crossover probability is pc = 1.0 and its distribution index
is ηc = 30. The mutation probability is pm = 1/n and its distribution ηm = 20.
In the following subsections, DBEA and NSGA-III will be first tested on a hard
problem that challenges algorithms’ diversity performance. After that, these two
algorithms will be compared on many-objective optimization.

5.1 Results on a Hard Three-Objective Problem

Liu et al. [8] introduced several hard-to-converge problems with considerably
deceptive properties and strong variable linkages. As a testing example, we
choose the three-objective MOP6 to distinguish the difference between diversity-
first sorting and convergence-first sorting. MOP6 places deceptive attractors on
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Fig. 3. Approximated POFs for MOP6 over 20 runs. Top: NSGA-III; bottom: DBEA.

the boundary of the objective space. If population diversity is not properly main-
tained, the search will get trapped into local optima. As a consequence, not all
the POF regions can be found. Both algorithms use the systematic design method
[4] to generate 91 reference directions or points. Correspondingly, the population
size in DBEA and NSGA-III was set to 92, which, as suggested in NSGA-III, is
the smallest multiple of four higher than reference points. The maximum number
of generations was set to 5000, which is much higher than normal settings due
to the hardness of this problem.

Figure 3 shows the worst-case, best-case, and whole MOP6 approximations
of NSGA-III and DBEA over 20 independent runs. It can be clearly observed
from the figure that, in all runs, NSGA-III prefers some boundary solutions and
misses a large part of the POF of MOP6. In contrast, DBEA is always capable of
obtaining a set of diversified solutions, although a few boundary solutions do not
converge perfectly. The poor performance of NSGA-III is mainly caused by its
convergence-first based selection. In NSGA-III, environmental selection is based
on individuals’ convergence level (nondominated sorting). That is, individuals on
better sorting fronts have priority to be selected first. If the selected individuals
all reside in a local search space (the boundary region in the case of MOP6), the
evolution will experience a dramatic diversity loss, resulting in NSGA-III not
being able to diversify the solution set any more. Thus, NSGA-III fails in this
situation. On the contrary, the diversity-first based selection seems to be a wise
option, as it can maintain population diversity at a high level. Therefore, DBEA
shows better performance than NSGA-III on the considered test problem.

5.2 Results on WFG Problems

The previous subsection has demonstrated the superiority of DBEA over
NSGA-III in the three-objective case in terms of diversity. One may wonder
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Table 1. Best, mean, and worst IGD values of compared algorithms over 20 runs

M=3 M=5 M=8

Problem NSGA-III DBEA NSGA-III DBEA NSGA-III DBEA

WFG4 0.00946 0.01068 0.28054 0.28103 0.71357 0.71239

0.01300 0.01313 – 0.28338 0.28310 ≈ 0.72304 0.72473 ≈
0.01714 0.01661 0.28749 0.28557 0.73107 0.74052

WFG5 0.09445 0.09386 0.34631 0.34813 0.75591 0.75563

0.09683 0.09483 † 0.35063 0.34879 † 0.75870 0.75820 †
0.09917 0.09559 0.35283 0.35015 0.76268 0.76214

WFG6 0.07036 0.07828 0.34445 0.33282 0.74635 0.74721

0.12819 0.13388 – 0.37310 0.37950 ≈ 0.79313 0.78546 ≈
0.16738 0.19958 0.40561 0.41077 0.83568 0.82690

WFG7 0.00993 0.00920 0.27209 0.27646 0.70625 0.70584

0.01232 0.01322 – 0.27733 0.27720 ≈ 0.72276 0.72168 †
0.01553 0.01681 0.27974 0.27943 0.74034 0.73439

WFG8 0.23728 0.23639 0.58692 0.57160 1.45400 1.27610

0.25205 0.24869 † 0.61987 0.60271 † 1.57690 1.57910 †
0.26632 0.26161 0.62657 0.61874 1.73940 1.72546

WFG9 0.07266 0.05796 0.39788 0.38946 0.91319 0.92767

0.11684 0.11420 † 0.42125 0.41719 † 1.00700 0.99933 †
0.36338 0.36184 0.48428 0.45785 1.19820 1.12270

whether DBEA can perform well in higher-dimensional cases. To this end, we
test DBEA and NSGA-III on several WFG [7] test problems having three to
eight objectives. Both algorithms use the same population size by setting iden-
tical reference directions or points with the two-layered method [6]. That is, 92,
210, and 156 for 3, 5, and 8 objectives, respectively. The maximum number of
generations was 500, 1000, and 1500 for 3, 5, and 8 objectives, respectively. Each
algorithm was executed 20 independent runs.

In order to quantify the performance of algorithms, we employ the reference
point based inverted generational distance (IGD) suggested by [6] and hypervol-
ume (HV) [14] as our performance metrics. The reference vector for the compu-
tation of HV was set as the nadir point of the true POF plus one. All reported
HV values come from the normalization of originally computed HV values.

Tables 1 and 2 present the IGD and HV values of two compared algorithms,
respectively, where the best results are highlighted in bold face. The Wilcoxon
rank-sum test at a 0.05 significance level was employed to compare the statisti-
cal significance of difference between two algorithms. “†”, “≈”, and “–” in the
tables denote DBEA is better than, equivalent to, and worse than NSGA-III,
respectively. It is easy to see that, the performance of DBEA improves as the
number of objectives increases. For three objectives, NSGA-III performs better
than DBEA on WFG4, WFG6 and WFG7 whereas DBEA wins on the other
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Table 2. Best, mean, and worst HV values of compared algorithms over 20 runs

Problem M=3 M=5 M=8

NSGA-III DBEA NSGA-III DBEA NSGA-III DBEA

WFG4 0.85281 0.85230 0.94849 0.94844 0.98060 0.98074

0.85191 0.85191 – 0.94808 0.94809 ≈ 0.97992 0.97995 †
0.85145 0.85151 0.94758 0.94764 0.97908 0.97836

WFG5 0.82652 0.82655 0.91367 0.91393 0.93682 0.93701

0.82595 0.82639 † 0.91307 0.91379 † 0.93637 0.93682 †
0.82541 0.82614 0.91244 0.91321 0.93527 0.93642

WFG6 0.83362 0.83117 0.91607 0.92151 0.94384 0.94624

0.81705 0.81540 – 0.90336 0.90120 ≈ 0.92088 0.92489 †
0.80628 0.79718 0.89009 0.88789 0.89975 0.90262

WFG7 0.85218 0.85217 0.94875 0.94869 0.98069 0.98071

0.85180 0.85169 – 0.94838 0.94841 † 0.98030 0.98042 †
0.85120 0.85120 0.94799 0.94801 0.97975 0.97988

WFG8 0.80278 0.80351 0.88415 0.88548 0.91022 0.92898

0.80088 0.80167 † 0.88249 0.88358 † 0.89509 0.90005 †
0.79854 0.79838 0.87989 0.88171 0.88229 0.88473

WFG9 0.83951 0.84112 0.92595 0.92771 0.94890 0.94712

0.83030 0.83188 † 0.92242 0.92445 † 0.93507 0.93103 ≈
0.74526 0.74771 0.91616 0.92146 0.81770 0.81948

problems. For five and eight objectives, DBEA generally obtains better results
than NSGA-III in terms of IGD and HV. Since NSGA-III is a leading method for
many-objective optimization, such observation implies DBEA can perform well
in the case of many objectives. Thus, diversity-first based selection is effective
and applicable to many-objective optimization.

6 Conclusions

While convergence-first based MOEAs have been increasingly reported to be
effective in solving a variety of MOPs, they may come across difficulties in main-
taining population diversity, resulting in a poor approximation of the POF. For
this reason, this paper has suggested a new diversity-first sorting method to
overcome the difficulty of convergence-first sorting. The advantages and disad-
vantages of convergence-first and diversity-first sorting methods have been briefly
discussed. Afterwards, a new algorithm based on the proposed sorting method,
i.e., DBEA, has been suggested.

The proposed DBEA has been examined and compared with the recently-
developed NSGA-III algorithm on several test problems with different opti-
mization difficulties. Experimental results have shown that DBEA has great
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advantages in maintaining diversity for problems where NSGA-III fails. Fur-
thermore, DBEA has also great potential for many-objective optimization, as
indicated by its outperformance over NSGA-III in many cases.

Inspired by these encouraging performance, we would like to extend the cur-
rent work to other classes of MOEAs, such as indicator-based selection methods
and decomposition-based MOEAs in the future. Also, the convergence part of
DBEA needs to be investigated. Different fitness assignment techniques will be
integrated into the diversity-first sorting, and their suitability and effectiveness
will be investigated.
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