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Abstract. With the incorporation of web 2.0 frameworks the complexity of deci-
sion making situations has exponentially increased, involving in many cases many
experts, and a potentially huge number of different alternatives, leading the experts
to present uncertainty with the preferences provided. In this context, intuitionistic
fuzzy preference relations play a key role as they provide the experts with means
to allocate the uncertainty inherent in their proposed opinions. However, in many
occasions the experts are unable to give a preference due to different reasons, there-
fore effective mechanisms to cope with missing informations are more than nec-
essary. In this contribution, we present a new group decision making (GDM) ap-
proach able to estimate the missing information and at the same time implements
a mechanism to bring the experts’ opinions closer in an iterative process in which
the experts’ confidence plays a key role.
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1. Introduction

Group decision making (GDM) procedures provide a framework for experts to express
their opinions and interact with the common goal of achieving agreement and selecting
the best possible alternative. Obviously the experts could have different backgrounds and
different points of view about the solution of the problem, or even they may be unable
to propose an accurate solution due to the inherent uncertainty that involves many GDM
processes. In these situations Intuitionistic fuzzy preference relations, IFPRs, based on
Attanasov’s Intuitionistc Fuzzy sets, [6], suppose an interesting framework for the ex-
perts to express their judgements, since they allow them to allocate certain levels of
uncertainty in their opinions. This type of PR includes a membership degree, a non-
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membership degree and a hesitation index to model experts’ subjective preferences. Re-
cently, the use of IAPRs in decision making in uncertain environments has attracted the
attention of many researchers and various group decision making approaches have been
presented. [26, 29, 32].

Some of these applications suppose that the experts provide complete information
about their preferences. However in real world situations the experts might not have a
precise or sufficient level of knowledge of the problem. As a consequence, they do not
provide all the information that is required [2, 9, 11, 20]. In the literature, we can find a
wide variety of methods that deal with missing preference relations for well known types
of PR such us fuzzy reciprocal PR or Linguistic Preference relations. Most of these ap-
proaches are based on the selection of an appropriate methodology to ‘build’ the matrix,
and/or to assign importance values to experts based not on the amount of information
provided but on how consistent the information provided is. Most of these methods esti-
mate expert’s missing values using just his/her own assessments and consistency criteria
to avoid incompatibility, some examples can be found in [1, 3–5, 12, 14, 16, 17, 21, 22].
More concretely for the case of IFPR, in the literature we can find two iterative ap-
proaches that deals with incomplete information [30]. However in many occasions these
approaches are not designed to deal with uncertainty or carries out complex transforma-
tion between different types of preference representations leading to a lost of precision.
The first objective of this contribution is to present a completion approach based on the
equivalence between the set of Intuitionistic Fuzzy Preference Relations and the set of
asymmetric fuzzy Preference relations demonstrated in [28].

On the other hand, a key issue in GDM consists on achieving a full and unanimous
agreement among all the experts. However in the majority of the occasions is not reach-
able in practice. An alternative approach is to use softer consensus measures [8] that
better represent the human perception of the essence of consensus. These approaches
define the consensus process as a dynamic and iterative group discussion coordinated
by a moderator that helps experts to bring their opinions closer. To guide the consensus
process different indicators has been used in the literature. Among them we can highlight
twofold: Consistency and Similarity. Consistency is linked to rationality of individuals
whereas similarity can be interpreted as a measure of general or widespread agreement.
By combining both consistency and similarity functions, Herrera-Viedma et al. [16] de-
veloped a feedback mechanism to provide advice to experts in order to increase the con-
sensus level of the group. Furthermore, Chiclana et al. in [10] designed a two stage model
with a first stage aiming to reach acceptable consistency level while the second one was
used to achieve a predefined consensus level. Focusing on the case of IFPRs there are
already available some consensus models in the literature [30, 31].

However , in order to guide the consensus processes, in environments where the ex-
perts present high level of uncertainty in their opinions, other measures should be taken
into account as well [28]. In this sense, It has been found that freely interacting groups
choose the positions of their most confident members as their group decisions. This phe-
nomenon has been witnessed with groups discussing a mathematical puzzle [19], a re-
call task [25] and a recognition task [18], concluding that confidence was a significant
predictor of influence. Furthermore Guha et al. state in [15] that in any real field decision
making situation when experts give their responses to a particular alternative, their con-
fidence level regarding the opinions are very important. In this sense, in [28] it has been
presented an approach which asses the experts degree of confidence directly from the



experts opinions expressed by means of IFPRs, and so it allows to take into account this
valuable information in the decision making process. Therefore, the second objective of
this contribution is to present a new confidence-consistency based consensus model that
takes into consideration both the experts’ consistency and confidence levels to imple-
ment a feedback mechanism to support experts to change some of their preference values
using simple advice rules that aim at increasing the level of agreement while, at the same
time, keeping a high degree of consistency.

The rest of the paper is set out as follows: Section 2 presents the main mathemat-
ical frameworks for representing preferences and the basics concepts needed through-
out the rest of the paper. Section 3.2 introduces the new Confidence-Consistency based
consensus approach with completion of missing information. Finally, Section 4 draws
conclusions and presents some future work.

2. Background

In group decision making problems, once the set of feasible alternatives (X) is identified,
experts are called to express their opinions or preferences on such set. Different prefer-
ence elicitation methods were compared in [23], where it was concluded that pairwise
comparison methods are more accurate than non-pairwise methods because they allow
the expert to focus on two alternatives at a time. A comparison of two alternatives by
an expert can lead to the preference of one alternative to the other or to a state of in-
difference between them. Obviously, there is the possibility of an expert being unable
to compare them. Two main mathematical models based on the concept of preference
relation can be used in this context. In the first one, a preference relation is defined for
each one of the above three possible preference states mentioned above (preference, in-
difference, incomparability) [13], which is usually referred to as a preference structure
on the set of alternatives [24]. The second one integrates the three possible preference
states into a single preference relation [7]. In this paper, we focus on the second one as
per the following definition:

Definition 1 (Preference Relation). A preference relation P on a set X is a binary relation
µP : X×X→D, where D is the domain of representation of preference degrees provided
by the decision maker.

A preference relation P may be conveniently represented by a matrix P = (pi j) of
dimension #X , with pi j = µP(xi,x j) being interpreted as the degree or intensity of pref-
erence of alternative xi over x j. The elements of P can be of a numeric or linguistic na-
ture, i.e., could represent numeric or linguistic preferences, respectively. The main types
of numeric preference relations used in decision making are: crisp preference relations,
additive preference relations, multiplicative preference relations, interval-valued prefer-
ence relations and intuitionistic preference relations. A comprehensive survey of them
have been reported on [33], which the reader is encouraged to consult for further par-
ticulars. In this contribution, the focus is on fuzzy preference relations and intuitionistic
fuzzy preference relations.



2.1. Fuzzy Set and Fuzzy Preference Relation

Definition 2 (Fuzzy Set). Let U be a universal set defined in a specific problem, with a
generic element denoted by x. A fuzzy set X in U is a set of ordered pairs:

X =
{
(x,µX (x))|x ∈U

}
where µX : U → [0,1] is called the membership function of A and µX (x) represents the
degree of membership of the element x in X .

The degree of non-membership of the element x in X is here defined as νX (x) =
1−µX (x). Thus, µX (x)+νX (x) = 1.

Definition 3 (Fuzzy Preference Relation). A fuzzy preference relation R=(ri j) on a finite
set of alternatives X is a fuzzy relation in X ×X that is characterised by a membership
function µR : X×X −→ [0,1] with the following interpretation:

• ri j = 1 indicates the maximum degree of preference for xi over x j
• ri j ∈]0.5,1[ indicates a definite preference for xi over x j
• ri j = 1/2 indicates indifference between xi and x j

When

ri j + r ji = 1 ∀i, j ∈ {1, . . . ,n}

is imposed the fuzzy preference relation is called reciprocal.

2.2. Intuitionistic Fuzzy Set and Intuitionistic Fuzzy Preference Relation

The concept of an Intuitionistic Fuzzy Set (IFS) was introduced by Atanassov in [6]:

Definition 4 (Intuitionistic Fuzzy Set). An intuitionistic fuzzy set X over a universe of
discourse U is given by

X =
{(

x,〈µX (x),νX (x)〉
)∣∣x ∈U

}
where µX : U → [0,1], and νX : U → [0,1] verify

0≤ µX (x)+νX (x)≤ 1 ∀x ∈U.

µX (x) and νX (x) represent the degree of membership and degree of non-membership of
x in X, respectively.

An intuitionistic fuzzy set becomes a fuzzy set when µX (x) = 1− νX (x) ∀x ∈ U .
However, when there exists at least one value x ∈ U such that µX (x) < 1− νX (x), an
extra parameter has to be taken into account when working with intuitionistic fuzzy sets:
the hesitancy degree, τX (x) = 1− µX (x)−νX (x), that represents the amount of lacking
information in determining the membership of x to X . If the hesitation degree is zero, the
reciprocal relationship between membership and non-membership makes the latter one
unnecessary in the formulation as it can be derived from the former.

Szmidt and Kacprzyk in [26] defined the intuitionistic fuzzy preference relation as a
generalisation of the concept of fuzzy preference relation.



Definition 5 (Intuitionistic Fuzzy Preference Relation). An intuitionistic fuzzy prefer-
ence relation B on a finite set of alternatives X = {x1, . . . ,xn} is characterised by a mem-
bership function µB : X×X → [0,1] and a non-membership function νB : X×X → [0,1]
such that

0≤ µB(xi,x j)+νB(xi,x j)≤ 1 ∀(xi,x j) ∈ X×X .

with µB(xi,x j) = µi j interpreted as the certainty degree up to which xi is preferred to x j;
and νB(xi,x j) = νi j interpreted as the certainty degree up to which xi is non-preferred to
x j.

Notice that in [28] it has been proved that there exists a one-to-one correspondence
between the set of reciprocal intuitionistic fuzzy preference relations and the set of asym-
metric fuzzy preference relations, and so the Consistency measures above can be directly
applied to the case of IRFPRs.

2.3. Reciprocal Intuitionistic Fuzzy Preference Relations and Asymmetric Fuzzy
Preference Relations

Let us denote with B the set of reciprocal intuitionistic fuzzy preference relations:

B =
{

B = (bi j)|∀i j : bi j =< µi j,νi j >, µi j,νi j ∈ [0,1],

µii = νii = 0.5 µi j = ν ji, 0≤ µi j +νi j ≤ 1
}

and with R the set of fuzzy preference relations

R =
{

R = (ri j)|∀i j : ri j ∈ [0,1]
}

Let us define the following mapping f : B −→R

f (B) = ( f (bi j)) = (µi j) = (ri j) = R.

We have:

• Function f is well defined, i.e. given B ∈B it is true that f (B) ∈R.
• Function f is an injection. Indeed, let B1 and B2 two reciprocal intuitionistic fuzzy

preference relations such that f (B1) = f (B2). Then we have that

f (r1
i j) = f (r2

i j)⇔ µ
1
i j = µ

2
i j ∀i, j.

Because µ1
i j = ν1

ji and µ2
i j = ν2

ji then it is obvious that

ν
1
i j = ν

2
i j ∀i, j.

Therefore we have that



b1
i j =< µ

1
i j,ν

1
i j >=< µ

2
i j,ν

2
i j >= b2

i j ∀i, j.

Consequently, it is concluded that

B1 = B2.

• Function f is not a surjection as not all fuzzy preference relations R ∈ R verify
0 ≤ ri j + r ji ≤ 1. Thus the range of function function f is the set of asymmetric
fuzzy preference relations.

Summarising:
There exists a one-to-one correspondence between the set of reciprocal intuitionistic
fuzzy preference relations and the set of asymmetric fuzzy preference relations.

This result can be exploited to define concepts for an intuitionistic fuzzy preference
relation via the equivalent known ones of the associated asymmetric fuzzy preference
relation. In particular, a methodology to derive a priority vector for an intuitionistic fuzzy
preference relation via its corresponding fuzzy preference relation based on the concept
of non-dominance degree and to tackle the issue of incomplete information in intuitionis-
tic fuzzy preference relations in the framework of group decision making was presented
in [28].

2.4. Expert’s degree of confidence

Given a reciprocal intuitionistic fuzzy preference relation, the hesitancy degrees used to
define confidence measures at its three different levels: pair of alternatives, alternatives
and relation levels, can be defined as follows:

Definition 6. Given a reciprocal intuitionistic fuzzy preference relation B = (bi j) =
(
〈
µi j,νi j

〉
), the confidence level associated to the intuitionistic preference value bi j is

measured as

CFLi j = 1− τi j,

with τi j being the hesitancy degree associated to bi j.

As noted before in Section 2.2, τi j = 1−µi j−νi j and therefore we have that CFLi j =
µi j + νi j. In other words, when CFLi j = 1 (µi j + νi j = 1) then τi j = 0 and there is no
hesitation at all. The lower the value of CFLi j, the higher the value of τi j and the more
hesitation is present in the intuitionistic value bi j.

Definition 7. Given a reciprocal intuitionistic fuzzy preference relation B = (bi j) =
(
〈
µi j,νi j

〉
), the confidence level associated to the alternative xi is defined as

CFLi =

n

∑
j=1
i 6= j

(
CFLi j +CFL ji

)
2(n−1)

.



Because B is reciprocal, we have that CFLi j =CFL ji (∀i, j) and therefore it is

CFLi =

n

∑
j=1
i 6= j

CFLi j

n−1
.

A similar interpretation of CFLi with respect to the confidence on the preference
values on the alternative xi can be done as it was done above with CFLi j.

Definition 8. The confidence level associated to a reciprocal intuitionistic fuzzy prefer-
ence relation B = (bi j) = (

〈
µi j,νi j

〉
) is measured as

CFLB =

n

∑
i=1

CFLi

n
.

Notice that when CFLB = 1, then the reciprocal intuitionistic fuzzy preference rela-
tion B is a reciprocal fuzzy preference relation.

3. The proposed approach

In this section we are going to present the confidence based model for intuitionistic fuzzy
preference relation. The proposed approach has two main stages the completion stage,
and the consensus stage to bring the experts opinion closer. A general overview of the
proposed approach is depicted in Fig. 1.

3.1. Completion model

The existing equivalence between the set of asymmetric fuzzy preference relation and
the set of intuitionistic reciprocal fuzzy preference relations pointed out in [27] allows
to solve problems associated to reciprocal intuitionistic fuzzy preference relations by
solving the corresponding problem to their equivalent asymmetric fuzzy preference re-
lations. Before doing this, we present the formal definition of the concept of incomplete
preference relation [17]:

Definition 9. A function g : X −→ Y is partial when not every element in the set X
necessarily maps to an element in the set Y . When every element from the set X maps to
one element of the set Y then we have a total function.

Definition 10. A preference relation on a set of alternatives with a partial membership
function is an incomplete preference relation.

It is assumed that for incomplete reciprocal intuitionistic fuzzy preference relations,
given a pair of alternatives (xi,x j) for which bi j is not known, both membership and
non-memberships will be unknown. Due to reciprocity, we have that if bi j is not known
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Figure 1. GDM problem resolution steps.

then b ji is also not known. In general the letter x will be used when a particular entry
of an incomplete reciprocal intuitionistic fuzzy preference relation is unknown/missing.
Thus, if B is an incomplete reciprocal intuitionistic fuzzy preference relation, then R =
F(B) will be an incomplete asymmetric fuzzy preference relation and so the missing
preference value ri j(i 6= j) can be partially estimated, using an intermediate alternative
xk, with the value:

crk
i j =

0, (rik,rk j) ∈ {(0,1),(1,0)}
rik · rk j

rik · rk j +(1− rik) · (1− rk j)
, Otherwise.

The following notation is introduced:

A = {(i, j) | i, j ∈ {1, . . . ,n}∧ i 6= j} ;
MV =

{
(i, j) | ri j is unknown, (i, j) ∈ A

}
;

EV = A\MV.

MV is the set of pairs of different alternatives for which the fuzzy preference degree is
unknown or missing; EV is the set of pairs of different alternatives with known fuzzy
preference values. The global multiplicative transitivity based estimated value, cri j, is
defined as follows:



cri j =

∑

k∈R01
i j

crk
i j

#R01
i j

where H01
i j = {k ∈ R01

i j |(i, j) ∈MV ∧ (i,k),(k, j) ∈ EV}.
The iterative procedure to complete reciprocal fuzzy preference relations developed

in [17] can be applied to complete R and, consequently, to complete the incomplete re-
ciprocal intuitionistic fuzzy preference relation B as the following example illustrates.
Notice that the cases when an incomplete fuzzy preference relation cannot be success-
fully completed are reduced to those when no preference values involving a particular al-
ternative are known. This is the case when a whole row or column is completely missing.
Therefore the general sufficient condition for an incomplete fuzzy preference relation to
be completed is that a set of n−1 non-leading diagonal preference values with each one
of the alternatives compared at least once is known.

3.2. Confidence-Consistency based Consensus Model IFPRs

In many decision making processes it could be expected to associate a higher importance
degree to the experts that provides both the more coherent or consistent answer and also
the ones that present the highest degree of confidence with the provided solutions. In this
section we present a new consensus approach that takes both experts degree of confi-
dence and consistency to aggregate the experts opinion. To do so the CC-IOWA operator
proposed in [28] to fuse the experts opinions is used. This operator trades off consistency
and confidence criteria in both re-ordering the preferences to aggregate and deriving the
aggregation weights to use in their fusing to derive the collective preference. Once the
collective IFPR is obtained, a proximity index (PI) measuring the level of agreement
between the individual and collective preferences is computed. The consensus degree is
defined taking into account both the confidence and consistency levels and PI. When the
consensus level reaches a threshold value, agreed by the group of experts, the resolution
process of the GDM is carried out; otherwise a feedback mechanism is activated, and
some personalised recommendations are generated to support the individual experts, un-
til the threshold level of consensus is achieved. The feedback recommendations will help
the experts to identify the preference values that should be considered for changing. The
recommendations will also include the values the experts should use to increase the level
of agreement in a consistent way.

3.2.1. Computing Proximity Indexes

The proximity degrees will measure how close the individual preferences are from the
group or collective preferences. The collective preferences are obtained by fusing all
the individuals’ preferences using the confidence-consistency induced ordered weighted
averaging (CC-IOWA) operator:

Definition 11 (CC-IOWA operator). Let a set of experts, E = {e1, . . . ,em}, provide pref-
erences about a set of alternatives, X = {x1, . . . ,xn}, using the reciprocal intuitionis-
tic fuzzy preference relations, {B1, . . . ,Bm}. A consistency and confidence IOWA (CC-



IOWA) operator of dimension m, ΦCC
W , is an IOWA operator whose set of order inducing

values is the set of consistency/confidence index values, {CCI1, . . . ,CCIm}, associated
with the set of experts.

Therefore, the collective reciprocal intuitionistic fuzzy preference relation Bcc =
(bcc

i j ) = (〈µcc
i j ,ν

cc
i j 〉) is computed as follows:

µ
cc
i j = Φ

CC
W
(〈

CCI1,µ1
i j
〉
, · · · ,

〈
CCIm,µm

i j
〉)

=
m

∑
h=1

wh ·µ
σ(h)
i j (1)

ν
cc
i j = Φ

CC
W
(〈

CCI1,ν1
i j
〉
, · · · ,

〈
CCIm,νm

i j
〉)

=
m

∑
h=1

wh ·ν
σ(h)
i j (2)

CCIh = (1−δ ) ·CLh +δ ·CFLh (3)

such that CCIσ(h−1) ≥CCIσ(h), wσ(h−1) ≥ wσ(h) ≥ 0 (∀h ∈ {2, · · · ,m}) with
m
∑

h=1
wh = 1,

CLh
i j the consistency level associated to Rh = F(Bh), CFLh the confidence level asso-

ciated to Bh, and δ ∈ [0,1] a parameter to control the weight of both consistency and
confidence criteria in the inducing variable.

The general procedure for the inclusion of importance weight values, {u1, . . . ,um},
in the aggregation process involves the transformation of the values to aggregate under
the importance degree to generate a new value and then aggregate these new values us-
ing an aggregation operator. In the area of quantifier guided aggregations, Yager pro-
vided a procedure to evaluate the overall satisfaction of m important criteria (experts) by
an alternative x by computing the weighting vector associated to an OWA operator as
follows [35]:

wh = Q
(

S(h)
S(m)

)
−Q

(
S(h−1)

S(m)

)
being Q the membership function of the linguistic quantifier, S(h) = ∑

h
k=1 uσ(k), and σ

the permutation used to produce the ordering of the values to be aggregated. This ap-
proach for the inclusion of importance degrees associates a zero weight to those experts
with zero importance degree. The linguistic quantifier is a Basic Unit-interval Mono-
tone (BUM) function Q : [0,1]→ [0,1] such that Q(0) = 0, Q(1) = 1 and if x > y then
Q(x)≥ Q(y).

Yager extended this procedure to the case of IOWA operator. In this case, each com-
ponent in the aggregation consists of a triple, with first element being the argument value
to aggregate, the second element the importance weight value associated to the first el-
ement and the third element being the order inducing value [34]. The same expression
as above is used with σ being the permutation that order the induce values from largest
to lowest. In our case, we propose to use the consistency/confidence values associated



with each expert both as an importance weight and as the order inducing values. Thus,
the ordering of the preference values is first induced by the ordering of the experts from
the most to the least consistent/confident, and the weights of the CC-IOWA operator is
obtained as follows:

wh = Q

(
∑

h
k=1 CCIσ(k)

T

)
−Q

(
∑

h−1
k=1 CCIσ(k)

T

)

with T =
m
∑

k=1
CCIk.

The metric used to compute consistency indexes is used here to compute the prox-
imity (similarity) between an individual IFPR, Rh = (rh

i j), and the collective IFPR,
Rc = (rc

i j), at the three different levels of the relation:

Level 1. Proximity index on pairs of alternatives. The proximity of an expert, eh, pref-
erence value on the pair of alternatives (xi,xk) to the group one, denoted PPh

ik, is
defined as:

PPh
i j = 1−d(rh

i j,r
c
i j)

Level 2. Proximity index on alternatives. The proximity of an expert, eh, preferences
involving the alternative xi to the group ones, denoted PAh

i , is defined as:

PAh
i =

n

∑
j=1; j 6=i

(PPh
i j +PPh

ji)

2(n−1)

Level 3. Proximity index on the relation. The proximity of an expert, eh, preference re-
lation to the group one, denoted PIh, is defined as:

PIh =

n

∑
i=1

PAh
i

n

3.2.2. Computing Consensus Levels

Given an IFPR, R, its consensus level (CL) is defined as follows:

CL = δ ·CCL+(1−δ ) ·PI (4)

where δ ∈ [0,1] is a parameter to control the weight of both, on the one hand the
Consistency-Confidence Criteria and on the other hand the proximity criteria. Similar
expressions apply to CLi and CLi j, respectively. A value of δ > 0.5 is used to provide
more importance to the consistency-confidence index in the computation of the consen-
sus degrees. The particular value to use will obviously depend on the group of experts
and the importance they would like to allocate to the consistency and the confidence of
each expert, but we can assume that the threshold value γ ∈ [0.5,1).



The consensus levels can be used to decide whether the feedback mechanism should
be applied or not to give advice to the experts, or when the consensus reaching process
has to come to an end. When CLh (h = 1, . . . ,m) satisfies a minimum satisfaction thresh-
old value γ ∈ [0.5,1), then the consensus reaching process ends, and the selection process
is applied to achieve the solution of consensus.

3.2.3. Feedback Mechanism

When at least one of the experts’ consensus levels is below the fixed threshold value, a
feedback mechanism is activated to generate personalized advice to those experts. This
activity includes two steps: Identification of the preference values that should be changed
and Generation of advice.

1. Identification of the Preference Values:
The preference values that are contributing less to the consensus are identified. To
do that, the following three step identification procedure that uses the proximity
and consistency indexes is carried out:

Step 1. The experts with a consensus level lower than the threshold value γ are
identified:

EXPCH = {h |CLh < γ}.

Step 2. For the identified experts, their alternatives with a consensus level lower
than the satisfaction threshold γ are identified:

ALT = {(h, i) | eh ∈ EXPCH & CLh
i < γ}.

Step 3. Finally, the preference values to be changed are:

APS = {(h, i,k) | (h, i) ∈ ALT & CLh
ik < γ}.

2. Generation of Advice:
The feedback mechanism generates personalized recommendation rules, which
will tell the experts the preference values they should change and the new prefer-
ence values to use in order to increase their consensus level. For all (h, i, j) ∈ APS,
the personalised recommendation rules are identified as follow:

(a) If (i, j) ∈ EV h the recommendation generated for expert eh is: “You should
change your preference value for the pair of alternatives (i, j), rh

i j =〈
µh

i j,ν
h
i j

〉
, to a value closer to rrh

i j =
〈

rµh
i j,rνh

i j

〉
.”

(b) If (i, j) ∈ MV h the recommendation generated for expert eh is:“Your miss-
ing preference value for the pair of alternatives (i, j) should be as close as

possible to rrh
i j =

〈
rµh

i j,rνh
i j

〉
.”

〈
rµ

h
i j,rν

h
i j

〉
=
〈

δ ·µh
i j +(1−δ ) ·µc

i j, δ ·νh
i j +(1−δ ) ·νc

i j

〉



4. Conclusions

In this contribution we have presented a new consensus driven approach to deal with
decision making situations under high level of uncertainty. To do so this model allows
the experts to allocate their uncertainty by means of Intuitionistic fuzzy preference re-
lations and is able to estimate the incomplete missing preference relations based on the
experts degree of both consistency and confidence. Moreover the proposed approach is
able to provide recommendations to the experts to bring their opinions closer taking into
consideration the experts degree of confidence with the provided solutions.
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ule within a consensus decision making model. International Journal of Uncertainty, Fuzziness and
Knowledge Based Systems, 16(1):35 – 53, 2008.

[11] D. H. Ebenbach and C.F. Moore. Incomplete information, inferences, and individual differences: The
case of environmental judgments. Organizational Behavior and Human Decision Processes, 81(1):1–
27, 2000.

[12] M. Fedrizzi and S. Giove. Incomplete pairwise comparison and consistency optimization. European
Journal of Operational Research, 183(1):303–313, 2007.

[13] P.C. Fishburn. Utility theory for decision making. Krieger, Melbourne, FL, 1979.
[14] S. Genc, F. E. Boran, D. Akay, and Z. Xu. Interval multiplicative transitivity for consistency, missing

values and priority weights of interval fuzzy preference relations. Information Sciences, 180(24):4877
– 4891., 2010.

[15] Debashree Guha and Debjani Chakraborty. A new approach to fuzzy distance measure and similarity
measure between two generalized fuzzy numbers. Applied Soft Computing, 10(1):90 – 99, 2010.



[16] E. Herrera-Viedma, S. Alonso, F. Chiclana, and F.Herrera. A consensus model for group decision mak-
ing with incomplete fuzzy preference relations. IEEE Transactions on Fuzzy Systems, 15(5):863–877,
2007.

[17] E. Herrera-Viedma, F. Chiclana, F.Herrera, and S. Alonso. Group decision-making model with incom-
plete fuzzy preference relations based on additive consistency. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 37(1):176–189, 2007.

[18] V.B Hinsz. Cognitive and consensus processes in group recognition memory performance. Journal of
Personality and Social Psychology, 59:705–718, 1990.

[19] H. H. Johnson and J. M. Torcivia. Group and individual performance on a single stage task as a function
of distribution of individual performance. Expert Systems with Applications, (3):266–263, 1967.

[20] J. K. Kim, S. H. Choi, C. H. Han, and S. H. Kim. An interactive procedure for multiple criteria group
decision making with incomplete information. Computers and Industrial Engineering, 35(1-2):295–
298, 1998.

[21] L.-W. Lee. Group decision making with incomplete fuzzy preference relations based on the additive
consistency and the order consistency. Expert Systems with Applications, 39(14):11666–11676, 2012.

[22] X. Liu, Y. Pan, Y. Xu, and S. Yu. Least square completion and inconsistency repair methods for addi-
tively consistent fuzzy preference relations. Fuzzy Sets and Systems, 198(1):1–19, 2012.

[23] I. Millet. The effectiveness of alternative preference elicitation methods in the analytic hierarchy process.
Journal of Multi-Criteria Decision Analysis, 6(1):41–51, 1997.

[24] M. Roubens and P. Vincke. Preference modeling. Springer, Berlin, 1985.
[25] Geoffrey M. Stephenson, Dominic Abrams, Wolfgang Wagner, and Gillian Wade. Partners in recall: Col-

laborative order in the recall of a police interrogation. British Journal of Social Psychology, 25(4):341–
343, 1986.

[26] E.E. Szmidt and J. Kacprzyk. Using intuitionistic fuzzy sets in group decision making. Control and
Cybernetics, 31(4):1037–1053, 2002.

[27] R. Urena, F. Chiclana, J.A. Morente-Molinera, and E. Herrera-Viedma. Managing incomplete preference
relations in decision making: A review and future trends. Information Sciences, 302(0):14 – 32, 2015.

[28] Raquel Urena, Francisco Chiclana, Hamido Fujita, and Enrique Herrera-Viedma. Confidence-
consistency driven group decision making approach with incomplete reciprocal intuitionistic preference
relations. Knowledge-Based Systems, 89:86 – 96, 2015.

[29] J. Wu and F. Chiclana. Non-dominance and attitudinal prioritisation methods for intuitionistic
and interval-valued intuitionistic fuzzy preference relations. Expert Systems with Applications,
39(18):13409–13416, 2012.

[30] Jian Wu and Francisco Chiclana. Multiplicative consistency of intuitionistic reciprocal preference rela-
tions and its application to missing values estimation and consensus building. Knowledge-Based Sys-
tems, 71(0):187 – 200, 2014.

[31] Z. Xu. Information science. International Journal of Intelligent Systems, 177(9):2363–2379, 2007.
[32] Z. Xu, X. Cai, and E. Szmidt. Algorithms for estimating missing elements of incomplete intuitionistic

preference relations. International Journal of Intelligent Systems, 26(9):787–813, 2011.
[33] Z. S. Xu. A survey of preference relations. International Journal of General System, 27(36):179–203,

2007.
[34] R. R. Yager. Induced aggregation operators. Fuzzy Sets and Systems, 137:59–69, 2003.
[35] Ronald R. Yager and Alexander Rybalov. Uninorm aggregation operators. Fuzzy Sets and Systems,

80(1):111 – 120, 1996. Fuzzy Modeling.


