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Abstract

An essential aim in Group Decision Making (GDM) problems is to achieve a high level of
consensus among experts. Consensus is defined as general or widespread agreement, and it is
usually modelled mathematically via a similarity function measuring how close experts’ opinions
or preferences are. Similarity functions are defined based on the use of a metric describing the
distance between experts’ opinions or preferences. In the literature, different metrics or distance
functions have been proposed to implement in consensus models, but no study has been carried
out to analyse the influence the use of different distance functions can have in the GDM process.

This paper presents a comparative study of the effect of the application of some different
distance functions for measuring consensus in GDM. By using the nonparametric Wilcoxon
matched-pairs signed-ranks test, it is concluded that different distance functions can produce
significantly different results. Moreover, it is also shown that their application also has a signif-
icant effect on the speed of achieving consensus. Finally, these results are analysed and used to
derive decision support rules, based on a convergent criterion, that can be used to control the
convergence speed of the consensus process using the compared distance functions.

Keywords: Group decision making, fuzzy preferences, similarity, consensus, decision support
rules, Wilcoxon test

1. Introduction

In order to reach a decision, experts have to express their opinions or preferences by means
of a set of evaluations over a set of alternatives. Consensus is defined as the full and unan-
imous agreement of all the experts regarding all the feasible alternatives. In practice, this
definition is inconvenient because it only allows differentiating between two states, namely, the
existence and absence of consensus. Also, the chances for reaching such a full agreement are
rather low. Indeed, unanimity is not necessary in most real life situations. A second meaning
of the concept of consensus refers to the judgement arrived at by ‘most of’ those concerned
(http://www.merriam-webster.com), which has led to the definition and use of a new concept
of consensus degree referred to as ‘soft’ consensus degree [16, 18, 26, 30, 31, 33, 40, 50].

Based on the use of such soft consensus measure, the consensus process can be modelled
as a dynamic and iterative group discussion process, coordinated by a moderator, who helps
the experts to make their opinions closer. In each step of this process, the moderator knows
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the actual level of consensus between the experts, by means of the soft consensus measure,
which establishes the distance to an ‘ideal’ state of consensus. If the consensus level is not
acceptable, that is, if it is lower than a specified threshold, which means that there exists a
great discrepancy between the experts’ opinions, then the moderator would urge the experts
to discuss their opinions further in an effort to make them closer. On the contrary, when the
consensus level is acceptable, the moderator would apply a selection process in order to obtain
the final consensus solution to the group decision making (GDM) problem [1, 27].

Soft consensus measures represent the level of agreement among experts, and therefore
their definition is based on the concept of similarity between their opinions (preferences). The
evaluation of consensus necessarily implies the computation and aggregation of the ‘distance’
representing disagreement between the opinions (preferences) of each pair of experts on each
pair of alternatives [3]. An issue here is that the convergence of the consensus process towards
a solution acceptable by most of the experts could be affected by the particular metric, i.e.
distance function, used to measure disagreement and subsequently to compute the soft consensus
measure.

The aim of this paper is to present a comparative study between five of the most commonly
used distance functions in modelling soft consensus in GDM problems: Manhattan, Euclidean,
Cosine, Dice, and Jaccard distance functions. Two-sample statistical tests are used to establish
whether the application of two distance functions is different, or whether one distance function
is ‘better’ than another. Indeed, the statistical comparative study carried out, and reported
in this paper, covers both aspects mentioned above: it is tested whether the application of
different distance functions produces significant differences in the measuring of the consensus,
and also it is analysed which distance functions are better than others with respect to the speed
of convergence of the decision making process towards the achievement of an acceptable level
of consensus by the group of experts. Using nonparametric Wilcoxon tests [45, 49], significant
differences were found in many cases between the behaviour of the compared distance functions.
This behaviour was further analysed using a convergent criterion and a set of rules were identified
for their application to control the speed of convergence towards consensus.

The remainder of the paper is structured as follows. Section 2 introduces concepts essential
to the understanding of the rest of the paper: the GDM problem (Subsection 2.1), the selection
process (Subsection 2.2) and the consensus process (Subsection 2.3). Following that, Section
3 describes the design of the experiment used to evaluate the different distance functions for
measuring consensus in GDM problems. Section 4 presents and discusses the results of the
experiment. Section 5 includes a practical application of the use of different compared distance
functions for the same GDM problem to illustrate the application of the identified rules affecting
the consensus process convergence. Lastly, Section 6 concludes the paper.

2. Preliminaries

To make the paper self-contained, the main concepts that will be used are introduced here.

2.1. The GDM Problem

GDM problems consist in finding the best alternative(s) from a set of feasible alternatives
X = {x1, . . . , xn} according to the preferences provided by a group of experts E = {e1, . . . , em}.
Different preference elicitation methods were compared in [38], where it was concluded that pair-
wise comparison methods are more accurate than non-pairwise methods. Among the different
representation formats that experts may use to express their opinions, fuzzy preference relations
[8, 9, 29, 34, 39, 46] are one of the most used because of their utility and usability as a tool for
modelling experts’ preferences and in their aggregation into group ones in decision processes
[10, 28, 29, 47].
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Definition 1 (Fuzzy Preference Relation). A fuzzy preference relation P on a finite set of
alternatives X is characterized by a membership function µP : X ×X −→ [0, 1], µ(xi, xj) = pij ,
verifying

pij + pji = 1 ∀i, j ∈ {1, . . . , n}. (1)

When cardinality of X is small, the fuzzy preference relation may be conveniently denoted by
the matrix P = (pij). The following interpretation is also usually assumed:

• pij = 1 indicates the maximum degree of preference for xi over xj .

• pij ∈ ]0.5, 1[ indicates a definite preference for xi over xj .

• pij = 0.5 indicates indifference between xi and xj .

Two different processes are applied in GDM problems before a final solution can be obtained
[5, 22, 27, 32, 41]: (1) the consensus process and (2) the selection process. The consensus process
refers to how to obtain the maximum degree of consensus or agreement between the set of
experts. The selection process obtains the final solution according to the preferences [8]given
by the experts.

2.2. Selection Process

The selection process involves two different steps [24, 43]: (i) aggregation of individual
preferences and (ii) exploitation of the collective preference.

Aggregation phase. This phase defines a collective preference relation, P c =
(
pcij

)
, obtained

by means of the aggregation of all individual fuzzy preference relations
{
P 1, P 2, . . . , Pm

}
, and

indicates the global preference between every pair of alternatives according to the majority of
experts’ opinions. Currently, at least 90 different families of aggregation operators have been
studied [11, 12, 17, 19, 21, 35, 51, 52, 55, 56]. Among them the Ordered Weighted Averaging
(OWA) operator proposed by Yager [52] is the most widely used.

The aggregation operation by means of a quantifier guided OWA operator, φQ, is carried
out as follows:

pcij = φQ
(
p1ij , . . . , p

m
ij

)
=

m∑
k=1

wk · p
σ(k)
ij , (2)

where σ is a permutation function such that p
σ(k)
ij ≥ p

σ(k+1)
ij , ∀ k = 1, · · · ,m − 1; Q is a fuzzy

linguistic quantifier [54] that represents the concept of fuzzy majority and it is used to calculate
the weighting vector of φQ, W = (w1, . . . , wn) such that, wk ∈ [0, 1] and

∑n
k=1wk = 1, according

to the following expression [52]:

wk = Q (k/n)−Q ((k − 1)/n) , ∀k ∈ {1, . . . , n}. (3)

Some examples of linguistic quantifiers, depicted in Figure 1, are “at least half”, “most of”
and “as many as possible”, which can be represented by the following function

Q(r) =


0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b
1 if b < r ≤ 1

(4)

using the values (0, 0.5), (0.3, 0.8) and (0.5, 1) for (a, b), respectively [29].
Alternative representations for the concept of fuzzy majority can be found in the liter-

ature. For example, Yager in [53] considered the parameterized family of RIM quantifiers
Q(r) = ra (a ≥ 0) for such representation. This family of functions guarantees that [12]:
(i) all the experts contribute to the final aggregated value (strict monotonicity property), and
(ii) associates, when a ∈ [0, 1], higher weight values to the aggregated values with associated
higher importance values (concavity property).
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Figure 1: Linguistic quantifiers “at least half”, “most of” and “as many as possible”

Exploitation phase. This phase transforms the global information about the alternatives into a
global ranking of them, from which the set of solution alternatives is obtained. The global rank-
ing is obtained by applying two choice degrees of alternatives to the collective fuzzy preference
relation [20]: the quantifier guided dominance degree and the quantifier guided non dominance
degree.

1. Quantifier Guided Dominance Degree: For the alternative xi we calculate the quantifier
guided dominance degree, QGDDi, used to quantify the dominance that alternative xi
has over all the others in a fuzzy majority sense as follows:

GDDi = φQ
(
pcij , j = 1, . . . , n

)
. (5)

2. Quantifier Guided Non Dominance Degree: We also calculate the quantifier guided non
dominance degree, QGNDDi, according to the following expression:

QGNDDi = φQ
(
1− psji, j = 1, . . . , n

)
, (6)

where psji = max
{
pcji − pcij , 0

}
represents the degree to which xi is strictly dominated by

xj . In our context, QGNDDi, gives the degree in which each alternative is not dominated
by a fuzzy majority of the remaining alternatives.

Finally, the solution Xsol is obtained by applying these two choice degrees and selecting
those alternatives with maximum choice degrees.

Clearly, it is preferable that the experts achieve a high level of consensus concerning their
preferences before applying the selection process.

2.3. Consensus Model

Initially, in any GDM problem the experts could disagree in their opinions so that consensus
can be viewed as an iterative process, which means that agreement is obtained only after a
number of rounds of consultation. In each round a consensus support system calculates two
consensus parameters [4, 22, 23]: (i) the consensus measure to guide the consensus process
and (ii) the proximity measure to support the group discussion phase of the consensus process.
These measures are computed and used to find out the consensus state of the process at the
three different levels of a fuzzy preference relation: the pairs of alternatives, the alternatives
and the relation levels. This will allows us, for example, to identify which experts are close to
the consensus solution, or in which alternatives the experts are having more trouble to reach
consensus.

The computation of the level of agreement among experts involves necessarily the measure-
ment of the distance or, equivalently, the similarity between their preference values. In the
following, we provide the formal definition of distance and similarity functions as given in [15]:
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Definition 2 (Distance). Let A be a set. A function d : A×A −→ R is called a distance (or
disimilarity) on A if, for all x, y ∈ A, there holds

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, x) = 0 (reflexivity)

Definition 3 (Similarity). Let A be a set. A function s : A × A −→ R is called a similarity
on A if s is non-negative, symmetric, and if s(x, y) ≤ s(x, x) holds for all x, y ∈ A, with equality
if and only if x = y.

The main transforms between a distance d an a similarity s bounded by 1 are [15]:

d = 1− s; d =
1− s
s

; d =
√

1− s; d =
√

2(1− s2); d = arccos s; d = − ln s

In this paper, we use the first transform to go from a distance function to a similarity function.
The similarity function is used for measuring both consensus degrees and proximity mea-

sures. The first ones are calculated by fusing the similarity of the preference values of all the
experts on each pair of alternatives as per the expression (7) below. The second ones are calcu-
lated by measuring the similarity between the preferences of each expert in the group and the
collective preferences, previously obtained by fusing all the individual experts’ preferences.

The main problem is how to find a way of making individual positions converge and, there-
fore, how to support the experts in obtaining and agreeing with a particular solution. To do this,
a consensus level required for that solution is fixed in advance. When the consensus measure
reaches this level then the decision making session is finished and the solution is obtained. If
that is not the case, the experts’ opinions must be modified. This is done in a group discussion
session in which the consensus support system uses the proximity measure to propose a feedback
mechanism based on a set of recommendation rules to support the experts in changing their
opinions. This consensus model has been widely investigated in [2, 13, 22, 25, 27, 28, 37] and it
is represented in Figure 2.

Figure 2: Consensus Model

The computation of consensus degrees is carried out as follows:
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1. The proximity between the preference values provided by each expert, r, and the corres-
ponding preference values of the rest of the experts in the group is measured and recorded

in a similarity matrix, SM r =
(
smr

ij

)
, with

smr
ij = s(pr

ij,pij) (7)

where pr
ij = (prij , . . . , p

r
ij), pij = (p1ij , . . . , p

r−1
ij , pr+1

ij , . . . , pmij ) and s : [0, 1]m−1× [0, 1]m−1 →
[0, 1] a similarity function. The closer smr

ij to 1 the more similar pr
ij and pij are, while

the closer smr
ij to 0 the more distant pr

ij and pij are.

2. A consensus matrix, CM = (cmij), is obtained by aggregating, using an OWA operator
(φ), all the similarity matrices obtained via Equation (7):

∀i, j ∈ {1, . . . , n} : cmij = φ(sm1
ij , . . . , sm

m
ij ) (8)

3. Consensus degrees are defined in each one of the three different levels of a fuzzy preference
relation:

Level 1. Consensus on the pairs of alternatives, cpij . It measures the agreement among
all experts on the pair of alternatives (xi, xj) :

∀i, j = 1, . . . , n ∧ i 6= j : cpij = cmij (9)

Level 2. Consensus on alternatives, cai. It measures the agreement among all experts on
the alternative xi, and it is obtained by aggregating the consensus degrees of all the
pairs of alternatives involving it:

cai = φ(cpij , cpji; j = 1, . . . , n ∧ j 6= i) (10)

Level 3. Consensus on the relation, cr. It measures the global agreement among all ex-
perts, and it is obtained by aggregating all the consensus degrees at the level of pairs
of alternatives:

cr = φ(cai; i = 1, . . . , n) (11)

It was mentioned before that an issue here is that the convergence of the consensus process
towards a solution acceptable by most of the experts could be affected by the particular distance
function implemented to measure the level of consensus. In the next sections we present a
statistical study carried out to ascertain whether the application of different distance functions
produces significant differences in the measuring of the consensus, and also to analyse which
distance functions are better in speeding up the convergence of the consensus process. This
statistical study is based on the use of the Wilcoxon matched-pairs signed-ranks nonparametric
test [36, 45].

3. Statistical Comparative Study: Experimental Design

Given a GDM problem, the similarity function used to measure consensus plays a fundamen-
tal role in the convergence of the consensus process. It is therefore worth conducting research
to ascertain whether or not the use of different similarity functions could affect the consensus
process. Furthermore, if this was the case, the production of recommendations to the group of
experts in the GDM problem on the different strategies available regarding the convergence of
the consensus process based on the implementation of different similarity functions could prove
to be an important decision support tool.

Given two vectors of real numbers a = (a1, . . . , an) and b = (b1, . . . , bn), the following five
distance functions have been considered in our study [6, 7, 15, 48]:
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Manhattan: d1(a,b) =
n∑
i=1

|ai − bi|

Euclidean: d2(a,b) =

√√√√ n∑
i=1

|ai − bi|2

Cosine: d3(a,b) =

n∑
i=1

ai · bi√√√√ n∑
i=1

a2i ·

√√√√ n∑
i=1

b2i

Dice: d4(a,b) =

2 ·
n∑
i=1

ai · bi

n∑
i=1

a2i +

n∑
i=1

b2i

Jaccard: d5(a,b) =

n∑
i=1

ai · bi

n∑
i=1

a2i +
n∑
i=1

b2i −
n∑
i=1

ai · bi

The hypothesis that we are testing in this paper can be stated as follows:

The application of the Manhattan, Euclidean, Cosine, Dice and Jaccard distance
functions in GDM problems do not produce significant differences in the measure-
ment of consensus

Note that d3, d4, and d5 have been satisfactorily applied in vectorial models of information
retrieval by Salton and McGill [44] to measure the similarity of two documents, with the value
of 1 measuring the highest similarity value. This ‘similarity’ interpretation is also taken in this
paper, and therefore d3, d4, and d5 are not subject to the transform mentioned above but d1
and d2 are.

To test the above hypothesis, twelve (12) sets of fuzzy preference relations were randomly
generated for each possible combination of experts (m = 4, 6, 8, 10, 12) and alternatives (n =
4, 6, 8), and the different distance functions were applied in turn to measure consensus at the
three possible levels (pairs of alternatives, alternatives and relation), using the three different
quantifier guided OWA operators presented in Subsection 2.2. All distance functions were
tested in pairs, di vs dj (i = 1, . . . , 4, j = i+ 1, . . . , 5), and therefore we ended having repeated
measurements on a single sample [45].

For each pair of distance functions to compare we have to analyse two related samples. The
usual parametric test to use in these cases is the t test applied to the difference scores. However,
this test requires for its application the assumption of normality and independence distribution
of the difference scores in the population from which the random sample of fuzzy preference
relation is drawn. On the one hand, we consider these assumption unrealistic in our context
as no evidence can be provided to support them, i.e. we do not possess any information that
can lead to the identification of the nature of the population from which the random sample of
fuzzy preference relations is drawn nor we have any knowledge about any of its parameters. On
the other hand, by not requiring these stringent assumptions we can achieve greater generality
with our conclusions. Therefore, we conclude that nonparametric test are most appropriate in
our experimental study [36, 45, 49].

For continuous data and two related samples, the main nonparametric tests available are
the sign test and the Wilcoxon signed-rank test [14, 36, 42, 45, 49]. The sign test calculates
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the differences between two variables and classifies the differences as positive, negative, or
zero (tied). If two variables have the same distribution (null hypothesis), the median of the
differences between the two variable scores is zero, i.e. if the null hypothesis is true we would
expect about half the differences to be negative and half to be positive. The null hypothesis is
rejected if ‘too few’ differences of one sign occur. An alternative test to apply in this context
is the Wilcoxon signed-rank test, which takes into account information from the sign of the
differences and also their magnitude so that they are appropriately ranked in order of absolute
magnitude. Since this test incorporates more information about the data it is more powerful
than the sign test, and therefore preferable to use in our study. In what follows we describe the
Wilcoxon matched-pairs signed-ranks statistical test in detail to understand its application in
our experimental study to ascertain whether the application of the different distance functions
given above produces significant differences in measuring consensus.

Wilcoxon Matched-pairs Signed-ranks Statistical Test. Let X1, X2, . . . , Xn be a random sample
of size n from some unknown continuous distribution function F . Let p be a positive real
number, 0 < p < 1, and let ξp(F ) denote the quantile of order p for the distribution function
F , that is, ξp(F ) is a solution of F (x) = p. For p = 0.5, ξ0.5(F ) is known as the median of F .

A problem of location is set up by testing the null hypothesis H0 : ξp(F ) = ξ0 against one
of the alternatives ξp(F ) > ξ0, ξp(F ) < ξ0 or ξp(F ) 6= ξ0. A problem of location and symmetry
consists of testing the null hypothesis H0 : ξ0.5(F ) = ξ0 and F is symmetric against ξ0.5(F ) 6= ξ0
and F is not symmetric. The Wilcoxon signed-ranks test provides a statistical hypothesis test
which takes into account the magnitude of the difference between the observations and the
hypothesized quantile in order to carry out a problem of location and symmetry.

Let H0 : ξ0.5(F ) = ξ0 be the null hypothesis. Consider the differences Di = Xi − ξ0,
i = 1, 2, . . . , n. Under H0 : (i) the expected number of negative differences will be n/2 and,
(ii) negative and positive differences of equal absolute magnitude should occur with equal prob-
ability. Consider the absolute values |D1|, |D2|, . . . , |Dn| and rank them from 1 to n. Let T+ be
the sum of ranks assigned to those D′is that are positive and T− be the sum of ranks assigned
to those D′is that are negative. Then it is

T+ + T− =
n∑
k=1

k =
n(n+ 1)

2

so that T+ and T− are linearly related and offer equivalent criteria. A large value of T+ indicates
that most of the larger ranks are assigned to positive D′is. It follows that large values of T+
support H1 : ξ0.5(F ) > ξ0. A similar analysis applies to the other two alternatives. So, the
test rejects H0 : ξ0.5(F ) = ξ0 to accept H1 : ξ0.5(F ) > ξ0 if T+ > c1; it rejects H0 to accept
H1 : ξ0.5(F ) < ξ0 if T− > c2; and it rejects H0 to accept H1 : ξ0.5(F ) 6= ξ0 if T+ > c3 or T− > c4,
being c1, c2, c3 and c4 the corresponding critical region values.

Under H0, the common distribution of T+ and T− is symmetric with mean E[T+] =
n(n + 1)/4 and variance var[T+] = n(n + 1)(2n + 1)/24. For large n, the standardised T+
has approximately a standard normal distribution.

In the case of matched-paired data, {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, obtained from the
application of two treatments (in our case – pair of different distance functions) to the same set
of subjects (in our case – the set of random fuzzy preference relations constructed), in order to
test H0 : ξ0.5(FXi−Yi) = ξ0 against one-sided or two-sided alternatives, the Wilcoxon matched-
pairs signed-ranks statistical test is performed exactly as above by taking Di = Xi−Yi− ξ0. In
our study, we want to test whether the application of the different distance function does not
affect significantly the measurement of consensus in GDM, i.e. we are testing a null hypothesis
with a value ξ0 = 0.

We assume that two measures with test p-value under the null hypothesis lower than or
equal to 0.05 (α) will be considered as significantly different; we refer to it as the test being
significant and therefore we conclude that the hypothesis tested is to be rejected.
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4. Statistical Comparative Study: Experimental Results

A total of twelve (12) random GDM problems were generated for each one of the possible
combinations of experts (m = 4, 6, 8, 10, 12) and alternatives (n = 4, 6, 8). Each one of these
random GDM problems was executed three (3) times, each time using one of the three different
OWA operators given in Subsection 2.2 to compute the consensus degrees at the three different
levels of a fuzzy preference relation: the pairs of alternatives, the alternatives and the relation
levels. In the following, we summarise the percentage of cases that were found to be significantly
different according to the Wilcoxon matched-pairs signed-ranks statistical test when all the five
different distance functions were compared in pairs, as per the description given in Section 3.

4.1. Pairs of Alternatives Level

Table 1, depicted in Figure 3, shows the percentage of tests with p-value lower than or
equal to 0.05 (α) for each one the linguistic quantifier guided OWA operators used in our
experimental study. The application of different distance functions to measure consensus at
the level of the pairs of alternatives produces significantly different results in at least 70% of
all possible combinations of all the parameters used in the experiment (number of alternatives,
number of experts and OWA operators). In particular, we observe that when the number of
experts is fixed, the percentage of significantly different results never decreases when the number
of alternatives increases. A similar behaviour is observed with respect to the number of experts,
when the number of alternatives is fixed. There is an exception to this rule for the case of 8
alternatives, where the percentage decreases when we go from 10 to 12 experts.

We also note that there was a combination of distance functions for which the coincidence of
consensus values were highest in their application: d1 vs d2 (Manhattan and Euclidean distance
functions). In the case of the linguistic quantifier “as many as possible”, the Manhattan and
Euclidean distance functions produce no significant differences.

In summary, we conclude that at the level of the pairs of alternatives the measurement of
consensus is not affected significantly if the Manhattan or the Euclidean distance functions are
used, but not for a different pair of distance functions. Obviously, the application of different
distance functions, for which significant variation has been established, could affect the conver-
gence of the consensus process at this level, something that will be discussed in more detail in
Subsection 4.4.

Table 1: Percentage of significantly different results when different distance functions are applied to measure
consensus at the level of the pairs of alternatives

“At least half” OWA

A\E 4 6 8 10 12

4 80% 80% 90% 90% 90%
6 80% 90% 90% 90% 90%
8 90% 90% 90% 100% 90%

“Most of” OWA

A\E 4 6 8 10 12

4 70% 80% 90% 90% 90%
6 70% 70% 90% 90% 90%
8 70% 90% 90% 100% 90%

“As many as possible” OWA

A\E 4 6 8 10 12

4 80% 90% 90% 90% 90%
6 90% 90% 90% 90% 90%
8 90% 90% 90% 90% 90%

4.2. Alternatives Level

Table 2, depicted in Figure 4, shows the percentage of tests with p-value lower than or
equal to 0.05 (α) for each one the linguistic quantifier guided OWA operators used in our
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(a) “At least half” OWA (b) “Most of” OWA (c) “As many as possible” OWA

Figure 3: Graphical representation of Table 1

experimental study at the alternatives level. The application of different distance functions to
measure consensus at the level of the alternatives produces significantly different results in at
least 50% of all possible combinations of all the parameters used in the experiment (number of
alternatives, number of experts and OWA operators). We observe that in most cases the greater
the number of experts, the greater tends to be the percentage of results classed as significantly
different. This analysis is not that apparent when the number of experts is fixed; in fact, in
some cases the effect is the opposite as it can be seen for: (a) the linguistic quantifier “at least
half” and m = 4, 8, 12; (b) the linguistic quantifier “most of” and m = 12; (c) the linguistic
quantifier “as many as possible” and m = 6, 10.

We also note that the pairs of distance functions for which the coincidence of consensus
values were highest corresponded to d1 vs d2 (Manhattan and Euclidean distance functions)
and d3 vs d4 (Cosine and Dice distance functions), although there were combinations where
all distance functions were found to be significant different in the totality of cases: (a) the
linguistic quantifier “at least half” and (n,m) ∈ {(4, 8), (4, 12)}; (b) the linguistic quantifier
“most of” and (n,m) ∈ {(4, 8), (4, 12)}; (c) the linguistic quantifier “as many as possible”
and(n,m) ∈ {(6, 12), (8, 12)}.

In summary, we conclude that the measurement of consensus at the level of the alternatives
does not seem to be significantly affected if the Manhattan or the Euclidean distance functions
are used, nor it is when the Cosine or the Dice distance functions are used; otherwise the contrary
can be asserted. Therefore, at this level, the application of different distance functions, for which
significant variation has been established, could affect the convergence of the consensus process.

Table 2: Percentage of significantly different results when different distance functions are applied to measure
consensus at the level of the alternatives

“At least half” OWA

A\E 4 6 8 10 12

4 90% 70% 100% 90% 100%
6 80% 60% 90% 50% 90%
8 80% 80% 90% 80% 90%

“Most of” OWA

A\E 4 6 8 10 12

4 80% 50% 100% 90% 100%
6 60% 50% 80% 90% 90%
8 80% 80% 90% 90% 80%

“As many as possible” OWA

A\E 4 6 8 10 12

4 90% 90% 80% 90% 90%
6 50% 80% 90% 90% 100%
8 80% 80% 80% 80% 100%
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(a) “At least half” OWA (b) “Most of” OWA (c) “As many as possible” OWA

Figure 4: Graphical representation of Table 2

Table 3: Consensus degree in percentages for all GDM problems at the level of the relation

“At least half” OWA

di\E 4 6 8 10 12

d1 63,08 82,40 91,04 96,45 99,86
d2 64,60 82,82 91,60 96,71 100,00
d3 93,05 93,61 94,53 94,83 94,93
d4 95,96 94,62 94,82 94,91 94,48
d5 81,44 80,71 78,86 79,81 79,89

“Most of” OWA

di\E 4 6 8 10 12

d1 69,49 85,09 92,90 97,22 100,00
d2 67,94 85,25 92,51 96,89 99,71
d3 84,66 84,06 84,69 84,57 85,05
d4 86,59 85,41 85,37 84,76 84,70
d5 69,02 68,12 65,96 67,60 66,94

“As many as possible” OWA

di\E 4 6 8 10 12

d1 73,17 87,12 94,13 97,65 100,00
d2 70,40 86,47 93,27 97,21 99,76
d3 78,66 77,20 76,65 76,74 77,67
d4 80,00 78,06 78,19 77,36 77,64
d5 60,75 59,79 58,50 59,49 58,45

4.3. Relation Level

Table 3, depicted in Figure 5, shows the level of consensus in percentage achieved by the
different distance functions for each GDM problem, showing only the number of experts as the
variable parameter, and for each one the linguistic quantifier guided OWA operators used in our
experimental study. The greater a value in this table the greater the global level of consensus
achieved by the experts in the corresponding GDM problem. The comparison of column entries
could be used to find out which distance function returns the largest values and therefore could
lead to a faster convergence of the consensus process.

From Table 3 we can conclude the following:

1. The Manhattan (d1) and the Euclidean (d2) distance functions increase the global con-
sensus level as the number of experts increases. Also, the values of consensus returned
by both distance functions are quite similar, which was already evidenced by the results
obtained in the pair of alternatives and the alternative levels.

2. The Cosine (d3) and the Dice (d4) distance functions result in fairly similar and stable
global consensus levels regardless of the number of experts. For low number of experts
both tend to produce higher values of consensus than the Manhattan and the Euclidean
distance functions, which reverse when the number of experts is 8 or higher.

3. The Jaccard distance function (d5) produces the lowest global consensus levels, being
fairly stable in value regardless of the number of experts.
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(a) “At least half” OWA (b) “Most of” OWA (c) “As many as possible” OWA

Figure 5: Graphical representation of Table 3

The following conclusions are drawn from the application of the Wilcoxon matched-pairs
signed-ranks statistical test to the differences between the global consensus values:

“At least half” guided OWA operator The Cosine (d3) and the Dice (d4) distance func-
tions never produce significant different global consensus values. Also, the highest con-
sensus values are obtained with these two distance functions when the number of experts
is below 10, otherwise it is the Manhattan (d1) and the Euclidean (d2) distance functions.
The Jaccard distance function d5 results in the smallest consensus values but for the case
of four (4) experts.

“Most of” guided OWA operator Again in this case we have that the Cosine (d3) and the
Dice (d4) distance functions never produce significant different global consensus values.
In most cases, the highest global consensus values are obtained when the Manhattan (d1)
or the Euclidean (d2) distance functions are applied. The Jaccard distance function (d5)
always yields the lowest global consensus values.

“As many as possible” guided OWA operator All distances show to produce significant
different global consensus values. Again, in most cases, the highest global consensus
values are obtained when the Manhattan distance function (d1) or the Euclidean distance
function (d2) are applied. The Jaccard distance function (d5) always yields the lowest
global consensus values.

4.4. Consensus Process Convergence Rules

Based on the above analysis we can draw rules to speed up or slow down the convergence
of the consensus that could prove an important decision support tool in GDM problems.

• The Manhattan (d1) and the Euclidean (d2) distance functions help the consensus process
to converge faster than the rest as they consistently produce the highest consensus values
for almost all possible combinations of number of experts and linguistic quantifier guided
OWA operators.

• The Jaccard distance function (d5) contributes the least to the speed of convergence of
the consensus process.

• The Cosine (d3) and the Dice (d4) distance functions are placed in a mid term position in
terms of helping speed up the convergence of the consensus process.

• The Manhattan (d1) and the Euclidean (d2) distance functions are quite sensitive to
the number of experts, i.e. they produce significant different consensus values when the
number of expert changes.
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Figure 6: Number of consensus rounds necessary for each distance function to reach consensus threshold in a
GDM problem: 8 experts and “most of” guided OWA operator

Figure 7: Distance functions to use for consensus reaching

• The Cosine (d3), the Dice (d4) and the Jaccard (d5) distance functions are quite stable
in the global consensus values they produce with respect to changes in the number of
experts.

To corroborate the above rules, we run a GDM problem with 8 experts using the “most
of” guided OWA operator with the five different distance functions and record the number of
rounds necessary for the consensus process to reach the threshold consensus level acceptable for
the GDM to reach a solution of consensus. This is graphically represented in Figure 6.

Figure 7 summarises the use of the above classification of the distance functions compared in
relation to the speed of convergence of the consensus process towards the acceptable consensus
level by the group of experts in a GDM problem. It seems reasonable that in the early stages
of the consensus reaching process fairly stable distance functions should be used, with the
application of less tolerant distance functions in later stages of the consensus process to speed
up its convergence towards the threshold consensus level.

In the following we illustrate the use of the above rules in one of the examples randomly
generated for the experimental study.

5. Example

Before providing any preferences the group of experts agree on a consensus threshold γ ∈
[0, 1] such that when cr ≥ γ the consensus process will stop and the selection process will
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be applied to obtain the solution of consensus. Otherwise, the consensus process continues
and a (new) discussion round would be necessary for the experts to change preferences in an
attempt to increase their global consensus level. The value γ depends on the particular problem
dealt with. When the consequences of the decision making are of a significant importance, the
minimum level of agreement required should be set as very high. On the contrary, or when it
is urgent to obtain a solution of consensus, this value might not be set very high.

We assume a GDM with four alternatives X = {x1, x2, x3, x4} and four experts E =
{e1, e2, e3, e4}. We will be using the OWA operator guided by the linguistic quantifier “as many
as possible”, with a fixed minimum threshold consensus value of γ = 0.9. We are assuming that
the initial set of individual fuzzy preference relations are:



0.50 0.11 0.23 0.32
0.89 0.50 0.44 0.12
0.77 0.66 0.50 0.21
0.68 0.88 0.79 0.50





0.50 0.65 0.91 0.70
0.35 0.50 0.82 0.63
0.09 0.18 0.50 0.34
0.30 0.37 0.66 0.50





0.50 0.43 0.81 0.64
0.57 0.50 0.72 0.91
0.19 0.28 0.50 0.43
0.36 0.09 0.57 0.50





0.50 0.32 0.41 0.63
0.68 0.50 0.62 0.93
0.59 0.38 0.50 0.81
0.37 0.07 0.19 0.50



As mentioned above, when cr ≥ γthe consensus process will stop and the selection process will
be applied to obtain the solution of consensus. Otherwise, the alternatives and their preference
values with consensus degrees below the global consensus level are identified. A feedback mech-
anism suggests the experts the right direction of the changes if the global consensus is to be
increased. This is done via simple “advice rules” based on a broad comparison between the
individual and collective preferences:

DR.1. If ptij − pcij < 0, expert et will be recommended to increase ptij and decrease ptji in the
same quantity.

DR.2. If ptij − pcij > 0, expert et will be recommended to decrease ptij and increase ptji in the
same quantity.

DR.3. If ptij − pcij = 0, expert et will not receive a recommendation of change for ptij and ptji.

More details can be consulted in [13, 25, 27].

First round. Using the stable Jaccard distance function the consensus degree at the relation
level is 0.43.

Second round. Because the global consensus degree is lower than the threshold consensus level,
experts receive feedback to modify their preference relations. The new fuzzy preference relations
are:



0.50 0.51 0.63 0.32
0.49 0.50 0.44 0.12
0.37 0.36 0.50 0.21
0.68 0.88 0.19 0.50





0.50 0.65 0.91 0.80
0.35 0.50 0.82 0.63
0.09 0.18 0.50 0.34
0.20 0.37 0.66 0.50





0.50 0.43 0.81 0.90
0.57 0.50 0.72 0.91
0.19 0.28 0.50 0.43
0.10 0.01 0.57 0.50





0.50 0.32 0.41 0.70
0.68 0.50 0.62 0.93
0.59 0.38 0.50 0.81
0.30 0.07 0.19 0.50



The Jaccard distance function results in a consensus degree level of 0.53.

Third round. New fuzzy preference relations:



0.50 0.51 0.63 0.32
0.49 0.50 0.60 0.12
0.37 0.40 0.50 0.21
0.68 0.88 0.19 0.50





0.50 0.65 0.91 0.80
0.35 0.50 0.60 0.63
0.09 0.40 0.50 0.34
0.20 0.37 0.66 0.50





0.50 0.43 0.81 0.90
0.57 0.50 0.60 0.70
0.19 0.40 0.50 0.70
0.10 0.30 0.30 0.50





0.50 0.60 0.80 0.70
0.40 0.50 0.62 0.93
0.20 0.38 0.50 0.81
0.30 0.07 0.19 0.50



The Jaccard distance function results in a consensus degree level of 0.597.
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Fourth round. New fuzzy preference relations:



0.50 0.60 0.63 0.32
0.40 0.50 0.60 0.12
0.37 0.40 0.50 0.70
0.68 0.88 0.30 0.50





0.50 0.65 0.91 0.80
0.35 0.50 0.60 0.63
0.09 0.40 0.50 0.70
0.20 0.37 0.30 0.50





0.50 0.60 0.81 0.90
0.40 0.50 0.60 0.70
0.19 0.40 0.50 0.70
0.10 0.30 0.30 0.50





0.50 0.60 0.80 0.90
0.40 0.50 0.62 0.70
0.20 0.38 0.50 0.81
0.10 0.30 0.19 0.50



The Jaccard distance function results in a consensus degree level of 0.691.

Fifth round. New fuzzy preference relations are:



0.50 0.60 0.80 0.50
0.40 0.50 0.60 0.12
0.20 0.40 0.50 0.70
0.50 0.88 0.30 0.50





0.50 0.65 0.91 0.80
0.35 0.50 0.60 0.63
0.09 0.40 0.50 0.70
0.20 0.37 0.30 0.50





0.50 0.60 0.81 0.90
0.40 0.50 0.60 0.70
0.19 0.40 0.50 0.70
0.10 0.30 0.30 0.50





0.50 0.60 0.80 0.90
0.40 0.50 0.62 0.70
0.20 0.38 0.50 0.70
0.10 0.30 0.30 0.50



Using the Cosine distance function we would have had a consensus degree level of 0.876, which
could be considered quite close to the threshold consensus level as for the consensus process
to stop. However, using again the Jaccard distance function we need to continue with the
consensus reaching process as the consensus degree level would be 0.78.

Sixth round. New fuzzy preference relations:



0.50 0.60 0.80 0.90
0.40 0.50 0.60 0.12
0.20 0.40 0.50 0.70
0.10 0.88 0.30 0.50





0.50 0.60 0.80 0.80
0.40 0.50 0.60 0.63
0.20 0.40 0.50 0.70
0.20 0.37 0.30 0.50





0.50 0.60 0.81 0.90
0.40 0.50 0.60 0.70
0.19 0.40 0.50 0.70
0.10 0.30 0.30 0.50





0.50 0.60 0.80 0.90
0.40 0.50 0.62 0.70
0.20 0.38 0.50 0.70
0.10 0.30 0.30 0.50



The Cosine distance function results in a consensus degree level of 0.917, the consensus reaching
process stops and the selection process is activated to derive the solution of consensus.

6. Conclusion

In this paper we have considered some of the most widely used distance functions used in
consensus process for GDM problems. We have presented detailed comparative experimental
study based on the use of the nonparametric Wilcoxon statistical test. The results are inter-
esting in that our experimental study has shown that the compared distance functions produce
significant different results in most of the GDM problems carried out. The analysis of the re-
sults allows for the draw of a set of rules for the application of the compared distance functions
that can be used to control the convergence speed of the consensus process using the compared
distance functions.

In future, we will address this problem from a theoretical point of view by conducting an
in-depth investigation to find out the intrinsic features of the distance functions that can be
responsible for the significant differences in their application.
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