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Abstract 

This work is devoted to the problem of optimizing scores for anti-spam filters, which is 

essential for the accuracy of any filter based anti-spam system, and is also one of the 

biggest challenges in this research area. In particular, this optimisation problem is con-

sidered from two different points of view: single and multiobjective problem formula-

tions. Some of existing approaches within both formulations are surveyed, and their 

advantages and disadvantages are discussed. Two most popular evolutionary multiob-

jective algorithms and one single objective algorithm are adapted to optimisation of the 

anti-spam filters’ scores and compared on publicly available datasets widely used for 

benchmarking purposes. This comparison is discussed, and the recommendations for the 

developers and users of optimizing anti-spam filters are provided.   

 

 

Keywords: anti-spam filters, multiobjective optimisation, evolutionary computation, 

genetic algorithms. 

 



1. Introduction 

With the increasing proliferation of information and communication technologies and 

the growing information worldwide exchanges through Internet, making Internet ser-

vices and resources controllable against malicious usage became vital.  The growing of 

connections to exchange large amounts of data (such as videos, music, etc.) supported 

by Internet network introduced the need of improving both effectiveness (objectives 

oriented), and efficiency (optimal usage of resources for achieving specific goals). Re-

cent developments on high-speed computer networks (by using Fiber-to-the-x (FTTx) 

technologies, such as Fiber-to-the-curb, Fibre-to-the-building, Fiber-to-the-house (Idate, 

2012)) allowed fast exchanging of large volumes of information. However, the huge 

amount of spam contents distributed through networks has limited their benefits and 

currently, a lot of Internet physical resources, technical managers and end users time are 

wasted for deleting spam messages, closing spam web banners, and downloading un-

wanted spam information.  

Spammers found and developed a wide variety of forms to distribute illegal and fraudu-

lent advertisements. Due to the continuous changing of techniques used to distribute 

spam, anti-spam filters become obsolete in a short time period and need to be updated 

on a regular base. This situation created preconditions for the development and wide 

spreading of professional anti-spam filtering services. Aiming at customer satisfaction 

and accuracy of emails classification, the modern anti-spam filtering systems are desired 

to have the following properties: (i) ability of continuous updating of a default anti-

spam filter and adding new rules to it with respect to customer preferences and (ii) abil-

ity to stay up to date with the latest spam spreading techniques. Behind these services 

there are teams of experts examining emails and updating anti-spam filters behaviour to 

detect the newest spam contents. Current filtering frameworks (including SpamAssassin 



(The Apache SpamAssassin Project, 2011) or Wirebrush4SPAM (Pérez-Díaz, Ruano-

Ordas, Fdez-Riverola & Méndez, 2012b) support filter customisation by using a filter-

ing description syntax based on message fields and contents criteria.  

Hundreds of enterprises develop and commercialise anti-spam filtering services. Most 

of these services are based on signup (gathering information about username, pay meth-

ods, mail transfer agent server and target domain) and change mail exchange (MX) reg-

ister (Mockapetris,1987) of the target domain (AgentSPAM, 2012). Providing continu-

ous updating of filtering services at affordable cost makes these services very attractive 

to small and medium-sized enterprises (SMEs). 

From a technical point of view, the generation of rules to address new trends of spam 

emails is an easy process. However, discovering the relative importance of (thousands 

of) rules to assign individual scores for weighting each rule included in a filter, is a 

complex setup process, performed usually without any guidance or systematic support. 

This task should be done automatically, taking into account the need of possible reas-

signment of existing rules scores, when a new rule is added to the system. Currently, 

this task has been addressed by the techniques surveyed in (Basto-Fernandes, Yevseye-

va & Méndez, 2012), such as evolutionary algorithms (The Apache SpamAssassin 

Group, 2010; The Apache SpamAssassin Group, 2009a), logistic regression (Dreiseitl 

& Ohno-Machado, 2002), neural network trained with error back propagation by gradi-

ent descent (Perceptron) (The Apache SpamAssassin Group, 2004) and Grind-

stone4SPAM (SING Group, 2007; Méndez, Reboiro-Jato, Díaz, Díaz & Fdez-Riverola, 

2012). However there is still the need of solving existing drawbacks such as: (i) the ab-

sence of automatic customization processes to avoid rules execution when are useless in 

certain domains (Pérez-Díaz, Ruano-Ordas, Fdez-Riverola & Méndez, 2012b), (ii) the 

selection of the appropriate rule weights to handle user requirements and business area 



(SING Group, 2007; Méndez, Reboiro-Jato, Díaz, Díaz & Fdez-Riverola, 2012) and 

finally, (iii) the elimination of the irrelevant filtering rules in order to avoid their execu-

tion and hence the reduction of the time needed for accomplish the filtering process 

(Pérez-Díaz, Ruano-Ordas, Fdez-Riverola & Méndez, 2012b). 

In this work, we test the suitability of using different evolutionary computation ap-

proaches for automatic scores setting of rules in an anti-spam filter. 

The rest of the paper is structured as follows: Section 2 introduces the target problem 

and surveys the techniques used for optimizing scores of anti-spam filters. Section 3 

describes the experimental protocol and the experimental results are provided in section 

4. Finally, the conclusions and future work are drawn in section 5. 

2. Optimization of anti-spam filters 

Recently, the open source SpamAssassin filtering system gained popularity among 

SMEs users and became a reference in the anti-spam filtering domain. Its popularity is 

not only due to its public availability to research and development (becoming a disad-

vantage being available to spammers), but also because of its performance. SpamAssas-

sin introduced to the anti-spam filtering domain two major features (Pérez-Díaz, Ruano-

Ordas, Fdez-Riverola & Méndez, 2012b): (i) the possibility of modelling the filter op-

eration as a combination of rules of different types working together and (ii) the ability 

of updating the filter behaviour by introducing new rules into the system. These features 

have also been widely exploited to develop other advanced anti-spam filtering solutions 

such as Symantec Brightmail (Symantec Corporation , 2012) or McAffee SpamKiller 

(McAfee, 2012), addressed mainly to leading big companies and also some SMEs.  

As we can see from (Pérez-Díaz, Ruano-Ordas, Fdez-Riverola & Méndez, 2012b) and 

(Pérez-Díaz, N., Ruano-Ordás, D., Méndez, J.R., Gálvez., Juan F., & Fdez-Riverola F, 

2012) SpamAssassin is a plugin middleware and framework for the execution and de-



velopment of new user defined anti-spam filters and techniques. Each SpamAssassin 

technique can be combined in a filter depending on user needs. These techniques are 

implemented in separate plug-ins. Each plug-in is treated as a different entity avoiding 

dependencies between plug-ins and guaranteeing high modularity to the whole anti-

spam system.  Moreover, this feature provides a great flexibility to the platform allow-

ing easy creation, manipulation and deployment of new customized anti-spam filtering 

techniques. 

Table 1 introduces a brief description of different types of filtering techniques provided 

by default in SpamAssassin, extracted from /usr/share/perl5/Mail/SpamAssassin/Plugin 

directory. 

**** Table 1 here **** 

As we can see from Table 1, the SpamAssassin techniques are divided into four differ-

ent groups: (i) responsible for executing an intelligent analysis of message contents, (ii) 

reliable for querying collaborative networks and servers sharing information about spam 

senders and deliveries, (iii) in charge of validating senders legitimacy and finally, (iv) 

regular expressions and parsers for checking email structure and syntax. Using each 

type of technique on its own is not efficient and therefore, some combinations of tech-

niques of different types are applied. Keeping in mind this idea, a SpamAssassin filter is 

combination of techniques through rules.  

A SpamAssassin filter is mainly composed by a collection of rules and a threshold 

called required_score. Each rule contains a logical test (that works as a trigger condition 

and uses one of the available techniques) and a score. During the operation of the spam 

filter, a message is classified as spam when the amount of scores belonging to triggered 

rules is greater or equal than required_score. Due to this particular form of design fil-



ters, the adjustment of rule scores and required_score parameters emerged as a difficult 

optimization challenge.  

Traditionally, scores setting and tuning is performed manually by system administrators 

based on their experience gained after years of applying a try-a nd-error approach. Con-

stant race against spammers that invent new ways to distribute spam, leads to the need 

of automatic optimisation of scores setting process that would assist or even substitute 

system administrators in this task. For automatic scores setting, the advanced optimisa-

tion techniques could be used. Recent survey of literature on this subject (Basto-

Fernandes, Yevseyeva & Méndez, 2012) has revealed some approaches proposed by 

researchers to optimisation of the scores setting for filtering rules. 

For the sake of our research proposal contextualization, we present in section 2.1 some 

perspectives on the anti-spam filtering problem formulation. In section 2.2 and 2.3 we 

present the state of the art on single and multiobjective anti-spam filtering techniques. 

2.1. Latest advances on filter optimisation 

Naturally, the formulation of the scores setting optimisation problem is bi-objective: a 

typical user would wish to minimize both, the number of spam messages not identified 

by anti-spam filtering techniques, called false negative (FNs), and the number of legiti-

mate messages classified as spam by mistake, called false positives (FPs) (as opposite to 

correctly classified spam messages, true positives (TPs), and correctly classified legiti-

mates (TNs)). A business email is one of extreme cases of anti-spam systems setup with 

such objectives, where the number of FPs and FNs should be tuned to have lowest pos-

sible rate of lost legitimate messages (basically equal to zero), usually at the expenses of 

higher FN classifications. On the other extreme is Content Management Systems 

(CMSs) devoted to entertainment, e.g. similar to news ticker on TV that can dismiss 

some legitimate messages keeping or even improving the relevance and interest on their 



usage, while the acceptance of any spam message is not allowed. Probably, the majority 

of the cases between these two extremes would still be of high user interest for a variety 

of the problem areas. 

However, as it is still often done with multiobjective problems, the formulation was 

initially simplified to a single objective problem by weighting objectives according to 

their importance. Such objective function used for evaluating efficiency of the anti-

spam filters is called a performance index (Androutsopoulos, Koustias, Chandrinos, 

Paliouras & Spyropoulos, 2000). Different performance indexes were developed and the 

list of them can be found in (The Apache SpamAssassin Group, 2009b). 

Assuming that keeping legitimate messages is much more important than having some 

spam messages to arrive at the email-box, Androutsopoulos, Koustias, Chandrinos, 

Paliouras & Spyropoulos (2000) suggested the Total Cost Ratio (TCR) performance 

index. TCR is the most often used metric that shows the relation between the total num-

ber of spam messages (nspam) in the testing corpus and the sum of FPs and FNs taking 

into account the relative importance of legitimate messages loss ( TCR ) when compared 

to the non detection of spam messages. TCR is calculated as follows: 

TCR

nspam
TCR =

fp+ fn 
 (1) 

 

Selecting the value of the TCR  ratio is really ad hoc approach and depends on the prob-

lem to be solved and subjective preferences of the decision maker. In email spam filter-

ing, typical values for TCR  are 1, 9 and 999. For instance, for the filtering of business 

related email messages, losing any legitimate message is critical, and receiving some 

spam messages, even though uncomfortable, is allowed; that leads to high value for 

TCR . The maximal value of TCR provides the set of scores for the anti-spam filtering 

rules that is optimal for the current problem. 



Other performance measures were developed taking into account several usually con-

flicting objectives. For instance, two other important performance measures, precision 

and recall, are usually optimized simultaneously, since they complement each other 

(van Rijsbergen, 1979). Recall is able to compute the ability of classifying spam e-mails 

(higher values of recall imply more spam detected) while precision calculates the com-

petence of a given filter in generating low FP errors (higher values of precision imply a 

lower FPs rate): 

nspam - fn
precision =

nspam - fn+ fp
            

nspam - fn
recall =

nspam
 (2) 

f-score (van Rijsbergen, 1979) combines the values of recall and precision in the inter-

val [0-1], and takes value 1 only if the number of FP and FN errors generated by the 

filter is 0. Equation (3) shows how this measure is calculated. 

2

2

2* *
(1 )*

( * )

precision recall
f =

precision recall
 





 (3) 

 

The f-score with β=1can be interpreted as a weighted average of the precision and re-

call, reaching its best score at 1 and worst score at 0. The balanced f-score (β=1) is 

the harmonic mean of precision and recall. The f-score with β=2 set higher weight to 

recall than to precision, but the f-score with β =0.5 has opposite settings. 

Other popular performance measures are proportions of the FPs (FP%) and FNs (FN%), 

when compared to the number of the known-to-be ham (nham) and spam (nspam) mes-

sages, respectively:  

100*%
nham

fp
=FP  100*%

nspam

fp
=FN  (4) 

Batting average (Graham-Cumming, 2004) is popular method to show the connection 

between %FP and %FN measurements. It is built taking into account the hit rate and 

strike rate, where the former represents the proportion of detected spam messages and 

the latter the FP errors average. 



Another possible way of reducing multiobjective problem to a single objective one is by 

moving some objectives into a set of constraints for the problem. For instance, when 

minimizing the number of spam messages arriving at an email-box (objective function) 

without losing a single legitimate message (constraint).  

Due to the large and constantly growing number of filtering techniques to be applied in 

ensemble for anti-spam classification, both single and multiobjective formulations of 

this optimisation problem have combinatorial nature. Solving such problems to optimal-

ity by exact methods is time-consuming and hard, if possible, due to the large number of 

possible combinations of scores values for different filtering rules. That is why typically 

approximation methods, also called metaheuristics, are used to find near optimal and 

often optimal solutions in a feasible, suitable for the user time.  

2.2. Single objective evolutionary techniques for optimizing anti-spam filters 

The single objective problem can be presented as an optimisation (minimization is as-

sumed) of some real-valued objective function f(y), evaluated in decision space with a 

vector of decision variables,  1 2, ,..., ny y y y  such that iy  1,...,i n . Some con-

straints may be imposed on the decision variables by the domain definition of objective 

function or by subjective preferences of the decision maker. The constraints of both 

equality and inequality type can be defined as inequality ones: ( )f y c , where c is a 

constant value.  

For anti-spam systems the scores vector is a vector of decision variables y of length n 

(the total number of filtering rules) with each variable iy corresponding to a score of one 

rule. Considering optimisation of some performance measure, e.g. TCR, such scores 

values for filtering rules should be adjusted to optimize the value of the selected per-

formance measure, e.g. maximize the TCR value. For making reliable conclusions about 

the scores obtained, tests are usually done on the large enough sets of messages, called 



corpora. Moreover, cross-validation schemes are used to address training issues relative 

to some techniques used by rules (e.g., Naïve Bayes). 

Evolutionary algorithms (EAs) appear to be very powerful metaheuristics and gain 

popularity in industrial applications including those of combinatorial nature. The effec-

tiveness of EAs is due to working with not a single solution but a population of poten-

tial solutions (also called individuals or chromosomes). EAs try to balance convergence 

and diversity dilemma in optimisation, by guiding the search towards possible multiple 

optimal solutions (natural for multimodal optimisation, and its particular case, multiob-

jective optimisation). In this way, EAs are able to study complex search spaces and 

functions by preserving the population from premature convergence to a local optima or 

undesired solutions. 

The first attempt to automatic optimisation of filtering rules scores was made in the 

Apache SpamAssassin Project. A single objective evolutionary algorithm, also called 

SpamAssassin Genetic Algorithm (SAGA) was used to optimize scores of filtering rules 

in SpamAssassin versions 2.5 and 2.6. Even though there is commented source code of 

SAGA available at (The Apache SpamAssassin Group, 2010), it is confusing due to 

many changes done by several developers. SAGA adapts an open-source code on ge-

netic algorithm; PGAPack (Levine, 1995), to anti-spam filtering rules scores setting. 

PGAPack is a parallel genetic algorithm library written in ANSI C that uses the Mes-

sage Passing Interface (MPI).  

The main disadvantage of SAGA is the extremely high running time required for setting 

scores, between 6 and 24 hours, on high-end machines reported in (The Apache 

SpamAssassin Group, 2004). This fact does not allow updating scores more often that at 

each release of SpamAssassin. Ideally, the possibility of performing such updates 



should be provided for any user of SpamAssassin. The need for the fast scores setting 

encouraged SpamAssassin developers to search for alternatives to SAGA. 

As an attempt to improve the optimisation of scores in SpamAssassin and speeding it 

up, another version of EA was implemented in the framework of the open-source 

Grindstone4SPAM (SING Group, 2007; Méndez, Reboiro-Jato, Díaz, Díaz & Fdez-

Riverola, 2012) developed at the University of Vigo. In addition, Grindstone4SPAM 

aims at saving administrators time while adding rules, optimizing the speed of Bayes 

database and offline filter evaluation. 

The Grindstone4SPAM EA has been preconfigured to use a population of 200 individu-

als with the stopping criterion set to 100 generations. The individuals of initial popula-

tion are generated randomly in the range of scores [-5; 5], although the possibility to 

generate scores from some given (e.g. by expert) configuration of filtering rules scores 

is provided. In the later case, the single individual is used as a seed for creating as many 

individuals as needed by some modifications with the help of random generator (having 

uniform distribution by default). In particular, this individual is modified for creating 

199 new members of initial population according to the following sequence of opera-

tions. First, the number of genes to be altered is selected randomly between 1 and the 

maximal number of genes. Then, the position of the gene to be altered is selected ran-

domly among those not yet modified. For the gene selected for alteration, the sign of 

alteration (addition “+” or negation “-”) is selected randomly. Then, the value of the 

change to be applied with the selected earlier sign is selected randomly among those in 

the range [-5; 5] with the step 0.5. From the initial population 10 best individuals are 

selected as parents for the next generation and from them 190 new offspring are repro-

duced as follows. First, from 10 best individuals, 2 parents are selected randomly. Then, 

the selected parents are used for creating a new individual by one of the following op-



erations selected randomly: (i) to mutate a first parent; (ii) to mutate a second parent; 

(iii) for each filtering rule score (gene) to set a value equal to the average value between 

two parents; (iv) for each filtering rule score (gene) to set a value equal to minimal value 

between two parents; (v) for each filtering rule score (gene) to set value equal to the 

maximal value between two parents; (vi) just copy a first parent; (vii) just copy a second 

parent. The probabilities of three first operations are twice higher when compared to 

probabilities of the last four ones. 

SpamAssassin version developers at headquarters in USA were also looking for  alter-

natives to SAGA, and in the version 3.0.0 they have tried to substitute SAGA by sim-

plest version of Artificial Neural Network (ANN), called Perceptron (The Apache 

SpamAssassin Group, 2004) trained with error back propagation by gradient descent. 

There was some role back to SAGA, but the most recent versions of SpamAssassin are 

using Perceptron that takes around 8 minutes to perform optimisation of the anti-spam 

filtering rules scores, maintaining the quality of solution similar as SAGA achieves 

(Dinter, 2004). Fast scores optimisation makes possible customisation of the scores set-

ting process by users of SpamAssassin whenever they need it (e.g. when adding new 

rules to the anti-spam filter). 

In Perceptron for SpamAssassin (The Apache SpamAssassin Group, 2004), scores of 

filtering rules are represented by Perceptron input weights. Initially, the weights values 

are generated randomly within predefined ranges, and are updated during training on a 

set of already classified messages of corpus. The Perceptron learning process terminates 

after a predefined number of iterations or when the predefined minimal value of the 

classification error is reached. The weights or score values of filtering rules obtained at 

the final iteration are fixed for classification of new (corpora of) messages. For training 

Perceptron in SpamAssassin, the stochastic gradient descent optimisation method is 



used. The logarithmic sigmoid (logsig) is used as an activation function, which deter-

mines when the Perceptron fires overcoming predefined threshold. By default the least 

square error is used as a transfer function (objective function in optimisation terms), but 

possibility of evaluating entropic error is also encoded. 

In a struggle for the time efficiency another approach from statistics, logistic regression 

(LR), was suggested to perform scores setting for anti-spam filtering rules in (Findlay & 

Birk, 2007). Actually, LR can be considered as a generalization of ANN, see e.g. (Drei-

seitl & Ohno-Machado, 2002), where LR and ANN performances are also compared to 

other popular classification algorithms from the machine learning field, and where main 

differences between them are highlighted. When compared to parametric LR with coef-

ficients and intercept interpreted parameters, ANNs are considered to be semi-

parametric or non-parametric, since it is not always possible to interpret their parame-

ters (weights) (Dreiseitl & Ohno-Machado, 2002). 

In (Findlay & Birk, 2007) two different algorithms, Iteratively Re-weighted Least 

Squares Least Angle Regression (IRLS-LARS) and Truncated Regularized Iteratively 

Reweighted Least Squares (TR-IRLS) are presented. Comparative analysis of these al-

gorithms with SAGA demonstrated superiority of TR-IRLS and its fast running time 

similar to that of Perceptron. TR-IRLS is superior to SAGA when Bayes and network 

tests are disabled and when Bayes tests are disabled and network tests are enabled; 

however, it performs worse than SAGA when Bayes tests are enabled and network tests 

are disabled and when both Bayes and network tests are enabled. 

2.3. Multiobjective evolutionary techniques for optimizing anti-spam filters 

Simplification of the multiobjective form of the scores setting optimisation problem 

with one of the approaches discussed in the previous subsection may look attractive and 

intuitive, but usually is not reliable. Since relative importance values of objectives (also 



called weights) given by different users (or even for the same user) may vary signifi-

cantly. This fact leads to significantly different final trade-off solutions obtained by a 

single objective algorithm. 

To obtain the set of all trade-offs between several objectives, multiobjective approaches 

should be used. In multiobjective problem formulation, several independent and usually 

conflicting objectives are optimized simultaneously. The result of multiobjective opti-

misation is rarely a single solution, it is rather a set of compromise solutions that present 

trade-offs between objectives, called Pareto optimal set or simply Pareto set. The map-

ping of Pareto set solutions to their corresponding evaluation on all objectives is called 

Pareto front. The solutions belonging to the Pareto set are optimal in a sense that mov-

ing from one solution to its neighbour on the Pareto front improves one or more objec-

tives, but only at the cost of deteriorating other(s). 

In case of the multiobjective optimisation, m objective functions 1 2( , ,..., )mf f f f  are 

optimized simultaneously (minimization of all functions is assumed), such that fk, 

 1,...k ,m  is a real-valued function of a vector of decision variables y. Some con-

straints may be imposed on the decision variables ( )k kf y c , where ck is a constant 

value. The Pareto set of optimal solutions is constructed using the Pareto dominance 

relation. This relation assumes that one solution y is better (having smaller values as-

suming minimization of objectives) than the other one y'
m(y, y' R ) , if it is strictly bet-

ter on at least one objective and not worse on the rest of objectives: y y'  (y dominates 

y'),  1,... :f( ) ( )'

k kk ,m y f y    and  1,... :f( ) ( )'

l ll m y < f y  .  

Typically, only a single solution among those belonging to the Pareto set should be se-

lected as the final. It may be addressed directly by the decision maker according to his 

or her preferences or with the help of a decision aiding tools (Belton & Stewart, 2002). 



Figure 1 shows an example of multiobjective presentation of the anti-spam classifica-

tion problem with 3 different filtering rules F1, F2, F3. The 6 points represent 6 differ-

ent configurations (with different scores for each filtering rule) of this 3-filtering rules 

anti-spam system. All 6 configurations are evaluated in 2-objectives space with number 

of FP and FN errors objectives to be minimized. The 3 black points with minimal values 

on these objectives define Pareto front and corresponding Pareto set of best configura-

tions. 

**** Figure 1 here **** 

The choice of techniques for multiobjective formulation of the scores setting optimisa-

tion for anti-spam filtering problem was in the favour of EAs, called multiobjective evo-

lutionary algorithms (MOEAs), due to their collective learning nature that allows per-

forming simultaneous or parallel search for good solutions. This property is particularly 

important for the multiobjective optimisation problems with several Pareto optimal so-

lutions. The main difference and main difficulty of MOEAs, when compared to single 

objective EAs, is the calculation of fitness for each individual. In principle, such fitness 

should allow aggregating evaluations of a solution on multiple objectives into a single 

value. Even if fitness is not calculated directly by MOEA, the non-dominated solutions 

should be considered “fitter” and should be preferred to the dominated ones for both 

selection of parents and selection of the next population. At the same time, the diversity 

of solutions chosen at the selection stages should be preserved. 

Currently, only one multiobjective approach was found in the literature on optimisation 

of scores for anti-spam systems (Dudley, 2007; Dudley, Barone & While, 2008) called 

Multi-Objective Spam Filtering (MOSF). It is a multiobjective genetic algorithm based 

on a well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb, Pratap, 

Agarwal & Meyarivan, 2002) and adapted to setting scores for SpamAssassin filtering 



rules. When compared to the original NSGA-II, different selection scheme is used (Fon-

seca & Fleming, 1993) and variation (crossover and/or mutation) operators are adapted 

to the problem area. There was no justification given in favour of the chosen selection 

scheme, and there is no evidence on the priority of this scheme when compared to the 

original NSGA-II selection scheme in the literature. 

In our research, two most popular MOEAs were selected for optimizing scores of 

SpamAssassin filtering rules, just mentioned NSGA-II (Deb, Pratap, Agarwal & 

Meyarivan, 2002) and Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler, 

Laumanns & Thiele, 2002). Both methods belong to the group of elitist Pareto-based 

MOEAs. It is due to the fact that they incorporate Pareto dominance relation directly 

into their selection schemes and preserve the non-dominated solutions found so far (this 

effect is called elitism). Keeping track of the best solutions found and passing them to 

the subsequent generations guaranties that at least a part of offspring population will be 

of the quality not worse than that of the parents.  

In NSGA-II at each iteration the population is sorted according to the non-dominated 

sorting procedure suggested by Goldberg (Goldberg, 1989). The procedure consists of 

selecting all non-dominated solutions and assigning the first rank to them. After remov-

ing the first-rank solutions from the population, the non-dominance relation is applied to 

the rest of population; the non-dominated solutions obtained at this stage are assigned 

with the second rank and removed from further consideration. The process is repeated 

until the whole population is sorted. For preventing premature convergence (e.g., to the 

local optima) the diversity of the population is preserved with crowding distance tech-

nique. It is calculated for each individual of the same rank with respect to its two closest 

neighbours in the objective space. Individuals located in the most crowded regions (with 

the smallest values of the crowding distance) are discarded.  



The binary tournament is used in the selection of parent solutions for mating or repro-

duction of offspring from parents by crossover and mutation operators. For setting up 

binary tournament, two members are selected from entire population at random for the 

competition. Then two winners of such tournaments compete against each other and the 

winner goes to the mating pool, from which parents are selected for crossover at ran-

dom. By default NSGA-II uses polynomial mutation and simulated binary crossover for 

real-value vector representation. The next generation is selected from merged popula-

tions of parents and offspring based on non-dominated sorting and crowding distance 

evaluation for individuals belonging to the same front as described above. 

SPEA2 inherits elitism and archiving introduced in its predecessor SPEA (Zitzler & 

Thiele, 1998). After each iteration of both, SPEA and SPEA2, the archive is updated by 

adding new non-dominated solution and removing dominated ones. In SPEA2, the fixed 

size archive is maintained by fill it with dominated solutions with best fitness when the 

number of non-dominated solutions is not enough, or truncating non-dominated solu-

tions with k-nearest neighbours clustering method (Dreiseitl & Ohno-Machado, 2002) 

when there are more non-dominated solution than need in archive.  

For assigning fitness, SPEA2 calculates rank called strength for each individual in both 

the archive and the population as a number of individuals in the union of the archive 

and the population that the individual dominates. Then, the fitness is assigned to each 

individual of the population as a sum of strengths of all individuals in both the archive 

and the population that dominate it. The fitness of an individual is increased by its “den-

sity” value that is estimated based on k-nearest neighbour method. When compared to 

NSGA-II, the binary tournament with replacement selection (that allows selecting the 

same individual for the tournament) is used for selecting mating parents in SPEA2.  



NSGA-II and SPEA2 outperformed SPEA on a number of benchmark problems, and on 

higher dimensions SPEA2 outperformed NSGA-II (Zitzler, Laumanns & Thiele, 2002). 

3. Experimental protocol 

For setting up a protocol for testing efficiency of the selected optimisation algorithms, 

two major choices were made (i) of dataset for testing the algorithms, and (ii) of per-

formance measures used for efficiency evaluation of each of the algorithms. For anti-

spam filter optimisation using EAs it means selecting a corpus of messages to be used 

for classification (in two classes: spam or legitimate), and choosing among large amount 

of EAs performance measures. 

In subsection 3.1 and 3.2 we describe the options made with respect to the test dataset 

selection and two protocol comparison schemes for the purpose of NSGAII, SPEA2 and 

GrindStone4SPAM algorithms performance assessment. 

3.1. Corpus selection 

When designing experiments for a problem domain, it is a good practice to consider 

performance of the algorithms on typical tests as well as rare but still possible data 

and/or real-world cases. For anti-spam classification the tests could be performed on the 

sets of messages, also called corpora, already classified manually by users. Therefore, 

several researches and organizations have manually compiled and shared their own col-

lection of emails in order to test the suitability and efficiency of new filtering tech-

niques. 

A thorough analysis of corpora available in Internet is outlined in (Pérez-Díaz, Ruano-

Ordas, Fdez-Riverola & Méndez, 2012a). Table 2 presents a summary of the most suit-

able corpora for our experiments. As we can observe, each corpus contains distinct 

characteristics, such as proportions of ham and spam messages, single and multi-domain 



membership that are essential for validating the new anti-spam filtering techniques pro-

posed. 

**** Table 2 here **** 

All corpora listed in Table 2 follow the RFC 2822 (Resnick, 2001) format specification. 

Such specification facilitates the analysis of the message content and grants the access 

to stored information. It is required that corpora contain both spam and legitimate 

emails. Moreover, when selecting corpora for tests we should keep in mind that me-

dium-sized corpora are the most suitable for saving computational resources without 

compromising statistical significance of results. These features are the reason for the 

wide usage of SpamAssassin corpora in previous research works. Keeping in mind these 

conditions and in order to assure backward reproducibility of results, we have selected 

SpamAssassin corpora for learning and testing stages of our experiments protocol. 

3.2. Design of experiments 

This subsection outlines the measures used to compare optimisation methods considered 

in this work. To this end, the following tune-up algorithms will be compared: (i) Grind-

stone4SPAM, (ii) NSGA-II, and (iii) SPEA2. The protocol includes two different com-

parison schemes: (i) performance analysis and (ii) optimized filter benchmarking. 

For the first comparison scheme, we plot Pareto fronts in order to visualize the effi-

ciency of each analysed optimisation method. The obtained results provide a visual 

comparison of optimisation abilities of each algorithm.  

Due to the stochastic nature of EAs, their comparison is not trivial, since results of not a 

single but multiple runs should be compared. The difficulty is related to the fact that 

comparing results of even two single runs of MOEAs leads to comparison of two Pareto 

fronts that is trivial only in case of domination of all solutions of one Pareto front over 

another one. Even more difficult becomes comparison of multiple runs of one MOEA to 



those of another MOEA, and results in comparison of areas covered by all solutions of 

resulting Pareto fronts. For two and three objectives, plotting resulting Pareto fronts 

allows obtaining rough pictures of the location of such areas, and we will use such im-

ages for initial visual comparison of algorithms performance in addition to more ad-

vanced tools for MOEAs comparison discussed in subsection 4.1. 

Opposite to the first scheme, the second comparison scheme involves a separation of the 

training (learning) and testing message sub-sets, known as cross-validation in the classi-

fication domain research area, for assessing the performance achieved by the proposed 

algorithms. As shown in Figure 2, this scheme comprises two different fragments: (i) 

the creation of the training and learning datasets and (ii) the application of the obtained 

datasets in order to generate the improved rules scores and verify their suitability.  

**** Figure 2 here **** 

To facilitate the understanding of the second comparison scheme, we have included in 

Table 3 the fold-division process carried out for each experiment fragment of cross-

validation process. As shown in Table 3, we chose a medium-sized corpus in order to 

minimize the overtraining drawbacks existing in big-sized datasets.  

**** Table 3 here **** 

In order to measure the performance of the proposed filter benchmarking scheme, we 

used the following optimization measures introduced in subsection 2.1: (i) percentage of 

FPs and FNs, (ii) total cost ratio, (iii) recall, and (iv) precision.  

The next section shows in detail the results achieved by the execution of the two com-

parison schemes, defined by the experimental protocol. 

4. Experimental results 

For testing the selected algorithms, Grindstone4SPAM, NSGA-II and SPEA2, accord-

ing to both comparison schemes, we adopted the SpamAssassin default configuration. 



In particular, the threshold is set to 5 and scores range are selected in the interval [-5; 5]. 

SpamAssassin public mail corpus 2005 (The Apache SpamAssassin Group, 2005) is the 

dataset used in all experiments. NSGA-II (Deb, Pratap, Agarwal & Meyarivan, 2002) 

and SPEA2 (Zitzler, Laumanns & Thiele, 2002) default configurations are taken as ref-

erence configurations for comparisons and results analysis. The same configuration of 

parameters is set for both NSGA-II and SPEA2 on their common parameters. Popula-

tion size is set to 100, number of function evaluations to 25000, number of independent 

runs of the algorithms with random seeds on the same problem instance to 30, binary 

tournament selection operator, polynomial mutation operator, mutation probability 

1.0/number_of_decision_variables, mutation distribution index 20.0, SBX crossover 

operator, crossover probability 0.9, crossover distribution index 20.0, are set the same 

for both algorithms. Archive size is set to 100, which is specifically defined for SPEA2 

(parameter non-existent in NSGA-II). 

Grindstone4SPAM default configuration described in subsection 2.2 is used, 19000 

function evaluations and 30 independent runs of the algorithms with random seeds on 

the same problem instance were performed. Grindstone4SPAM single objective func-

tion was set to TCR with TCR  assigned to value 1 (for all runs), meaning equally im-

portance of avoiding both FN and FP classifications. 

NSGA-II and SPEA2 were performed with jMetal (Durillo & Nebro, 2011), an optimi-

sation framework for the development of different multiobjective metaheuristics in 

Java, and Grindstone4SPAM original implementation developed in C by its authors was 

used for comparative analysis. Due to the difference in the implementation languages 

and types of optimization problem formulation (single or multiobjective) used, but as-

suming similar number of function evaluations in all tests, we consider reasonable to 

perform qualitative analysis of the solutions obtained as a result of algorithms simula-



tion according to the two comparison schemes presented, rather than comparing compu-

tational time spent by algorithms execution. 

4.1. Performance analysis 

In this subsection we compare two most used general purpose algorithms from the mul-

tiobjective optimisation population-based metaheuristics group (NSGA-II (Deb, Pratap, 

Agarwal & Meyarivan, 2002), SPEA2 (Zitzler, Laumanns & Thiele, 2002), and a very 

recent, single objective genetic algorithm for anti-spam classification optimisation, de-

veloped at the University of Vigo (SING research group), named Grindstone4SPAM 

(SING Group, 2007; Méndez, Reboiro-Jato, Díaz, Díaz & Fdez-Riverola, 2012). We 

based our comparison  strategy on the approach proposed in (López-Ibáñez, Paquete 

& Stützle, 2012). First, we describe briefly why we followed this approach, and, second, 

we analyse the outcomes of the simulations performed. 

Most of the known approaches for summarizing and comparing multiobjective optimi-

sation algorithms, with respect to solutions quality, are based either on direct examina-

tion of non-dominated sets resulting from the optimisation process, or scalar quality 

indicators such as the hypervolume (Zitzler & Thiele, 1998). Since direct examination of 

results proved to be cumbersome and difficult to achieve for algorithms performance 

comparison, and scalar quality indicators can only measure specific, limited quality as-

pects, other approaches providing good trade-offs between these two extremes were 

introduced. In (López-Ibáñez, Paquete & Stützle, 2012) the empirical attainment func-

tion (EAF) is proposed as the means for summarizing both outcomes of multiple runs of 

an algorithm and also to illustrate the differences of two algorithms outcome. The at-

tainment function computes the probability that an arbitrary objective vector is attained 

(dominated or equal) in a single run of a particular algorithm (Grunert da Fonseca, Fon-



seca & Hall, 2001). This is done by estimation, using results from several runs of an 

algorithm.  

In (Fonseca & Fleming, 1996) the notion of attainment surface was proposed. It defines 

the boundary that splits the objective space in the region of vectors attained by the out-

comes of the algorithm, and the region of vectors that are not (e.g. the median attain-

ment surface delimits the region attained by 50 percent of the runs). The plotting of at-

tainment surfaces (e.g. first quartile, median, etc.) summarizes the behaviour of an algo-

rithm and can be used for algorithms comparison purposes. In (López-Ibáñez, Paquete 

& Stützle, 2012) the examination of differences between EAFs for algorithms behaviour 

and performance comparison is proposed. The difference of the estimated probability 

values of two algorithms (first algorithm minus second algorithm) at a certain point in-

dicates a better performance of one algorithm over another at that point. Positive and 

negative differences are plotted separately, and the magnitudes of the differences be-

tween the EAFs are encoded using different shades of grey, the darker is a point, the 

larger is the difference. 

Figure 3 to Figure 6 show the simulation outcomes with the NSGA-II, SPEA2 and 

Grindstone4SPAM algorithms configurations described at the beginning of this section.  

**** Figure 3 here **** 

Figure 3 represents the plots of NSGA-II (i) and SPEA2 (ii) attainment surfaces for 30 

independent runs, showing the best, median and worst percentiles of attainment surfaces 

for both algorithms. 

**** Figure 4 here **** 

Figure 4 provides visual information to compare NSGA-II (i) and SPEA2 (ii) results 

(attainment surfaces) with Grindstone4SPAM single objective best results. In general 

Grindstone4SPAM presents better results than NSGA-II and SPEA2 for the minimiza-



tion of FPs, while NSGA-II and SPEA2 reveal better results towards the minimization 

of FNs, however, at the cost of bigger numbers of FPs. 

**** Figure 5 here **** 

Figure 5 shows the EAFs associated to NSGA-II (i) and SPEA2 (ii) algorithms. Points 

in the graphics are assigned a gray level according to their probability (gray level en-

codes the value of the EAF), and attainment surfaces are also shown in both plots. 

Lower lines represent the best set of points attained over all runs of both algorithms and 

upper lines the set of points attained by any of the runs (differences between the algo-

rithms are shown within these two lines). Dashed lines correspond to the median at-

tainment surface of each algorithm. 

**** Figure 6 here **** 

Figure 6 shows the location of the differences between the EAFs of the two algorithms. 

The difference is encoded in a grey scale and the attainment surfaces are plotted simi-

larly to Figure 5. The gray level encodes the magnitude of the observed difference. 

On the left it is shown the objective space regions where NSGA-II performs better than 

SPEA2. NSGA-II performs significantly better (between 20% and 40% better) towards 

the minimization of FPs. On the right it is shown that SPEA2 does not perform better 

than NSGA-II in any region of the objective space. 

4.2. Optimized filter benchmarking 

In this subsection, we compare the accuracy achieved during the execution of each op-

timisation algorithm, NSGA-II, SPEA2 and Grndstone4SPAM, based on the cross-

validation analysis described in subsection 3.2. Table 4 presents a global summary 

showing in detail the amount of hits (TNs and TPs) and errors (FNs and FPs) achieved 

by using each algorithm. 

**** Table 4 here **** 



As we can observe from Table 4, NSGA-II shows better performance with respect to 

smaller number of FP errors. From other point of view, Figure 7 summarizes informa-

tion included in Table 4 using percentage evaluations of FP and FN errors. 

**** Figure 7 here **** 

As we can see from Figure 7, MOEAs (especially NSGA-II) achieved a great level of 

accuracy (99.45 percent). Moreover, Figure 7 also shows that NSGA-II optimisation 

process provided the best results obtained by the optimised filter: it achieved the small-

est level of FP errors and the highest rate of true hits ))(( OKTNsTPs  . Grind-

stone4SPAM presents the lowest level of FNs at the cost of having the worst true hits 

value ( ( ))TPs TNs OK . 

We also used recall and precision measures (see section 3.1) to compare the analysed 

algorithms. Figure 8 provides a graphical comparison of the achieved results. 

**** Figure 8 here **** 

As we can see from Figure 8, Grindstone4SPAM achieved the greatest recall scores. 

However, this algorithm presented the worst precision scores against all considered al-

ternatives. We also found that NSGA-II achieved the best recall-precision ratio. 

In order to get a unified view of the filtering performance achieved by all analysed op-

timisation algorithms, we combined recall and precision scores using f-score and bal-

anced f-score measures for accuracy evaluation. Results are shown in Table 5. 

**** Table 5 here **** 

As we can observe from Table 5, f-score with  = 1 (balanced f-score) results by 

NSGA-II are better than those obtained when using the other alternatives. Moreover, 

Grindstone4SPAM achieved the best evaluation when using 1.5 and 2 as  values, cor-

responding to the user preference of having lower values of FN classifications. 



Finally, we have executed a performance comparison using a cost sensitive point of 

view. To this end, we used TCR measure to assess filter effectiveness assuming differ-

ent FPs-FNs cost scenarios. Figure 9 shows a TCR benchmark using TCR equal to 1, 9 

and 999. 

**** Figure 9 here **** 

As we can see from Figure 9, TCR scores achieved by filters optimized using NSGA-II 

are clearly higher for any cost configuration. Finally, we used batting average metrics to 

compare the performance of all analysed algorithms. Table 6 summarizes the scores for 

each optimisation algorithm. 

**** Table 6 here **** 

As we can see from Table 6, NSGA-II holds the best strike rate (capability of avoiding 

FP errors), while Grindstone4SPAM has the ability to achieve the highest sensibility 

rate (capability of detecting spam messages).  

4.3 Results analysis 

Performance analysis scheme described in subsection 4.1 shown that NSGA-II outper-

forms SPEA2 in minimizing both the number of FNs and FPs objectives, and Grind-

stone4SPAM in minimizing FNs objective, while Grindstone4SPAM outperforms 

NSGA-II and SPEA2 in minimizing FPs objective. On the other hand, optimized filter 

benchmarking scheme discussed in subsection 4.2, shown Grindstone4SPAM better 

performance in avoiding FN classifications by highest results on recall, balanced f-score 

with β = 1.5 or β = 2 and batting average hit rate. However, NSGA-II achieves better 

performance in minimizing FP classifications, corresponding to better metrics of accu-

racy, precision, f-score with β =1 (balanced f-score), TCR1, TCR9, TCR999 and batting 

average strike rate.  



In other words, while subsection 4.1 reveals that Grindstone4SPAM performs signifi-

cantly better towards the minimization of FPs when compared to two multiobjective 

algorithms, the results from subsection 4.2 indicate the best potential of NSGA-II to 

avoid FP errors, against Grindstone4SPAM highest sensitivity to detect spam messages. 

The Grindstone4SPAM accuracy changed from experiments in subsection 4.1 (without 

cross-validation) to the experiments in subsection 4.2 (with cross-validation), contrast-

ing to the more stable classification behaviour shown by NSGA-II, lead to the conclu-

sion that Grindstone4SPAM suffers from over-fitting effects (Sarle, 1995) when com-

pared to the more stable NSGA-II classification outcome (higher generalization ability), 

within the anti-spam classification domain. 

Next section presents the conclusions drawn from our work as well as future research 

directions for improving the optimisation of current anti-spam filters. 

5. Conclusions and future work 

In this work, optimisation of the anti-spam filtering system was analysed from single 

and multiobjective points of view. A detailed literature survey has shown potential of 

the evolutionary approaches when applied to this domain and lead to the selection of 

three evolutionary algorithms for performance evaluation comparison. Two most widely 

used multiobjective evolutionary algorithms, NSGA-II and SPEA2, were compared 

with a single objective evolutionary algorithm, Grindstone4SPAM, which was devel-

oped by one of the authors. NSGA-II revealed the most promising results among the 

three algorithms, taking into account the overall set of performance metrics most used 

in evolutionary algorithms comparison, namely empirical attainment function, and anti-

spam research domain, namely percentage of correctly classified against wrongly classi-

fied messages, recall, precision, f-score, TCR and batting average. Comparison of ex-



periments following two schemes, with and without fold-cross validation, demonstrated 

higher generalization ability of NSGA-II when compared to Grindstone4SPAM. 

Although MOEAs (NSGA-II and SPEA2) provide a variety of optimal solutions (Pareto 

optima), in contrast to single objective algorithms (Grindstone4SPAM) that obtain only 

one optimum, this feature of MOEAs was not fully exploited in this work. The focus on 

comparing MOEAs with single objective Grindstone4SPAM required a more con-

strained comparison framework, not benefiting the full exploration of MOEAs variety 

of near-optimal solutions generated along the various objective space dimensions. 

Although most of the state of the art MOEAs use a generational scheme, recent propos-

als using a steady-state scheme have been developed and studied. While in the genera-

tional scheme the algorithm creates a new population of individuals from an old popula-

tion, using the typical genetic operators, in the steady-state scheme typically only one 

new individual is created and tested for becoming (or not) a new member of the popula-

tion at each step of the algorithm. 

Steady-state versions of NSGA-II (Nebro & Durillo, 2009) and especially S Metric Se-

lection Evolutionary Multiobjective Algorithm (SMS-EMOA) (Beume, Naujoks 

& Emmerich, 2007) have been studied and shown higher performance when compared 

to their generational scheme counterparts, in several benchmarking scenarios. The im-

proved quality of the resulting approximations of the Pareto front and better conver-

gence properties of these algorithms are achieved at the cost of higher computation time 

and computational resources. In future work, particular attention will be given to the 

recently developed MOEAs such as steady-state version of the NSGA-II and SMS-

EMOA. 
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Method Filter Type Technique Plug-in name Description 

Content-based 

Naïve Bayes (NB) 

(Metsis, Androutsopoulos 

& Paliouras, 2006; 

Androutsopoulos, 

Koustias, Chandrinos, 

Paliouras 

& Spyropoulos, 2000) 

Bayes.pm 
Calculate the probability of an email being spam 

by computing NB probability. 

Language Guessing TextCat.pm Guesses the language of the received message. 

Collaborative 

Vipul´s Razor  

(Prakash & Ritter, 2007) 
Razor2.pm 

Distributed, collaborative, spam detection and 

filtering network.  

Pyzor  

(Tobin, 2009) 
Pyzor.pm 

Collaborative, networked system to detect and 

block spam using digests of messages. 

Distributed Checksum 

Clearinghouses  

(Rhyolite Software, 2000) 

DCC.pm 
Collaborative, networked system to detect and 

block spam using checksums of messages. 

DNS-based Blackhole 

List (RBL)  

(Levine,2010) 

DNSEval.pm 

Lists of server Internet Protocol (IP) addresses 

from Internet Service Providers (ISPs) whose 

customers are responsible for the spam and from 

ISPs whose servers are hijacked for spam relay. 

SpamCop  

(Cisco Systems, 2010) 
SpamCop.pm 

Free spam reporting service, allowing recipients 

of Unsolicited Bulk Email (UBE) and 

Unsolicited Commercial Email (UCE) to report 

offenders to the ISPs senders. 

Domain-

authentication 

Sender Policy Framework 

(SPF)  

(Wong & Schlitt, 2006) 

SPF.pm 
Is able to detect message spoofing by verifying 

sender IP addresses. 

DomainKeys Identified 

Mail (DKIM)  

(Allman, Callas, Delany, 

Libbey, Fenton & 

Thomas, 2007) 

DKIM.pm 

DKIM implements sender verification scheme 

using Public Key Infrastructure (PKI) 

mechanisms. 

RFC2822  

structure and 

syntax 

Regular Expressions 

(REGEX) 

MIMEEval.pm 

Allows regular expression rules to be written 

against Multipurpose Internet Mail Extensions 

(MIME) (Freed & Borestein, 1996a; Freed & 

Borestein, 1996b; Moore, 1996; Freed & 

Klensin, 2005a; Freed & Klensin, 2005b, Freed 

& Borenstein, 1996c) headers in the message. 

MIMEHeader.p

m 

Performs regular expressions tests against MIME 

headers. 

URIEval.pm 
Checks and evaluates message URI (Uniform 

Resource Identifier) type. 

Content parsers 

BodyEval.pm 
Checks the correctness of the message body 

structure. 

HTMLEval.pm 

Checks the structure of HyperText Markup 

Language (HTML) code embedded inside the 

message. 

 

Table 1



Collection name 

message source 
percentage of 

legitimate emails 

percentage 

of spam 

emails 

total 

number 

of 

messages 

SpamAssassin  

(The Apache SpamAssassin Group, 2005) 

Public forums and  

user donations  
69% 31% 6047 

Junk-Email  

(Orăsan & Krishnamurthy, 2002) 
Multiple domains 0% 100% 1.563 

Bruce Guenter (Guenter, 1998) Own contributions 0% 100% 171000 

SING (SING Group, 2005) University environment 69.7% 39.3% 20130 

CSDMC2010 (CSMINING Group, 2010) ICONIP 2010 dataset 68.1% 31.9% 4327 

2005 
TRECSpam  

(Text REtrieval conference, 2009) 
Multiple domains 

43.0% 57.0% 92189 

2006 35.0% 65.0% 37822 

2007 33.5% 66.5% 75419 

Enron-Spam corpus  

(Metsis, Androutsopoulos & Paliouras, 

2006) 

Multiple domains 37.0% 63.0% 52076 

Static ECUE Spam (ECUE, 2011) Individual user 50.0% 50.0% 5000 

 

Table 2



 
  SpamAssassin corpus 

 
Step name corpus ratio ham messages spam messages 

F
ir

st
 

fr
a

g
m

e
n

t 

Test instances  sizecorpus _
10

1  415  189  

Filter optimisation  sizecorpus _
10

9  3735  1701 

S
e
c
o

n
d

 

fr
a

g
m

e
n

t 

Train Bayes   sizecorpus _
10

8  3320  1512  

Train Bayes test  sizecorpus _
10

9  3735 1701 

 

Table 3



System FNs FPs TNs TPs 

Grindstone4SPAM 17 42 6909 2381 

NSGA-II 31 20 6931 2367 

SPEA 2 33 22 6929 2365 

 

Table 4



System 

f-score 

 =1  =1.5  =2 

Grindstone4SPAM 0.987761875 0.989735883 0.990844777 

NSGA-II 0.989341693 0.988467716 0.987978963 

SPEA 2 0.988505747 0.987632509 0.987144169 

 

Table 5



System 

Batting average 

Hit rate Strike rate 

Grindstone4SPAM 0.99291076 0.006042296 

NSGA-II 0.98707256 0.002877284 

SPEA 2 0.98623853 0.003165012 

 

Table 6
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