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Abstract: Nowadays, in the world, about half of the population can receive information and 

exchange their opinions with others in online environments (e.g. the Internet); while the other half 

obtain information and exchange their opinions in offline environments (e.g. face to face) (see 

eMarketer Report, 2016). The speed at which information is received and opinions are exchanged 

in online environments is much faster than in offline environments. To model this phenomenon, in 

this paper we consider online and offline as two subsystems in opinion dynamics, and there is 

asynchronization when the agents in these two subsystems update their opinions. We show that 

asynchronization strongly impacts the steady-state time of the opinion dynamics, the opinion 

clusters and the interactions between the online subsystem and offline subsystem. Furthermore, 

these effects are often enhanced the larger the size of the online subsystem. 
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1.Introduction 

1.1  Opinion dynamics is a research tool widely used to investigate the opinion evolution in 

many collective phenomena. The study of opinion formation goes back as far as French 

(1956). According to French’s study, some opinion dynamics models based on different 

communication regimes had been proposed, such as DeGroot model (DeGroot, 1974; Berger, 

1981), Friedkin and Johnsen model ( Friedkin & Johnsen, 1990) and bounded confidence 

model ( Deffuant & Weisbuch, 2000; Hegselmann & Krause, 2002).  

1.2  Among these opinion dynamics models, the bounded confidence model has been frequently 

used in recent years. The bounded confidence model assumes all agents are bounded 

confident, i.e. each agent updates her/his opinion by averaging the agents’ opinions that 
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differ from his/her own no more than a certain confidence level. In the Deffuant & Weisbuch 

model (i.e., DW model), agents follow a pairwise-sequential updating mechanism, while in 

the Hegselmann & Krause model (i.e., HK model), each agent updates his/her opinion by 

averaging all opinions in their confidence sets. In other words, the DW model and the HK 

model are very similar but differ mainly in the communication regime (Urbig et al. 2008). 

Following the DW and HK models, some interesting extended studies have been conducted 

(Dong et al., 2016; Weisbuch, 2004; Fortunato et al., 2005; Lorenz, 2006; Morarescu & 

Girard, 2011; Ceragioli & Frasca, 2012; Liang et al., 2016; Mathias et al., 2016).  

1.3  In most existing opinion dynamics models, all agents update their opinions at the same time 

according to the established rules, i.e. the evolution of opinions is synchronous. The general 

theory of asynchronous systems has been supported in the specialized literature (Bertsekas & 

Tsitsiklis, 1989; Chen et al., 2015; Dong & Zhang, 2014; Frommer & Szyld, 2000; Kozyakin, 

2003). Particularly, Alizadeh & Cioffi-Revilla (2015) studied the asynchronous updating 

schemes in the bounded confidence model in an elegant and concise way. They applied four 

different asynchronous updating schemes including random, uniform, and two state-driven 

Poisson updating schemes, and compared the effect of different activation regimes (i.e. the 

timing of activation). 

1.4  With the development of the Information and Internet technology, there exists a very 

common asynchronous phenomenon in online and offline interactions. According to 

eMarketer Report (2016), in the world about half of the population can receive information 

and exchange their opinions with others in an online environment (e.g. the Internet), while 

the other half obtain information and exchange their opinions in an offline environment (e.g. 

face to face). The Internet technologies (e.g. Facebook, Myspace, etc.) enable online agents 

to spread and share information in a more rapid way than the offline agents (Bakshy et al., 

2012; Song and Yan, 2015; Zhao et al., 2011). For the above reasons, in this paper we 

consider online and offline as two subsystems in opinion dynamics, and assume that there is 

an asynchronization when the agents in these two subsystems update their opinions. Then, 

based on the HK bounded confidence model, we investigate the opinion dynamics with 

asynchronous interactions between online and offline agents. We focus on how the 



 

asynchronization in online and offline interactions impacts the dynamics of opinion 

formation.  

1.5 Through extensive agent-based simulations and analyses, we unveil that asynchronization in 

online and offline interactions strongly impacts the dynamics of opinion formation. 

Specifically, asynchronization lengthens the steady-state time of opinion evolution, and leads 

to the absorption phenomena between the online and offline subsystems.  

1.6  The remainder of this paper is arranged as follows. Section 2 introduces the HK bounded 

confidence model. Section 3 then proposes the asynchronous opinion dynamics model with 

online and offline interactions in the framework of bounded confidence. Next, Section 4 

discusses the influences of asynchronism and the size of the online subsystem in the proposed 

model. Finally, Section 5 presents the concluding remarks. 

2. The Hegselmann & Krause Bounded Confidence Model 

2.1  In this section, we briefly introduce the HK bounded confidence model. Since the DW 

model and the HK model are rather similar, if we adopt the DW model as the basic model, a 

similar asynchronous opinion dynamics model will be conducted. 

2.2  Let {1,2,..., }A N=  be a set of the agents. Let [0,1]t
ix ∈  be the opinion of agent i  at 

time t , and thus 1( ,..., ,...., )t t t t T
i NX x x x=  be the opinion profile at time t . Let ε  be the 

homogeneous confidence level of the agents.  

2.3  The process of the HK model consists of three steps as follows:  

The first step is to determine of the confidence set. The confidence set ( , )tI i X  of the agent 

i  at time t  is determined as: 

{ }( , ) |t t t
i jI i X j x x ε= − ≤  .                        (1) 

2.4  Then, the second step is to calculate of the weights that one agent assigns to other agents. Let 

t
ijw  be the weight of agent i  assigns to agent j  at time t , i.e.,   
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where # ( , )tI i X  denotes the number of agents in the confidence set ( , )tI i X . 

2.5  Finally, the third step is to determine the updated opinions for each agent. The updated 

opinion 1t
ix +  is modeled as a weighted arithmetic mean of opinions in the confidence set, 

i.e.,  

1

1

N
t t t
i ij j

j
x w x+

=

=∑ .                            (3) 

3. The asynchronous opinion dynamics model in online and offline 

interactions  

3.1  In this section, we propose the asynchronous opinion dynamics model in online and offline 

interactions based on the HK bounded confidence model. In the same way as the HK model 

in Section 2, let {1,2,..., }A N=  be a set of the agents, [0,1]t
ix ∈  be the opinion of agent 

i  at time t , and ε  be the homogeneous confidence level of the agents. 

3.2  In the proposed model, all the agents are divided into two types: the online agents, and the 

offline agents. All online agents constitute the online subsystem and all offline agents 

constitute the offline subsystem. For notational simplicity, let onA  be the set of online 

agents, and offA  be the set of offline agents, where on offA A A=  and 

on offA A =∅ .  

3.3  Based on existing studies (Bakshy et al., 2012; Song and Yan, 2015; Zhao et al., 2011), we 

assume that the speed of updating opinions for the online agents is much faster than that    

for the offline agents, and let T  be the degree of asynchronization between the online and 

offline subsystems, where 1T ≥  and T ∈Ν . Then, let {0,1,2,...}onT = and 

{0, , 2 ,...}offT T T=  be two sets of discrete time, where off onT T⊆ . When time  

ont T∈  and offt T∉ , only the online agents will update their opinions, and when 

offt T∈ , both the online and offline agents will update their opinions. And thus 1T =  

represents synchronization and 2T ≥  asynchronization. Obviously, the larger the T  

value is, the more asynchronization between the agents in online and offline subsystems. 



 

3.4  Next, we propose the asynchronous opinion dynamics model with online and offline 

interactions in the framework of bounded confidence based on the following two cases: 

Case A: 1 ont T+ ∈  and 1 offt T+ ∉ . In this case, for any agent oni A∈ , he/she only 

communicate with other online agents at time t . And the confidence set ( , )A tI i X  of the 

agent oni A∈  is determined as: 

{ }( , ) | ,A t t t on
i jI i X j x x j Aε= − ≤ ∈ .                 (4) 

Then, the weight t
ijw  of agent i  assigns to agent j  at time t  can be calculated as: 
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In addition, any agent offi A∈ , he/she does not communicate with other agents at time t  

and thus he/she will not update his/her opinion at time 1t + . i.e., 1t t
i ix x+ = . 

Above all, in this case, the updated opinion 1t
ix +  is calculated as: 

1
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Case B: 1 ont T+ ∈  and 1 offt T+ ∈ . In this case, the agent i A∈  can communicate with 

both the online and offline agents at time t . Thus, the confidence set ( , )B tI i X  is 

determined as: 

{ }( , ) | ,B t t t
i jI i X j x x j Aε= − ≤ ∈ .                (7) 

Then, t
ijw  of agent i  assigns to agent j  at time t  is determined as: 
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In this case, the updated opinion 1t
ix +  is calculated as:  
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Based on Cases A and B, for any agent i  at time 1 ont T+ ∈ , the updated opinion 

1t
ix +  is calculated as:  
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where t
ijw  is determined by Eqs. (4) and (5) in the case of oni A∈  and 1 offt T+ ∉ ,

    or is determined by Eqs. (7) and (8) in the case of i A∈  and 1 offt T+ ∈ . 

3.5 Similar to the HK model, the confidence level ε  plays a key role in our model. We set 

1000N = , with half being online agents and the other half offline agents, and the initial 

opinions of all agents are uniformly and randomly distributed in [0,1] . We use Eq. (10) to 

proceed with the evolution of opinions, and analyze the steady-state consensus ratio from 

1000 independent realizations. As shown in Figure 1, the consensus ratio increases 

under different T  values, when the ε  value increases. In Figure 1 we can 

clearly see that all agents can almost surely reach a consensus if the ε  value 

is larger than 0.27 under different T  values. 

 
Figure 1: the steady-state consensus ratio under different ε  and T  values from 1000 
independent realizations. 

4. The influences of asynchronism in the opinion formation 



 

4.1  In this section, we focus on how asynchronization impacts the dynamics of opinion 

formation in online and offline contexts based on six criteria, the steady-state time, the 

number of opinion clusters, the number of pure online/offline opinion clusters and the 

absorption of the online /offline subsystem. 

(1) The steady-state time *T  is defined as the minimum time it takes all agents' opinions 

to reach a stable state. The results regarding the steady-state time *T  are included in 

Appendix A.  

(2) The opinion clusters appear when the stable state is finally reached in opinion dynamics. 

The number of opinion clusters NCS  is defined as the number of different opinion clusters 

among the agents in the stable state. Larger NCS  values indicate more different opinions 

among the agents in the stable state. In particular, 1NCS =  indicates all agents reach a 

consensus finally. 

(3) The pure online opinion cluster is defined as an opinion cluster in which all agents are 

online agents, and the pure offline opinion cluster is defined as an opinion cluster in which all 

agents are offline agents. on
NPCS  and off

NPCS  denote the number of pure online opinion 

clusters and pure offline opinion clusters in the stable state, respectively.  

(4) The absorption of the online subsystem is defined as the capacity that the online 

subsystem attracts the offline agents, and the absorption of the offline subsystem is defined as 

the capacity that the offline subsystem attracts the online agents. In this paper, onL  and 

offL  are the indexes to measure the absorption of the online subsystem and the offline 

subsystem in the stable state, respectively. And the formal definitions of onL  and offL  are 

in Sections 4.10 and 4.11.  

4.2  Let # / #onp A A=  be the percentage of the online agents in all agents, denoting the size 

of the online subsystem. Without loss of generality, we assume that the former N p×  

agents (i.e., { }1,2,...,i N p∈ × ) are the online agents and the latter (1 )N p× −  agents 

(i.e., { }1, 2,...,i N p N p N∈ × + × + ) are offline agents. We set 1000N = , the initial 

opinions of all agents are uniformly and randomly distributed in [0,1] . In addition, the 

homogeneous confidence level of the agents ε  is selected in [0,0.3] . Then, using Eq. (10) 

proceeds with the evolution of opinions, obtaining the average *T , NCS , on
NPCS , off

NPCS , onL  

and offL  values under different T , p  and ε  values from 1000 independent realizations. 



 

4.3  In the simulation, when 1t tX X δ+ − ≤ , we consider that the opinions of all agents reach 

the stable state, where 
1
max ii n

X x
≤ ≤

= , and we set 310δ −= . Notice that a different norm of 

the vector X , such as 
1

n

i
i

X x
=

=∑ , does not influence the main results in this paper. 

Meanwhile, let ,i jx x  be the opinions of agents ,i j  when the opinions reach the 

stable state. We assign the agents ,i j  to a same cluster when i jx x d− < , and we 

set 210d −=  (the pseudo-code of calculating opinion clusters is included in Appendix B).  

4.4 Although we only represent the results when [1,100]T ∈  and 1000N =  in the paper, the 

results are similar when setting 100T >  and different N  values (e.g., 500N = , 2000 

and 3000).   

4.5  The number of opinion clusters 

 

Figure 2: the average NCS  values under different T  and ε  values from 1000 independent 

realizations, where [1,100]T ∈ . 

    Figure 2 illustrates how the number of opinion clusters changes along with the confidence 

level and the degree of asynchronization. Increasing the confidence level yields an increase in 

communication among the agents, this translates to a decrease of the number of opinion 

clusters. Meanwhile, the number of opinion clusters increases as T  increases from 1T =  

to 10T = , and such an effect is more evident for the large size of online agents ( 80%p = ) 

and for low confidence levels. The asynchronization delays the update time of offline agents, 



 

and thus the agents will form more opinion clusters because of fewer communications 

between the online and offline agents. However, with further increments of T , the evolution 

of online agents’ opinions will rapidly reach a stable state among them before the offline 

agents start to update opinions, which stops the increase of the number of opinion clusters.  

4.6  Figure 3 further helps understanding the impact of the size of online agents on the number of 

opinion clusters. Figure 3 clearly indicates that a large size of online agents leads to a large 

number of opinion clusters, and such an effect is more evident for 10T ≥ . On the one hand, 

the online agents cluster faster than the offline agents, with online agents rapidly reaching a 

stable state in general when 10T ≥ , and thus the communications between the online and 

offline agents barely change when 10T ≥ . On the other hand, when the size of offline agents 

is smaller, the offline agents will have fewer communications to form more opinion clusters. 

Furthermore, low confidence levels clearly enhance these effects. 

 
Figure 3: the average NCS  values under different T  and p  values from 1000 

independent realizations, where [1,100]T ∈ . 

4.7  The number of pure opinion clusters 

 
Figure 4: The average off

NPCS  values under different T  and ε  values from 1000 



 

independent realizations, where [1,100]T ∈ . 

 
Figure 5: The average off

NPCS  values under different T  and ε  values from 1000 

independent realizations, where [1,10]T ∈ . 

A pure offline cluster can be observed easily. For a fixed 0.13ε ≤ , the number of pure 

offline clusters increases from 1T =  to 10T =  (observe more details in Figure 5) and 

nearly stops increasing when the degree of asynchronization exceeds 20 as per Figure 4. The 

number of pure offline clusters increases from 1T =  to 10T =  because of fewer 

communications between the online and offline agents. However, as T  increases above this 

threshold, it is observed that the online agents rapidly reach a stable state among them, which 

stops the increase in the number of pure offline clusters. When 0.13ε > , we barely observe 

pure offline clusters except a small area in the upper right-hand corner of the third subfigure 

of Figure 4.  

4.8  Figure 6 further helps understanding the impact of the size of online agents on the number of 

pure offline clusters. Indeed, Figure 6 shows that a large size of online agents leads to a large 

number of pure offline clusters, and such an effect is more evident for 10T ≥  as explained 

above. Furthermore, low confidence levels clearly enhance these effects. 

 

Figure 6: The average off
NPCS  values under different T  and p  values from 1000 

independent realizations, where [1,100]T ∈ . 



 

4.9 However, we find that pure online clusters are hardly observed in the simulation, and this 

phenomenon implies that online clusters can always attract a certain number of offline agents. 

Next, we investigate the absorption of the online and offline subsystems to further study the 

interactions between them. 

4.10 The absorptions of the online and offline subsystem 

    Assume that there are z  opinion clusters in the stable state, denoted as 1 2, ,..., zc c c . Let 

on
il  and off

il  denote the number of online agents and the number of offline agents in 

opinion cluster ic , respectively. If on off
i il l>  then ic  is referred to as an online opinion 

cluster, while if  on off
i il l<  then ic  is referred to as an offline opinion cluster.  

4.11 In the following, we define onL  and offL  to measure the absorption of the online 

subsystem and the offline subsystem, respectively. 
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where ( ) 1, 0
( ) 0, 0
x x
x x

Ξ = >
Ξ = ≤

 and 2z ≥ . When 1z = , i.e., all agents reach a consensus, onL  

and offL  are both set by 0.5. Clearly it is , [0,1]on offL L ∈ . onL  measures the ratio of the 

offline agents that are absorbed in online opinion clusters, while offL  measures the ratio of 

the online agents that are absorbed in offline opinion clusters. The larger the value of onL  

( offL ), the stronger the absorption of the online subsystem (the offline subsystem).  

4.12 Figures 7 and 8 illustrate how the absorption of the online subsystem and the absorption of 

the offline subsystem change along with size of online subsystem and the degree of 

asynchronization, respectively. When the size of the online subsystem increases, the 

absorption of the online subsystem becomes strong, while the absorption of the offline 

subsystem becomes weak. Meanwhile, the impact of T  on onL  and offL  depend on p  

and ε . For low confidence levels (e.g., 0.03,0.13ε = ), when T  increases, onL  

increases and offL  decreases for 50%p < , while their direction reverse for 50%p > . 

However, such an effect is not evident for large confidence levels (e.g., 0.23ε = ) due to 



 

the numerous communications among agents that are generated in these cases.  

 

Figure 7: the average value of onL  under different T , p  and ε  values from 1000 

independent realizations, where [1,100]T ∈ . 

 

Figure 8: the average value of offL  under different T , p  and ε  values from 1000 

independent realizations, where [1,100]T ∈ . 

4.13  According to eMarketer Report (2016), in the world about half of the population are online 

agents, consequently we pay more attention on the case of 50%p =  in the following 

Figures 9-11. onL  highlights the centre area of Figure 9. This observation can be explained 

as follows. When T  is small, it is difficult for the online agents to form some online 

opinion clusters; when T  is large, the online agents will rapidly reach a stable state and 

thus the number of offline agents that are influenced by the online agents will decrease 

accordingly. Meanwhile, if the confidence level ε  is small, the online agents only 

communicate with a very limited number of the offline agents, and if the confidence level is 

large, the offline agents can simultaneously attract strongly the online agents. So, when ε  

and T  are both in the middle size, the online subsystem shows a stronger absorption 



 

capacity.  

4.14 Meanwhile, onL  highlights the upper right-hand corner of Figure 9. This observation can be 

explained as follows. When the confidence level is large ( 0.23ε ≥ ) and T  is small 

( 10T ≤ ), all agents can always reach a consensus, and thus onL  is 0.5. However, with 

further increments of T , we find that all agents will be gradually divided into two opinion 

clusters: one is an online opinion cluster and the other one is an offline opinion cluster, with 

the number of offline agents in the online opinion cluster being high. So, the online 

subsystem shows a stronger absorption capacity on the upper right corner of Figure 9.  

 

Figure 9: The average onL  values under different T  and ε  values from 1000 

independent realizations, where [1,100]T ∈ . 

4.15 Figure 10 shows that offL  starts decreasing, and then stabilizes as T  increases. The main 

reason for this observation is that the interaction between the two subsystems decreases as 

T  increases, which leads to a decrease of offL . With further increments of T , the online 

agents will reach a stable state before the offline agents start to update opinions. Thus, the 

interaction between the two subsystems barely changes, and then offL  stabilizes.  



 

 
Figure 10: The average offL  values under different T  and ε  values from 1000 

independent realizations, where [1,100]T ∈ . 

4.16 On the one hand, as per Figures 9 and 10, the online subsystem has a stronger absorption 

capacity than the offline subsystem; the online subsystem absorbs approximately 40% ~ 60% 

of the offline agents, while the offline subsystem absorbs approximately 15% ~ 50% of the 

online agents. On the other hand, as per Figure 11, the value of onL  is always larger than the 

value of offL  for different given confidence levels. 

Figure 11: The average onL  values vs. the average offL  values from 1000 independent 

realizations, where [1,100]T ∈ .   

5. Conclusions  

5.1  In this paper, we propose asynchronous opinion dynamics with online and offline 

interactions in a bounded confidence model. In the proposed model, the asynchronous 

updating mechanisms between the online and offline agents are analyzed in detail. 

5.2  We unfold that the asynchronization strongly impacts the steady-state time, the number of 

opinion clusters and the interaction between the online and offline agents, and that as the size 

of the online agent increases these effects are enhanced.  



 

5.3  We show that online agents have a stronger absorption capacity than offline agents, which 

leads to the appearance of pure offline clusters. Thus, we suggest that governments should 

provide more supports to promote interactions with some offline agents; otherwise, some of 

the offline agents could end up being isolated from society. 

5.4  With the development of Information and Internet technology, asynchronization between 

online and offline agents is a very popular phenomenon in the evolution of real-life public 

opinions. In order to make our research more realistic and reliable, we plan to develop further 

studies to improve the understanding of asynchronization in opinion dynamics in other 

relevant models, and to extend the study in a complex network context.  
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Appendix： 
   A. The steady-state time  

 

Figure 12: The average *T  values under different T  and ε  values from 1000 

independent realizations, where [1,100]T ∈ . 

    Figure 12 reveals the impact of T  and ε  on the steady-state time *T . As T  increases, 

the steady-state time *T  increases under the different ε  values. Compared with 

synchronization (i.e. 1T = ), the offline agents update their opinions more slowly than the 

online agents, and thus the evolution of opinions needs a longer time to reach a stable state. 

Particularly, the difference of the steady-state time between the synchronization case and the 

asynchronization case with large T  is very obvious. 

A clue can be found in Figure 12 showing the relationship between the size of the online 

subsystem and the steady-state time: The smaller the online subsystem is, i.e. the smaller p  



 

is, the longer it took in time for the stabilization of opinions when 0.11ε ≤ . However, this 

observation cannot always be obtained when 0.11ε > . We can clearly see this thread from 

Figure 13: When the value of ε  is small ( 0.03ε = ), the steady-state time decreases when 

the size of the online subsystem increases, while the result does not hold when 0.13ε = . 

As shown in the middle subgraphs of Figure 13, it took more time for the stabilization of 

opinions when 80%p =  than for 60%p = .  

The main reason for this observation is that the steady-state time *T  is simultaneously 

affected by p  and ε . When ε  is small ( 0.11ε ≤ ), the steady-state time *T  is mainly 

affected by p , and we find that there is the above regularity between the size of the online 

subsystem p  and the steady-state time *T . However, as the value of ε  increases, the 

influence of ε  on the steady-state time *T  grows, which leads that there is not an obvious 

regularity between p  and *T . 

 

Figure 13: The average *T  values different T  and p  values from 1000 independent 

realizations, where [1,100]T ∈ . 

B. The pseudo-code of calculating opinion clusters 

Table 1: The psuedo-code of calculating opinion clusters 

Input: The steady-state opinions of all agents 1 2{ , ,..., }nX x x x= , and the threshold d . 

Output: The number of clusters NCS , and the clusters Lc , 1, 2,..., NCL S= . 

1.  The set { }1,2,...,A N=  and 0L =  . 

2.  While A ≠ ∅   
      1L L= + ; 

  Select any i A∈ , and construct the set 

    { }| ,L i jc j x x d j A= − < ∈ . 



 

      Let { }| , LA x x A x c= ∈ ∉ . 

  Endwhile 

3.  Let NCS L= . 
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