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Abstract In recent years, the interest in studying na-

ture inspired optimization algorithms for dynamic op-

timization problems (DOPs) has been increasing con-

stantly due to its importance in real-world applications.

Several techniques such as hyper-selection, change pre-

diction, hypermutation and many more have been de-

veloped to address DOPs. Among these techniques, the

hypermutation scheme has proved beneficial for address-

ing DOPs but requires that the mutation factors be

picked a priori and this is one of the limitation of the

hypermutation scheme.

This paper investigates variants of the recently pro-

posed adaptive-mutation compact genetic algorithm (am-

cGA). The amcGA is made up of a change detection

scheme and mutation schemes, where the degree of change

regulates the probability of mutation (i.e. the probabil-
ity of mutation is directly proportional to the degree

of change). This paper also presents a change trend

scheme for the amcGA so as to boost its performance

whenever a change occurs. Experimental results shows

that the change trend and mutation schemes has an
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impact on the performance of the amcGA in dynamic

environment and also indicates that the effect of the

schemes depends on the dynamics of the environment

as well as the dynamic problem being considered.
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1 Introduction

Most real-world engineering, economic and information

technology problems change over time (i.e. experience

uncertain and dynamic changes). The interest in im-

proving the performance of EAs in dynamic environ-

ments continues to increase so as to identify promising

techniques capable of addressing more complex DOPs.

Many studies (such as Gongora et al (2009) and many

more) have demonstrated that the standard EA is good

at finding the optimum of complex multi-modal func-

tions when the promising region of the search space re-

mains stationary during an optimization process. How-

ever, when solving DOPs, the standard EA is not suit-

able because the algorithm is expected to not only find

the optimum but also track the optimum with respect

to time.

In fact, realistic applications are more likely to expe-

rience uncertain or dynamic changes, in the sense that

one or more of the problem specifications (i.e. the tar-

get function, constraints and parameters) may vary over

time. In such environment, optimization algorithms are

not only required to optimize the problem in its actual

state, but also adapt to the new optima whenever an
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environmental change is detected and then to contin-

uously track the moving optima throughout the whole

optimization process.

In EAs, diversity in the population is useful for

adapting in a changing environment, since members of

the population represents potential solutions that can

be applied to different environmental circumstances.

Classic EAs have been successful in solving optimiza-

tion problem in static environment (Passow et al, 2008;

Chen and Wu, 2011) but when confronted with DOPs

the algorithms performance is limited. Also the stan-

dard EAs employs a strong selection policy based on

feedback which gradually reduces diversity during an

optimization process. In typical applications, the func-

tion representing the environment remains static so that

the algorithm is mainly limited to finding a solution. If

the environment changes, the performance of the stan-

dard EA is not guaranteed as it is unable to redirect its

region of concentration in the search space.

Recently Uzor et al (2014a) investigated a compact

genetic algorithm (cGA) for DOPs known as Adaptive-

mutation cGA (amcGA) by introducing a change detec-

tion and mutation scheme where the mutation scheme

is directly linked with a change detection scheme such

that the change detection scheme regulates the muta-

tion rate (i.e degree of change determines the proba-

bility of mutation). In (Uzor et al, 2014b), the amcGA

was evaluated using a real-world dynamic optimization

control problem with some preliminary results. In this

paper, variants of the amcGA are presented and further

investigated to improve the algorithms adaptability in

a dynamic environment. These variants are denoted as

amcGA1 (Uzor et al, 2014a), amcGA2, amcGA3, am-

cGA4 and amcGA5. In amcGA2 and amcGA3, a scaled

mutation rate (based on the degree of change) is used

to regulate the amount a mutation operation alters the

probability vector within the algorithm. The amcGA4

and amcGA5 make use of change patterns exhibited by

the current working probability vector to mutate the

probability vector held in memory so as to boost the

algorithms response to dynamic change.

The rest of this paper is organized as follows; Sec-

tion 2 reviews existing EAs for dynamic environments,

Section 3 introduces a background knowledge of the

cGA and details the amcGA as well as its variants,

Section 4 describes the setup-scene for all experiments

and performance analysis. Finally, Section 5 concludes

this paper with discussions on future direction.

2 EAs for DOPs

In real world applications, certain problems arise which

can be a search or optimization problem. In order to

solve such problems appropriate techniques are required

so as to obtain desired/best performance. These prob-

lems normally require the consideration of multiple per-

formance criteria and non-proportional control variables.

Optimization problems can be found everywhere in sci-

ence, technology and even daily life activities e.g. plan-

ning (Bui et al, 2012), tuning of controllers (Pedersen

and Yang, 2006) and many more. Most real-world op-

timization problems are often influenced by uncertain

and dynamic factors (Jin and Branke, 2005) and it is

unlikely that a solution found for a particular problem

would remain valid for a long period of time. In order to

counter these dynamic and uncertain factors an adap-

tive mechanism is required to introduce changes to the

current solution. These types of optimization problems

can be referred to as a dynamic optimization problem.

The nature of DOPs presents challenges to tradi-

tional optimization algorithm because these problems

usually require the tracking of the changing environ-

ment with respect to time. In general, addressing DOPs

using EAs can be grouped into four categories: 1) Us-

ing implicitly or explicitly defined memory to store and

reuse useful information so as to adapt the EA when-

ever a change occurs (Yang and Yao, 2008). 2) Creating

a multi-population to distribute the search force in the

search space (Zhu et al, 2006). 3) Promote diversity

by inserting random immigrants back in the popula-

tion (Yu et al, 2008) and 4) Adjusting genetic opera-

tors adaptively (Eiben et al, 2006). Apart from the ap-

proaches mentioned above, for an EA to function prop-

erly the genetic operators needs to be tuned/defined

properly (as it affects performance and is problem de-

pendent) and this can be achieved in three ways: 1) De-

terministic method(this involves adjusting the value of

the strategy parameter using a deterministic rule which

is fixed). 2) Adaptive method, which makes use of feed-

back from the optimization process to determine when

to change the strategy parameter, which can be in form

of an IF-THEN rule and may involve a credit assign-

ment which defines the quality of the solution discov-

ered and 3) Self-adaptive method (where the mecha-

nism for updating the strategy parameter is implicitly

defined) (Affenzeller and Wagner, 2003).

When solving DOPs, evolutionary algorithms are

considered a good choice because they are inspired from

the principles of biological evolution, which takes place

in a dynamic environment. But when using classic EAs,

once converged, they are unable to adapt to changes in

a dynamic environment. In DOPs, values of the optima

change with time, thus rendering the problem of opti-

mum finding to optimum tracking and this means the

fitness landscape of a given problem is dynamic with

possibly both the search space and fitness being time
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dependent. In (Yang and Tinos, 2008) a hyper-selection

scheme in dynamic environment was proposed for a ge-

netic algorithm (GA) to address DOPs, where the se-

lection pressure is increased whenever an environment

change occurs. In standard GAs, individuals in the pop-

ulation converge to an optimal solution in static en-

vironments due to selection pressure but in dynamic

environments, converging to an optimum becomes a

problem for the standard GAs since it does not encour-

age genetic diversity and hence makes it hard to adapt

to a new environment whenever a change occurs. Al-

though the scheme discussed in (Yang and Tinos, 2008)

demonstrated the effects of selection pressure for GAs in

dynamic environment, adjusting the selection pressure

adaptively during an optimization/search process still

remains an open question. A forward-looking approach

for solving dynamic multi-objective optimization prob-

lems using EA was proposed in (Hatzakis and Wallace,

2006), the idea was to implement a forecasting method

where the location in variable space of the optimal so-

lution is estimated, the optimization algorithm exploits

past information and prepares for the change before it

arrives instead of reacting to the change.

In general certain techniques are suitable for cer-

tain environments i.e. memory based approaches are

suitable for periodic optima, self-adaptation and mu-

tation approaches are suitable for landscapes with fast

changes, multi-population approaches are suitable for

competing peaks and maintaining diversity is suitable

for continuously moving peaks (Woldesenbet and Yen,

2009). In (Yang, 2008), a memory and elitism based

immigrants approach for GAs in dynamic environment

was presented. The best individual during an optimiza-

tion process is stored in memory (or elite from previous

generation) and is retrieved as a base to create new in-

dividuals by mutation so as to ensure diversity and also

adapt to a new environment.

Although, these algorithms have been successful in

tackling DOPs, none of the authors have considered

linking change severity with a diversity scheme such

that the degree of change is directly proportional to

the diversity scheme used.

3 cGA for DOPs

There are some optimization problems that limits the

application of traditional optimization algorithm due

to hardware limitations and this is as a result of the

complex structure employed by population-based ap-

proach (which makes them computationally expensive).

In order to overcome hardware limitations, a memory

efficient algorithm is required. The compact genetic al-

gorithm (cGA) offers the advantage of being computa-

tionally efficient (i.e requires less memory and execution

time).

The compact genetic algorithm as proposed by Harik

et al (1999) is an estimation of distribution algorithm

(EDA) (Larraanaga and Lozano, 2001; Pelikan et al,

2000) that generates offspring population according to

an estimated probability model of the parent popula-

tion. The cGA makes use of a real-valued probability

vector
−→
P to represent the bit probability of 0 or 1 which

models the distribution of the population:

−→
P = {P1, ..., Pl} (1)

where l is the binary-encoding or chromosome length

and Pi ∈ {0, 1}, (i = 1, ..., l). The probability vector

is initially assigned 0.5 to represent a randomly gen-

erated population. In every generation, competing so-

lutions are generated based on the current probability

vector and the probabilities Pi are updated to favour

a better solution. In a simulated population of size s,

the probability of each gene increases or decreases by 1
s

based on the gene of the best solution i.e.:

P
′

i =

{
Pi(t) + 1/s if besti = 1, (2a)

Pi(t)− 1/s if besti = 0. (2b)

The cGA maintains a probability vector and evolves it

towards the best sample solution created from it. The

driving force for cGA to solve an optimization problem

lies in the update mechanism of the probability vector

towards the best sample created from it iteratively. The

probability vector of the cGA usually converges to ei-

ther 0.0 or 1.0 in each element which will produce the

optimal solution when sampled in static environments.

The performance of the cGA in a dynamic environment

is not guaranteed since once the probability vector con-

verges it is unable to adapt to the changed environment.

As a result modifications to the original algorithm have

been proposed so as to enable it tackle DOPs.

To address the convergence problem, several ap-

proaches have been developed to re-introduce diversity

after a change occurs e.g. the restart scheme which re-

sets the optimization algorithm back to the default set-

ting when a change occurs (Harik et al, 2006; Sastry

et al, 2005), the hypermutation scheme (Cobb, 1990;

Morrison and De Jong, 2000) where the probability

of mutation is raised from a low mutation rate to a

high mutation rate when the environment changes, and

many more. The hypermutation creates an adaptive EA

with small incremental memory and computational cost

but requires the mutation factor to be picked a priori.

Although these algorithms have been successful in

tackling DOPs, to the best of the authors knowledge

none has considered an adaptive method for controlling

the mutation factor and none has tried to link together
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the mutation scheme with a change severity scheme (i.e.

measuring the degree of change) such that the degree of

change is directly proportional to the mutation factor.

This section describes the amcGA as well as variants

suitable for memory constrained applications.

3.1 Change detection

A Gaussian function is employed so as to detect and

determine the degree of change Cd in the environment:

Cd = e−a (3)

a =
(∆f − c)2

2σ2
(4)

where c is the mean (1.0), σ represents variance and

∆f is the change in fitness or fitness difference between

the elite solution at generation t and same elite solution

re-evaluated at generation t+ 1:

∆f = f(Es, t)− f(Es, t+ 1) (5)

It is important to note that change in fitness of the

elite solution is considered in this study as a sign of

change in the environment (i.e. the algorithm monitors

the performance of the elite solution). The algorithm

employs the elitism approach, where the best solution

from a previous generation is transferred and evaluated

in subsequent generations. In order to adaptively con-

trol the mutation rate (i.e. probability of mutation) pm,

Cd is converted to the mutation rate such that a high

degree of change results in a high mutation rate and

a low degree of change results in a low mutation rate

but when no change occurs, the algorithm proceeds as a

normal cGA. The probability of mutation pm is defined

as follows:

pm = ml + (Cd − dl)×
(
mh −ml

dh − dl

)
, pm[0.01, 0.5] (6)

where ml = 0.01 is low probability of mutation, mh

= 0.5 is high probability of mutation, dl = 0.0 is low

degree of change and dh = 1.0 is high degree of change.

3.2 Mutation schemes

Unlike the mutation scheme adopted by most cGA vari-

ants where mutation is applied directly to candidate

solutions to create another solution for selection, the

mutation scheme discussed in this paper is applied di-

rectly to the probability vector that generated the best

solution (elite solution) since the probability vector rep-

resents a distribution of the population.

Suppose at generation t an elite solution Es with fit-

ness f(Es, t) was obtained, the probability vector that

generated the solution is held in a temporary mem-

ory
−−→
mP . At generation t + 1 the elite solution is re-

evaluated and a new fitness value is obtained i.e. f(Es, t+

1). If the fitness difference ∆f is greater than a defined

threshold (e.g. ∆f>0) then a change is said to have

occurred which triggers the mutation scheme, which is

applied directly to
−−→
mP to generate a mutated version

of the elite solution Em to compete with Es.

The cGA makes use of a real valued probability

which generates two solutions when sampled. In order

to apply the mutation scheme to the probability vector,

a random number r = rand(0.0, 1.0) is generated then

compared with pm and
−−→
mP is mutated as follows:

amcGA1:

mP
′

i =

{
rand(Cd,mPi) if r<pm, (7a)

mPi if r>pm. (7b)

amcGA2:

mP
′

i =

{ |mPi + n− pm| if r<pm, (8a)

mPi if r>pm. (8b)

amcGA3:

mP
′

i =


∣∣∣mPi +

(
n− pm

2

)∣∣∣ if r<pm, (9a)∣∣∣mPi −
(
n− pm

2

)∣∣∣ if r>pm. (9b)

where n = rand(0, pm).

Sometimes, changes in dynamic environments may

exhibit some trends. In such case, it might be bene-

ficial to try to use these change trends to boost the

algorithms response to subsequent changes in such dy-

namic environment. Some studies have been made fol-

lowing this idea but differ in that they exploit the pre-

dictability of dynamic environments (Simões and Costa,

2009b,a).

Memory approaches (Branke, 1999; Yu and Sugan-

than, 2009), which were originally proposed to deal with

periodical changes, can also be considered as a type of

prediction method. Algorithms following the prediction

approach make use of memory scheme to cope with var-

ious types of changes (e.g. cyclic, noisy and random)

but requires the use of accurate training data and ded-

icated memory allocation, which makes the respective

algorithm computationally expensive.

In this study, the change trend Tchg is used to boost

the amcGAs performance whenever a change occurs by

applying the change trend to
−−→
mP such that

−−→
mP learns

from past dynamic changes and adapts to future dy-

namic changes instead of explicitly using stored train-

ing data. The change trend Tchg is defined as follows:

Tchg =
−−→
mPt −

−→
P t+1 (10)
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Fig. 1 Dynamic behaviour of all algorithms on DDUF1 with τ = 60 and ρ = 0.2 in a cyclic environment.

where
−→
P t+1 is the current working probability vector

at generation t+ 1. The amcGA4 and amcGA5 makes

use of the change trend approach described above and

is defined as follows:

amcGA4:

mP
′

i =


∣∣∣∣mPi +

(
n− Tchg

l

)∣∣∣∣ if r<pm, (11a)∣∣∣∣mPi −
(
n− Tchg

l

)∣∣∣∣ if r>pm. (11b)

amcGA5:

mP
′

i =


∣∣∣∣mPi + s− Tchg

l

∣∣∣∣ if r<pm, (12a)

mPi if r>pm. (12b)

where s =
(
n− pm

2

)
and l is the binary string length.

It is important to state that the change trend scheme

was applied to amcGA2 and amcGA3 (which yeilds am-

cGA5 and amcGA4 respectively) so as to study the

effect of Tchg on the performance the algorithm. This

way, the mutation strategy updates itself based on the

change pattern exhibited by the probability vector. Also

Tchg controls the amount a mutation operation alters

the value of each element in
−−→
mP .

After the mutation operation, a mutated version

of the elite solution Em is generated using the mu-

tated temporary probability vector (i.e.
−−→
mP

′
) to com-

pete with the current elite solution Es, if the mutated

elite solution performs better than the current elite, it

replaces the elite solution and the mutated probabil-

ity vector replaces the current probability vector. The

mutation scheme is repeated for a defined number of

generations similar to the hypermutation scheme. Af-

ter the mutation operation, the algorithm continues as

a standard cGA unless another change occurs.

4 Experiments

4.1 Dynamic Benchmark Generator

For the experiments, the DOP generator proposed in

(Yang and Yao, 2005) which constructs a dynamic en-

vironment was chosen to test the efficiency of the am-
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Fig. 2 Dynamic behaviour of all algorithms on DDUF1 with τ = 60 and ρ = 0.2 in a cyclic environment with noise.

cGA variants. The generator can construct a DOP from

any binary-encoded static function f(−→x ). Given a static

optimization problem f(x) (x ∈ {0, 1}l) where l is the

binary string length, the dynamic environment is gen-

erated by applying a binary XORing mask
−→
M to each

solution before evaluating at every τ generations.

f(x, t) = f(x⊕−→M(k)) (13)

where f(x, t) is the fitness of solution x, k = t/τ is

the period index at time t, ⊕ is a bitwise exclusive-or

(XOR) operator which is applied to the x and M(k)

according to the following principle:

xi ⊕ xj =

{
0 if xi = xj , (14a)

1 otherwise. (14b)

For each environment k,
−→
M(k) is incrementally gener-

ated as follows:

−→
M(k) =

−→
M(k − 1)⊕−→T (k) (15)

where
−→
T (k) is an intermediate binary template gener-

ated for environment k.
−→
T (k) is generated with ρ x l

(ρ ∈ (0.0, 1.0]) random loci set to 1 while the remain-

ing loci set to 0. ρ controls the intensity or severity

of change. If ρ is set to 0, the environment is consid-

ered stationary since
−→
T will contain only 0s and no

change will occur. On the other hand p = 1 guaran-

tees a high degree of change (i.e. high change severity).
Also a small τ means faster environment change while

a large τ means slow environment change.

4.2 Dynamic Test Problem

4.2.1 Decomposable Unitation-Based Functions

(DUFs)

The decomposable unitation-based functions have been

used as benchmark functions by the EA community

in an attempt to understand what constructs difficult

optimization problems for EAs (e.g (Goldberg, 2002)).

These type of functions return the number of ones in a

binary string (i.e. unitation function of binary string).

Two DUFs, denoted as DUF1 and DUF2 are used as

static functions to construct dynamic test environments,

in order to compare the performance of algorithms dis-

cussed in this paper.
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Fig. 3 Dynamic behaviour of all algorithms on DDUF1 with τ = 60 and ρ = 0.2 in a random environment.

The DUF1 is simply a Onemax function which aims

to maximize the number of 1’s in a binary string. The

fitness of a binary string is the number of 1’s contained

in the string.

f(x) = u(x) (16)

DUF2 is a fully deceptive function, which are consid-

ered hard problems for EAs because the low-order build-

ing blocks inside the functions do not combine to form

the higher order optimal building block, instead they

combine to form deceptive suboptimal building block.

f(x) =

{
3− u(x) if u(x)<4 (17a)

4 otherwise (17b)

Using the dynamic benchmark generator discussed in

Section 4.1, dynamic test environments are constructed

from the DUFs and are denoted as DDUF1 and DDUF2.

4.2.2 Dynamic Knapsack Problem

The knapsack problem is a classic NP-complete opti-

mization problem that has been rigorously studied by

the EA community in the last few decades. The main

aim of this problem is to fill a knapsack with the best

subset of items among a larger set so as to maximize the

value of contents in the knapsack without exceeding the

knapsack capacity. This benchmark problem has been

studied in both static (e.g. Shah and Reed (2011); Mar-

tins et al (2014)) and dynamic environments (e.g. Yang

et al (2013) with different modifications. The dynamic

property of the knapsack problem is achieved when the

problem parameters (such as item weight, value and

sack capacity) are time dependent and subject to vari-

ation.

Given n items, each of which has a weight wi(t)

and a value vi(t) and a knapsack of capacity C. The

main goal of the knapsack problem is to load the items

that guarantees maximum value without exceeding the

knapsack capacity C. A dynamic test environment is

constructed for the knapsack problem and is denoted as

DKP. Mathematically DKP can be described as follows:

Maximize f(x, t) =
n∑

i=1

pi(t)xi(t) (18)
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Fig. 4 Dynamic behaviour of all algorithms on DDUF2 with τ = 60 and ρ = 0.2 in a cyclic environment.

s.t.


n∑

i=1

wi(t)xi(t) ≤ C (19a)

xi(t) ∈ {0, 1}, i = 1, ..., n (19b)

where xi is the binary decision variable used to indi-

cate if item i is included or discarded. In this study,

all values and weights are positive, also all weights are

less than the knapsack capacity C = 500. A knapsack

problem with 100 items using randomly generated data

was constructed as follows:

wi =uniformly random integer[2, 20] (20)

pi =uniformly random integer[1, 30] (21)

The sum of the profits of the selected items is used as

the fitness of a candidate solution if the sum of item

weight is within the knapsack capacity. However, if a

candidate solution selects too many items such that

the summed weight exceeds the knapsack capacity then

a penalty function is used to judged how much the

candidate solution exceeds the knapsack capacity. The

penalty function is defined as follows:

f(x, t) =


n∑

i=1

pixi
n∑

i=1

wixi ≤ C (22a)

f(x, t)− lf else (22b)

where lf = 7 * (
n∑

i=1

wixi - C) and n = 100.

4.3 Parameter Settings and Performance Measures

Experiments were carried out on the selected DOPs to

investigate the effect of the change detection, change

trend and mutation schemes on the performance of the

amcGA. An additional experiment was carried out to

compare the performance of the scheme presented in

section 3 with a cGA with hypermutation (denoted

as cGAm) and a probability based incremental learn-

ing algorithm with hypermutation (denoted as PBILm)

(Yang and Richter, 2009).
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Fig. 5 Dynamic behaviour of all algorithms on DDUF2 with τ = 60 and ρ = 0.2 in a cyclic environment with noise.

For all algorithms some common parameters were

set as follows; the population size n = 100, speed of

change τ = 20, 60 and 100, and change ratio ρ = 0.1,

0.2, 0.5 and 1.0. While the sensitivity level for detecting

change ∆f > 0 for the scheme described in section 3,

probability of mutation (for the PBILm) pm = 0.05

with mutation shift δ = 0.05. Also all algorithms use

the elitism approach (in the case of the PBIL an elite

of size 1 was used). For the PBILm, the probability of

mutation was set to a base level plm = 0.05 for normal

generations and a high value phm = 0.3 for interim gen-

erations when the hypermutation scheme is triggered

due to change in environment and this lasts for 5 gen-

erations i.e. ghm = 5.

The DDUFs considered consists of 25 copies of 4-bit

building blocks. Each building block of the two DDUFs

contributes a maximum value of 4 to the total fitness.

The fitness of a bit string is the sum of contributions

from all building blocks which gives an optimal fitness

of 100 (for DDUF1 and DDUF2). Three kinds of dy-

namic environments were constructed (i.e. cyclic, cyclic

with noise and random) using the dynamic problem

generator discussed in section 4.1.

For each experiment using all algorithms on the

DOP, 30 independent runs were executed and for each

run 20 environmental changes were allowed, which are

equivalent to 400, 1200 and 2000 generations for τ =

20, 60 and 100 respectively. Best-of-generation fitness

was recorded every generation and the overall offline

performance of all algorithms on each DOP is defined

as:

FBOG =
1

G

G∑
i=1

 1

N

N∑
j=1

FBOGij

 (23)

where FBOGij expresses the fitness value of the best so-

lution at generation i of run j, G = 20 x τ is the total

number of generation for a run, N = 30 is the total

number of runs and FBOG is the overall offline perfor-

mance, which is the best-of-generation fitness averaged

over N and then over the data gathering period.

Experimental results of all algorithms on the se-

lected DOPs based on FBOG are presented in Fig. 1- 9

respectively. The corresponding statistical results of the

Wilcoxon rank-sum test at 0.05 level of significance are

shown in Table 1. In Table 1, the result regarding Alg.1

- Alg.2 is shown as ”+”, ”−” and ” ” when Alg.1 is sig-
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Fig. 6 Dynamic behaviour of all algorithms on DDUF2 with τ = 60 and ρ = 0.2 in a random environment.

nificantly better than, significantly worse than or statis-

tically equivalent to Alg.2. The dynamic performance

of all algorithms regarding the best-of-generation fit-

ness against generations on the dynamic problems are

plotted in Fig. 1- 9 (with τ = 60 and ρ = 0.2).

From Fig. 1- 9 and Table 1, several behaviours can

be observed and are discussed in next section from two

aspects: 1.) regarding performance based on FBOG and

2.) algorithms behaviour on the selected DOPs (i.e. the

effect of environmental dynamics on algorithms perfor-

mance).

4.4 Experimental Study Regarding Overall

Performance

The experimental results on dynamic problems and key

statistical test results are shown in Fig. 1- 10 and Ta-

ble 1 respectively.

First, PBILm shows a constant performance across

all DOPs regardless of the dynamics of the environ-

ment. This is because the PBILm evaluates 100 can-

didate solutions (every generation) and has a greater

chance of finding better solutions than the cGAm and

amcGAs’ which only evaluates 2 candidate solutions ev-

ery generation. And with the increasing of τ , PBILm

has more time to search for solutions with higher fitness

before the next change. However in some environment

change ratio ρ, PBILm was outperformed by the am-

cGA (variants) as can be observed from Figs 10 and

Table 1. This is due to the lack of information transfer

from the last environment of the last dynamic change.

Also, PBILm applies the mutation scheme to the cur-

rent working
−→
P which has no information of the previ-

ous environment and this means the PBILm is focused

more on preventing premature convergence of
−→
P .

Second, cGAm outperforms some of the amcGA vari-

ants in some of the DOPs. This is due to the fact that

whenever a change occurs, the cGAm tries to find a

better solution for the current environment (i.e. which

is the effect of rapid increase in probability of mu-

tation pm) but does not ensure diversity as can be

seen in Fig. 1. Also for some dynamic settings, cGAm

shows similar performance to some the amcGA vari-
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Fig. 7 Dynamic behaviour of all algorithms on DKP with τ = 60 and ρ = 0.2 in a cyclic environment.

ants. Given a value of τ when the environment changes

with respect to the change ratio, the performance of

the algorithms are approximately the same (see Fig. 3

and 4).

Third, among the five variants of the amcGA, am-

cGA1 and amcGA3 exhibit interesting performance.

From Fig. 1- 10, it can be observed that amcGA3 per-

forms better than amcGA1. Also, amcGA3 shows sta-

ble performance across different environment dynamics.

Performance of all amcGA variants based on FBOG is

shown on Fig. 1- 9 for different environment dynam-

ics. Although Fig. 1- 9 shows general performance of

all algorithms, it is difficult to draw out conclusions

about the final result of the compared algorithms by

just visual inspection of the performance curves. Using

the Wilcoxon rank-sum test, several conclusions can be

observed. On several environment dynamics, the per-

formance of the amcGA1 and amcGA3 are better than

that of the cGAm, also when the ρ is low and τ is low

to medium, most of the amcGA variant outperformed

both the cGAm and the PBILm. This behaviour is as a

result of how the amcGA handles its probability vector.

The amcGA maintains a moderate convergence rate

as it explores the search space. This can be considered

as an advantage over the hypermutation scheme since

the amcGA not only carries information from one stage

of the problem to the next stage but also retains these

information in the form of
−−→
mP , which represents prop-

erties and dynamics of a particular environment. Also

since the mutation scheme is only applied to
−−→
mP , it

ensure that the current working
−→
P maintains its diver-

sity unless a solution generated by the mutated
−−→
mP

(whenever a change is detected) outperforms the cur-

rent best solution generated by
−→
P , thereby replacing

−→
P

with
−−→
mP .

Finally, performance of the amcGA4 and amcGA5

in the cyclic environment is better than (or same as)

that of the cGAm on some of the DOPs (with respec-

tive environment dynamics). This behaviour is as a re-

sult of the change trend scheme within the algorithm.

Although this scheme does not make used of any exter-

nal training data, it has a positive effect on the per-

formance of the amcGA4 and amcGA5. The change

trend scheme ensures that the amcGA retains informa-

tion about past environment (i.e.
−−→
mP ) while searching
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Fig. 8 Dynamic behaviour of all algorithms on DKP with τ = 60 and ρ = 0.2 in a cyclic environment with noise.

for promising region (using
−→
P ) in the search space of a

new environment. This can be observed when τ = 100

and ρ is between 0.1 and 0.5 (see Table 1), the algo-

rithms are given more time to search before the next

environmental change but experience slow convergence

rate. On the other hand, convergence deprives cGAm of

the adaptability to changing environments because the−→
P within cGAm learns from the best hyper-mutated

solution whenever a change occurs. However, the mu-

tation mechanism and change trend scheme embedded

in amcGA4 and amcGA5 grants more diversity than

cGAm (and PBILm in some environment) and hence

better adaptability to environmental changes.

4.5 Experimental analysis of algorithms behaviour on

selected DOPs

In order to better understand the experimental results,

we need to look deeper into the dynamic behaviour of

all algorithms. The dynamic behaviour all different al-

gorithms on the selected DOPs are shown in Fig. 10,

where the data were averaged over 30 runs, τ is set to

60, ρ = 0.1, 0.2, 0.5 and 1.0. Several behaviours can

be observed when examining the effect of the dynamic

environments on the performance of the algorithms in-

vestigated.

From Fig. 10, it can be observed that for a fixed

τ with increasing value of ρ, PBILm outperform other

algorithms on several cases and maintains almost the

same performance across the three DOPs. The behaviour

is a result of the high adaptability brought in by the hy-

permutation scheme (and population-based structure)

within PBILm. However, the performance of PBILm

decrease on the cyclic DDUF2 and random DDUF2.

This is due to the fact that, when the environment

changes, the deceptive building blocks inside DDUF2

will draw the population into the new environment slowly

since the deceptive attractors are not globally optimal

but they are suboptimal with relatively high fitness.

An interesting behaviour is that on DDUF1, the

performance of the amcGA variants drops when ρ is

between 0.1 and 0.5 but soon stabilizes. This is be-

cause when ρ = 1.0, the environment switches between

two landscapes and the algorithm may wait during one

environment for the return of the other environment
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Fig. 9 Dynamic behaviour of all algorithms on DKP with τ = 60 and ρ = 0.2 in a random environment.

to which they converged well. Also, among the am-

cGA variants, the amcGA3 shows better performance

in DDUF1. The reason lies in the way the mutation

scheme operates within amcGA, it ensures that the am-

cGA3 adapts to the changing environment regardless

of the change severity. Also, the mutation scheme only

increases (or decreases)
−−→
mP by (n − pm

2 ) which is de-

termined by a random number r unlike the mutation

scheme in PBILm which is determined by the probabil-

ities in
−→
P .

In Fig 10, it can be observed that on the cyclic

DDUF2 (with and without noise), all amcGA variants

show low performance when ρ= 0.1 to 0.5 but exhibit

rapid increase in performance when ρ=1.0. This is due

to the deceptive nature of DDUF2, since low-order build-

ing block inside the function do not clearly lead to a

high-order building block and the amcGAs seems to be

sensitive to low ρ. However, all amcGA variants cope

well with high ρ (i.e. when ρ = 1.0) because the en-

vironment switches between two states which in turn

gives more time for the algorithm to obtain a better

solution suitable for the environment before the next

change occurs.

Looking at DKP (bottom) of Fig 10, it can be ob-

served that for all dynamic environments, the perfor-

mance of all variants of the amcGA reduces as ρ in-

creases. This can be considered normal, since an in-

crease in ρ implies more severe environment changes.

When the cyclic nature of the dynamic environment in-

creases from cyclic to cyclic with noise, the performance

of all amcGA variant (and cGAm) increases slightly.

Despite the fact that a cyclic environment with noise

is relatively more difficult than a cyclic environment,

the amcGA variants showed better performance. But

in the random environment, the performance of some

of the amcGA variants dropped (when ρ = 0.5 and 1.0).

This implies that even though the existence of noise in

a cyclic environment may over weigh randomness (i.e.

in terms of difficulty), it favours the performance of all

amcGA variants.

Finally, from Figs. 1 to 10, it can be observed that

the amcGA variants (i.e. amcGA to amcGA5) performed

better on the DDUF2 problem, especially when τ is

large (see Table 1). This implies that the performance

of the amcGA not only depends on the dynamics of the

environment but also on the DOP being considered.



14 Chigozirim J. Uzor et al.

0.1 0.2 0.5 1.0
ρ

50

55

60

65

70

Of
flin
e p
er
for
m
an
ce
 (F
itn
es
s)

Cyclic DDUF1

0.1 0.2 0.5 1.0
ρ

50

55

60

65

70

Of
flin
e p
er
for
m
an
ce
 (F
itn
es
s)

Cyclic with noise DDUF1

0.1 0.2 0.5 1.0
ρ

50

55

60

65

70

Of
flin
e p
er
for
m
an
ce
 (F
itn
es
s)

Random DDUF1

cGAm
PBILm
amcGA1
amcGA2
amcGA3
amcGA4
amcGA5

0.1 0.2 0.5 1.0
ρ

30

40

50

60

70

80

90

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Cyclic DDUF2

0.1 0.2 0.5 1.0
ρ

30

40

50

60

70

80

90

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Cyclic with noise DDUF2

0.1 0.2 0.5 1.0
ρ

30

40

50

60

70

80

90

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Random DDUF2

cGAm
PBILm
amcGA1
amcGA2
amcGA3
amcGA4
amcGA5

0.1 0.2 0.5 1.0
ρ

300

400

500

600

700

800

900

1000

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Cyclic DKP

0.1 0.2 0.5 1.0
ρ

300

400

500

600

700

800

900

1000

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Cyclic with noise DKP

0.1 0.2 0.5 1.0
ρ

300

400

500

600

700

800

900

1000

Of
flin

e p
er

for
m

an
ce

 (F
itn

es
s)

Random DKP

cGAm
PBILm
amcGA1
amcGA2
amcGA3
amcGA4
amcGA5

Fig. 10 Experimental results of all algorithms on DOPs in different dynamic environments (i.e. cyclic, cyclic with noise and
random) with τ = 60.
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Table 1 Statistical results regarding the offline performance of the amcGA variants against other algorithms

Algorithms and DOPs DDUF1 DDUF2 DKP
Environment Dynamics τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100 τ = 20 τ =60 τ= 100

Cyclic ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - cGAm + + ∼ ∼ + + ∼ ∼ + + + ∼ ∼ ∼ ∼ + ∼ ∼ - + + ∼ ∼ ∼ - - - + + ∼ - - + + + -
amcGA1 - PBILm - - - - ∼ - - - ∼ - - - - - ∼ + ∼ - ∼ + ∼ - ∼ + - - - - - - - - - - - -
amcGA2 - cGAm + ∼ ∼ ∼ + + ∼ ∼ + + ∼ ∼ ∼ ∼ ∼ + - ∼ ∼ + ∼ ∼ ∼ ∼ - - - - ∼ ∼ - - + + + -
amcGA2 - PBILm - - - - - - - - - - - - - - ∼ + - - ∼ + - - + + - - - - - - - - - - - -
amcGA3 - cGAm ∼ ∼ ∼ ∼ + + ∼ + + + + + - - - ∼ ∼ ∼ - - ∼ ∼ - - + - + ∼ + + + + + + + +
amcGA3 - PBILm - - - - - - - - - - - - - - - + ∼ - - + - - - + - - - - - - - - - - - -
amcGA4 - cGAm + ∼ ∼ - + + ∼ ∼ + + ∼ ∼ ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼ - - - - ∼ ∼ - - + + + -
amcGA4 - PBILm - - - - - - - - - - - - - - ∼ + - - ∼ + - - ∼ + - - - - - - - - - - - -
amcGA5 - cGAm + ∼ ∼ - + + ∼ ∼ + + ∼ v∼ ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼ - - - - ∼ ∼ - - + + + ∼
amcGA5 - PBILm - - - - - - - - - - - - - - ∼ + - - ∼ + - - ∼ + - - - - - - - - - - - -
Cyclic with noise, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - cGAm + + ∼ - + + + ∼ + + + + ∼ ∼ ∼ - + ∼ ∼ + + + + + - ∼ - - + + + - + + + -
amcGA1 - PBILm - - - - - - - - ∼ ∼ - - - - - - - - - - - - - - - - - - - - - - - - - -
amcGA2 - cGAm + + ∼ - + ∼ ∼ ∼ + ∼ ∼ ∼ - ∼ ∼ - ∼ ∼ ∼ + + ∼ ∼ ∼ - - - - + + ∼ - + + + -
amcGA2 - PBILm - - - - - - - - ∼ - - - - - - - - - - - - - - - - - - - - - - - - - - -
amcGA3 - cGAm ∼ ∼ ∼ - + + + + + + + + ∼ - ∼ - - - - - - + + + ∼ + + ∼ + + + + + + + +
amcGA3 - PBILm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
amcGA4 - cGAm ∼ ∼ - - ∼ ∼ ∼ ∼ + ∼ ∼ ∼ - - ∼ - - - - - - ∼ ∼ - - ∼ - - + + ∼ - ∼ + + -
amcGA4 - PBILm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
amcGA5 - cGAm ∼ ∼ - - ∼ ∼ ∼ ∼ + ∼ ∼ ∼ - - - - - - - - - - - ∼ - ∼ - - + + ∼ - ∼ + + -
amcGA5 - PBILm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Random, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - cGAm - ∼ ∼ ∼ + + + - + + + + ∼ ∼ ∼ + + + ∼ + + + + ∼ - - - - ∼ ∼ + - + ∼ + -
amcGA1 - PBILm - - - - ∼ - - - + ∼ ∼ - - - - + - - - + - - - + - - - - - - - - - - - -
amcGA2 - cGAm - - ∼ ∼ ∼ ∼ - - ∼ + + + ∼ - ∼ + ∼ - - + ∼ ∼ - ∼ - - - - ∼ ∼ + - + - + -
amcGA2 - PBILm - - - - - - - - - - - - - - - + - - - + - - - + - - - - - - - - - - - -
amcGA3 - cGAm - ∼ ∼ ∼ + + + ∼ + + + + + ∼ - ∼ + ∼ ∼ ∼ + + + - ∼ ∼ ∼ ∼ - ∼ + + + ∼ + +
amcGA3 - PBILm - - - - ∼ - - - + - - - - - - + - - - + - - - + - - - - - - - - - - - -
amcGA4 - cGAm - - - - ∼ ∼ - - ∼ ∼ ∼ + ∼ - - + ∼ - - + ∼ - - ∼ - - - - - - + - + - + -
amcGA4 - PBILm - - - - - - - - - - - - - - - + - - - + - - - + - - - - - - - - - - - -
amcGA5 - cGAm - - - - ∼ - - - ∼ ∼ ∼ + ∼ - - + ∼ - - + ∼ - - - - - - - - - + - + - + -
amcGA5 - PBILm - - - - - - - - - - - - - - + - - - + - - - - - - - - - - - - - - - -

Generally speaking, the experimental results indicate

the amcGA variants can be considered when solving

deceptive DOPs.

5 Conclusion and future work

Mutation is a double-edged sword, it ensures diver-

sity and improves an algorithms ability to respond to

changes in a dynamic environment. However, mutation

can reduce the performance of an optimization algo-

rithm if the mutation rate is too high and not controlled

appropriately. The effect of change trend and different

mutation schemes on the performance of the amcGA in

dynamic environments was studied in this paper. From

experimental results shown, several conclusion can be

drawn on the overall performance of the algorithms:

First, the mutation schemes has a positive effect on

the performance of the amcGA in dynamic environ-

ments as it ensures that information about an environ-

ment is retained and reused whenever the environment

changes (instead of using a dedicated memory space

and/or training data).

Second, statistical results highlight that variants of

the amcGA display best performance on some DOPs

(with respect to environment dynamics) when compared

with cGAm and PBILm. On several cases, the change

in environment had minimal effect on the performance

of the amcGA variants while the algorithms tries to

find a suitable solution. Also, the interaction between

the change trend and mutation depends on the DOP

(see Fig. 10 and Table 1).

Third, the addition of a change trend scheme to the

amcGA improves the algorithms performance in dy-

namic environments. The change trend scheme ensures

that the amcGA responds to dynamic changes based

on the change pattern exhibited by the current work-

ing probability. Also, it allows the algorithm to update

its mutation strategy using the change pattern. How-

ever, the effect may not be as strong as the effect of the

hypermutation on the performance of the PBILm.

Finally, the mutation scheme embedded within all

amcGA variants promotes diversity in dynamic envi-

ronments i.e. it ensures that the population maintains

its diversity while tackling the DOP and gradually move

towards the optimal solution.

In general, this paper investigated the effects of the

change trend and adaptive mutation schemes for the

amcGA in dynamic environments. Based on results ob-

tained, there are several future work relevant to this

paper:

All amcGA variants are relatively easy to imple-

ment, especially in memory constrained application since

all variants of the amcGA retains the small footprint of

the cGA which allows direct implementation on mem-

ory constrained devices thus overcoming the limitations

related to typical population-based dynamic optimiza-

tion algorithms (e.g. PBILm).
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The results obtained may be used to guide the de-

sign of compact dynamic optimization algorithms for

tackling DOPs and compare the algorithms obtained

with the amcGA variants as well as other EAs for DOPs.

Further research will focus on using the schemes devel-

oped in this paper to solve real-world DOPs (imple-

mented in memory constrained applications and em-

bedded hardware) which includes further experimenta-

tions to identify possible limitations of the algorithms.
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