Policy-based planning for student
mobility support in e-Learning
systems

PhD Thesis

Pavel Nikolaev

Software Technology Research Laboratory
Faculty of Technology
De Montfort University
England

This thesis is submitted in partial fulfillment of the requirements for
the Doctor of Philosophy.

2014

Declaration

I declare that the work described in this thesis is original work undertaken by me during my period
of registration for the degree of Doctor of Philosophy at the Software Technology Research Labo-
ratory (STRL), Faculty of Technology, De Montfort University, United Kingdom. It is submitted
for the degree of Doctor of Philosophy at De Montfort University.

Acknowledgement

First of all, I would like to thank people who helped me to start the PhD programme at De
Montfort University. I would like to heartily thank Prof. Alexander Chernikov and Prof. Jeff
Knight for this opportunity. The PhD studies had great impact on my personal and professional
development and changed my vision of life and my place in it irreversibly.

I would like to express my sincere gratitude to all members of my supervisory team, who
worked with me during these years, contributed to this work and to my development. I am deeply
grateful to my first supervisor, Dr. Aladdin Ayesh, for his encouragement, his wisdom guidance
and advises, which helped me to advance in my work. Again, I would like to sincerely thank
Prof. Alexander Chernikov, as my second supervisor, for all his ideas, support and help, which I
received from him during all time of the research. Last but not the least, I would like to express
my deep appreciation to Prof. Hussein Zedan, the head of STRL, for his valuable contribution to
this research, his huge experience and wisdom, which he shared with me, and for his the utmost
encouragement and inspiration.

I would like to deeply thank all members of my family, who supported and encouraged me during
my studies. During this research there were a lot of challenges that required highly concentrated
efforts. Without the comprehensive support and concern of my closest people, I would not be
able to cope with them and finish what was required. I thank my parents, Evgeny Nikolaev and
Svetlana Nikolaeva, my girlfriend, Yelena Chernikova, and my grandmother, Irina Nikolaeva. I also
would like to pass many thanks to all colleagues, which I worked with within STRL and outside

it, and all people, who made this project possible and assisted me with it.

Publications

. Pavel Nikolaev, Aladdin Ayesh and Elena Chernikova. Policy-based HTN planning for com-
bined course programmes generation. In Proceedings of the Fourth International Conference
on Internet Technologies and Applications (ITA 11), pages 457 - 464. Glyndwr University,
UK, 2011.

. Pavel Nikolaev and Aladdin Ayesh. Combined course programmes generation in multi-agent
e-Learning system using policy-based HTN planning. In James O’Shea, Ngoc Nguyen, Kee-
ley Crockett, Robert Howlett and Lakhmi Jain, editors, Agent and Multi-Agent Systems:
Technologies and Applications, vol. 6682 of Lecture Notes in Coputer Science, pages 504-513.
Springer Berlin / Heidelberg, 2011.

. Pavel Nikolaev and Alexander Chernikov. Policy-based planning in a multi-domain hier-
archical environment. Herald of Bauman Moscow State Technical University, Special Issue
Computer Engineering, pages 76 - 80. BMSTU Publishing House, Moscow, Russia, 2011.

. Pavel Nikolaev, Aladdin Ayesh and Hussein Zedan. Combined Course Programmes Sup-
port System (CProgS). In Proceedings of the Second Creativity, Innovation and Software
Engineering conference (CISE’09), Ravda, Bulgaria, 2009.

. Pavel Nikolaev and Aladdin Ayesh. Development of a System for Combined Course Pro-
grammes Support. In Book of abstracts presented on Russian Scientific- Technicall Confer-
ence “Manufactoring Enginering Technologies” with international participation, pages 283 -

284. BMSTU Publishing House, Moscow, Russia, 2008.

Abstract

Student mobility in the area of Higher Education (HE) is gaining more attention nowadays. It
is one of the cornerstones of the Bologna Process being promoted at both national and interna-
tional levels. However, currently there is no technical system that would support student mobility
processes and assist users in authoring educational curricula involving student mobility. In this
study, the problem of student mobility programmes generation based on existing modules and pro-
grammes is considered. A similar problem is being solved in an Intelligent Tutoring Systems field
using Curriculum generation techniques, but the student mobility area has a set of characteristics
limiting their application to the considered problem. One of main limiting factors is that mobility
programmes should be developed in an environment with heterogeneous regulations. In this envi-
ronment, various established routines and regulations are used to control different aspects of the
educational process. These regulations can be different in different domains and are supported by
different authors independently.

In this thesis, a novel framework was developed for generation of student mobility programmes
in an environment with heterogeneous regulations. Two core technologies that were coherently
combined in the framework are hierarchical planning and policy-based management. The policy-
based planner was designed as a central engine for the framework. It extends the functionality
of existing planning technologies and provides the means to carry out planning in environments
with heterogeneous regulations, specified as policies. The policy-based planner enforces the policies
during the planning and guarantees that the resultant plan is conformant with all policies applicable
to it. The policies can be supported by different authors independently. Using them, policy authors
can specify additional constraints on the execution of planning actions and extend the pre-specified
task networks. Policies are enforced during the planning in a coordinated manner: situations when
a policy can be enforced are defined by its scope, and the outcomes of policy evaluation are
processed according to the specially defined procedures.

For solving the problem of student mobility programme generation using the policy-based plan-
ner, the planning environment describing the student mobility problem area was designed and this

problem was formalised as a planning task. Educational processes valid throughout the HE envi-

ronment were formalised using Hierarchical Task Network planning constructs. Different mobility
schemas were encoded as decomposition methods that can be combined to construct complex
mobility scenarios satisfying the user requirements. New mobility programmes are developed as
detailed educational processes carried out when students study according to these programmes.
This provides the means to model their execution in the planning environment and guarantee that
all relevant requirements are checked.

The postponed policy enforcement mechanism was developed as an extension of the policy-based
planner in order to improve the planning performance. In this mechanism, future dead-ends can
be detected earlier during the planning using partial policy requests. The partial policy requests
and an algorithm for their evaluation were introduced to examine policies for planning actions
that should be executed in the future course of planning. The postponed policy enforcement
mechanism was applied to the mobility programme generation problem within the descending
policy evaluation technique. This technique was designed to optimise the process of programme
components selection. Using it, policies for different domains can be evaluated independently in a
descending order, gradually limiting the scope for the required component selection.

The prototype of student mobility programme generation solution was developed. Two case
studies were used to examine the process of student mobility programmes development and to anal-
yse the role of policies in this process. Additionally, four series of experiments were carried out to
analyse performance gains of the descending policy evaluation technique in planning environments

with different characteristics.

Contents

1 Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Motivation L e
Problem statement Lo
Research questions
Research methodology L
Scope of theresearch
Success criteria L L
Original contributions L oo

Thesis organisation e

Literature review

2.1
2.2

2.3

Introduction Lo
e-Learning systemso
2.2.1 Virtual Learning Environments (VLEs)
2.2.2 Intelligent tutoring systems (ITSs)
2.2.2.1 ITS architecture,

2.2.2.2 ITS main techniques

2.2.2.3 Curriculum generation techniques

2.2.3 Planning technologies for Curriculum generation
2.2.3.1 Hierarchical Task Network (HTN) planning
2.2.3.2 Planning technologies for Curriculum generation and Combined
Educational Programmes development

2.2.4 Multi-agent e-Learning systems (MASs)
Policy-based management
2.3.1 Policy definitiono
2.3.2 Benefits of the policy-based management
2.3.3 Typesofpolicy rules
2.3.3.1 Authorisation rules

2.3.3.2 Reactiverules

2.3.3.3 Role-assignment rules Lo oL
2.3.34 Routingrules. Lo

vi

© oo O Ut W ==

10
12

CONTENTS

2.3.3.5 Delegationruleso o 39

2.3.3.6 Obligation rules support 40

2.3.3.7 Rule types analysis oL 41

2.3.4 Policy enforcemento L 42
2.3.5 Policy composition Lo 44
2.3.6 Policy languages e 45
2.3.6.1 Ponder 45

2.3.6.2 KAOS 46

2.3.6.3 EPAL e 46

2.3.6.4 XACML e 47

2.3.6.5 Policy languages comparison 48

2.4 Conclusion L 48
3 Framework for student mobility programmes development 51
3.1 Imtroduction L 51
3.2 Student mobility domain area analysis 0oL 52
3.2.1 Student mobility processes analysis oL 52
3.2.2 International initiatives in the area of higher education. 54
3.2.3 Other characteristics of student mobility domain area 56

3.3 Requirements to Combined Educational Programme development solution 57
3.4 Combined educational programmes generation framework 59
3.4.1 Specification layer 60
3.4.2 Processing layer 62
343 Datalayer. e 62
3.4.4 An overview of the CEP generation process 63

3.5 Conclusion 65
4 XACML policy specification language formalisation 66
4.1 Introduction L 66
4.2 XACML policy language overview L oo 68
4.3 Policy evaluation schemao oL 70
4.4 Abstract syntax of XACML policies oo 72
4.5 A formal model of policy evaluation 73
4.5.1 Policy set evaluation oL o 74
4.5.2 Policy and policy set combining algebras 75
4.5.3 Policy and rule evaluation L oo 78
4.5.4 Rule combining algebraso oo 79

vii

CONTENTS

4.5.5 Target and condition evaluation 80
4.5.5.1 Target evaluation L. 82

4.5.5.2 Condition evaluation 83

4.6 Obligations generation during policy evaluation 84
4.7 Conclusion 85
5 Policy-based planner 86
5.1 Imtroduction L 86
5.2 Policy-based planner overview and general processes 88
5.2.1 Conceptual model 89
5.2.2 Main interaction processes 91
5.2.2.1 Actions legitimacy and policy evaluation 91

5.2.2.2 Extensions of planning domain using policy obligations 93

5.2.2.3 Conditional plans construction using policy conditions 94

5.3 Planning 95
5.3.1 The planner’s world state and its object model 95
5.3.2 Planning domain specification 0oL 97
5.3.2.1 Tasks oL 97

5.3.22 Operators 98

5.3.2.3 Methods 101

5.3.3 Plan representations 103
5.3.4 Obligations processing 105
5.3.5 Planning algorithmo o oo 106

5.4 Policies e 108
5.4.1 Policy requesto 108
5.4.2 Policy specification o 112
5.4.2.1 Conditions specification 113

5.4.2.2 Time constraints L. Lo Lo 113

5.4.2.3 Obligations specification 114

5.4.3 Obligations validation mechanism 115

5.5 Transformation rules engine oL Lo 118
5.6 Adaptive object contexts generation technique for policy request construction . . . 119
5.6.1 Hyper-graph of planner’s world state and its object model 120
5.6.2 Abstract contexts. L. 123
5.6.3 Generation of object contexts L oL 125

5.7 Conclusion e 128

viii

CONTENTS

6 Postponed policy enforcement mechanism 130
6.1 Introduction L 130
6.2 Postponed policy enforcemento L 132

6.2.1 Constructs for partially known information specification 132
6.2.2 Partial policy requests L 134
6.2.2.1 Constructs for future planner’s states projection 135

6.2.2.2 Partial policy requests generation 138

6.2.3 Operators and methods execution routines. 139
6.2.4 Postponed policy enforcement Lo 142
6.3 Partial policy evaluation 145
6.3.1 Requirements to partial policy evaluation 145
6.3.2 Policy set evaluation functiono oL oL 148
6.3.3 Policy and policy set combining algebras 149
6.3.4 Policy and rule evaluation functions 151
6.3.5 Rule combining algebras oo L oL 153
6.3.6 Target and condition evaluation functions 155
6.3.6.1 Information retrieval from partial policy request tuples 155

6.3.6.2 Target evaluation and truth-value functions with Indeterminate

Temporal value support oL 158

6.3.6.3 Condition evaluation functions, 160

6.3.7 Loose time intervals processing L. 165

6.4 Conclusion L 165
7 Planning for CEP development 167
7.1 Imtroduction oL 167
7.2 Learning objects and their relations specification 168
7.2.1 Learning objects specification 168
7.2.2 Learning outcomes-based relations between Learning objects 172
7.2.3 Hierarchical multi-domain structure and policies for Learning objects 173
7.2.4 Transformation rules for Learning objects properties 176

7.3 Planning procedures for CEP development 177
7.3.1 HTN planning domain for CEP generation process 177
7.3.1.1 Input requirements for CEP generation 177

7.3.1.2 BTr development phase, 179

7.3.1.3 BTr validation phase 185

7.3.1.4 Low-level routines L oo 187

ix

CONTENTS

7.3.1.5 Variations of overall CEP construction procedure 191
7.3.2 Descending policy evaluation technique 192
7.3.2.1 Utilisation of postponed policy enforcement for CEP generation

problem 192

7.3.2.2 Descending policy evaluation algorithm 194

7.3.2.3 Domain refinement L 196

7.3.2.4 Algorithms for planning with domain refinement 200

7.4 Conclusion e 204
8 Implementation 205
8.1 Imtroduction 205
8.2 Planner module Lo 209
8.2.1 Custom call-terms for policy-based planner implementation 210
8.2.2 Planner’s world state object model oo 211

8.3 Policy evaluation mediatoro Lo 212
8.4 Policy analyser 215
8.5 Policy evaluator L 220
8.6 Transformation rules evaluator 0L 223
8.7 Conclusion 223
9 Evaluation 224
9.1 Imtroduction L 224
9.2 Casestudies 224
9.2.1 Casestudy 1 e 224
0.2.2 Casestudy 2 239

9.3 Planning in environments with heterogeneous regulations 249
9.3.1 Enforcement of relevant policy constraints 250
9.3.2 Enforcement of established routines 253
9.3.3 Planning in an environment with dynamically changing regulations 255

9.4 Performance analysis L L L 256
9.4.1 Policies characteristics impact analysis 257
9.4.2 Domain tree characteristics impact analysis 263

9.5 Conclusion e 269
10 Conclusion 271
10.1 SUummary oo e e e e e e e 271
10.2 Original contributions L o 272

CONTENTS

10.3 Revisiting success criteria Lo L 275

10.4 Future work e e e e e e e e e e 276

Appendix A Evaluation of monotonicity for Partial policy evaluation algorithm 295

Appendix B CEP generation planning domain specification 302
Appendix C ANTLR grammar for XPath parsing and AST generation 312
Appendix D Case study 2 planning environment specifications 315

Appendix E Experimental results for performance analysis 324

Xi

List of Tables

2.1

4.1
4.2

4.3
4.4

4.5

5.1

6.1
6.2

6.3
6.4

6.5
6.6
6.7

9.1
9.2
9.3
9.4
9.5
9.6

Policy languages comparison. oo

Table of values for Policy evaluation function P¢

Tables of values for Permit-overrides and Deny-overrides policy combining opera-

. PO DO
tions e, and L e
Table of values for Rule evaluation function R

PO

r

Tables of values for permit- and deny-overrides rule combining operations e

DO

e

Type of XACML functions according to their abstract signatures

Interpretation of policy decisions by the planning engine

Table of values for Policy evaluation function P
Tables of values for permit- and deny-overrides policy combining operations .gpo
and @DC

Table of values for rule evaluation function R°?
Table of values for permit-overrides and deny-overrides rule combining operations
OfPO and oTDpO
“A AP B” and “A VP B” operations definitions in TRVal?

“=P A” operation definition in TRV alP

Tables of values for True- and False-preserving correction functions yp,. and yg; and

Constant correction function ya;« . . .

Specification of constants, used in policy rules for different policies (case study 1) .
Minimum branching factors for tasks estimated before planning step execution

Three versions of the planning algorithm comparison (case study 1)
CEP structure generated (case study 2)
Policy decisions received during execution of different scenarios

Policy decisions received during execution of different scenarios (cont.)

Xii

(0]

76
79

80
84

92

148

150
152

153

159

159

164

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Generalised models and functions of ITS 18
Conceptual graph, student and learning objects models of ABITS 21
Types of policy rules L 38
Obligation types L 41

Outsourced (A.) [6], p. 54 and provisional (B.) [103], p. 6 policy enforcement models 43

Student mobility schemas L L 53
CEP generation framework L oo 59
Overview of the CEP generation process 64
An overall schema of policy evaluation 71
Abstract syntax for XACML policies 72
Example of AST e 73
Abstract syntax for XACML policies (cont.) 81
All possible transformations between abstract data types. 84
Overview schema of the policy-based planner 88
Conceptual model for action oo 89
Example of hierarchical plan generation 104
Different variants of task execution o oL 106
Planning algorithm Lo 109
Planning algorithm (cont.) L 110
Example policy structure 112
Examples of policies, applicable to an action 114
Syntax for validation rules Lo 116
Examples of validation rules 118
Example of the planner’s world state 121
Hyper-graph of the planner’s world state example 121
Object model hyper-graph for the example planner’s world state 122
Policy request generation schema using abstract contexts 125
Object context generation algorithm 126
Transformation of Bipartite graph for k(Hop;) into an object context 128

xiii

LIST OF FIGURES

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.9

Example of compound task decomposition method methcor, execution 137
Correctness checks for compound action decomposition method execution 141
Partial policy requests evaluation algorithm 144
Partial policy evaluation process oL 146
Approximation order on set My 146
Approximation order on TRV alP x MY set 149
Approximation order on set M} (A.) Graph for decisions mapping function f, :

MY — MP (B.) .o 151
Correction mechanism, applied to function ‘Func’ 163
Hierarchical multi-domain environment (domain tree) 174
Examples of different decomposition methods application 185
Obligation validation rules 189
Basic descending policy evaluation algorithm 195
State transition diagram for task states during the planning 199
Ordered planning algorithm with domain refinements 201
Unordered version of the planning algorithm with domain refinements 203
Prototype architectureo Lo 208
Class diagram for the planner’s world state 212
Example of the planner’s world state L. 213
Class diagram for the policy evaluation mediator 215
Parsing/rewrite rules for processing location paths and generation of AST 217
Examples of parsing/rewrite rules that introduce AST branching 218
XPath expression, corresponding AST and abstract context tree 219
Algorithm for Abstract context generation from AST 221
Domain tree schema (case study 1) 225
Schemas for Country; and Uniqq policies (case study 1) 227
Initial planner’s world state (case study 1) 229
Abstract contexts for university and country policies (case study 1) 229
Policy request for &study_interval action. Original policy-based planning. 231
Task network decompositions structure. Original policy-based planning. 232
Task network decompositions structure. Descending policy evaluation. 232

Partial policy request for &study_interval action in Country; domain. Descending
policy evaluation. Lo 235

Domain tree schema (case study 2) 240

Xiv

LIST OF FIGURES

9.10
9.11
9.12
9.13
9.14
9.15

9.16

9.17
9.18
9.19
9.20
9.21
9.22
9.23

Al

D.1
D.2
D.3
D.4

E1
E.2
E.3

High-level policy schema (case study 2) 242
Schema for Russia policy set (case study 2) 243
Task network decompositions structure in case study 2 245
Task network decompositions structure in case study 2 (cont.) 246
CEP process model generated (case study 2) 249
Task network representing one semester study period, generated within the BMSTU

domain e e e e e e 254

Task network representing one semester study period, generated within the Univer-

sity of Birmingham domain oL Lo 255
Experimental results for different values of policy stringency p. 259
CPU time ratios for different values of policy stringency p 260
Experimental results for different values of z (see also Figure E.2) 262
Experimental results for different number of EPs (see also Figure E.3) 264
CPU time ratios for different number of EPs 265
Experimental results for different values of Ky, (task with 2 levels) 266
Experimental results for number of levels Npe, (Kpr =2) . . o 0 000000 267
Approximation order for TRV al? x TRValP set 295
Schema for Russia policy set 320
Schemas for BMSTU and EPs; policy sets 321
Schemas for UK and University of Birmingham policy sets 322

Schemas for School of Computer Science, University of Birmingham and Msc in

Advanced Computer Science EP; policy sets 323
Examples of domains trees used for performance analysis 324
Experimental results for different values of z (Experiment 1.2) 325
Experimental results for different number of EPs (Experiment 2.1) 326

XV

Acronyms

ACM
Al
AST
BMSTU
BP
BSc
BTr
CEFR
CEP
CG
CPU
DAAD
DE
DO
ECA
ECTS
EHEA
EHEA QF
EP
FAF
GUI
HE
HTN
IE

IEC
IEEE
IEEE LOM
IETF
ISCED
ISO

IT

ITr
ITS

Association for Computing Machinery

Artificial Intelligence

Abstract Syntax Tree

Bauman Moscow State Technical University

Bologna Process

Bachelor of Science

Basic Track

Common European Framework of Reference for Languages
Combined Educational Programme

Curriculum Generation

Central Processing Unit

German Academic Exchange Service (Deutscher Akademischer Austauschdienst)
Decreasing Effects

Deny-Overrides

Event-Condition-Action

European Credit Transfer and Accumulation System
European Higher Education Area

Qualifications Framework of the European Higher Education Area
Educational Programme

Fewest-Alternatives First

Graphical User Interface

Higher Education

Hierarchical Task Network

Increasing Effects

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

Institute of Electrical and Electronics Engineers Learning Object Metadata
Internet Engineering Task Force

International Standard Classification of Education
International Organisation for Standardisation
Information Technologies

Initial Track

Intelligent Tutoring System

XVi

LIST OF FIGURES

KhPU
LCA
LObj
LOR
MAS
MSc
NQF
OASIS
PC
PDP
PEP
PO
PT
TAL
TO
UNESCO
VLE
W3C
XACML
XML
XPath

Kharkov Polytechnic University

Least Common Ancestor

Learning Object

Learning Objects Repository

Multi-Agent System

Master of Science

National Qualification Framework
Organisation for the Advancement of Structured Information Standards
Policy Consumer

Policy Decision Point

Policy Enforcement Point

Permit-Overrides

Policy Target

Temporal Action Logic

Teaching Operator

United Nations Educational, Scientific and Cultural Organization
Virtual Learning Environment

World Wide Web Consortium

eXtensible Access Control Markup Language
Extensible Markup Language

XML Path Language

xXvii

Chapter 1

Introduction

1.1 Motivation

Student mobility in the area of Higher Education (HE) is the possibility of students to change
their education providers (or courses) one or more times within their programmes of study in
HE. Student mobility is one of the cornerstones of the Bologna Process (BP) and is promoted
at national and international levels [58, 165]. It is beneficial for students and universities, as the
mobility provides students with better possibilities for professional and personal development, and
makes them more socially adaptable and self-confident. It increases the employability of students
in their home countries as well as overseas and satisfies the demands of the global market [143, 165].

The UK Higher Education Statistics Agency defines two major types of student mobility [91]:
diploma mobility is a mobility for an entire programme of study and credit mobility is a
mobility for a part of the programme. The third distinguished type of mobility, viz., voluntary
moves, covers other moves undertaken for a range of personal reasons. This type of student
mobility is different from the previous types as it usually does not involve a recognition of study
periods. The recognition of study periods during the student mobility is obviously profitable and
desirable for students and society [86], as it reduces the overall expenses for achieving the students’
educational goals and makes mobile students’ experience smoother. Accordingly, the focus of this
study will be on the first and second types of student mobility. The recognition of study periods
will be considered as an integral part of the student mobility programme design.

Another classification of student mobility divides all the mobility schemas into internal, external
and international mobility. Internal student mobility occurs when a student changes his (or
her) course within the same education provider (e.g., a university). External student mobility
occurs when a student changes the education provider within the same country. International
student mobility, as UNESCO defines, “implies a period of study in a country other than a
student’s country of residence (‘the home country’)” .

However, a number of obstacles were identified [86, 57, 63, 165] preventing an intensive devel-

opment of the student mobility area and a rapid growth of mobile student numbers:

Information. For the development of mobility programmes, detailed information about different

Lwww.unesco.org/education/studyingabroad/what_is/mobility.shtml [Accessed 23.02.2014].

CHAPTER 1. INTRODUCTION

aspects of the HE systems in other countries is needed, including regulations at the national
and university levels, and student mobility initiatives. Students require information about
available educational courses and student mobility programmes. Universities require informa-
tion about their partner education providers. Available information is broad, heterogeneous
and unstructured. Its analysis, for example, for the establishment of correspondence between
the educational systems or specific modules, requires substantial efforts and deep expertise.

Financial. The development of student mobility programmes leads to an increase of expenses.
Students can suffer from extra expenses for education in a university abroad. Universities
can lose tuition fees from students who transfer to other universities. Finally, the design of
student mobility programmes requires substantial financial investments from the universities.
Moreover, as rigid regulations can exist in the student mobility area and the programmes
designed should conform to them, the task of mobility programme design becomes even more
complex and expensive.

Academic. The recognition of academic qualifications and credits, carried out during or after
the student mobility activities, is a highly labour-intensive process. It requires substantial
time and deep knowledge of the educational regulations and the problem area. During the
recognition, the educational content itself and other issues concerning the education of a
student in another university are rigidly analysed. As a result, previous study experience of
the student can be accepted as satisfying requirements to a part of the degree or its entrance
requirements. However, as universities are responsible for the quality and originality of their
programmes, the outcome of this process can be negative, that is, no degree or credits can

be recognised.

The main international initiative, aimed at the intensification of student mobility and creation
of the European Higher Education Area (EHEA), is the BP. The BP provides mechanisms for
the harmonisation of educational levels and degrees in different countries and the facilitation of
recognition of modules and degrees. For this purpose, three main mechanisms were proposed: a
system of HE cycles and National Qualification Frameworks (NQFs), European Credit Transfer
and Accumulation System (ECTS), and a learning outcomes-based approach to education [54].
Other educational recommendations and guides (e.g. [57], [67], [58]) propose various organisational
measures for the student mobility facilitation, including the harmonisation of mobile students’ legal
status, and recommended procedures for the students’ preparation, integration and re-integration.
They call for devising clear recognition policies, expansion of mobility programme initiatives (e.g.,
Erasmus, DAAD programmes), improvement of awareness about educational systems, legal frame-
works and other information that students and institutions need to know about other countries to
plan student mobility activities.

All these measures help to some extent to overcome the mentioned difficulties. They form a

CHAPTER 1. INTRODUCTION

normative basis, give direction for developments and stimulate participants towards the intensifica-
tion of student mobility. However, the role of modern computer technologies in these initiatives is
very modest. Their utilisation is foreseen mostly as a supportive tool for the phase when a student
is studying according to an existing mobility programme. There is no solid technical solution that
would provide support for the process of development of new mobility activities. Nevertheless, such
solution could definitely be used to facilitate the fulfilment of the tedious and laborious operations
during the authoring of mobility programmes and lead to the intensification of the development of
the whole student mobility area.

Based on the presented facts, a technical solution for the student mobility support, with the pur-
pose of student mobility area development facilitation, should be aimed at lifting the information,
academic and financial obstacles. It should automate the processing of information for planning
student mobility activities, taking into account the peculiarities of educational frameworks and
regulations in different countries and universities. Efficient tools for the discovery and analysis
of existing educational programmes and student mobility possibilities should be provided, which
can relate and compare modules and courses originating from different education providers. Based
on this comparison and taking into account regulations and routines specific to these education
providers, a track of mobile student, involving recognition of study periods, can be planned. Of
course, recognition decisions cannot be taken fully automatically but the results of machine-based
analysis can serve as a basis for a more detailed examination by the human expert who takes the
final decision. The financial obstacle can partially be overcome since a student mobility support
technique can reduce the time that highly qualified experts, engaged in student mobility planning
activities, spend on search, processing and analysis of diverse information. Moreover, when us-
ing this technique, more options for student mobility activities can be processed and analysed,
so the resulting student mobility programme can be planned more carefully, satisfying the strict

regulations and various user requirements.

1.2 Problem statement

It is advocated [63, 54, 143, 159] that all student mobility activities, which occur within students’
educational pathways in HE, should be well planned and agreed in advance for each individual stu-
dent. This can guarantee the fulfilment of the agreed plan and raise the quality of the well-planned
educational programme. Hence, a technical solution for the student mobility support should ex-
plore the problem of planning student mobility activities. For this purpose, in order to designate
any educational pathway involving student mobility activities, in this study the notion of a ‘pro-
gramme’ is adopted. An Educational Programme (EP) in HE is an approved curriculum route
leading to a named academic award that is followed by a registered student [131], [160]. Accord-

ingly, a Combined Educational Programme (CEP) is an approved curriculum route incorporating

CHAPTER 1. INTRODUCTION

student mobility activities that leads to one or several academic awards and is followed by a regis-
tered student. If internal student mobility is used, meaning that the programme is taught within
one education provider, different courses should be used for the CEP construction. If external or
international mobility occurs, different education providers should be involved in the educational
process.

In accordance with the aim of a technical solution for the support of student mobility, the
main problem solved using this solution is specified as follows. For an individual student or a
group of students with similar characteristics, new possible CEPs should be generated based on
existing modules and EPs. These CEPs should satisfy the requirements provided by the requester
of the programme (an educational organisation or a student) and should conform to the regulations
specified by the education providers and the educational authorities. In this study, this problem
will be referred as a CEP generation problem.

In the e-Learning field, a similar problem is being solved within Intelligent Tutoring Systems
(ITSs). These systems provide a flexible individualised computer-based learning service and carry
out functions traditionally appertained to tutors. Curriculum Generation (CG) ITS techniques de-
rive educational curricula for students based on provided educational goals and taking into account
students’ knowledge and characteristics. For this purpose, these systems should reason about prob-
lem domain concepts, corresponding educational goals and available educational resources. To do
this, advanced CG techniques exploit planning techniques providing a flexible unified framework for
modelling and reasoning about educational activities and their relations with the goals, concepts
and resources [170, 174, 163]. Hierarchical planning enhances the curriculum design process with
the hierarchical reasoning capabilities [171]. This allows increasing the flexibility and adaptiveness
of the CG process, for example, by formalising different tutoring strategies and letting the planner
select the strategy for the curriculum development that suits the student the most.

However, within the ITS field the CEP generation problem was not considered before and exist-
ing CG approaches do not support the student mobility activities. The problem of their adoption
for the CEP generation is particularly interesting, since this extends the CG techniques area of
applicability towards the new domain. Moreover, the student mobility area involves issues that
are not covered within existing ITS CG techniques. For example, trajectories of students’ physical
movements should be designed during the CEP development utilising different student mobility
scenarios. Requirements to the CEPs can be specified from different perspectives, including re-
quirements to the CEP structure, its official outcomes, physical movements of the student. For the
CEP design, modules from different education providers should be extracted and compared. As
the CEPs designed should be approved by education experts, a clear and expressive representation
for them is needed.

One of the major obstacles limiting the effective utilisation of current CG techniques for the

CHAPTER 1. INTRODUCTION

CEP generation problem is the fact that CEPs are being developed within an environment with
heterogeneous regulations. Different educational institutions and authorities have their regulations,
established routines and criteria for decision making that should be taken into account during the
CEP generation. These regulations manage different aspects of the educational process (e.g.,
requirements for EPs structure, credit recognition rules, student transfer rules and progression
rules) and they are developed and maintained by different people independently. In planning-
based CG techniques, these regulations are not supported, and it is assumed that the planning
environment is integrally devised by a single author or a group of closely collaborating authors. In
order to apply this technology to the CEP generation problem, different authors should have the
possibility to contribute to the planning environment specification. Besides, in order to guarantee
the smooth planning in such environments and adhere to the division of responsibilities, the process
of specification and subsequent planning should be controlled. Scopes where different authors can
contribute to the planning environment specification should be limited according to their areas of
responsibility and there should be mechanisms to resolve conflicts that can occur between these
specifications during the planning. In Information Technologies (IT) field, in order to operate
with such heterogeneous regulations, policy-based management technology is used [141, 85]. This
technology facilitates management of different types of systems and environments under complex
dynamically changing regulations specified by different authors as policies and guarantees that
the policies are consistently enforced, that is, the system execution traces satisfy all required

policies [27].
1.3 Research questions

Based on the presented motivation and problem statement, the main research question for this
study was formulated:
How Combined Educational Programmes (CEPs) can be generated using planning-
based techniques in an educational environment with heterogeneous regulations?
Heterogeneous regulations are regulations governing different aspects of the educational process.
They are different in different domains of the environment and are authored and supported by
different persons independently. As the formulated question is quite general, in order to guide

further investigation it was subdivided into more concrete questions:
1. How can planning technologies be adopted to solve the CEP generation problem?

e Which planning technique is suitable for solving the CEP generation problem?
e How the CEP generation task can be formulated as a planning problem? Which ap-

proach can be adopted for the CEP generation?

e How can diverse user expectations be specified as input CEP requirements? How can

detailed information about the result CEPs be represented to the user?

CHAPTER 1. INTRODUCTION

e How can different mobility schemas be applied during the planning for the CEP gen-
eration and how can composite student mobility scenarios be generated based on these

schemas?

2. How can policy-based management approach be utilised to enable planning in environments
with heterogeneous regulations?

3. When planning is carried out in an environment with regulations supported by different
people independently, how is it possible to have control over the regulations specified by
different people and guarantee that they do not contradict with each other and with the
general principles of the planning environment designed?

4. TIs it possible to improve the planning performance relying on specific characteristics of the
CEP development problem area or a planning technique being used to solve the CEP gener-

ation problem?

1.4 Research methodology

The overall research approach adopted in this study is constructive research. The distinctive
feature of this approach is the construction of a novel artefact that can solve a practical problem
in order to elicit new knowledge on how this problem can be solved in principle, and to analyse
and compare the solution with other approaches [46]. The choice of constructive research was
motivated by the initial problem statement that was focused on the problem solving issues?® and
the absence of existing analogues techniques for solving this problem within the student mobility
field. Constructive research is advantageous as by using it a twofold contribution can be achieved: a
construct for solving practical problems can be developed (which is usually produced as an abstract
model or a framework that can be implemented in different ways) and current knowledge can be
extended by studying the construct and the theoretical principles embedded in it. Importantly,
the constructive research is a dominant research method in computer science, which this study
belongs to. The artefacts produced using the constructive approach in computer science could
be algorithms, frameworks, models or languages. It is common that employing the constructive
approach as a main method researchers also utilise other research methods to fulfil the local
tasks [45]. Now, the main steps of this research are presented and specific tools and methods used
at these steps are described.

Step 1. Identification of problem and specification of research question

A problem being explored using the constructive approach should be relevant from both practi-
cal and theoretical perspectives [100]. This means that an outcome of study, specifically, a designed
artefact, should be aimed at resolution of an actual practical problem and, at the same time, its

elaboration should contribute to the theoretical knowledge, for example, by resolving paradoxes or

2Based on it, the research question with the corresponding type was formulated, i.e., "How. .. ?”.

CHAPTER 1. INTRODUCTION

providing the lacking knowledge. In order to state such a problem and formulate the research ques-
tion for this study, first of all, the problem domain, the HE student mobility area, was explored.
For this purpose, a literature review was done. It covered educational research sources, specifically,
journal papers and research reports, and normative and counsel literature, such as actual educa-
tional regulations, recommendations and initiatives aimed at the facilitation of student mobility.
The case study approach was neglected for this task, as general problems and issues within the
area of student mobility should be considered, rather than problems of a concrete university or
organisation. Moreover, the case study method would have required substantial time and resources
for this step. Additionally, at this stage an overview of corresponding e-Learning and other in-
formation systems technologies was done. The outcomes of this step were the problem statement
and the research questions specified and a set of requirements to the solution approach from the
educational perspective, formulated during the exploration of the problem area (see Chapter 3).

Step 2. Thorough literature review

In this step, the research background was studied through a detailed review of the relevant liter-
ature. In the review different directions within the e-Learning field were explored and their possible
contributions to the CEP generation were examined. Additionally, the policy-based management
was explored as a technique for management of the CEP generation process in the presence of com-
plex heterogeneous regulations. For the searching and gathering of relevant conference and journal
papers, digital resources such as IEEE Xplore, ACM Digital Library, CiteSeer and SpringerLink
were used.

Step 3. Construction and implementation of solution approach

First of all, as an initial design for the solution a general CEP generation framework was
created. The framework defines all components of the solution, including models, technologies and
users, their roles and interrelations. Within the framework, the overall CEP generation process
was outlined. Next, the refinement of the framework and the detailed CEP generation technique
construction was started. As a core component of the developed technical solution, the policy-
based planning engine was designed, which joins the strengths of the planning and policy-based
management approaches. As is common for the constructive research in the computer science
area [45], modelling and formal methods were utilised as auxiliary tools within the design part
of this study. The hyper-graph model of the planner’s world state and the formal model of the
XACML policy language were introduced. They were utilised during the techniques design in
order to ease the operation with the corresponding objects, as standard rules and operations can
be applied, and guarantee the required properties of the designed techniques. Additionally, as the
designed solution employs the planning technique, effectively, it relies on the modelling method.
For the policy-based planning technique, a model was specified that provides the means to carry

out planning within the student mobility environment and using which the CEP generation task

CHAPTER 1. INTRODUCTION

can be solved. Finally, in this step the working prototype was implemented.

Step 5. Evaluation of solution approach

First of all, the developed approach was evaluated using two case studies. These case studies
have demonstrated the feasibility of the approach and provided the insights on its functioning.
The case studies were constructed based on different educational scenarios and were different,
in scale in order to evaluate the approach in different settings. Ome of the case studies was
constructed with the aim of representing the real life case as close as possible. Secondly, the
approach was evaluated based on the specific criteria, which were devised in order to check its
required properties and analyse specific behaviour patterns. Finally, experiments were carried out
in order to evaluate the planning performance of the designed techniques in planning environments
with different characteristics.

Step 6. Deriving conclusions and identification of research contributions

Based on the evaluation of the solution, the conclusions were drawn that describe the achieve-
ments attained using the proposed approach and reveal the connections of the approach with
existing knowledge. Moreover, a set of directions for the future work were identified, within which

more understanding of the topic can be gained and new advances can be reached.

1.5 Scope of the research

According to the problem statement and the research questions posed, in this study we concentrate
on the development of a framework and specific techniques within this framework. Using these
techniques and framework, the CEP generation problem can be solved, so new CEPs can be
generated using existing EPs based on user requirements. This problem was considered more
from a technical perspective, rather than an educational one. The educational domain was taken
as a problem area for this work. Specific characteristics of the HE domain and, particularly, the
student mobility area were explored based on the educational literature and were taken as premises
for the technical solution design. One of the most prominent issues that this work focuses on is
the existence of heterogeneous educational regulations, which are supported by several authors
independently and should be taken into account during the CEP development. For the concrete
technique design, within the range of different CEP types we concentrated on credit mobility CEPs
as these CEPs explicitly involve credit recognition, reflect the nature of student mobility and are
usually prevalent over other mobility types [90].

The educational domain is characterised by a diversity of approaches for the development of
EPs, normative requirements specifications and quality metrics definitions. As this work constitutes
initial steps in the field of computer technology support for the design of mobility programmes,
it accepts an approach based on normative compliance. The technology developed should provide

the means for the specification of specific normative requirements regulating the development of

CHAPTER 1. INTRODUCTION

mobility programmes. Correspondingly, the mobility programmes produced by the solution should
satisfy these requirements, thereby assuming that they possess the required level of quality inherent
in these requirements.

As the core problem to be solved in this thesis concerns a provision of technological support for
the educational process (i.e., the CEP development) with the aim of its facilitation, it belongs to
the wider e-Learning field. Specifically, the CG techniques exploited in ITSs for solving a problem
of non-mobile EP development constituted the required background for our work. Similarly to
the advanced CG techniques, we have chosen the planning technologies, in concrete, Hierarchi-
cal Task Network (HTN) planning, as the basis for the core CEP generation mechanism design.
The planning technologies provide possibilities for reasoning about educational activities and their
relations with learning resources and domain concepts. Therefore, the EPs can be developed as
detailed networks of educational activities achieving the specified goals. Additionally, the hierar-
chical planning provides abilities for the hierarchical reasoning and utilisation of pre-built scenarios
during this process®. The policy-based management approach was explored to solve the problem of
handling the heterogeneous regulations during the planning. Finally, the problem of the planning
performance improvements was considered in this thesis. In accordance with the central line of
our work, it was assumed that the factors of the performance improvements should be based on
the peculiarities of the designed policy-based planning technique or specific characteristics of the

CEP development problem.

1.6 Success criteria

In order to consider this study a success, first of all, an approach should be proposed that provides
means to generate new CEPs using existing EPs and modules relying on planning techniques. The
approach should be implemented and its feasibility should be demonstrated using case studies.

Additionally, the following specific requirements were stated:

e As the user can have diverse expectations about the CEP that should be developed, it should
be possible to specify CEP requirements from different perspectives and on different levels
of abstraction.

e The approach proposed should support the reasoning about mobility scenarios and physical
tracks that students follow during their education according to CEPs. It should be possi-
ble to specify corresponding requirements and generate arbitrary complex student mobility

scenarios in order to satisfy them.

Secondly, as part of the proposed planning-based CEP generation approach, a policy-based tech-

nique should be designed with which it should be possible to carry out planning in environments

3The problem of planning technology utilisation for EP design is considered in more detail in Chapter 2

CHAPTER 1. INTRODUCTION

with heterogeneous regulations. These regulations being specified as policies are to be used to

control the planning process. The technique designed should have the following properties:

o Using policies, it should be possible to specify and enforce restrictive regulations, limiting
the applicability of actions, and specify established routines that define how certain tasks

should be executed.

o In order to facilitate the policy specification, policies should be modular and compositional.
It should be possible to specify simple policies independently and unite them using specified
rules into more complex policies.

o It should be possible to restrict a set of regulations that can be imposed by different policy
authors and define procedures for how different regulations interleave with each other during

their evaluation and enforcement.

Finally, one or several planning performance improvement approaches for the developed policy-
based planning technique should be proposed based on the specific characteristics of the policy-

based planning technique itself or the CEP generation problem considered.

¢ Experiments should show that these approaches can bring performance gains during the CEP
generation.

e Since the performance of the planner depends on the specific characteristics of the planning
environment, performance gains produced by the proposed techniques in environments with

different characteristics should be evaluated and compared.

1.7 Original contributions

The original contributions of this thesis are as follows:
CEP development framework

First of all, the novel planning- and policy-based CEP generation framework was proposed for
the automated development of new CEPs using existing EPs and modules in an environment
with heterogeneous regulations. The CEP generation task was not considered before within the
e-Learning field. It constitutes the novel approach for the student mobility processes support using

computer technologies and is aimed at the student mobility area facilitation.
Policy-based planning technique

The policy-based management approach, which is utilised in different areas of IT, was applied
to the new area, the domain-independent planning. As a result, the novel policy-based planning
technique was developed. It extends the HTN planning with the possibilities to carry out planning
in environments with complex heterogeneous regulations, supported by different people indepen-

dently. The policy-based planner selects and enforces policies during the planning and guarantees

10

CHAPTER 1. INTRODUCTION

that the resulting plan conforms with all policies applicable to it. During the development of this

technique, the following subsidiary contributions were made:

e Using the XACML policy language, adopted for the specification of policies in the policy-
based planning, procedures for the authentication decisions processing and resolution of con-
flicts between them can be flexibly specified. On the other hand, the procedure of obligations
processing during the policy evaluation has not received the due attention. In order to pro-
vide the possibility to control which obligations can be produced during the policy evaluation
and how they can be jointly executed, the XACML obligations specification mechanism was
extended and the obligations validation approach was proposed.

e For the XACML policy language there is no mechanism to determine which information
about the subject or resource of the policy evaluation request will be required during its
evaluation before the evaluation has actually started. Correspondingly, the adaptive pol-
icy requests construction procedure was designed in order to generate policy evaluation

requests containing purposely selected information based on the introduced policies.
Formalisation of the CEP generation problem as a planning task

To solve the CEP generation problem using the policy-based planner, the planning environment
describing the student mobility problem area was designed and, in this environment, the corre-
sponding planning task was formalised. Educational processes carried out when a student studies
according to a CEP are formalised using HTN constructs and are modelled during the planning,
trying different variants of the CEP construction. While a similar approach is used in CG tech-
niques in ITSs, the CEP development problem has a number of distinctive characteristics (see

Chapter 2) that were incorporated into the CEP generation planning task specification.
Planning performance improvement techniques

The postponed policy enforcement is a problem-independent mechanism extending the policy-
based planning technique with the possibility to evaluate policies at earlier stages of the planning.
Using this approach, the performance gains are achieved, since dead-ends can be detected earlier
during the planning. When not all required information is available for the decision inference, the
planner postpones the policy request and re-evaluates it later during the planning.

The descending policy evaluation is a performance improvement technique for the CEP gener-
ation planning task, which is based on the postponed policy enforcement approach. This technique
optimises the process of searching for EPs, which will be used as a basis for the CEP construction,

relying on the hierarchical domain structure of the planning environment considered.

Partial policy evaluation for XACML policy language

11

CHAPTER 1. INTRODUCTION

For the postponed policy enforcement realisation, a mechanism was required for the specification
of policy requests containing only some part of the information about the planning action, as well
as, an algorithm for such requests evaluation. Therefore, the XACML policy specification language
was extended and the partial policy requests specification mechanism with the corresponding policy

evaluation algorithm were designed.

1.8 Thesis organisation

The thesis is structured as follows:

Chapter 2 contains a review of existing e-Learning systems and other information technologies
that can form a basis for the CEP generation approach development. An analysis is presented of
how these technologies can be utilised during the CEP development process support. Among the
other technologies, the planning-based CG techniques and the policy-based management approach
are considered with special scrutiny.

Chapter 3 contains the student mobility problem domain analysis, based on which the core
requirements to the CEP generation system were identified. The CEP generation framework,
satisfying these requirements, is presented in this chapter, along with the outline of the general
CEP development process.

Chapter 4 contains a description of the XACML policy specification language, which was
chosen for the specification of regulations. In this chapter, we also describe the construction of
a formal model for the XACML policy language, which is used in Chapter 6 as a basis for the
XACML policy language extension.

Chapter 5 presents the design of the problem-independent policy-based planning technique.
An overview of the planner’s components and the main interaction processes between them, un-
derlying the planner’s functioning, are presented. Then, each component is considered in detail;
models for specification of the corresponding parts of the planning environment and the algorithms
for their processing are developed. As part of the planning technique design, the adaptive policy
request construction procedure is introduced.

Chapter 6 describes the postponed policy enforcement mechanism. This mechanism enhances
the policy enforcement procedure of the policy-based planning technique and provides the pos-
sibilities for the planning performance improvements. For the evaluation of policies during the
postponed policy enforcement, the standard XACML policy evaluation procedure was extended
and the partial policy evaluation procedure was introduced.

Chapter 7 presents a formalisation of the CEP generation problem as a planning task, being
solved by the policy-based planning technique. In addition, this chapter contains a description
of the descending policy evaluation technique, which was designed to improve the performance of

planning for the CEP development. Specifically, in this technique the postponed policy enforcement

12

CHAPTER 1. INTRODUCTION

mechanism was applied for the formalised CEP generation planning problem.
Chapter 8 contains a description of the CEP generation system prototype implementation.
Chapter 9 contains an evaluation of the proposed approach and the designed techniques.
The overall CEP generation framework is evaluated using two case studies. The policy-based
planning technique is analysed against the criteria for planning in environments with heterogeneous
regulations. Finally, the performance analysis is done, including the evaluation of performance
gains, produced by the descending policy evaluation technique.

Chapter 10 contains general conclusions and a description of possible future work.

13

Chapter 2

Literature review

Objectives:

e Review current e-Learning systems and relevant e-Learning
technologies that can be used to support the CEP generation
process.

e Review policy-based management and existing policy lan-

guages.

2.1 Introduction

Student mobility is promoted at national and international levels, while the problem of techno-
logical support for the mobility processes by the use of computer technologies has not received
the required level of attention. Now there is no system that can provide support for student mo-
bility processes in the automatic generation of CEPs based on existing learning objects (modules
and semesters of EPs). The closest area to this problem is the field of e-Learning where diverse
technologies for technological support of learning processes are being developed. In this chapter,
current prominent e-Learning technologies are reviewed and their correlation and applicability to
the CEP generation problem are analysed (see Section 2.2). It was identified that there are tech-
niques within the e-Learning field that can solve a problem similar to the CEP generation, but
for non-mobile curricula. They are the Curriculum generation techniques being used in Intelligent
Tutoring Systems (ITSs) for the automatic generation of learning paths for students based on
their knowledge and individual characteristics. These technologies have a long history and are now
successfully used within fast-paced modern web, collaborative and multi-agent e-Learning environ-
ments. Among other factors that differentiate the CG and CEP generation tasks, one of the most
important is the fact that CEPs should be developed within educational environments with het-
erogeneous regulations, dictating rules according to which mobility programmes should be built. A
policy-based management technology, which is successfully applied in different application areas,
can be utilised to overcome this limitation. The policy-based management facilitates management

under complex, dynamically changing regulations being specified as policies. Prominent charac-

14

CHAPTER 2. LITERATURE REVIEW

teristics of the policy-based management and different policy-specification languages are reviewed

in Section 2.3.

2.2 e-Learning systems

Computer technologies were used for learning support almost from their beginning. With the
development of technologies, their application areas and the value for learning are continually
increasing. Due to a variety of e-Learning technologies, many different definitions of e-Learning
have been proposed [76]. Researchers who formulate the e-Learning definition narrowly concentrate
on the delivering of knowledge by the use of technologies [8, 109] or even on the usage of specific
technologies, for example, the internet technologies [7]. In a broad sense (e.g., in [81, 102, 137]), e-
Learning is interpreted as a learning or teaching facilitated or supported with the use of information
or communication technologies. In [3], it is stated that e-Learning is aimed at the improvement and
(or) extension of one or more significant parts of a learning value chain, including management
and delivery. Correspondingly, e-Learning technologies include a range of tools for the support
of educational activities [105], like learning goals and pathways management, non-digital learning
objects management. Further, we review different types of e-Learning systems and analyse the
possibilities of adopting e-Learning technologies for the development of a system supporting the

CEP generation process.
2.2.1 Virtual Learning Environments (VLEs)

VLE! is a type of e-Learning system widely used in HE institutions nowadays [178, 35]. They
provide the possibility to author electronic educational content and carry out basic teaching and
learning processes using Web technologies with a range of supplementary services, among which
the support of ‘student-student’ and ‘student-teacher’ communication and the administrative tasks
are highlighted as crucial requirements [21, 53]. VLEs are used for pure distance learning, as well
as for blended learning?, supplementing traditional classroom-based learning. Their widespread
usage in HE institutions motivates the consideration of VLEs within this study. Examples of
modern VLEs are Blackboard, Moodle and Prometheus [104].

The main functions of VLEs are divided into the following areas [31, 104]. Content development
and course design areas include tools for instructional design, content authoring, sharing and
reuse, curriculum management, design of assessments, etc. Collaboration and communication areas
provide a wide rage of commonly used asynchronous and synchronous means of communication,
adapted to educational purposes, as well as specific tools like virtual classrooms, groupwork tools.

Course delivery functions are used to actually conduct the learning process, providing extended

n different sources, other terms are also used to designate this type of systems, like Learning Management
Systems, Learning Content Management System, Course Management Systems.

2Blended learning is a mode of study when traditional ‘face-to-face’ studies are combined with computer-mediated
learning activities.

15

CHAPTER 2. LITERATURE REVIEW

facilities like navigation tools, tracking systems and personal assistants, automated testing and
scoring.

Additionally to the two VLE advantages widely referred in the literature [48, 95, 111], that is,
a flexible anywhere and anytime learning and a reduction of expenses for teaching®, well-designed
VLEs provide some extra value. They provide additional means to actively involve students in
the educational process using new collaboration and communication tools and, hence, to change
their learning mode from passive to active one [21, 79, 180]. Actively using these tools within
the course building schemas that provoke students collaboration, for example, granting to students
some teachers functions, a VLE can become a virtual space where students and teachers share their
knowledge, resources and ideas. For tutors, tracking, assessment and reporting tools of VLE are
the sources of information that can be used as a basis for the analysis and corresponding revision
of the educational process: course content improvement, changing of the presentation mode for a
student, planning future educational courses for specific skills and competences building [53, 107].
Finally, as the course content is specified in a modular and formalised way, it can be actively
re-used in different courses and individual learning paths can be easily built for students.

Despite the fact that VLEs are widely used in universities, the possibilities of their utilisation
for the development of a system supporting the CEP generation process are restricted. VLEs are
focused more on the inner content of the modules and corresponding processes. They lack full-
fledged support of EP curricula, while information about these significantly facilitates the CEP
development process and is needed for a CEP generation system. Moreover, learning path con-
struction and adaptation, when it is required, should be done manually in the VLE by tutors [68].
There are initiatives [5, 108] where VLEs are extended with the adaptation technologies, but they
lie more in the ITS field, which will be considered further (see Section 2.2.2). Actually, if distant or
blended learning modes are used, university VLEs can be used as distant learning platforms for the
CEPs developed by a CEP generation system. Then, the virtual learning mobility can be realised,
that is, when students study according to a CEP, they can be (simultaneously) enrolled and take
part in learning activities in VLEs of different universities participating in the CEP. Moreover,
VLEs can be used as sources of information for the CEP development, as they are widely used in
universities and store valuable information about their educational modules (like credit values, pre-
requisites, learning outcomes, etc.) However, as their specifications lack a fixed standard structure
and often use different units and terms, the utilisation of this information is currently difficult and
requires extra unification and integration efforts*. Therefore, the integration with VLEs and their

usage in a CEP generation system both as sources of information about modules and as target

3These advantages actually correlate with the advantages of the distance learning.

4While IEEE Learning Objects Metadata standard [97] is supported by some VLEs, it cannot represent all
required information for the CEP generation, for example, credit values for modules. So, for harvesting module
information using this standard, a specialised profile based on this standard should be developed.

16

CHAPTER 2. LITERATURE REVIEW

distant learning platforms can be considered as an attractive but non-core functionality for a CEP

generation and support solution.
2.2.2 Intelligent tutoring systems (ITSs)

ITSs are tutoring systems providing flexible individualised learning using AI technologies [24].
These technologies are utilised to carry out tasks that traditionally pertain to tutors and help to
create systems, “which know what they teach, who they teach and how to teach it” [123], p. 252.
Historically, ITSs appeared as an extension of Computer-Aided Instruction (CAI) systems, which
were earlier ancestors of VLEs [71]. When web technologies appeared, they were recognised as
a favourable platform for the ITSs, so they started to be actively used for the development of
ITSs [125]. With the migration to the new platform, ITS techniques were also enriched with novel
presentation and navigation methods that originally appeared in the web-technologies field [23].
ITSs were developed for a variety of domains with a focus on different educational tasks. Model-
tracing I'TSs are used in problem-solving environments. They are designed to model correct courses
of action for solving specific types of problems. When the student deviates from the correct solution
track, this is detected and the system provides a valuable feedback. For example, the model-tracing
PACT Geometry ITS forms an intellectual environment where students can solve geometry tasks.
This ITS was developed as part of school geometry course [4]. Simulation-based ITSs are developed
for simulation environments, where students can carry out exercises. These ITSs coach students
by providing tutorials, giving tasks using the simulation environment and assessing the results.
For example, AIS-IFT system was developed to carry out ITS functions for a helicopter pilots
simulation environment [133]. Collaborative ITSs carry out tutoring tasks in virtual collaborative
environments where a group of students is working on some task. ITS can guide the collaborative
decision process, propose peers for consultancy, promote collaborations. In the area of medicine,
the COMET system was developed for the collaborative diagnosis of disease under the control of

an artificial tutor [149].
2.2.2.1 ITS architecture

The ITS architecture consists of four main modules: student module, domain module, tutoring
module and communication module [71, 123]. Each of these modules contains a corresponding
model, using which the knowledge required for the functioning of the module is specified.

The domain module is responsible for storage and processing knowledge about the problem
domain that should be taught. Depending on the type of ITS, the knowledge stored in the domain
model is different in nature and has different levels of granularity. In most cases, based on the
domain model, a student’s cognitive state should be built and further tasks for the student should
be selected. For this purpose, the domain model should contain descriptive knowledge about the

domain: concepts, skills and techniques existing within the domain and their relationships. In

17

CHAPTER 2. LITERATURE REVIEW

4)

Tutoring Communication j ‘= ;
module module \ﬁ\
\ W)
Student L
ucen Student

module

- J

Figure 2.1: Generalised models and functions of I'TS

problem-solving ITS, the domain model should additionally contain procedural and explanatory
knowledge, so that a solution proposed by a student can be checked and informative feedback
can be given. In model-tracing systems, this expert knowledge is encoded using production rules
representing the course of problem solving. At a lower level of granularity, they can even represent
atomic operations that can be carried out by a student when he (or she) solves the problem.
In constraint-based systems, the domain model is formed by constraints defining states which
incorrect students’ solutions can occupy. Domain models of the simulation-based ITSs should
additionally contain information about properties and behaviours for each type of components
within the simulation environment.

In ITSs, learning materials are presented to the students using specially designed digital learning
objects. These learning objects are usually stored in a repository within the domain module. Meta-
data of the learning objects contain their characteristics, required during the instructional planning
and, actually, the tutoring. These characteristics can contain their roles in the tutoring process
(theory, exercise, hint, bibliography, example, etc.), media types (text, picture, film, simulation
problem, test, etc.), levels of complexity and interactivity, and other properties. In order to plan the
tutoring process, which consists of the interaction of the student with the corresponding learning
objects, the learning objects should also be linked with the concepts stored in the domain model.
In addition to the domain model, the domain module should also have mechanisms using which
the domain model can be processed and information required by the student and tutoring modules
can be retrieved from it and provided to these modules.

The student module serves two main purposes: it stores all information about the student and,
based on this information, it infers new knowledge about him (or her). This module receives
information about all activities carried out by the student in the system and, supported with
information from the domain model, dynamically maintains the student model.

The student model is divided into low-level observations of the student activities, his (or her)

knowledge model and information about his (or her) learning style. A history of the student’s

18

CHAPTER 2. LITERATURE REVIEW

interactions with the system is stored in the observation model. Depending on the type of ITS,
this model can refer to the learning objects and/or problems studied by the student, his (or her)
assessments results or lower level information (e.g., the number of times a specific page was opened).
In the model-tracing I'TSs, this model also contains sequences of operations that were carried out
by students during the problem solving. The student’s knowledge model is usually populated based
on the lower-level observations. Often, it is built using the domain model of the ITS. For example,
the student’s knowledge model can be defined as a subset of the domain model. Using this model,
it is possible to determine the level of mastery for every unit of the domain model. Such a model
is called an overlay model. For the specification of these models, probabilities or fuzzy values can
be used [28]. Information about the student’s learning style can contain conclusions about the
type of tutoring recommended to the student, including the level of interactivity, the format (text
or graphical) of learning objects, the approach (inductive, deductive), the semantic density value,
etc. This information can be derived before the tutoring using special tests, which the student
should pass [126], or it can be updated based on the observations of his (or her) progress during
the tutoring.

The information from the student model, as well as the domain model, is utilised by the tutoring
module to manage the core tutoring process within the ITS. First of all, the tutoring module, based
on the information about student’s knowledge, determines next topic that should be taught to the
student. When the topic is chosen, it determines an educational activity which should be carried
out (e.g., assessment, theory lesson, revision) and chooses a specific learning object which will
be used. During the learning, the tutoring module guides the student and provides him (or her)
with feedback. For example, in the problem-solving ITSs, it evaluates the solutions proposed by
the student or informs him (or her) when a wrong operation is performed during the problem
solving. When a student navigates through the material himself (or herself), the tutoring module
can provide hints or guide the navigation [164]. For these operations, the tutoring module should
make many decisions, influencing the performance of the learning: which topic to choose, which
activities and in what order to use, learning objects with which properties to select, how much to
intervene into the learning process, how detailed hints to provide, etc. First of all, the tutoring
module should be adaptable: all these decisions should be taken based on the information from the
student model. The tutoring module can adapt the difficulty of the learning objects selected, the
nature and order of the activities proposed to the student based on the proficiency and preferences
of the student. Moreover, based on the derived characteristics of the student’s learning style, the
ITS can vary the learning strategy used. Advanced I'TSs store the supported learning strategies as
separate pedagogy models and change them to adapt to the student.

The communication module is responsible for all interactions with the student, including screens

layout, dialog management, tracking student behaviour.

19

CHAPTER 2. LITERATURE REVIEW

2.2.2.2 ITS main techniques

The major techniques used in the ITS field are as follows [24, 23]:

e Curriculum generation is used “to provide the student with the most suitable individually
planned sequence of knowledge units to learn and sequence of learning tasks (examples, ques-
tions, problems, etc.) to work with” [179], p. 372. Using this technique, the ITS defines or
maintains an optimal curriculum for the student.

o Intelligent analysis of student’s solution techniques are used to analyse solutions pro-
posed by the student. Problems can vary from a simple multiple choice test up to a complex
construction task. In addition to the correctness analysis, these techniques can specify which
component was incorrectly used or constructed, provide some explanations or specify an area
of the student’s domain knowledge that should be improved.

¢ Interactive problem solving support techniques are used to control the student’s problem
solving process. They can detect deviations from the correct solution construction path,
notify the student about it and provide assistance (refer to the theory, give hints, correct the
solution, etc).

e Adaptive presentation techniques originated from adaptive hypermedia systems. In this
technology, course pages are generated or assembled from pieces of content for a specific
student based on his (or her) knowledge, learning goals and specific characteristics.

e Adaptive navigation techniques are used to adapt links shown on a web page for the
current student, in order to help him (or her) in navigation and orientation.

¢ Adaptive information filtering is used to select from a large repository few educational
units which fit the student’s request most.

¢ Intelligent collaborative learning is a group of techniques used to control and promote a
collaborative learning in I'TSs. This group includes adaptive group formation, adaptive peers

choice, collaboration support and virtual students techniques.

As the problem of the CEP construction is a special case of the curriculum development problem

being solved using the CG techniques, next we will concentrate on this functionality of I'TSs.
2.2.2.3 Curriculum generation techniques

Curriculum generation (CG) is the core functionality in ITSs. The CG techniques can be used to
structure educational material at different levels within ITS. At a high level, it is used to create
sequences of topics that the student should study. At a lower level, it structures learning objects
that are used to teach these topics. As a basis for the development of individualised learning paths
for students, different information can be used. Usually, the current student’s domain knowledge
is used. Some systems also take into account different properties of the student, like the preferred

type of the learning content or medium. Advanced CG techniques based on the information about

20

CHAPTER 2. LITERATURE REVIEW

the student select the tutoring strategy appropriate for the creation of the student’s curriculum [71].
There are two different types of CG techniques: active and passive [23]. When the passive technique
is used, by default the student navigates through a standard course. A system intervenes only when
the student makes a mistake or explicitly asks for assistance. On the other hand, the active type
proactively generates a whole course for the student or at each step determines the learning object
that should be taught next. Obviously, for the CEP generation task the active CG techniques
should be considered.

Different methods were used for the implementation of CG functionality. In general, they can
be classified into graph-based techniques and planning-based techniques. Next, these techniques
are illustrated using examples of concrete ITS systems.

ABITS (Agent Based Intelligent Tutoring System) [28] is an agent-based ITS that
was developed to extend the functionality of traditional VLEs and make the learning process
more personalised and adaptable using the student modelling and CG functions. The domain
model is represented in ABITS as a conceptual graph where nodes are concepts of the underlying
knowledge domain and edges are relations between them. Three type of relations are supported:
prerequisites, sub-concepts and a general relation. Learning objects in ABITS are atomic web-
deliverable resources that deliver lessons, tests and simulations. For storing information about
learning objects, the IEEE Learning Object Metadata (IEEE LOM) standard is used [97]. One
of its data elements is used to map the learning object to a set of concepts within the conceptual
graph that this learning object refers to. The student model consists of the student’s cognitive
state and preferences. In Figure 2.2 relations between the constructs of the student model and
other models are presented. The cognitive state is an overlay of the conceptual graph, where the
level of confidence that the student knows specific concepts is represented by fuzzy numbers. The
student’s preferences are also stored as a set of fuzzy numbers: each number represents the level of
confidence that the student prefers learning objects with specific value of the meta-data attribute

(e.g., specific format, level of interactivity).

Student model Conceptual Graph Learning object metadata
g N
Preferences Cognitive state »(Concept 1 (C1) Educational
! Concepts: properties:
(s) [xc) | concept 1@y -5
- Concept 2 (Cp) -8z
(s:) [e
—» - Concept N (Cy) - Sk
® [
€

Figure 2.2: Conceptual graph, student and learning objects models of ABITS

The automatic CG is carried out in ABITS based on the student model and the learning goal

21

CHAPTER 2. LITERATURE REVIEW

that should be achieved. The learning goal is a set of concepts within the conceptual graph. In
the first step, the system finds a list of concepts which should be studied by the student in order
to know all concepts within the learning goal. For this purpose, the depth-first tree traversal is
carried out in the sub-graph formed by the prerequisites relations of the conceptual graph. When
a concept that the student knows is reached, the traversal is stopped. Next, this list of concepts
is transformed into a sequence of learning objects explaining these concepts. A learning objects is
selected for teaching a concept based on the student’s preferences. Finally, required test units are
added into the resulting sequence of learning objects.

The graph-based approach to the curriculum sequencing is widely used. For this approach, it
is crucial how the domain and learning objects models are defined: which relations they contain
and which of them are utilised for sequencing [12]. The CG algorithm in ABITS is a basic algo-
rithm where prerequisites between concepts and student’s preferences are utilised for the concepts
sequencing and learning objects selection. The common alternative is an approach where prerequi-
site relations are defined between the learning objects and this graph is utilised for the sequencing
(e.g., in [89]). In the concept graph, other types of relations can be used during traversing, like
’subconcept’ or ‘similarity’ [172]. Another enhancement used in CG techniques is the utilisation of
traversing algorithms constructing optimal paths based on the defined criteria. For example, in [88],
the joint ordered graph containing both concepts and learning objects is weighted: each learning
object node is assigned with an average time required for its studying. Then, using the graph
traversal algorithm, a path with the minimal duration is constructed. Generally, graph-based
approaches are simple and elegant but they lack mechanisms for the representation of different
knowledge that can be used during the CG. As a consequence, their flexibility and adaptability
is less than for other approaches. In the next paragraphs, an ITS system is presented where the
graph-traversing CG algorithm was extended using planning- and rules-based approaches.

The DCG (Dynamic Courseware Generation) approach, proposed in [25, 171, 172], is
targeted at the development of individualised courses for students based on their knowledge and
characteristics. The domain structure in DCG is represented as an AND/OR graph: nodes repre-
sent domain concepts, edges represent different semantic relations between them. In this domain
structure, different types of relations are used, so the same domain can be represented from differ-
ent perspectives. In addition to common ‘prerequisite’ and ‘aggregation’ relations, special types of
relations can be used to represent different aspects of notions under the consideration, for example,
their physical or functional organisation. Each concept corresponds to a set of teaching materials
that can be used to teach it. The teaching materials, in addition to properties like media type and
complexity, are characterised by their roles in the pedagogical process, for example, introduction,
motivation, example, explanation, analogy or test. The student model is also constructed as an

overlay model, but in DCG it is based on the probabilistic theory.

22

CHAPTER 2. LITERATURE REVIEW

The DCG is a combined CG technique that uses graph-based, rule-based and planning tech-
niques. Based on the learning goal specified, that is, a set of concepts that should be taught, the
DCG initiates a bread-first traversal of the domain structure AND/OR graph. At each iteration,
so-called discourse rules are used to control the traversal. The discourse rules are production rules
that define criteria according to which learning materials should be structured for students with
specific characteristics. They define which type of semantic links should be chosen to follow, and
when it is required to switch to another type of semantic links. For example, for an intelligent
student a top-down approach to the discourse can be used, so the traversal should follow refine-
ment links in the concept structure, while for other students the bottom-up approach can be used.
The outcome of the graph traversal is a concepts plan for learning (i.e., a partially ordered set of
concepts).

In the next phase, a teaching strategy is chosen. The teaching strategy is an approach which
should be used to teach a concept to a student. The strategy can be unstructured, meaning that
a student can select which task will be carried out next, or structured, when the student is led by
the system. The structured strategy determines a specific pattern of teaching tasks that should be
sequentially carried out to teach the concept to the student, for example, make an introduction,
present theory, refer to examples and pass tests. Special strategy-selection rules are used to decide
which strategy should be used for a student based on his (or her) characteristics and knowledge.
Each strategy is encoded as an AND/OR tree. Nodes of this tree are teaching tasks, AND and
OR links designate alternative decompositions of these tasks to lower level teaching tasks. During
the curriculum construction, specially specified rules are used to choose between alternative AND-
decompositions in the strategy and to select teaching materials which should be used for the
execution of teaching tasks. These rules are correspondingly referred to as teaching methods and
teaching material selection rules. The resultant sequence of leaf tasks forms a course plan that
should be carried out for teaching the current student. This plan is passed to the executor module
that communicates with the student and performs the teaching tasks.

Extension of the graph-traversal CG approach with the rules- and plan-based techniques in the
DCG led to the construction of a CG system with advanced adaptation possibilities. An approach
for the concepts plan development, a teaching strategy and methods for the execution of teaching
tasks are selected for a specific student using different types of expert rules. The decomposition of
educational tasks using AND/OR graphs is analogous to the hierarchical planning. This approach
is beneficial as all knowledge that is used at different levels of the curriculum design is formalised
and stored in a specialised knowledge base. So it is possible to easily modify and extend the
curriculum design knowledge, and to choose opportune curriculum construction methods from this
knowledge base during the educational programme development for a specific student.

TOBIE (Teaching Operators-Based Instructional Environment) is an ITS that was

23

CHAPTER 2. LITERATURE REVIEW

designed with a focus on CG. This functionality in TOBIE is fully implemented using a unified
planning mechanism [173, 170, 174]. The domain knowledge base for TOBIE is represented as a
directed AND/OR graph similar to one in the DCG. It represents a decomposition structure with
different types of semantic links. The domain knowledge base contains different types of knowledge,
stored at different levels, for example, skills and goals decomposition levels, conceptual level,
problem-solving level. The domain knowledge base also stores pedagogic knowledge, for example,
possible curricula specified on the domain concepts level. All knowledge in TOBIE, including the
domain knowledge base, is formalised in a unified and modular way using Teaching Operators
(TOs). A TO is a construct, similar to planning operator, that encodes possible transitions of the
student model using preconditions and effects. When a TO is executed, the corresponding pre-
defined teaching procedure is carried out and the student model is updated according to the effects
part of the TO. TOs can also encode hierarchical structures: within the teaching procedures, lower
level TOs can be referred. Pedagogical knowledge about the context of TO usage is also encoded
within the TO structure. Preconditions of TO define when its execution is appropriate, relying
on available knowledge about the student, for example, his (or her) characteristics and knowledge.
A diagnosis part of TO refers to several remedial operators and a diagnosis operator used for
evaluation of student’s response during the TO execution. When the diagnosis operator detects
an exception, the remedial operators are used to identify an error and carry out the corresponding
remedial procedures.

The instructional planning mechanism in TOBIE provides designers with a large flexibility in
the ITS construction, since in TOBIE unified constructs can be used to define different aspects of
the educational process. However, on the other hand, different types of knowledge are specified in
a mixed form in the knowledge base and cannot be isolated. For example, TOs are specified in a
way that the pedagogic knowledge is merged with the knowledge about organisation of concrete
domain. So, when a new ITS is built, the whole knowledge base should be designed from scratch.
Generally, TOBIE illustrates how planning mechanisms can be utilised at different levels and for
different aspects of the educational programme development.

Analysis of CG techniques towards the CEP generation problem

Pure graph-based techniques are not appropriate for solving the CEP generation problem be-
cause in the student mobility area an overall graph connecting different concepts and learning
objects cannot be built. Learning objects for the CEP development (EPs and their modules) and
specifications of domain concepts are provided by different universities. Relations between them,
for example, the prerequisite relations, are usually defined by the content designers only within a
specific university. Relations between learning objects and concepts used in different universities
can be derived using knowledge-based approaches, but only in a non-binary form as a degree of

confidence that the relation exists or as a measure of the relation strength. Such relations would

24

CHAPTER 2. LITERATURE REVIEW

connect a learning object with all other learning objects, so decisions that should be taken during
the CEP construction cannot rely on the absence or presence of the relation, as it is usually done
in the graph-based approaches. More complex threshold mechanisms should be exploited where a
concrete threshold value to use depends on a type of decision being taken (e.g., a recognition or
a prerequisites evaluation) and on local regulations influencing this decision (e.g., how similar two
learning objects should be in order for one of them can be considered as equivalent with another).

Rule-based and planning-based techniques are more appropriate for the CEP generation task
as they are not rigidly tied to graph structures. Moreover, they can support different externally
specified educational strategies that can be utilised for the CEP construction. An appropriate
strategy can be selected based on a current situation during the planning. It is advantageous
to use a planning approach as a basis for the CEP construction because, as opposed to rules,
planning employs action-based approaches with the explicit ordering and time support. This
makes it possible to naturally represent an EP and simulate educational processes using planning
models with a required level of detail. Rule-based approaches are usually used as supplementary
mechanisms to facilitate planning and graph-based techniques. Rules are used to explicitly specify
principles for taking specific decisions during the CEP construction and, hence, make corresponding
processes easily extensible, more intuitive and adaptable. The majority of planning-based CG
systems supports hierarchical planning, so in the next section we will concentrate on this type of
planning.

In current CG techniques, the following issues were found that limit their applicability to the

CEP generation problem:

o Current systems are rigidly designed by one author or a group of colleagues collaboratively.
They lack a support for regulations that are different in different domains (e.g., countries, uni-
versities, faculties) and which are specified and supported by different persons independently.
These regulations include laws, legal acts, established routines and expert assessments, which
are in force only in a specific region and can be applicable only in specific cases. Such reg-
ulations manage various aspects of the educational process, like the structure and content
of curricula, admission rules, student transfer routines, rules governing student progression,
rules for prerequisites evaluation. In spite of the fact that current CG techniques actually
provide the possibility to specify different types of knowledge that can be utilised during CG,
it is assumed that a knowledge base with a specific type of knowledge is specified exclusively

by one person.

e In current ITSs, as an input for the curriculum construction, a set of concepts to study is
specified. When a CEP is developed for a student in a real HE environment, this is not
enough. Two more requirements are critically important: award the student will get at the

end of the education and the structure of the developed CEP. Structure requirements could

25

CHAPTER 2. LITERATURE REVIEW

determine universities where the student will study, and how many and which transfers he

(or she) will make during the education.

e The problem domain in current I'TSs is defined using concepts and relations between them.
Learning outcomes are usually not supported, what contradicts with the BP requirements.
Learning outcomes contain more information than a list of concepts a student should know.
They can be requirements for the focus of education (learn theory, learn how to apply it, have
an overview, etc.), the level of cognition and other aspects of the student achievements. Simi-
larly, current ITSs lack support for other mechanisms proposed in the BP for the comparison
of learning objects originating from different sources: educational credits and frameworks for
qualifications [54].

e Finally, current ITSs cannot support environments where different terms and unit are adopted
in different domains for description of the same or related notions. For example, these terms
and units can be used to describe learning objects that should be used for the CG, so a

transformation mechanism for them is required.

2.2.3 Planning technologies for Curriculum generation

AT planning technology is useful for generating a plan consisting of actions that achieve a specified
goal state, given a description of the initial state and a formal description of the domain. So
AT planning is a constructive technology that has been applied in many different areas, including
electricity networks, spacecraft mission control, manufacturing, web-services, robotics, evacuation
and unmanned vehicles control.

The theoretical model that underlies classical planning is the action-based state transition
model of a system defined as Sys = (S, A,7). S is a set of all system states, A is a set of possible
actions. The state-transition (partial) function v : S x A — S defines a state where the system
transfers from a current state when an action is carried out. Commonly, a set of restrictions is
applied when a model of the system is specified for planning. It is assumed that the system’s
model is finite (contains a finite number of states and actions), static (is changed only by actions),
deterministic (y is a partial function) and fully observable (state s is known fully) [116]. In classical
representation, the system’s state is represented as a set of ground positive function-free first-order
literals I(¢1,. .., t,) under the closed-world assumption (this state is also referred to as a planner’s
world state). Actions are represented using operator schemas. The operator schema contains a
precondition, which is a first-order formula that should be true in a world state before the execution
of operator, and an effect defining modifications of the world state that should be carried out as a
result of the operator execution. Effects are represented as sets of positive and negative literals®.
A plan is a sequence of actions that should be executed from the initial state in order to reach a

goal state.

5Positive literals are added to the world state, negative literals are removed from it.

26

CHAPTER 2. LITERATURE REVIEW

2.2.3.1 Hierarchical Task Network (HTN) planning

Classical Al planners carry out a trial-end-error choice of actions in order to find a sequence of
actions leading to a goal state. This approach results in a need to explore an excessively large
search space (although heuristics can make the planning more efficient). Prominent examples
of classical planners are STRIPS [61], UCPOP [127], FF [75]. One of the approaches proposed
in order to solve this problem of classical planners is the HTN planning that utilises domain-
specific knowledge in order to guide the planning process and explore only the parts of the search
space that could lead to a correct plan construction. In HTN planning, a planning problem, in
addition to an initial planner’s world state, is specified as a set of tasks. These tasks are abstract
representations of activities that should be carried out by the planner. "Methods’ (or refinements),
which are specified by a domain author, are used to represent alternative schemas for the execution
of compound tasks. They are used to decompose compound tasks into networks of lower level tasks
and eventually into actions that are executed in the planner’s world state in an ordinal manner
using operators. This approach is different from classical planning in terms of how a planning goal
is specified and how the planning is carried out. Using HTN planning, a user can get more control
over the planning process by the specification of initial network consisting of compound tasks. It
was shown that HTN planning is strictly more expressive than the classical planning [26]. In HTN,
it is possible to specify problems that cannot be specified in classical planning. However, the main
advantage of HTN planning is a considerable reduction of the search space that a planner should
explore using methods, representing knowledge on how a solution should be built. Due to these
advantages, HTN planners are more widely used to solve real-world planning problems than other
types of Al planners [116].

Original ideas of HTN planning were proposed in the NONLIN [155] and NOAH [136] plan-
ners. These ideas were applied and extended in more modern HTN planners described next. O-
Plan2 [154, 37] is a domain-independent general planning and control framework with the ability
to utilise diverse domain knowledge. The focus of the O-Plan2 development was on the extensible
architecture that provides means to support and facilitate interactions between task specification,
planning and execution components. O-Plan2 unites different Al techniques for planning, in-
cluding HTN planning, agenda-based approach, least commitment, different constraints handling
techniques (including temporal and resource constraints). The agenda-based approach resembles
a blackboard system, where a set of ‘issues’ represents outstanding decisions or requirements that
should be resolved. At each planning cycle, the system opportunistically chooses which issue type
and which specific issue should be resolved and calls a Knowledge Source, which possess corre-
sponding processing capabilities in order to make decisions and modify a current plan. Reasoning

over different types of constraints results in possibilities to prune the search space. The generic

27

CHAPTER 2. LITERATURE REVIEW

architecture of O-Plan2 provides the means to construct different planners, combining different
Knowledge Sources, constraints managers and other components, and facilitates the support and
extension of the resulting planning systems. O-Plan2 was applied to a wide variety of application
domains, including construction and house building, logistics, crisis response, evacuation operations
and many others.

SIPE-2 [183] is a domain-independent hierarchical, non-linear planner, which was designed
for solving practical problems. It gives much consideration for planning efficiency and reacting
to events that occur during the execution of constructed plan. During the planning, SIPE-2
memorises possible choices and uses a notion of context in order to determine a branch that should
be followed at this point. When an event is produced during the execution, the planner can react
to it initiating re-planning using an alternative branch that involves minimal modifications of the
current plan. Other SIPE-2 possibilities include reasoning about resource and time constraints,
intermingle planning and execution. The planning algorithm of SIPE-2 is a depth-first backtrack
search. In order to achieve heuristic adequacy and produce results to a large set of planning
problems, it utilises different heuristics that limit the search space and reduce the complexity of
the planning. Other features of SIPE-2 include a GUI for interaction with the user during the
planning. SIPE-2 was utilised as a basis for the development of a distributed multi-agent planning
system [44]. Also SIPE-2 was used as a planning engine in the integrated planning environment
Cypress that includes a planning domain specification and storage platform, a reactive execution
system with dynamic re-planning features and a reasoning engine with the uncertainty support.
Examples of SIPE-2 practical applications include air campaigns, military operations, production
line scheduling, construction planning.

SHOP [119] and SHOP2 [117] are domain-independent HTN planners that utilise a forward
tasks decomposition. They decompose tasks and apply operators in the same order as they will
be carried out at the execution stage. This strategy is attractive as at each stage of the planning
the current planner’s world state is fully specified. This provides the means to evaluate complex
conditions to prune irrelevant plans in the current planner’s world state, and call external functions
in order to carry out complex domain-specific computations based on information extracted from
the current world state. SHOP supports only fully ordered task networks in the current task
network and in decomposition methods. In SHOP2, this limitation was relaxed. While it plans
only in a forward manner, its current set of tasks can be only partially ordered. Hence, as SHOP2
supports interleaving of tasks that has been produced as a result of different compound tasks
decomposition, some planning domains can be specified in SHOP2 in a more concise and efficient
form. The described characteristics of SHOP2 led to a distinguished performance award in the
International Planning Competition. SHOP and SHOP2 were applied to a large number of practical

problems, including web-services composition, evacuation planning, project planning and many

28

CHAPTER 2. LITERATURE REVIEW

others.

2.2.3.2 Planning technologies for Curriculum generation and Combined Educational

Programmes development

There are a number of examples of planning technologies application to the CG problem [12,
13, 162, 163, 170, 173, 174], some of which were described before. The majority of planning
formalisms used for CG supports hierarchical tasks, because they naturally represent educational
processes and provide additional control of the planning process for a domain author. Moreover, the
hierarchical planning provides gains in the planning performance due to the controlled exploration
of the planner’s search space with the help of methods used for compound tasks decomposition.
In simple, non-hierarchical planning-based CG systems (e.g., [13]), a straightforward approach is
used. Courses are represented as operators. The preconditions specify course prerequisites, while
the effects define the learning outcomes of the courses. This approach is characterised by a limited
expressivity and poor scalability, in comparison with more advanced approaches where learning
objects are used as action and task parameters [163]. In the later approaches, when a learning
object is added to the EP being developed, its role within this programme is specified explicitly.
It is determined by the action that introduces this learning object into the educational plan. This
provides the means to add extra meaning into the resulting educational plan and construct more
complex EPs®. Moreover, this approach gives the possibility to store learning objects externally in a
repository, rather than in the planner’s world state [162]. At the level of compound tasks, which can
be decomposed using methods, a similar differentiation of approaches exists. On the one hand, more
abstract compound tasks and decomposition methods are used to formalise domain-independent
knowledge about the teaching methodologies and routines. On the other hand, planning constructs
analogous to the HTN tasks and methods are used to specify decomposition of concepts that can
be utilised to build up a curriculum or problem-solving methodologies that can be applied only
in specific problem domains (e.g., integration by parts in integration calculus). A clear advantage
of the former case is a possibility to re-use these teaching strategies for different problem areas,
but a concrete approach should be chosen based on the purpose of the system and the level of
granularity at which the hierarchical planning will be applied. For a CEP generation system which
is not tied to a specific domain area and should operate on the level of complete HE curricula, the
former case, where domain-independent abstract tasks and methods are used, is more appropriate.
Moreover, this approach is advantageous for the CEP development as using HTN methods different
EP development routines can be specified.

Current instructional planners tend to use ordered tasks decompositions, where tasks are de-

SFor example, learning objects can have several modes of usage that are activated based on its role in the plan,
e.g., the same testing unit used as an intermediate task during the course and as a final test task can apply different
criteria of assessment.

29

CHAPTER 2. LITERATURE REVIEW

composed in the same order as they will be fulfilled during the education. As educational goals
are strongly inter-dependent, ordering relations between these goals provide valuable information
during the planning, which determines the planner’s decisions [169]. An optimal choice of the
current action (or current learning object) during the education is possible only when the history
of the student’s education is known. Based on this history, the student’s current knowledge can
be determined and his (or her) preferences and characteristics can be inferred. Moreover, the
teaching strategies and EP development routines defined in a domain-independent manner cannot
be specified without information about the ordering between the tasks that form the strategy.

Several issues arise when planning technologies are applied to the CG problem. As the nature
of the education is non-deterministic and a student’s progression depends on his (or her) outcomes,
much efforts have been spent on the development of reactive instructional planning approaches [172,
169]. In such a system, a curriculum is built in advance but during the educational process the
system ‘senses’ the environment and can react appropriately (e.g., this approach was implemented
in TOBIE [173]). Another challenge, which has not attracted much attention, is the requirement
to present extended information about the curriculum development process and the curriculum
structure rationale to the user. This is required when the resulting curriculum is returned to the
user, who should be able to fully understand the principles of its development and augment it when
this is required. For example, in [162, 163], for these purposes it was advocated that not only the
development process, but the final curriculum itself should be hierarchically structured.

The main drawback of current planning technologies for their application to the CEP genera-
tion problem is the assumption that a single author or a group of closely collaborating colleagues
is responsible for the planning environment specification. The environment consists of methods
and operators, which determine possible actions that could be carried out in the environment and
limitations over them. Relying on this specification, an automated planner develops a plan. In a
CEP generation system that should consider heterogeneous regulations, specified by different au-
thors, this assumption is not fulfilled. For a feasible solution to the CEP generation problem using
planning technologies, it is required that several independent authors should have the possibility to
contribute to the planning domain. Each of them has its own area of responsibility, but as they can
determine requirements for the same process from different perspectives or represent authorities
at different levels responsible for the same process, their areas of responsibility can overlap. In
terms of the planning environment constructs, they can determine conditions on the execution of
specific operator or task and determine task structures produced during a task decomposition in
a specific situation. Additionally, it should be controlled how these authors can influence on the
planning process. It should be possible to specify a set of situations where a specific author can
contribute and control outcomes of his (or her) intervention into the planning process: the overall

feasibility of the planning process should be preserved and possible conflicts between contributions

30

CHAPTER 2. LITERATURE REVIEW

of different authors should be resolved. A straightforward approach when each author has a set
of operators and methods, over which he (or she) has full control, does not provide the required
level of control, as outcomes of these operators and methods execution are directly applied in the
planning environment. Moreover, this approach leads to a growth in the number of operators and
methods, as each author should have a distinct set of operators and methods that he (or she) can
specify.

In order to fulfil these requirements, which would enable planning in environments with hetero-
geneous regulations, a specialised mechanism operating on top of the described planning technolo-
gies and extending their functionality is required. Within the field of automated planning, there
are two areas where the related problems are being solved: distributed planning and planning
under control rules.

Control rules-based planners apply the same general approach for the planning efficiency im-
provement as the HTN planners. Specifically, domain-independent planning techniques are ex-
tended with the possibility to encode domain-specific knowledge that can be utilised during the
planning in order to guide the planning process and, thereby, improve the planning efficiency [116].
In the control rules-based planners, such domain-dependent knowledge is specified as heuristic rules.
These rules are used by the planners in order to make decisions during the planning which affect the
planning efficiency and for which other criteria cannot be efficiently used. It is commonly alleged
that the control rules are a special form of the planning algorithm (strategy) specification [10].
Control rules are used to prune parts of the planner’s search space that do not contain correct
plans or contain only less desirable plans (for example, longer or more expensive plans).

Control rules specified as production rules are used in the PRODIGY planner [29] to guide the
search process with the aim of planning time reduction and improvement of the quality of plans.
The PRODIGY planner exploits two planning mechanisms during the planning, namely, state-
space forward search and partial order backward-chaining. Three types of control rules are used in
PRODIGY: reject rule, select rules and prefer rule. Correspondingly, using them it is possible to
prune from the search space one branch or all branches except the selected branch or give priority
to one of the branches. The effects of the rules specify which method of progression should be used
(forward or backward), which goal should be achieved next, which operator should be selected,
which object should be used to instantiate a variable, and so on. Within the condition part of
the rules, information about the current planner’s world state, achieved and unachieved goals, and
other meta-level information based on previous decisions taken during the planning (e.g., selected
or applied operators) can be used. When several control rules are applicable during the planning,
they all should be enforced during the decision taking.

TLPlan [9, 10] is a control rules-based planner where control rules are specified using first-

order version of Linear Temporal Logic (LTL). In contrast with PRODIGY, this planner utilises

31

CHAPTER 2. LITERATURE REVIEW

only forward-chaining search. In TLPlan, control rules are specified as logical formulae involving
temporal operators that should be true in all states within the planner’s world states sequence
corresponding to the produced plan. Correspondingly, control rules can make reference only to
information within the planner’s world state (and, using specially added ‘goal modality’, to the
planner’s goal). So, in comparison with PRODIGY, control rules cannot explicitly refer to actions
that should be applied and objects that should be used for the variables’ instantiation in operator
schemas (this limits the possibilities for specification of regulations considerably [11, 70]). The
control rules in TLPlan are checked in an incremental way against the sequence of states corre-
sponding to the prefix of the plan being generated. When it is detected that the control strategy is
violated, the current branch is pruned from the planner’s search space. Thus, in order to compose
the control knowledge in TLPlan, it is not necessary to know details about the planning mechanism
or planning actions specified. Control knowledge is defined as part of the domain description and
determine the properties of this domain that should be satisfied in order to efficiently achieve the
planning goals.

The development the next control rules-based planner, TALplanner, was inspired by
TLPlan [96]. It also employs only the forward chaining search principle and utilises temporal
logic formulae for the specification of control rules. TALplanner is based on Temporal Action
Logic (TAL), a narrative-based linear discrete metric time logic, which is used for reasoning about
actions and changes. In contrast with TLPlan, the evaluation process of the control rules specified
in TAL is optimised using the pre-processing technique [47]. Different sets of optimised control
rules are produced that should be evaluated only after the corresponding operators. These control
rules take into account information about the operator executed and, hence, can be evaluated more
efficiently. Additionally, the specification of operator is also updated by moving some conditions
for the evaluation of control rules into the operator’s precondition.

Other planners that employ control rules for the planning efficiency improvement or as a tool for
the specification of additional constraints on the plan are based on one of the two approaches that
were introduced in the PRODIGY planner (e.g., [106, 98]) and in TLPlan/TALplanner (e.g., [51,
52]). Control rules specified as production rules have a simple and comprehensible structure and
within their effect parts planning actions can be referred to explicitly. As a result, for this type
of control rules-based planners, techniques of control rules generation are created using machine
learning methods [106, 98]. On the other hand, control rules specified using temporal logic are
expressive in using temporal modalities. Modern planners usually utilise compilation approaches,
similar with one used in TALplanner, in order to enforce this type of control rules. For this
purpose, corresponding restrictions on their syntax are adopted [51, 69]. Such control rules are
converted into finite automata that should be simulated during the planning. This provides the

means to evaluate the plan validity based on the control rules. For the specification and simulation

32

CHAPTER 2. LITERATURE REVIEW

of these automata, specifications of the operators are extended with corresponding conditions and
automata states updates.

In spite of the fact that control rules are employed to guarantee that the planning process
conforms with the specified requirements, adoption of the described approaches for the specification
and enforcement of educational regulations during the planning for the CEP development has
the following issues. It is supposed that control rules, as well as the core part of the planning
environment, are specified by a single author or a group of collaborating authors, so there is no
mechanism for independent specification of packages with control rules by different authors (within
their areas of responsibility) and their consistent joint enforcement during the planning according
to the purposely defined procedures. When several control rules should be enforced together,
either all of them should be enforced simultaneously (however, this is not always required) or the
approach employing the static numeric priorities is used (however, this approach is not scalable
and flexible). The widely used compilation approach according to which the control rules and the
domain specification should be transformed into a new domain specification, where these control
rules are always enforced, makes the control rules specification inflexible and prevents their timely
updates.

Distributed planning considers problems when several independent problem solvers are build-
ing plans that should be executed within the same environment concurrently or even constitute
parts of a single plan achieving the overall goal. The distributed planning mechanisms should
guarantee that these plans can be executed in a coordinated manner. For this purpose, at a mini-
mum, no conflicts should arise during their execution and, preferably, the overall utility should be
maximised [181]. Therefore, the distributed planning system should produce plans consistent with
each other and achieving the overall goal or (and) the individual planners’ goals. For this purpose,
different specialised coordination mechanisms were designed aimed at the resolution of specific
types of conflicts and interactions during the planning. These mechanisms depend on the type
of environment considered and include plan merging, pre-planning conflict resolution, negotiation
and other approaches [43]. In contrast with the centralised planning, a planning environment for
distributed planning can be specified by several authors independently, but only in parts where
possibilities and preferences of different problem solvers are specified [44]. Correspondingly, the
issue of independent specification of different regulations that control the planning process being
carried out by a single problem solver and their consistent enforcement, which is important for the
CEP generation, is not within the scope of issues considered in the distributed planning area.

Generally, distributed planning does not concentrate on the issue of flexible specification of
different heterogeneous regulations that should be taken into account for solving problems within
some specific planning environment, especially, when these regulations can be updated dynamically.

Rather, it provides the means for resolution of specific types of conflicts and interactions that

33

CHAPTER 2. LITERATURE REVIEW

arise in some sorts of planning environments using coordination mechanisms that constitute an
integral part of the automated planning system. Distributed planning techniques, in addition to
the automated planning field, are actively being developed within the multi-agent systems (MASs)
area of research. These systems are also widely used in e-Learning and their applications are

described in the next section.
2.2.4 Multi-agent e-Learning systems (MASs)

A MAS is a system composed of several autonomous agents, functioning continuously within the
environment and communicating with each other either directly, or through the environment [140,
181]. MAS technologies provide the means to construct a complex system as a collection of several
autonomous agents, which can play different roles and perform different functions, and exploit
higher level interaction schemas to define advanced patterns of their interactions. Using this
approach, tasks within complex, open and dynamic (unpredictable) environments can be effectively
solved [82]. The multi-agent approach is advocated for systems that possess some of the following
properties: data, control or expertise are distributed, high flexibility or interoperability is required,
there is a need to concurrently achieve multiple goals or there are multiple methods to solve the
problem [152, 110, 83].

The multi-agent approach is actively exploited for the implementation of distributed e-Learning
environments and integration of existing Learning Objects Repositories (LORs) and e-Learning
systems (e.g., VLEs) for joining the communities and optimisation of educationalists efforts. The
agent paradigm is used for wrapping existing e-Learning systems and organisation of cooperative
service provision (e.g., learning object search service [14, 124]). MAS technologies are used for
management of heterogeneous and dynamic e-Learning environments where it is required to adapt
to changes in a timely manner and guarantee the quality of service. The multi-agent approach
provides a required level of scalability for these environments, and flexibility and adaptability
for their control. Autonomous agents ‘sense’ changes in the environment and optimise service
parameters, foreseeing future changes and adapting them based on known user characteristics
(e.g., this approach is used for management of mobile e-Learning services [147, 148]).

Existing MAS-based e-Learning environments do not support student mobility and do not
provide the CEP generation functions. In some e-Learning systems, the core tutoring process,
including the generation of curricula, is implemented based on the multi-agent approach (e.g., in
ABITS [28], described in Section 2.2.2.3, and other systems [175, 126]). However, the functionality
provided by these systems is equivalent to the already described CG functionality. The main
advantages of this paradigm are seen when it is necessary to actively interact with the student and
generate curricula dynamically, monitoring the student’s actions and reacting to them. In general,

the utilisation of MAS technologies for the implementation of an e-Learning system with the focus

34

CHAPTER 2. LITERATURE REVIEW

on the instructional planning, including the CEP generation functionality, is justified when data,
control or expertise should be distributed in it. For the CEP generation process, this depends on
the chosen pattern of interactions within the system, that is, if local LORs are used, where modules
and EP metadata are maintained, or if universities are ready to pass their learning objects to a
central repository, where these learning objects will be utilised for the CEP development, along

with the formalised rules and regulations of their usage, and others issues.

2.3 Policy-based management

Policy-based management is a flexible and effective tool for the information systems management.
Policy-based management is usually used for systems that have difficulties with their control due
to the specific characteristics of these systems or specific requirements for their management. Such
system characteristics can be the distributed nature, autonomy or heterogeneity. Control of such
systems can be difficult, for example, due to the complex rules that these system should conform
to. Another factor, leading to difficulties in the system control, is the dynamic modifications of
these rules and their heterogeneity, meaning that they can define different aspects of the system
behaviour and can come from different sources. Such difficulties arise in many information technol-
ogy domains, like networks, distributed systems, pervasive computing and web services, so different
approaches within the policy-based management field were developed to resolve these difficulties.
Some vendors of network hardware (e.g., Cisco, HP) use policy languages as a standard tool to
control their equipment. In this section, the notion of policy is examined and a classification of
policy rules is provided. Next, we will analyse different policy languages and approaches and choose

a language that can be used to satisfy the requirements specified for a CEP generation system.
2.3.1 Policy definition

In the information technology the most general and well known definition of policy was given by

Morris Sloman:
“Policies are rules governing the choices in behaviour of a system” [39], p.1.

In this definition two things are implied. First of all, the possible behaviour of system is more
general and policies limit possible traces of the system. Secondly, policies should be somehow
enforced for this system, voluntarily or by force. In the following definition, these two aspects are

explicitly stated and more details are provided:

“Policy can be defined as an enforceable, well-specified constraint on the performance

of a machine-executable action by a subject in a given situation” [20], p.368.
In [20], the following clarifications were also given for terms used in this definition:

o Enforceable: using the system infrastructure, it should be possible to sense and control (i.e.,

to prevent or enable) the execution of actions controlled by the policy.

35

CHAPTER 2. LITERATURE REVIEW

o Well-specified: policies are well-defined declarative descriptions.

¢ Machine-executable action: policies can control not only actions being entirely executed
within a machine environment, but also actions that can be executed outside the machine
environment if afterwards the fact of their execution is reported to the machine.

o Subject: the subject can be a human, a hardware or a software component (or a collection
of such entities).

¢ Situation: the applicability of policy to a current situation is limited by the policy precondi-

tions and a variety of contextual factors.

A system usually has more possible traces than permitted by the policy, so the policy constrains
the system behaviour [182]. A mechanism that guarantees that the behaviour of the system
satisfies the policies specified for it is called an enforcement mechanism. An enforcement mechanism
depends on the type of system and on a policy language used for the specification of policies. Policy
enforcement is described in Section 2.3.4.

Policies specify only information aspects of the desired behaviour and have declarative seman-
tics. They describe which requirements the system traces should satisfy, without specification of
full action sequences that must be carried out by the system. Due to this property and due to
the presence of enforcement mechanisms, which mediate in interactions between the policies and
the system itself, policies can be separated from the core part of the system. Hence, the policies
can be flexibly changed in a dynamic manner, without the need to modify the system itself (e.g.,
recompile it).

Another important property attributed to policies is persistency [39]. Policies do not represent
actions that are fulfilled only once during the system execution. Instead, the policy governs the

behaviour of the system at present, as well as in the future.
2.3.2 Benefits of the policy-based management

The main benefits of the policy-based management are as follows:

Facilitation of system management under complex regulations. Complex regulations are
specified naturally as a set of short declarative rules applicable only in specific situations
(e.g., people tend to formulate regulations as rules) [18]. Policies specified as sets of such
rules in turn can be combined to form more complex policies using composition mechanisms
that define principles of their interaction and joint enforcement within a single policy. These
policies are automatically enforced using enforcement mechanisms that, among other things,
track the interactions of policies and apply pre-specified conflicts resolution rules [19]. Ad-
ditionally, some policy specification languages have mechanisms that provide the possibility
to specify policies at a more abstract level, for example, specify policies applicable in specific

situation or for specific group of entities. Moreover, for some policy languages additional tools

36

CHAPTER 2. LITERATURE REVIEW

exist for the simplification of policy specification task. They can be specialised GUI for policy
specification [38], policy testing and validation tools [62], policy specification techniques for
non-technical users [144], and others.

Context sensitivity. The enforcement mechanism should select and enforce policies which are
applicable to the current situation. Different policies can be enforced depending on the time,
location, role of the user, etc. [120]

Support for dynamically changing regulations. Policies can be changed when the system is
running without the need to stop it. These changes of policies can be carried out manually
by the administrator or they can be programmed on a specific time or event [80].

Regulations reusability. Policies are declarative representations of behavioural constraints. So
they can be saved, archived and reused, when it is required, during the operation of the
system [141].

Regulations can be supported by different persons independently. Different policies can
be specified and updated independently by different persons, as composition mechanisms are
used to define rules for their combination into an overall policy. Moreover, such policies even
can be stored in a distributed manner and collected only for evaluation (if this is required) [99].

Explicit license for autonomous behaviour. Policies are an appropriate tool for the imple-
mentation of selective control. Policies provide specific instructions for some situations, for
instance, prescribe to execute some action or avoid it. Therefore, the choice of specific deci-
sion that will be carried out, provided that this decision is conformant with the policies, is

at the discretion of the system itself [168].

2.3.3 Types of policy rules

Policies are utilised for the management of different systems and, moreover, are used to control
different aspects of their behaviour, such as access control, administration and interactions. In spite
of this fact, policy languages usually adopt a common general schema for the policy specification
where policies are specified as a set of simpler building blocks that jointly specify the system
behaviour. These building blocks are usually called rules or primitive policies. The types of rules
that are most often used in policy languages are presented in Figure 2.3. This schema was developed
as a result of the review of different policy languages and is based on the results of previous policy
rules analysis attempts [42, 30, 39]. All rules at the schema are divided into complex and simple
rules. As opposed to the simple rules, explicit references to other rules can be utilised within the
specification of complex rules. For example, the delegation rules can define who and under which

conditions can delegate rights granted by specific authorisation rules.

37

CHAPTER 2. LITERATURE REVIEW

Types of rules

Complex Simple

[Reactive rules) (Role assignment rules] (Routing rules j

Obligation

Figure 2.3: Types of policy rules

Authorisation

Delegation

2.3.3.1 Authorisation rules

Authorisation rules define which operations can be executed by a user or other active entity (e.g.,
an agent). Positive authorisations define a set of permitted operations; negative authorisations
define a set of denied operations. Authorisations are usually defined in the form ‘subject - action
- resource - condition’. Subject is a set of active entities that this policy is applicable to. Action
defines operations permitted (or denied) for the execution by the corresponding subject. Resource
defines a target object for the operation, that is, a resource being accessed. The condition part
can include arbitrary constraints that define when this rule should be enforced. The following is

an example of an authorisation rule:

“Permit Bob (Subject) to Log-in (Action) to SystemX(Resource) from 9 a.m. till 6
p.m.(Condition)”

Authorisation rules are commonly used in access control policy languages (e.g., XACML [153],
Ponder [41]). Other types of policy languages can also utilise rules similar to the authorisation
rules that define if specific actions can be carried out. For example, in interactions management
policy languages [114], such rules can specify if a specific action can be carried out over a message

by a controller (e.g., forward or deliver).
2.3.3.2 Reactive rules

Reactive rules define the behaviour of a management system, which can be monolithic, like an
administration tool, or distributed and heterogeneous, like a set of administrative agents that
control different equipment throughout the network. These rules are specified using the form
‘event - condition - action’ (ECA). So they define which action(s) a system should carry out in
response to an event occurred within the managed system. The condition part is optional. The
policy author can use it to specify constraints on a current state that should be satisfied in order to

trigger the rule. This type of rule is used in different policy languages, but it is usually attributed

38

CHAPTER 2. LITERATURE REVIEW

to the management policy languages. For example, in an administration system it can be required
to send an e-mail to the administrator if a severe virus infection is detected. This can be formalised

using the following ECA rule:
“On System infection (Event), If Virus is severe (Condition), Do Send e-mail (Action)”

ECA rules can also be used to schedule the execution of some maintenance actions, for example,
deep antivirus scanning.

For the implementation of these rules, a set of pre-defined events within a system should be
defined, on which the evaluation of conditions is initiated. Such events can be time-based or action-
based (e.g., a specific packet arrival). Using this type of policy rules, the Internet Engineering Task
Force (IETF) policy model was defined [39].

2.3.3.3 Role-assignment rules

Role-assignment rules define requirements that a user should satisfy in order to assign him (or
her) a specific role. Role-assignment rules are usually used as part of a role-based access control
mechanism implemented using a role-based policy language (e.g., TPL [42]). The evaluation of
these rules for a user is initiated when he (or she) requests access to a system. Usually the role-
assignment rules are used at the server side, where users are not known in advance and in order
get an access to resources a user should possess specific certificates. Role assignment rules are
specified in the form ‘condition - role assignment’. The condition part is used to check if a user
possesses the required certificates and the role assignment part is used to specify which roles should
be assigned to the user, if the condition is satisfied. Based on the roles, assigned according to the
role-assignment rules, an authorisation mechanism should determine specific access rights for the

user.
2.3.3.4 Routing rules

Routing rules are a dedicated type of rules used in network routing policy languages. Routing
rules define permitted traffic routes in a network, based on the known sender and receiver of a
packet and other parameters, like the type of a packet or current time. Path-based routing rules
are a special type of routing rules that were proposed in PPL (Path-based Policy Language) [146].
These rules are more expressive than ordinal routine rules. In addition to a sender and receiver,
explicitly specified path-patterns are used in these rules in order to determine their applicability.
It should be noted that the routing rules are usually rigidly tied to a specific application domain

within a network management or routing field and are not meant for other applications.
2.3.3.5 Delegation rules

Delegation rules are used to define which operations can be delegated from one subject to another.

A delegation rule specifies a set of subjects who can delegate their rights, which rights can be

39

CHAPTER 2. LITERATURE REVIEW

delegated and to which subjects these rights can be delegated. The access right being delegated
is usually defined using constructs similar to authorisation rules. Delegation rules can have the
following form ‘Subject - Grantee - Resource - Action - Condition’ that defines that Subject can
grant to Grantee a right to carry out Action on Resource and Grantee can carry out this action
only if Condition is satisfied. Delegation rules are used in access control policy languages, in
addition to the authorisation rules (e.g., in Ponder [41]). Actually, delegation rules are a special
type of authorisation that defines when a subject is authorised to execute a special delegation

action, leading to changes in access rights for other subjects.
2.3.3.6 Obligation rules support

Obligation rules specify which actions should be performed when certain events occur. Obligations
are used in different types of policy languages, from security policy languages to management policy
languages. Several different methods exist for the specification of obligation rules. The utilisation
of a specific method depends on a type of policy language where the obligation is used.
Obligation rules can be classified into obligation rules associated to ECA reactive rules and
obligation rules associated to authorisation rules. The former obligation rules have structures
similar to ECA rules. Correspondingly, they can be triggered by any event which can occur in
the system. A distinct element of this rule is the subject part. A policy author using the subject
part can specify which component or user is responsible for the execution of the triggered action.
Enforcement mechanisms used for this type of obligation can also be divided into two classes.
In the first class, an action triggered by an obligation rule is transferred to a component that
is a constituent of the management (administration) system. This component, being a part of
the enforcement mechanism, must eventually execute this action. For example, in the Ponder
language these components are automated managers, deployed in the environment [49]. In the
second class, subjects of obligation rules are users or autonomous entities. They are informed
about the obligations triggered and should execute them, but, at the same time, they can refrain
from their execution. Such obligations are used in the KAoS policy language, where obligations are
passed for execution to autonomous agents [168]. The following is an example of such obligation

rule:

“UserAgent (Subject) must Notify user (Action), when Contact list member goes on-line (Event),
if time is from 9 a.m. till 9 p.m. (Condition)”

As this obligation should be executed by a personal agent, it can refrain to show this notification,
for example, if it considers that the user is busy at that moment.

Obligations associated to authorisation are specified and enforced along with authorisation
rules. In this group of obligation rules, a special sub-group can be distinguished. This sub-group

contains obligations that should be transformed into authorisation rules for their enforcement.

40

CHAPTER 2. LITERATURE REVIEW
Associated to

Types of obligation
authorisation

! { !

“memagement. Reported to Generated duting\ (" 11 tormed to
. autonomous entity authorisation rule

Associated to
reactive rules

components checks

Figure 2.4: Obligation types

Such obligations with the form ‘Subject S must do action A on event E’ are transformed into
authorisation rules that take authorisation decisions based on information about the history of
actions execution: “Subject S cannot do B, if event E has occurred and S has not done A”. Another
example of such obligation is a conditional for of obligation used in the Security Policy Language
(SPL) [134]: “Subject S1 must do action Ay if subject Sy has done action As”. For enforcement,
this rule is transformed into a policy with a dependency on a future event: “Subject Sy cannot
do As, if subject S1 will not do action A;”. Such rule is enforceable in SPL using the security
monitors that support transactional autonomicity”.

Another type of obligations associated to authorisation are obligations specified as additional
actions related to an authorisation rule or an authorisation policy. These obligation actions should
be triggered when corresponding authorisation rules (or policies) are enforced during the authori-

sation checks. An example of such a rule is:
“Deny Bob (Subject) to Read (Action) FolderX (Resource) and Make log entry (Obligation)”

which states that when Bob’s access to FolderX is denied, an enforcement mechanism should make
the corresponding record in a log file. Such obligations are implemented in the policy languages
XACML and EPAL [153, 129]. Obviously, the former class of obligations is just another form of
access control rules specification, while the latter class brings additional possibilities for the policy

specification and enforcement.
2.3.3.7 Rule types analysis

In this section, the described policy rule types are analysed and compared for specification and
enforcement of regulations during the planning-based CG. As was shown in Section 2.2.3, a core
element of planning-based approaches is an action. Actions are used as basic constructs for mod-
elling a planning domain using action languages. Correspondingly, actions are the main elements

which a planner reasons about. The planner chooses actions and organises them into a plan being

7Such security monitors can reject actions based on information about events that occur after their execution,
but within the same transaction.

41

CHAPTER 2. LITERATURE REVIEW

produced as a result of the planning. Hence, for a policy language that is used for the management
of planning-based CG process, it is advantageous to have action-based rule types. Such rule types
are authorisation, obligation, reactive rule and delegation.

When there is a need to specify educational regulations that impose specific constraints on a
CEP being developed or on an educational process carried out when a student is studying according
to a CEP, authorisation languages can be used, considering that the CEP development process is
implemented out using a planning system. In classical representation for planning problems, every
modification of a system state should be modelled by an action. Hence, in order to have control
over the planning environment and all processes being modelled using it, these constraints can be
specified on actions that actually lead to the planner’s state updates. For example, constraints on
a possible track of a mobile student can be represented using constraints on actions carried out
when this track is modelled during the planning. Authorisation rules provide the means to specify
different constraints based on fine-grained attributes, which describe the action itself or represent
other important information.

Educational regulations also often define routines that should be executed in order to carry out
a specific task or prescribe which actions should be executed in specific situations. For example,
these routines can specify a process that should be carried out when a mobile student joins a
university. Policy rules that can prescribe execution of actions are reactive rules and two types of
obligation rules. Implementation of reactive rules and obligations associated with them will require
implementation of a dedicated mechanism that will monitor the system state and generate pre-
specified events that can trigger the policy rules. However, first of all, in an action-based system
planning, state modifications can be done only as a result of the action execution. Secondly, in
classical representation for planning problems, an action’s effect is fully known before its execution
has started®. So the implementation of additional mechanisms for state monitoring is not required
and the evaluation and triggering of obligations can be united with the selection of actions and
the evaluation of authorisation rules for them. Delegation rules are not relevant for our problem,
as delegation is out of the scope of a planning environment that models the CEP development and
only core educational processes. Moreover, delegation rules can be specified as a special type of

authorisation rules.
2.3.4 Policy enforcement

A policy enforcement mechanism guarantees that the system behaviour conforms with the policies
specified. There are two main approaches for implementation of this mechanism: outsourced and
provisional approaches [30]. Correspondingly, the main difference between these approaches is in a

component that receives information about the current situation, analyses policies and generates

8In classical representation for planning problems, the planning environment is static (does not model external
events) and deterministic [116].

42

CHAPTER 2. LITERATURE REVIEW

a policy decision.

The outsourced approach refers to the policy enforcement mechanism which was proposed as
the ISO/IEC 10181-3:1996 [78] standard. Its schema is presented in Figure 2.5, A. The Policy
Enforcement Point (PEP) detects requests to resources and submits corresponding requests to the
Policy Decision Point (PDP) for the policy evaluation. When a policy decision is returned from
the PDP, it enforces it, meaning that it rejects or permits the request. PEP is application-specific
and, in fact, can constitute a part of the application. PDP is application-independent. It carries
out the role of a global policy engine that receives decision requests from PEPs, retrieves the
information needed for their evaluation, carried out the evaluation based on the specified policies
and generates policy decisions. Therefore, the decision taking functionality was moved from the
PEP, which actually enforces decisions, so this approach is called outsourced. It was implemented

in such languages as XACML [153] and EPAL [129].

Policy repository

Application
Policy repository
1: Resource 3: Retri licabl
. Retrieve applicable
4b: Refusal to accesst policies . . X
resource access reques Policies (spec. using Policy
language)
2: Request for r
authorisation [Y
Policy Enforcement Point Policy Decision Point Policy Consumers
4: Authorisatin decision
4: Retrieve needed Converted policies
4a: Grant access to resource attributes
permitted
Policy Policy Policy
rl:
Targets Targets Targets
Resource . 9 9 9
Attributes
A. B.

Figure 2.5: Outsourced (A.) [6], p. 54 and provisional (B.) [103], p. 6 policy enforcement models

The provisional policy enforcement approach was specified within the IETF Policy management
system requirements model [103]°. Its schema is presented in Figure 2.5, B. This approach is
based on two main types of components: application independent Policy Consumers (PCs) and
application (device) specific Policy Targets (PTs). In this approach, PCs only retrieve policies from
the policy repository and distribute them to corresponding PTs, which actually enforce them in
the system. As PTs are application specific, policies should be converted to an application-specific
format at the PT or PC side. This approach was implemented, for example, for the Ponder policy
language [38]. Authorisation policies specified in this language are compiled and deployed as access

control policies for Windows stations or as firewall rules.

9The IETF Policy management requirements model contains specifications of both policy enforcement ap-
proaches.

43

CHAPTER 2. LITERATURE REVIEW

2.3.5 Policy composition

In large and distributed systems, like modern enterprises, policies are usually specified and updated
by several persons independently [101]. For some policy languages (e.g., XACML), advanced tech-
niques were developed to combine policies from different sources and enforce them in a coordinated
manner. These techniques include policy groups, scoping and policy composition and involve con-
flicts resolution [184]. A basic mechanism that, in general, facilitates the policy administration
and, in concrete, can be utilised for specification of policies originating from different sources is
policy groups. A policy group unites a set of related policies, which, for example, can refer to the
same domain of the environment or determine a specific aspect of the behaviour. A widely used
approach for the realisation of policy grouping is to allow policies to be arbitrary nested. In this
case, composite policies can be created as groups of lower level policies and form a hierarchical
policy structure. The support for hierarchical policies is advantageous as it provides the means to
structure complex policies and forms the basis for the introduction of policy composition opera-
tions. This approach was used in XACML [153] and SPL [134]. In the Ponder language, several
types of composite policies, which can be nested, were introduced, for example, groups, roles and
relationships [40].

In order to enforce policy groups that originate from different sources in a coordinated way,
a policy language should provide the possibility to specify when a specific policy group should
be enforced and how to resolve conflicts between different policy groups if they arise during the
policy evaluation. To this end, a policy composition is used: a set of policy composition operations
(algorithms) is defined that contain operations used to form higher level policies out of lower level
policies and specify relations between them. Composition operations define how the composed
policies will be processed during the policy evaluation. Composition operations can be used to
determine which policies are applicable and should be evaluated in a specific situation and how
a final decision for a composed policy should be inferred based on the decisions produced by the
evaluated policies. For example, using a scoping, it can be specified for which situations a policy can
be applied (as it was defined in [19]). During the policy evaluation, a policy is processed only if the
corresponding scope expression is satisfied. The scoping is useful when it is externalised from the
policy or policy group specification. Then, the scoping can be used to manage policies received from
different sources: the policy applicability can be controlled without the need to modify the policy
specification itself. For this purpose, an independent scoping operation can be defined or a scoping
expression can be used as a construct within a policy group, thus limiting the applicability of the
constituent policies (e.g., this approach is used in XACML [153]). Using composition operations,
conflict resolution strategies between policies can be defined. For example, if authorisation policies

A, B and C are united into a policy group using some composition operation, this composition

44

CHAPTER 2. LITERATURE REVIEW

operation can impose one of the following conflict resolution strategies. If some of policies A,
B or C return positive authorisation decisions and some of them - negative decisions, a positive
decision overrides strategy states that the action will be authorised by the policy group (as at
least one policy authorises the action). On the contrary, if a negative policy decision overrides
strategy is used, the action will not be authorised (according to it, all policies should produce
only positive decisions). A policy composition operation can impose a specific order between the
policies: if a policy returns a positive or negative authorisation decision and policies that have
higher priority have not returned any decision, this decision should be taken as a policy group
decision. Alternatively, more complex or application specific conflict resolution strategies can be
defined.

Accordingly, policy composition provides the means to construct complex hierarchical com-
posite polices using a modular approach simplifying the policy specification and providing the
possibility to enforce policies from different sources. Composition operations are used to define
relations between policies and policy groups that can be specified by different authors. The policy
composition functionality is necessary for the specification of educational regulations governing the
CEP development. These regulations are specified by different parties and at different levels of
the educational system independently (e.g., programme leaders, faculties, universities, states, etc.)
So there is a need to combine these regulations and enforce them during the CEP generation in a

coordinated manner.
2.3.6 Policy languages

In this section, existing policy languages are compared. For the comparison, we have selected policy
languages that support authorisation and obligation rules and for which application-independent

policy enforcement engines exist.
2.3.6.1 Ponder

The Ponder [41, 40] policy language was designed as a universal security and management policy
language with the focus on the distributed systems and networks management. It supports positive
and negative authorisations, obligations and delegation policies. For the specification of a managed
environment and grouping elements within it (e.g., subjects, resources and organisational units),
Ponder supports domain hierarchies. Accordingly, subjects and resources that a policy is applicable
to are specified as domains within these hierarchies. A policy is applicable to all objects that are
descendants of the domains referred to as subjects/resources in this policy. For grouping policies,
the Ponder language supports several types of composite policies. They are roles, which unite
policies with a common subject; relationships, which unite policies managing rights and duties
of roles towards each other; management structures, which represent organisational units and

contain roles, relationships and other management structures; and policy groups, which can unite

45

CHAPTER 2. LITERATURE REVIEW

any policies. Composite policies in Ponder can be nested and form hierarchies.

Ponder is an object-oriented declarative policy language supporting inheritance and policy
typing that is useful for the management of policy specifications and their re-use. Policies specified
using the Ponder language are compiled and deployed in the managed infrastructure. Authorisation
policies can be propagated to corresponding infrastructure components as firewall rules or access
control policies for Windows stations. Obligations in Ponder are specified as ECA rules. They
are passed to corresponding automated agents that carry out the administrative actions. These
agents receive events, generated by the event service, and use ECA obligation rules stored in their

knowledge bases in order to infer actions that should be executed in response to the events.
2.3.6.2 KAoS

The KAoS policy service and domain services [167, 150] were developed for enabling policy en-
forcement for agent frameworks (it was used in Nomads, Voyager and other frameworks). They
were also adapted and successfully applied to general Web services environments [168]. KAoS can
run on heterogeneous environments; it supports dynamic policy updates and includes advanced
administration tools. The KAoS domain services provide the possibility to structure objects like
software components, people, resources and policies to facilitate the deployment and support of
policies. KAoS policies are specified based on the KAoS policy ontologies. These ontologies are
used to represent actions, actors, groups, locations and policies themselves. KAoS supports four
types of policies: positive/negative authorisations and positive/negative obligations. Interrelated
policies can be combined into policy sets. The main component of a policy is an action class. It
contains constraints on the action parameters (including action’s subject, target, relations with
other actions) that determine the applicability of the policy. Obligations in KAoS are defined as
an action that should be executed by an autonomous agent relatively to the occurrence of some
event. The events in KAoS can be start or end points of the action execution. The specification of
polices as ontologies provides the means to use corresponding reasoning capabilities, for example,
for the policy analysis and design-time conflicts detection and resolution.

Enforcement mechanisms for KAoS policies are flexible and support both outsourcing and
provisioning models. The implementation of a concrete model depends on the infrastructure used.
For example, for obligations two types of enforcers exist: monitors and enables. Monitors and
enforces observe the execution of obligations. When a monitor detects that an agent has not
fulfilled the obligation, it can apply a sanction to the agent. On the other hand, enablers in such

situation try to carry out the action on behalf of the agent.
2.3.6.3 EPAL

The Enterprise Privacy Authorisation Language (EPAL) [129] was developed by IBM and was

targeted at the specification of enterprise-internal privacy policies that control data-handling within

46

CHAPTER 2. LITERATURE REVIEW

enterprise information systems. EPAL policies and policy requests are specified as XML documents
using defined schemas. They abstract from application-specific details like a data model or an
authentication schema. EPAL supports positive and negative authorisation rules and obligations.
EPAL authorisation rules, in addition to subject, resource and action attributes, contain a ‘purpose’
section. In this section, the purpose for which access is requested should be specified. EPAL policies
use hierarchical categories to specify subject, resources, actions and purposes. This approach is
similar to domains structures in Ponder and provides the possibility to propagate policy rules in a
hierarchy. Rules in an EPAL policy are evaluated according to the specified precedence order and
decision from the first applicable rule is returned. Obligations in EPAL are specified as part of
the authorisation rules. When an authorisation rule is enforced, actions specified in its obligation
section should be performed by the enforcement mechanism.

IBM submitted EPAL version 1.2 to the W3C for consideration as a privacy policy language

standard.
2.3.6.4 XACML

The eXtensible Access Control Markup Language (XACML) [153] is targeted at the specification
and enforcement of access control policies within an enterprise in an application-independent man-
ner. It supports positive and negative authorisation rules and obligations. Authorisation rules
are specified as conditions on attributes of the subject, resource, action and environment, under
which an access can be granted or denied. These conditions are divided into pre-requisite part
(target), which has a restricted form and is used to select policies applicable to a policy request,
and a condition itself, which can be represented as an arbitrary complex condition expression.
Obligations, similarly as in EPAL, are defined as part of the authorisation rules and should be
executed by the enforcement mechanism when the authorisation rule is enforced. XACML expres-
sions support different data types and functions. The content of a resource can be represented as
an XML document within the policy request and used as a source of information to infer a policy
decision.

XACML policies can be defined in a modular manner. Policies consist of policy rules. Policies
themselves are composed into policy sets, which, in turn, can be arbitrarily nested. Component
policies can be distributed throughout the network, as nested policies can be addressed using
references and retrieved for the evaluation when it is required. For the coherent composition of
policy rules and policies in XACML, a set of combining algorithms are used that define different
routines for component policies and rules processing during the policy evaluation and conflicts res-
olution strategies applied at run-time (e.g., rules/policies precedence, modality precedence, single
policy/rule strategy). XACML is an extensible XML-based language. For its extension, standard

extension points are defined in the XACML specification [153]: for new combining algorithms, new

47

CHAPTER 2. LITERATURE REVIEW

data-types and functions.
XACML versions 1.0, 2.0 and 3.0 were approved as OASIS (Organisation for the Advancement

of Structured Information Standards) standards [50]'°.
2.3.6.5 Policy languages comparison

Policy languages described in the previous sections were compared against the requirements for
a policy language that could be utilised for the educational regulations specification used for
management of a planning-based CEP generation process. These requirements follow from the
analysis of policy rules types, policy enforcement and composition mechanisms in Sections 2.3.3 -
2.3.5. Additionally, the following requirements were added: (i) the possibility to express constraints
on attributes and unite them into complex condition expressions; (ii) the existence of specialised
policy authoring tools which facilitate the policy authoring task.

According to the comparison presented in Table 2.1, only XACML satisfies all the requirements.
This language, along with EPAL and KAoS, employs the outsourced enforcement model and, along
with EPAL, has the required type of obligations. XACML and EPAL are quite similar in their
aims and specification approaches. In spite of the fact that EPAL was designed with the focus on
privacy, the functionality of EPAL v. 2.1 is a subset of XACML v. 2.0 and all significant EPAL
concepts can be expressed using XACML [6]. Importantly, EPAL does not support hierarchical
policy structures and policy composition, which facilitates policy specification especially when
policies manage complex multidomain environments and originate from different sources.

Indeed, XACML is a flexible and extensible industry-strength policy language, which is widely
used for a broad range of applications. It was adopted for the specification of policies in a number
of open source environments, such as HERAS-AF and Axis2, and in some commercial platforms,
like JBOSS, Axiomatics. Additionally, within the XACML community a number of open source
PDPs and supporting tools were developed. It is argued (e.g., in [16]) that the disadvantage of
XACML is its verboseness and it is hard to write and read policies in this language, due to the
fact that it is an XML-based language. In order to mitigate this disadvantage, special authoring
tools are being created that hide these complexities from the users [144]!!. Moreover, the usage
of XML provides the possibilities to use XACML on different platforms and easily exchange with
XACML policies.

2.4 Conclusion

In this chapter, a review of the e-Learning field was performed with the focus on the applicabil-
ity of current technologies for the automatic CEP generation problem. ITSs and CG techniques,

which provide an educational curriculum development functionality, were identified as the most

10The most recent version 3.0 was approved in January, 2013 [50].
11Some research-based initiatives even include development of a non-technical users notation for XACML poli-
cies [145].

48

CHAPTER 2. LITERATURE REVIEW

relevant techniques within the e-Learning technologies stack. Strengths and limitations of their
application to the CEP generation problem were analysed. It was found that the utilisation of hi-
erarchical planning-based CG approach is the most advantageous for this task. On the other hand,
limitations to the current approaches were identified that relate to the BP mechanisms support,
the specification of CEP requirements, the utilisation of different terms and units representing the
same notions, and others. These limitations should be resolved during the CEP generation solution
design.

One of the main difficulties for the application of current techniques to the CEP generation prob-
lem is the need to specify and enforce heterogeneous educational regulations which are supported
by different persons and which determine how a student mobility programme can be designed. It
was shown that current CG as well as planning techniques do not provide sufficient mechanisms in
order to satisfy the corresponding requirements. Policy-based management and policy specification
languages were explored in this chapter as tools that support specification and enforcement of reg-
ulations developed by different parties independently. A comparison of existing policy languages
was conducted and the XACML policy language was chosen for the specification of educational
regulations and controlling a planning-based CEP development process.

Based on the outcomes of the presented review and analysis as well as on the conducted student
mobility area analysis (see Chapter 3), a CEP development framework is proposed in Chapter 3. In
this framework, we design the core process of CEP generation based on existing EPs and modules.
The described restrictions of the current CG technologies are eliminated, and roles of different
technologies, specifications and people for the CEP development are defined in this framework.
The framework constitutes a basis for the design of a centralised solution that integrates HTN
planning technologies and policy-based management for the generation of CEPs in environments

with heterogeneous regulations (see Chapters 5 - 8).

49

CHAPTER 2. LITERATURE REVIEW

"00uepeoa1d so[nl Sulsn paaosel oxe seorod UMM SPIFUOD) o¢

'siseq surewop Iod peyroeds are sUOISIOP UOlyesLIOYIN® Jnefa ‘serjiiond oLewnu Suisn pajuswa[dull ST UOIINOSAT SIOTHUO) ¢

‘somI[0d-ejow oywads-uoryesridde o1 ‘posn oq ued soI8ojeIYS U0V SIIFU0D JoullsIp sdnoid Aorjod JuoIeyIp 10 4
“A[uo pagroddns axe sororjod [edIYIIRISIY-UON ¢

uostredwon sedengue] A010J :T°Z ORI

[00} 3urioyjne

SISIXH SYSIXH SISIXH SISIXH systxyy | Aorjod pesieadg
senyea

sonfeA 9JnqLIjye I9A0 SonyeA 9NqLIj)e IOA0 | INLI})e UO SHUTRIISUOD senyes 9nqrijye sonfeA 9JnqLijjye I9A0 poyiod
suotssordxe Arenrqry | suorssoidxe AreIjiqry | ormoje jo uomroun(uo)) | 1wao suorsserdxe Areriqry | suorsserdxe Aremrqry | -dns SUOIIPUO))
uors
parroddng porroddng porroddng porroddng perroddng | -100p peseq onqri)ry

suoryeraodo uorjrsodurod
parroddng ¢1PUON »1°UON gPeYIoddns Lqrerpreg | juesegip 10y jroddng uoryisodwos Ad110g

dnoui8 Aorjod
[eAd] Ioy3Iy Jo 3onI)s

(yueuodwion Aot

(yueuoduon Aot

(sdnoui3 ALorjod/sero
-jod jo sodA) pestrjeurered

sdnox3 Aorjod

-uod e se poyoddng | -jod e st Surdoos) auoN | -jod e st Surdoos) euoN | Sursn) pojroddns L[erpreg | pue sewijod 1oy Surdoog Surdoos Ao1j04
‘porroddns are
sdnoui3 sdnoi8 | sdnoa8 peoryorerory -sdnoid semrod jo sdnoid
Korjod [eoIyDIRIOTH Z1PUON | 4forjod reoryprerory-uoN | 4orod jo sod4y} [eresdg | I0 sowrod [edIYDIRIdI[] AyrempoN
(yuaSe jo Jreyeq
So[n.I SO[NI | WO JNO POLLIRD IO JuUa3e So[n.I

UOI}eSLIOYJNE JO UOIjen

UOI}eSLIOY)NE JO UOIjen

snowouojne o3 poayrod

(JueBe jusuredeue

UOI}eSLIOYJNE JO UOIjen

-[ead SuLMp pojelousr) | -[ead SuLIMp pojeldusr) | -a1) suonpediqo YN | 0} perioder) suoreSiqo YOI | -[erd Sulnp pejelousr) suoryesiqo jo adAT,
s9s1x0 J(Id yuepusdepur ddd yuspuadepur
[euots | -uorjeordde suoryediqo | -uorjeoridde jo 8ouL)

peoInosinQ peonosinQ | -1a01g /padmosing | 1oj mq ‘TeUOISTAOIJ | -SIX6 IO PadInosing JUOUWDIOJUS ADT[0J
TINOVX TVdH SOV J1eopuod paamboy

50

Chapter 3

Framework for student mobility programmes

development

Objectives:

o Analyse the student mobility domain area.

e Specify requirements for a student mobility programmes de-
velopment solution.

e Design a framework for student mobility programmes gener-

ation.

3.1 Introduction

Nowadays, the student mobility field is a rapidly growing area [60]. Its development is facilitated by
a number of major international initiatives, including the BP, the Erasmus and Erasmus Mundus
Programmes, the Tuning project. In this chapter, we present a review of this area aimed at
an elicitation of its main characteristics (see Section 3.2). First of all, an overview of different
Combined Educational Programme (CEP) types that involve student mobility activities will be
presented. A subsequent review includes an analysis of the main student mobility processes, a
description of the main mechanisms proposed within the BP and an analysis of other characteristics
and initiatives of the student mobility area. The results of this review will form the basis for
the specification of the main requirements for a student mobility support solution providing the
CEP generation functionality (see Section 3.3). Based on these requirements and the results of
the current technologies review, presented in Chapter 2, the overall CEP generation framework
is designed (see Section 3.4). This framework outlines a general CEP development process and

determines roles and interrelations of different technologies, specifications and users in this process.

o1

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

3.2 Student mobility domain area analysis

3.2.1 Student mobility processes analysis

In order to designate any educational pathway involving student mobility activities, in this study
a 'Combined Educational Programme’ notion is adopted. Extending the EP definition (see [131,
160]), a CEP is defined as an approved curriculum route incorporating student mobility activities
that leads to one or several academic awards and is followed by a registered student. CEPs are

classified [93]! according to a number and types of qualifications, awarded at the end of the course:

Pure credits mobility degree. Only one qualification is awarded by one of the institutions
offering the course. In the degree supplement, a part of the course taken at another education
provider can be indicated.

Two majors or major and minor degrees (dual degrees). One degree with two majors (or
one major and one minor), corresponding to the subject areas studied by the student, is
awarded by one institution?.

Joint degrees. One joint qualification is awarded by several institutions offering the course jointly.

Double (and multiple) degrees. Two (or more) individual qualifications are awarded by dif-

ferent institutions offering the course.

Student mobility processes within different types of CEPs are similar, but the design of these
programmes and their goals are distinct. So in order to focus our attention on a specific case, in
what follows we will concentrate on the pure credits mobility degree type of CEP. This CEP type
reflects the nature of student mobility, and it commonly involves utilisation of existing modules
and EPs without new educational content design.

The education of a student involving student mobility schemas is a complex process cover-
ing several stages and involving different participants (e.g., universities). We, therefore, adopt a
business process modelling approach for the analysis of processes carried out when a student is
studying according to a CEP. If we consider a credit mobility degree programme, there are two

basic mobility schemas:

e Permanent transfer, when a student leaves one EP, moves to another EP and never returns
to the previous EP (see Figure 3.1, B).

e Probation period, when a student moves to another university or EP, but after some period
of education there (without graduation from this EP), he (or she) returns to the original EP,

where he (or she) has studied before (see Figure 3.1, A)).

L An official universally accepted classification for these EPs is absent [122]. Different international HE experts
use different terms and use different definitions for the same terms. We have adopted the classification presented in
international reports [93] and [92] and extended it with ‘credit mobility degree’ CEP type from [91].

2This type of CEP usually involves only internal student mobility.

52

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

A) Probation period

B) Permanent transfer

C) Complex scenario

University 1. EP 1 | University 2. EP 2
A J
Semester 1 } f~—| Semester 2 |

Defend
thesis
Degree
awarding

]

University 1. EP 1

University 2. EP 2

University 3. EP 3

University 1. EP 1

University 2. EP 2

Semester 1

Semester 2 }—

+{ Semester 3

Defend
thesis

Degree
awarding

Y

Semester 1 |»

——| Semester 2

~| Semester 3 r

Semester 4

Defend
thesis
Degree
awarding

Figure 3.1: Student mobility schemas

Based on these basic schemas, more complex student mobility scenarios can be developed.

These scenarios combine the basic scenarios to create more sophisticated CEPs. Such CEPs can

include more than two universities and EPs [151]. An example of such a student mobility scenario

is presented in Figure 3.1, C. First, the student starts the education at EP;, but after the first

semester a probation period in Universitys is taken. After the second semester, when studying at

Universitys, he (or she) returns to his (or her) ‘home EP’, EPj, in the third semester. Finally,

after the third semester, the student moves permanently to EP3 in Universitys, where a degree is

granted for him (or her).

The student mobility scenarios have the following important characteristics:

o In different domains (e.g., countries, universities, faculties), there are different legal and nor-

mative requirements that affect how educational processes should be carried out. Therefore,
the same high-level educational scenarios are implemented using different lower-level proce-
dures within different domains. For example, when a student transfers from one university to
another with the aim to receive a degree from the destination university, different procedures
should be carried out based on the regulations of the university or faculty (e.g., modules
studied in another university could be eligible or not for the recognition; for the recognition,
the student could have to pass an interview or exam, or modules can be recognised without
additional assessment).

Results of the student mobility activities, as well as other educational activities in the edu-
cational environment(see [169]), are not known in advance. The execution of the designed
EPs is always subject to the student’s progress.

When CEPs involving credit student mobility schemas are created, usually existing learning

objects (e.g., terms of EPs and modules) are used as a basis for the CEP development.

53

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

This ensures a reuse of established university programmes, limits the expenses for the CEP
development and eliminates the disruptions of the established university EPs. When existing
EPs are utilised for the CEP development, they can be modified: some modules can be added

or removed, or some optional modules can be done core modules for the student.

On the other hand, if learning objects (e.g., modules) are taken for the CEP development from
different universities, they are not related to each other. In order to determine relations and align
EPs from different universities (possibly in different counties) and recognise previous periods of
education, a set of international initiatives has been started in the area of HE. They are examined

in the following section.
3.2.2 International initiatives in the area of higher education

The Bologna Process (BP) is a well-known initiative aimed at the creation of the European Higher
Education Area (EHEA). The BP provides mechanisms that help to harmonise degrees and quality
assurance standards and make them more compatible and comparable. The student mobility is a
core element in the BP initiatives. Intensification of mobility processes is one of the measurable
results of the BP and one of the main components of the EHEA development [55, 84]. In this
section, the main mechanisms proposed within the BP are described.

Cycles. The BP prescribes that all qualifications in HE should be located within three main
cycles®, which were established by a set of BP initiatives (see [55, 56]). Each cycle corresponds
to a specific academic demands, complexity of knowledge, depth of learning and degree of student
autonomy. A successful completion of a lower cycle gives access to a higher cycle. Additionally, a
shorter cycle within or linked to the first cycle is distinguished. Adoption of these cycles facilitates
the fair recognition of qualifications in different countries.

In the Qualifications Framework of the European Higher Education Area (EHEA
QF) [17], the BP cycles and their descriptors are established as an overarching European frame-
work. Based on this overarching framework, National Qualification Frameworks (NQFs) should be
developed by each participating state (for example, see [132, 138]). A NQF should define all levels
of education and types of HE qualifications awarded at each level of the national HE system®.
Relations between these levels (or qualifications) should be described in the NQF, in concrete,
points of their integration and intersection should be stated. Moreover, the NQF should map
national qualifications and levels to the EHEA QF and BP cycles. Such system formed by the
NQFs and the overarching EHEA QF makes the qualifications provided in different countries more

compatible and comparable with each other.

3Informally, they refer to undergraduate, graduate and doctoral qualifications, but the BP cycles are indicated
using numbers: first, second, third.

4Levels in terms of NQFs have the same meaning as cycles at the EHEA level. A NQF can introduce qualifications
that does not equal to BP cycles, e.g., a cycle can be sub-divided.

54

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

According to the BP, each EP should refer to a NQF level with corresponding complexity
and depth of study. The NQF level in turn should be related to an EHEA QF cycle. Such
interrelations can be used during the student mobility programmes design for the comparison of
EPs from different educational systems. First of all, based on the information about the NQF level
of the qualification that a student has, this qualification can be recognised in order to satisfy the
admission requirements of the receiving university. Secondly, the information about relations of EPs
from different countries received from the qualification frameworks can be utilised to choose EPs
that can be used as a basis for the mobility programme development. It should be noted that these
relations in many cases are more complex than direct correspondence and cannot be determined
precisely, as the NQF levels of these EPs can span across several BP cycles or correspond only to
a part of the cycle.

Another important mechanism is the Learning Outcomes-based education. This mecha-
nism facilitates the development of the competence and student-centred approaches to education.
“Learning outcomes are statements of what a learner is expected to know, understand and/or be
able to demonstrate at the end of a period of learning” [2], p.4. Within the BP, it is required that
all levels in NQF, all EPs and all their components (modules, work placements, etc.) should be
described in terms of learning outcomes. Using learning outcomes, the curriculum is described in
terms of results acquired by the students without direct reference to the teaching process itself.
Learning outcomes should be verifiable. In order to award credits for a learning unit, students
should pass assessments evaluating the corresponding learning outcomes. So learning outcomes
provide a link between EP planning, learning process, assessment and expectations of different
stakeholders [66]. Learning outcomes make different qualifications and their components more
comparable and facilitate the process of credits recognition.

According to the BP, each learning object (e.g., EP, semester or a module) should be described
in terms of learning outcomes that specify results achieved during the education. The recognition
of credits awarded for a learning object should be learning outcomes-based [1]. Decisions about
relations of different learning outcomes can be taken as a result of analysis conducted by several
experts with the experience in the data domain concerned.

Credits are defined in [54] as “quantified means of expressing the volume of learning based on
the workload students need in order to achieve the expected outcomes of a learning process at a
specified level” (p. 35). Credits are specified in terms of notional learning time® (notional hours).
Credits should be allocated to the EP and to its constituent learning object (years, semesters and
modules). Credits that are allocated to a learning object refer to its level and to the corresponding

set of learning outcomes.

5“The notional learning time is the number of hours which it is expected a student (at a particular level) will
need, on average, to achieve the specified learning outcomes at that level” [177], p. 239.

55

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

The European Credit Transfer and Accumulation System (ECTS) [54], which was
developed within the BP, defines the main principles and requirements of credit allocation and
credit transfer. Credits, allocated to a learning object, are awarded to individual students after
the successful completion of this learning object. Accumulation of a specific number of credits is
a compulsory requirement to award a degree. One ECTS credit is equal to 25-30 notional hours
and one academic year is always 60 ECTS credits. In NQFs and programme specifications, ECTS
credits should be used. If other credit units are used, a conversion scheme to ECTS credits should
be provided.

Moreover, credits achieved according to one EP can be transferred to another EP. An institution
awarding a degree to a student can recognise credits that he (or she) gained during the education
according to an EP of different institution and exempt the student from studying some part of the
EP leading to this degree. In this case, the institution considers that the requirements for credits
and learning outcomes of this part of the EP are satisfied by credits and corresponding learning
outcomes that were recognised. So credits are always recognised in relation to some EPS. Credits
can also be pseudo-recognised: they are acknowledged by the awarding body as credits with
adequate quality, but they are not counted towards the student’s degree. These credits can be
listed in the student’s diploma supplement, but they do not reduce the number of credits that the
student should receive at the awarding institution.

Another EHEA initiative consists of creating networks of partner institutions. Universities
are encouraged to sign partnership agreements with other institutions, facilitating student mobility
processes between these institutions. These partnership models are different from joint degrees, as
they provide a basis for more flexible and student-centred mobility processes [67, 54]. Information
about all the partners of the university should be publicly available [159, 15], so students and other

universities can utilise this information when planning student mobility activities.
3.2.3 Other characteristics of student mobility domain area

The core process of EP design is defined as “a creative and often an innovative activity” [161],
Chapter B1, p. 2. Usually, there is no precise and fixed procedure for the CEP development (neither
for credit mobility CEPs, nor for other types of CEPs). The development of an EP is carried
out based on specific expectations and requirements, available resources and local established
principles. Official guidelines and recommendations (e.g, [1, 58, 130, 59, 64, 63, 159]) aimed at the
student mobility facilitation include some specific, but usually uncoordinated guidelines covering
different aspects of the CEP development. They try to solve a broad range of problems that
occur during the CEP design and execution within academic, organisational, personal, financial

and marketing fields. The majority of these recommendations are not relevant for the design of

6Moreover, the same credits achieved by a student can exempt him (or her) from studying parts of EPs with
different number of credits, according to different recognition cases.

56

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

a CEP generation solution. For example, among these guidelines there are recommendations how
to motivate students to take part in mobility programmes [67], how the funding issues should be
resolved [63], how universities can select their partners [159], etc. But in these recommendations
and guidelines there are some issues that should be taken into account during the CEP generation

solution design:

e The awarding institution is responsible for the quality of all individual modules and other
parts of the programme that are considered when the award is granted, regardless of the
institutions which were involved in the learning process. If the awarding institution delegates
the right to conduct some part of the EP to its partner and even if the partner delegates it
further, the awarding institution should guarantee the quality of the education [159, 64]. For
example, it is the awarding institution who decides about the recognition of credits from other
institutions. Moreover, awards granted by an institution should conform to the statutory
regulations and requirements of the controlling organisations, so it is the responsibility of the

awarding institution to ensure this [130, 159].

e Universities should rigidly specify procedures and principles for making decisions concern-
ing non-standard educational tracks, for example, accreditation of prior learning, advanced

standing, etc. [130]

¢ In different domains, there are different legal and normative requirements to educational pro-
cesses and to structures of EPs and CEPs. These requirements are compound: they consist
of different sets of requirements, covering different aspects of the educational process and
different cases, they are specified at different levels of the educational system and originate

from different organisations.

o In different domains, different terms can be used to designate the same or similar notions
and different units can be used to measure the same characteristics. There are variations in
qualification levels, units of workload (e.g., in a value of credit point), grading scales, subject
areas classifications, etc. This problem is acknowledged as one of the obstacles for the student

mobility area development [151, 177].
3.3 Requirements to Combined Educational Programme development

solution

As it was stated in Chapter 5.1, the aim of a CEP development solution is the facilitation of the
student mobility area development (by lifting information, academic and financial obstacles). The
main task of a CEP development solution is defined as follows. This solution based on existing

modules and EPs should generate possible CEPs that satisfy the following requirements:

e They should be developed for an individual student or a group of students with similar

characteristics.

57

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

e They should satisfy requirements provided by the requester of the CEP (an educational
organisation or a student).
e They should satisfy regulations specified by the corresponding education providers and edu-

cational authorities.

The following requirements to a CEP generation solution can be specified based on the under-
taken analysis of the student mobility area. CEPs that should be developed by the solution are
usually targeted at individual students when the development is initiated by a student or a group
of students with specific profiles when it is initiated by a university. Hence, the CEP generation so-
lution should take into account information about student characteristics (like previous education,
country of origin, language skills, etc.) for the CEP development.

As opposed to current CG techniques’, within the requirements for CEPs, requirements for
officially approved qualifications are equally or even more important than the requirements for
learning outcomes that the student will achieve. Another important aspect for the institutional
education carried out within the HE environment is the physical location of students during the
education. When a CEP involving student mobility activities is developed, this factor becomes
even more significant, as students should move physically during the education.

So for the specification of CEP requirements within the CEP generation solution a flexible
mechanism should be developed. It should provide the means to specify requirements to award(s),
gained during the education, structure of the CEP and physical movements of the student during
the education.

For the generation of CEPs based on the user requirements, the CEP generation solution should
support different mobility schemas. It should be possible to combine basic mobility schemas to form
more complex student mobility scenarios, which satisfy the input requirements. Additionally, when
a CEP is developed, all applicable educational regulations should be taken into account. These
regulations can control different aspects of the educational process, for example, limit the set of
possible student mobility scenarios, limit possible universities, EPs, modules, where a student can
study. They can determine the structure of the CEP, determine how specific procedures should
be carried out during the education (e.g., how the student transfer, admission or progression
procedures should be carried out). The CEP generation solution should not only guarantee that
the resulting CEP satisfies all the applicable regulations. It should provide the means for the
specification and support of these compound regulations by different persons independently.

The CEP generation solution should use existing EPs as the basis for the CEP development.
In order to compare EPs and modules from different universities, the BP initiatives should be
employed. For each EP and module the learning outcomes, credits and NQF level should be
specified. In order to filter which EPs can be used for the CEP development, the EHEA system of

7See the corresponding review in Chapter 2

58

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

educational frameworks should be used. CEPs should be constructed only from EPs corresponding
to the same or overlapping educational levels. In order to compare individual modules or parts
of EPs and make recognition decisions, their learning outcomes and credits should be compared.
According to the educational recommendations, these procedures and criteria for the decision
taking should be decided and fixed by the education providers. Therefore, they can be represented
as educational regulations and utilised in the CEP generation solution.

Educational regulations and learning objects (e.g., EPs, modules) are usually specified using
locally adopted units and terms that can differ in different domains, even if they refer to the same
or similar notion or characteristic. So the CEP generation solution should support different terms

and units used in the domains, covered by the solution.

3.4 Combined educational programmes generation framework

For the generation of CEPs within the CEP generation solution, a novel framework was developed
based on the requirements described in Section 3.3. This framework determines at an abstract
level how CEPs should be developed. It defines which technologies and specification instruments
are utilised in this process, how they contribute to the CEP development and how they are inter-
related. Moreover, it defines roles of different groups of users in the CEP development process.
This framework combines planning techniques with policy-based management and rule-based ap-
proaches, providing the means to exploit the advantages of all these technologies. Using these
components, based on existing EPs and modules, this framework can generate CEPs that satisfy
user requirements and current regulations. A general architecture of the framework for the CEP
generation is presented in Figure 3.2. The framework is divided into three layers each of which
is responsible for its specific aspect. Fach layer contains several key components interacting with

one another and with the components in other layers.

Policy Domain-dependent Domain-independent
authors specification specification
8] V)
N Polici Transformation Domain P lib “
olicies ol S (LS IEN Specification Process
< > layer designers
Admins # t
Policy-based planner
Q f Processing
5 . . . Planning
Users
C O Y LObj
Educational comparison Data layer
Programmes service

Figure 3.2: CEP generation framework

59

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

3.4.1 Specification layer

The first layer is a specification layer. It contains problem-specific information about the universe
of discourse, that is, the HE environment and student mobility processes. In this layer, information
about educational processes, mobility schemas, existing rules, routines and regulations is created,
stored and maintained. This layer can be divided into two sub-layers. The domain-independent
specification part represents common information about the universe of discourse, which is not
related to any specific domain (e.g., a concrete university or country). This information is a
description of common educational processes contained in a process library. Process descriptions
are maintained by process designers, who should have corresponding competences in the problem
area and process modelling. The domain-dependent specification part contains information specific
to concrete domains. This information is represented as policies, transformation rules and the
domain structure itself. It is created and updated by policy authors responsible for domain policies
and system administrators responsible for specification of transformation rules and supporting the
domain structure. Policy authors or administrators supporting one or several nested domains can
belong to an organisation to which this domain corresponds (e.g., they can be members of the
university or faculty).

The process library contains a set of process models, that is, descriptions of processes carried
out when a student studies according to a CEP. These processes involve student mobility schemas
and ordinary educational processes, carried out within one university. A process is defined in [74],
p- 66 as “a set of interrelated tasks that, together, transform inputs into outputs”. A process
model is an abstract representation of a set of unified processes. Process models in the process
library are represented as a set of (partially) ordered tasks. Process models can be specified
at different levels of abstraction using compound tasks representing distinct sub-processes and
primitive tasks that, on the contrary, do not have inner structure. Primitive tasks correspond to
planning actions. They represent some actions that can be carried out in the environment leading
to its transformation. Special method constructs specify the lower-level processes that compound
tasks can be decomposed into and the conditions when this can be done. Using these methods,
abstract process descriptions can be refined into concrete process specifications containing all the
required details for their execution. Process model specification and enforcement mechanisms are
built based on HTN planning and are presented in Chapter 5, while specific process models that
were developed for the implementation of the CEP generation solution are described in Chapter 7.

The domain structure is a component that models a part of the HE environment that is sup-
ported by a CEP development system. This model has a multi-domain hierarchical organisation,
meaning that it consists of nested domains forming a hierarchy. Domains in this model are uni-

versities, their internal units (i.e., faculties, schools), and higher level domains of the educational

60

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

environment (i.e., regions and countries). Mechanisms for the specification of domain structure
are described in Chapter 7.

Policies specify educational regulations, routines and criteria for decision making that deter-
mine how the educational processes can be carried out and are taken into account during the CEPs
development. Policies are always specified for a specific domain in the domain structure. Policies
are compound, that is, they consist of several sub-policies composed using combining algorithms.
Sub-policies within a domain policy can be used to represent regulations, managing distinct as-
pects of educational processes. For example, different policies can be specified for admission rules
of the university, credits recognition rules, transfer routines for mobile student, degree awarding
requirements, etc. Different policies, even within one domain, can be supported by different policy
authors. Policies, specified by policy authors and saved into the policy repository, are enforced dur-
ing the CEP development in a way that CEPs, produced by the CEP generation solution, should
conform to all the policies applicable to them. Policies are used to limit the set of processes, spec-
ified within the process library, that can be executed during the CEP development. Additionally,
using policies, these processes can be refined: new refined processes are produced that are specific
to a current domain and according to the current regulations can be executed during the CEP
development.

For the specification of policies in the CEP generation framework the XACML policy language
was adopted. A formalised presentation of this language is provided in Chapter 4. Extensions
of this language that enable its usage in our framework as well as principles of its utilisation are
presented in Chapter 5.

Transformation rules are used to define relations between terms and units used in different
domains (or classification systems) in order to designate the same or similar notions or measure
the same characteristics of learning objects. Thus, the transformation rules are used to relate and
compare learning objects specified within different domains (or using terms adopted in different
classification systems). For example, using these rules, credit values and marks can be converted
from the scale of one domain to another. Also they are used to map qualification levels between
NQFs and EHEA QF levels and levels within NQFs of different countries. So in the CEP generation
framework, these rules are utilised when a policy from one domain should be enforced for learning
objects from another domain. Also they can used during the planning, when the conditions (within
the process models) should be evaluated that operate with notions designated by different terms
in different domains. For example, they can be used to select EPs from different domains that can
be used for the CEP construction or to check that an EP award satisfies the user requirements
(user requirements can also be specified in terms of different domains). Transformation rules and
their invocation schema are described in Chapter 5. Examples of rules for the CEP development

are given in Chapter 7.3.2.

61

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

3.4.2 Processing layer

The processing layer is the main operational layer of the framework grouping the core algorithms
involved in solving problems posed by users. These algorithms utilise models stored at the speci-
fication layer and data objects and services from the data layer. Also in this layer, users interact
with the system and utilise services provided by it. Users can be students or members of institu-
tions who develop CEPs for students. A user provides requirements for a CEP and a profile for
student(s) who will study according to this CEP. Based on this information, the solution, utilising
learning objects stored at the data layer, should generate a set of CEPs that satisfy the user re-
quirements and conform to all policies applicable to them. In more detail, this process is described
in Section 3.4.4.

The main component of this layer and the core component of the framework, which was designed
to carry out core solution building processes, is the policy-based planner. This component is
based on three interacting engines. A planning engine carries out planning to solve the specified
problem, utilising the process models from the process library. A policy engine evaluates and
enforces policies, stored in the policy repository, to guarantee that they are not violated in the
resulting plan. A rules engine carries out required transformations during the planning and policy
evaluation utilising provided transformation rules. The core policy-based planner was implemented
as a problem-independent engine, meaning that this component itself has not any knowledge about
the problem area. All required knowledge is provided to it using the models at specification layer,
including rules how data objects and services at the data layer can be used. During the further
development of the planner, some extensions were introduced into it in order to bring gains in the
planning performance, relying on the knowledge about the multi-domain hierarchical structure of
the planning environment.

The basic version of the problem-independent policy-based planner is described in Chapter 5.
The extension of this planner providing the means to evaluate policies at earlier stages of the
planning is described in Chapter 6. This extension is used to improve the planning performance
and utilised in the designed descending policy evaluation technique. This technique provides the
means to evaluate policies for higher-level domains and optimises the process of learning objects
selection during the CEP development, relying on the multi-domain structure of the planning

environment (see Chapter 7).
3.4.3 Data layer

In order to construct a CEP, the policy-based planner requests information about existing EPs
and modules from the data layer. This layer is used to store and operate with descriptions of
Learning objects utilised or generated by the system. These Learning objects are CEPs, EPs and

their components: semesters and modules. These objects and the main operations supported for

62

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

them are described in Chapter 7.

As was said before, for the comparison of credit values and qualification levels of Learning
objects from different domains, transformation rules are used. For the comparison of Learning ob-
jects based on their leaning outcomes, a special Learning objects (LObj) comparison service
should be used. This service should be based on an ontology-based similarity measure between

8. Information about learning outcomes-based relations between Learning ob-

learning outcomes
jects can be used for modules recognition and pre-requisites checks for mobile students, when
pre-defined relations between the Learning objects are absent. As different criteria can be used
in different domains to make these decisions, the Learning objects comparison service should sup-
port different measures between Learning objects, computed based on the values of the similarity
measure for corresponding learning outcomes (see Chapter 7).

Thus, in the specification layer, problem-specific models are authored and supported. These
models are utilised in the framework to represent and solve tasks within the concrete problem
area, that is, the CEP development area. The processing layer groups the main computational
algorithms, which are used to process the problem-specific models and apply them for problem-

solving. Thereby, it links specifications and data objects, stored in the data layer. The data layer

contains different data objects that can be used to build a solution in a specific problem statement.
3.4.4 An overview of the CEP generation process

As there is no adopted specific CEP development algorithm or approach in the educational area,
a simulation approach was chosen for the CEP construction in our framework. At the centre
of this approach, we place a process representation of the CEP that is constructed using the
process models specified in the process library. This process model can represent information
about activities carried out when a student is studying according to a CEP or activities relevant
to this process. This information includes any relations of these activities and all its required
parameters. This process can be modelled at the required level of detail at different stages of the
CEP development.

The outcome of the CEP generation is a process representation of the CEP that models the
educational process carried out according to this CEP (we will refer it CEP process). This CEP
process model is constructed using process models using HTN planning, therefore, higher-level
processes can be refined to lower level processes using methods that decompose compound tasks
into sub-processes. Hence, as it is represented in Figure 3.3, the process of CEP construction can
be viewed as a refinement of its process representation.

On the other hand, requirements provided as input data to the solution can represent the user’s

view on the future CEP from different perspectives and can be specified at different levels. So the

8This measure was developed as part of a contiguous research project and was described in [32]

63

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

CEP development
(process refinement)
CEP . .
requirements ®
Result CEP
b Input o
rocess LS P\
Process
Structure = @
Constraints Structure
Properties - .*. A ® CEP
OO O Structure
§) extraction

Figure 3.3: Overview of the CEP generation process

framework should support three types of input requirements: requirements for CEP process, CEP
structure and CEP properties. The requirement for the CEP process is a high-level CEP process
specification. If a user has not requirements for the CEP process, a single highest-level task can
be used as an initial CEP process specification. The requirements for the CEP’s structure are
represented as an Initial track (ITr). ITr specifies in which domains the student will study and
how he (or she) will transfer between them. In ITr, domains at different levels can be used, so it can
specify requirements to a physical track of the student at different levels of abstraction. Finally, a
user can request that the CEP should satisfy some constraints specified for its properties (e.g., on
its award, its duration or its resulting learning outcomes), that is, the CEP property requirements.

The abstract specification of a CEP process, which was provided by a user, is used as a basis
for the CEP generation. It is refined using process models from the process library in order to
receive a fully specified CEP process. During this process, different mobility schemas represented
as process models are tried. These process models are designed in a way that they can be combined
to form arbitrary complex mobility scenarios. Tasks used within the CEP process specification use
as parameters specific EPs, their semesters and modules designating that they should be studied
by the student or other actions should be carried out with them. During the refinement process,
the planner should try different EPs, semesters and modules in order to build a fully specified CEP
that satisfies the provided requirements for structure and properties.

The CEP process simulates the educational process of the student according to a CEP. In
order to guarantee that this process is feasible and can be executed in the HE environment, we
should check that it conforms to the constraints specified in the process library and to all policies
applicable for it. Policies can be specified by members of different universities or higher-level
organisations and represent their requirements to the CEP process. Hence, enforcing them during
the CEP generation, we ensure that the resulting CEP meets the expectations of institutions that
will be involved in the educational process according to the CEP.

As a result of this refinement, we get a fine-grain CEP process representing all the information

about the CEP. A more concise and common representation of the CEP, that is, its structure, can

64

CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

be extracted from the CEP process model at the end of the refinement. It represents modules of

this CEP grouped into semesters in a concise table form.

3.5 Conclusion

First of all, in this chapter the student mobility domain area was reviewed, different types of stu-
dent mobility programmes, international initiatives for the student mobility area development and
their mechanisms were considered. Important characteristics and peculiarities of this domain area
were distinguished. These characteristics were used as the basis for the requirements specification
for a solution providing the CEP generation functionality. Subsequently, these requirements are
taken into account during the development of such solution, in concrete, in this chapter they were
utilised for the CEP generation framework design. The main contribution of this chapter is the
design of the framework for the automated development of new CEPs using existing EPs and
modules in an environment with heterogeneous regulations. As was shown in Chapter 2, the CEP
generation problem was not considered before within the e-Learning field, so the designed frame-
work constitutes a new approach for the support of student mobility processes using computer
technologies. Although a similar problem of non-mobile curricula development is being solved
using CG techniques, their application within the new area, the student mobility field, is limited
by a number of factors. These limitations include a lack of support for heterogeneous educational
regulations developed by different persons, for different terms and units designating the same no-
tions, a need for a student mobility scenarios development mechanism, for a flexible mechanism for
the specification of CEP requirements, and others. Within the CEP generation framework design,
mechanisms for the elimination of these restrictions are provided. The framework combines the
hierarchical planning technologies with the policy-based management and rule-based approaches,
providing the means to exploit the advantages of all these technologies.

In the subsequent chapters, components of this framework are described in more detail. Chap-
ter 4 presents the XACML policy language, which will be adopted for the specification of ed-
ucational regulations in the framework. Chapters 5 and 6 present the design of the problem-
independent policy-based planner, which will be used in the framework as its core engine. Chap-
ter 7 describes the problem-dependent specifications that will be utilised in the framework and will

enable the policy-based planner to solve the CEP generation planning problems.

65

Chapter 4

XACML policy specification language for-

malisation

Objectives:

e Present the XACML policy specification language.

e Analyse the XACML policy language and the corresponding
processes of policy evaluation and enforcement. Construct
a formalisation for the XACML policy language that can be

used for its extension.

4.1 Introduction

In this chapter, we consider the eXtensible Access Control Markup Language (XACML) policy
language that was chosen in Chapter 2 as a tool for the extension of automated planning tech-
niques in order to carry out planning in environments with heterogeneous regulations supported
by different persons independently. Correspondingly, in the CEP generation framework, which
was proposed in Chapter 3, this policy language will be used for the specification of educational
regulations which govern the educational processes, including the student mobility processes. The
XACML policy language is an XML-based authorisation policy specification language supporting
obligations generated during authorisation checks. The XACML policy language was approved as
an OASIS standard policy language. Its prominent characteristics include extensibility, the support
for different combining algorithms, using which policies and policy groups being specified indepen-
dently can be composed to form higher-level policies, and the support for attribute-based decisions
with the possibility to specify arbitrary complex conditions using a wide range of functions.
When describing the XACML policy language, we also introduce a formalisation for XACML
policies and their evaluation algorithm. In the official specifications of the XACML policy language
([153, 50]), the semantics of the language constructs is introduced using natural language. The
formalisation of XACML proposed within this study is needed when the policy-based planner,
where XACML is used for the specification of policies, is extended and the postponed policy

66

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

enforcement mechanism is introduced (see Chapter 6). For the realisation of this mechanism, the
XACML policy language and its evaluation algorithm should to be extended with the possibility to
evaluate policies in situations when not all relevant information is available. During this extension,
the formalisation is used to introduce the extended policy evaluation algorithm and analyse its
properties (including its interrelations with the original version). Additionally, due to the verbose
XML-based syntax of XACML policies, this formalisation is utilised in this and the subsequent
chapters in order to represent policies in a concise form.

According to its main goal, the formalisation of XACML should concentrate on the representa-
tion of the XACML evaluation algorithm. It should be possible to modify the evaluation algorithm
and to analyse its properties. Additionally, for the completeness of the analysis, the formalisation
should cover all levels of the XACML policy structure. A number of formalisations for the XACML
policy language were already proposed. In contrast with our case, the aim of these formalisations
is usually to provide the tools that can analyse the properties of policies themselves. The common
approach is to represent the policies to be analysed using an established formal representation and
employ its existing reasoning mechanisms in order to analyse the properties of policies, including
inference of policy decisions for specific queries. The formal representations include description
logic [142], binary-decision diagrams [62], defeasible logic [94] and other approaches. Current for-
malisation approaches have several different drawbacks relatively to our goal. First of all, as they
are aimed at the policy analysis, that is, not the analysis of the policy evaluation algorithm, the
process of policies and policy constructs transformation to formal objects is usually not intro-
duced as a formal mapping and is not based on the syntax structure of policies, so possible policy
structures are implied. Other limitations are an absence of formal definitions for policy constructs
themselves, regardless of a specific policy that is formalised at the moment (this makes impossi-
ble to analyse the policy evaluation algorithm itself, eliminating specific policies, e.g., in [62]), an
elimination of important aspects of the policy evaluation, which are not crucial for the business
meaning of the policies (e.g., exceptions that can be raised during the evaluation and which are
represented using special Indeterminate decision in XACML in [94, 62]), formalisation of just some
part of XACML policy structure (e.g., only combining algorithms are formalised in [121, 99], rule
conditions are simplified to Boolean expressions in [62, 94]). Our formalisation is based on the
context-free grammar for abstract syntax that was introduced for XACML. This grammar defines
possible structures for XACML policies. When the formalisation is introduced, all its possible
productions representing different XACML syntax constructs are mapped to objects representing
them formally. These objects, effectively, formalise the process of these constructs’ evaluation. The
formalisation is defined in a compositional manner, so the meaning of each construct is defined in
terms of the meaning of its components. Thus, the properties of the whole XACML evaluation

algorithm can be analysed using the structural induction: it is required to analyse each individ-

67

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

ual construct and infer properties of their composition relying on the structure defined using the
abstract syntax grammar.

The chapter is organised as follows. Section 4.2 contains an overview of the XACML policy
language and the corresponding policy enforcement process. In Sections 4.3 and 4.4, the policy
evaluation process and the introduced abstract syntax grammar for XACML are described. In
Section 4.5, we describe different XACML constructs and provide their formal definitions. Finally,

in Section 4.6 the obligations processing routine is described.

4.2 XACML policy language overview

XACML uses the outsourced enforcement mechanism, based on the PEP/PDP architecture (see
Chapter 2). The XACML specification includes the normative requirements for application-
independent PDP, which carries out the functions of the policy evaluation engine, and possible
variants of the PEP behaviour, which is usually part of the application. PEP controls actions
carried out in its area of responsibility. When policies should be evaluated, it queries the PDP
creating and sending a policy decision request. The PDP evaluates this request, analysing policies
stored in its repository, and infers a decision that contains an authorisation decision and, option-
ally, a set of obligations. In turn, the PEP enforces the decision: it permits or blocks the action
and executes the obligations returned.

Correspondingly, the policy evaluation in XACML is separated into two phases: policy decision
request (policy request) generation and policy request evaluation. For evaluation in the PDP, the
policy request should contain a part of information about the action, which will be used by the
PDP to infer a policy decision. The structure of the policy request in XACML is aligned with
the structure of the authorisation policies and contains four sections: subject, action, resource and
environment, implying that a subject carries out an action on a resource in the presence of some
environmental parameters. Each section contains a set of attributes that describe the corresponding
entity. As XACML is a typed language, all attributes in the policy request are stored along with
their types. Information about the action that cannot be represented using attributes or it is
difficult to do, such as the structure of the resource or its content, can be placed into the request
as a free-structure XML document. So the policy request can contain arbitrary details about the
action, including its subject, resource and environment, where it is being executed, that can be
taken into account during the policy decision inference. Correspondingly, XACML policies specify
conditions over information contained in the policy request that should be satisfied in order to
infer certain policy decisions. Obviously, in this schema, it is possible to provide to the PDP
through the policy request only a part of the information that will be actually used during the
policy conditions checks. Moreover, limiting the policy request size is advantageous as this reduces

the communication expenses, reduces expenses for the policy request formation (some information

68

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

could be explicitly retrieved from external sources) and reduces the time needed to retrieve the
required information from the policy request during the policy evaluation. On the other hand,
when a policy request is generated, there is no insight regarding what information can be required
during the policy evaluation and, correspondingly, what information should be contained in the
policy request. When a required attribute is missing during the evaluation, an indeterminate
decision is produced along with which a description of the missing attribute can be provided. If
the missing information can be provided, it is added into the request and the request should be
re-evaluated!. As part of the policy-based planner design, this drawback was eliminated and the
possibility to generate XACML policy requests considering the information that can be required
during the policy evaluation was provided (see Section 5.6).

There are several authorisation decisions in XACML. In addition to Permit and Deny decisions,
an Indeterminate or Not Applicable decision can be returned. Indeterminate is returned when a
deterministic decision cannot be inferred because of some error (incorrect types of values in the
policy request, errors in policy specifications, etc.) Not Applicable means that none of the policies
can infer a decision for this policy request. When an Indeterminate or Not applicable decision
occurs, PEP’s behaviour is determined by the type of PEP, for example, Permit-biased or Deny-
biased (e.g., Deny-biased PEP permits the action only if Permit was returned and it can discharge
all returned obligations and blocks the action otherwise).

Obligations in XACML are represented as a set of actions produced along with the authorisation
decision. These actions should be executed by a PEP in conjunction with the enforcement of this
decision. In XACML, there is no means to specify a specific routine for how these actions should be
executed, for example, a possible order of their execution or a position of their execution relatively
to the action that was requested (before, during or after). This could be required, for example,
when several obligations are returned that should be executed in a specific order, when some
obligations should be executed after the requested action, for example, in order to save results of
the execution in a log. When XACML is used in the policy-based planner for the specification
of policies enforced during the planning, this is even more important as the plan which is being
developed should contain all actions that should be carried out to achieve a goal and specify all
ordering between these actions significant for its correct execution. During the development of the
policy-based planner, the XACML policy language was extended and this drawback was resolved
(these extensions are described in Chapter 5).

In this study we utilise the XACML policy language version 2.0, as at that time when the study

was done it was the major version approved as an OASIS standard for which an open source policy

L Alternatively, for some missing attributes the PDP can support the function of its request during the evaluation.
This function cannot be provided for the information stored as a free-structure XML document within the request
(as it is requested using an XPath expression). Moreover, these requests should be done only for distinct attributes
and lead to extra expenses.

69

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

evaluation engine was available. The XACML version 3.0, which is the most recent version at the
time of writing, was a developing version at that time: it was not approved yet as a standard? and

a policy evaluation engine was not available for it.

4.3 Policy evaluation schema

XACML policies are specified in a modular and compositional manner, namely, individual policies
can be specified independently and composed into more complex policies. An example of XACML
policy set is presented graphically in Figure 4.13. The major components of the language are rules,
policies and policy sets. A rule contains an effect part that determines an authorisation decision,
returned when this rule triggers, and a condition part (i.e., a condition expression over information
in the policy request), that determines when this rule can trigger. Policies are used to group related
rules. In turn, policy sets are used to group related policies. Each rule, policy and policy set also
contains a target element. Target is a condition with a restricted structure that determines when
this construct is applicable to the policy request. Using the target mechanism, the scope of a
specific policy and policy set is restricted. All components nested into a policy or policy set are
evaluated only when the condition in its target is satisfied. For example, in Figure 4.1, a condition
in Targety can specify that this policy is used for the specification of educational regulations within
some university. Correspondingly, conditions in T'arget; and Target, can be used to specify that
Policy; contains rules for the faculty of Humanities and Policys - for the faculty of Computer
Science. Other policies can also be included into this policy set, for example, the overall university
policies. Each policy (or policy set) uses some rule (or policy) combining algorithm that determines
the routine for processing the evaluation results for components nested into the policy (or policy
set). This routine resolves conflicts between them and determines a resulting decision. In order to
designate which combing algorithm should be used for a policy (or policy set) an identifier of the
algorithm is provided within its structure (designated using greyed rectangles with rounded corners
in Figure 4.1). Using these mechanisms, the specification of different policies and policy sets can
be delegated to different authors who can specify the policies independently. Additionally, using
different policies, regulations that manage different aspects of the system behaviour can be easily
specified. During the policy evaluation, all components nested into a policy and policy set are
considered only when its target condition is satisfied. Moreover, different policies can be specified
in different XML files using policy referencing. Each XACML policy has its identifier and, instead

of specification of nested policies in the same file, policy identifiers can be used to refer to policies

2The XACML policy language version 3.0 [50] was approved as an OASIS standard on 22 January 2013. The new
version left the core functionality of XACML unchanged, but introduced the means for the policy author to specify
policies in a more flexible way, relaxing some previously introduced restrictions in the policy specification schema.
Major new functionality was introduced as separate or updated profiles (i.e., the administration and delegation
profile and the multiple decision profile).

3As XACML policies are specified as XML documents, for the aim of their concise and demonstrative represen-
tation a graphical representation is used.

70

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

specified in separate files.

Policy evaluation >—

| il °
[Target, |

» Targety

_ r—-———-—"—>>"7"—7—7=—7—7—7——

¢~ Policy Combining \ _ | ____ |

___Algorithmo

Y

Policy specification

Policy Sety

Policy Combining
Algrorithmg

Policy 1

» Targety
(/'/ Rules Combining \]_ - ____ Rules Combining
___ Algorithm1 4 Algrorithm;

Policy 2
» Target; » Policy evaluation

(~ Rules Combining)_ 1
9 Algorithm2 Y

Rule.
A (EffeCtz1 /\

» Targety

» Conditionys

Rule;
J (Effecty,)

Rules Combining
Algrorithm,

Policy decision request

Rules evaluation

Retrieving attribute values ») Rules, Policies and Policy sets
from Policy Request using Target and Conditions evaluation evaluation
Attribute Designator\Selectors
Figure 4.1: An overall schema of policy evaluation

The overall process of XACML policy evaluation was analysed and its structure is represented
schematically at Figure 4.1. In the lower level of the evaluation (represented at the left side of the
figure), values of attributes are retrieved from the policy request using two types of components:
attribute designator and selector. The attribute designators and selectors are used within target
and condition expressions and supply values for their evaluation. The second phase of the policy
evaluation is the evaluation of target and conditions expressions of policies, policy sets and rules.
The results of their evaluation are boolean values. These values are processed according to the
semantics of rules, policies and policy sets. In the XACML standard [153], the semantics of each
policy construct is described and results that should be produced during their evaluation are
specified. In Figure 4.1, this phase is represented as a composition of elements representing the
evaluation of rules, policies and policy sets. The structure of this composition is determined by
the policy structure. As different policy and rule combining algorithms are supported, combining
algorithm that should be used during evaluation of a concrete policy and policy set is determined
based on its identifier specified as part of the policy or policy set (designated using dotted lines).

Formal definitions for these components will be given in Section 4.5.

71

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

4.4 Abstract syntax of XACML policies

The first part of a grammar for the abstract syntax of an XACML policy is presented in Fig-
ure 4.2. This grammar and corresponding abstract syntax was designed based on the description
of the XACML policy language in its specification [153]. It provides the means to distinguish
distinct syntactic constructs of the XACML policy language and determine correct ways of their
composition into XACML policies. The grammar was designed in the focus on the representation
of valid composition of the XACML constructs. For this purpose, obvious possibilities for the ab-
straction of similar constructs using the same non-terminals (e.g., distinct non-terminals were used
for different combining algorithms), what would reduce the number of non-terminals and make the
grammar itself more compact, were omitted. The rest of the grammar is presented in Section 4.5.5.
For the demonstration purposes, only a subset of the XACML policy language (representing its
core functionality) was considered, viz., only two policy and rule combining algorithms (ordered
permit- and deny-overrides), no combining parameters are supported and no optional construct
in a policy can be omitted (e.g., its target). A mechanism for the obligation support is described
separately in Section 4.6.

(1) PolicySet := CombPO Target PolicyCombPO | CombDO Target PolicyCombDO

(2) PolicyCombPQO == Policy | Policy PolicyCombPO | PolicySet | PolicySet
PolicyCombPO

(3) PolicyCombDO := Policy | Policy PolicyCombDO | PolicySet | PolicySet
PolicyCombDO

(4) Policy := CombPO Target RuleCombPO | CombDO Target RuleCombDO

(5) RuleCombPO := Rule | Rule RuleCombP0

(6) RuleCombDO := Rule | Rule RuleCombDO

(7) Rule := Effect Target BoolVal
(8) Effect u= Permit | Deny

Figure 4.2: Abstract syntax for XACML policies

An example of the Abstract Syntax Tree (AST) produced using the developed grammar for
the policy set example in Figure 4.1 is presented in Figure 4.3 considering that PolicySety is
using the permit-overrides policy combining algorithm, Policy; - deny-overrides rule combining
algorithm and Policys - permit-overrides. As follows from the defined grammar, policy sets can
contain other policy sets and policies, while policies can contain only rules that produce effects
specified in their effect part (either Permit or Deny). One policy or policy set can use only a single
combining algorithm, which is used to process all constituent rules or policies. The rule’s condition
is represented in a grammar as a BoolVal non-terminal that represents any possible expression

that produces a boolean value (true or false).

72

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Policy Setg

T

CombPO Target, PolicyCombPO

N\

Policy, PolicyCombPO
CombDO Target; RuleCombDO Policy,

P

CombPO Target, RuleCombPO

Ruley4 RuleCombPO
Permit Target;y BoolValy, Rule;,

/I\

Deny Target,, BoolValy,

Figure 4.3: Example of AST

4.5 A formal model of policy evaluation

In this section, the introduced formalisation of the XACML policy language is described. Within
this formalisation, for policy constructs specified using the abstract syntax grammar in Section 4.4
their formal definitions are given. These definitions specify how this policy construct should be
processed during the policy evaluation, that is, how a result of its evaluation is derived based on
the evaluation results of its constituent components. In order to device a formal definition for the
policy or policy set evaluation routine, it is required to define sets of all possible values used as
its input and output. According to the XACML specification, we will define a set of all possible
outcomes (decisions) of policy and policy set evaluation as the set My = {P, D, Ind, N/A}, where
P and D are Permit and Deny decisions, Ind and N/A are Indeterminate and Not Applicable
decisions. When a policy is evaluated, the evaluation results for its constituent rules are used
as input information. In order to represent the rule evaluation results, we have extended the
set My into the set My: My = {P, D, PInd, DInd, N/A}, where PInd (or DInd) denotes that
a rule decision was Indeterminate and in its Ef fect part Permit (or Deny) is specified. This is
required, because, as opposed to policies, when rules evaluation results are combined using some
rule combining algorithm during the policy evaluation, it is important to know which decision,
Permit or Deny, is specified in its Ef fect part (i.e., it is a decision that this rule could have
returned).

Among other data types used in XACML, truth values have a special role in the policy eval-
uation as they complete the chain of policy conditions evaluation. That is, target and condition

constructs produce boolean decisions which are used at the higher level of some rule or policy

73

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

evaluation, for example, to decide if a rule should fire, or if a policy is applicable to the policy
request. A set of truth values contains three elements in XACML: TRV al = {True, False, Ind}.
The indeterminate value Ind is used to designate that during evaluation of an expression an error
occurred and a concrete value cannot be decided. The set of values with other values data types,
which are supported by XACML, is represented as a set VAL. In XACML, errors that occur dur-
ing the evaluation of expressions should produce an Indeterminate value. So each type of values
has a special element Ind, representing that an error occurred during evaluation of an expression
with specific data type, for example, for integers it is Ind'™t.

The evaluation of policies is carried out over a policy request provided. A policy request is
defined as a finite list of attribute values attVal and a tree-structure tree, which represents an
XML document providing additional information for the policy evaluation: req = ((attValy, ...,
attVal,), tree). A set of possible requests is designated as REQ. Each attribute value attVal
is an element of set Identifier x Category x (VAL UTRVal), where Identifier is the set of all
possible attribute identifiers, Category = {Subject, Resource, Action, Environment} designates
which entity this attribute characterises. The value of the attribute is within a union of sets VAL
and TRVal.

In the following sections, formal definitions for procedures carried out when different policy
expressions are evaluated over a policy request are given. These definitions are introduced as se-
mantic functions mapping syntactic policy constructs, specified using the abstract syntax grammar,
to values which represent outcomes of their evaluation. Semantic functions are uniformly named as
evaluate with a superscript designating a syntactic construct that it applies to (e.g., evaluate®s,

Rule)

evaluate™, evaluate

. Correspondingly, policies, policy sets and policy combining constructs
are mapped to values in the decision set M7, rules and rule combining constructs - to values in
the decision set Ms and targets and rules conditions - to values in the truth values set TRV al.
Semantic functions will be specified using semantic equations defining how semantic functions be-
have on different patterns of the syntactic expressions, where each pattern usually corresponds
to one production of the abstract syntax grammar. XACML syntactic expressions within the se-
mantic equations will be represented using strings of terminals and non-terminals of the abstract
syntax grammar. In order to distinguish them from the formal definitions, syntactic expressions
will be enclosed within emphatic brackets (e.g., [CombPO Target PolicyCombP0]). Sets of all
possible syntactic objects represented in the grammar by one non-terminal will be represented

using italicised designation of this non-terminals (e.g., PolicySet).
4.5.1 Policy set evaluation

A policy set evaluation procedure is defined using the function evaluate’S : PolicySet x REQ —

M;. This function maps syntactic constructs for policy set and a policy request to a decision

74

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Table 4.1: Table of values for Policy evaluation function P°¢
Combining decision P Ind D N/A

Target
False N/A | N/JA | NJA| N/A
Ind Ind | Ind | Ind | Ind
True P Ind D | N/A

from the set M; that will be produced during the evaluation of this policy set over the given
request. Semantic equation is given for this function in Formula 4.1, where the first produc-
tion rule at row 1 in Figure 4.2 is considered®. As it can be seen, the target is evaluated first
(evaluate® ([Target],req)). It determines if this policy set is applicable to the request. If the
False or Ind value is received, the policy set is not evaluated further. If the target is satis-
fied, the evaluation result for the policy set is determined by combining the constituent policy
and policy sets. If we eliminate information about the lazy evaluation® of policy set expressions,
the evaluate”® function where permit-overrides (PO) combining algorithm is used can be rep-
resented as evaluate”¥([CombPO Target PolicyCombPQ],req) = P¢(evaluate” ([Target],req),
evaluatecombp"lPO([[PolicyCombPD]], req) using the auxiliary function P¢ : TRVal x My — M,
which is defined on the decision and truth value sets. The truth table for this function is represented
in Table 4.1. When a production rule with the deny-overrides (DO) is used, the same functions are
used to formally define the procedure for its evaluation with an exception that evaluate®°™” ol?¢

CombPolT°

is used instead of evaluate . In what follows, evaluate functions are defined directly using

auxiliary functions on the decision and truth values sets with the assumption that expressions are

evaluated from left to right in a lazy manner.

evaluate?® ([CombPO Target PolicyCombPQ], req) = case evaluate” ([Target], req) of
False: N/A (4.1)
True : evaluateComvPo”” ([PolicyCombPQ], req)

Ind: Ind

4.5.2 Policy and policy set combining algebras

Policies and policy sets produce decisions from the set M; during the evaluation. When these
policies and policy sets are composed into a policy set using a combining algorithm, these deci-
sions are combined and a resulting decision from the set M; is produced. In this formalisation,

this combining process was separated into pairwise policy decision combinations. These pairwise

4In this rule the permit-overrides policy combining algorithm is utilised.

5An evaluation strategy is lazy when it delays evaluation of an expression until it is needed. In our case, if a
value of a function is uniquely determined by already evaluated sub-expressions, other its sub-expressions should
not be evaluated.

7

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Table 4.2: Tables of values for Permit-overrides and Deny-overrides policy combining operations

050 and .50
., P|Ind| D | NJA 'y D|Ind| P | NJA
P P| P P P D D| D D D
Ind | P | Ind | Ind | Ind Ind | D | Ind | Ind | Ind
D P | Ind| D D P D | Ind | P P
N/AyP|Ind| D | NJA||N/A|yD |Ind| P | N/A

CombPolT° CombPolP°

combinations are formalised using the semantic function evaluate or evaluate
(see Formula 4.2). These functions are applicable to syntactic constructs for permit-overrides and
deny-overrides combining algorithms correspondingly (see rules at rows 2 and 3 in Figure 4.2).
In Formula 4.2, the semantic equation for the case when a policy is combined using the permit-
overrides combining algorithm is presented. This combining algorithm is formalised using the
auxiliary function 05 O, If a policy set is used, the function evaluate® is substituted by the func-
tion evaluate’”®. If the deny-overrides combining algorithm is used, the function 7 should be
used. When the PolicyCombP0 abstract grammar non-terminal is substituted by a single policy (or

CombPol"°

policy set) the function evaluate is defined according to the following semantic equation:

CombPol"°

evaluate ([Policy],req) = evaluatef ([Policy],req).

evaluatecombp"lpo([[Policy PolicyCombP0],req) = (4.2)

P([Policy],req) oP© evaluatecm”bp"lpo([[PolicyCombPO]],req)

evaluate p

When the permit-overrides combining is used, if a policy has returned Permit this decision
overpowers all other policy decisions and is returned as a decision of the policy set (see Table 4.2).
The Indeterminate decision has a priority over all decisions with the exception for Permit, because
it is implied that the Indeterminate decision could be replaced with Permit if the error had not
occurred. The deny-overrides policy combining is defined according to the same principle, but
Permit and Deny are swapped.

As the domains and co-domains of the functions that model the policy combining are equal,
these functions are operations. So it is possible to formalise policy combining algorithms as an

algebra Aj, with two binary operations ¢/'“ and e2¢.

Ay = (My, {s;°, &7 N/A, P, D}) (4.3)
where
05 O M, x M; — M, - operation for permit-overrides combining.

050 : My x My — M; - operation for deny-overrides combining.

N/A, P and D - three special nullary operations, representing designated elements.

76

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

The tables of values for the binary operations 05 O and ofo (see Table 4.2) are symmetric and
values at their diagonals are equal to the arguments. These values show that these operations in a
complex combining expression, like a e, be, c, can be evaluated in any order: a ‘maximum’ operand
is always returned. So the following properties hold for the binary operations 05 O and of O (both

are designated as ey):

o Commutative: ae,b="be,a.
o Idempotent: a e, a = a.

o Associative: (¢ e,b)e,c=ae,(be,c).

So the magmas Ego = <M17050> and L:I’?O = <M2,050> are semigroups and semilattices. As

they are semilattices, natural orders for them can be defined as a <F° b < a 05 Op = b and
a <P b e a 050 b = a. A natural order for Permit-overrides semilattice is represented in

Formula 4.4 and for Deny-overrides semilattice - in Formula 4.5.

N/A<PO D <PO [nd <O P (4.4)
N/A =PO p >PO [nd >PO D (4.5)
As these orders are not dual, the algebra £, = (My, e7'C, ¢DO) is not a lattice and absorption laws

a 050 (a 050 b) =a and a 01’?0 (a .1})90 b) = a do not hold for 050 and 0506.

The nullary operations N/A, P and D in the algebra A, were included in it to designate special

DO

PO.
> andop :

elements. The decision N/A is a universal identity element for the operations e
VYa € M, (aogo N/A = N/Aogoa:a)

(4.6)
Va € My (aoP° N/JA=N/AeDO a=a)

DO

» correspondingly:

PO
and .,

The decisions P and D are adsorbing elements for the operations e
Va € My (aogoP:Pogoa:P)

(4.7)
Va € My (aeP° D =DeP%a=D)

According to these properties, the magmas /\/150 = (M, 050, N/A) and MI’?O = (M, 01’?0, N/A)
are monoids. These monoids are not groups (but they are semigroups as was shown earlier), as
they do not have inverse elements.

It should be noted that the presented formalisation of the deny- and permit-overrides combining
introduces some modifications in comparison with the original algorithms defined in the considered

XACML specification [153]. These modifications were introduced to resolve some counterintuitive

61t should be noted that natural orders for 050 and OEO on the set M; form two ordered sets that are, in turn,
lattices defined in terms of the order theory.

7

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

cases of the ‘Indeterminate’ decision processing during the policy combining in XACML. According
to the XACML algorithms, when an Indeterminate decision is combined with a Deny decision when
the permit-overrides is used and with a Permit decision when the deny-overrides is used, a Deny
decision is returned instead of the Indeterminate. These cases are counterintuitive, because when
an Indeterminate decision is resolved into a Deny decision, it is interpreted by the PDP itself.
However, according to the general conception of XACML, the interpretation of Not-applicable and
Indeterminate decisions is a responsibility of the PEP. For this purpose, several types of PEPs
were introduced that differ in how these decisions are processed. Moreover, these cases make the
policy permit-overrides and deny-overrides combining operations asymmetric, while rule-combining
algorithms do not have such anomalies and are symmetric. This can lead to the fact that decisions

unexpected by the policy authors can be produced”.
4.5.3 Policy and rule evaluation

A policy evaluation procedure is defined using the semantic function evaluate” : Policy x REQ —
M;. The policy construct consists of a target and a rule combining constructs. The semantic
expression for the semantic function evaluate®” in Formula 4.8 is presented for the first production
rule at row 4 in Figure 4.2. The policy evaluation is carried out using a procedure similar to the
one for the policy set evaluation with the difference that rules are combined to produce a result
decision, instead of policies or policy sets. Hence, the same auxiliary function P¢ is used in the
definition of the evaluate® function (see Formula 4.8) but the intermediate function f is required,
as rules produce evaluation decisions from the set Ms and, correspondingly, an element in this set is

PO . . o .
CombRule™™ (if the permit-overrides is considered).

returned by the rule combining function evaluate
The function f : My — M; maps decisions returned by the rule combining function into elements
of the set M; before the function P¢ is applied to them. This function maps coincident elements
(P, D and N/A) to each other. The Indeterminate decisions PInd and DInd, which designate
that the Indeterminate decision was returned by a rule with the corresponding effect in its E f fect

part, are mapped to the decision Ind. Accordingly, information about the rule’s possible effect is

eliminated in Mj, as this information is required only at the rule combining level.

evaluate” ([CombPO Target RuleCombPQ],req) = (4.8)

P¢(evaluate™ ([Target], req), f(evaluateCombRule”® ([RuleCombP0], req))

The definition of the rule combining procedure, represented using the following semantic func-

CombRule’©

tion: evaluate , is equivalent to the policy combining procedure specified using the

CombPolT° (

function evaluate see Formula 4.2). The permit- and deny-overrides rule combining is

"Moreover, in the XACML specification version 3.0 [50] the mentioned inconsistencies were resolved and the
updated versions for permit- and deny-overrides policy combining algorithms were specified.

78

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Table 4.3: Table of values for Rule evaluation function R¢

Condition False Ind True
Target
False N/A N/A N/A
Ind DInd or PInd | DInd or PInd | DInd or PInd
True N/A DInd or PInd Dor P

also carried out using auxiliary binary operations: £'C and P© (see Section 4.5.4). The evaluation

of individual rule constructs is formalised using the semantic function evaluate®"¢ = Rule x REQ.

The only production rule applicable to the non-terminal Rule substitutes it with the string
Effect Target BoolVal (see the rule at row 7 in Figure 4.2). So a rule consists of an Effect
part (can be Permit or Deny, see the rule at row 8 in Figure 4.2), a target and a condition. A

Rule function is represented in Formula 4.9 (for the case when

semantic equation for the evaluate
a rule has Permit construct in its effect part). The decision from the Effect part is returned
by the rule if the target and condition, which are Boolean values, are both evaluated to True.
The evaluation of the target is represented using the semantic function evaluate” ([Target], req).
When this function returns a True value, this indicates that the rule is applicable and its condition
should be evaluated. If the target is False, the rule is not applicable. If it returns Ind, PInd (or
D1Ind) is returned designating that Permit (or Deny) could be returned if an error did not occur. A
complete table of values for the R® : Ef fectSpec x TRV al x TRV al — My function, which defines

the rule evaluation procedure, is presented in Table 4.3 (set Ef fectSpec = { Permit, Deny}).

evaluate®™°([Permit Target BoolVal],req) = (4.9)

R®(P, evaluate” ([Target], req), evaluateP°"V * ([Boolval], req)

4.5.4 Rule combining algebras

Rule combining algorithms are represented as binary operations ¢£'© and 2 that combine two
rule decisions from the set Ms into a resulting decision also from the set Ms: o, : My x My — Ms.
These operations were analysed, similarly to the policy combining operations, and are represented

using an algebra A,

A = (Mz, {oC,&7° N/A, P, D}) (4.10)
where
o0 _is the binary operation for permit-overrides combining.
¢P0 _is the binary operation for deny-overrides combining.

N/A, P and D - three special nullary operations representing designated elements.

Tables of values for the two operations are presented in Table 4.4. The permit-overrides com-

79

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Table 4.4: Tables of values for permit- and deny-overrides rule combining operations £’ and ¢”¢

O | P | PInd D Dind | N/A
P P P P P P
PInd | P | PInd | PInd | PInd | PInd
D P | PInd D D D
DiInd | P | PInd D DInd | DInd
N/A | P | PInd D DiInd | N/A
P9 I D | DInd | Permit | P(Ind) [N/A
D D D D D D
DiInd | D | DInd | DInd | DInd | DInd
P D | DInd P P P
PInd | D | DInd P PInd | PInd
N/A | D [DInd | P | Plnd | N/A

bining algorithm gives priority to Permit, and the deny-overrides algorithm to Deny. As in rule
combining it is possible to determine which decision could be returned instead of Ind, two in-
determinate decisions have different priorities relative to the ‘weaker’ deterministic decision (i.e.,
Permit or Deny) in a current algorithm: Permit in deny-overrides and Deny in permit-overrides.
For example, in permit-overrides, PInd overpowers D because if a rule with the Permit effect had
returned a Permit or Deny decision, instead of Ind, this decision would have priority over Deny.
Similarly to the policy combining operations, these rules combining operations are commuta-
tive, idempotent and associative. So the magmas LIC = (My, L) and LPO = (Ms, ¢2©) are
semigroups and semilattices. As they are semilattices, natural orders for them can be defined (see
Formula 4.11 with the permit-overrides order, Formula 4.12 with the deny-overrides order). As

O ¢DO

roTr

these orders are not duals, the algebra £, = (Ma, o) is not a lattice.

N/A <PO DInd <F° D <P© PInd <P° P (4.11)

N/A PO PInd >P° P >P° DInd >P° D (4.12)

D
r

(M, ePO N/A) and MPO = (M,,ePP N/A) are monoids (but not groups). Special elements P

and D in the algebra A, are adsorbing elements for the operations ¢£© and ¢2©.

The element N/A is an identity element for both operations ¢”© and £'©, so magmas MO =

4.5.5 Target and condition evaluation

The part of the abstract syntax grammar presenting possible structures for targets and conditions
in a XACML policy is shown in Figure 4.4. Both target and condition are specified by a policy
author in a policy body and represent conditions that should be evaluated over a policy request
and return a truth value. The target has a fixed structure that enables a fast retrieval of applicable

policies from a large policy repository. The condition can represent any expression as compositions

80

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

of XACML functions, provided that these functions match in output/input data types. As XACML
supports several data types and a large number of functions, operating with these data types, the
grammar shows only a part of the XACML syntax for targets and conditions expressions, where

only Boolean and integer data types are utilised.

(9) Target == Subjects Actions Resources Environments

(10) Subjects := Subject | Subject Subjects

(11) Subject := Matcher | Matcher Subject

(12) Matcher := MatchFunction TypedValue AttributeDesignator | MatchFunction
TypedValue AttributeSelector

<Production rules (10) - (11) should be repeated for Action, Resource and

Environment>
(13) MatchFunction := IntEqualF | BoolAndF
(14) TypedValue := IntegerType Integer | BooleanType Boolean

(15) AttributeDesignator := RequestSlot Attributeldentifier DataType
(16) AttributeSelector := XPathExpression DataType

(17) RequestSlot := Subject | Action | Resource | Environment

(18) DataType := IntegerType | BooleanType

(19) Val := IntAddF Val; Val; | IntOneAndOnlyF BagVal | Integer

(20) BoolVal := BoolAndF BoolVal; BoolVal, | IntEqualF Val; Val, | IntIsInF

Val BagVal | IntSetEqualF BagVal; BagVals; | Boolean

(21) BagVal := RequestSlot AttributeIdentifier IntegerType | XPathExpression
IntegerType | IntUnionF BagVal; BagVals | IntBagF Val; Val,

(22) Integer := <Integer number> Boolean := True | False

Figure 4.4: Abstract syntax for XACML policies (cont.)

A fundamental complex data type in the evaluation of conditions and targets is a Bag of
values (BagVal in Figure 4.4). Bags can contain only elements with the same type and each
element can occur several times in a bag. A bag of values can be defined formally as a multi-
set. A set of all possible multisets (including multisets with truth values) will be designated as
M Set. A multiset, among other values, can contain indeterminate values (e.g., Ind™*). When
XACML constructs that retrieve values from a policy request are carried out, the retrieved val-
ues are represented as a bag of values. In XACML there two such constructs: an attribute
designator or an attribute selector. The attribute designator construct is used to retrieve at-
tributes from requests using their identifiers. The attribute designator has the following structure:
RequestSlot AttributeIdentifier DataType (see row 15 in Figure 4.4). The first construct
designates which category this attribute corresponds to: subject, resource, action or environ-
ment. The second construct is an attribute identifier and the last construct is a data type. In
our model, we represent the execution of an attribute designator using the semantic function
evaluatePes9™ . AttributeDesignator x REQ — MSet. The execution of attribute designa-

tors is not considered in detail and can be abstractly represented using the auxiliary function

81

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

getValueDesign : Category x Identifier x Types x REQ — M Set, where Types is a set of all
possible data type names. This function returns a bag of values with policy request attributes
whose identifiers, categories and types match the designator. Alternatively, an empty bag can be
returned. The attribute selector construct consists of an XPath expression and a data type (see rule
at row 16 in Figure 4.4). When a selector is evaluated, this expression is evaluated over the XML
document representing the decision request. The execution of an attribute selector is represented
using the semantic function evaluate®¢'*°t : AttributeSelector x REQ — MSet and formalised
using the auxiliary function getValueSelect which has the same signature as getValueDesign but

instead of the category and identifier for the identification of attributes it uses an XPath expression.
4.5.5.1 Target evaluation

Policy and rule targets consist of four levels (see rules at rows 9 - 12 in Figure 4.4). The over-
all target expression (represented as non-terminal Target at the grammar) contains four condi-
tion expressions, corresponding to the four categories in the policy request. As it is shown by
Formula 4.13, the target matches a request if all these conditions are satisfied®. At the next
level, conditions for each category of the request are specified as disjunctive condition expres-
sions. One of these expressions should be satisfied over the data about the corresponding cate-
gory in the request. For example, evaluate®*([Subject Subjects], req) = evaluate®([Subject],
req) V evaluate®®([Subjects], req). At the next level, each construct Subject, Resource, Action,
Environment is specified as a conjunction of lower-level attribute matchers. In turn, each matcher
defines one condition over one attribute value. For example, for the subject part of the target:

evaluate® ([Matcher Subject], req) = evaluate™her([Matcher], req) A evaluate® ([Subject],

req).

evaluate” ([Subjects Actions Resources Environments],req) = p; Apa Aps Apy, (4.13)

where p; = evaluate®* ([Subjects], req), ..., ps = evaluate®* ([Environments], req)

Truth-value functions, which were used to specify target expressions, operate on the set TRV al,
which also contains the Indeterminate value. These functions are defined using a method that is
common in definitions of connectivities for three-valued logics: a correspondence of truth values
(True, Ind, False) to numbers (1,1/2,0) is defined. Then conjunction and disjunction are defined
as min and maz functions, negation - as the 1 — x function®.

Matcher constructs are used at the lowest level of target expressions and can also be defined

8In the XACML specification, it is also required that the target should be evaluated to Ind whenever one of its
constituent conditions (Subjects, Resources, Actions and Environments) has returned Ind (even if some condition
has returned False). This requirement is specific to the highest level of the target evaluation and is not specified for
truth-value functions or other levels of the target.

9This definition of connectivities corresponds, for example, to the three-valued logic of Lukasiewicz [65] L3

82

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

using a disjunction. A matcher construct consists of a function identifier MatchFunction, an at-
tribute selector or designator and a constant value TypedValue that is specified directly in a policy
(see rule at row 12 in Figure 4.4). As a MatchFunction construct can be used an identifier of a
function with two input parameters that returns a boolean value. The type of its first argument
should match the type of the constant TypedValue and the second argument’s type - the designa-
tor’s or selector’s type. The matcher is evaluated to True if the function MatchFunction returns
true when it is applied to value TypedValue and one of the values in a bag retrieved using the
designator or selector. An example of the matcher definition for the integer type and the ‘equal’
function is presented in Formula 4.14. The auxiliary function equal is used to compare integer
values. The semantic function valuelnt returns an integer from the set VAL corresponding to its

syntactic specification Integer (see rule at row 22 in Figure 4.4).

evaluateM " ([IntEqualF IntegerType Integer AttributeDesignator |,req) =
if p==10 then False else equal(k,p1) V ---V equal(k,p,), where (4.14)
p = evaluate?®*¥9" ([AttributeDesignator], req), p = {p1,...,pn },k = valuelnt([Integer])

4.5.5.2 Condition evaluation

Conditions in XACML are specified by policy authors as free-structure compositions of functions
which should return a truth value in the set TRV al as a result. The input values for the condi-
tion evaluation are bags of values retrieved using attribute designators and selectors and constant
values specified within the condition structure by the policy author. In order to analyse all pos-
sible transformations of the input bags of values during the condition evaluation, before a truth
value can be returned, all XACML functions should be analysed (i.e., functions described in the
XACML specification [153]). First of all, these functions were classified according to their abstract
signatures. In abstract signatures, only three types of values are distinguished: truth values in the
set TRV al, all other atomic values in the set VAL and bags of values in the set M Set. Also if a
function has several arguments with the same type, in its abstract signature all these arguments

“+ suffix.

are represented using one argument with the additional

Based on this table, a chain of possible transformations that can be carried out with input bag
values within conditions can be traced. The corresponding state chart is represented in Figure 4.5.
All values are retrieved from the policy request as bags of values. After the execution of a function,
they can be converted to a single value or a truth value. The truth value can be used in logical
expressions or it can be returned as a result. The single value can be put into a bag (shown using
the backward arrow in the chart, corresponding to the ‘type-bag’ function) or it can be used in

a function that also returns a truth value. In order to represent these transformations of values

in the abstract syntax grammar, from each class of functions in Table 4.5 one concrete function

83

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

Table 4.5: Type of XACML functions according to their abstract signatures

No Type of function Examples

1. VALt — VAL Integer-add (IntAddF), string-concatenate

2. TRValt™ — TRVal All truth-value functions: or, not, and (BoolAndF)
3. VALY — TRVal Integer-equal (IntEqualF), integer-less-than

4. MSet — VAL Integer-one-and-only (IntOneAndOnlyF)!©

5. | VAL, MSet — TRVal | Integer-is-in (IntIsInF)!!

6. VALT — MSet Integer-bag (IntBagF)

7. MSett — TRVal Integer-set-equals (IntSetEqualF)

8. MSett — MSet Integer-intersection, integer-union (IntUnionF)

10 Check that there is only one integer in the input bag and return this integer value.
11 Return a bag of integers with all values contained in the input bag parameters.

——»(__ MSet HvVAL) Tth)

‘ A

Figure 4.5: All possible transformations between abstract data types

was chosen and formalised as a production rule (see rules at rows 19 - 21 in Figure 4.4). For the
reduction of the grammar size, only functions with integer and boolean arguments and values were
chosen. Indeterminate values are returned if one of its arguments is an Indeterminate value, or an

Indeterminate value is contained in an input bag, or an error occurred during the evaluation.

4.6 Obligations generation during policy evaluation

Obligations in XACML are specified as part of policies and policy sets. They are represented as
sets of actions. Each action is represented using its identifier and a set of arguments. For each
obligation, it is defined which decision, viz., Permit or Deny, this obligation should be returned
with. When a policy or policy set where an obligation is specified is evaluated into a Permit or Deny
decision and this decision matches a decision for the obligation, this obligation is returned along
with the authorisation decision from this policy or policy set. Considering the policy combining
algorithms described before, obligations propagate upwards in a hierarchical policy set structure.
For example, if a policy set was evaluated to Permit due to a Permit decision returned by a
constituent policy and this policy decision is accompanied with a set of obligations, these obligations
should be attached to a resulting policy set decision along with the obligations specified within the
current policy set. When several policies returned Permit decisions along with their obligations,
all these obligations should be attached to the resulting decision. Policies that were not evaluated
during the policy combining (e.g., when permit-overrides is used and the first policy has returned

a Permit decision), correspondingly, do not return their obligations.

84

CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

4.7 Conclusion

This chapter contains the description and the analysis of the XACML policy specification language
which will be used in the next chapter as a tool for the policy specification in the policy-based
planner. As part of this analysis, the following drawbacks were found: first, an absence of knowledge
regarding which information should be included in a policy request being constructed in order to
utilise it during the policy evaluation; second, an absence of the possibility to define as part of
the obligations specification within a policy how these obligations should be executed relatively to
each other and to the requested action (e.g., define an execution order or more complex relations
between them). These drawbacks will be resolved during the policy-based planner design as part
of the XACML policy language extension. The main contribution of this chapter is the introduced
formalisation for the XACML policy language with the focus on the formalisation and analysis of
the XACML policy evaluation algorithm. This formalisation uses as a basis the abstract syntax
grammar introduced in this chapter. Using this grammar, mappings from the XACML syntactic
constructs to objects that represent the process of their evaluation formally were defined. As part of
this formalisation, the XACML policy and rule combining algorithms were formalised as abstract
algebras and their properties were analysed. This formalisation is utilised in Chapter 6 where
an extension of the policy-based planner, viz., the postponed policy enforcement mechanism, is
introduced. For the realisation of this mechanism, the XACML policy language and its evaluation
algorithm were extended with the possibility to evaluate policies in situations when not all relevant
information is available. The formalisation provided the means to formally introduce the extension
of the XACML policy evaluation algorithm and demonstrate its required properties, including its

relations with the original version of the algorithm.

85

Chapter 5

Policy-based planner

Objectives:

e Introduce the main components of the policy-based planner
and the main interaction processes between them, which un-
derlie the functioning of the policy-based planner.

e Describe the main elements used for the specification of the
planning environment and the algorithms for their process-
ng.

e Introduce an adaptive policy requests construction technique
for generation of policy requests containing only information

that can be required during the policy evaluation.

5.1 Introduction

Planning operates with a model of the system and produces a plan that should be executed within
this system in order to achieve a goal. Policies specify regulations that determine how actions
should be carried out in the system. A policy-based planner that combines planning technology
and a policy-based approach should enforce policies during the planning. Thus, it should guarantee
that the resulting plan is conformant with all policies that are applicable to it.

Using a policy-based planner, it is possible to apply planning techniques in heterogeneous
environments where different regulations exist that are applicable only for specific parts of the
environment and that control different aspects of processes carried out in that environment. These
regulations can originate from different sources and can be specified by different persons indepen-
dently. In the policy-based planning, such regulations can be specified using a policy specification
language providing the means to combine simple policies specified by different authors into more
complex policies and resolve conflicts between them using combining algorithms. Therefore, in the
policy-based planner, policies are used to extend the functionality provided using the core HTN
planning constructs. Using policies, it is possible to specify additional conditions on the execution

of operators and methods. Additionally, using a policy obligations mechanism, it is possible to

86

CHAPTER 5. POLICY-BASED PLANNER

extend core decomposition methods with additional tasks and actions in order to construct rou-
tines that satisfy requirements specific to the situation when it should be executed, for instance,
specific to a domain of the planning environment. Moreover, the enforcement of policy obligations,
which were generated based on the policies specified, is controlled using the obligations validation
mechanism. It is checked that the obligations do not contradict with the overall principles of the
planning environment and with the rules specified by other policy authors. The specification of
regulations using policies provides the possibility to flexibly modify them. First of all, it is possible
to specify policies that are valid only during a specific time interval. So the planning mechanism
that produces plans with actions that should be executed at a specific moment in the future takes
into account only relevant policies. Moreover, as the policies are specified in an external repository,
they can be updated at run-time of the planner, independently from the core planning environment
updates.

The planning algorithm of the policy-based planner is domain-independent. In order to carry
out planning in a specific problem area, it should be provided with a specially designed planning
environment specification. This approach is widely used in the planning community as it pro-
vides the means to join the efforts of planning specialists working in different problem areas and
re-use (or adapt) the designed problem-independent techniques in different problem areas [116].
Correspondingly, the policy-based planner was designed based on the domain-independent HTN
technique, extending it with mechanisms required for planning in environments with heterogeneous
regulations. In turn, these mechanisms were also designed according to the domain-independent
principles. The resultant policy-based planner can be utilised in different problem domains, where
there are premises for its usage (i.e., planning should be carried out in environments with hetero-
geneous regulations).

In spite of the fact that the policy-based planner is a domain-independent engine, its design is
based on its future utilisation within the CEP generation framework and, correspondingly, on the
requirements specified based on the analysis of the student mobility area (see Chapter 3). First
of all, the policy-based planner supports hierarchical planning. Arguments for the utilisation of
hierarchical planning technology for the student mobility programmes development were stated
in Chapter 2. Additionally, the utilisation of the hierarchical planning technology enables the
fulfilment of some requirements specified for the CEP development solution (see Chapter 3). In
concrete, student mobility scenarios can be modelled and generated during the planning using
decomposition methods, supported by the HTN planning technology used. Next, the policy-based
planner supports planning in environments where different terms and units are adopted in different
domains for description of the same or related notions. In the policy-based planner, such terms
and units can be coherently used since transformation rules are utilised to determine their relations

and to convert them.

87

CHAPTER 5. POLICY-BASED PLANNER

This chapter is organised as follows. An overview of the policy-based planner and its conceptual
model are presented in Section 5.2. In this section, the main functions and interactions of the
planner components are described. Next, each main component of the planner, in concrete, a
planning engine, a policy engine and a transformation rules engine, is described, respectively, in
Sections 5.3, 5.4 and 5.5. In the final part of the chapter, an adaptive policy requests generation
technique that provides the means to generate policy request containing only information that can

be required during the policy evaluation is presented (see Section 5.6).

5.2 Policy-based planner overview and general processes

A high-level architecture of the policy-based planning system is represented in Figure 5.1. Within
this system, three engines are used, namely, a planning engine, a policy engine and a transformation
rules engine. The planning engine contains the planner’s world state model, which is used to
represent a model of the environment where a plan will be carried out. This model is dynamically
updated by the planner as a result of the execution of actions. These actions form a plan that
is simulated within the planner’s environment. When the plan is created, it should be carried
out in a real environment in order to achieve a planning goal. The core planning algorithm
used by the planning engine is domain-independent. For the operation within a specific problem
domain, it utilises specifications of this planning domain containing descriptions of actions, tasks

and decomposition methods, which can be used in this domain®.

These specifications describe
general principles and mechanisms of the operation within some problem area which are devised
by a problem domain expert and are usually invariable in time. Within the policy-based planner,
the planning engine also provides the main problem-solving interface: it receives descriptions of

planning problems and provides plans generated for these problems.

Transformation
rules

Rules engine

Planning engine
Policy engine World
- siale

Planning problem Plans

Planning
domain

/

Figure 5.1: Overview schema of the policy-based planner

IThat is, the planning domain performs the role of the process library.

88

CHAPTER 5. POLICY-BASED PLANNER

The policy engine is used to evaluate policies during the planning. Policies are utilised to specify
requirements that are valid only within a specific context, for example, a specific time interval, a
specific domain within the planning environment or specific properties of the action being executed.
Policies, as opposed to the planning domain, originate from different sources and can be specified
by different authors. Policies can be updated dynamically during the system run. Moreover, policy
can have a validity period, which determines the time interval during which the policy is active
(it should be considered that the planning simulates the execution of actions taking into account
their durations). The policy engine receives policy decision requests from the planning engine with
descriptions of the action that should be executed within the planner’s world state and all required
information related to it. After the evaluation of these policy requests, the policy engine returns
an evaluation outcome to the planning engine that enforces it.

The third main component of the policy-based planner is the transformation rules engine. In
planning environments that cover different areas (e.g., geographical or organisational), different
terms and units can be used to designate the same or related notions, for example, different
terms can be used in different areas to denote the same object or characteristic. In order to
interchangeably use these notions and units, transformation rules are used to define relations
between them. If within some policy or a planning domain specification a term or a value at a
specific scale is required, the policy or planning engine forms a request that is processed based on

available transformation rules by the transformation rules engine.
5.2.1 Conceptual model

The conceptual model of the policy-based planner describes the main constructs used in policy-

based planning and their relations. It consists of the following components:

Action parameters

C Compound/ primitive action)
A

Roleq Role,
(e.g., subject) (e.g., resource)

Designated . .
objects: Object, Object,

Planner’s world state

~ 7

Objecty Object,
information information

Figure 5.2: Conceptual model for action

89

CHAPTER 5. POLICY-BASED PLANNER

Primitive action is the central notion of the policy-based planning. Primitive actions model
modifications of the planner’s world state. Thereby, they are used as constructs for the
output plans development. Each action is related with one or several objects that have
distinct roles in its execution (they are its designated objects). Relations between notions
associated to the primitive action are presented in Figure 5.2.

Object represents an entity within the planning environment. Each object is stored in the plan-
ner’s world state and is described by its properties and relations with other objects. Objects
can be used in actions as designated objects with specific roles. Properties and relations of
an object can be modified, as well as new objects can be saved into the planner’s world state
during the planning.

Role describes how a designated object is participating in an action. For different actions, different
sets of roles can be used to designate specific objects of these actions. For example, a role
can be ‘subject’, ‘resource’ or ‘destination’.

Policy. Policies are statements that define requirements to processes being carried out within
the planning environment. Policies can specify which actions can be executed and under
which circumstances and prescribe specific routines for the execution of certain processes.
In order to infer a policy decision, policy conditions can use any information about the
action, including information from the planner’s world state directly or indirectly related to
its designated objects.

Time in policy-based planning is a variable that is maintained by the planner and represents time
being modelled during the planning. When an action is executed, the planner increases a
value of time variable with the length of time interval specified as the action’s duration. As
policies can be dynamically changed, they can be valid only during specific time intervals.

Compound tasks are tasks within the planning environment that are not executed directly, like
actions, but they are decomposed into a partially ordered set of lower-level tasks and actions
using the methods, designed as part of the planning domain. During the planning, compound
tasks should be fully decomposed into primitive actions.

Compound action is a construct that shares the properties of a compound task and a primitive
action. Compound actions are decomposed into lower level tasks and actions, are used to
model modifications of the planner’s world state and are used to construct the resulting plan.
Compound actions, as well as primitive actions, are also related with corresponding sets of
designated object with specific roles.

Obligations are actions or compound tasks that, according to policies, should be executed during
the planning along with the current planning action. Obligations are triggered during the
evaluation of policies against the policy decision request that contains the specification of the

current action being requested.

90

CHAPTER 5. POLICY-BASED PLANNER

Condition is a statement that should be evaluated at a certain point of the plan execution but
that cannot be evaluated during the planning, because of the information missing at the
planning stage. Further execution of the plan is possible only if all corresponding conditions
are satisfied.

Plan specifies how a process designed during the planning should be executed. A plan in policy-
based planning consists of actions connected with sequential and hierarchical relations and
conditions, which should be satisfied during the execution of these actions. So plans have
hierarchical structure that provides additional information about the internal organisation
of the designed process and provides the means to model the process at different levels of
abstraction.

Transformation rule is a rule that defines how to transform or relate a property of an object

specified using terms and units adopted in one domain or classification system to another.

5.2.2 Main interaction processes

This section describes the main mechanisms designed for the interaction of the main components
of the planner. These processes enable evaluation of policies during the planning, construction of
conditional plans and extension of core planning domain decomposition methods using obligations

that are specified in policies.
5.2.2.1 Actions legitimacy and policy evaluation

The specification of environment that is utilised by the policy-based planner can be defined as
a tuple Env = (PlanD,TransRule, PolicySpec), where PlanD is a specification of the plan-
ning domain containing definitions of actions, compound tasks and methods for their execution,
TransRule is a specification of transformation rules and PolicySpec is a specification for policies
that exist in this environment.

The policy-based planner is based on the classical model of an action-based planning system
(see Chapter 2). In this model, in order to execute an action during the planning it should be
applicable to the current planner’s world state. A state-transition model of the system that the
planner operates with is defined within the planning domain specification PlanD (see Section 5.3).
In concrete, a state-transition function Apply maps a state and an action to a new state that the
system transfers to when this action is executed in this state. This function is defined only for
pairs ‘action-state’ where the action is applicable to the state?.

In policy-based planning, it is additionally required that each action that is executed by the
planner and is included in a plan should be conformant with the policies PolicySpec. So in

addition to the notion of action applicability, the legitimacy of action is introduced. Descriptions

2In this chapter, the term ‘action’ refers to both primitive and compound actions. Primitive actions are specified
using operators in the planning domain. Compound actions are specified using compound action decomposition
methods. The function Apply is defined in Section 5.3.

91

CHAPTER 5. POLICY-BASED PLANNER

Table 5.1: Interpretation of policy decisions by the planning engine

Decision Planner’s reaction
‘Permit’ execute
‘Not applicable’ execute
‘Deny’ backtrack
‘Indeterminate’ backtrack

of designated objects that an action can refer to are stored in the planner’s world state. Hence,
policies are evaluated for an action in relation with the planner’s world state where it is executed.
A policy decision tuple (d, OblStr,C) is produced as a result of the evaluation of policies for action
a in state s (see Formula 5.1). It contains a policy decision d (d € My = {P, D, N/A, Ind}). The
tuple OblStr contains obligations Obl; that should be executed during the planning. The tuple C
contains conditions C'ond; that should be added into the resulting plan and evaluated during the
plan execution. The outcome of the policy evaluation for an action a and a state s is determined
by the policies PolicySpec.

(s,a) =ToEvl (g OblStr,C) (5.1)

When the planning engine enforces results of the policy evaluation, it processes policy decisions
according to Table 5.1. It executes actions that were evaluated to Permit and Not Applicable
and blocks actions for which Indeterminate or Deny were returned. A Not Applicable decision
designates that policies were not specified for this action-state combination. Since policies spec-
ify regulations that are supplementary for the core planning domain specification, it is assumed
that all actions are permitted by default and policies limit possibilities of their application. An
Indeterminate decision designates that an error occurred during the policy evaluation. When an
Indeterminate decision is returned, the action is blocked due to the fact that the action could be
evaluated into a Deny decision if the error had not occurred.

Definition 5.1. Legitimacy. Action a is legitimate for the execution in state s if policy
decision tuple (d, OblStr, C') was produced during the policy evaluation for the action a and the
state s and d € {P,N/A} O

Obligations that are contained in the tuple OblStr represent actions and compound tasks that
should be executed along with the action being evaluated. The actions returned in the OblStr tuple
should also be applicable to the corresponding planner’s world states and should be legitimate.
Therefore, during the planning, the legitimacy of actions is evaluated in a recursive manner. This
recursive process is stopped when no obligations are returned for an action as a result of the policy
evaluation.

The evaluation of policies for an action that should be executed in a current planner’s world
state is divided into two stages. During the first stage, a policy request Req is generated based on

the current planner’s world state and the action that should be executed (see Formula 5.2). Then,

92

CHAPTER 5. POLICY-BASED PLANNER

this policy request is passed to the policy engine that evaluates it using policies specified in its

policy repository (see Formula 5.3).

(s,a) =9"% Req (5.2)

Req =Ev4= (4 OblStr, C) (5.3)

The policy request contains information about the action and the relevant information from the
current planner’s world state in a form that can be processed by the policy engine. It contains
information about the action’s designated objects, action parameters and time interval for the
action execution. Information from the current planner’ world state is retrieved only if it could be
used during the policy evaluation. The structure of the policy request is described in Section 5.4.1.
A technique for the selection and transformation of information from the planner’s world state
for the policy request generation is described in Section 5.6. The constructed policy request is

evaluated using the XACML policy evaluation algorithm that was formalised in Chapter 4.
5.2.2.2 Extensions of planning domain using policy obligations

Obligations are compound tasks and actions that should be executed during the planning along
with some planning action. The obligations, which should be executed, are specified in OblStr
tuple of the policy decision tuple produced during the evaluation of policies for this action. When
policy authors specify policies PolicySpec, they define which obligations should be produced for
specific policy requests. Details about the specification of obligations are given in Section 5.4.
Obligations in the OblStr tuple are divided into before-, during- and after-obligations according

to the position where these obligations should be executed relatively to the action being evaluated:
OblStr = (Oblg, Oblp, Obl4) (5.4)

where Obl, = {(Obli1,...,00bl1y,),...,{Obly1,...,0blyuk)}, y € {B,D,A} and Obl; - the com-
pound task or action that should be executed. Obligations organised in tuples should be executed
in the order that corresponds to their sequence order in the tuple. Compound tasks and actions
that are returned as obligations should be processed by the planner using the ordinary procedure
that is used for the execution of other compound tasks and actions during the planning. Obliga-
tions can be executed in any order that respects their position relatively to the action for which
they were returned and the sequence orders specified using tuples. If an obligation cannot be
executed by the planner, the original action that it was produced for should be backtracked. If all
obligations were successfully executed by the planner, actions that were generated as obligations
and that were produced during the decomposition of obligations are added into the resulting plan.

When during-obligations are processed, they decompose the action that they were produced for,

93

CHAPTER 5. POLICY-BASED PLANNER

similarly as compound actions are decomposed using methods (during-obligations can be returned
only for compound actions). Further details about the obligations processing are described in
Section 5.3.

Using obligations, policy authors can introduce additional actions and compound tasks into
processes modelled by the planner. As policies can be specified by different persons and be appli-
cable only in specific context, this provides the possibility to flexibly adapt core processes specified
within the planning domain during the planning according to different requirements specified by
policies. Hence, in policy-based planning two sources of new tasks and actions exist: decomposition
of compound tasks and actions by the planning engine and generation of obligations during the
policy evaluation. Since using obligations different policy authors can participate in generation
of new tasks during the planning, there is a need to ensure that a set of obligations generated
can be executed in current situation during the planning (e.g., they do not contradict with each
other) and that policy authors that have specified these obligations have rights for triggering the
generated obligation-action or obligation-task. In order to control these issues, the obligations vali-
dation mechanism was introduced (see Section 5.4.3). Obligations validation rules can be specified
that determine eligible combinations of obligations that can be returned during the evaluation of
policies for a specific action. Obligations validation rules can be specified on a global level, that is,
for the whole planning environment, as well as, for a specific policy. In the latter case, they limit

a set of obligations that can be produced in specific situation by the author of this policy.
5.2.2.3 Conditional plans construction using policy conditions

In policy-based planning, the policy enforcement is performed on a restricted model of the system
specified using the planning domain. This model is deterministic and represents only information
that is known at the planning stage. Concrete outcomes of actions, which will be received during
the execution of the plan, could be different from outcomes expected by the planner or can be
unavailable during the planning. However, using policies, it should be possible to specify any
regulations, including the regulations that operate with information available only during the
execution of the plan.

Policies specified for the policy-based planner, in addition to constraints that should be enforced
during the planning, can determine constraints that should be enforced during the execution of a
plan. These conditions are returned in tuple C' along with policy decisions as a result of the policy
evaluation. They are attached to the corresponding action and are saved into the resulting plan.
Conditions in tuple C' are divided into before, after and during-conditions. When some condition
is evaluated after the execution of an action, concrete outcomes of the action can be evaluated. If

this condition is not satisfied, further execution of the plan can be forbidden. During-conditions

94

CHAPTER 5. POLICY-BASED PLANNER

should be satisfied during the entire period of the action execution.

C =(Cg,Cp,Cx) (5.5)
C.,={...,Cond;,...},z € {B,D, A}

where Cp - before-conditions set, C4 - after-conditions set, Cp - during-conditions set, Cond;
- individual condition statement. The specification of conditions in policies is described in Sec-
tion 5.4.2.1.

Conditions returned within the resulting plan can be utilised by a controller that executes this
plan or they can be analysed by a user in order to understand concrete requirements associated
with the plan (for example, this can be used to choose one plan from available alternatives). In an
educational area, conditions can be used to specify requirements on the learning outcomes of stu-
dents. For example, an after-condition for the action ‘pass_exam’ can be a minimum requirement

on a mark that the student should get.

5.3 Planning

This section describes components that are used by the planning engine within the policy-based
planner, including the constructs for the specification of the planning domain for a concrete problem
area. The main planning algorithm implemented by this engine is also presented in this section.
The planning engine of the policy-based planner utilises the HTN planning technology. Existing
HTN planning technology described in the literature [116, 118] was taken as a basis for the planning
engine design and was substantially extended with the object model of the planner’s world state,
policy request initiation mechanism, compound actions and corresponding methods, conditions

3

and obligations mechanisms, support for hierarchical plans®. Procedures for processing of these

constructs were added to the planning algorithm as presented in Section 5.3.5.
5.3.1 The planner’s world state and its object model

As is commonly done in the planning community, the planner’s world state is defined as a set

of ground positive literals: L = p(7f,...,75), where p is a predicate symbol, p € Pred, and

¢ is a term-constant, 7¢ € Term®. Pred and Term¢ are respectively the sets of all possible

-
predicate symbols and term-constants that can be used within the planner’s world model. The
set of all possible planner’s world states is designated by S = (sq,...,8,). In the policy-based
planner, in order to introduce the additional structuring of the planner’s world state and have a

possibility to reason about the planner’s world state at a higher level of abstraction, an object

model of the planner’s world state is defined. For this purpose, all term-constants used in the

3Correspondingly, task network structures, basic operators, consisting of preconditions and effects, and basic
methods, consisting of preconditions and task networks, and their processing principles were adopted.

95

CHAPTER 5. POLICY-BASED PLANNER

planner’s world state are divided into two disjoint sets: objects T'erm©® and properties Term?oP
(Term®ror N Term©% = @, Term®™P U Term©® = Term¢). Object-terms are used as object
identifiers, they will be denoted as Objrp, Objrp € Term©®. Property-terms 77 € TermProp
are used to describe these objects, that is, specify their properties. Objects represent entities
within the planner’s domain. Using the division of term-constants into object-terms and property-
terms, information about objects stored in the planner’s world state can be identified and grouped
together.

In the planner’s world state, objects-terms are specified using literals with the reserved predicate
symbol Object. For each object, its type is specified. A definition of object in the planner’s world
state is as follows:

Object (Objrp, Objrype) (5.6)

where Objrp is an object-term and Objryyp. is a special property-term, representing the object’s
type (Objrype € Termggofpe C TermProP)4. All other terms that are not marked using the Object
literal are property-terms. All literals that are used in the planner’s world state are divided into
three disjoint sets: property-literals, relation-literals and fictitious literals®. Property-literals are
literals that contain one only object-term. Relation-literals are literals that contain more than one

object-terms. Fictitious literals are literals that contain no object terms®:

Property-literal L = p(7{,...,75), such that 378, 7¢ € Term©% (5.7)
Relation-literal L = p(7{,...,7;), such that 37/, 77, 7] € Term®% A i € Term® Ni#j (5.8)
Fictitious literal L = p(7¢,...,7¢), such that 3¢, 7¢ € Term©% (5.9)

As was defined in the conceptual model in Section 5.2.1, objects are related with actions using
roles. Correspondingly, object-terms representing these objects are used as action parameters. The
introduced object model constructs are used to retrieve information related to these objects and
present it in the policy request for analysis during the policy evaluation. An algorithm of relevant
information selection and its transformation into a policy request is described in Section 5.6.

In addition to term-constants, within the planning domain specification variables are used.
Identifiers of variables contain prefix ‘?” (e.g., ?Student). During the planning, variables can
instantiated by any term-constant: either an object-term, or a property-term. A set of all variables
used in a planning domain specification is denoted as T'erm”. As defined, the planner’s world state

contains only ground literals, so variables cannot be used within it.

4Type for an object Type(Objrp) is returned using function Type(Objrp).

5Here and in the following description, it is assumed that all literals are positive, as it is required for literals in
the planner’s world state. So this will not be stated explicitly.

61t is possible to use fictitious literals in the planner’s world state, but they should be used only for storing
required auxiliary information, e.g., time. Fictitious literals cannot be used during the policy evaluation, because
as they are not related to any objects, their relations with actions that are being evaluated can not be determined

96

CHAPTER 5. POLICY-BASED PLANNER

The policy-based planner constructs plans that span throughout specific time intervals. Hence,
since policies are dynamic, they can be changed during these time intervals. Such policy changes
should be modelled (if they are known in advance), and during the planning only policies that
are in force at the current time should be enforced. Therefore, the planner’s world state should
contain information about the current time. This information should be used to determine time
points and intervals when actions are performed.

Different structures can be used to represent time (e.g., relative time can be represented using
real, natural numbers or absolute time can be represented as calendar dates). In the described
policy-based planner, absolute time values are adopted. Time is represented using 3 values: day of
the month, month and year. They are saved into the planner’s world state using reserved predicate
symbols CurDay, CurMonth and CurYear, respectively (e.g., CurYear(2014)). This provides
the possibility to specify policies that are valid only during specific calendar intervals” or that are
valid periodically (e.g., in a specific month). Values of the time variables are used as reference
values that indicate a time interval when the action starts and finishes. As this time intervals are
coarsely specified, that is, the minimum time unit is one day, several states of the planner’s world
state model can correspond to the same minimum time unit. Therefore, actions can start and

terminate at the same time unit (i.e., on the same date).
5.3.2 Planning domain specification

In the policy-based planner, the planning domain PlanD is defined as a tuple
(O, MethCA, MethCT), where O is a set of operators that model the execution of primitive
actions within the planner’s world state model, MethC A is the set of compound actions decompo-
sition methods and MethCT is the set of compound tasks decomposition methods for modelling,

respectively, the execution of compound actions and tasks.
5.3.2.1 Tasks

Three types of tasks are supported by the planner: compound tasks, primitive actions and com-
pound actions. Each task is represented as a task atom TA = T1415(7'1,...,7'n)7 where TAS
is a task symbol and 7y,...,7, are terms that are used as parameters for this task such that
T € Term®UTerm? (task atom parameters can be both term-constants and term-variables). Task
symbols for primitive actions should begin with an exclamation mark ‘!’; compound actions should
begin with an ampersand sign ‘&’ Primitive actions are atomic and they are directly executed
within the planner’s world state model resulting in its update. Compound tasks are not executed
directly, they are decomposed using compound tasks decomposition methods into lower level task

networks. Compound actions unite compound tasks and primitive actions features: they are de-

7This is important when using the planner the processes that are managed based on policies specified in terms
of calendar dates are modelled, e.g., HE regulations.

97

CHAPTER 5. POLICY-BASED PLANNER

composed using compound actions decomposition methods that, in addition to decomposing the
task, modify the planner’s world state. The utilisation of the primitive actions and compound ac-
tions during the planning should conform to policies. When the planning engine is going to apply
a primitive or compound action, the policy decision request should be generated and evaluated
using the policy engine.

When a compound or primitive action is executed, their start and end time points should be
determined. The start and end time points of an action can be different or equal, indicating that
the action is carried out within the same day. The interval between start and end time points of an
action will be referred as its execution interval. It is assumed that modifications of the planner’s
world state that the action brings are carried out at the moment when the action is complete,
that is, at the end time point of the action. When an action is executed, the current time values
in the planner’s world state should be updated (for instant actions, these time values will not be
changed). During the execution of a compound action, other actions can be produced as a result
of its decomposition. Correspondingly, these actions should be executed in a nested manner. In
this case, the nested actions should be executed within the time interval of the compound action
that has produced it.

Another important construct that is used in HTN planning for the specification of planning
problems and decomposition methods is a task network (T'N), that is, a partially ordered set of
tasks. We adopt the hierarchical representation of task networks where a task network is defined

as a nested structure:
TN = (TNl,...7TNn> \ {TNl,...,TNm} \ TA (5.10)

(TNy,...,TN,) is an ordered task network where tasks should be executed only in the order
specified and {T'Ny,...,TN,,} is an unordered task network where tasks can be executed in any

order.
5.3.2.2 Operators

Within the planner’s world state model, primitive actions are executed using operators. In the
policy-based planning, when an action is executed, in addition to its applicability, its legitimacy
should be checked. So the definition of operator, in addition to an expression for the evaluation
of action’s applicability, includes a structure with values for the policy request generation. This
policy request is evaluated to check the operator’s legitimacy.

Definition 5.2. Operator o is a construct that defines a primitive action execution proce-

dure. An operator is defined as a tuple:

o = (task(o), precondition(o), duration(o), policyPar(o), ef fect™ (o), ef fect™ (o)) (5.11)

98

CHAPTER 5. POLICY-BASED PLANNER

where task(o) = TA; is the operator’s head, the primitive action task atom that this operator
can be applied to, precondition(o) is the precondition expression, duration(o) is the duration ex-
pression, policyPar(o) - the policy parameters tuple, ef fect™ (o) and ef fect™ (o) are, respectively,
positive and negative effects of the operatord

Operators are specified within the planning domain using operator schemas that define all
constituents of the operator. Operator schemas, in addition to constant terms, can contain variables
(as in [116]). An operator is relevant to a ground primitive action task atom T'A and can be
applied to it if there is a substitution for all variables in task(o) such that task(o) is equal to
T A. The predicate symbol used in a primitive action task atom determines the operator that can
be used to execute it. Therefore, one predicate symbol can be used only in one operator schema
within the planning domain. The operator’s precondition precondition(o) is used to determine
if the operator is applicable in the current planner’s world state. Preconditions are specified as
expressions that can be evaluated as true or false in a planner’s world state®. Operator o is
applicable if its precondition expression is satisfied in the current planner’s world state (i.e., there
is a substitution of its variables such that the expression becomes a consequent of the literals in the
planner’s world state). duration(o) is an expression where values for three time variables 7D End,
"M End, 7Y End that represent the end time point of the action are assigned.

The policy parameters tuple policyPar(o) is specified within the operator schema as a tuple

that defines parameters for the construction of policy request representing this operator:

policyPar(o) = (ObjSet, ParamSet) (5.12)

where the objects set ObjSet = {(Objrp_1, Roler),...{Objrp_n, Role,)} defines this action’s des-
ignated objects Objrp_j along with their roles Role;. Objects contained in the objects set will be
used in the policy request as designated objects. The parameters set ParamSet = {(AParValy,
AParNamey), ... (AParVal,,, AParNamey,)} is a set representing attributes of the action that
will be contained in the policy request. Each attribute is defined as APar Name; and AParVal;,
the name of the attribute and its value, respectively. In operator schemas, designated objects
Objrp_j are specified as variables that are instantiated with object-terms during the application of
the operator. Attribute values AParVal; can be either term-constants, or variables that are in-
stantiated with term-constants. For these variables, only variables used within the operator’s head
can be used. The main aim of the policy parameters tuple is to specify how concrete parameters

used in the operator’s head should be utilised during the policy request generation. Each desig-

8 As opposed to policies, which are specified using the XACML policy language, planning preconditions do not
support other truth values than true and false. When an error occurs during the precondition evaluation, the whole
precondition becomes unsatisfied. The mechanism for the precondition specification and evaluation was adopted
from an existing HTN planner (see Chapter 8). The precondition expressions are specified as literals, functions
and variable assignments, connected using negation, conjunction and disjunction connectives, and additionally can
utilise universal quantifiers.

99

CHAPTER 5. POLICY-BASED PLANNER

nated object in the objects set is represented within the policy request by a distinct component
containing all information about this object that can be required during the policy evaluation.
For this purpose, the ‘subject - action - resource - environment’ model utilised in XACML was
extended in order to represent within the policy request all information about any number of the
designated objects (see Section 5.4).

Each operator schema represents a set of operator instances that are derived when variables in
the operator’s head are instantiated. Such operator instances can be applied during the planning
for execution of tasks atoms that represent primitive actions. It should be noted that values
used in the operator’s head should determine uniquely the substitution that is used to satisfy
the operator’s precondition and the action duration (therefore, they also determine uniquely the
operator’s effects). Further, it is assumed that an operator designated as o can represents only an
operator instance.

Constructs ef fect™ (o) and ef fect™ (o) represent positive and negative effects of the oper-
ator, specified as sets of literals. When an operator is executed, the planner’s world state is
updated, such that literals contained in ef fect™ (o) are removed from the current state and lit-
erals in ef fect™ (o) are added to the current state. Additionally, along with the application of
the operator’s effects, current time values stored within the planner’s world state using literals
CurDay/(77), CurMonth(75), CurYear(75) are deleted and new time values CurDay(?DEnd),
CurMonth(?M End), CurYear(?Y End) are added. The planner’s world state updates are repre-
sented using the function Apply°? : S x O — S, where O is the set containing all possible operator
instances within the planning domain.

Based on the operator instance being applied during the planning, a policy vector is generated
that contains all required information about this operator instance in order to build a policy
request. The policy vector polVec(o) = PolVec is derived from the operator instance. The policy

vector is represented as a tuple:
PolVec = (ObjSet, TA®, ParamSet, T Interval) (5.13)

So the policy vector extends the policy parameters tuple policyPar(o) with values TA® and
TInterval. TAf is the operator’s head task symbol, which is used as an action in the policy
request. T'Interval = (ActBeg, ActEnd) are parameters identifying the begin and end time points
for this action. They are specified as tuples (Day, Month,Year). Values in the ActBeg tuple are
equal to the current time values and values in the ActEnd are determined using the duration(o)
expression. The policy vector together with the planner’s world state contains all required infor-
mation for generation of the policy request. An operator instance is legitimate if a policy request

generated based on its policy vector and the planner’s world state before its execution (designed

100

CHAPTER 5. POLICY-BASED PLANNER

as Req = Geng(s,polVec(o))) was evaluated using the policy engine into a policy decision tuple
(d, OblStr,C) (designated as Evalr(Req) = (d, OblStr,C)) where d is a policy decision such that
d € {P,N/A}. The overall policy evaluation process for an operator instance o in a state s is
designated as PolEwval(s, polVec(o)) = (d,OblStr,C). The process of policy request generation is
described in Sections 5.4.1 and 5.6.

The following is an example of policy parameters tuple specification and generation of a policy
vector for an operator schema with operator’s head !recognise(?Student,?Mody,?Mods,? Aim).
The corresponding primitive action task atom designates an action when the module ?Mod; is
recognised as equivalent to the module ?Mods for the student ?Student. The recognition is
carried out with the aim ?Aim, which can be a graduation, a transfer or a prerequisites eval-
uation. In the operator schema, these 4 variables are allocated in the policy parameters tuple
according to the following structure: ({(?Student, Subject), (?Mody, Module Recognise), (? Mods,
ModuleSupport) }, {(?Aim, AimO f Recognition)}). This designates that in the policy request the
student should be used as a designated object with the Subject role, the first module parame-
ter - as a designated object with the role ModuleRecognise and the second module parameter -
as a designated object with the role ModuleSupport. The last parameter of the action is used
as an action attribute with the name AimO f Recognition. Based on this operator schema, the
following policy vector should be built, assuming that the start and end time points for this ac-
tion are equal: ({(?Student, Subject), (?Mod;, ModuleRecognise),{?Mods, ModuleSupport)},
Irecognise, {(?Aim, AimO fRecognition)}, ((?CurDay, ?CurMonth,?CurYear), (?CurDay,
?CurMonth, 7CurY ear)))?.

5.3.2.3 Methods

Methods define possible decompositions of compound tasks and compound actions into lower level
task networks. For each compound task and action, several alternative methods can exist. Methods
for compound actions differ from methods for compound tasks, as methods for compound actions
additionally contain constructs of operators (effects that specify modifications of the planner’s
world state and policy parameters tuples that specify parameters for generation of policy requests).

Definition 5.3. Compound action decomposition method methcy is a construct that
defines the compound action execution procedure. A compound action decomposition method is

a tuple:

methea = (task(methc), duration(methe 4), precondition(methc),

policy Par(methc a), network(methca), ef fect™ (methca), ef fect™ (methca)) (5.14)

9For operator instances, variables will be substituted with corresponding values.

101

CHAPTER 5. POLICY-BASED PLANNER

where task(methca) is the method’s head, the compound action task atom that this method can
be applied to, network(methc 4) is the task network that this compound action is decomposed into,
precondition(methc 4) is the precondition expression, duration(methc) is the duration expres-
sion, policyPar(methc 4) is the policy parameters tuple, ef fect™ (methca) and ef fect™ (methca)
are, respectively, the positive and negative effects of the methodO

Compound action decomposition methods (as well as compound task decomposition methods)
are specified within the planning domain using method schemas that contain variables and constant
terms, similarly with operators. A method is relevant for a ground compound action task atom
T A; if there is a substitution for all variables in the method’s head such that task(methc) is equal
to T'A; (the same is true for compound task decomposition methods). Compound action decompo-
sition method schemas have one construct that is absent in operator schemas: network(methca).
It is the task network that should be carried out in order to accomplish the compound action.
This task network represents the lower level routine for the execution of this compound action.
Other compound action decomposition method constructs are defined similarly with the opera-
tor’s constructs. duration(methca) is the expression that is evaluated before the execution of the
method in order to determine the end time point of the compound action. precondition(methca)
is the precondition expression that determines if this method is applicable to a planner’s world
state. Preconditions are specified as expressions that can be evaluated to true or false. Method
methc 4 is applicable if its precondition expression is satisfied in the current planner’s world state
before the execution of the method. policyPar(methca) is a tuple that contains parameters for
the policy request generation. Methods have the same structure of policy parameters tuples and
the same definition of legitimacy as operators. Correspondingly, the same structure for the policy
vector polVec(methca) and the same procedure for its generation are used.

Each method schema represents a set of method instances that are derived when its variables are
instantiated. It should be noted that values used in the head of a compound action decomposition
method should determine uniquely the substitution that is used to satisfy its precondition and the
action duration (therefore, they also determine uniquely its effects). In what follows, it is assumed
that a method denoted by methca (or mether) is a method instance.

Constructs ef fect™ (methca) and ef fect™ (methca) represent effects of a compound action
decomposition method. They have the same structure as corresponding constructs for operators.
So the execution of compound tasks using decomposition methods can also result in planner’s
world state updates. This is designated using the function Apply©4 : S x MethCA — S, where
MethCA is the set of all compound action decomposition method instances within the planning
domain.

Definition 5.4. Compound task decomposition method methor is a construct that

defines the compound task execution procedure. It has the same structure as the compound action

102

CHAPTER 5. POLICY-BASED PLANNER

decomposition method with the difference that the effects, duration and policy vector constructs
are absentd

Applicable (and legitimate) method instances are used during the planning to decompose rel-
evant compound actions and compound tasks in task networks. If method meth'® decomposes
compound action or compound task T'A; in a task network TN, task network network(meth) is
used to substitute T'A; within the task network T'N. All ordering constraints for T'A; defined in
TN are applied to all tasks in network(methca). Considering the nested task network structure,
defined in Section 5.3.2.1, it is required only to substitute the decomposed task T'A; in the origi-
nal task network TN with the new task network. When this done, required ordering constraints
are applied automatically. As opposed to compound tasks, during the execution of compound
action decomposition methods, additional precondition checks are required. When a compound
action T'A. has been decomposed using method methc s within a task network T'N and task
network network(methca) has been successfully executed, the effects of methca and time up-
dates should be applied to the current planner’s world state. The execution of the task network
network(methec 4) may result in the planner’s world state modifications and current time updates,
so the state produced after the network(methca) execution should be checked. Preconditions of
methca should be also satisfied in this state, as preconditions guarantee the correct execution of
the action’s effects. Time value in this state should be equal or less than the new time value that
will be applied by methca'' (end time point for the compound action is determined using the
duration(methc4) expression in the corresponding method schema before the decomposition of

the compound action).
5.3.3 Plan representations

The policy-based planner produces conditional plans that, in addition to actions, contain conditions
that should be evaluated during the plan execution. These conditions are specified based on
information that is available only during the plan execution and is not available during the planning.
So these conditions are used to ensure that the execution of the plan will satisfy all requirements
specified by the policy authors in their policies even if these requirements cannot be evaluated
during the planning.

A plan that is produced by the planning algorithm has a linear form. The planning en-
gine executes actions (using operators) in an order, according to which they will be carried out
during the execution of the plan. Therefore, when an action is executed, it is inserted in the

plan at the position next to the previous action performed. When a compound action T A,

10Denotes either method methc 4 for compound actions or method methcr for compound tasks.

1 Actions produced during the execution of network(methc) should be within the time interval for the action
T Ac, as they specify the procedure for its execution on a lower level of detail. The strict equality is not obligatory
because compound actions are used as independent actions that have their own preconditions, effects and duration,
which are not inferred from the lower level actions. Moreover, the specification of actions on a lower level is optional,
meaning that for some compound actions lower level routines can be unspecified.

103

CHAPTER 5. POLICY-BASED PLANNER

is decomposed using a method methcy, it is added into the plan using auxiliary primitive ac-
tions |CA_start(T A, (Cp,Cp,C4)) and |CA_end(TA.,{Cp,Cp,C4)) that designate the start
and end points of the compound action ((Cp,Cp,C4) are condition sets that were generated
during the evaluation of policies for this action). Correspondingly, !CA_start is added before
network(methec) is executed by the planning engine. Action !C'A_end is added after its execu-
tion. Between these auxiliary actions, actions that were carried out by the planning engine during
the execution of network(methc) are placed.

Thus, the plan that is originally produced by the planner is a tuple Plan'™ = (a1, as, ..., a,),

where a; is an action structure representing a primitive action:
= (TAi,(Cp,Cp,Ca)) (5.15)

where T'A; is a task atom for a primitive actions, Cg, Cp, C4 are the sets of conditions that were
generated during the evaluation of policies for this action.

Primitive sctions |C' A_start and !C'A_end are used in linear plans along with other primitive
actions and designate the start and end time points of the corresponding compound actions. In
order to get a hierarchical representation of this plan, it should be processed by a converter that
transforms a linear plan Plan'™ into its hierarchical representation based on the auxiliary actions
ICA_start, \CA_end. A hierarchical plan is a tuple Plan*" = (a;,...,a.), where a,, = a,, if a,,
represents a primitive action within the a,, action structure or a,,, = (T'4;, Plan?i”7 (CB,Cp,Ca))
if it represents a compound action (T'A; is a compound action task atom itself). Plan}" is a
hierarchical plan that should be executed in order to execute this compound action. Cg,Cp,Cxy
are the before, during and after conditions that were generated during the evaluation of policies
for TA;. For example, if there is a linear plan Plan'™ = (..., a;,as,a3,a4,as,a;...), where

o = (ICA_start(&Make transfer(...),...),{C1,C2,C3)), ag = (!Pass_assessment(...),D), a4
= (!Recognise(...), 0), a5 = ({ICA_end(&Make_transfer(...),...),(C1,Ca,Cs)), this plan will
be converted into the following nested hierarchical plans structures: Plan}" = (..., a;, (&Make

transfer(...), Plank" (Cy,Cy, C3)), as) and Plank’" = (az,ay...) (see Figure 5.3).

az az

Plan’™ ICA_start : Plan"™":
an (8Make_transfer (. Pass_assessment . —| &Make_transfer |
p|anhler . / \
IRecognise H &Make'cti::n:frg o)) CPassfassessmenD—»(IRecognise)

as ay

Figure 5.3: Example of hierarchical plan generation

104

CHAPTER 5. POLICY-BASED PLANNER

5.3.4 Obligations processing

The obligations returned in a policy decision tuple OblStr during the evaluation of policies for a
primitive or compound action (e.g., PolEval(s, PolVec(o)) = (d, OblStr,CY), are processed by the
planning engine. The before-, during- and after-obligation sections Oblg, Oblp and Obl 4 within the
obligations tuple OblStr are converted into task networks. The overall structure of each obligation
section Oblp, Oblp and Obly ({{Obli1,...,0bl1y),...,{(Obly1,...,Oblyi)}) corresponds to the
structure of task networks (see Section 5.3.2)!2. Individual obligations Obl; used in these sections
are represented as task atoms (any task atom types can be used as obligations).

Task networks produced based on before- and after-obligations (ObLN, OblLN) are executed by
the planning engine respectively before and after the action that was evaluated. During-obligations
can be generated only for compound actions. Task networks produced based on them (ObILN)
are used to decompose this compound action, similarly as it is decomposed by a compound action
decomposition method. Suppose, during the policy request evaluation for compound action T A,
before-, during- and after-obligation task networks ObILN, ObIEN and ObIYN were generated.
Additionally, a compound action decomposition method is applied to the compound action T A,
and produces a task network network(methca). Then, the generated obligation task networks
extend the task network network(methca) according to the following task network structure:
(OBIEN | {ObIEN | network(methca)}, Obl4N). This new task network guarantees that before-
and after-obligations are carried out before and after the task network representing the evaluated
action. During-obligations can be executed in any order with the task network network(methca),
produced by the decomposition method. As before-obligations can change the planner’s world state
when they are executed, after their execution (and before the T'A. execution) the preconditions
and policies for T'A. should be re-evaluated. The preconditions should be satisfied and the policy
request should be permitted and produce the same before-obligations as were just carried out (if
the obligations are not equal, this means that the resulting plan will not satisfy the actual policies).

Policy obligations are used in policy-based planning as the means to extend task networks
produced during task decompositions. Using obligations, the same compound tasks or actions
being decomposed using the same method can be executed by different task networks. These
task networks extend the task network specified in the applied method in order to satisfy specific
requirements, which are imposed using policies and which depend on a specific situation when
this method is applied to. Examples of task network extensions introduced using obligations are
presented in Figure 5.4. The compound action decomposition method methcs decomposes task
& Degree into three sequential primitive actions: (!Admit, !Study, |Graduate). Different extensions

of this method using obligations are designated using thick arrows. In the first case, for the

12Further, we will use the function PolEvalT N that behaves similarly with PolFEval, but returns an obligation
structure with task networks produced based on the corresponding obligations: <Obl£N, OblgN7 OblZ;N).

105

CHAPTER 5. POLICY-BASED PLANNER

primitive action !Admit, some policy requires that an entrance exam should be passed before a
student can be admitted (represented using primitive action !Pass_exam). The extended task
network produced when this obligation is added is shown using dotted lines. In the second case,
some policy requires that after the primitive action !Study is executed, a student should pass an
assessment (e.g., a government evaluation) before he (or she) can graduate. In the third case,
when the compound action & Degree itself is evaluated, the before-obligation Preliminary_course
is returned. This designates that before studying a degree, a student should successfully finish a

preliminary course.

Admit Study Graduate

|
T N
Before

Obligation

&Preliminary ,
course

&Degree

&Degree

!Graduate

_exam ~_7 [Study!Graduate IAdmit IStudy™ =~ 4 Pass .
Before After Gvaluation IAdmit !Study !Graduate
Obligation Obligation

Figure 5.4: Different variants of task execution

5.3.5 Planning algorithm

During the planning, it is required to evaluate policies based on information from the current
planner’s world state. Hence, the current planner’s state should be fully specified during the
process of planning in order to have the possibility to retrieve the required information. The
utilisation of HTN planning technology where tasks and actions are processed in the same order
as they will be carried out during the plan execution provides the means to design a planner
where at each planning step the current planner’s state is fully specified. This type of HTN
planner (see [116, 118]) was taken as a basis for the planning algorithm design and was extended
with processing routines for the novel constructs introduced earlier, that is, the compound actions
and compound actions decomposition methods, policy conditions and conditional plans, policy
obligations and task networks generation based on obligations, initiation of policy evaluation.
A novel stack-based mechanism for controlling the overall planning routine and processing of
introduced constructs was designed.

A planning problem for the policy-based planner is defined as a tuple (so, TN, PlanD), where
so is an initial state, TN is a task network that is used to specify a task which should be solved,

PlanD is a domain description. The planning algorithm that is used to find a solution plan solving

106

CHAPTER 5. POLICY-BASED PLANNER

the task network T'N from the state s is presented in Figure 5.5. This algorithm produces a linear
plan Plan'™ that can be executed from the state s, contains only applicable and legitimate actions
and is generated from a decomposition tree that was built for the initial task network TN and
uses only applicable (and legitimate) methods and operators. A planning algorithm is a recursive
function that at each iteration chooses and processes one task from the current task network TN
using an operator or a method and makes corresponding updates of the current task network and
the planner’s world state. Then, it makes a recursive call in order to process the next task from
TN. Tasks for processing are chosen in the same order as they will be carried out when the
resulting plan is executed.

A task network T'N can be partially ordered, hence at each iteration only tasks that can
be executed first can be selected. A primitive action T'A; is executed by operator instance o
which is applicable and legitimate for the current state s and the action T'A;. When a primitive
action is executed, it is removed from the current task network T'N. The planner’s world state
is updated according to the operator’s effects. Additionally, when a primitive action is processed,
the corresponding action structure a; = (T'A;, (Cp,Cp,C4)) is created where the action itself and
conditions generated are saved. This action structure is added into list Plan, where the plan is
constructed. A compound task is decomposed by an applicable method: a task being decomposed
is substituted by a task network specified in network(methCT) part of the method. A compound
action is decomposed by an applicable and legitimate method. Auxiliary tasks |C A_start(T A;, C)
and |CA_end(TA;, C) are added into the task network to mark its start and end points. Auxiliary
actions !|C A_start and |C'A_end are executed using fictitious operators that do not introduce any
modifications into the planner’s world state. During the execution of !C' A_end action, a check is
carried out that the current time value do not exceed the time values that were calculated as end
time point for the compound action (see Section 5.3.2.3).

A stack-based mechanism was developed for processing of obligations and execution of com-
pound actions. Compound actions and task networks produced based on obligations should be
processed using special routines that guarantee that each compound action or obligation task net-
work is executed without interleaving with other tasks'? (i.e., in a nested manner). Additionally,
as was specified in Sections 5.3.4 and 5.3.2.3, after the execution of before-obligations and com-
pound actions, special procedures should be carried out. For example, tasks produced during the
decomposition of a before-obligation compound task OblI™ should be executed before the action
TA that the obligation OblI™ has been generated for. When the before-obligation ObII'N was
executed, the applicability and legitimacy of the original operator that had been applied to action
T A should be re-evaluated.

Therefore, during planning, the Stack is used to split the decomposition process into several

13When the planning function is called, any action can be chosen if for this action there is no precedence relation.

107

CHAPTER 5. POLICY-BASED PLANNER

stages to track the execution of the compound actions and obligations and carry out corresponding
checks and activities after their execution. Task networks that are temporarily used as root task
networks for the planning algorithm (i.e., it is a task network from which the planner chooses a task
for processing at the each stage of the planning process) are saved on to this stack. For example,
when ObILY is received during a policy request evaluation, it is saved on to Stack and, further,
the planning procedure will be carried out only within the task network OblgN . When all tasks in
OblgN are decomposed and executed, OblgN is retrieved from the stack and the operator that has
produced this obligation is re-evaluated in the new state. If it is not legitimate or not applicable or
new before-obligations are not equal to the previously executed, the planner backtracks. A stack is
required since obligations and compound actions can be nested, for example, during the execution
of an action within one before-obligations task network ObILYN, other before-obligations ObIEN’
can be produced. When OblEN "is fully decomposed, this task network is removed from the stack
and the previous task network on the stack is used as root task network. Compound actions and
after-obligations are also placed on the stack when their execution is started. When a compound
action is executed, the planner re-evaluates preconditions and applies effects for the corresponding

compound action decomposition method.

5.4 Policies

For the specification of policies in the policy-based planner, the XACML policy language is used.
This section describes the extensions introduced into the XACML policy language and conventions
for the specification of policies that can be used in the policy-based planner and a policy request,

which is used to pass information from the planning engine to the policy engine.
5.4.1 Policy request

In the policy-based planner, policy requests are generated for actions and compound actions based
on the information specified in their policy vectors: ({{Objrp_1, Roler), ...{(Objrp.n, Roley)},
TAS {{AParValy, AParName,), ...,{AParVal,,, AParName,,)}, (ActBeg, ActEnd)). Infor-
mation about the designated objects Objrp_1,...,Objrp_n that can be required during the policy
evaluation is stored in a current planner’s world state. So during the policy request generation, this
information is extracted from the planner’s world state and is added into the policy request along
with the information contained in the policy vector. Policy requests in the policy-based planner

have the following structure:
Req = ({DesignObji, . .., DesignObj, }, ActionPar, TimePar) (5.16)

where DesignObj; are constructs representing the designated objects, ActionPar is a construct

representing action parameters and TimePar is a construct representing time parameters. This

108

CHAPTER 5. POLICY-BASED PLANNER

Global: Stack = (TN), Plan'™ = ().

PPplan(state s,domain PlanD)
0. TN = get(first(Stack))
Case 1: TN is not empty. Nondeterministically choose T'A; such that no other
task is constrained to precede TA; in TN:
1. If TA; is primitive task:
1.1 Nondeterministically choose operator o that is relevant for TA4;,
applicable and legitimate in s (PolEval®™ (s, polVec(o)) = (d,(ObIEN OblEN), C)) .
1.2 If (ObIEN #0) then
push({ObIEN | T A;, 0), Stack)
Return PPplan(s, PlanD)
else ApplyOperator(TA;,C,Obl4N s 0, PlanD) endif
2. If TA; is compound task:
2.1 Nondeterministically choose method methor that is relevant for TA; and
applicable in s.
2.2 Substitute task TA; in TN with network(methcor)
2.3 Return PPplan(s, PlanD)
3. If TA; is compound action:
3.1 Nondeterministically choose method methcs that is relevant for
TA;, applicable and legitimate in s (PolEvalT™ (s,polVec(methca)) =
(d, (ObIEN ObIEN , ObIANY C)) .
3.2 If OblEN #£(then
push((ObIEN | T A;, methca), Stack)
Return PPplan(s, PlanD)
Else ApplyCA(TA;,C,methca, ObIEN ObIN TN, s, PlanD) endif

Case 2: TN is empty. Pull value from Stack:
1. If (ObIEN,TA; z) was pulled (z is o or methll):
1.1 If x is not applicable or is not legitimate in s then Return failure
endif (PolEval™ (s,polVec(z)) = (d,(ObITN OblIFN Obl'TNY, C"))
1.3 If ObWEN # Obl/IN then Return failure endif
1.4 If x is an operator then ApplyOperator(TA;, C’,Obl'TN s, x, PlanD)
else ApplyCA(TA;,C',z,ObIFN ObI'FN TN,s, PlanD) endif
2. If (TNga,methCA,OblN) was pulled:
2.1 If methCA is not applicable in s then Return failure endif
2.2 If Obl)N () then
push((OblN), Stack)
Return PPplan(Apply“®(s, methca), PlanD)
Else Return PPplan(Apply“®(s,methca), PlanD) endif
3. If (ObLY) was pulled:
3.1 Return PPplan(s, PlanD)
4. If TN was pulled:

4.1 Return true.

Figure 5.5: Planning algorithm

109

CHAPTER 5. POLICY-BASED PLANNER

ApplyOperator(T A;, C, OblyN | s, 0, PlanD)

1. Add action structure (TA;,C) to tail of plan Plan'"
2. Substitute task T'A; in first(get(Stack)) with 0

3. If Obl4N £ then push((OblYN), Stack) endif

3. Return PPplan(Apply°?(s,o0), PlanD)

ApplyCA(T A;, C,methC A, ObIEN ,ObliN /TN, s, PlanD)

1. TNca = (ICA start(TA;, O), {network(methCA), OblEN} I\C A_end(T A;, C))
2. Substitute TA; in first(get(Stack)) with 0

3. push((TNca, methCA, OblYN), Stack)

4. Return PPplan(s, PlanD)

Figure 5.6: Planning algorithm (cont.)

definition extends the standard XACML policy request definition, which is based on the ‘subject-
action-resource-environment’ model (Chapter 4). In addition to the subject and resource parts,
policy requests in the policy-based planner can contain specifications for several designated objects
with different roles. The specifications of these objects are based on constructs utilised in standard
XACML requests: named attributes and tree-structured elements containing additional informa-
tion about the object. So designated objects are specified within the policy request according to

the following structure:

DesignObj; = ({(‘id’, Objrp_i), (‘type’, Objrype.i), (‘Trole’, Role;), (5.17)
(ParNamet, ParVali),...(ParNamet, ParVali),}, Objcont. i)

The specification of the designated object contains a set of named attributes, represented as ‘name-
value’ pairs, and an object context. The set of named attributes contains several obligatory at-
tributes including the object-term for the designated object Objrp_; (i.e., its identifier), its type
Objrype_i extracted from the planner’s world state (see Section 5.3.1) and its role in the action
Role;. Other attributes of the designated object are stored in the planner’s world state as binary
property-literals, that is, the property-literals that have two terms and one of which is the object-
term of the designated object, like p(Objrp_; 7¢). These literals are retrieved and represented as
attributes with attribute names ParName! = p and attribute values ParVali = 7¢'*. So during
the policy request generation, all binary property-literals for the designated objects are represented
in the policy request using named attributes that can be retrieved during the policy evaluation

using Attribute Designators based on their names. All other required information about the des-

14The order of terms within the literal is not represented in the ‘name-value’ attribute structure, from which
during the policy evaluation information is retrieved using Attribute Designator policy constructs (see Chapter 4).
If the order of terms in binary literals with object-terms, representing designated objects, should be taken into
account during the policy evaluation, these literals should be retrieved by Attribute Selectors. In this case, they will
be represented within object contexts where the order of terms within literals is explicitly specified (see Section 5.6).

110

CHAPTER 5. POLICY-BASED PLANNER

ignated objects can be represented in the policy request using object contexts Objcont; and can
be retrieved using Attribute Selector policy constructs. Object contexts are special tree structures
that can contain all required information about an object stored within the planner’s world state,
viz., information represented as binary and non-binary property-literals and relation-literals con-
taining its object-term and information about all property and relation literals with object-terms
for objects that are related with this object through the chain of one or several relation-literals.
Information is added into the object context only if it can be used during the policy evaluation,
that is, if it can be retrieved by an Attribute Selector within a policy applicable to the correspond-
ing policy request. Detailed information about the object context structure and the algorithm for

its generation is contained in Section 5.6.

ActionPar = {(‘action-id’, T A%), (5.18)

(AParNamey, AParValy),...(AParName,,, AParValy,)},

The policy request construct ActionPar, representing information about the action itself, contains
only named attributes (see Formula 5.18). Each action has one obligatory attribute containing
the task symbol of the corresponding task atom T'AS. All other attributes are action parameters
that were specified in the policy vector as tuples (AParVal,, AParName,). Time parameters
TimePar = ({‘start’, dateBeg), (‘end’, date End)) represent time values when the action starts
and finishes. These values are retrieved from the policy vector elements (ActBeg, ActEnd) and
are also represented as named attributes: for instance, dateBeg is a date of the action start point
in the date format supported by XACML.

This definition of policy request extends the standard XACML policy request structure with
the possibility to specify several designated objects with different custom roles within the policy
request. Using this extension, it is possible to specify policy requests and, correspondingly, poli-
cies for actions that cannot be represented using ‘subject-resource’ schema (or it is difficult), for
example, actions that are applied only to one object or that have relationships with several objects
(e.g., in transportation problems in planning it is often required to specify for actions ‘from’ and
‘to’ destination objects). However, actually, for the specification of each object within a policy
request standard XACML constructs are used (named attributes'® and tree structures). So for
the implementation of the policy-based planner, a mapping for these policy requests and policies
to standard XACML policy requests and policies was defined, providing the means to re-use the
standard XACML policy engine. Using this mapping, in the XACML policy requests several des-
ignated objects are specified as sub-parts of one entity. Details about the implementation are given

in Chapter 8.

15When the XACML policy request is generated, data types for named attributes are determined using pre-defined
function (see Chapter 8).

111

CHAPTER 5. POLICY-BASED PLANNER

PolicySetg
CombD0 Targetg
PolicySet;
Target; Policy;
PolicySety
Targets Policysg

Figure 5.7: Example policy structure

5.4.2 Policy specification

Policies are specified by different authors and contain the specification of constraints that should
be enforced during the planning or during the plan execution and additional actions, for example,
obligations that should be executed during the planning as ordinary planning tasks or actions.
As was described in Chapter 4, different policies and policy sets can be grouped into policy sets
for which combining algorithms are specified. These combining algorithms are used to control
processing of different policies and resolve conflicts between their decisions when several policies
return (different) decisions for the same policy request. For the policy-based planner, the same
principle is used.

In order to avoid conflicts between different policies, it is required that the overall policy for
the policy-based planner should be specified as one policy set containing other policies nested into
this policy set in a hierarchical manner. Within this policy set, different policies and policy sets
can be contained. The structure of this policy set and the combining algorithms used in it are
not restricted. Using the XACML target mechanism, it is possible to delegate the specification of
different policies to different persons and guarantee that these policies are taken into account during
the evaluation only in situations for which their authors are responsible. For example, there are
two policy authors who can specify policies independently but their policies should be applicable
only within their areas of responsibility (e.g., for different actions). Then, the policy structure
for PolicySpec can be defined (see Figure 5.7), such that a higher-level policy set consists of two
sub-policy sets united using the Deny-overrides policy combining operation. When conditions on
actions corresponding to each policy author are specified in targets of these policy sets ([Target:]
and [Target.])), it is guaranteed that these and all lower level policies will be evaluated only when
these target conditions are satisfied. Hence, policies [Policy:] and [Policys], specified by different
authors, can be placed into these policy sets and it is guaranteed that they will contribute to a
policy decision only within their areas of responsibility.

For the specification of policies referring to designated objects specified according to the ex-
tended model of the policy request (see Section 5.4.1), the Attribute Designator element of XACML
was extended. In the policy-based planner, this element can refer a named attribute of any des-

ignated object contained in the request. The Extended Attribute Designator refers the required

112

CHAPTER 5. POLICY-BASED PLANNER

attribute by its identifier and a role of the object within the current action'. Similarly, extended
target policy elements were introduced that can refer to any designated objects within the pol-
icy request. As was described in Section 5.4.1, these policies are converted into an intermediate

representation in standard XACML syntax for processing.
5.4.2.1 Conditions specification

Conditions in the policy-based planner are used to specify constraints that should be satisfied at
a specific point of the plan execution. Conditions are specified similarly to obligations as part of
policies and policy sets (for this purpose, the policy definition in XACML was adapted). They
are returned when this policy or policy set returns a Permit decision. Conditions are defined as a
tuple:

Cond = (Position, Constraint) (5.19)

where Position € {before,during, after} defines when the condition should be checked relatively
to the action for which it is defined. This can be done directly before or after the action, or the
condition should hold during the whole action execution interval. Constraint defines a condition
itself. It can be defined using a natural language, if the constraint will be evaluated by a person,
or it can be formally stated as a Condition element of XACML, then it can be evaluated by a
machine. Conditions returned by different policies are united and are returned by the policy engine

to the planning engine for processing.
5.4.2.2 Time constraints

A plan, developed by the policy-based planner, has start and end time points. During the execution
of this plan, regulations can be modified and these updates can be planned in advance. So policy
authors should have the possibility to specify these future policy updates. The system should know
which policies are applicable at a concrete moment in time.

If time constraints are not specified in a policy, this policy applies to all actions. However,
some policies are applicable only during specific time intervals which are defined as their operation
periods [Startpe, Finpe]. All actions carried out by the planning engine should be applicable
during all time points between their start and end time points (during the action execution inter-
val). Hence, a policy is applicable to an action if its operation period intersects with the action
execution interval: [Startp., Finpe] N [dateBeg, dateEnd] # (. Three cases of their intersection
are shown in Figure 5.8. In order to implement this condition in a policy, constraints on the ac-
tion’s time interval should be included into its target. They should consider all possible types of
intersections: (Startpy < dateBeg and Finp, > dateBeg)or(Startpy, < dateEnd and Finp, >
dateEnd) or (Startp, > dateBeg and Finp, < dateEnd).

16 Attribute Selector policy element can refer to any information within the policy request, so it should not be
extended.

113

CHAPTER 5. POLICY-BASED PLANNER

ROV

} t >
dateBeg dateEnd t

Action execution interval

Figure 5.8: Examples of policies, applicable to an action

5.4.2.3 Obligations specification

In policy-based planning, specification of obligations is based on standard XACML obligations
with several extensions. Obligations generated by the policy engine are processed by the planning
engine: they should be executed as planning tasks. One of the drawbacks of XACML that was
detected in Chapter 4 is related to obligations enforcement. In XACML, there are no means to
specify a routine how obligations returned along with a policy decision should be executed: as a
required order of their execution or as a position relatively to the action that was requested. For the
specification of policies in the policy-based planner, this drawback was resolved and corresponding
constructs were added for the specification of obligations.

An obligation is specified within a policy or policy set as the following tuple:
Obl = (Position, TA; , (Pary, ..., Par,), Order) (5.20)

where Position is used to specify its position relatively to the action being evaluated, elements
TA? and (Pary, ..., Par,) are the task atom symbol and the list of parameters that together
specify the compound or primitive action or the compound task that should be executed. Order
determines the ordering relation between obligations, if several obligations were generated during
the evaluation of the policy request.

The position parameter Position € {before,during,after} determines how this obligation
should be executed relatively to the action being evaluated. If the position is equal to ‘before’ or
‘after’, the task, which is specified in this obligation, should be executed directly before or after this
action. Position can be equal to ‘during’ only if a compound action is being evaluated'”. So the
‘during’ position means that the compound action should be decomposed and the during-obligation
is used as task network that is used for the decomposition.

The task symbol T'A? in the obligation specification is the task atom symbol that should be used
in the task that should be executed. Using the tuple of parameters (Pary, ..., Par,), parameter
terms of this task are determined. Each obligation parameter Par; can contain a term-constant or
refer to an attribute within the policy request. In the latter case, Par; = (AttType, Attr Name),
where AttType defines an element within the policy request that the referred attribute belongs to

17This is guaranteed by the obligations validation mechanism which will be described in Section 5.4.3

114

CHAPTER 5. POLICY-BASED PLANNER

(it can be ‘action’, ‘time’ or a role of the designated object), Attr Name contains the name of the
attribute that should be retrieved. So using the task atom symbol and the parameters tuple, a
planning task (compound or primitive action, or compound task) that should be executed by the
planner based on the obligation is fully specified.

Several obligations with the same position can be generated for the same policy request, so the
planning engine should linearise them. By default, such obligations are processed as an unordered
task network. The planning engine will try any possible ordering of tasks representing obligations
and will utilise for further planning all task sequences that were successfully executed. However,
a policy author may want to enforce a specific ordering for these obligations that the planning
engine should follow. For this purpose, into the specifications of obligations an ordering parameter
Order should be added that defines the possible order of their execution. The ordering parameter
Order can be 0 or tuple (Ordrp, Ordnum), where Ord;p is an identifier of the ordering relation
and Ordpyym is a number that specifies the order of the considered obligation within this relation.
Obligations with the same ordering relation should be executed sequentially in an ascending order
according to this number. When there are several obligations with the same ordering number,
they can be executed in any order. Each obligation can refer to only one ordering relation. If an
ordering information is not specified for an obligation, it can be executed in any order relatively
to other obligations.

As was described in Chapter 4, obligations are specified within different policy sets and policies
and are returned from these policies to an upper level of policy evaluation when their policies
produce Permit decisions. Obligations in the policy-based planner are produced only for Permit
decisions, because only when an action is permitted, it can be executed by the planning engine'®.
The obligations generated during the policy evaluation are enforced in a controlled manner in
the policy-based planner using the obligations validation mechanism, which is described in Sec-

tion 5.4.3.
5.4.3 Obligations validation mechanism

The obligations returned by the policy engine for a policy request have a great impact on the
planning process, since they are executed by the planning engine, change the planner’s world state
and they can be included into the resulting plan. On the other hand, obligation are specified
within policies by different policy authors. Using a policy target mechanism, it is possible to
specify the scope of policy requests, for which a policy is applicable. However, when a policy
becomes applicable, any obligations can be produced (i.e., any obligations that were specified in
it by its author). An HTN planning domain should be devised as a set of coordinated methods

and an uncontrolled intervention into the planning process is undesirable. So a mechanism is

181n a situation when the policy decision is Not applicable, the action is also executed by the planning engine but
obligations cannot be returned for this action, since no policies were applicable for it.

115

CHAPTER 5. POLICY-BASED PLANNER

required to define the extent to which obligations can intervene into the planning. Additionally, the
specification of the constituent policies for a specific policy set can be delegated to different persons,
so a person responsible for the whole policy set should have the ability to control obligations being
generated by the constituent policies. The standard XACML policy combining algorithms do not
provide this ability. In order to satisfy these two requirements, an obligation validation mechanism

was proposed.

<VALRULE> := ’(’> <COMPACTION> [<BEFOREPART>] [<DURINGPART>] [<AFTERPART>] ’=>’
<POLICYLIST> ’)’ | ’(’° <PRIMACTION> [<BEFOREPART>] [<AFTERPART>] ’=>’ <POLICYLIST> ’)’
<BEFOREPART> := ’(’ ’before’ <ORPART >’)’ | ’*b’

<DURINGPART> := ’(’ ’during’ <ORPART> ’)’ | ’*d’

<AFTERPART> := ’(’ ’after’ <ORPART> ’)’ | ’x*a’

<ORPART> := (<ANDPART>)+

<ANDPART> == ’(’ [’ordered’] <TASK> + ’)’

<ACTION> := <COMPACTION> | <PRIMACTION>
<COMPACTION> == ’&’ <NAME> | ’&’ %’

<PRIMACTION> == ’!’ <NAME> | ’1° ‘%’
<TASK> = <ACTION> | <NAME>
<POLICYLIST> = >(’ <POLICY>+ ’)’ | %’
<POLICY> := <NAME>

<NAME> = (a’-’z’ |’A’-’Z°(°0°-’97)+

Figure 5.9: Syntax for validation rules

The obligations validation mechanism is based on validation rules. A validation rules registry,
ValidRules, defines which obligations validation rules are used within which policies: ValidRules =
{(PolicyRef,{ValRule})}. The tuple (PolicyRef,{ValRule}) contains a set of rules that are
utilised for policy specified using the policy reference PolicyRef. If PolicyRef is empty, these
rules are used to validate a whole set of all obligations returned by the policy engine. A gram-
mar for the specification of validation rules is shown in Figure 5.9. Using a validation rule, it is
possible to specify which obligations can be generated for a primitive action ((PRIMACTION))
or a compound action ((COMPACTION)) being evaluated and which ordering relations should
exist for them. A grammar for the validation rules specification is presented in Figure 5.9. Each
validation rule has parts for representation of the requirements for before, after and during obli-
gations. Constructs (COMPACTION) and (PRIMACTION) are used to specify actions for
which a rule is applicable. When a set of obligations is produced during the evaluation of a policy
request containing task symbol T A, these obligations can be validated using rules where con-
structs (COMPACTION) or (PRIM ACTION) match task symbol T A%, that is, they are equal
or the wild card ‘*’ is used in (COMPACTION) or (PRIMACTION). The obligation rule
validates this set of obligations, if before, during and after parts of this rule validate respective
sub-sets of this obligation set. Hence, using validation rules it is possible to specify constraints on

obligations with different positions and interrelations between them. As defined in the grammar,

116

CHAPTER 5. POLICY-BASED PLANNER

for primitive actions only before and after obligations can be used, as it is stated in the obligation
definition. Within each validation rule part, several alternative conditions on obligations with the
same position are specified. Two types of these conditions can be used: unordered and ordered. An
unordered condition requires that all required obligations were generated during the policy eval-
uation. Using an ordered condition, additionally, it is possible to check that returned obligation
can be ordered according to the required order (it should be noted that these obligations can be
already partially ordered). Moreover, if an ordered condition is used for the validation, this order
is enforced for the validated obligation set. Sub-sets of this obligations set corresponding to rule
parts with ordered constraints should be ordered according to the required order. For each action,
several validation rules can be specified. For a successful validation, the set of obligations should
satisfy one of them. A wild card ‘*’ is used to designate the fact that this rule is applicable to any
compound or primitive action. A wild card ‘*’ with a letter corresponding to the before, after or
during validation rule parts designates that this rule permits any set of obligations (even an empty
set) in the corresponding position. Optionally, a rule can contain a list of policy and policy set
identifiers. If this list is specified, this rule can be used to validate only obligations returned by
policies (or policy sets) included in this list.

The validation of obligations, returned during the policy evaluation, can be carried out at
different levels. At the top-level, validation rules can be specified by an author of the planning
domain. These rules are applied to a result obligation set, returned by the policy engine. An aim
of the planning domain author is to guarantee that returned obligations can be executed at this
point of the planning based on the modelled environment principles. For example, an entrance
exam should be before an admission of student to university. There is no reason to require a
student to pass an entrance exam after an admission or during his (or her) studying at university.
Policy lists usually are not used at this level, because the planning domain author is responsible
for maintaining the validity of all obligations carried out within the environment. Hence, all sets
of obligations returned by the policy engine should be validated by a validation rule. When such
rule is not found, an Indeterminate decision is produced.

Additionally, validation rules can be specified by policy set authors. These validation rules
are used to validate obligations returned by constituent policies for this policy set. Constituent
policies generate obligations along with policy decisions. Decisions, returned by these policies,
are combined using a combining algorithms. If a result decision matches a decision returned by
a constituent policy, the obligations that this policy has generated should be returned by the
policy set as its own obligations. When obligations validation rules are specified for this policy
set, only obligations validated using these rules can be returned from this policy set. At this
level, obligations validation rules can contain policy lists. A policy set author can specify distinct

rules for different constituent policies using the lists of applicable policies within the validation

117

CHAPTER 5. POLICY-BASED PLANNER

rules. Obligations returned by some policy can be validated only by a policy rule where its policy

identifier is specified within the rule’s policy list. A validation rule where the wild card symbol

(3%

x’ is specified instead of a policy list can be used for any policy. So at this level, obligations
returned by different policies are validated separately. If obligations returned for some policy were
not validated using the specified validation rules, the Indeterminate decision is returned.

In Figure 5.10 two examples of validation rules are presented. The first rule defines that an en-
trance exam obligation can be executed before an admission action. The second rule defines a pos-
sible routine for the execution of transfer_I P student transfer action. During the execution of this

compound action, a recognition procedure should be carried out (compound action & Recognise)

and the remaining difference in the EPs should be discarded (action !Discard_dif ference).

(1Admit (before (Entrance_exam)) => *)

(&transferIP (during (&Recognise !Discard._difference)) => x)

Figure 5.10: Examples of validation rules

5.5 Transformation rules engine

Within the planning environment, the same object properties for different objects can be specified
using different terms or units. That is, these terms are used to refer to the same or related notions
and the units are used to measure the same characteristic. For example, these terms and units
can be adopted in different domains or according to different classification systems. However,
specific policies as well as the planner’s domain methods and operators are usually specified using
a specific set of terms or specific units (i.e., a scale) and cannot interpret other terms and units.
The transformation engine operates with rules that specify how to convert values of properties

from one scale to another. A basic transformation rule has the following structure:

propertys(?OBJ, Tvaly, Scales)|, Tvaly = (conversion_expr)] — property, (TOBJ, Tvaly, Scale;)

(5.21)

where names of properties property, and propertys can be equal or different and specify which prop-

erties are related (or converted) by this rule. Names of properties correspond to predicate symbols

of binary property-literals containing the object-term of the concerned object. conversion_expr is

an optional element. It is used to convert numeric values from one scale to another. Otherwise, a

mapping from one constant value to another is defined. A property-literal representing the object

property that should be converted should be stored in the planner’s world state and have the same
structure as predicates in the transformation rules.

When the planning or policy engine requires a value of object property in a scale specific to

a concrete domain or classification system, it makes a request to the transformation rules engine.

In the request, it passes the following values: (property, Objrp, Scale), where property is a name

118

CHAPTER 5. POLICY-BASED PLANNER

of the object property that is used as a predicate symbol in the planner’s world state. The object
that this property describes is represented using its object-term Obj;p. Scale is an identifier of the
target scale, to which the value should be converted to by the transformation rules engine. During
the policy evaluation, these requests are initiated using a special type of attribute designators. In
the planning environment, a special function will be implemented that can be used in operators
and methods preconditions to request the converted values from the transformation rules engine
(see Chapter 8).

When the transformation rules engine receives a request, it analyses its rule base in order to
decide if a conversion of the requested property is supported. If it is supported, it processes the
request using the literals from the planner’s world state, which are used to infer the new value of

the property.

5.6 Adaptive object contexts generation technique for policy request

construction

As was stated in Section 5.4.1, during the policy requests generation relevant information about
designated objects which is stored in the planner’s world state and which can be used during the
policy evaluation should be extracted and presented as object contexts in the request. An object
context is a tree structure that contains required information about the object stored within the
planner’s world state, viz, information represented as binary and non-binary property-literals and
relation-literals containing its object-term and information about all property and relation literals
with object-terms for objects that are related with this object through the chain of one or several
relation-literals. This section presents a mechanism for selection of the relevant information and
its transformation into object context.

This mechanism consists of two sub-techniques. The first technique is a transformation tech-
nique that defines how part of the planner’s world state that contains information about some
object can be transformed into its context. For its implementation, a hyper-graph model of the
planner’s world state will be introduced. The transformation technique will be defined based on
the introduced hyper-graph model of the planner’s world state. The second technique is the ab-
stract contexts technique. Using this technique, part of the planner’s world state that contains
information related to a designated object within a policy request is selected for the transforma-
tion into the object context. This object context should be included into the considered policy
request. In this technique, policies loaded into the policy repository are pre-processed and abstract
object contexts are generated for them. An abstract context specifies what information about an
object used as a designated object within a policy request can be used within conditions for these
policies. During the policy request generation, based on these abstract contexts concrete contexts

for specific designated objects are generated using information stored in the planner’s world state.

119

CHAPTER 5. POLICY-BASED PLANNER

This technique should select all information that can be used during the policy evaluation, but, on
the other hand, it should select only the minimum required information, as this reduces the policy

request size.
5.6.1 Hyper-graph of planner’s world state and its object model

In Section 5.3.1, the planner’s world state was defined as a set of ground positive literals p(7{, ..., 7S).
The following properties are important and should be taken into account during the design of the
planner’s world state model: the order of terms in a literal is important, one term can be included
in one literal several times in different positions, literals with the same predicate symbols can con-
tain different number of terms. The planner’s world state can be represented as a hyper-graph Hg.
A hyper-graph is a generalisation of a graph where each edge can contain any number of vertices.
In Hg, each vertex ¢ € T represents an entry of a term in a literal in the planner’s world state.

Each edge [€ L, C T is a set of vertices representing term entries related to the same literal.

Hs =(T,L)

(5.22)
T = {1},L = {I}

So each reference to the same term in the planner’s world state is modelled by different vertices
in the hyper-graph Hg. Each edge represents vertices corresponding to terms within one literal.
Fictitious literals are not included into the hyper-graph model of the planner’s world state, as they
are not used during the policy evaluation. All vertices in Hg are divided into two sets corresponding
to object-terms and property-terms: O = {...,0;,...} and P = {..., P;,...}. Similarly, all edges

are divided into two disjoint sets corresponding to relation-literals Li and property-literals Lp.

T=0UP,0ONP=9

(5.23)
L=LrULp,LgNLp =0

The hyper-graph Hg is labelled using four labelling functions (see Formula 5.24). Edges are
labelled using the labelling function n with predicate symbols that are used in corresponding
literals. Vertices are labelled according to terms that they represent: object-terms with the labelling
function a and property-terms with the labelling function 8. Functions «, 8 and 7 are not injective,
because one term and one predicate symbol can be used in the planner’s world state several times.
The labelling function € maps a pair containing one edge and one vertex in the hyper-graph Hg to

an integer number, indicating the sequencing number of the term represented by the vertex within

120

CHAPTER 5. POLICY-BASED PLANNER

the literal represented by the edge.

. Prop
a:0 — TermOType x Term

B:P — TermP™P n:L — Pred (5.24)
e:LxT—-N

Obj

A hyper-graph Hg for the planner’s world state is not connected (every its edge is included
in its own connected component). A connected component is a maximal subgraph where each
two vertices are connected by some path. The total number of connected components is equal
to k(Hg) = |L|. An example of hyper-graph Hg for a planner’s world state is represented in
Figure 5.11. It contains two objects Obj; and Objs with different types, one property for each
object and one relation, connecting these two objects. The hyper-graph corresponding to this

planner’s world state is presented in Figure 5.12. Terms entry labels are shown inside the edges.

ajq : Object(ObjIDJ, ObjTypeJ)
as Object(ObjIDJ, ObjTypej)
as: Propl(ObjID,lﬂ Tlgropl77—§"r‘0p2)
Qay P?‘Opz(Obj]Dj, Tlgrop?))

as Rell(Obj[Dil, Obj[D727 Tlcprop4)

Figure 5.11: Example of the planner’s world state

a (0
a(0,')

a (012) = <Objip 1, Objrype 1>
a (O2°) = <Objip 2, Objrype 2>

Figure 5.12: Hyper-graph of the planner’s world state example

In order to use the hyper-graph model of the planner’s world state as a basis for the transfor-
mation technique specification, it should represent and distinguish all object-terms, property-terms
and literals of the planner’s world state and relations between them. Object types are represented
in labels. The sequence order of the terms in a literal is represented using terms entry labelling
function €. If one term is included into the same literal several times, it will be represented using
different vertices with the same object or property label. Different edges with labels which have
the same predicate symbols obviously can include different number of vertices.

In order to retrieve all the required information about an object from the hyper-graph of the
planner’s world state and represent it in policy request, based on Hg a planner’s world state object

model hyper-graph Hoy; is defined. It represents the same information as Hg with the following

121

CHAPTER 5. POLICY-BASED PLANNER

difference. All object vertices with the same object labels are shrunk into one vertex, so edges
representing literals with the same object-terms are connected to each other. The object model
hyper-graph Hopy; is defined as:

Hoy; = (0o UPo,Lo) (5.25)

where Pp = P and each object-term in the planner’s world state is represented by only one
vertex is the set Op = {Op}. So the set of object vertices in the hyper-graph Hg is divided into
equivalence classes. In one equivalence class all vertices are labelled with the same object label
(0; ~o O & a(0;) = a(0;)). All object vertices O; € O in Hg from one equivalence class
are represented in Hoy; by one object vertex (Op, € Op) corresponding to this equivalence class
(Op < O/ ~,). Object labelling function ag is defined for the set Op such that if O; in Hg is
represented as Op, in Hopj, then ap(Oop,) = a(0;).

The edges of the object model hyper-graph Lo are defined using the common procedure for
vertices being shrunk. Each edge I; in the hyper-graph Hg is represented in the hyper-graph Hoy;
using edge lp; such that lp, is equal to [; with the difference that object vertices are substituted
using the mapping introduced earlier. Edges labelling function 1o and terms entry labelling func-
tion €p are defined similarly as in Hg. Example of hyper-graph Hoy; for the planner’s world state

in Figure 5.11 is represented in Figure 5.13.

. a (Oq) = <Obj;, ObjType>
n: Rels a(0z) = <Obijy, ObjType,>
Los]
A, . € (A4, Lo) =1
. n Pf0p1 E(O1y|—01)=2
€ (OZ’ LO1) =3 B (A1) = Tprop1
O) L02 B (AZ) = Tprop2
NM—— € (011 LOZ) =1 B (AS) = Tprop3
€ (A1, Loz) =2
€ (A . Loz) =3
O Los :
@ € (Oz, Lo3) =1
n: Prop; € (As, Los) =2

Figure 5.13: Object model hyper-graph for the example planner’s world state

The hyper-graph Hpy;, obtained using the described rules, is a connected hyper-graph where
relations between edges are established using object terms. All vertices representing the same
property terms are still different. Correspondingly, the hyper-graph Hoy; is divided into several
connected components k(Hpy;), each of which represents a set of literals related to each other.
When information about a designated object is selected from the planner’s world state, only the
connected component where its object-term is included should be considered, as the rest part of
the planner’s world state is not related to this object. The hyper-graph Hop; has one limitation:
a literal that contains the same object-term in different positions cannot be represented in Hoyj,

as vertices that represent such terms will be shrunk into one vertex. This restriction is avoided at

122

CHAPTER 5. POLICY-BASED PLANNER

the level of implementation, because at the level of implementation only hyper-graph model Hg
is stored in full for a planner’s world state. When information about relations of object-terms is
needed, it is received using a mechanism operating with Hg and data structures introduced on top

of it'¥ that returns a set of edges from Hg with the required object-term.
5.6.2 Abstract contexts

Contexts of designated objects are represented in policy requests as trees. These trees have root
nodes corresponding to object-terms of these designated objects. The trees are presented in a
request as XML documents. These documents can be accessed during the policy evaluation using
AttributeSelector elements that are used in policy conditions and contain XPath expressions.
Using these XPath expressions, it is specified which information from the object context will be
retrieved and, correspondingly, utilised during the policy evaluation. When policies are uploaded
into the policy repository, these XPath expressions are analysed and special constructs, called
abstract contexts, are created. Abstract contexts are an abstracted and merged representation of
all XPath expressions used within different policies. Abstract context AC' is specified as a set of
abstract context trees ACT, ce.

Definition 5.5. Abstract context tree is a tree ACT e = (V, E,UR>. Root vertex v’
represents a set of objects. For a situation when an object from this state is used as a designated
object in a policy request, the abstract context tree specifies which literals from the planner’s world
state related to this object can be requested using AttributeSelectors during the policy evaluation

(and, hence, which literals should be added into its context). V = {...,v,...} is a set of vertices

OType Prop)

labelled using function Func with object types values (Func®Tvre .V — Termorype

ANY

Special universal vertex v is a vertex for which the label is not specified. Root vertex v% € V

can be a universal or an ordinary vertex. E ={... e,...} is a set of edges labelled using function

FuncPred

with predicate symbols (Funct™®? : E — Pred). Special edge eA"NY is used to designate
an edge for which the label is not specifiedO

Each edge in an abstract context tree represents a set of literals in the planner’s world state (and,
correspondingly, edges in Hoy;). Edge e = (v1,v2) in ACpe matches edge lo = {t9,...,t2} in
Hop; (vertex tg can be an object or property vertex) in relation with vertices 7 and ¢§ (¢7,t¢ € lo) if
the following conditions are satisfied: predicate symbol 7o (lp) = p is equal to e’s label Func? % (e)
or a universal edge is used; some vertex t{ € lp matches vertex v; and some vertex t;? € lp, such
that ¢ # 7, matches vertex va. When an edge e matches edge lo in relation to vertices ¢7 and ¢7,
this is designated as match(e, lo, t2, t;’) A universal vertex in ACr,.. matches any vertex in Hoy;.

An ordinary vertex v in ACry.. matches object-vertex Op in Hoy; if second(ao(0Oo)) = ObjT (v),

i.e., their type labels are equal (non-universal vertex in abstract context tree can match only with

19For storing information about links between vertices and its fast retrieval, special constructions are defined on
top of the Hg (see Chapter 8).

123

CHAPTER 5. POLICY-BASED PLANNER

object vertices in Hoy;).

Abstract context trees are built from XPath expressions, contained in policies, and represent
location paths used in these expressions. Abstract context trees are constructed in a way that a
root vertex corresponds to an object for which a context is built. If in an abstract context tree
there is a path from the root to some vertex, in some XPath expression there is a location path
that can use during the evaluation of the expression literals matching to edges on this path.

When policies are analysed, several abstract context trees are generated. These trees can
contain mergeable paths. A verter vy is mergeable with vertex v, and as a result of merging vertex
U is produced if Func®Tvre(v)) = Func®TY¢(vy), then Func®Tv¢(v,,) = Func®Tv¢(v;), or
if v; = vANYV vy = vANY | then v, = vMY. An edge e; = (v11,v12) is mergeable with edge
e = (vg1,v99) into edge €, = (U1, Uma) if vertices v11 <> v21 and vig > V9o are mergeable into
vertices vp,1 and vy and if Func™?(e;) = FuncP™¢%(es) (then Funct™¢(e,,) = Funcl*%(e;))

then e, =

or e; = eANY vy = ANY (

eANYY.

In order to store only distinct abstract trees in an abstract context, when a new abstract tree is
generated, it is analysed whether it can be merged with any tree already contained in an abstract
context. If a sequence of edges starting from the root vertex or only a root vertex can be merged
with the corresponding path of an existing abstract context tree, they are merged?®. A merged
path substitutes corresponding path in an existing abstract context tree and the rest part of the
new tree is added to the abstract context tree. If a new tree cannot be merged with any existing
tree, it is added as a new one. Using this principle, during the matching of an abstract tree with
the planner’s world state (or its object hyper-graph), each literal considered at the moment in the
planner’s state corresponds to only one edge in the abstract context tree.

Using abstract contexts, it is possible to select all literals from the planner’s world state that
can be utilised during the XPath expressions evaluation within policies. It should be noted that
this representation of abstract context trees applies some restrictions on XPath expressions that
they can correctly represent. These restrictions are specified in Chapter 8, where a technique for
XPath analysis and abstract context trees generation is described.

An overall schema of abstract contexts-based policy requests generation is presented in Fig-
ure 5.14. At this schema, two phases are presented separately: the pre-planning phase when the
abstract contexts are generated during the policy loading and the planning phase when a policy re-
quest is generated with object contexts for its designated objects, based on corresponding abstract
contexts. When policies have been loaded, they are analysed and produced abstract contexts are
saved into an abstract context registry. In order to separate abstract contexts that are used for

specific types of policy requests, a leading variables mechanism is used. It is based on the assump-

201f a universal vertex is used as a root in new tree, or some sub-path, starting from the root, consists of universal
vertices and edges, all abstract context trees should be merged with these universal vertices and edges.

124

CHAPTER 5. POLICY-BASED PLANNER

Abstract contexts registry

l __________________________ i
| : Abstract
[
|
[

(E T'EE Abstract
|
| Val; x ... x Val, x Role Contexts
|
|
|

| context
| tree Policy analysis
l——1 and Abstract
context extraction

Pre-planning
Abstract contexts

registry filling
Policy request
(' Policy vector) Abstract generation during
context the planning
Val'y, ..., Val',
Objip
Policy request Object context
generation generation
Object’s
context

(Policy request)
Planner’s world state

Figure 5.14: Policy request generation schema using abstract contexts

tion that all policy requests and all policies can be divided into classes such that all policies from
one class can be applicable only to policy requests from the class corresponding to it. Policy and
policy requests can be divided into such classes if in each policy request there is a set of obligatory
attributes (called leading variables) and in each policy there is a condition on values of these at-
tributes (or such conditions propagate to a policy from a higher-level policy). The abstract context
registry is organised in a way that all abstract contexts referring to one class of policy requests
are stored separately. For each combination of leading variables values Valy x --- x Val, and a
designated object’s role, distinct abstract context AC' = {... ACrycc ...} is created. So when a
policy request is generated, based on current values of leading variables Val] x --- x Val!, and a
role of the designated object Obj;p, it is possible to determine which abstract context should be
used for the concrete contexts generation for the designated objects. Using this mechanism, it is
possible to reduce an area of applicability of abstract contexts and, hence, reduce the amount of

information that should be extracted from the planner’s world state.
5.6.3 Generation of object contexts

A concrete object context, built using corresponding abstract context, represents information from
the planner’s world state that can be used during the policy evaluation. An algorithm for generation
of a concrete context for an object represented as vertex o within Hpy; is presented in Figure 5.15.
As an input information, it receives the object o, for which a context should be built, a connected

component k(Hpyp;) containing o and an abstract context AC selected from the registry based on

125

CHAPTER 5. POLICY-BASED PLANNER

the policy request. First, an abstract context tree in AC' containing the root vertex that matches
o is determined. According to the rules of the abstract contexts construction, there is at most
one such tree within the abstract context AC. As a source of information for the object context
construction, the connected component of the hyper-graph k(Hop;) is used. The abstract context
tree is used to determine which edges from it should be converted and represented as the object
context. During the object context construction, these two graphs are analysed and a third graph,

the resulting object context tree, is created.

Generate(Object vertex o, Hyper-graph k(Hop;), AbsCont AC)
Select ACr,ee in AC, such that o matches v® (v € ACT,ce)
If there is no such ACT,. then Return empty context () endif
CurVyc :==v"; CurVyopj := o0

Add CurVeon: := clone(o) into ContextTree

Call Analyse(CurVac, CurViobj, CurVeoons, ContextTree)

Return ContextTree.

OO WN -

Analyse (vertex CurVac,vertex CurViepj,vertex CurVioon:, context ContextTree)
1. Loop 1 for each edge lp adjoining with CurVge; in k(How;)
2. Loop 2 for each vertex t° € lp not equal to CurVga,
2.1. If there is child v for CurVyc in ACrpe. (¢ = (CurVac,v)) such that
match(e,lo, CurViepj,t°) then:
2.1.1. 1If [p was not added into ContextTree during current loop 2 cycle
then:
2.1.1.1.5:=clone(lp), convert S into Bipartite graph G (S)
2.1.1.2.Add Gk(S) into ContextTree by merging vertex CurVy,. in
Gg(S) with CurVeont (C’urVIZIObj is vertex in Gk(S) cloned from CurVyoep;)
endif
2.1.2. Analyse(v,to,tol,ContextTree) (t° is vertex in ContextTree cloned
from t°)
endif
End loop 2
End loop 1

Figure 5.15: Object context generation algorithm

At each step of the algorithm, three vertices are used as current vertices within the three
graphs being used. At the beginning, the current vertex for the ACT,¢e, CurVac, is set up with
its root and the current vertex CurVyop; for the k(Hopj) - with o. Next, a depth-first search of
paths in k(Hop;), matching edges in ACT, e, is started. All vertices in edges of k(Hop;) that are
incident with CurVgop; are analysed. If in the AC7,.c. there is an edge incident with the current
vertex CurVac that can match with an edge of k(Hoy;), the whole edge of k(Hpy;) is added
into the resulting context ContextTree. In order to construct ContextTree as a tree, this edge is
converted into an equivalent Bipartite graph, which represents the same information but presented
as an unordered graph. This graph is added into ContextTree and is connected with the current
vertex CurVeon:- When the matching edge is found and its processing is finished, the current

vertices in all three graphs are updated and a new iteration of the search process in initiated. As

126

CHAPTER 5. POLICY-BASED PLANNER

it can be seen, in this process ACT,... guides the search process. It is used to determine which
edges should be added into the context. Moreover, as ACT... is a tree, cycles, which can exist in
k(Hoy,), are resolved. When we add an edge to ContextTree, we clone it and connect only to one
vertex in the ContextTree (i.e., the current vertex).

Definition 5.6. Object context ContextT'ree built for object vertex o in Hoy; is a tree
(VC,EC vE-2) where V¢ = {... v% ...} is a set of vertices labelled using function Func°b.
Function Func°® maps a vertex in the context to an element of the object model hyper-graph
Hoy;, that is, its vertex or edge: Functob : V¢ 5 Op UPo ULp. Root vertex is labelled with

0: Functobi(yfi-o)

= 0. Vertices of the context tree represent literals related with the object 0?!
in the planner’s world state (and, correspondingly, edges of the object model hyper-graph Hoy;)
that can be used during the policy evaluation. An edge lp; of the object model hyper-graph

Hoy;, containing vertices t9, ... ,tko, is represented in ContextTree as a vertex labelled with lo,
and vertices vf, . 71),? adjacent with this vertex and labelled with to,,...,to,. A vertex vic in

ContextTree labelled with an object-vertex Op, has a child vertex labelled with an edge lo,, only
if the object-vertex Op, is included in the edge lp,, in Hop;O

An example showing how a Bipartite graph for k(Hoy;) is transformed into an object context
tree based on the abstract context tree is represented in Figure 5.16. At the graphical representation
of the context tree, labels produced by a terms entry labelling function ¢’ : V¢ — N are presented.
This function is an updated version of the terms entry labelling function &, which defines ordering
of terms in literals in the object model hyper-graph. For a vertex in ContextTree representing a
term (i.e., labelled with a vertex in Hpy,), function ¢’ returns its sequence number in the literal
represented as its parent node. For a vertex in ContextTree representing a literal (i.e., labelled
with an edge in Hoy;), function &’ returns a sequence number in this literal for the term represented
by its parent vertex.

The resulting ContextTree is converted into an XML document and inserted into the policy
request as a designated object context. Each vertex in the context tree is represented as an element.
So these elements are nested according to their positions in the tree. Vertices representing object-
terms are represented as elements with object types used as tag names. Object identifiers and their
sequence numbers in literals (¢’) are represented as their attributes. Vertices representing literals
are transformed into elements with predicate symbols used as tag names. Vertices representing
property-terms are transformed into elements with their sequence numbers in literals used as tag

names. Property-terms themselves are stored in the content of these elements.

210bject o is represented in the planner’s world state by the corresponding object-term.

127

CHAPTER 5. POLICY-BASED PLANNER

0, context Konig’s graph for sub-graph of Hoy; Abstract context tree

€2 -3

(Props) (et) (Prop,)

n: Prop; n: Rel; n: Prop;

a (O1) = <Obj;, ObjTypes> B (A1) = Teropt
a(Oz) = <Objz, ObjType;> B (A2) = Trop2
B (A3) = Terops

Figure 5.16: Transformation of Bipartite graph for k(Hoy;) into an object context

5.7 Conclusion

In this chapter, the policy-based planner was described, which carries out the role of the main
processing engine in the CEP generation framework (see Chapter 3). An overview of the policy-
based planner, its main components and interaction processes between these components, which
form the basis for the policy-based planner operation, was given. The policy-based planner consists
of three main components: a planning engine, a policy engine and a transformation rules engine.
Each component was described in detail including the specifications that are utilised by each of
these components in order to carry out their functions. In the policy-based planner, these three
components were integrated into the single planning engine, what provided the means to jointly
exploit their advantages during the planning.

The main contribution made in this chapter is a design of the policy-based planner that provides
the means to carry out planning in environments with heterogeneous regulations. The policy-based
management approach was applied to the new area, the HTN planning technology, extending its
possibilities. As was shown in Chapter 2, existing planning technologies do not satisfy require-
ments for planning in environments with heterogeneous regulations that are different in different
domains, manage different aspects of the plans being developed and are specified by different
persons independently. Additionally, during the design of the policy-based planner, the following
contributions were made. Using the transformation rules, the policy-based planner can operate
with different terms and units adopted to designate the same or similar notions and measure the
same characteristics. The XACML policy language was extended. The policy specification and
evaluation mechanisms were extended in order to have the possibility to specify how obligations
produced during the evaluation of a policy request should be executed relatively to each other

and to the action being evaluated. The obligations validation mechanism was introduced in order

128

CHAPTER 5. POLICY-BASED PLANNER

to have control over obligations produced during the policy evaluation: which obligations can be
generated in a current situation,; how they should be executed relatively to each other and to
the action being evaluated; which obligations can be produced by a specific policy. Moreover, the
adaptive technique for the construction of policy requests, specifically, their object context parts,
was designed. The object context represents information about an object stored in the planner’s
world state. While XACML does not provide mechanisms to determine what information will
be required during the policy evaluation, the adaptive object context construction technique was
designed to develop object contexts containing only information that can be required during the
policy evaluation.

In the planner described in this chapter, policies can be evaluated for an action when all
information about the action is fully known. In the next chapter, an extension to the policy-based
planner, a postponed policy enforcement mechanism, providing the possibility to evaluate policies

at earlier stages of the planning, when not all information about the action is known, is introduced.

129

Chapter 6

Postponed policy enforcement mechanism

Objectives:

e Introduce a mechanism that enables the evaluation of policies
at earlier stages of the policy-based planning, when not all
required information could be available.

e Extend the XACML policy evaluation algorithm in order to
process policy requests, containing only partial information

about the planner’s world state.

6.1 Introduction

Policies in policy-based planning, being specified externally from the planning domain, determine
how planning should be carried out in specific situations, that is, which actions should be executed
and which actions should be avoided. In the designed policy-based planner, policy requests are
generated and evaluated for primitive and compound actions at the moment of their execution.
Thus, the information specified using policies is consulted only at the later stage of the planning,
that is, at the moment when a specific policy decision inferred based on this information must be
enforced during the planning. As was examined within the planning community (e.g., in [157, 34]),
the ability of the planner to recognise important events, which should occur during the planning,
earlier is critical for the good performance of the planner. Information about the anticipated events
and their effects can be used for reasoning at the current stage of the planning. For example, based
on this information, conflicts and interactions within the current plan can be detected earlier, so
they can be resolved or considered during the choice of future planning actions. Correspondingly,
this can help to prune the search space and avoid future backtracking.

This chapter introduces a postponed policy enforcement mechanism providing the means to
evaluate policies at earlier stages of the planning. Using it, policy requests can be generated
and evaluated for planning actions that should be executed later on during the planning, but for

which some information is already available. These are primitive and compound actions that are

130

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

contained in the current task network and actions that will be added in it during the planning as
a result of compound tasks decomposition. When these policy requests are constructed, not all
required information could be available. So new constructs were added into the planning domain
in order to differentiate which information can be changed into the planner’s world state in the
future course of the planning and determine which new information can be added (e.g., which
effects can be introduced during the execution of a compound task). For this purpose, high-
level effects and increasing/decreasing effects set mechanisms were introduced. Correspondingly,
using these mechanisms, partial policy requests can be generated that contain only part of the
information that can be required during the policy evaluation. The XACML policy evaluation
procedure was extended in order to evaluate such policy requests. When partial policy requests
are evaluated, the resulting decision can be indeterminate if the policy request does not contain
all the required information. In order to indicate this situation, a new Indeterminate temporal
decision was introduced into the XACML policy language. When it occurs, the partial policy
request should be postponed and re-evaluated when more information is available to refine it. But
the main performance gains of the postponed policy enforcement should be made when an exact
decision is produced during the partial policy evaluation. If this decision is Deny, a dead-end
is detected and a large part of the search space can be pruned. If this decision is Permit, the
evaluation of future policy requests that refine the current request can be eliminated. This leads
to the planning time reduction and provides the means to produce the solution faster.

This chapter is organised as follows. First, a number of placeholders are introduced for the
specification of partially known objects in Section 6.2.1. These placeholders are used in partial
policy requests and constructs designating future modifications of the planner’s world states as
described in Section 6.2.2. A routine enabling the introduction of partial policy requests during
the planning, which guarantees that each partial policy requests represents at least one policy
request being carried out later on during the planning, is presented in Section 6.2.3. The overall
schema of postponed policy enforcement is described in Section 6.2.4. Later in this chapter,
a modified version of the XACML policy evaluation procedure supporting evaluation of partial
policy requests is described (see Section 6.3). The partial policy evaluation procedure for XACML
is introduced as an extension of the XACML policy evaluation formal model described in Chapter 4.
As the partial policy evaluation procedure is defined using the corresponding formal model, it is
possible to guarantee that the partial policy evaluation is an extension of the standard XACML
policy evaluation procedure and it possesses the required properties (i.e., the monotonicity, see

Section 6.3).

131

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

6.2 Postponed policy enforcement

6.2.1 Constructs for partially known information specification

The postponed policy enforcement mechanism is based on the possibility to evaluate policies earlier
during the planning. During this evaluation, the policy request vector that should be evaluated and
the corresponding planner’s world state can be known only partially. So for their specification three
types of placeholders were introduced. Since during the course of the planning more information
becomes known, these placeholders should be substituted by ordinary terms eventually.

Definition 6.1. Null property is a special property-term ‘NIL’ that can be used as a
placeholder for an object’s property value. When a ‘NIL’ term is used in a property- or relation-
literal, this means that this literal can be substituted by one or several literals where the ‘NIL’
term is substituted by different property-terms'O

Definition 6.2. Dummy object is an object that is known partially. Its known properties
and relations are saved in a special set being supported by the planner (it will be referred as
Dummy Objects Space DumObjSps). These properties and relations can contain only invariant
literals?. All other properties and relations of dummy objects are considered as unknown at the
current stage of the planningO

Definition 6.3. Hierarchy of properties is a tree G = <T€ng,Eg7Té;>, where Term9 =
{...79 ...} is a set of hierarchical property-terms 7¢ € Term? P, B9 = {... (7, 79) ...} is a set
of edges that define the tree structure and Tog € TermY is a root of the tree. All property-terms
in Term9 except the leaf terms are used as placeholders: hierarchical property term 79 € Term9
can be substituted by any property-term Tkg € Termf, if Tkg is a descendant for 79. If in a
planning domain there are several hierarchies of properties G,...,Gy, their sets of hierarchical
terms Termf, .. ,Term? should not overlapO

Dummy objects are specified within the planner’s world state similarly with ordinary objects.
For this purpose, special predicate symbol Dummy is used (see Formula 6.1). Each dummy object
is represented as an object-term Dumjp, used for its identification, and has a type Objryp.. In
contrast to null properties, one dummy object can be substituted only by one ordinary object.
When an object-term Dumjp occurs several times, the same Obj;p should be used for its substi-

tution. In order to store which object-terms Obj;p have been used to substitute specific dummy

objects Dumjp and do not substitute them with other object-terms in the future course of the

LIf several ‘NTL’ terms are used within one literal, the overall set of terms that substitute the ‘NTL’ terms should
be distinct.

2Invariant literals are literals that cannot be modified in the planner’s world state, i.e., there are no positive or
negative effects within the planning domain specification that have the same predicate symbols.

132

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

planning, a substitution § = {...(Dumjp,Objip) ...} is used?.
Dummy(Dumip Objrype) (6.1)

Set TermPumO% contains all object-terms representing dummy objects. A set of known properties
and relations for a dummy object, contained in the Dummy Objects Space, is returned using the
function DumDescr(Dum;pp).

Definition 6.4. Partially specified literal L,,,; is a literal that contains a dummy object,

or a placeholder “NIL”, or a non-leaf hierarchical property-term:
Lpare = p(17, TQC...,T;) (6.2)

where p is a predicate symbol and 37§ dell,y] (16 = NILV 75 € TermPvmOb v/ (¢ € Term9 A
9 ((79,75) € B9)))D

In the following, when a term “literal” is referred, it can be a partially specified literal or a fully
known one. Such literals will be denoted as L. During the planning, partial literals are refined
into more specific literals where some placeholders were resolved and, finally, into a fully known
literals. If a literal Ej = p;j(7ij,- -, 75;) is a refinement of literal Li = pi(75,, ..., 7¢;) considering
previous substitutions for dummy objects 6 or they are equal, they are connected by a refinement

or equal relation under substitution 6: Requll(IN/j,I:Z-, §)*. Tt holds in the following cases:

o Literals are equal: p; = p; and Vk € {1,2,...,n} (7; = 74,)-
o If p; = pj and for all h € {1,2,...,n} such that 75, # 75, one of the following conditions
should hold:

— Term Tﬁj substitutes null-term 7;,: 77, = NIL and Tﬁj € Termprop (designated as
ref,null(Tij,Tﬁi)).

— Property-terms Thi and 77, are in the same hierarchy of properties G and Th; IS a
descendant of term 75, (designated as ref_hier (75, 75,)).

— A substitution of dummy object-term 77, into object-term Th; exists in 0:
I(Dum;ip,Objrp) € 0 (7; = Dump A= Objrp).

— Dummy object-term 73; is substituted by object-term 73; under the substitution 0

ObjDum and Thj € Term© and

(designated as ref_dum (Tn;, Thi, 0)5): 7h; € Term
Type(Thi) = Type(rh;) and VL4 € DumDescr(ty;) (3L; € CurState (RefEql'(L;,
L4, 0')), where CurState € S - current planner’s world state and 6’ = 0 U (14, 7).

An object-term 7,; can substitute a dummy object-term 7y, if they have the same type

3 For each dummy object-term Dum;p only one substitution can be defined.
4If the substitution @ is empty, this relation can be designated as Requll(Lj, L;).
5If the substitution is empty, this relation can be designated as ref_dum(Tn;, Thi).

133

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

and for each known property or relation of 75,; the object 7; has a property or relation
that refines it. When the object 75,; has substituted the dummy-object 73;, substitution

0 is extended with the pair (7, Th;)-

Additionally, if in L; the same dummy object-terms are used in different positions, these

dummy object-terms should be substituted by the same object-terms in f/j.
6.2.2 Partial policy requests

Partial policy requests represent known information about policy requests for actions that will be
executed later during the planning. Partial policy requests are generated based on partial policy
vectors. They are special policy vectors referring to actions that will be executed during the future
course of the planning and, possibly, containing placeholders. Partial policy vectors are attached
to tasks in a current task network: to primitive actions, representing that the partial policy request
will be generated for this action, and to compound tasks and actions, representing that it will be
generated for this action or for an action that will be executed during its decomposition.

In order to introduce a definition for the partial policy vector a loose time interval construct
should be introduced. A loose time interval is a time interval T Interval? = (ActBeg', ActEnd’)
that is used as a placeholder for a policy request’s time interval. It shows that the exact time
interval for this request TInterval (T'Interval = (ActBeg, ActEnd)) is unknown but it will be
within the specified loose time interval: [ActBeg, ActEnd] C [ActBeg', ActEnd’].

Definition 6.5. Partial policy vector PolVecP is a policy request vector where dummy
objects can be used as designated objects, ‘NIL’ properties and non-leaf hierarchical properties
can be used as action parameters, a loose time interval T Interval? can be used instead of an exact
time intervalO

Similarly to partially specified literals, a refinement or equal relation is defined for partial policy
vectors. When a partial policy vector PolVec; = ({{Objrp_1j, Roleij), ...{Objrp.nj, Rolen;)},
TAS {(AParValyj, AParNamey;), ...,(AParValy;, AParNamen;)}, (ActBeg;, ActEndy)) is
a refinement of partial policy vector PolVec! or equal to it under substitution 6, they are connected
by a refinement or equal relation RefEql"(PolVect, PolVec;,6)°. Tt holds in the following

cases:

« Partial policy vectors are equal: Vk € {1,...,n} (Objrp_ri = Objrp_ij A Roler; = Roley;)
and TA? = TAJS and Yh € {1,...,m} (AParValy; = AParValy; N AParNamey; =
AParNamey;).

« Partial policy vectors are not equal, TAY = T'A? and:

— For all ¢ € {I,...,n} such that (Rolej; = Roleg; N Objipq # Objrp_gj),
ref_dum(Objrp_qj, Objrp_qi,).

SIf the substitution is empty, this relation can be designated as RequlT(PolVec?7 PolVecf).

134

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

— For all ¢ € {1,...,m} such that (AParNamey, = AParNameg; N AParValy #

AParValg; N AParValg € Termpumov;), ref-dum(AParValg;, AParValg,0).
— For all ¢ € {1,...,m} such that (AParNamey, = AParNameg; N AParValy #

AParValg; N AParValg = NIL), ref null(AParValg;, AParValg;).
— For all ¢ € {1,...,m} such that (AParNamey, = AParNameg; N AParValy #

AParValgj N AParValy, AParVal,; € Term9), ref _hier(AParValy;, AParValy).

— If TInterval] # TIntervaly, then TIntervalf C TIntervaly.

If a partial policy vector is attached to task T'A, this task should correctly implement this
partial policy vector. The task T'A correctly implements the partial policy vector PolVec?, if in
every possible execution of T'A a policy request is generated based on the policy vector PolVec
that refines PolVecP or is equal to it: RefEql"(PolVec, PolVecP). A set of partial policy vectors
assigned to a task T'A is returned by function requests(T'A). This property can be specified for

each type of the planning tasks as follows:

e A primitive action TA; correctly implements a partial policy vector PolVec;, if
the operator that can be applied to T'A; contains policy vector PolVec; such that
RefEql"(PolVec;, PolVec).

o A compound task or action T4y correctly implements a partial policy vector PolVect, if
during each possible decomposition of T'A; an operator or a compound action decomposition

method is carried out that contains a policy vector PolVec; such that RefEql"(PolVec;,
PolVect).

When a task is decomposed during the planning, new tasks produced by the decomposition method
are assigned with partial policy vectors that were specified for them by the method author. In order
to guarantee that all partial policy vectors are correctly implemented by corresponding tasks, the
required correctness checks were introduced into operators and methods execution routines (see
Section 6.2.3). It should be noted that as partial policy requests are preliminary policy checks,
they are specified by the methods’ authors optionally”. If some partial policy vectors that could
be added for tasks produced as a result of the decomposition are omitted, the corresponding policy
checks will be done during the execution of primitive and compound actions using the ordinary

evaluation mechanism of the policy-based planner.
6.2.2.1 Constructs for future planner’s states projection

For the construction of partial policy requests that refer to future planner’s world states, partial
specifications of these future states should be derived based on the current planner’s world state.

In order to develop this specification, updates of the current planner’s world state that will be

"Provided that checks that guarantee correct implementation of partial policy vectors are satisfied.

135

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

carried out and updates that might be carried out should be known. For this aim, Increasing and
Decreasing effects sets and high-level effects constructs will be defined in this section.

High-level effects

The performance gains of the postponed policy enforcement depend on the possibility to derive
exact policy decisions earlier during the planning, that is, during the evaluation of policy requests
generated for partial policy vectors. As the probability to derive an exact policy decision is higher
for a partial policy request that contains more information, it is beneficial to know which updates
will be done in future planner’s world states in order to represent this information in the partial
policy requests. A high-level effect construct will be introduced in this section in order to represent
additions for the planner’s world state that will be carried out during the execution of compound
tasks and actions.

Definition 6.6. High-level effect for task T'A is a positive literal L such that during every
possible execution of T'A at least one literal L that refines L or equal to it (RefFEql'(L, L)) must
be added into the planner’s world stateO

A set of high-level effects assigned to task T'A in a current task network is returned by function
effects(TA). For each type of the planning tasks, the definition of high-level effects can be

specified as follows:

o If a high-level effect L; is assigned to a primitive action T'A;, each operator that can be

applied to T'A; should add to the planner’s world state literal L; such that Re fEql'(L;, EZ)

o If a high-level effect L, is assigned to a compound task or action T' Ay, during each possible
decomposition of T'A, an operator or compound action decomposition method should be

executed that adds to the planner’s world state literal L; such that RefFEql'(L;, f/i).

When a task is decomposed during the planning, new tasks produced by the decomposition method
are assigned with high-level effects that were specified for them by the method’s author. In order to
guarantee that for all literals assigned as high-level effects the corresponding properties are fulfilled,
required correctness checks will be introduced into operators and methods execution routines (see
Section 6.2.3). It should be noted that as high-level effects are preliminary effects specifications,
they are introduced by the methods’ authors optionally® to provide more information about future
planner’s world states for the policy evaluation.

Increasing and Decreasing effects sets

In order to take into account other possible modifications of the planner’s world state, intro-
duced by tasks and actions, Increasing and Decreasing effects sets will be introduced. For each
task in a current task network, two sets of tasks are defined:

Definition 6.7. Necessary Precedents set Py(TA,TN) is a set of tasks in task network
TN that must be executed before the task T'AO

8Provided that checks that guarantee their correctness are satisfied.

136

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Task Network TN, before effects (TAo) = {L} effects (TAs) = {Ls}
method mether, is applied to Ny requests (TAg) = {PolVec’;, PolVed’3} requests (TAs) = {PolVec’s}
task TAo m
TN;= {TAU <TA, TAs, TA5>} . @ @ @
effects (TAg) = {L3 effects (TA) = {Lg}
methcr; requests (TAy) = {PolVec® 4} requests (TAs) = {PolVec’s}

Task Network TN, produced
as a result of method methcr;

application
TN, = {<TAs, TAz, TAs>,
<TAs, TAs, TAs>}
effects (TA;) = {L4} effect (TA3) = (L3} effects (TA,) = {L4} effects (TAq) = {Lg}
requests (TA;) = {PolVec®;} requests (TAs) = {PolVec’s} requests (TAs) = {PolVec’s} requests (TAe) = {PolVec’s}
effects (TA,) = {Lz} effects (TAs) = {Ls}
requests (TA) = {PolVec’} requests (TAs) = {PolVec’s}

Figure 6.1: Example of compound task decomposition method methcr, execution

Definition 6.8. Possible Precedents set Pp(TA,TN) is a set of tasks in task network
TN that can be executed before the task T'A (that are not planned after the task T'A)0

As can be seen, for each task T'A in a task network T'N: Py(TA,TN) C Pp(TA,TN). For
example, in Figure 6.1 in the lower task network TNy for task T Az necessary and obligatory
precedents sets are: Py (T A3, TNy) = {T Ay, TAs}, Pp(TA3, TNy) ={TA,TAy, TAy, TA5,TAg}
(precedence relations are denoted using arrows).

In order to operate with possible effects that can be introduced into the planner’s world state
during the execution of tasks in a current task network, each task symbol T A within the planning
domain is associated with the following sets.

Definition 6.9. Possible Negative Effects set PosNegEff(TA®) is a set of predicate
symbols used in literals that can be removed from the planner’s world state during the execution
of a task (which can be a primitive/compound action or a compound task) with the task symbol
TASD

Definition 6.10. Possible Positive Effects set PosPosEff(TA%) is a set of predicate
symbols used in literals that can be inserted in the planner’s world state during the execution of a
task (which can be a primitive/compound action or a compound task) with the task symbol TASD

Sets PosNegE ff(TA%) and PosPosEff(TA%) can be determined automatically using a re-
cursive procedure, deriving the possible effects set for a compound task as a union of possible effects
sets for tasks that can be produced as a result its decomposition, using any method applicable to
it. For actions, possible effects sets are determined as a union of predicate symbols used in effects
of any applicable operator?. For compound actions, which have effects and can be decomposed

using methods, these two unions are, in turn, merged in order to produce the possible effects set.

90bligations that can be generated for actions during the policy evaluation are also taken into account. A list of
possible obligations for an action is retrieved from the obligation validation rules specified.

137

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Correspondingly, when a method is applied, the possible effects set for the decomposed task is a
superset relatively to the union of possible effects sets of all produced tasks or is equal to it.

Using the defined sets of predicate symbols and tasks, it is possible to derive the set of effects
that can change the planner’s world state before the execution of a task in the current task network.
The specified sets take into account all possible ways how tasks in the task network can be executed.

Definition 6.11. Decreasing Effects (DE) Set DE(TA,TN) is a set of predicate symbols
used in literals that can be removed from the planner’s world state before or during the execution
of the task T'A in the task network T'N (see Formula 6.3)0

Definition 6.12. Increasing Effects (IE) Set IE(T,TN) is a set of predicate symbols
used in literals that can be added to the planner’s world state before or during the execution of

the task T'A in the task network T'N (see Formula 6.4)0
DE(TA,TN) = Ura,epprarnyiPosNegEf f(TSim(TA;))}UPosNegEf f*(T'Sim(TA)) (6.3)

IE(TA,TN) = Ura,epprarnyiPosPosEf f(TSim(TA;))} U PosPosEf f*(TSim(TA)) (6.4)

Increasing (or Decreasing) effects set for a task T'A is derived as a union of Possible Positive
Effects sets (or Possible Negative Effects sets, respectively) for tasks that can be executed before
TA. The function T.Sim(T A) returns a task symbol TA® for the task atom T'A, which is used to
determine the possible effect sets. The sign “*’ for Possible Positive Effects and Possible Negative
Effects sets of the task T'A denotes that these sets are included into the IE and DE sets only
when T'A is a compound action or task. IE and DE sets for the task T'A are utilised to determine
possible changes of the planner’s world state that can happen before the evaluation of a partial
policy request represented using a partial policy vector attached to the task T'A. So when the task
T A is a compound task, it is required to add possible effects of this task into the IE and DE sets
as this policy request can be evaluated during the execution of some action produced as a result
of T'A decomposition. So before the evaluation of this policy request, any effect from the possible
effects set for T'A can be introduced. When the task T'A is a primitive action, it is known that
effects of this action will be applied after the evaluation of the policy request for this task, so they
should not be included into the IE and DE sets for this primitive action.

6.2.2.2 Partial policy requests generation

Partial policy vectors, assigned to tasks in a current task network, are used for the construc-
tion of partial policy requests referring to future planner’s world states. These policy requests
are generated based on a planner’s world state using the same procedure that was described
for ordinary policy requests in Chapter 5. But for the construction of a partial policy request

based on a partial policy vector attached to task T' Ay in a task network T'N, instead of the

138

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

current planner’s world state CurState the planner’s world state State’ is used. In this state,
known updates that will be done before the execution of the task T Ag are reflected: State’ =
{Ura,epy(rao,riyief fects(TA;)} U CurState}/Lpgs, i.e., high-level effects for tasks which nec-
essarily will be executed before the task Ty should be added to the current planner’s world state
CurState and all literals Lpgg that can be removed from the planner’s world state are removed
from State and excluded from the high-level effects being added. Set Lpgg is a subset of the set
Ura,epy(TAo,rN)1ef fects(T A;) } U CurState and contains all literals from this set with predicate
symbols in UTAjepP(TAO7TN)DE(TAj,TN)IO. Additionally, when during the construction of the
partial policy request it is required to get properties and relations for a dummy object Dum;p (for
examople, when it is used as a designated object), they are retrieved from the Dummy Objects
Space: DumDescr(Dum;jp).

So the partial policy request RegP is a policy request (see Section 5.4.1) where a dummy object,
a null property, a non-leaf hierarchical property-term or a loose time interval is used. A partial
policy request can be evaluated correctly only taking into account the IE and DE sets for the
task that its partial policy vector is attached to. These sets represent modifications that can be
introduced before the execution of the considered action during the planning. So in a postponed
policy enforcement, the input information for a policy request evaluation is represented as a partial
policy request tuple: PRtuple = (Req?, IE(TA,TN),DE(TA,TN)). According to the previous
definitions, a partial policy request tuple PP Rtuple; = (Req?, IE(T A;, TN;), DE(TA;,TN;)) is a
refinement of a partial policy request tuple PRtuple; = (Req;), IE(TA;,TN;),DE(TA;,TN;)) if
the following modifications were introduced to the P Rtuple; tuple in comparison with the P Rtuple;

tuple:

o The partial policy vector is refined.
o Attribute values for the designated objects are refined if they are dummy objects.

e New properties and relation literals are added for dummy objects within the designated

object contexts or existing properties and relation literals are refined for them.

o Properties and relations are added into the designated object contexts, if their predicate

symbols are contained in IE(T'A;, TN;).

It should be noted that if a Dummy object is refined, refined versions of all its properties and
relations contained in Req should be contained in Reg;. A fully known policy request tuple is a

tuple that contains an ordinary policy request and the IE and DE sets are empty.
6.2.3 Operators and methods execution routines

According to the previous sections, extra activities should be carried out when methods and oper-

ators are executed during the postponed policy enforcement: high-level effects and partial policy

10predicates that can be added into the planner’s world state are processed using another mechanism, described
in Section 6.3.

139

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

vectors should be assigned to tasks produced as a result of the decomposition and properties that
guarantee correctness of this assignment should be checked.

First of all, definitions of methods and operators described in Section 5.3.2 are updated. When
methods are specified, tasks in their task networks are provided with unique numbers used for

kTP is a task

their identification. So all tasks are specified as tuples (Task!? T A), where Tas
number, T'A is a task atom. Additionally, the definitions of compound action and compound task
decomposition methods (will be designated as meth) are augmented with the following components
(see 5.14), in order to specify which high-level effects and partial policy vectors assignments should

be done within the current task network and which updates to the Dummy Objects Space should

be introduced:

o HLef fectsSpec(meth) = {...(Task!P L;)...} is a set of tuples containing a task number
and a high-level effect. The high-level effects L; should be assigned to the tasks with Task!?

during the decomposition.

o PRVecSpec(meth) ={... (Task]I»D, PolVeck) ...} is aset of tuples containing a task number
and a partial policy vector. The partial policy vectors PolVec? should be assigned to the
tasks with Task!? during the decomposition.

o DumStruc—(meth) = {...L,, ...} is a set of literals that should be removed from the
Dummy Objects Space during the decomposition.

o DumStruct(meth) = {...L,...} is a set of literals that should be added into the Dummy
Objects Space during the decomposition. The literals f/o = Po(T10y - -, Teo) should contain

at least one term representing a dummy object: 3h € {1,2,...,e} (Tho € TermPvmObi),

During the execution of methods, the specified activities should carried out. In addition to this,
correctness checks should be carried out during the execution of operators and methods in order
to guarantee that the required properties for the high-level effects, partial policy vectors and other
components, introduced in the previous sections, are satisfied. These correctness checks, carried
out during the decomposition of a compound action T Ay into task network T'N using a method
meth’, ,, are presented in Figure 6.2. High-level effects and partial policy vectors attached to task
T A, should be refined by some (high-level) effects or (partial) policy vectors generated during
the decomposition. Finally, properties and relations of dummy objects that were removed by this
method from the Dummy Objects Space should be asserted into it in a refined form. When an
operator or a compound task decomposition method is carried out, only relevant part of these
checks should be performed. During the planning, substitution € is used to store substitutions of
dummy objects that have been carried out. It is updated when new substitutions are introduced
and is utilised to check that the same dummy object-terms are refined to the same ordinary object-
terms. When the planner backtracks, substitutions carried out during the cancelled operations are

removed from this substitution.

140

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

For all high-level effects L; (L; € ef fects(TAp)) check that:

HTasklP, L) € HLef fectsSpec(methi, ;) (Rengll(f/k,f/j,H))
or 3L, € ef fectt (meth,) (RefEql'(Lm,L;,0)).

For all partial policy vectors PolVec (PolVec; € requests(T'Ag)) check that:

ITasklP, PolVect) € PRVecSpec(metht,) (RefEql"(PolVeck, PolVech,0))
or RefEql"(polVector(metht,), PolVech)

For all removed dummy objects properties and relations L,
(L, € DumStruct™ (methl, ,)) check that:

3L, € DumStruct* (methi,) (RefEql'(Ly, L.,0)).

Figure 6.2: Correctness checks for compound action decomposition method execution

These checks guarantee that during the planning all high-level effects, partial policy vectors
and other constructs used for the partial policy requests generation are refined or remain constant.
Additionally, during the planning, IE and DE sets for the same tasks within the current task
network can only be reduced or remain unchanged. When an operator is applied, possible negative
and positive effects sets for the action executed are excluded from the IE and DE sets of all tasks
where this action was included in the Possible Precedents sets. When a method is executed,
as it was stated before (see Section 6.2.2.1), a possible effects set for the task decomposed is
a superset for a union of possible effects sets for all tasks added into the task network during
the decomposition. Since in IE and DE sets, where the decomposed task has contributed to,
its possible effects sets should be substituted by the union of possible effect sets of the tasks
produced during the decomposition, these IEs and DEs cannot contain more elements than before
the decomposition. Moreover, when a partial policy vector attached to some new task during the
decomposition is connected using refinement or equal relation with a partial policy vector attached
to the task decomposed, IE and DE sets for the new task should be included into the IE and
DE sets for the decomposed task or be equal to them. This is true as IE and DE sets for the
new task are equal to the IE and DE sets for the decomposed task, with an exception that in the
expression for their calculation possible effects sets for the task decomposed are substituted by the
union of possible effects sets for the new task and tasks from the generated task network that can
be executed before it. So during an operator or method execution, partial policy request tuples
created for partial policy vectors that remain the same during this planning step are refined or
remain constant. Moreover, partial policy request tuples are refined or remain constant if they
are created for partial policy vectors connected with the refinement or equal relation: one partial
policy vector is attached to the task processed by the method (or operator) and another is attached
to a task generated during the decomposition (or it corresponds to an action executed).

The method’s constructs introduced in this section should be specified by the author of planning

141

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

domain based on his (or her) knowledge about possible execution traces for the tasks generated
during the decomposition. The execution traces are determined by other methods and operators
specified in the planning domain. A planning domain static analysis technique can be introduced in
order to generate some high-level effects and partial policy vectors automatically, which can simply
this specification task for the domain author. Based on the equality of task atoms’ signatures, it
is possible to predict which method or operator can be applied to which tasks. Variables used at
the same positions can be propagated to lower level task atoms (and correspondingly to effects
and policy vectors). Using this mechanism, it is possible to build possible decomposition traces
for all tasks within the domain specification, based on which some signatures for high-level effects
and partial policy vectors can be inferred. But this simple analysis would not give comprehensive
results, since it does not include analysis of operator and method preconditions, which determine
their applicability during the planning based on current variables values and perform variables
instantiation. So, in any case, the results of this technique should be corrected by the domain
author manually: at least he (or she) should put dummy objects, null properties and hierarchical
properties instead of the variables in the inferred signatures, which were not mapped to task atom’s
variables. Additionally, he (or she) can significantly extend them, manually analysing the methods
and operators: some variables can be instantiated, dummy objects description can be added. Also
as a set of operators and methods that can be utilised during an execution of a task can be limited
based on the analysis of its preconditions and preconditions of higher-level tasks, more high-level

effects and partial policy vectors can be specified.
6.2.4 Postponed policy enforcement

A postponed policy enforcement is based on the evaluation of partial policy request tuples created
for policy vectors attached to tasks in a current task network during the planning. A partial
policy evaluation algorithm was designed (see Section 6.3), which can correctly process partial
information in these tuples. As a partial policy requests tuple contains only known information
and can be modified later on during the planning, an exact policy decision for some partial policy
requests cannot be determined. In order to represent such situation, an additional policy decision
for the XACML policy language was introduced.

Definition 6.13. Indeterminate Temporal decision is an additional decision introduced
for the XACML policy language. It indicates that none of decisions in set M7, containing the
standard XACML policy decisions My = {P, D, Ind, N/A}, can be produced during the evaluation
of a partial policy request tuple because not all required information is availableOd

The set of standard XACML policy decisions M7 will be denoted as Permanent policy decisions
set. Obviously, during the evaluation of partial policy requests, permanent decisions can also be

produced, even if the request is specified partially. For example, available information can be

142

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

sufficient to infer exact decisions for all applicable policies, or Indeterminate Temporal decisions,
produced during the evaluation, can be overpowered by permanent decisions during the policies
or rules combining. Obviously, when a policy request tuple is fully known, a permanent decision
should be produced for it.

The Indeterminate Temporal decision is distinct from the Indeterminate decision within the
Permanent policy decisions set. The latter decision indicates that there was an error during the
evaluation that prevents a policy engine to produce a Permit or Deny decision. This decision is
generated when policies are specified incorrectly or when data with wrong data type are retrieved
from the policy request. The difference with Indeterminate Temporal can be illustrated with the
following example. Assume that during the policy evaluation some obligatory attribute should be
retrieved from the policy request, but this attribute is missing there. The standard Indeterminate
decision should be produced in this situation if it is known that more values cannot be added for
this attribute as a result of the partial policy request refinement. Indeterminate Temporal should
be produced when new values can be added. So the standard Indeterminate decision should be
returned when it is known that further refinement of the partial policy request tuple will not lead
to a substitution of this decision by a permanent policy decision. In order to distinguish two
Indeterminate decisions, a new set of policy decisions is introduced: M} (see Formula 6.5). The
standard Indeterminate decision from the set M; will be referred as ‘Indeterminate Permanent’
decision.

MY = {P, D, IndPerm, IndTemp, N/A} (6.5)

When the postponed policy enforcement is utilised during the planning, after the execution of
each method and operator a special routine is carried out that evaluates partial policy requests
for vectors attached to tasks within the current task network. The underlying principle of the
postponed policy enforcement, which makes possible enforcement of decisions produced as a result
of the partial policy requests evaluation, is now briefly explained. Any permanent decision returned
during the evaluation of a partial policy request tuple should persist when this tuple is refined.
That is, for any partial policy request tuple refining it, the same permanent decision should be
returned. Based on this fact, at each planning step decisions produced as a result of partial policy
requests evaluation can be enforced by the planner: when a request is permitted the planning can go
forward; when it is denied a backtrack should be done; when an Indeterminate Temporal is received
the request should be postponed and re-evaluated later, when more information is available. Partial
policy request tuples evaluated at some planning step are refined at the subsequent steps of the
planning. Hence, if Permit is received as a result of the partial policy vector evaluation, when

at the next planning step the same vector or a vector refining it!! is evaluated Permit decision

1Tt is a vector assigned to a task produced during the decomposition or evaluated during the operator execution
that is connected with the refinement or equal relation with the permitted vector and .

143

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Fvaluate (old task network T'N', old state State’, new task network T'N”, new
state State”)

1. Determine set of partial policy vectors Spyyer that are attached to tasks
in TN"” and do not have ‘Permit’ labels
2. Loop for every PolVec! € Spoyvecr:

2.1. Construct sets IE(T”,TN"”) and DE(T”,TN") for task T” (a task that

PolVecf is attached to) using formulas 6.3, 6.4
2.2. If partial policy request tuple for PolVecf can produce new results,

considering TN’ and State’ updates then evaluate it using the partial
policy evaluation algorithm (see Section 6.3). Process the decision
returned:

ePermit or Not Applicable. Add ‘Permit’ label to partial policy vector
PolVec! in task network TN”

e Deny or Indeterminate Permanent. Return Failure

e Indeterminate Temporal. Carry on evaluation
endif

End loop
3. Return Success

Figure 6.3: Partial policy requests evaluation algorithm

will also be returned. In order to avoid superfluous policy evaluations, partial policy vectors for
which Permit decisions were produced are marked with ‘Permit’ label and are not evaluated at
the subsequent planning steps. Additionally, these ‘ Permit’ labels are propagated to partial policy
vectors that refine the permitted vectors.

An algorithm carried out after each planning step, when the postponed policy enforcement
is used, is presented in Figure 6.3. During the execution of this algorithm, first of all, partial
policy vectors attached to tasks in a current task network are selected for the execution. Then,
partial policy request tuples are constructed for them and evaluated. Results of their evaluation are
analysed and processed as this was described earlier. When a failure is produced by this algorithm,
backtracking is required. Using this algorithm, during the postponed policy enforcement it is
guaranteed that all policy request vectors are evaluated into permanent policy decisions eventually.
Moreover, during the postponed policy enforcement, fully specified policy vectors, that should
be evaluated when an operator or a compound action decomposition method is carried out, are
evaluated only if they do not have ¢ Permit’ labels assigned to them. As can be noted, this algorithm
has a restricted functionality as it does not support all policy evaluation outcomes utilised in policy-
based planning (see Chapter 5). In concrete, it does not support policy obligations and conditions.
Correspondingly, in order to resolve this restriction, this routine and the introduced partial policy

evaluation algorithm should be updated for their support!2.

12 As will be shown in Chapter 7, in the CEP generation problem, the postponed policy enforcement is utilised at
the planning stage when obligations and conditions are not used. So this restriction does not limit the usage of the

144

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

During the execution of this routine, it is possible to evaluate all partial policy vectors without
“Permit” labels. But in order to reduce the number of evaluations, only vectors for which partial
policy tuples were updated during the last planning step are evaluated. A partial policy vector
PolVecl, attached to a task TA” in task network TN is evaluated if the planner’s world state
is updated or if this is a new partial policy vector, added during the last planning step, or if the
vector PolVec! refines a partial policy vector in TN''3 that was attached to the task processed
during the last planning step, or if one of the following conditions is satisfied. These conditions
should be satisfied for the task TA” in TN” and a task TA" in TN’ that has a policy vector
corresponding to PolVec?: this vector should be equal to PolVec! and be attached to the same
task (TA" = T A”) or the task processed during the last planning step:

1. A set of high-level effects for tasks in Py (T'A”, TN"), in comparison with the corresponding
set for tasks in Py (T A’,TN"), contains new high-level effects or some high-level effects are

refined.

2. For IE and DE sets: IE(TA”, TN") C IE(TA', TN') or DE(TA",TN") C DE(TA',TN").

If the planner’s world state was not changed, a partial policy vector copied to a new task
produced during the decomposition should not be re-evaluated, if these conditions are not satisfied
for it. For example, condition two is satisfied if a partial policy vector is copied to a task T'A
within the task network network(meth), generated by during the decomposition of method meth,
and there is some task in network(meth) that should be executed before TA and that has some
high-level effects assigned. In Figure 6.1, such vector is PolVech as the high-level effects Ly and L,
are introduced for the tasks T A; and T A, that should be executed before the task T'As, which has
PolVed attached. Also these conditions are taken into account for partial policy vectors that are
not modified during some planning step. For example, in Figure 6.1, when task T'Ag is decomposed
using method methcr;, partial policy requests for tasks T'A4, T As and T Ag should be evaluated
only if set IF or DF is reduced for them.

6.3 Partial policy evaluation

6.3.1 Requirements to partial policy evaluation

A partial policy request tuple introduced at some planning step is refined at further planning steps,
until at some planning step a fully known policy request tuple is generated. After each refinement,
the partial policy request tuple is evaluated (if this is required). A schema in Figure 6.4 shows how
partial policy evaluations are carried out during the planning. A partial policy evaluation should
satisfy the following property that makes it possible to enforce decisions produced as a result

of partial policy evaluation during the planning. This is the permanent decisions preservation

postponed policy enforcement for the CEP construction.
131t is the task network before the last operator or method execution.

145

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

property: if a permanent decision from the set Mj is produced for a partial policy request tuple,
it cannot be changed to any other decision when the partial policy request tuple is refined. The
refinement or equal relation for partial policy request tuples, introduced in the previous section,
is a partial order relation on the set of all possible tuples PRtuple, which will be denoted as LC.
On the set of policy decisions M}, a partial order representing possible changes of policy decision
as a result of the policy tuple refinements can also be introduced as represented in Figure 6.5.
This order is based on the fact that an IndTemp decision can be substituted by any permanent
decision when the partial policy request tuple is refined. This partial order will be referred as
the approximation order: it represents the ‘less defined than or equal’ relation for the amount of
information carried by different policy decisions (IndTemp carries less information than any other
decision). If we represent a partial policy evaluation of a policy set as a function ParEvaluate?s :
PolicySet x PRtuple — MY, then the permanent decisions preservation property is formalised as
a monotonicity of this function defined in terms of the partial orders on sets PRtuple and MY

provide at policy se PolicySet| 1s constant):
ided that policy set y i tant

PRtuple; T PRtuple; — (6.6)

ParEvaluate’ ([PolicySet], PRtuple;) CPar Evaluate” (] Policyset], PRtuple;)

Partial policy
Partial Policy Request evaluation B Decision D;
tuple (PRtupleq)
Refinement of policy Permanent decision
tuples during the Refinement preservation
planning: _%” <> Partial policy requirement:
PRtuple; = PRtuple, S Partial Policy Request evaluation Decision D, D, D, D
a tuple (PRtuple,) > ==
[PRtuples -
Refinement
Sz Partial policy
Partial Policy Request evaluation Decision Ds
—_—)p
v tuple (PRtuples)

Figure 6.4: Partial policy evaluation process

Deny Permit IndPerm N/A

IndTemp
Figure 6.5: Approximation order on set M?

When the postponed policy enforcement is used, the partial policy evaluation mechanism is
used instead of the standard XACML policy evaluation, even if a fully known policy request tuple
is evaluated. So the partial policy evaluation should be an extension of the standard XACML policy

146

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

evaluation. If all required information is available during the evaluation, the outcomes of the partial

policy evaluation should be equal to the outcomes of the standard policy evaluation mechanism.

PS

-2 that extends the ordinary policy evaluation function

Suppose, we introduce a function evaluate
evaluate”® (see Section 4.5.2) and returns decision IndTemp if input policy request tuple is not
fully known. Then, this requirement can be formalised as follows: function ParEvaluate”s should
PS C

refine function evaluatel; (provided that policy set [PolicySet] is constant): evaluatels C

ext

ParEvaluate?®. That is, for all PRtuple;:

evaluatel5([PolicySet], PRtuple;) C ParEvaluate” ([PolicySet], PRtuple;) (6.7)

ext

So the partial policy evaluation must have the following properties:

e The permanent decision preservation (i.e., the function ParEvaluate”® should be mono-
tonic).
e It should be an extension of the standard XACML policy evaluation (i.e., the function

evaluatel’$ should be approximation of ParEvaluate”?).

ext

Another desired property of the partial policy evaluation, which improves the planning perfor-
mance and reduces the planning time, is the following. Based on a partial policy request tuple a
partial policy evaluation mechanism should tend to return a permanent decision when it is pos-
sible (i.e., when it does not contradict to the requirements described above). The motivation of
this requirement is that only permanent decisions lead to performance gains during the postponed
policy enforcement.

In Chapter 4 it was shown how a policy set evaluation function evaluate”® can be specified as
a composition of functions (a structure for this composition is determined by a policy set being
evaluated). In order to define the partial policy evaluation function ParEvaluate”?, it is assumed
that the XACML policy specification mechanism remains the same. So policies in the partial policy
evaluation can also be formally represented as a composition of functions (the same principles of
how to infer a composition of functions based on a policy set specified are used). But functions
used in these compositions in order to represent the policy constructs should be updated. These
functions should be defined on extended domains, which can additionally represent incomplete
information, and define how values added to these domains should be evaluated. In the following
sections these functions are described. In order to guarantee that the monotonicity and extension
requirements are satisfied for the function ParEwvaluate”®, it is can be shown that they are
satisfied for all its constituent functions, as a composition of monotonic functions is monotonic
and two compositions of monotonic functions are related with approximation relation if they have
the same structure and all functions in one composition are approximations of the corresponding

functions in another composition. The former statement is a known theorem in the order theory

147

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.1: Table of values for Policy evaluation function PP

Combining decision P IndPerm | IndTemp D N/A
Target
False N/A N/A N/A N/A N/A
IndPerm IndPerm | IndPerm | IndPerm | IndPerm | IndPerm
IndTemp IndTemp | IndTemp | IndTemp | IndTemp | IndTemp
True P IndPerm | IndTemp D N/A

(e.g., in [22]), whereas the later statement can be easily proven using transitive property of orders.
The described updates of the functions do not specify how loose time intervals are processed, as

their processing will be described separately in Section 6.3.7.
6.3.2 Policy set evaluation function

The auxiliary policy set evaluation function P¢ : TRVal x My — M, which was introduced
to define the policy set evaluation routine (see Chapter 4), processes the truth value returned
from the policy set target and a decision in the set Mj returned from the policy combining (see
Table 4.1). For a partial policy evaluation, a new function P’ : TRVal? x M} — MY} that
defines the policy set evaluation routine was introduced. Its input policy combining decision, as
well as, its output decision are members of the set M?, the set of decisions for the partial policy
evaluation. The truth values set TRV al, which is a co-domain of the target evaluation function,
was extended by value IndTemp, referring to a situation when not all required information is
available in the partial policy request tuple in order to produce a permanent truth value. But,
in contrast to the Indeterminate Permanent truth value, which is represented as IndPerm in
this set, for IndTemp it is known that it should be refined into a permanent truth value (True,
False or IndPerm) when the policy request tuple is refined into a fully known policy request
tuple. So TRV al? = {T'rue, False, IndTemp, IndPerm}. Only one ‘less defined’ value IndTemp
is contained in this set, so its partial order of approximation is flat. It can be defined using the
following orderings: IndTemp C True, IndTemp T False, Indl'emp C IndPerm. Similarly to
the order defined for the set MY, this partial order shows how a truth value can be changed when
the partial policy request tuple is refined.

The table of values for the function PP is presented in Table 6.1. According to the XACML
specification, a policy set should be evaluated only if its target is true. Hence, in rows where
the target is equal to False, IndPerm or IndTemp, the policy combining value has no influence
and even is not evaluated. When the target is IndTemp, this means that a permanent decision
cannot be produced for this partial policy request tuple. In this case, IndTemp is returned by PP,
because the resultant permanent policy decision will depend entirely on a future target evaluation
result. The situation when a target is True but policy combining decision is IndT emp is equivalent

and IndTemp should also be returned.

148

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

<True;P> <False;P> <IndPerm;P> <True;P> <True;D> <True;N/A>
<True;D> <False;D> <IndPerm;D> <False;P> <False;D> <False;N/A>
<True;N/A> <False;N/A> <IndPerm;N/A> <IndPerm;P> <IndPerm;D> <IndPerm;N/A>

‘ <False;IndTemp> <IndTemp;P>
<True;IndTemp> <IndPerm;IndTemp>

<IndTemp;N/A>
<IndTemp;D>

<IndTemp;IndTemp>

Figure 6.6: Approximation order on TRV al? x M} set

In order to check the monotonicity of the PP function, it is required to check that during each
possible modification of its argument values, such that new argument values refine old values, its
resultant value is also changed from a less defined value to a more defined one (or it is constant).
As the function PP has two arguments, an approximation order that can be used to represent
refinement relations on its arguments is an approximation order on the Cartesian product of their
domains. Such order for product TRV al? x MY is shown in Figure 6.6. In order to check the
monotonicity using the table of values, it is required to analyse each value produced by the function
when it has IndTemp in (at least) one of its arguments. If IndTemp is a value for the left argument,
the output value should be less defined than every other value in the same column of the table or
it can be equal to it (if IndTemp is in the right argument, the row values are analysed). As can be
seen, this requirement is satisfied. The second requirement that PP should be an extension of P¢
is easily checked. If the column and the row representing input IndTemp arguments are removed,
the table of values for PP is transformed into one for P¢ (with the introduced re-naming of Ind

decisions and truth values).
6.3.3 Policy and policy set combining algebras

Policy combining operations that were introduced to formalise the permit- and deny-overrides

PO

policy combining algorithms are operations e

and 05 O. Properties of algebras, which they form
on the set of policy decisions M7, were analysed in Section 4.5.2. In order to use these operations

in the partial policy evaluation, they were extended to the set MY. These new operations are

PO

designated as e,

and .gpo. Tables of values for them are presented in Table 6.2. Properties
of algebraic structures with the 05 © and 050 operations (see Section 4.5.2) should be preserved

for new operations in order to keep the essence of these combining algorithms. Hence, elements

PO

Permit P and Deny D should be adsorbing elements for operations e,

and eDC correspondingly.
In natural orders defined by the permit- and deny-overrides, the new IndTemp decision should
be situated immediately after the adsorbing decision. In this case, the highest priority for the

adsorbing decision is preserved and the new operations are monotonic. Assume that we place

149

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

IndTemp to another position in the natural order for the permit-overrides and when IndTemp
is combined with some other decision X (excepting P) decision X is returned as a result. If in
future input IndTemp is refined into P, decision X must be changed into P, as it is the absorbing

element, what contradicts with the monotonicity property.

Table 6.2: Tables of values for permit- and deny-overrides policy combining operations ogpo and
';?po
o0 P IndTemp IndPerm D N/A
P P P P P P
IndTemp P IndTemp | IndTemp | IndTemp | IndTemp
IndPerm P IndTemp | IndPerm | IndPerm | IndPerm
D P IndTemp | IndPerm D D
N/A P IndTemp | IndPerm D N/A
oD0 D | IndTemp | IndPerm P N/A
D D D D D D
IndTemp | D | IndTemp | IndTemp | IndTemp | IndTemp
IndPerm | D | IndTemp | IndPerm | IndPerm | IndPerm
P D | IndTemp | IndPerm P P
N/A D | IndTemp | IndPerm P N/A

PO

Permit- and deny-overrides policy combining operations for the partial policy evaluation e, ;

and oz,o have the same properties as the ordinary permit- and deny-overrides policy combining
operations (see Section 4.5.2): they are commutative, idempotent and associative. So the corre-
sponding magmas £1C = (M{",el'C) and £DC = (M, eDC) are semigroups and semilattices.
The natural orders for them are extensions of natural orders for semilattices of the ordinary pol-
icy combining operations. Therefore they are not duals, so the algebra that contains these two
semilattices is not a lattice. As extra decisions are inserted to the central parts of the natu-
ral orders, the designated elements of the algebra A, are preserved in the corresponding algebra

Ay = <M1137{0PO DO N/A, P, D}).

pp > pp
PO

o and og,o are monotonic, it is required to trace updates of

In order to show that operations e
operation outcomes when their operands are refined according to the approximation order for the
Cartesian product M} x M7 (it can be constructed similarly to the order for TRV al? x M¥ product
in Figure 6.6). Outcomes of the operations should be updated according to the approximation order

on the M7 set. As these operations are symmetric, it is sufficient to check these properties only

for values below or above the diagonal of their tables of values. We consider values below or at the

PO

o (see Table 6.2). Cases where operands of this operation

diagonal of the table for the operation e
can be refined are denoted using numbers in brackets. As can be seen, when IndTemp is changed
to any other decision for these cases, the resulting decision is either constant or is updated from
IndTemp to a permanent decision. Hence, the monotonicity property is satisfied (analogously,

for the deny-overrides operation it is also satisfied). The requirement concerning the extension of

150

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

operations 7@ and e2¢ is also satisfied.
6.3.4 Policy and rule evaluation functions

During the policy evaluation, the truth value returned when a target is evaluated and the decision,
produced during the rule combining, are processed and a decision in the set M? is produced.
As was specified in Section 4.5.3, rule combining results, as well as the rule evaluation results,
are specified using decisions in the set My (different from the policy evaluation decision set M),
because it is required to distinguish which effect a rule could return if Indeterminate did not occur.
For the partial policy evaluation, set MY is defined based on the set Mo, similarly as the set M} was
defined. New decisions, corresponding to the Indeterminate Temporal decision, are introduced. As
it is required to distinguish possible rule effects, two such decisions were added (see Formula 6.8).
The approximation order on the set MY is presented in Figure 6.7(A.) and represents possible

updates of rule decisions during the policy request tuple refinement.
MY ={P, D, P(IndPerm), D(IndPerm), P(IndTemp), D(IndTemp), N/A} (6.8)

Similarly with the ordinary policy evaluation (see Section 4.5.3), in the partial policy evaluation
the function PP, which was utilised for policy sets, is used to formalise the policy evaluation also.
Additionally, function f? is defined to transform a decision in the set MY, produced during the rules
combining, into the set M} (see Figure 6.7 (B.)). Considering the defined approximation orders
on the sets MY and M7, this function is obviously monotonic, because it maps both P(IndTemp)

and D(IndTemp) decisions into the Indeterminate Temporal decision in M?.

2
Permit M
P(IndTemp) z)): Permit

D(IndTemp) IndTemp

Permit P(IndPerm) N/A Deny D(IndPerm)
P(IndPerm) IndPerm
P(IndTemp) D(IndTemp)
D(IndPerm) Deny
A.
Deny O/O A
B.

N/A

Figure 6.7: Approximation order on set M} (A.) Graph for decisions mapping function f, : MJ —
MY (B.)

The rule evaluation function for the partial policy evaluation R°? : Ef fectSpec x TRV alP x
TRV al? — MY processes truth values generated as a result of the target and condition evaluation
and considers the effect (Deny or Permit) in the Ef fect part of the rule. The table of values for
function R (see Table 6.3) indicates that it is an extension of the rule evaluation function R®

(see Section 4.5.3). If the Indeterminate Temporal decisions are removed, the table of values for

151

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.3: Table of values for rule evaluation function R¢P

Condition False IndPerm IndTemp True
Target
False N/A N/A N/A N/A
D(IndPerm) D(IndPerm) D(IndPerm) D(IndPerm)
IndPerm or or or or
P(IndPerm) P(IndPerm) P(IndPerm) P(IndPerm)
D(IndTemp) D(IndTemp) D(IndTemp) D(IndTemp)
IndTemp or or or or
P(IndTemp) P(IndTemp) P(IndTemp) P(IndTemp)
D(IndPerm) D(IndTemp)
True N/A or or DorP
P(IndPerm) P(IndTemp)

the ordinary rule evaluation function R® will be obtained (considering the introduced re-namings).
As the evaluation of a rule is similar with the policy evaluation, this function was defined using
the same principles: condition should be evaluated and contribute to the result decision only when
the target is evaluated to True (see Section 4.5.3).

The monotonicity of the function R®? can be evaluated if an order defined on the Cartesian
product of sets TRV alP x TRV alP is taken as domain order (it is presented in Appendix A in
Figure A.1) and the order in Figure 6.7(A.) is taken as the order for function results. A specific
decision used in the rule effect part is not considered, as Indeterminate decisions with different
effects (e.g., P(IndTemp) and D(IntTemp)) are related with the same ordering structure in M%.
All values in the table of values for R’ should not be checked, as permanent decisions cannot
change their values. Only values of the function produced when at least one of its arguments is
IndTemp should be considered (they are denoted with numbers in brackets in Table 6.3)!4. All the
possible changes of function values based on possible modifications of input values that conform
with the order on TRV alP? x TRV al? set are analysed separately in Appendix A as Formulae A.1 -
A.7. Based on the results of this analysis it can be concluded that function R°? is monotonic. For
example, if a value of condition is IndTemp and the value of target is not True, any permanent
Truth value that could substitute IndTemp value in the condition will not change the resultant
rule decision (see cases 5 and 6 and Formulae A.5, A.6). Hence, the condition value should be
ignored and a permanent decision, determined based on the target value, should be returned. For
cases 1 - 4, when the target of a rule is evaluated as IndTemp, IndTemp is also returned by the
rule evaluation function. This is due to the fact that the value of target always determines the
overall result of the rule evaluation. Even if the value of a condition is a permanent decision, this
does not give the possibility to infer a permanent decision for the rule. The monotonicity in these
cases is assured, as IndTemp decision returned can be refined into any permanent decision (see

Formulae A.1 - A.3).

14 As was stated earlier, we consider only values situated below or at the diagonal of the table.

152

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.4: Table of values for permit-overrides and deny-overrides rule combining operations .fpo
and .{?po
.5}0 P P(IndT) P(IndP) D D(IndT) D(IndP) N/A
P P P P P P P P
P(IndT) P(IndT) P(IndT) P(IndT) P(IndT) P(IndT) P(IndT)
P(IndP) P P(IndT) P(IndP) P(IndP) P(IndP) P(IndP) P(IndP)
(4) x
D P P(IndT) P(IndP) D D D D
(5) x
D(IndT) P(IndT) P(IndP) D D(IndT) D(IndT) D(IndT)
(6) x
D(IndP) P P(IndT) P(IndP) D D(IndT) D(IndP) D(IndP)
N/A P P(IndT) P(IndP) D D(IndT) D(IndP) N/A
.T%O P | P(IndT) | P(IndP) D D(IndT) | D(IndP) N/A
P P P P P P P P
P(IndT) | P | P(IndT) | P(IndT) | P(IndT) | P(IndT) | P(IndT) | P(IndT)
P(IndP) | P | P(IndT) | P(IndP) | P(IndP) | P(IndP) | P(IndP) | P(IndP)
D P | P(IndT) | P(IndP) D D D D
D(IndT) | P | P(IndT) | P(IndP) D D(IndT) | D(IndT) | D(IndT)
D(IndP) | P | P(IndT) | P(IndP) D D(IndT) | D(IndP) | D(IndP)
N/A P | P(IndT) | P(IndP) D D(IndT) | D(IndP) N/A
6.3.5 Rule combining algebras
P

Rule combining algorithms were formalised as operations ¢2© and ¢ and properties of corre-

.
sponding algebras were analysed in Section 4.5.4. In the partial policy evaluation, permit-overrides

and deny-overrides rule combining operations o/? and 27, defined on set M, should extend these

PO

operations and preserve their properties. Tables of values for operations e;)

and D¢ are presented
in Table 6.4. Absorbing elements in these operations should be preserved. Hence, when decision
P(IndTemp) or D(IndTemp) is combined with an absorbing element, this adsorbing element can
be returned as a result of the operation (e.g., in permit-overrides, if one operand is P(IndTemp)
or D(IndTemp) and another is Permit, when the former operand is refined into another decision
the result of the operation is guaranteed to be Permit). Additionally, when the permit-overrides is
used, if P(IndTemp) is combined with any other decision excepting Permit P(IndTemp) should
be returned. If we assume that P(IndTemp) operand is refined into Permit, the result of the
operation should also be refined into Permit, but the only decision that can be refined into Permit
is P(IndTemp). Analogously, since D(IndTemp) can be refined to Deny, when it is combined
with N/A or D(IndPerm), D(IndTemp) should be returned (since Deny is an absorbing element
for these decisions and the only decision that can be refined into Deny is D(IndTemp)).

Permit-overrides and deny-overrides rule combining operations have the same properties, as the

153

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

corresponding operations in ordinary policy evaluation (see Section 4.5.4): they are commutative,
idempotent and associative. Natural orders for these operations are specified in Formulae 6.9
and 6.10. These orders are not duals, so an algebra containing two these operations is not a
lattice. As new decisions were added into the central parts of these orders, their identity and
absorbing elements are the same: N/A is the identity element, P and D are absorbing elements
respectively for permit-overrides and deny-overrides.

N/A <EP D(IndP) <EC D(IndT) <E° D <I° P(IndP) <L° P(IndT) <E° P (6.9)

N/A =>PO p(IndP) >P° P(IndT) <P° P <P° D(IndP) >P° D(IndT) >P° D (6.10)

/rp /rp \rp \rp /rp /rp

PO and o PO

For the monotonicity analysis of operations e, rp

the approximation order on the set
M?P x MY should be used to define possible operands refinements. The approximation order on

the set MY represents possible result decision refinements. As these operations are symmetric, it

PO

p » Cases when

is sufficient to analyse only one triangle in their tables of values. For operation e
operands of the operation can be refined are presented using numbers in brackets in its table of val-

ues. Proofs of the monotonicity property for these cases are presented in Appendix A. As operation

o DO

rp_ was defined by analogy, the same results are expected for it. The monotonicity property is not

satisfied for some of the cases, which are designated using the ‘x’ symbol in Table 6.4 and frames
in Appendix A. In these cases, a Deny-based decision (i.e., Deny, D(IndTemp), D(IndPerm))
is combined with P(IndTemp) and, as a result, P(IndTemp) is returned. But the operand with
P(IndTemp) decision can be refined into a N/A decision, and N/A is the identity element for this
operation. Hence, after such refinement, the operation will return the Deny-based decision that was
used as an input and that the P(IndTemp) decision cannot be refined to (because P(IndTemp)

PO and 20 ar

can be refined only to a Permit-based decision and N/A). Hence, the operations e,] p

e
not monotonic.

But it can be shown that the non-monotonicity of the permit-overrides and deny-overrides
operations does not lead to the non-monotonicity of the overall policy set evaluation function.
This is due to the fact that a composition of two non-monotonic functions can still be monotonic.
As was shown in Section 6.3.4, the result of rule combining in the set M¥ is mapped to the set MY
using the function f,,, before it can be processed by the policy evaluation function P°’. Hence,
it is possible to analyse the monotonicity of the function composition f, o ofpo that has domain
MY x MY and co-domain M?. If this composition is monotonic, then the overall monotonicity of
the policy evaluation is not broken.

The proofs of the monotonicity for composition f, oof.';o are presented in Appendix A. Only the

cases where the non-monotonic behaviour of the operation was found were considered (for other

cases the monotonicity is assured at the rules combining level). It was shown that for all three

154

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

PO js considered instead of ¢£C output

PO o . oy
cases of e, non-monotonicity when composition f, o e, s

values become monotonic. These facts are explained by the nature of the f, function that eliminates
bindings to Permit and Deny effects for Indeterminate decisions. Hence, in cases that were rejected
because the P(IndTemp) decision produced cannot be refined into a Deny-based decision in the
set MY, result decision P(IndTemp) is mapped into IndTemp, which can be refined into any other

decision in set M7, according to its approximation order.
6.3.6 Target and condition evaluation functions
6.3.6.1 Information retrieval from partial policy request tuples

In the standard XACML policy evaluation, all information retrieved from a policy request is
represented as Bags of values. When the partial policy evaluation is used, in order to retrieve
attribute values, attribute designators and selectors should retrieve values from the partial policy
request tuple. For the representation of a retrieved values set that are known partially, an open
bag construct is introduced.

Definition 6.14. Open bag is a bag of values that contains all known attribute values from
a partial policy request tuple, provided that more values can be added for this attribute when the
partial policy request tuple is refinedd

Ordinary attribute designators and selectors were extended in order to process partial policy
request tuples and return ordinary bags or open bags, depending on the fact if new values can be
added for this attribute when the partial policy request tuple is refined.

Attribute designators can retrieve only named attributes from the policy request. One named
attribute can contain several values (i.e., it can occur in the policy request several times) and
can belong to designated objects, action or time attributes. Action attributes are specified within
the partial policy vector and can use placeholders, representing that they are known partially.
Based on the policy request generation procedure (see Chapter 5), designated object’s attributes
are generated based on binary property-literals containing object-terms of the designated objects.
There are several possibilities as to how these property-literals can be represented partially in the
policy request tuple, which should be taken into account by an attribute designator. First of all,
in a partial policy vector, dummy objects can be used as designated objects. Therefore, based
on dummy objects definition, existing property-literals for them can be represented partially and
new property-literals can be added. Even if these objects are not dummies, their property-literals
can be part of high-level effects and, correspondingly, they also can be partial-literals and contain
placeholders. Finally, the predicate symbol for a property-literal (it is used as an attribute identifier
in the policy request) can be contained in IE (or DE) set and, therefore, more property-literals
with this predicate symbol can be added (or some of them can be removed) in the policy request

further during its refinement. Time attributes of the policy request are not considered in this

155

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

section, their processing is described in Section 6.3.7.
Definition 6.15. Open Attribute Designator has the same behaviour as the attribute
designator, but it should return an open bag with attribute values retrieved from the partial policy

request tuple, instead of an ordinary bag, in the following cases:

¢ An attribute of a designated object is being retrieved and this object is a dummy object, that

DumObj - The object-term for the designated

is, its object-term is contained in the set Term
object is specified in the policy request as a value of attribute with Par Name = id.

¢ An attribute of a designated object is being retrieved and the identifier of attribute is included
in the IE or DE set of the partial policy tuple.

e Among other attribute values retrieved by this attribute designator, a null property, an

object-term for a dummy object or a non-leaf hierarchical property is contained®0

All these situations indicate that the attribute values retrieved by this attribute designator can be
augmented, when the partial policy request tuple is refined. In some special cases, an empty open
bag should be returned even if some values were retrieved from the request. An empty open bag is
returned when an identifier for designated object is being retrieved (it is contained in id attribute)
and an object-term for a dummy object is received. In this case, the value retrieved by the
designator can be substituted during the further planning, so it is removed from the resulting bag.
When the identifier of the attribute being retrieved is contained in the DE set of the policy request
tuple, the attribute designator always retrieves an empty bag, since literals with the corresponding
predicate symbols are removed from the planner’s world state which is used for the partial policy
request construction (see Section 6.2.2.2). Hierarchical properties are not removed from an open
bag returned by an Open attribute designator, since they are analysed using a specialised procedure
during the evaluation of higher-level expression (see Section 6.3.6.3).

The Open attribute designator returns open bags in all situations when new values can be
added into resulting bag, when the partial policy request tuple is refined. When a bag of retrieved
values can be eliminated, an empty open bag is returned. The approximation order on a disjoint
union of all possible bags and open bags representing possible modifications of a retrieved bag
during the partial policy request tuple refinement is defined as a subset or equal relation (which
takes into account repetitive values also). So when the partial policy request tuple is refined, a
bag or open bag retrieved by an Open attribute designator is preserved constant or also refined
according to the defined approximation order.

An attribute selector using XPath expression retrieves attribute values from contexts of desig-
nated objects placed into the policy request in the form of XML document. Nodes retrieved by the

XPath expression are interpreted as a bag of values. According to the object context generation

15The null property or the object-term for a dummy-object are not included in the resulting open bag.

156

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

technique (see Section 5.6), the object context, constructed for a partial policy request, can contain
dummy objects, null and hierarchical properties. In order to determine if more values can be added
into a node set retrieved by an attribute selector or some nodes can be substituted, the resulting
node set should be analysed. Additionally, since XPath expressions are queries over XML docu-
ments that use location paths to navigate to a resulting node set, it is required to trace paths in
the object context that can be used to reach resulting node set during the XPath expression eval-
uation. For this purpose, it is required to analyse location paths that form the XPath expression.
Location paths are constructed as a sequence (or a tree-structure) of location steps. Each location
step in a location path refers to a set of nodes in the XML document being processed, which are
determined relatively to the XML document root node. Only a subset of the XPath specification
is supported by the policy-based planner imposing the constraint that each node, used during the
XPath evaluation, should be explicitly referred by some location step is the XPath expression'®.
Within location steps specifications in an XPath expression, object types and predicate symbols
for properties and relations are used in order to define which nodes these location steps should
refer to. So objects which a location step refers to can be dummy objects and more properties
can be added for it. Referred relations and properties can be included in the IE or DE sets and,
hence, more nodes that the location step refers can be added or they can be eliminated. These
situations should be considered in order to determine if an open bag (or an empty open bag) should
be returned by the attribute selector.

Definition 6.16. Open Attribute Selector has the same behaviour as the attribute
selector, but it should return an open bag with attribute values retrieved from the partial policy

request tuple, instead of an ordinal bag, in the following cases:

e Some location step refers to a node set that contains an object-term for a dummy object.
o XPath expression retrieves a null property, an object-term for a dummy object or a non-leaf
hierarchical property!”.

¢ Some location step uses as a node name a predicate symbol from the IE or DE setO

In all these cases more values can be added into the result nodes set when the policy request tuple
being evaluated is refined. The second and third conditions can be detected based on the values of
nodes retrieved by the attribute selector or using analysis of nodes names, utilised in the XPath
expression. In order to decide if the first condition is satisfied, first of all it is checked if in this
planning state there is a dummy object with a type mentioned in the XPath expression. If a
location step referring to this object type is found, a set of nodes that this location path refers to

is determined. For this purpose, a sub-XPath expression is constructed to retrieve a set of nodes

16],0cation paths and specific constraints on supported XPath expressions are considered in more details in
Chapter 8.
17The null property or the dummy object identifier are not included in the resulting open bag.

157

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

that this location step refers to. If a dummy object is included in this object set, the open bag
should be returned, since the evaluation of further location steps can be based on properties and
relation of this object.

Additionally, an empty open bag should be returned regardless of the number of nodes retrieved

if in the predicate part of an XPath expression:

¢ Some location step refers to a node set containing a dummy object.
e Some location path retrieves a null property, a non-leaf hierarchical property-term or an
object-term for a dummy object.

e Some location step uses as a node name a predicate symbol from the IE or DE set.

In these cases an empty open bag is returned, as nodes retrieved by an XPaths expression can be
eliminated when the partial policy request tuple is refined. Analysis of a predicate part in an XPath
expression is distinct, as it can contain nested location paths that specify conditions restricting
a set of nodes referred by the location step, that this predicate part belongs to. Predicate parts
can contain different conditions, including negation. So when a number of nodes referred by some
location step within a predicate part is extended, this can lead to the reduction of nodes retrieved
by the location path that this predicate part belongs to. So when this situation is detected, an
empty open bag is returned. Techniques for the analysis of location paths within predicate parts
are the same as for other location paths. So the Open attribute selector returns open bags in all
situations when new values can be added into the resultant bag. When the bag of retrieved values

can be eliminated, an empty open bag is returned.

6.3.6.2 Target evaluation and truth-value functions with Indeterminate Temporal

value support

Truth-value functions are used in targets and conditions. For the partial policy evaluation, they are
defined as operations on the set TRV al? = {True, False, IndPerm,IndTemp}, which contains
additionally Indeterminate Temporal truth value IndTemp. There are three truth-value operations
in the partial policy evaluation, as well as in the ordinary evaluation: conjunction AP, disjunction
VP and negation —P. Their tables of values are presented in Table 6.5. As can be seen, they were
designed as an extension to the truth-value operations used in the standard XACML. Similarly
with the standard XACML truth-value operations, the new operations VP and AP are commutative,
idempotent and associative. Additionally, the identity and absorption values True and False are
preserved for them. However, in comparison with the standard operations, orders defined based
on the new operations are not duals. The reason for this is the fact that these operations should
be monotonic according to the approximation order on the set TRV al? and when both operations
are applied to IndTemp and IndPerm, the IndTemp value should be returned. Indeed, since

IndTemp can be refined into any permanent decision, it should be guaranteed that this refinement

158

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.5: “A AP B” and “A VP B” operations definitions in TRV al?

A NP B | False | IndTemp | IndPerm | True
False F F F F
IndTemp F IT IT 1T
IndPerm F IT 1P 1P
True F IT IP T
A VP B False | IndPerm | IndTemp | True
False F 1P IT T
IndPerm 1P 1P IT T
IndTemp IT IT 1T T
True T T T T

Table 6.6: “—P A” operation definition in TRV al?
F|IP|IT|T

T |IP |IT | F

will not lead to updates of operation values that are not refinements. This is possible only when the
operation result is always IndTemp if IndTemp is used as an operand, with the exception for the
absorbing values. When an absorbing value is used as an operand, regardless of the other operand
values, the absorbing value should be returned as the resultant value. As can be checked based on
the tables of values, this behaviour guarantees the monotonicity of operations. Correspondingly,
the distribution and absorption laws for the conjunction and disjunction operations over the set
TRV alP are not tautologies'®.

The negation operation = preserves under negation both Indeterminate values: =P (IndTemp) =
IndTemp and —P(IndPerm) = IndPerm. Obviously, Indeterminate values should not be changed
to True or False values under negation. The temporal characteristic of the indeterminate value
also cannot be changed, since IndPerm and IndTemp have different but not opposite meanings.
For example, it is wrong that “If a is temporally unknown, its negation is unknown permanently”.

All functions used during the target evaluation in the ordinary policy evaluation can be rep-
resented using conjunction and disjunction (see Section 4.5.5.1). Hence, target evaluation for the
partial policy evaluation can be represented similarly using the defined truth-value functions V7
and AP. A lower level matcher, which executes a given function over a constant value and a bag of
values, requires additional modifications. The bag of values is produced using the Open attribute
designator or the Open attribute selector. When an open bag is returned by this component, this
bag should be processed using the following mechanism: for each value in this bag it should be
checked, if it matches a constant value according to the function provided. If some of the values in
the open bag match, the True value should be returned. Otherwise, IndTemp should be produced

by this matcher. The monotonicity requirement is satisfied by such a matcher. When one match

18 Counterexamples are a V (a Ab) # a, if a = IP and b = IT for absorbing and a V (bAc) # (aVb) A (aVc) if
a=1P,b=0, c=IT for distribution.

159

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

occurs with a value in the open bag, it will occur when this bag is refined, because values from an
open bag cannot be eliminated during the refinement. When an empty open bag is returned by the
attribute selector or designator, IndTemp should be produced, since this bag can be augmented

with new values.
6.3.6.3 Condition evaluation functions

In Chapter 4, the condition is formalised as a composition of functions, constructed according
to a specification of condition in a policy rule. For the partial policy evaluation, these functions
should be extended to correctly process open bags, retrieved by the Open attribute designators
and selectors. During the evaluation of a condition, each of these bags is transformed into a truth
value returned as a condition evaluation result. Each transformation is carried out by one function.
All possible transformations were analysed and grouped according to the involved abstract data
types in Section 4.5.5.2. A chart with all possible transformations was presented in Figure 4.5. In
the partial policy evaluation, signatures for all functions that have bag arguments or return bags
of values are updated in order to have the possibility to process and return both ordinary bags
and open bags. In this section, each of possible transformations is considered and the behaviour
of functions, implementing these transformations, is specified for partial policy evaluation. The
monotonicity of functions within each class is analysed.

‘Bag - Value’ and ‘Value - Value’ transformations.

There are two functions that implement ‘Bag - Value’ transformation: ‘Int-is-one-only’, ‘Int-

19 The former function gets a bag with one value and returns the individual value,

bag-size’
corresponding to it. If the type of input value does not correspond to the output type or if an
input bag contains more than one value (or none of them), the Indeterminate result is returned.
The latter function returns an integer value equal to a number of values in its Bag argument.

When an open bag is used as an argument of these functions, its output value is undefined: it
can become Indeterminate (e.g., if more values are added into a bag processed by ‘Int-is-one-only’)
or it can increase (e.g., if more values are added into a bag processed by ‘Int-bag-size’). In order
to represent a value that can be substituted by any value with the corresponding data type special
temporal zero elements were defined for each data type: ©%P¢ (for integer type it is ©/™). When
this element is added to a set representing all possible values with corresponding data type, a
discrete flat order is defined on the resulting set: temporal zero element can be refined into any
other value, including Indeterminate value. In the partial policy evaluation, all functions which
process or return individual values are defined on lifted sets of possible values with corresponding
data types that among other values include a temporal zero element.

When an input bag for the function ‘Int-is-one-only’ or ‘Int-bag-size’ is an open bag, it should

191n this section, examples of functions consider only integer data type, but in the XACML specification the same
functions are defined for other data types.

160

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

return a temporal zero element O™, It represents the fact that a value of this function is unknown
and can be refined into any value with the corresponding data type, including the Indeterminate
value. These functions are monotonic, since when an input open bag is refined into another open
bag a value of function is always constant and is equal to the temporal zero. When the input open
bag is refined into an ordinary bag, the resultant temporal zero is refined into a concrete value.

When a temporal zero value is processed by a function implementing ‘Value - Value’ transfor-
mation (e.g., arithmetic operations) the temporal zero should be processed in a strict manner: if
an input value is a temporal zero, an output value of the function should also be a temporal zero.
This guarantees the monotonicity of the function.

‘Value - Truth’ transformation.

As an example of these functions, comparison and equality functions can be considered (e.g.,
‘equality’, ‘more’; ‘less’, ‘inequality’). The domains and co-domain for these functions are flat, so
in order to guarantee the monotonicity they return Indeterminate Temporal value when at least
one of its arguments is a temporal zero value.

‘Value - Bag’ transformation.

There is only one function implementing this transformation in XACML: ‘Int-bag’ This func-
tion can be applied to different number of arguments with the same data type. It returns a bag
containing all values from the input arguments. A set of functions that represent formally this
XACML function should process temporal zero values. When a temporal zero is used as an argu-
ment, this function should not include it into the output bag, but it should produce an open bag
instead of an ordinary bag. Functions defined according to this principle are monotonic, since when
its input argument is refined from a temporal zero into any other value (including Indeterminate
value), this value should be added into the output bag. Correspondingly, if the content of the
output bag is augmented, a new output bag refines the bag that was returned before.

‘Bag - Bag’ transformation.

There are three XACML functions implementing this transformation: ‘Int-union’, ‘Int-
intersection’ and ‘map’. ‘Int-union’ and ‘Int-intersection’ process two bags and return, respectively,
their union and intersection without considering repetitive elements. The map function transforms
all values from an input bag into values of an output bag using a function whose name is provided
as the function’s argument. When one of these functions receives an open bag as an argument,
it should return output values in the open bag also. This guarantees the monotonicity, since the
addition of new elements into argument bags for these functions will not lead to the elimination of
the resulting bag. So when one or several input bags are refined, the output bag is constant or is
also refined, if new elements are added.

‘Bag - Truth’ transformation.

Functions implementing this transformation should be divided into several classes according

161

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

to the possible modifications of output truth values that these functions can introduce when new
values are added into their input bags. If we consider an additional order <. on the set TRV al,
such that False <;. Ind < True, these classes can be defined based on a monotonicity property

of these functions.

Increasing function is a function whose output value can be changed only from False to True
according to the order <;., when new values are added into any of its bag arguments. Gen-
erally, these are functions that require at least one matching between elements of input bags.
For example, function ‘Int-is-in’ processes an integer value and a bag of integer values and
returns a True if this value is contained in the bag. Function ‘any-of’ follows the same prin-
ciple, but additionally it receives a function name as an argument that should be used to
compare values.

Decreasing functions is a function whose output value can be changed only from True to False
according to a dual order for <;., when new values are added into any of its bag arguments.
Generally, these functions require matches for all values within their input bags. For example,
function ‘Int-set-equals’ processes two bags of values and returns true only if these bags are
equal (without considering repetitive values). Function ‘all-of’ is analogous to ‘any-of’, but
it returns true only if the constant input value matches all values in the bag?’.

Left-argument-increasing function is a function that has two bag arguments. If new values
are added into its left bag argument, while its right bag argument is constant, the value can
be changed only from False to True, according to the order <;.. If new values are added into
its right bag argument, while the left argument is constant, the value can be changed only
from True to False, according to a dual order for <;.. An example of such function is ‘any-
of-all’, which in addition to two bags receives a function name as an argument. This function
returns true if any value from the left bag matches all values in the right bag according to
the provided function.

Left-argument-decreasing function is a function opposite to Left-argument-increasing func-
tion. An example of this function is ‘all-of-any’ XACML function, which is true if any value

from the right bag matches all values in the left bag according to the provided function.

Modifications of these functions required for their usage in the partial policy evaluation obviously
depend on the type of a function. An overall mechanism for usage of these functions during the
partial policy evaluation is presented in Figure 6.8. Several correction functions were specified that
should be applied to a value returned by an original function when one of its arguments is an open
bag. Each correction function is a function from the set TRV al to the set TRV alP that introduces

updates required to guarantee the monotonicity of the functions composition. These functions are

20During the partial policy evaluation, this and other higher order functions process evaluation results for con-
stituent functions as if these function are connected with conjunction or disjunction operations (see Section 6.3.6.2).

162

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Call original function

Some argument of the functino is
Open bag

Return the obtained value Call the correction function

[Retum the value after correction)

Figure 6.8: Correction mechanism, applied to function ‘Func’

True-preserving correction function 77,., False-preserving correction function vg; and
Constant correction function 4. As follows from their tables of values in Table 6.7, the
True-preserving correction function modifies the False and Indeterminate Permanent values, the
False-preserving correction function modifies the True and Indeterminate Permanent values and
maps them to Indeterminate Temporal. Other input values for these functions are preserved. The
constant correction function maps all input values to Indeterminate Temporal.

The required correction function should be chosen for each of the considered classed of functions.
The correction function should preserve only values that cannot be updated during the refinement
of its input open bags. For values that can be updated during the input open bag refinement,
Indeterminate Temporal should be returned. For the increasing functions, since True is a supremum
for the order <y, in TRV al, True value cannot be changed during the input open bag refinement.
So the True-preserving correction function should be used for their correction: Funcr,. = yrr ©
Funcy,.. Based on the same principle, decreasing functions should be corrected by the False-
preserving correction function since False is an infinum for the order <. in TRV al: Funcpeer =
vg1 © Funcpeer. For the Left- and Right-argument-increasing functions, the choice of a correction
function depends on the fact in which argument an open bag is used. For the Left-argument-
increasing function when its left argument is an open bag and right argument is an ordinary bag,
True-preserving correction function should be used. When the left argument is an ordinary bag
and the right argument is an open bag, the False-preserving correction function should be used.
When both arguments are open bags, there is no guarantee if the output value will increase or
decrease. Hence, the Constant correction function should be used: Funcconst = vaiu 0 Funccoonst.

For the Left-argument-decreasing function, the True- and False-preserving functions are utilised

163

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.7: Tables of values for True- and False-preserving correction functions yr, and vg; and
Constant correction function vy

A Yrr(A) A Yri(A) A Yau(A)
True True True IndTemp False IndTemp
IndPerm | IndTemp || IndPerm | IndTemp || IndPerm | IndTemp
False IndTemp False False False IndTemp

in the opposite cases. So when an open bag is used as one of the arguments for each of these
functions, a composition of functions that are used instead of the original function is guaranteed to
be monotonic. Only values that cannot be updated during the possible refinements of input values,
are returned as a result of the composition. All values that can be updated during the input values
refinements are substituted by the IndTemp value, which can be refined into any other value.

‘Truth - Truth’ transformation.

Functions implementing this transformation are the same with the truth-value functions con-
sidered in Section 6.3.6.2.

Additionally, during the condition evaluation, non-leaf hierarchical properties (see Section 6.2.1)
retrieved by an attribute designator or selector can be a processed. These hierarchical properties
will be refined into lower level hierarchical properties and this should be considered during the eval-
uation of expressions. When a hierarchical property which is not a leaf node in the corresponding
hierarchy is processed by a function, distinct from the equality relation, it should return a temporal
zero value or IndTemp, because its specific value is not known. The equality function processes hi-
erarchical properties based on their positions in the corresponding hierarchy of properties. If these
values belong to different hierarchies, False is returned. Otherwise, for their processing, a hierar-
chical property ’Tig is associated with a set of its descendant leaf nodes: design(Tig)= {Tﬁ, - ﬂ'ﬁl}
and these sets are used to compare positions of different properties in the hierarchy. Additionally,
it is distinguished if the hierarchical property was retrieved from the policy request (in this case,
it can be refined further) or it is contained in a policy as a constant value. Constant values are

denoted as 7Y When sets of leaf nodes corresponding to two arguments of the equality func-

iconst”
tion do not intersect: design(ry) N design(rjg) = 0 (regardless if they are constant or not), they
cannot represent the same value and False is returned. If both arguments are not constants, True
is returned if these hierarchical properties are equal and both are leaf-nodes, otherwise IndTemp
is produced. Two constant values are processed as ordinal values and True is returned if they are
equal, False is produced otherwise. If only one of the arguments is constant, True is returned when
a set of leaf nodes for the non-constant property is included or equal to a leaf nodes set for another
operand. In this case, a value that the non-constant hierarchical property will be refined into is

guaranteed to be included in the set of values represented by the constant value. Otherwise, the

concrete decision is undefined and IndTemp is returned.

164

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

6.3.7 Loose time intervals processing

During the evaluation of policies, loose time intervals TInterval? = (ActBeg, ActEnd) are pro-
cessed using the same procedure as ordinary time intervals (see Section 5.4.2.2). So a policy is
considered applicable, if it does not have an operation period (i.e., it is always applicable) or if its
operation period intersects with the time interval specified in the policy request, which can be a
loose time interval. Additionally, when the loose time interval is considered, decisions produced by
policies applicable only during some subset of this time interval are modified, since when it will be
substituted by a strict time interval such policies can become inapplicable. So if these policies are
applicable to the current situation (the decision produced is not N/A), the IndTemp decision is
returned regardless of the decision produced by the core part of the policy. The IndT'emp decision

represents the fact that the decision can be updated when the strict time interval will be defined.

6.4 Conclusion

The main contribution of this chapter is the postponed policy enforcement mechanism that was
introduced to improve the planning performance for the policy-based planner, designed in Chap-
ter 5. The principle that earlier recognition of dead-ends during the planning can improve the
planning performance was applied to the policy enforcement process in the policy-based planner.
In the postponed policy enforcement, policies can be evaluated at earlier stages of the planning.
For this purpose, partial policy requests corresponding to actions that should be executed during
the future course of the planning are generated and evaluated. Decisions that can be produced
based on these requests are enforced during the planning. If this decision is Deny, a dead-end
is detected and a large part of the search space can be pruned. If this decision is Permit, the
evaluation of future policy requests that refine the current request can be eliminated. This leads
to the planning time reduction and provides the means to produce the solution faster.

Another contribution of this chapter is the extension of the standard XACML policy evalua-
tion and the introduction of the partial policy evaluation procedure supporting the partial policy
requests evaluation. During the generation of policy requests in the postponed policy enforcement,
not all required information could be available. Correspondingly, a new mechanism was designed
in order to construct partial policy requests containing only known part of the information about
the future policy request along with the indications on modifications that can be expected. For
the evaluation of these partial policy requests, the standard XACML policy evaluation mechanism
was extended and the partial policy evaluation procedure was introduced. In order to represent
a situation when a standard XACML policy decision cannot be inferred during the evaluation, a
new Indeterminate Temporal decision was introduced. When an Indeterminate Temporal decision
is produced during the planning, the partial policy request should be postponed and re-evaluated

when more information is available. The partial policy evaluation procedure was designed as an

165

CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

extension of the formal model of the XACML policy evaluation introduced in Chapter 4. Using
this formal model, it is possible to guarantee that the partial policy evaluation possesses properties
required for its correct usage during the postponed policy enforcement: the partial policy evalua-
tion should be an extension of the ordinary policy evaluation and should be monotonic, meaning
that, when a partial policy request is refined during the planning, the policy decision should be
preserved constant or also refined according to the specified approximation order.

The postponed policy enforcement mechanism will be utilised when the planning domain for
the CEP generation problem is specified (see Chapter 7). This mechanism will be used for the
development of a descending policy evaluation technique. The descending policy evaluation is a
problem-specific technique that optimises the process of EPs selection during the CEP development

and utilises the postponed policy enforcement as its basic principle.

166

Chapter 7

Planning for Combined Educational Pro-

grammes development

Objectives:

e Describe specifications designed to tailor the policy-based
planner for solving the CEP generation problem, including
the planning domain specification.

e Describe the descending policy evaluation technique that op-
timises the EPs selection process during the CEP develop-
ment and is aimed at the planning performance improve-

ment.

7.1 Introduction

In order to solve the CEP generation problem using the policy-based planner, designed in Chapter 5
as a problem-independent planning engine, it should be provided with a specially designed planning
environment specification and the CEP generation problem should be formalised as a planning
problem in this environment. This chapter presents the specification of the planning environment
for the CEP development, including the models of Learning objects (LODbj) utilised for the CEP
construction, and describes how the CEP generation problem is formalised and solved in this
environment.

In Section 7.2, all specifications that refer to LObjs and their relations are covered. In Subsec-
tion 7.2.1, we describe how different LObjs utilised in the CEP generation framework are specified.
These LObjs include existing objects provided for the CEP generation as input and new objects
generated by the solution for the internal use or as a CEP generation outcome. In Subsection 7.2.2,
we present different measures, which can be used to compare the content of LObjs, developed in
different universities. In Subsection 7.2.3, we specify a hierarchical multi-domain environment,
which defines the overall structure of the planning environment for the CEP development. Do-

mains represent different areas or entities within the HE environment, organised hierarchically.

167

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

This model of the environment relate LObjs designed in different domains and policies specified
for these LObjs at different levels of the educational system. Moreover, the hierarchical structure
of the environment provides the possibility to carry out planning at different levels of this hierar-
chy. Finally, in Subsection 7.2.4, we describe how properties of LObjs that can be described using
terms and units adopted in different classification systems and scales (i.e., educational levels and
credits) are specified and converted using the designed transformation rules.

In Section 7.3, all specifications and algorithms related to the core planning processes are
covered. In Subsection 7.3.1, we describe how CEP requirements can be specified by a user!. These
requirements form the planning problem statement. Additionally, in Subsection 7.3.1, the designed
planning domain specification, viz., operators and methods that are used to actually carry out
planning for the CEP development, is described. In Subsection 7.3.2, we describe the descending
policy evaluation technique, which was developed to extend the policy-based planning algorithm
in order to improve the planning efficiency for the higher-level phase of the CEP construction
procedure and provide the means to reduce time required to produce first planning outcomes for
the user. The descending policy evaluation technique is based on the utilisation of problem specific
characteristics of the CEP generation problem, namely, its hierarchical multi-domain environment,

and it is based on the postponed policy enforcement mechanism, which was described in Chapter 6.
7.2 Learning objects and their relations specification

7.2.1 Learning objects specification

The most general definition of Learning object (LObj), given in IEEE LOM standard, states
that ”a learning object is defined as any entity - digital or non-digital - that may be used for
learning, education or training® [97], p.1. Other approaches to defining LObjs [128, 176, 115]
restrict this definition and specify the following LODbj properties: LObj is self-contained (LObj can
be taken independently from other LODbjs), reusable (LObj can be used in multiple educational
contexts different from the original one) and has independent educational purpose(s) explicitly
stated. We adopt these properties of LObjs for the CEP generation framework. Additionally, in
the CEP generation framework, we require that LObjs are described from three perspectives, in
accordance with the BP initiatives (see Chapter 3): content, namely, using learning outcomes;
workload, namely, using credits; and complexity and depth of study, for this purpose mappings to
corresponding levels in educational frameworks are used.

Similarly to other approaches for the LObjs management [128, 176, 115], we assume that LObjs
can be aggregated and as a result of their aggregation new LObjs are produced. An atomic LOb]

in the CEP generation framework is a module.

L As was specified in Chapter3, users of the CEP generation solution can be students or members of institutions
who develop CEPs for students.

168

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Definition 7.1. Module is defined as a tuple:
Mod = (Modname, Conlso, C'r, Level, Pre, Provmoq) (7.1)

where M odname is the title of the module, C’onlé; = {loy,log,...,l0,} is the set of learning outcomes
of the module, Cr is a specification of the credits that student earns, Level is a specification of
the module’s level that defines the depth and complexity of the module, Pre is a specification of
the module’s prerequisites that a student should satisfy in order to study this module, Prov,,.q is
the official education provider for this moduled

The representation and comparison of learning outcomes are described in Section 7.2.2. Credits
are specified by the tuple Cr = (Cry a1, Crscate), where Cry o is the number of credits and Crgeqe
is the scale according to which one credit unit is defined. Usually, a country (or other domain)
where this credit unit is adopted is used as the scale. The educational level of the module is
defined as Level = (Levname, LeVscaie), Where Levngme is the level name which this module
corresponds to and Levg.qie is the qualification framework where this level is defined. Prerequisites
Pre = ({lo1,loa,....,lopm}, {Mody, Mods, ..., Mody}) contain learning outcomes that the student
must gain and modules that he (or she) must study. The module’s education provider Prov,,,q is
specified as a university or other lower-level entity within the university structure, for example, a
faculty or a school (see Section 7.2.3). Modules can be united into modules groups.

Definition 7.2. Modules group is a subset of modules studied within the same semester.
The modules group joins optional modules that are managed by a common set of modules selection

rules and is specified as a tuple:
Group = (Groupy;,q, CT) (7.2)

where Groupy,,; = {Mody, Moda, ..., Mod,} is the set of optional modules in this group, Cr is
the minimal number of credits that the student should receive for studying this groupO

Selection rules that are used to guide the student’s choice of modules from this group are
specified using the modules selection policy. This policy is used during the planning to manage
the optional modules selection process. When a module within modules group is considered for
the selection, this policy can permit or deny the corresponding action. Additionally, this policy
determines when a modules group can be closed, that is, when enough modules were chosen for
the student.

On a higher level of detail, modules and groups of modules are united into semesters.

Definition 7.3. Semester is a LODbj that is formed by two sets: a set of modules Semf/lod =

{Mody, Moda, ..., Mody} that are compulsory for studying in this semester and a set of modules

169

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

groups Semgmup = {Group1, Groups, ..., Group; } that contain optional modules:
Sem = (Semfmd, Semémup, Provgem, TEM Psep,) (7.3)

Additionally, semester contains Provs.,, parameter, that is the official education provider where
students are studying during this semester (e.g., a university), and T'EM Pge,, tuple, containing
temporal parameters of the semester

We assume that students can transfer from one EP to another only between semesters, as this
happens in the majority of the cases in HE, and that all modules within one semester Sem should
be provided by one education provider Provse,,?. The tuple TEM Ps.,, = (Dur, St, Fin) contains
the duration of this semester in days Dur and sequence numbers of months of the year when this
semester starts and finishes: St and Fin®. We assume that all modules included into a semester
are studied in parallel, so they all share the same temporal properties of the semester.

Definition 7.4. Educational programme (EP) is a LObj formed by a sequence of

semesters at the end of which one or several awards are granted:
EP = (EF§;,, EPfw arp, Provep) (7.9)

where EPSS = (Semy, Sema, ..., Sem,) is a tuple of semesters that forms this EP. EP{y 4np =
{... Award; ...} is a set of awards that the student gets when he (or she) finishes this programme,
Provgp is the education provider for this EP (e.g., a university)O

Each award Award; is defined as a tuple (Awardyame, Provew, AWfrea, Level), where
Awardygme is the title of the award, Provg,, is the education provider (e.g., a university) that
issues this award*, AW? = {Area;, Areas, ..., Area,} is the set of fields of study of this award
(usually, there is only one major field, but some awards can include subsidiary fields also) and the
tuple Level = (Levname, LevUscale) specifies that the level of this award is Levygme according to the
qualifications framework Levgeqie. Usually, the qualifications framework corresponds to a country

POS

Se, CONtains semesters in

(or other domain) where the award is issued. The tuple of semesters E
the order according to which they will be studied by the student. The semesters are specified in
an uninterrupted manner: durations of semesters include durations of adjacent vacations, so, for
adjacent semesters, the next semester should start immediately after the end point of the previous

semester. EPs defined in such way represent several paths that students can take by selecting dif-

2We consider only the pure credits mobility CEP type and do not consider the virtual mobility, which allows to
study modules from different providers in parallel (see Chapter 3).

3For example, for January ‘1’ is used, for February - ‘2’, etc. Semester duration ‘Dur’ is an auxiliary parameter
since it is considered that semesters start on the first day of the month and end on the last day (the duration of
semester cannot be longer than a year). ‘Dur’ parameter is used to calculate duration of the education easier, when
several semesters are studied sequentially.

4In our model, one award can be granted only by one university. In order to take into account joint degrees, this
part of the model should be extended.

170

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

ferent optional modules. When a student studies according to an EP, a concrete educational track
is constructed for him (or her): optional modules contained in the modules groups within this EP
are selected. The groups themselves should be closed, what indicates that the required number of
optional modules was chosen. When an optional module is chosen or a group is closed, a special
label is added to it (a special literal with this module or group in the terms list is added into the
planner’s world state). In our definition, EP is an ordinary educational programme that is provided
by one education provider (e.g., by one university). Therefore, all modules and semesters within
one EP should be provided by the same education provider Provgp. Education providers for the
awards Provg, can be equal to the EP education provider Provgp or they can be specified as
higher-level entities within the university structure, such that the EP education provider Provgp
is situated within the award education provider Provg, (for example, EP education provider is a
faculty within the university, but awards are issued by the university itself).

In order to define a CEP, we introduce an artificial LObj type: an EP interval. The EP interval
is a LObj produced based on an EP by selecting its part such that it can be studied by a student
in an uninterrupted way. The EP interval does not contain the EP’s award.

Definition 7.5. EP interval from n to m |EP|,) is a tuple of semesters that contains

th h

all semesters in EP95 semester to the m?"* semester inclusived®

S tuple from the n

Definition 7.6. Combined educational programme (CEP) is a tuplee CEP =
(CEPSsp, CEPS arp), Where CEPOY, 1, = (I1EP1|nymi)s - [EPrling,my)) 18 a totally ordered
set of EP intervals that form this CEP, CEP%, spp is the set of awards that the student gets
when he (or she) graduates from the CEPO

The order of EP intervals in the set CEPS?,p corresponds to the order according to which
these EP intervals will be studied by the student. An EP interval |E-P72|[n7¢,mi] used at i*" position
in the tuple CEPS?, » of a CEP is called an i'" slot of this CEP. EP intervals for the CEP can be
taken from different universities (education providers), then it is external mobility programme, or
they can be from the same university (education provider), then it is internal mobility programme.
Some EP intervals used in a CEP can be parts of the same EP, then this CEP implements a
probation period mobility scenario (or a temporal mobility scenario, as the student returns to its
original EP). EP intervals in a CEP should not overlap in time, but between adjacent semesters
some ‘idle time’ can exist5.

LObjs that should be accessed during the planning should be placed into the planner’s world

state. For this purpose, they are represented using literals. For example, the fact that a module

5In order to easily retrieve durations of EP intervals during the planning, durations of all possible EP intervals
that can be produced based on EPs within the planner’s world state are stored within the state using literals
‘duration_interval’. In term lists of these literals, the EP interval is identified using the EP identifier and numbers
of start and end semesters. The duration of EP interval is specified in days and, additionally, as number of years
and months.

6Constraints on the maximum ‘idle time’ are specified as part of the CEP requirements (see Section 7.3.1.1)

171

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Mod,; has credits tuple Cr; = (Cryaii, CTscalei) is represented as literal credits_spec(Mod;, Cry a;,
C7rscalei). In the defined LObjs model, not all LObj attributes are specified on each level of the
model, that is, not for all types of LObjs. For example, learning outcomes were defined only at
modules level, credits - at modules and modules groups levels. Values of attributes corresponding to
higher level LObjs, which can be used during the policy evaluation, can be derived as an aggregation
of corresponding attributes for its constituent LObjs. As all properties of a LObj and its relations
with the constituent LODbjs are stored in the planner’s world state, any required information about
a LODbj can be retrieved during the policy evaluation using AttributeSelectors, including properties
of LObjs that form a higher-level LObj, and represented as a bag of values. Moreover, the policy
author can specify restrictions that define which specific values should be retrieved, for example,
credits of all compulsory modules in an EP interval, or credits of all selected optional modules
within a modules group. So, using the XACML conditions mechanism supporting complex sets-
based and numeric-based expressions, it is possible to define any possible aggregations of retrieved

values and impose required constraints on them:.
7.2.2 Learning outcomes-based relations between Learning objects

Comparison of educational content taught within LObjs is carried out based on their learning
outcomes. As the basis for this comparison, we use similarity measures between two individual
learning outcomes sim'°(loy,log) € [0, 1] and between two modules sim™°¢(Mody, Mods) € [0, 1],
adopted from [32]. These similarity measures show how similar two los or two modules Mods are,
based on their textual description”. During the CEP development, content of LObjs should be
compared when modules prerequisites are evaluated, for the comparison of lo-prerequisites and
modules-prerequisites with los and modules that the student has studied, and when a student
makes a transfer, for the comparison of modules that the student has studied with the modules in
the EP that he (or she) transfers to, in order to make the recognition. Specific constraints that
should be satisfied in order fulfil a prerequisite or in order to recognise a module are specified as
constraints in corresponding policies. These constraints, among other conditions, should include
restrictions on the minimum values of the corresponding similarity measures. For example, the
following policy can be specified:“In order to fulfil a module prerequisite specified as lo; within the
module tuple Mod;, similarity measure sim(lo;,lo;) between lo; and some learning outcome lo;
that the student has already achieved should be more then N% threshold value”. Additionally, other
constraints can be imposed in such policies, for example, that the learning outcome lo; should
be studied not more then K months ago. Analogous policy constraints can be specified for the

fulfilment of prerequisites specified as modules and on the recognition of modules.

"In order to obtain values of these similarity measures for specific los and Mods, their textual description should
be converted into ontologies with the pre-defined structure using a dedicated recogniser. These ontologies are
processed using the alignment algorithm that derives the value of the similarity measure. Details can be found
in [32].

172

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Policy conditions containing constraints on the described similarity measures are specified by
the policy authors at their discretion and can include arbitrary complex expressions. In order to
reduce the complexity of specification of these policy conditions, pre-configured policy functions
that are used to derive higher-level similarity measures between learning outcomes, based on values
of lower level similarity measures sim!°(lo;,lo;) and sim'®(Mod;, Mod;), can be introduced. When
these functions are used in a policy condition, they should substitute some part of the condition
that otherwise has to be specified by the policy author by hand. The following functions were
introduced in the CEP development solution being developed, but other functions can also be
specified when this is demanded. The first example of such aggregated measure is a maximum

similarity measure calculated between a learning outcome lo; and a learning object LObj:

max

pna (LObj, loj) = maie, e Lov; {sim'°(lo;, 1oj)} (7.5)
where LObj can be a module, a semester or an EP interval. lo; is a learning outcome in the learning
outcomes set Con; corresponding to some module in LObj (or to LObj itself if it is a module). This
measure shows which the most similar learning outcome exists in LObj for learning outcome lo;.
This measure can be required when lo prerequisite is being evaluated. Then, lo; is a prerequisite and
LObj is an EP interval that the student has studied. The analogous maximum similarity measure
for modules p™%%(LObj, Mod;) was implemented based on the sim™°%(Mod;, Mod;) similarity
measure.

Another aggregated measure that was introduced is the average between maximum similarity
measures. This measure defined for modules similarity measures is represented in Formula 7.6.
The measure K9 (LObj;, LObj;) is equal to a sum of maximum similarity measure values (p/%%)
calculated between modules contained in LObj; and the learning object LObj; divided by the
number of modules in LObj;. The LObj can be a semester, an EP or its interval. This measure
can be used in order to specify policy conditions based on the fact how at the average modules
contained in LObj; are similar with modules in LObj;. The analogous measure K'Y can be defined

between two LObjs based on the learning outcomes similarity measure®.

2 {(Mod,eL0bj,;} Pmod (LObji, Mod,)

Ko (LObj;, LObj;) = |LObj,|
J

mod

7.2.3 Hierarchical multi-domain structure and policies for Learning objects

The educational environment, where LODbjs for the CEP development are stored, has a hierarchical

structure. It consists of nested domains where each higher level domain contains objects within

8Generally, measures K%V9 are relations between two sets (either containing learning outcomes, or modules) that
are defined similarly with inclusion measures in [139]. The inclusion measure of a set A into a set B indicates which
part of the set A is included into the set B, i.e., what is the percentage of elements in A contained also in B.

173

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

lower level nested domains. This environment is formalised as a multi-domain hierarchical struc-
ture, which is a special type of hierarchy of properties (see Chapter 6). This hierarchy of properties
is not only used to specify object properties at different levels of hierarchy, but also it represents
an overall structure of the planning environment considered and is connected with policies defined
for this planning environment.

Definition 7.7. Multi-domain hierarchical structure (a domain tree) is a hierarchy of
properties D = (Term?, EP 7P, where Term? = {..., DY ...} U{..., LObj;,...} is the union
of all domains D¥ (they can be countries, universities, regions, etc.) and all LObjs LObj; stored

in the environment. They are organised hierarchically according to EP = {..., (D% D¥2),...},

1)
which defines the structure of the planning environmentO

Each domain DY

Y, except the root domain of the tree 7P, has indexes that identify its place

in the domain tree: x - level of the domain in a tree, y - number of the domain on this level.
Domains represent different entities in the educational environment on a higher-level, for example,
countries, regions, universities, and entities within the university, for example, faculties, schools,
which provide the educational services. Education providers for modules, semesters and EPs
Provysoq, Provsesm and Provgp are specified as smallest, most specific domains within the domain
tree (i.e., as domains that do not have children). So LObjs are added into the domain tree as leaf-
nodes, which are children of their education provider domains Provros;. CEPs are not included in
these LObjs, since they are produced during the planning and are not stored in the environment.
Therefore, each domain in a domain tree structure is defined as set of its descendant LObjs:
DY = {...,LObj;,...}. The fact that the domain DY is a descendant of the domain D}’ or is
equal to it can be designated as D¥i C Dgi Edges of the domain tree are specified using predicates

in(D;, D;), where D; is a child domain or LObj and D; is a parent domain.

D Dys
‘O 0O 0 00000 0O0O0O0

EP 2 EP 4 EP 6 EP 8 EP s-2 EP s
EP1 EP3 EP5 EP7 EPS.3 EPs-1

Figure 7.1: Hierarchical multi-domain environment (domain tree)

In the CEP generation problem, policies have hierarchical structure reflecting the domain tree
of the environment. Each domain DY and learning object LObj; in the domain tree corresponds

to a policy set PolY (for some domains and LObjs, the policy set can be empty). The policy

174

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

set PolY corresponding to the domain DY is applicable only to LObjs situated within D¥. The
policy set Polgi corresponding to a LODbj is applicable to this LObjs and all its constituent LODbjs.
This policy set contains policies managing different aspects of the educational processes and LObjs
usage within this domain (within this policy set different policy organisations are possible, which
are determined by local practises). Since domains are nested in a hierarchical structure, scopes of
policies corresponding to domains connected with ‘ascendent-descendent’ relation intersect. When
these policies generate conflicting decisions, a deny-overrides policy combining algorithm is used.
So a policy request should be permitted only when the policy set of the domain where the action is
carried out is permitted and all policy sets corresponding to its ancestor domains are permitted (or
some of these policy sets can be evaluated to ‘N/A’). An example of policy structure illustrating
organisation of higher-level policies in a hierarchical multi-domain environment is presented in
Formula 7.7. In this example, domain Dy is the root domain containing domains D{ and D?.
Each of these domains contains two sub-domains: D3, D3 and D3, D?. In addition to the policies
shown in the formula, these domains can contain their own policies. Then, these policies should

be added into the corresponding policy sets as additional operands of the combining operations.

P¢(evaluate™ ([Targetp.o], req),

P¢(evaluate™ ([Target 1], req),

o

evaluatePS([[PolicySetD%]],req) of evaluateps([[PolicySeth}],req),req)

DO (7.7)

p

P¢(evaluate™ ([Targetp:], req),

evaluatePS([[PolicySeth]], req) ogo evaluateps([[PolicySeth]], req),req),req)

In the targets of policies that form the overall policy hierarchy Target D! and Target D2 and targets
of policy sets PolicySetp, PolicySet s, PolicySet s and PolicySet s, constraints on the set of
LObjs that these policies are applicable to should be specified. In actions used in the planning
domain specified (see Section 7.3.1), the main LODbj that the action is applied to is contained with
the role ‘resource’. This LObj determines the domain where this action is carried out. So, in order
to form the hierarchy, constraints in these targets should be satisfied only when a LODbj used in the
policy request as ‘resource’ is within the domain that these policy sets correspond to. As a domain
tree is a hierarchy of properties, this condition can be represented using an equality function,
which for hierarchical properties is evaluated according to the ‘equal or included’ principle (see

Section 6.3.6.3).

175

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

7.2.4 Transformation rules for Learning objects properties

In the policy-based planner, transformation rules are used to convert properties of objects specified
using terms adopted in one domain or classification system to another (viz., from one scale to
another). Numeric properties are converted using conversion expressions. For non-numeric values,
mappings of values from one scale to another are defined. Generally, notions from different scales
can be related directly or through an intermediate scale.

For credit values conversion, two ways are used. When it is required to convert a credit value
in a national credit system into another national system, an intermediate representation using
literal hours(LObj, Hyopj) is used. It indicates how many notional hours is required to study a
learning objects LObj. An example of transformation rules for conversion of credit values from
one national credit system (ScaleA) to another national credit system (ScaleB) is presented in
Formula 7.8. Using the first rule, it is possible to derive how many notional hours Hyoy; it takes
to study a LODj, for which credits values are specified in ScaleA. Using the conversion expression
?Hrovj =7Crvaa - Ratey, where Ratey is the number of notional hours corresponding to one
credit in ScaleA, the core calculations are carried out. The second rule defines how many credits
should be allocated to LObj in the national credits system ScaleB. Predicate symbol credits is
utilised in policies and the planning domain specification when it is required to refer to credits
values of LObjs. Using this predicate, values converted according to the described procedure are
accessed, as well it is possible to retrieve a credit value of LODbj in the national credit system as
it is specified in the planner’s world state (for this purpose, the third rule in Formula 7.8 is used).
For conversion of credits from ScaleB to ScaleA, transformation rules analogous to rules 1 and 2

in Formula 7.8 should be specified.

credits_spec(?LObJ, ?Cryaia, Crscaiea), ("Hrovj =?Cryvaia - Rates) — hours(?LObj, THropj)
hOUTS(?LObj, ?HLObj)7 (?CTValB :?HLObj/RateB) — credits(?LObj, ?CTValBa CrScaleB)

credits_spec(?LObY, 1Cryar, 1Crscate) — credits(?LObJ, 7Crvar, 7CTscale) (7.8)

On the other hand, credit values are converted without intermediate representation in notional
hours when it is required to convert national credits into ECTS credits: credits_spec(?LObj,
2Crvan, 1Crscaten), (TCrva = expr(?Cryan)) — credits(?LObG, 7Cry 4, ECTS), where expr()
is an expression for conversion of national credits ?Cry 4 n into ECTS credits 7Cry4;, which can
be specified using more complex expressions than a linear function.

Qualification levels in NQFs are mapped to levels EHEA QF. Mappings between specific

levels in NQFs and levels of EHEA QF are stored in the planner’s world state using literals
QF

EHEA LevNQF LevNQF
ame

: N . . NQF 1 . .
equiv(Levyonsd Name? Secte), Where Levy is a level in NQF Levg.?,. being equiva-

176

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

EHEA
Name

lent to level Lev in EHEA QF. Using these mappings, based on an educational level of an
award in NQF it is possible to determine which level in EHEA QF this award corresponds to. For
this purpose, the rule in Formula 7.9 is used. Literals level(Award, Levname, LeVscaie) are used
to denote a fact that an award corresponds to a certain level Levygme in the framework Levgeqe,
which can be either a NQF or an EHEA QF'. In order to retrieve all awards corresponding to the
same EHEA QF level, literal eqLev(Award, Levyame, Levscaie) is used (see Formulae 7.10, 7.11).
In the rule in Formula 7.10, an EHEA QF level that these awards should correspond is specified
explicitly in the eqLev literal, as Levngme. In the rule in Formula 7.11, instead of it a NQF level
is specified and the awards should correspond to an EHEA QF level being equivalent to this level.

NQF NQF , EHEA NQF NQF
level(?Award, ?Levy .., TLevg).), equiv(? Levy gl TLevy o TLevg 2.) —

— level(?Award, ? LevEHEA chea_qf) (7.9)

Name

level(? Award, ? LevSHEA ehea_qf) — eqLev(? Award, ? LevEHEEA ehea_qf) (7.10)

Name > Name

: NQF NQF
level (? Award, ?LevBHEA ehea_qf), equiv(?LevRHEA 2LepN9F 2 Lev @) —

— eqLev(? Award, ?LB’U%QF ?Levy 9T (7.11)

ame’ Scale

Using transformation rules, it is also possible to define correspondence between other properties, for
example, language qualifications or fields of study for awards. Currently, only one scale is supported
for each of these properties: respectively, the Common European Framework of Reference for
Languages (CEFR) [36] and the International Standard Classification of Education (ISCED)’s

fields of education classification [166].
7.3 Planning procedures for CEP development

7.3.1 HTN planning domain for CEP generation process

7.3.1.1 Input requirements for CEP generation

The input requirements for the CEP generation are specified as a tuple (Req%t"¢, Req"°P, Req?m°,

Student, D), where Req®*""¢, Req”°? and Req""°¢ are requirements for the CEP from the struc-
tural, properties and process perspectives respectively, Student is the student for whom the CEP
should be developed and D is the domain tree that specifies the educational environment for the
CEP development.

The structural requirements ReqS'""¢ are specified as an Initial track: Req®""“¢ = ITr. The
definition of the track is based on the notion of the CEP’s slot (it is an EP interval used for the
CEP construction at the specific position of the CEP structure, see Section 7.2.1).

Definition 7.8. Track is a sequence of domains, EPs and EP intervals that defines the

structure of CEP. It divides the CEP into a sequence of slots and introduces constraints on how

177

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

these slots can be constructed:
Track = (Sly,...,Sl;,...,Sl,),Sl; € Term} 5p (7.12)

where TermB pp={...,D¥%,...}U{...,EP;,... }U{...,|EP;|,...} is the union of the sets of all
domains and all EPs within the domain tree D and all EP intervals that can be constructed based
on these EPs. Sl; is a constraint for the i slot. If it is specified as an EP (or an EP interval), the
corresponding slot in the CEP should be constructed based on an interval of this EP (or based on
this EP interval itself). If it is a domain, this slot should be constructed based on an interval of
an EP within this domainO

The Initial track (ITr) is a track that is provided by the user as the CEP structure requirements.
So a slot’s constraint in the ITr SI; € TermB 5 p restricts the set of EP intervals which can be used
in order to construct the corresponding slot in the CEP. Therefore, the ITr defines the number
of transfers that the student should make during the education according to the CEP and their
high-level specification: from which domain to which domain the transfer should be done. From
the structural perspective, the planning process can be represented as follows. Initially, based on
the provided ITr, corresponding EP intervals are chosen for all slots. The resulting sequence of
EP intervals is called a Basic Track (BTr). During the further planning, this BTr is refined into a
concrete educational route for a student, where optional modules are chosen and some modules can
be removed. So from the structural point of view, the planning is seen as a refinement of the ITr.
At each step of the planning, the current track that was derived from the ITr and that represents
the current solution is designated as Track.

In addition to the structural requirements specified as I'Tr, the set of EPs that can be used for
solving a concrete CEP development problem is also limited. Within the domain tree D, only EPs
that can be used for the CEP construction are specified.

The CEP property-requirements determine specific characteristics of the future CEP. The fol-

lowing property-requirements can be specified by the user:
Req""P = (Award®? tp.q, tpna, o) (7.13)

where AwardR®? = (ProvBed, Area, Levn Lev<%) are requirements to the award that the

aw ame’

student should receive as a result of the education at the CEP. ProvE® = DY is a domain where
education provider Provg,, issuing this award should be situated: Uniq, C Unigeq. Since do-
mains from different levels of the domain tree can be used, this requirement can be represented
flexibly on different levels of abstraction, for example, specific countries, regions or universities

can be used. Levn? —and Levi<d determine the educational level that this award should cor-

178

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Req

N and the qualification framework identifier Lev® 1If this

respond: the level name Lev Seale:

requirement is specified as a level in the EHEA QF, all awards that correspond to NQF lev-
els being equivalent to this level can be used. If a level in a NQF is specified, only awards at
this NQF level can be used. Area is the field of study that the required award should refer
to. Other property-requirements determine temporal constraints for this CEP. tge, and tgnqg
are the earliest begin time and the maximum end time for the CEP. §* determines the max-
imum distance in months between two semesters taken sequentially in CEP. Hence, it speci-
fies the maximum ‘idle time’ between adjacent slots. In addition to the property-requirements,
for the CEP generation problem statement, properties of the student that will be enrolled in
the CEP being developed are provided: Student = (Studname, Studcountry, Langsiuda, Histsiud),
where Studygme is the identifier of the student, Studcountry is the student’s country of origin,
Langsiua = {{Langname i, Langya i, Langscale i)} is the set of languages that the student knows
at the corresponding level: Langname i is the language identifier, Langyq; ; is the level of the
knowledge according to the scale Langscaie i- Histsiug is the history of student’s education in-
cluding HE EPs and pre-HE certificates. Details about the data model used for the student’s
properties specification are given within case studies in Chapter 9.

The CEP process requirements are specified as an initial task network Reg”"°¢ = TN, that
will be decomposed during the planning in order to produce a fully specified CEP process model.
Planning tasks in the CEP generation framework represent how certain parts of the track are
implemented, for example, which EP interval is used for its construction and what is the role of
this part of the track in the educational (mobility) scenario. Therefore, these tasks link slots of the
track, LObjs used for their construction and mobility scenarios that are utilised in the CEP being
constructed. In the next sections, details about planning tasks used during the CEP generation
and about the specification of the initial CEP process requirements, viz., the initial task network,
are given. Additionally, these sections describe how CEPs are constructed using these tasks and

decomposition methods designed for them.
7.3.1.2 BTr development phase

In the first phase of the CEP development, a BTr is constructed based on the process, struc-
ture and property requirements specified for the CEP. Planning tasks that are used within the
current task network during this CEP development phase are compound tasks that relate a part
of the track, an EP interval and a student studying according to the CEP. Such task assigns
to this part of the track a specific role within the mobility programme being developed. Corre-
spondingly, planning tasks used in this CEP development phase have the following parameters:
Student, Track(NS', N5Y), EP,qr, where the parameter Student represents the student that this
CEP is being developed for, Track(N2!, NPY) represents a part of the track Track from the NS¢ th

179

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

slot to the NZ»SI th glot, EP,q- is an optional parameter representing a set of EP intervals that
can be used to construct the part of the CEP represented by the parameter Track(Nfl7NZSl).
The EP,,, parameter can be specified as an EP interval, then within this part of the track this
EP interval should be studied, or as Award®, then an interval of EP that satisfies these award
requirements should be studied within this part of the track.

Higher-level planning tasks used in the BTr development phase are tasks Degree, Start_Degree,
Start_Degree_Probation, Finish_Degree, Finish_Degree_fin and Proceed_Degree. The task
Degree(Student, Track, Award®¢?) is the highest level task that refers to the whole track Track.
Hence, this task represents the whole CEP being developed. Correspondingly, the current task
network that contains this task cannot contain other tasks. This task specifies that at the end
of the education the student Student will receive an award that satisfies requirements Award?q.
The structure of the CEP should conform with the structure requirements specified by the track
Track. The task Start_Degree(Student, Track(l, N3')[,|EP|[1,m)]) represents the initial part of
the CEP, being developed for the student Student, that is covered by the part of Track from its
first slot to the NS! ** slot. The start point of this task is an admission of the student to an EP.
At the end point of this task, the student transfers from this EP to a new EP permanently, that
is, he (or she) will not return to this EP back. The optional parameter \EP\[Lm] indicates the
EP interval that the student is admitted to and that he (or she) transfers from. It is possible
that during the execution of this task the student changes EPs several times and studies in other
universities. The task Finish_Degree(Student, Track(N2!, N5, Award®?) represents the final
part of the CEP, being developed for the student Student, that is covered by the part of Track
from the N35!t slot to the N3! th slot. The start point of this task is the student’s transfer to
an EP whose award satisfies requirements Awardf?. At the end of its execution, the student
is graduated from this EP and receives the corresponding award. During the execution of this
task, the student can transfer from and to this EP several times. Another high-level task is
Proceed_Degree(Student, Track(NS', NSV [, Award™©d]) that represents the intermediate part of
CEP, being developed for the student Student, that is covered by the part of Track from the
N5Ut glot to the NSUth slot. The start point of this task is the student’s transfer to an EP?
that he (or she) has not been admitted to and not the EP the student intends to graduate from.
At the end of its execution, the student transfers from this EP. Award®? are requirements for
the award that the student should receive at the end of the education. EPs that are used in
all but the last slot of the CEP should not satisfy all these requirements. Indeed, these award
requirements are used to limit the set of EPs that can be used in these slots. All these EPs
should have awards in the same area as specified in Award™®? and they should have levels equal

or equivalent to the educational level specified in Award®¢? (this level can be specified in EHEA

9The student can transfer to this EP for the first time, or he (or she) can return to this EP.

180

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

QF or in some NQF). The tasks Start_Degree_Probation and Finish_Degree_fin are used to
specify the temporal transfer scenario, when the EP that the student is admitted to and that he
(or she) will graduate from is the same. They are used to specify the initial and the final parts of
the CEP, while intermediate tasks, for example, the Proceed_Degree task is used to specify the
educational process between them. Other tasks used in the BTr development phase are described
in Appendix B (they are all compound tasks specified there).

The role of BTr development tasks during the planning is to define the mobility scenario
that will be used in this CEP, map this scenario to specific parts of the track and select EP
intervals that will be used in these slots. As tasks used in this phase define roles of corresponding
parts of the track, these roles are defined only in relation to other tasks used in the same task
network. So the task networks used in this CEP development phase are fully ordered, meaning
that the initial task network is fully ordered and all decomposition methods contain only ordered
task networks. The order of tasks in these task networks should correspond to the order of track
intervals that they represent. Additionally, it is required that tasks utilised in task networks during
the planning cover the whole track and do not intersect. So adjoining tasks in a task network
should refer to adjoining parts of the track. If a task network is (...,t;(... Track(N3,N5)...),
to(... Track(NS, N5)...)...), then track parts Track(N3, N5! and Track(NZ, N2) should be
adjoining and N3l = N5/ + 1. These requirements are applied to task networks used as initial

Proc and to tasks networks being produced during the planning.

CEP process requirements Req
For example, the task network in Formula 7.14 represents a mobility scenario with one permanent

transfer: the transfer after which the student will not return to the previous EP again.
(Start_Degree(S, Track(1,3),|EP|y.m), Finish_Degree(S, Track(4,4), Award™?)) (7.14)

BTr development tasks used in a current task network can refer to parts of the track containing
different number of slots. For example, in Formula 7.14, the task Start_Degree covers the part
of the track from the first to the third slots. Such BTr development tasks are decomposed during
the planning. As a result, new transfers are introduced and tasks covering less number of slots are
produced. In the BTr development phase, the lowest level tasks are tasks that cover only one slot
of the track and, in some cases, contain EP intervals that will be studied in these slots. Based on
these tasks, the BTr is determined: it is the sequence of EP intervals used in tasks in the current
task network. Such tasks will be referred as the BTr specification tasks.

Decomposition methods used in the BTr development phase represent a specific basic student
mobility scenario being applied in a specific part of the CEP. The student mobility scenario can be a
a permanent transfer, when the student does not return to the previous EP, or a temporal transfer,

when the student returns back to the previous EP, viz., the probation period scenario. Different

181

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

decomposition methods are specified for the following parts of the CEP: an initial part of the CEP,
when the EP that the student has been admitted to is concerned, an intermediate part or a final
part, when an EP that the student will graduate from is concerned. Different methods for the
same student mobility scenarios being used in different parts of the CEP are required because the
contexts of these scenarios are different. For example, whether a student will eventually graduate
from the EP that he (or she) transfers to or whether a student will return and graduate from the
EP that he (or she) transfers from. Correspondingly, actions that will be used to implement these
scenarios in lower level task networks are different.

The highest-level task Degree can be decomposed using three methods that implement three dif-
ferent mobility scenarios. One permanent transfer scenario (see Formula 7.15) introduces the task
network consisting of Start_Degree and Finish_Degree tasks (for example, like in Formula 7.14, if
the track consists of 4 slots). Two permanent transfers scenario (see Formula 7.3.1.2) additionally
introduces the task Proceed_Degree between them. This results in two permanent transfers that
should be carried out during the education according to the CEP. This method represents the
situation when a student between the EP that he (or she) has been admitted to and the EP that
he (or she) will graduate from studies at one or more other EPs. The temporal transfer scenario
(the probation period scenario) is represented in Formula 7.3.1.2. It is specified using three tasks:
Start_Degree_Probation designating an initial period of study according to an EP before the pro-
bation, Proceed_Degree designating the probation period and Finish_Degree_fin designating the
period of the study at the EP after the students returns to it and before the graduation. Other
decomposition methods used in the BTr development phase are described in Appendix B. These
methods apply the temporal transfer scenario to tasks that have different roles in the higher-level
mobility scenario, so they should be implemented using different lower level actions. Addition-
ally, a method is introduced that realises the one permanent transfer scenario within parts of the
CEP that are implemented by ‘intermediate’ EPs (i.e., not the starting or finishing EPs) (see For-
mula 7.18). It is applied to a Proceed_Degree task that covers more than two slots of the track.
As a result of its execution, two Proceed_Degree tasks are introduced. The first task covers one
slot and has the EP interval specified. The second task covers the rest of the slots and should be

applied to an interval of EP which is different from the previous EP.

Degree(S, Tr, Award®?) — (7.15)

(Start_Degree(S,Tr(1, Fy),|EP|[m)), Finish_Degree(S, Tr(Fy + 1, Iy), Awardfe?))

A method that can be chosen to decompose a task during the planning is restricted by the size
of the track interval that is covered by this task and corresponding domain constraints contained

in the ITr. So it is checked if the part of the track covered by the task being decomposed can

182

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

be divided into smaller parts (in other word, if new BTr development tasks can be introduced)
and it is checked if the tasks introduced can be carried out according to constraints in the ITr
for the corresponding slots (for example, for the temporal transfer, it is checked that accord-
ing to the domain constraints the student will be able to return the EP that he (or she) has
transferred from). Examples of different decompositions for a Degree task covering a four slots
track are presented in Figure 7.2. Cases A. and B. show a variant when initially one permanent
transfer scenario is applied, then one of the introduced tasks is decomposed using the temporal
transfer scenario method for the corresponding part of the CEP (suffixes _str and _fin refine
the role of the higher-level task by modifications introduced using the further applied scenario).
Case C. shows how the task network produced using the high-level temporal transfer method
can be decomposed using one permanent transfer for intermediate EPs method. Using the latter
method, one permanent transfer is introduced between tasks referring to ‘intermediate’ EPs in
this CEP. Additionally, there are complex mobility scenarios where primitive mobility scenarios
applied to the initial and finishing parts of the CEP overlap, for example, as in the task network
(Start_Degree_str, Finish_Degree_str, Start_Degree_fin, Finish_Degree_fin). In order to gen-
erate such task networks, a one-slot Proceed_Degree task generated during the decomposition of
a Start_Degree task is implemented by the first task of the task network that can be produced
during the decomposition of the Finish_Degree task, that is, the Finish_Degree_str task. Sub-
sequent one-slot Proceed_Degree tasks within the task network produced by the Start_Degree
task can be implemented by Finish_Degree_ret tasks'?. For example, the Proceed_Degree task
in the task network (Start_Degree_str, Proceed_Degree, Start_Degree_fin) can be decomposed
into a Finish_Degree_str task. Then, the task Finish_Degree should be decomposed only to task
networks that represent the final part of the higher-level temporal transfer mobility scenario, that
is, to the task Finish_Degree_fin or the task networks (Proceed_Degree, Finish_Degree_fin),
([Proceed_Degree,] Finish_Degree_ret, Proceed_Degree, Finish_Degree_fin). As it can be seen
in Appendix B, some one-slot BTr development tasks do not contain EP intervals. In order to
reduce the overall number of decomposition methods, for these one-slot tasks the decomposition
methods that select EP intervals were joined with the BTr validation methods that should be
applied to these tasks next (see Section 7.3.1.3).

Proc can be specified as a high-level task Degree when

Initial CEP process requirements Req
the user does not want to impose any constraints on the CEP process. Then, all possible CEP
processes can be generated based on the CEP structure and property-requirements. Alternatively,
the sequence of BTr development tasks can be provided as input process requirements. Using it,

the user can define which mobility scenarios can be used in specific parts of the CEP. For the

10The task Finish_Degree_ret represents an intermediate part of the education at the EP that the student will
graduate from. At the start point of this task, the student returns to this EP after studying at another EP. At the
end, the student makes a temporal transfer from this EP. This task is described in more detail in Appendix B.

183

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

specification of the CEP process requirements, the described BTr development tasks are used in a
restricted form: EP intervals are absent in their parameters. All information about possible EPs
that can be used in these tasks is contained in the CEP structure, so the CEP process requirements
are specified as complementary requirements relatively to the CEP structure requirements. The
provided task network should define a correct mobility scenario and should comply with the CEP
structure defined by the ITr. Thus, when the CEP process requirements are specified as a task
network, at first, the planner tries to derive the task network with the same structure from the
corresponding Degree task. If this succeeds, the planning is started from the produced task

network.

Degree(S, Tr, Award®?) — (7.16)
(Start_Degree(S,Tr(1, F1), |[EP|[1 m)), Proceed_Degree(S, Tr(Fy + 1, Fy), Award®®1),
Finish_Degree(S, Tr(Fy + 1, Fy), Award™1))

Degree(S, Tr, Award?°?) — (7.17)
(Start_Degree_Probation(S,Tr(1, Fy), |EP|[1,m)), Proceed_Degree(S, Tr(Fy + 1, Fy), Award™*?),
Finish_Degree_fin(S,Tr(Fs 4 1, Fy), |EP|j1))

Proceed_Degree(S, Tr(So, Fo), Award®?) — (7.18)

(Proceed_Degree(S, Tr(So,50), |EP|jn,m]), Proceed_Degree(S, Tr(So + 1, Fy), Award®1))

Based on the CEP requirements, during the task network decomposition in the BTr development
phase different complex mobility scenarios can be generated for the CEP being developed. Different
scenarios can be produced depending on the methods applied, on the order of their application
and on a chosen division of the track into intervals covered by different tasks. Additionally, during
this decomposition, EP intervals are chosen based on the I'Tr constraints, award requirements and
temporal constraints. Additionally, when EP intervals are selected, their educational content can
be analysed in order to restrict the set of EPs that can be utilised for the construction of one
CEP. Only similar EP intervals can be selected for the CEP construction based on the values of
similarity measures defined in Section 7.2.2. As a result of the BTr development phase, a BTr is
constructed as a sequence of EP intervals!!. During the planning, the BTr development phase is
not executed at once. As soon as a one-slot task that can be implemented first is produced, this
task is decomposed further and lower level actions are produced initiating corresponding policy

checks.

11With the exception for tasks that do not contain EP intervals. For these tasks, the EP interval will be selected
during the next decomposition within the BTr validation phase

184

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Requirements:
" Glelole]
Proc,
Degree Req ™ <Degree> Degree Degree
D1ND4#0
Start Degree Finish Degree D2ND+#0 DiNDs#0 start_Degree Finish_Degree Ste:)r’:atll));igc::e FmISh—fﬁ)]egree
- Proceed_Degree ~
Finish Degree Finish_Degree Start Degree Start ?egree_
| _f|n Proceed_Degree "
Proceed _Degree - 9 - Proceed_ Proceed_
D3 A - Degree Degree
A. B. C.

Figure 7.2: Examples of different decomposition methods application

7.3.1.3 BTr validation phase

In this phase, the BTr development tasks produced in the previous phase are decomposed one
level lower, into primitive and compound actions. The produced task networks define at the
EP intervals level a detailed CEP execution scenario that refines the BTr constructed. Actions
used in this task network initiate corresponding policy evaluations, in order to validate the CEP
constructed. Additionally, during their execution, the CEP is designed at lower level of detail:
obligations are produced and compound actions are decomposed into lower-level tasks, initiating
the further decompositions.

Generally, decomposition methods used in this phase decompose the tasks produced in the BTr
development phase into lower level actions according to their definitions. Decomposition methods
for tasks described in the previous section are represented in Formulae 7.19 - 7.23. The follow-
ing actions were introduced in order to represent the execution of the BTr development tasks in
this phase. These actions designate concrete situations that occur during the education of a stu-
dent according to the CEP at the EP intervals level. Primitive actions ladmitP, ladmitT and
lgraduate designate the admission and graduation to/from CEP. Two actions for admission are
used to distinguish situations when the student is admitted to an EP that he (or she) will graduate
from (ladmitP) or an EP that he (or she) will transfer from in the future at a permanent basis,
that is, the student will not finish this EP (ladmitT). Compound actions &choose_modules and
&study_interval designate procedures for the optional modules selection and for studying an EP
interval in a specific slot of the BTr. Additionally, several actions were introduced to designate
incoming and outgoing transfers of a student to and from the EP interval. Incoming transfers
are actions carried out when the student transfers to an EP interval. Outgoing transfers are,
respectively, executed when the student transfers from an EP interval. Correspondingly, a pair

of these action is used to model a student’s transfer. Using the incoming and outgoing transfer

185

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

actions, policies for the home and destination universities can be evaluated separately. Outgoing
and incoming transfer actions are divided into permanent and temporal transfer actions: they are
designated using suffixes transfer [P, _OP, IT, OT. Temporal outgoing and permanent incom-
ing transfer actions &transfer_IP and !transfer_OT are used when the student will graduate
from the corresponding EP (for the outgoing transfer - the previous EP, for the incoming transfer
- the next EP). Respectively, actions &transfer_IT and ltransfer_ OP are used when the student
will not graduate from the EP. These types of transfer actions are distinguished since during the
execution of the former actions the university should check if it will be possible to award a degree
for the student. Additionally, a specialised incoming transfer action &transfer_IRP is used to
highlight the situation when the student returns to the EP that he (or she) has studied earlier
and is going to graduate from it. For example, when the Proceed_Degree task is decomposed, the
first action is &transfer_IT, which indicates that the student transfers to an EP that he (or she)
will not graduate from, the last action is ltransfer_OP, which indicates that the student transfers
from this EP (but he (or she) can temporarily return to it in the future). Other methods used in

this CEP development phase are specified in Appendix B.

Start_Degree(S, Tr(N°!, N5, |EP|in,m]) — (7.19)
(ladmitT (S, Tr, N5, |EP|y,m)); &choose_modules(S, T, N5 |EP|in,m))
&study_interval (S, Tr, N5 |EP| (n,m]), transfer OP(S, T, N5 |EP| (n,m]))
Finish_Degree(S, Tr(N5', N5, Award"°?) — (7.20)
(&transfer IP(S, Tr, N5, |EP|in,m)), &choose_modules(S, T'r, N5U|EP| (n,m])s
&study _interval (S, Tr, N9, |EP|in,m)), 'graduate(S, T'r, N5 |EP (n,m)))
Proceed_Degree(S, Tr(N°!, NS, [EP]n,m) or Award®)) — (7.21)
(&transfer IT(S,Tr,N5!, | EP|y,m)), &choose_modules(S, T, N5 |EP|in,m]),
&study_interval (S, Tr, N5, |EP| (n,m]), trans fer OP(S, T, N5 |EP| (n,m]))
Start_Degree_Probation(S, Tr(N5', N5') |EP| . m) — (7.22)
(ladmitP(S, Tr, N5 |EP|[,,m]), &choose_modules(S, T, N5 |EP|[n,m]),
&study_interval (S, Tr, N5, |EP| (n,m)), transfer OT(S, T, N5 |EP (n,m)))
Finish_Degree_fin(S, Tr(N°', N5, |EP]| (nym]) — (7.23)
(&transfer IRP(S,Tr,N°', | EP|y,m)), &choose_modules(S, T, N5t |EP|in,m),

&study_interval (S, Tr, N9, |EP|1y,m)), 'graduate(S, T'r, N5 |EP|in,m)))

Primitive and compound actions introduced at this level are provided with policy parameters

tuples that have the uniform structure. For example, for the action &study_interval(Student,

186

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Track;, N5, |EP|y,m)), where NS5 is the number of the slot in the track Track; that this ac-
tion corresponds to, the following policy parameters tuple is defined: ({(Student, Subject), (EP,
Resource)}, {(N5!, Slot), (Track;, Track), (n, Interval_start), (m, Interval_end)}), where stu-
dent object is used as a subject, EP object is used as a resource and numbers of the start and
finish semesters for the EP interval are used as action attributes, along with the number of cor-
responding slot. For all actions, excepting the &study_interval action, start and end time points
are the same. For the &study_interval action, duration is equal to the duration of the correspond-
ing EP interval (i.e., the sum of durations of corresponding semesters). When actions introduced
at this phase are executed, their effects are saved into the planner’s world state. These effects
represent the history of the student’s education according to the CEP and are saved in relation
with the corresponding slots of the track. For example, when the action &study_interval is ex-
ecuted, a history literal with the predicate symbol ‘history’ is added into the planner’s world
state: history(Student, Track;, N5UEP,n, m), where Track; is the track being developed during
the plannings and N°! is the number of the slot in this track. In addition to these literals, other
important milestones of the student mobility scenario execution are saved in the planner’s world
state, for example, the fact that a probation period was started. These effects are used for opera-
tors and methods precondition evaluation (e.g., in order to determine if an EP was already studied
by the student, so it is prohibited to select it in some subsequent tasks). Moreover, these effects
are used during the policy evaluation in order to derive a policy decision based on the history of
the student’s education. Effect for actions that are generated during this phase are specified in

Appendix B.
7.3.1.4 Low-level routines

In the next phase of the CEP development, based on the primitive and compound actions produced
during the decomposition of the BTr development tasks, routines for the design of lower level CEP
processes are initiated. These processes operate at the modules level and can be classified into
compulsory and optional processes.

Compulsory processes, which should be carried out in any CEP, are generated using routines ini-
tiated using decomposition methods for compound actions &choose_modules and &study_interval.
Before an EP interval can be studied, all groups of optional modules should be closed, mean-
ing that optional modules should be chosen such that corresponding policy requirements, gov-
erning their selection, are satisfied. As within an EP interval there can be several groups of
optional modules and within one group there can be different number of modules, methods
for the &choose_modules task are carried out using recursion. At the higher level, all groups
within the EP interval are considered sequentially in a recursive manner using the method for the

Choose_modules_find_groups compound task. At the lower level, for each group different vari-

187

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

ants for the modules selection that results in the group closure are tried using the method for the
Choose_modules_group compound task. Therefore, all possible combinations of the optional mod-
ules selection are tried (see Appendix B). When a module is selected, the action !choose_module
containing this module as a parameter is carried out. When a group is closed, action !close_group is
carried out. The &study_interval compound action is also implemented using two recursive meth-
ods. The higher-level method for the Find_sems compound task sequentially processes semesters
within the considered EP interval. The lower-level method for the Find_-modules compound
task processes core and selected optional modules within one semester (see Appendix B). Actions
Istudy_mod(Student, |EP|, ,,,], Sem;, Mod,, N3' Tracky) are used to denote the fact that module
Mod; within the semester Sem; of |EP|(,) was studied by the student Student at N5 * slot of
the track Tracky. These actions are carried out sequentially during the planning, while during the
education they are studied in parallel. Obviously, this process is perceived more naturally using
parallel actions in a resulting plan. So we introduced ‘pseudo-parallel’ actions. These actions are
modelled during the planning sequentially and are connected using their effects and preconditions,
being evaluated against the current planner’s world state. However, in the resulting plan, these
tasks are represented as parallel actions. This is modelled using auxiliary actions !concur_start,
lconcur_end and !change_line, which are inserted into the plan using decomposition methods in
order to mark concurrent parts of the plan. !concur_start and !concur_end designate start and
end points of a segment with parallel plan sections. !change_line is used to designate the end
of one parallel section and beginning of the next section. When the resulting plan is generated,
these auxiliary action are analysed and are used to convert this sequential plan into the plan with
parallel sections (see example in the second case study in Chapter 9).

Execution of optional processes and task networks that represent them is initiated using obli-
gations. Obligations are specified by policy authors as part of the policy specification. In order
to generate a correct CEP process, obligations should be triggered only in certain situation, when
these obligations can be executed according to the educational process. In order to restrict a set
of obligations that can be generated during the evaluation of a policy request with certain action,
corresponding obligations validation rules were designed as part of the planning domain specifica-
tion (see its subset in Figure 7.3). Since all these rules are valid for the whole domain, asterisk
symbol is used in their policy lists.

The first and second obligation validation rules specify that in order to admit a student to
a university, he (or she) might need to pass exams. So the admission action can be augmented
with the !sit_exam obligation. Another educational routine for which different variations exist is
a modules prerequisites evaluation routine. Generally, for studying a LObj by a student, either
all its prerequisites should be satisfied or only certain part of the prerequisites should be satisfied.

Another variation is a level in the EP structure at which the number of unfulfilled prerequisites

188

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

(ladmitP (before (lsit_exam)) => x)

ladmitT (before (sit_exam)) => x)

Istudy_mod (before (&check_prereq_mod)) => x)
&check_prereq-mod (during (Satisfy_prereq-mod_all)) => *)

&study_sem (before (&evaluate_precond_sem))(after (lic_prereq_sem)) => x)
&study_sem (before (&evaluate_precond_sem_all)) =>)
&recognise (during (Recognise_1_1)) => x)

© 0 N O O W N -

(
(
(
(
(&check_prereq-mod (during (Satisfy_prereq-mod)) =>)
(
(
(
(

&transfer_IP (during (ordered &recognise \discard_dif ference)) => x)

10. (&transfer_IP (during (ordered &recognise &move_to_sem)) => x)

11. (&transfer_IP (during (ordered &recognise &evaluate_dif ference)) => x)
12. (&transfer IP (during (ordered &recognise &evaluate_dif ference_intermed
&move_to_sem)) => x)

13. (&transfer_IP (

14. (&transfer_IP (

during (ordered &evaluate_dif ference)) => x))
during (ordered discard_dif ference)) => %)

Figure 7.3: Obligation validation rules

is aggregated and evaluated. For example, there can be constraints that a certain percent of
prerequisites should be satisfied for each module, or this percent is calculated for modules within
the current semester or for all modules within the current EP interval. If prerequisites are evaluated
separately for each module, a before-obligation action &check_prereq_mod should be generated for
the action !study_mod (see the third rule). For this action, a during obligation should be used
to specify which specific procedure should be used to evaluate prerequisites'?. These procedures
are represented by the task Satisfy_prereq-mod or task Satisfy_prereq-mod_all (see rules four
- five). The former task specifies that some module’s prerequisite can be not satisfied, while the
latter task requires that all prerequisites should be satisfied. During the execution of the task
Satisfy_prereq-mod, action !satisfy_prereq-mod is executed for each prerequisite of the module.
Policies for this action specify conditions for fulfilment of this prerequisite. If this action cannot
be executed, the planner continues planning. When all prerequisites for the module are evaluated,
the action lic_check_prereq_mod is executed in order to estimate the overall number of satisfied
and not satisfied prerequisites (specific threshold should be specified in conditions of corresponding
policies) and derive a final decision if this module can be studied by the student. On the contrary,
when the task Satisfy_prereqmod_all is used, further planning is blocked if some prerequisite is
not satisfied. Another approach to the prerequisites evaluation requires that all prerequisites of
modules in one semester should be evaluated within one procedure (i.e., without the division of
prerequisites in groups corresponding to their modules). For this prerequisites evaluation, there

are two possible compound actions that can be used as before-obligations: &evaluate_precond_sem

12These obligations are separated to have the possibility to specify them in policies separately, for example, in
different policies.

189

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

and &evaluate_precond_sem_all (see rules 6 - 7). Similarly with the previous pair of prerequisites
evaluation tasks, the latter task requires that all prerequisites should be satisfied, while the former
task requires just certain percent of satisfied prerequisites. During the decomposition of the former
task, the additional after-obligation lic_prereq_sem is used to estimate if the required number of
prerequisites are satisfied. Examples of different prerequisites evaluation schemas are presented in
Chapter 9.

Using obligations, policy authors can also define a routine for the execution of incoming stu-
dents’ transfers. During a student’s transfer the following tasks can be carried out. Possible
combination of these tasks are specified using the obligations validation rules 9 - 14 in Figure 7.3.
First of all, the planner can try to recognise modules of the EP that the student transfers to.
In this case, the compound action &recognise should be returned as a during-obligation for the
action &transfer_IP. In turn, a during obligation for the compound action &recognise should
specify which type of recognition can be used. In the current version of the CEP generation so-
lution, only one-to-one modules recognition is supported (i.e., one module must be recognised by
one another module) (see rule 8). During the execution of this task, modules are recognised using
the action !recognise_module_1_1(Mody, Mods, Student, Tracky, N5, |EP|(,m]), where Mods is
a recognised module, Mod; is a module studied by the student that is used to support the recogni-
tion. When a module is recognised, it is marked using a special flag. After the &recognise action,
other tasks should be used that process the recognition results and introduce other possibilities to
process modules, that were not recognised by the &recognise action. Using the compound action
&move_to_sem, unrecognised modules that the student should have studied can be moved into
the EP interval that the student transfers to. The second possibility is to recognise such modules
using additional assessments. During the decomposition of the task &evaluate_dif ference, which
is returned as a during-obligation, actions !evaluate are applied to such modules and it is checked if
policies permit their assessment and recognition. At the end of the task networks produced during
the &evaluate_dif ference and &move_to_sem decomposition, action !discard_dif ference is used
to estimate if modules that were not recognised and were not moved into the EP interval can be
neglected and the transfer can still be carried out. The action !discard_dif ference can also be
returned as an independent during-obligation (see rule 9), when if the during obligations set for
the action &transfer_I P does not contain obligations &evaluate_dif ference and &move_to_sem.
An example of the &recognise action execution is presented in Chapter 9.

Primitive and compound actions used in this phase have different policy parameters tuples
structures, but the general approach is that the student is used as a subject and the main LODbj
that the current action is applied to (it can be a module, a semester or an EP) is used as a resource.
If other LObjs are used as parameters of this task, they are represented as additional designated

objects with corresponding roles. For example, in the action !recognise_module_1_1(Mod;, Mods,

190

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

Student, Tracky, N°!, | EP|jy,m)) module Mod, that is, the module used to support the recogni-
tion, is used as a designated object with the role ‘ModToSupport’ and module Mods, that is, the
recognised module, is used as a designated object with the role ‘Resource’.

The resulting plan represents a detailed CEP process that should be executed during the
education of the student according to the resulting CEP. As this plan is hierarchical and each
semester and EP interval is designated by compound actions &study_sem and &study_interval,
the CEP structure can be easily extracted. Modules of this CEP are contained as parameters in
actions !study_mod. They can be easily grouped into semesters, as actions with modules that belong
to the same semester are carried out within the same &study_sem compound action. Optional
modules used in this CEP can be distinguished by the !choose_module actions, performed during

their selection.
7.3.1.5 Variations of overall CEP construction procedure

Two variants of the CEP generation procedure were designed. In the first variant, after the user
specifies the CEP requirements, the planner carries out all three phases of the CEP development
and produces a fully specified CEP for the user. The drawback of this variant is the fact that the
user should wait until the planner develops a fully specified CEP that can be returned for his (or her)
evaluation. Moreover, the user can be not satisfied with the produced CEP, for example, because he
(or she) have not specified all the CEP requirements that he (or she) intended. In order to overcome
this drawback, the second variant of the CEP construction procedure was introduced. In this
variant, the user is provided with preliminary results of the planning: these are BTrs constructed
in the first phase of CEP generation and validated at its second phase (see Sections 7.3.1.2 -
7.3.1.3). As was shown, BTrs are used as a basis for the further generation of detailed CEPs, so
they provide general information about these CEPs. The BTrs can be constructed faster for the
user, based on them the user can intervene into the planning process. He (or she) can modify
input requirements and run the BTr development and validation phases again, if unsatisfactory
or empty results were received. Alternatively, the user can select one or several BTrs that he (or
she) prefers that will be passed to the next phase of the CEP generation. The CEP generation
solution designed can support both variants of CEP construction procedure: ordinary and with
intermediate BTr results. They can be selected by the user based on concrete parameters of the
problem and the planning environment used, specifically, based on the scale of the problem. The
second variant, when initially only BTrs are designed, is advantageous for the large scale problems
as the user can intervene into the CEP construction at the earlier stages and can guide the planning
process. As a result, CEPs that satisfy the user more can be produced. Moreover, in addition to
the overall optimisation of the CEP construction process, a performance improvement technique

was designed specifically for BTr development and validation phases (see Section 7.3.2).

191

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

7.3.2 Descending policy evaluation technique

During the BTr development and validation phases, a large search space should be explored if
high level CEP requirements have been specified and a large set of EPs that can be used for
the CEP construction has been provided to the system. The crucial difficulty is the search for
EP intervals that can be used for the construction of a CEP in a way that all policy constraints
specified for this CEP are satisfied. Policies specified at different levels of the hierarchical multi-
domain structure impose limitations on the consistent use of these EPs. The postponed policy
enforcement mechanism, which was developed in Chapter 6, provides the means to improve the
performance of policy-based planning by earlier evaluation of policies during the planning and,
correspondingly, to generate results of the planning in less time. In this section, the postponed
policy enforcement mechanism is applied to the BTr development problem, in concrete, to the EP
interval search process. As a result, a problem-specific technique for the planning performance

improvement is developed. This technique is the descending policy evaluation.
7.3.2.1 Utilisation of postponed policy enforcement for CEP generation problem

The CEP generation planning domain was extended in order to utilise the advantages of the
postponed policy enforcement. For this purpose, first of all, high-level effects, which can represent
the known part of future effects, and partial policy vectors, representing known information about
policy request parameters, should be defined. The core process of the BTr development is the
selection of EP intervals for slots in a track, so these EPs and their positions in the track are
used as high-level effects of compound tasks in the BTr development phase. EP intervals can be
represented as Dummy objects that have properties and relations representing the known part of
their specification. In the initial stages of the planning, this information can be derived based on
the corresponding constraints specified in the I'Tr and requirements for an award that should be
received at the end of the education.

For example, if a higher-level Degree task is provided as an initial task network, it is known
that the last slot of the track will be constructed based on EP that has an award with a level
that is equal or equivalent to the level requirements <Levﬁi‘ine, Lev?fgle>. It is known that this
award should have problem area equal to the Area parameter provided as a requirement for
the resulting award. Moreover, any EP that can be used in this slot will be within a domain
Djower, that is, a lower level domain between the domain used in the corresponding slot of the
ITr and the domain used in the award’s requirements. In this technique, in addition to the do-
main tree hierarchy of properties, we have defined a set of property hierarchies for educational
levels: levels in the EHEA QF are used as roots in these hierarchies and levels in NQFs equiv-
alent to them are used as leafs. Hence, the Dummy EP for the last slot in the BTr can be

defined as EPpp,1 = ({},{, (Diower, { Area}, <LevReq Leved W} Diower). The fact that the

Name> Scale

192

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

set of semesters is empty and there is only one area in the area set (while a real EP might have
more than one area) conforms with the definition of a Dummy object. During the processing of
this object, it will be considered that any other properties and relations can be added to it. So
we have updated the Degree task processing in the following way. If this task is specified as
an initial task network, before the actual planning starts, a high-level effect is assigned to this
task. This high-level effect designates the history literal referring to the last slot of the track that
will be added into the planner’s world state when the corresponding & study_interval will be exe-
cuted: history(Student, Track;,n, EPpy, 1, NIL, NIL), where n is the number of the last slot in
Track;. Obviously, in addition to the high-level effect, partial policy vectors can be assigned to this
task. These partial policy vectors represent actions !graduate and &study_interval because for
the Degree task it is known that these actions will be carried out during each possible decomposi-
tion. For example, the partial policy vector for the lgraduate action is the following: ({(Student,
Subject), (EPpm_1, Resource)}, lgraduate, {(n, Slot), (Track;, Track), (NIL, Interval_start),
(NIL, Interval_end)}, TInterval?), where TIntervalf is a loose time interval equal to interval
(tBeg,tEna). It should be noted, other high-level effects and partial policy vectors for the task
Degree cannot be specified, because according to the Dummy object definition each Dummy ob-
ject is distinct, meaning that the same Dummy object-terms should be substituted by the same
ordinary object-term. For the Degree task it is unknown where equal EPs will be used within
a track, so only when further decomposition methods are applied, more high-level effects can be
added.

BTr development methods described before were modified such that these methods add some
specific new information for the partial policy evaluation when they are applied during the planning.
They assign new high-level effects, add more partial policy vectors or refine existing high-level ef-
fects and partial policy vectors. For example, during the execution of method Degree(...Track(1,
4)...) — Start_Degree(...Track(1,3)...), Finish_Degree(...Track(4,4)...), illustrated in Fig-
ure 7.2, case B (first method), the following new structures should be assigned to new tasks being
produced during the decomposition. Based on the task Start_Degree, it is known that EP intervals
of the same EP will be used in slots one and three. Hence, a new Dummy EP can be specified for

these slots: EPpmo = ({},{(, D] {Area}, (LevR ' ehea_qf))}, D) . ..}, where D]

lower> Name > lower lower

is the

lower domain between domains in I'Tr for slots one and three. The educational level is specified as

Req
Name

a level Lev " in EHEA QF because awards of non-final EPs within a track should correspond
to the EHEA QF level of the final award. Correspondingly, this Dummy EP is used in history
high-level effects for slots one and three. Partial policy vectors with this Dummy EP can also be
added to the task Start_Degree. These partial policy vectors refer to the first and third slots. For

the first slot, partial policy vectors with actions &study_interval, ladmitT and !transfer_ OP are

added. For the third slot, partial policy vectors with actions &study_interval, 'transfer_OP and

193

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

&transfer_IT are added.

The illustrated principle is used for the specification of high-level effects and partial policy
vectors for other methods also. When during the application of a method it is known that in
some slots the same (or distinct) EPs are used, corresponding Dummy EPs can be specified and
added into the method definition as new high-level effects and partial policy vectors that should be
assigned during its execution to the produced tasks. Additionally, in order to satisfy the correctness
requirement, each high-level effect and partial policy request of the task that this method is applied
to should be propagated to lower level tasks or refined. Loose time intervals are equal to the interval
for the Degree task ((tBeg, tgna)) with the difference that a current time is used as the start point
of the interval if some actions were already executed'®.

Using this principle, when one-interval BTr specification task is produced during the decom-
position, high-level effects and partial policy vectors of the task that has been decomposed are
refined and a specific EP interval is determined. Then, corresponding high-level effects and partial
policy vectors become equal to effects and policy vectors that will be assigned and evaluated by
lower level actions. So, for these policy vectors, only permanent decisions are produced during the

policy evaluation.
7.3.2.2 Descending policy evaluation algorithm

During the BTr development, it is required to explore a large set of EPs stored within the planning
environment and select EP intervals that can be used in the BTr in a way that all policies are
satisfied. The planning domain for the BTr development phase contains few methods, so the
following property holds when the CEP requirements are specified loosely, meaning that domain
constraints in the ITr and resulting degree are specified at higher levels of the domain tree. The
average number of possible EPs that can be used for the instantiation of an EP-variable within a
planning task (n(EP)) is much greater than the average number of methods applicable to this task
(nM) multiplied by the average number of possible instantiations of other variables used within
the methods’ preconditions (n(Pre))'*: n(EP) > n(Pre)-n(M). In such situations, the Fewest-
Alternatives First (FAF) strategy can be adopted to improve the planning performance. This
strategy is used for the selection of flaws for processing during the planning. It was shown that it can
improve the planning performance in a broad range of HTN planning domains [156]'°. According
to this strategy, the instantiation of EP-variables should be postponed during the planning (i.e.,

the least-commitment approach should be used for the EP-variables instantiation) and during the

13 Additionally, after the execution of an action, a specialised procedure is used to update time intervals in partial
policy vectors assigned to tasks in the current task network. When the &study_interval action is carried out, which
represents the execution of an EP interval, start time points of possible time intervals in these partial policy vectors
should be updated.

14For example, variables for the start and end semesters of the EP interval that will be used in the tasks produced.

15 This strategy analyses the number of possible branches produced when certain flaw is resolved and selects the
flaw that brings less branching. So in contrast to the static strategies, which select flaws based on their types, it
selects preferable flaws dynamically based on a current situation.

194

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

application of methods EP-variables should be kept non-instantiated.

Using the CEP generation planning environment peculiarities, this principle can be extended.
Based on the fact that policies are organised hierarchically according to the domains tree and are
related with the Deny-overrides combining algorithm, it follows that a policy request containing
an EP should be permitted by policies of all domains where this EP is included. Correspondingly,
when it is required to select an EP for an EP-variable, initially a domain can be selected instead
of selecting an EP value. This domain value represents an area where this EP will be situated.
Namely, when the EP-variable will be instantiated by a specific EP, this EP should be selected from
this domain. During the planning, the domain value for the EP-variable is refined: the domain
value is substituted with lower-level domains nested in the original domain. So the domains are
updated in a descending manner, limiting the EP search area. When a new domain for an EP is
selected, partial policy requests referring to this EP and containing known information about it
should be evaluated against the policies of this domain. When a partial policy request is evaluated
into a permanent decision, this decision refers to the whole set of EPs situated within the current
domain, because when the policy request is refined, the same decision should be produced for all
these EPs. This provides the possibility to prune several EPs from the search space earlier during
the planning when some request is denied, so improving the planning performance.

DescPE (PolVec” - partial policy vector, EPp,, - Dummy EP, DZ; - domain or EP,
Speqr — set of partial policy vectors)

1. Evaluate partial policy request for PolVec’

2. If result is Deny or IndPerm then Return Failure endif

3. If result is IndTemp then add a copy of PolVect into Sgreq” endif

4. 1If result is Permit or N/A and DY is EP then:

4.1. Re-evaluate all partial policy vectors in SReqP with known EP equal
to DY!.
4.2. 1If any Deny has occurred then Return Failure else Return D;’i endif
endif
5. Loop for all children Dg: of DY in the domain tree:
5.1. If Dgz is EP then Check requirements to EP. If requirements are not
satisfied then Continue with next Dgz endif endif
5.2. Update domain of EPp,, with Dzi, add EPp,, into PolVecP
5.3. Assign Res:= DescPE(PolVect, EPp,,, D;”,ﬁ, Sgeqr). If Res # Failure
then Return Res endif
EndLoop

6. Return Failure

Figure 7.4: Basic descending policy evaluation algorithm

An algorithm for the descending policy evaluation is presented in Figure 7.4. The descending
policy evaluation is carried out for partial policy vectors that were defined in Section 7.3.2.1. Each

of these partial policy vectors PolVec! contains a Dummy EP (EPp,,) that represents all known

195

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

information about the EP used as a designated object with the ‘Resource’ role and is attached to
a one-slot task T'A in a current task network. Before the algorithm is called, initial domain value
Dyi for EPpy, is determined. It is equal to a domain value in the corresponding slot of ITr. So as
input, the procedure DescPE gets a partial policy vector PolVec”, a Dummy EP EPp,,, which is
used in this vector, and a domain Dy?, which is equal to the domain of EPpy,. Additionally, a set
SReqr is provided as an input for the procedure DescPE. When this procedure is called for the first
time for a policy request and an EP, this set is empty. During the recursive calls, it is populated
with postponed policy request vectors. The procedure is carried out recursively searching for an EP
in a domain tree in a descendant manner: in each cycle an input partial policy vector is evaluated,
results of the evaluation are processed and a child value of the domain Dj! is chosen as a new
domain for the Dummy EP EPp,,. The policy vector PolVec? is evaluated only against policies
in a current domain Dyf. When this partial policy request is permitted, this means that these
policies should not be evaluated further for any EPs that will be found within this domain. If it is
denied, a backtrack should be done as this means that this request will be denied for all these EPs.
If IndTemp decision is returned for this request, this means that a permanent decision cannot be
determined for this request and the request should be saved into the Sg..r set and re-evaluated
when a concrete EP will be selected. So if the partial policy request is permitted and the current
value of Dy is EP (and all policy vectors in Sg.qr were permitted) this EP is returned as a result.
It should be also noted that the returned EP should satisfy the user requirements, so in step 5.1.,
when a new domain value Dy’ is selected and it is an EP, it is checked if this EP satisfies the
user requirements. In Figure 7.4, the descending policy evaluation procedure was illustrated as an
example for one partial policy vector and for a one-slot task, meaning that the constraint on its
domain specified in the ITr can be immediately enforced. The complete version of the descending

policy evaluation procedure will be considered in the next sections.
7.3.2.3 Domain refinement

The performance of planning depends on the possibility to make critical decisions earlier and
postpone other decisions until a good opportunity occurs [154]. According to this principle, the
descending policy evaluation procedure was split into several stages and these stages are carried out
in different steps of the planning. Each stage corresponds to the evaluation of policies in one do-
main. So finer-grain decisions can be taken during the planning. The descending policy evaluation
procedure can be interrupted at a certain stage and the planner can switch to the decomposition of
tasks within the current task network. One stage in the descending policy evaluation is realised as
a domain refinement operation. In order to implement these operations, the original planning envi-
ronment is modified. All tasks are specified as localised tasks TAP := (task(T AP), domain(T AP)),

where task(T AP) is an original task atom, domain(T AP) € TermB 5 is a domain value for the

196

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

task task(T AP) that indicates that it should be executed within the domain domain(T AP) (that
is, the descending policy evaluation algorithm has stopped at this domain for the task TAP). So
EPs used in all tasks generated during the decomposition of the task T AP should be within the
domain domain(T AP).

When the planning starts, no restrictions are specified on the domains of tasks within the initial
task network, that is, a root domain is used as domain value. Methods in the descending policy
evaluation are divided into two disjoint sets: decomposition methods and domain refinement meth-
ods. Decomposition methods are produced based on the BTr development methods, used to the
solve the BTr development tasks (see Section 7.3.1.2). The following updates were introduced for
these methods: during the decomposition, they do not instantiate EP variables and do not modify
the tasks’ domains. The decomposition of tasks in a current task network using these methods is
represented in an abstract way using the function Rg(T AL, No). This function represents which
updates to a current state of the planner can be introduced when certain task in a current task
network is decomposed by some decomposition method. So this function is applied to state Ny, a
state of the planner formed by the current planner’s world state PlanState(Ny) and the current
task network tasks(No) (No = (PlanState(Ny), tasks(Np))), and to task TAE, a task in the cur-
rent task network tasks(Np). This function returns a set of alternatives states {Ny,...N;..., Ny}
produced as a result of the TAL decomposition: the task T AP is substituted in these states by
alternative task networks TN;'6. Constraints on these states, imposed by the updates introduced
for decomposition methods, are specified in Formula 7.24. In each produced state INV;, within the
task networks TN; that substituted the task T'AY domains for all tasks are equal to the original
domain of the task TAP. Additionally, according to the postponed policy enforcement, during the
application of new methods, new partial policy vectors and high-level effects are generated and

existing vectors and high-level effects are refined, as was described in Section 7.3.2.1.

Rp(TAP No) = {Ny,...N;..., Ny}
Vi (N; is equal to Ny where T AY is substituted by T'N;, (7.24)

VTA;-D € TN; (domain(TAjD) = domain(TAY)))

Domain refinement methods are added into the planning domain as a new set of methods. Possible
domain refinements carried out by these methods for a certain task in a current planner’s task
network are represented by the domain refinement function Rp(T AL, No). This function is applied
to a current planner’s state Ny and task TAJ in a current task network tasks(Np). This function

returns a set of alternative states produced when a domain refinement method is applied to the

16These alternative states are produced by different methods, applicable to the task TA(I?, and different instanti-
ations of variables in their preconditions.

197

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

task TAL. In these states, the domain for the task TAP in the current task network is updated
by a new domain value, which is a descendant of its original domain. The rest part of the task
TAP and the rest of the task network is not modified by a domain refinement method (except
in the situation when an EP for the task TAP is selected instead of a new domain value, then
the EP-variable within TAP should be instantiated). The constraints on the produced set of
states, imposed by a domain refinement method definition, are specified in Formula 7.25. Using
these methods, the descending policy evaluation is implemented. When a domain refinement is
executed, one step within the descending policy evaluation procedure is carried out. So during
the domain refinement, partial policy vectors corresponding to the current task are evaluated in
a new domain. Correspondingly, when an EP in found, the postponed partial policy vectors are

re-evaluated based on new available information.

Rp(TAP No) = {Ny,...N;..., N}
Vi (Nj is equal to Ny where TAY was substituted by T AP, (7.25)

domain(TAP) C domain(TAY))

Execution of operators is represented in an abstract way using the function ROP(TAOD , No). This
function is applied to a current planner’s state Ny and a primitive action TAL in a current task
network tasks(Ny). This function returns a set of alternative states produced when an applicable
and legitimate operator is applied to the action TAY. In the produced states, both the current
planner’s world state and task network are updated. The only exception to the standard operators
execution procedure is the fact that during the descending policy evaluation an operator cannot
be applied until the action task is not fully specified (including a concrete EP that is used instead
of the Dummy EP). Compound actions and obligations are not supported in the current version
of the descending policy evaluation algorithm, because in the BTr development phase of the CEP
construction they are not used.

As was stated, the domain refinement is implemented using domain refinement methods. Three
different types of domain refinement methods are designed. In the general case, for each compound
planning task three domain refinement methods with different types should be specified'”. Each
method implements a specific phase of the descending policy evaluation process. Successive appli-
cation of these methods to tasks in a current task network realises the descending policy evaluation
algorithm. The domain refinement procedure introduced extends the basic algorithm for descend-
ing policy evaluation presented in Figure 7.4: it can be applied to any task, not only to a one-slot

task.

17But as will be described later, these methods can be applied only when a specific constraint on this task is
satisfied.

198

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

An abstract state transition diagram illustrating updates introduced to tasks in a current task
network during the planning is presented in Figure 7.5. Abstract states of tasks are determined
by three parameters of the task: number of slots that this task covers in the track (Ng;(TAP)),
flag indicating if the domain constraint from the corresponding slot of the ITr was applied for this
task (EnfIT") and, additionally, when EnfT" is false and Ng;(T AP) = 1, the third parameter is
used to show if the condition domain(T AP) = ITr{oms" (T AP) is satisfied. The latter parameter
indicates if a current domain of the task domain(T AP) is equal to the domain constraint for this
task in the ITr ITr{omst" (T AP)'8. 1t is required as there can be situations when the flag Enf™"
is not set up but the I'Tr domain constraint for the task is already satisfied. For each state of a task
determined by values of these parameters, a distinct type of domain refinement method is designed.
This guarantees that for each task during the planning at most one domain refinement method
can be applied. Figure 7.5 represents abstract states of tasks and how they are changed during
the planning using the task decomposition and domain refinement. Updates of states carried out
using task decompositions are designated as double arrows lines. During the decomposition, one
task can be substituted by a set of new tasks, but all these tasks can be only in states that the

decomposition arrow points at.

A Ne(TA) =1 |
Nsi(TAP) > 1 Enf"'=False
Legend: Enf"=False domain (TA?) =
C) - Tasks state ITre™,(TAP) Ng(TAP) = 1
—>»> - Task decomposition (WQ Enf""=True
—— - Domain refinement S‘(m)=
N i Enf''=False
o - Initial task creation and . b \
primitive action execution domain (TA") I= ¥
T (TAP) Ns(TA”) <1
| N

Enf™=True

Figure 7.5: State transition diagram for task states during the planning

The domain refinement methods are shown in the figure as single arrowed solid lines. Domain
refinement method M1 is applied to tasks covering several slots of the track. This method assigns
a new domain value equal to the Least Common Ancestor (LCA) for domains that are used as
constraints for slots covered by this task in the ITr. The number of slots Ng;(T'AP) that are
covered by task TAP is reduced during the task decomposition. So domain refinement methods
M2 and M3 are applied to tasks corresponding to only one slot in the track. Method M2 enforces
the domain constraint from ITr for this task: domain(TAP) := ITr{omst" (T AP). So it is applied
when current domain of the task is not equal to this domain constraint. Additionally, it sets the
flag Enf!™" to True. Method M3 substitutes the current task’s domain with one of its children.

It is applicable either when the flag Enf!T" is set to True or when the current domain is equal

18 The function ITrlc"”S” (T AP) returns a domain constraint in the I'Tr for the slot that the task TAL corresponds
to. This function is determined only for one-slot tasks.

199

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

to the domain constraints from the ITr: domain(TAP) = ITr{o"s" (T AP). The second condition
is required as during the application of method M1 the enforced LCA value could be equal to the
ITr domain constraint for some slot covered by the T AP task. In this case, during the later task
decompositions, the task corresponding to this slot will be generated already with the domain equal
to its ITr domain constraint. This situation is detected using method M3 and after its application
the flag Enf!™" is set to True, as required. All these domain refinement methods are specified
in a way that they can be applied only when the corresponding conditions on the task state are
satisfied and when the new domain value that they are going to assign is distinct from the current

task’s domain.
7.3.2.4 Algorithms for planning with domain refinement

The descending policy evaluation technique was developed for the BTr development phase of the
CEP generation. During the CEP generation, only fully ordered task networks are used, so in
this section we consider planning with ordered task networks: tasks(N) = (TAP TAP ... TAD),
that is, ordered task networks are used in problem statements and ordered task networks are used
in methods.

Domain refinement methods constitute a distinct type of methods that should be used alter-
natively with task decomposition methods. In each step of the planning, the planner first of all
chooses which type of method should be applied'®. When it backtracks, it can select new methods
only with the same type. So in each planning step, the planner can either execute an operator,
or apply a decomposition method, or apply a domain refinement method. These options will be
referred to as distinct operations.

An algorithm for planning with domain refinement is presented in Figure 7.6. As an input,
this algorithm receives a current state of the planner N and initially empty plan P. In each step,
the first task in the current task network TAgur is processed. In order to choose an operation
that will be applied, the FAF strategy [158] is used, that is the operation with the minimum
branching factor is chosen?’. So the branching factors KP"(T'AZ,) for operations that can be
applied to the first task TAZ, ~are initially estimated. For a compound task, possible operations
are task decomposition and domain refinement. When the branching factors for these operations,
KEBr(TAE,,) and KE"(TAL,,), respectively, are both equal to zero for the current task, this
indicates a failure, since such task cannot be executed. When both branching factors are equal to
a non-zero value, the domain refinement operation takes precedence over the task decomposition

operation. This decision is based on the following fact. If a task decomposition method is applied

19 Otherwise, the search will not be systematic, that is the same solutions can be produced in different search
branches that the planner explores when it backtracks. This is due to the fact that the decomposition and domain
refinement methods perform different, alternative transformations of the current task network.

20The branching factor is equal to number of alternative search branches that the operation produces, that is the
number of alternative states that should be explorer in the nest step.

200

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

first, one task can be decomposed into several tasks. Hence, further, domains of all new tasks
should be refined separately in different planner’s steps, increasing the overall number of steps.
For a primitive action, domain refinement methods cannot be applied and only operators are used.
When the operation that will be executed is chosen, one state from the set of its output values
is selected. The postponed policy enforcement procedure is applied for this state, in order to
evaluate partial policy requests attached to tasks in its task network (see Section 6.2.4). Only new
partial policy requests and partial policy requests for which new information could be added are
evaluated. If the postponed policy enforcement procedure is successfully executed, this state is
processed further during the planning. When an operator has been executed, the corresponding
action is added to the plan structure P.
DescendingPE(State N,Plan P)
1. If tasks(N)= () then Return endif
2. Assign TAD,, = first(tasks(N))
3. If TAD,. is compound task then estimate K5"(TAZ,.) and KE"(TAE,):

3.1 If KE"(TAR,,)=KE"(TAE,) =0 then Return Failure endif

3.2. If KB (TAE,) = 0 or KB"(TAL,,) < KE"(TAE,) then
Nondeterministically retrieve N; from Rp(TAZ,.,N). Execute postponed policy
enforcement procedure. If Failure is returned then Return Failure endif endif

3.3. If KE"(TAE,) = 0 or KE"(TAL,,) > KEBr(TAE,,) then
Nondeterministically retrieve N; from Rp(T'AZ,,,N). Execute postponed policy
enforcement procedure. If Failure is returned then Return Failure endif endif

endif
4. 1If TAP,. is primitive action then estimate Kg;(TAgm,):

4.1 1f K5 (TAE,,) =0 then Return Failure endif

4.2. Nondeterministically retrieve N; from Ro,(TAZ,.,N)

4.3. Update P: P:=(P,TAE,)

4.4. Execute postponed policy enforcement procedure. If Failure is returned
then Return Failure endif

endif
5. Call DescendingPE(N;, P)

Figure 7.6: Ordered planning algorithm with domain refinements

A drawback of the descending policy evaluation, which follows from its design, is the existence
of additional steps required to select an EP (these steps should be done in order to check if policies
in different domains are satisfied). The FAF strategy that we have followed when choosing between
domain refinement and task decomposition methods is a universal method that can lead to the
decrease of the overall number of planning steps and that can be applied to different types of
planners and planning problems. However, in order to apply it efficiently, the planner should
have the possibility to select planning operations in each step of the planning from the available
alternatives, in a way that the overall number of planning steps is decreased (different variations of

this principle were described in [158]). In the previous algorithm, potential gains of this strategy

201

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

are limited, since we consider at each planning step only one task, the first task in the current task
network. So in order to improve gains of this approach, we designed an extended version of the
planning algorithm with domain refinements that can process tasks within the current task network
in any order. Additionally, the application of the unordered planning to the BTr development task
is motivated by the problem specification mechanism that was defined for the CEP generation
problem. Domain constraints in ITr can be specified at different levels of the hierarchy, so they
can limit different parts of the track with different extents. However, according to the described
principle, decisions which are restricted the most should be made earlier during the planning to
reduce the planner’s search space. So, as such decisions could refer to slots near to the end of
the track, there is a need for a planning algorithm providing the possibility to apply planning
operations to different tasks within the current task network in any order during the planning.

In order to apply methods and operators in an unrestricted manner, the following constraints
and modifications to the planning domain specification were introduced. When the unordered
planning is used, the current planner’s world state is not specified fully as operators changing
it are carried out non-sequentially during the planning. Accordingly, in order to ensure that
preconditions of operators and methods are correctly evaluated, they should refer only to literals
with predicate symbols that are not used in operator effects, that is, to the constant part of the
planner’s world state. When an operator is executed, the operator’s effects are not added to the
planner’s world state directly. They are saved in the planner’s world state through specialised
literals Positive(Taskrp,p,T1,...,Tn), where Taskrp is the identifier of the action that has been
carried out and constructs p, 7y, ..., T, define the literal used in the effect. The predicate symbol
Positive designates that this is a positive effect. Negative effects are added using the same structure
with the Negative predicate symbol. When an operator is executed, the action is not deleted from
the current task network. Instead, it is added into the set S4p,o. containing actions that have
been already executed and should not be processed further during the planning. Each task in a
current task network is assigned an unique identifier T'ask;p that is used to relate effects saved
into the planner’s world state with the position within the current task network where they were
added. Since we use only fully ordered task networks, it is possible to restore a sequence according
to which the effects were executed, in order to build a (partial) planner’s world state model for
every point of the current task network.

Effects saved using this procedure in the planner world state are unavailable during the pre-
condition evaluation. They are analysed and used only to create (partial) policy requests, when
a partial policy vector should be evaluated or when an operator referring to some task within the
current task network is carried out. Positive and high-level effects should be added to a policy
request if they are assigned to a task before the action for which the partial policy request is cre-

ated and if they are not clobbered by a negative effect. A positive effect is clobbered by an equal

202

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

negative effect assigned to a task after the task referred in the effect and before the task for which
the policy request is evaluated. A high-level effect is clobbered by a negative effect that refines it
(or is equal to it) and that is assigned to a task after the task referred in the effect and before the
task corresponding to the policy request, or it is assigned directly to the effect’s task.

If there is a need to specify interrelations between different actions and methods during the
planning, like it is done using preconditions and effects, special auxiliary literals are used. These
literals are specified using a dedicated set of predicate symbols. These predicate symbols can be
used in preconditions and they can be added during the planning. However, they are not related to
any specific planner’s world state and are not processed during the policy request generation. They
are used to manage the decomposition process globally?!. For example, for the BTr development,
literal used(EP) designates that the EP was already used in some task within the current task
network, so it cannot be used in other tasks during the planning. In order to define relations
between different tasks, in corresponding methods and operators preconditions referring to these

literals can be used.

DescendingP Eunord(State N)
1. If VTAP €tasks(N) (TAP € Sapone) then Return Success endif
2. Estimate (update) values of Kp"(TAP), K§ (TAP), Kg"(TAP) for all TAP €
tasks(N)
3. If primitive action TAJ exists such that Kj'(T'AY) = 0 then Return Failure
endif
4. 1If compound task TAD exists such that KB5"(TAP) = KE"(T'AP) = 0 then Return
Failure endif
5. Choose operation Rx(TAP N), TAP € tasks(N) using the following rules:

- Choose operation with minimum branching factor K27 , KBT 0

- If several operations have K{"(TAP) = KJ7 , choose an operation based on
operation type priority: first Rp, second Rg, third Ro,

- If several operations with the same type have KX"(TAP) = KZr |
task that precedes other tasks in task network tasks(INV)
6. Nondeterministically select N; from Ry (T AP, N)

7. Execute postponed enforcement procedure for N;. If Failure is returned then

choose a

Return Failure endif
8. Call DescendingP Eunord(N;)

Figure 7.7: Unordered version of the planning algorithm with domain refinements

An algorithm for planning with domain refinements when operators and methods can be applied
in an order that does not correspond to the order of their application during the plan execution is
presented in Figure 7.7. During each step of the planning, all tasks within the current task network

are analysed. Branching factors for operations applicable to them are estimated??. Similarly as the

210nly a part of the planning domain that is used in the BTr development and validation phases was specified in
this manner. Moreover, the overlapping mobility scenarios were eliminated.

22Not all branching factors are calculated at each iteration. Branching factor values are saved and re-evaluated
only when their values can be updated.

203

CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

previous algorithm, the operation with the minimum branching factor is chosen. If there are several
such operations, operation type precedence and operation position precedence are used. Next, the
chosen operation is applied. After the operation is applied, the postponed policy enforcement
procedure is applied to evaluate partial policy requests attached to tasks within the current task
network (only new partial policy requests and partial policy requests for which new information
could be added are evaluated). A plan during the unordered planning is not created as a separate
entity. Since actions are kept in the task network after they are executed, when the planning is
finished, the current task network is analysed and the plan is retrieved from it based on the ordering
of tasks. In order to derive time intervals used in partial and fully specified policy requests, a
specialised mechanism is used, which extends the mechanism used for the ordered version of the
descending policy evaluation. In this mechanism, not only the start time point for an interval
depends on the actions that should be executed before the policy request, but also the end time

point depends on actions that should be executed after the request.

7.4 Conclusion

The main contribution of this chapter is following. In order to implement the CEP development
solution using the problem-independent policy-based planner, described in Chapter 5, the planning
environment for this problem area was designed and the CEP generation problem was specified as
a planning task in this environment. The specification of this environment includes specification of
LObjs, which are used as input and output of the CEP generation process, transformation rules,
which are used to transform LObj properties from one scale to another, and the multi-domain
hierarchical structure that contains the LObjs and defines the overall structure of the planning
environment, interrelations between the LObjs and policies. Importantly, the core processes car-
ried out when a student studies according to a CEP were also specified in this chapter as HTN
planning decomposition methods. These processes are utilised during the planning for the CEP
development. An additional contribution made in this chapter is the application of the postponed
policy enforcement mechanism, described in Chapter 6, to the CEP development planning prob-
lem, what resulted in the descending policy evaluation technique development. The descending
policy evaluation technique is a problem-specific technique that is aimed at the planning perfor-
mance improvements within the initial stages of the CEP development process. In concrete, this
technique optimises the process of EP intervals selection for the BTr development.

The planning environment specifications described in this chapter should be utilised to solve
concrete CEP generation problems. The operation of this planning environment will be considered
in Chapter 9, where corresponding case studies are described. The performance gains that can be

achieved by the descending policy evaluation technique are also analysed in Chapter 9.

204

Chapter 8

Implementation

Objectives:

e Introduce the general architecture and the scope of the pro-
totype.
e Provide understanding of the internal organisation of the

prototype modules.

8.1 Introduction

In order to evaluate the techniques presented in the previous chapters, a prototype tool was devel-
oped. First of all, this prototype tool implements the domain-independent policy-based planning
technique (see Chapter 5) and its extension described in Chapter 6, viz., the postponed policy
enforcement mechanism. When this prototype is provided with the tailored planning environment
specifications that describe the student mobility problem domain (see Chapter 7), it is able to
solve the required task: develop CEPs based on existing EPs and provided requirements.

In order to use the prototype for the CEP development, all necessary information about both
the educational environment where the CEP generation problem should be solved and the task that
should be solved should be provided. The planning domain specification, which contains methods
and operators, specifies the processes carried out within the CEP generation problem area and is
stored within the planner in a compiled, unchanging form (see Figure 8.1). Policies that define edu-
cational rules and regulations for different domains are specified using the XACML syntax in XML
files. They should be saved in a directory where the prototype is configured to retrieve them from.
When the prototype is started, it loads policies from this directory, uploads them into its internal
registry and waits for the planning problems. A planning problem is provided into the planner as
an initial planner’s world state specification and an initial task network. The planner’s world state
contains specification of the educational environment where the CEP generation task should be
solved: the domain tree and the specifications of available EPs. CEP property-requirements, ITr
and a description of the student are also provided within the initial planner’s world state, where

they can be easily utilised during the planning (see Figure 8.1). The initial CEP process model is

205

CHAPTER 8. IMPLEMENTATION

specified as an initial task network. The planning starts when a file with an initial planner’s world
state and an initial task network are provided to the system. However, as policies are dynamic and
can be changed when the planner is running, the following mechanism for dynamic policy updates
was developed. When the policies are updated in the policy directory, names of the policies are
also added to a special file. It contains two policy name lists: one for updated policies and another
for deleted policies. Each time when the planning is initiated, the prototype checks policy updates
in this file and modifies its internal policy repository respectively. When the planning is finished,
the planner shows to the user the CEP process models that has been generated during the planning
and that solves the specified problem.

The descending policy evaluation technique (see Section 7.3.2) was implemented also as part
of the prototype tool. Correspondingly, two versions of the planning domain were developed. The
first version supports the ordinary policy-based planning technique only. In the second version, the
descending policy evaluation technique and, respectively, the postponed policy enforcement, which
it is based on, were implemented. Moreover, the second version of the domain was developed in
such a way that both ordered and unordered planning algorithms can be used (see Section 7.3.2).
So the prototype can be launched in three modes: first, when the ordinary policy-based planning is
used; second, when the descending policy evaluation technique is used with the ordered algorithm;
and third, when this technique is used with the unordered planning algorithm.

The architecture of the prototype is presented in Figure 8.1. Components whose main purpose
is information processing are represented as rectangles. Components whose main function is data
representation are represented as ellipses. Repositories storing data which is rarely modified and
which persist between planning sessions are presented as cylinders. The prototype tool includes

the following main modules:

e Planner module is a component implementing the core planning processes (see Section 8.2).
When required, the planner module interacts with the other components. It requests the
policy evaluation mediator if policies should be checked during the planning and the trans-
formation rules evaluator if rules should be applied to infer new information. Additionally,
the planner module implements functions for interaction with the user using the command
line: initiation of the planning problem solving and display of the results.

e Policy analyser analyses policies when they are loaded into the prototype and generates the
corresponding abstract contexts (see Section 8.4). These abstract contexts are saved into
the abstract context repository of the policy evaluation mediator. The abstract contexts are
used during the planning for the generation of policy evaluation requests (see Chapter 5).
Once the policies are processed by this module, they are registered in the policy repository
within the Policy evaluator.

e Policy evaluation mediator was developed as a component for the realisation of all interme-

206

CHAPTER 8. IMPLEMENTATION

diate processes between the planner module and the policy evaluator (see Section 8.3). The
policy evaluation mediator based on policy request vectors provided by the planner module
generates XACML policy evaluation requests that are passed to the policy evaluator. When
the policy evaluator has evaluated the request, the policy evaluation mediator should process
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>