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Abstract

Student mobility in the area of Higher Education (HE) is gaining more attention nowadays. It

is one of the cornerstones of the Bologna Process being promoted at both national and interna-

tional levels. However, currently there is no technical system that would support student mobility

processes and assist users in authoring educational curricula involving student mobility. In this

study, the problem of student mobility programmes generation based on existing modules and pro-

grammes is considered. A similar problem is being solved in an Intelligent Tutoring Systems field

using Curriculum generation techniques, but the student mobility area has a set of characteristics

limiting their application to the considered problem. One of main limiting factors is that mobility

programmes should be developed in an environment with heterogeneous regulations. In this envi-

ronment, various established routines and regulations are used to control different aspects of the

educational process. These regulations can be different in different domains and are supported by

different authors independently.

In this thesis, a novel framework was developed for generation of student mobility programmes

in an environment with heterogeneous regulations. Two core technologies that were coherently

combined in the framework are hierarchical planning and policy-based management. The policy-

based planner was designed as a central engine for the framework. It extends the functionality

of existing planning technologies and provides the means to carry out planning in environments

with heterogeneous regulations, specified as policies. The policy-based planner enforces the policies

during the planning and guarantees that the resultant plan is conformant with all policies applicable

to it. The policies can be supported by different authors independently. Using them, policy authors

can specify additional constraints on the execution of planning actions and extend the pre-specified

task networks. Policies are enforced during the planning in a coordinated manner: situations when

a policy can be enforced are defined by its scope, and the outcomes of policy evaluation are

processed according to the specially defined procedures.

For solving the problem of student mobility programme generation using the policy-based plan-

ner, the planning environment describing the student mobility problem area was designed and this

problem was formalised as a planning task. Educational processes valid throughout the HE envi-



ronment were formalised using Hierarchical Task Network planning constructs. Different mobility

schemas were encoded as decomposition methods that can be combined to construct complex

mobility scenarios satisfying the user requirements. New mobility programmes are developed as

detailed educational processes carried out when students study according to these programmes.

This provides the means to model their execution in the planning environment and guarantee that

all relevant requirements are checked.

The postponed policy enforcement mechanism was developed as an extension of the policy-based

planner in order to improve the planning performance. In this mechanism, future dead-ends can

be detected earlier during the planning using partial policy requests. The partial policy requests

and an algorithm for their evaluation were introduced to examine policies for planning actions

that should be executed in the future course of planning. The postponed policy enforcement

mechanism was applied to the mobility programme generation problem within the descending

policy evaluation technique. This technique was designed to optimise the process of programme

components selection. Using it, policies for different domains can be evaluated independently in a

descending order, gradually limiting the scope for the required component selection.

The prototype of student mobility programme generation solution was developed. Two case

studies were used to examine the process of student mobility programmes development and to anal-

yse the role of policies in this process. Additionally, four series of experiments were carried out to

analyse performance gains of the descending policy evaluation technique in planning environments

with different characteristics.
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Chapter 1

Introduction

1.1 Motivation

Student mobility in the area of Higher Education (HE) is the possibility of students to change

their education providers (or courses) one or more times within their programmes of study in

HE. Student mobility is one of the cornerstones of the Bologna Process (BP) and is promoted

at national and international levels [58, 165]. It is beneficial for students and universities, as the

mobility provides students with better possibilities for professional and personal development, and

makes them more socially adaptable and self-confident. It increases the employability of students

in their home countries as well as overseas and satisfies the demands of the global market [143, 165].

The UK Higher Education Statistics Agency defines two major types of student mobility [91]:

diploma mobility is a mobility for an entire programme of study and credit mobility is a

mobility for a part of the programme. The third distinguished type of mobility, viz., voluntary

moves, covers other moves undertaken for a range of personal reasons. This type of student

mobility is different from the previous types as it usually does not involve a recognition of study

periods. The recognition of study periods during the student mobility is obviously profitable and

desirable for students and society [86], as it reduces the overall expenses for achieving the students’

educational goals and makes mobile students’ experience smoother. Accordingly, the focus of this

study will be on the first and second types of student mobility. The recognition of study periods

will be considered as an integral part of the student mobility programme design.

Another classification of student mobility divides all the mobility schemas into internal, external

and international mobility. Internal student mobility occurs when a student changes his (or

her) course within the same education provider (e.g., a university). External student mobility

occurs when a student changes the education provider within the same country. International

student mobility, as UNESCO defines, “implies a period of study in a country other than a

student’s country of residence (‘the home country’)”1.

However, a number of obstacles were identified [86, 57, 63, 165] preventing an intensive devel-

opment of the student mobility area and a rapid growth of mobile student numbers:

Information. For the development of mobility programmes, detailed information about different
1www.unesco.org/education/studyingabroad/what is/mobility.shtml [Accessed 23.02.2014].
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aspects of the HE systems in other countries is needed, including regulations at the national

and university levels, and student mobility initiatives. Students require information about

available educational courses and student mobility programmes. Universities require informa-

tion about their partner education providers. Available information is broad, heterogeneous

and unstructured. Its analysis, for example, for the establishment of correspondence between

the educational systems or specific modules, requires substantial efforts and deep expertise.
Financial. The development of student mobility programmes leads to an increase of expenses.

Students can suffer from extra expenses for education in a university abroad. Universities

can lose tuition fees from students who transfer to other universities. Finally, the design of

student mobility programmes requires substantial financial investments from the universities.

Moreover, as rigid regulations can exist in the student mobility area and the programmes

designed should conform to them, the task of mobility programme design becomes even more

complex and expensive.
Academic. The recognition of academic qualifications and credits, carried out during or after

the student mobility activities, is a highly labour-intensive process. It requires substantial

time and deep knowledge of the educational regulations and the problem area. During the

recognition, the educational content itself and other issues concerning the education of a

student in another university are rigidly analysed. As a result, previous study experience of

the student can be accepted as satisfying requirements to a part of the degree or its entrance

requirements. However, as universities are responsible for the quality and originality of their

programmes, the outcome of this process can be negative, that is, no degree or credits can

be recognised.

The main international initiative, aimed at the intensification of student mobility and creation

of the European Higher Education Area (EHEA), is the BP. The BP provides mechanisms for

the harmonisation of educational levels and degrees in different countries and the facilitation of

recognition of modules and degrees. For this purpose, three main mechanisms were proposed: a

system of HE cycles and National Qualification Frameworks (NQFs), European Credit Transfer

and Accumulation System (ECTS), and a learning outcomes-based approach to education [54].

Other educational recommendations and guides (e.g. [57], [67], [58]) propose various organisational

measures for the student mobility facilitation, including the harmonisation of mobile students’ legal

status, and recommended procedures for the students’ preparation, integration and re-integration.

They call for devising clear recognition policies, expansion of mobility programme initiatives (e.g.,

Erasmus, DAAD programmes), improvement of awareness about educational systems, legal frame-

works and other information that students and institutions need to know about other countries to

plan student mobility activities.

All these measures help to some extent to overcome the mentioned difficulties. They form a
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normative basis, give direction for developments and stimulate participants towards the intensifica-

tion of student mobility. However, the role of modern computer technologies in these initiatives is

very modest. Their utilisation is foreseen mostly as a supportive tool for the phase when a student

is studying according to an existing mobility programme. There is no solid technical solution that

would provide support for the process of development of new mobility activities. Nevertheless, such

solution could definitely be used to facilitate the fulfilment of the tedious and laborious operations

during the authoring of mobility programmes and lead to the intensification of the development of

the whole student mobility area.

Based on the presented facts, a technical solution for the student mobility support, with the pur-

pose of student mobility area development facilitation, should be aimed at lifting the information,

academic and financial obstacles. It should automate the processing of information for planning

student mobility activities, taking into account the peculiarities of educational frameworks and

regulations in different countries and universities. Efficient tools for the discovery and analysis

of existing educational programmes and student mobility possibilities should be provided, which

can relate and compare modules and courses originating from different education providers. Based

on this comparison and taking into account regulations and routines specific to these education

providers, a track of mobile student, involving recognition of study periods, can be planned. Of

course, recognition decisions cannot be taken fully automatically but the results of machine-based

analysis can serve as a basis for a more detailed examination by the human expert who takes the

final decision. The financial obstacle can partially be overcome since a student mobility support

technique can reduce the time that highly qualified experts, engaged in student mobility planning

activities, spend on search, processing and analysis of diverse information. Moreover, when us-

ing this technique, more options for student mobility activities can be processed and analysed,

so the resulting student mobility programme can be planned more carefully, satisfying the strict

regulations and various user requirements.

1.2 Problem statement

It is advocated [63, 54, 143, 159] that all student mobility activities, which occur within students’

educational pathways in HE, should be well planned and agreed in advance for each individual stu-

dent. This can guarantee the fulfilment of the agreed plan and raise the quality of the well-planned

educational programme. Hence, a technical solution for the student mobility support should ex-

plore the problem of planning student mobility activities. For this purpose, in order to designate

any educational pathway involving student mobility activities, in this study the notion of a ‘pro-

gramme’ is adopted. An Educational Programme (EP) in HE is an approved curriculum route

leading to a named academic award that is followed by a registered student [131], [160]. Accord-

ingly, a Combined Educational Programme (CEP) is an approved curriculum route incorporating

3
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student mobility activities that leads to one or several academic awards and is followed by a regis-

tered student. If internal student mobility is used, meaning that the programme is taught within

one education provider, different courses should be used for the CEP construction. If external or

international mobility occurs, different education providers should be involved in the educational

process.

In accordance with the aim of a technical solution for the support of student mobility, the

main problem solved using this solution is specified as follows. For an individual student or a

group of students with similar characteristics, new possible CEPs should be generated based on

existing modules and EPs. These CEPs should satisfy the requirements provided by the requester

of the programme (an educational organisation or a student) and should conform to the regulations

specified by the education providers and the educational authorities. In this study, this problem

will be referred as a CEP generation problem.

In the e-Learning field, a similar problem is being solved within Intelligent Tutoring Systems

(ITSs). These systems provide a flexible individualised computer-based learning service and carry

out functions traditionally appertained to tutors. Curriculum Generation (CG) ITS techniques de-

rive educational curricula for students based on provided educational goals and taking into account

students’ knowledge and characteristics. For this purpose, these systems should reason about prob-

lem domain concepts, corresponding educational goals and available educational resources. To do

this, advanced CG techniques exploit planning techniques providing a flexible unified framework for

modelling and reasoning about educational activities and their relations with the goals, concepts

and resources [170, 174, 163]. Hierarchical planning enhances the curriculum design process with

the hierarchical reasoning capabilities [171]. This allows increasing the flexibility and adaptiveness

of the CG process, for example, by formalising different tutoring strategies and letting the planner

select the strategy for the curriculum development that suits the student the most.

However, within the ITS field the CEP generation problem was not considered before and exist-

ing CG approaches do not support the student mobility activities. The problem of their adoption

for the CEP generation is particularly interesting, since this extends the CG techniques area of

applicability towards the new domain. Moreover, the student mobility area involves issues that

are not covered within existing ITS CG techniques. For example, trajectories of students’ physical

movements should be designed during the CEP development utilising different student mobility

scenarios. Requirements to the CEPs can be specified from different perspectives, including re-

quirements to the CEP structure, its official outcomes, physical movements of the student. For the

CEP design, modules from different education providers should be extracted and compared. As

the CEPs designed should be approved by education experts, a clear and expressive representation

for them is needed.

One of the major obstacles limiting the effective utilisation of current CG techniques for the

4
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CEP generation problem is the fact that CEPs are being developed within an environment with

heterogeneous regulations. Different educational institutions and authorities have their regulations,

established routines and criteria for decision making that should be taken into account during the

CEP generation. These regulations manage different aspects of the educational process (e.g.,

requirements for EPs structure, credit recognition rules, student transfer rules and progression

rules) and they are developed and maintained by different people independently. In planning-

based CG techniques, these regulations are not supported, and it is assumed that the planning

environment is integrally devised by a single author or a group of closely collaborating authors. In

order to apply this technology to the CEP generation problem, different authors should have the

possibility to contribute to the planning environment specification. Besides, in order to guarantee

the smooth planning in such environments and adhere to the division of responsibilities, the process

of specification and subsequent planning should be controlled. Scopes where different authors can

contribute to the planning environment specification should be limited according to their areas of

responsibility and there should be mechanisms to resolve conflicts that can occur between these

specifications during the planning. In Information Technologies (IT) field, in order to operate

with such heterogeneous regulations, policy-based management technology is used [141, 85]. This

technology facilitates management of different types of systems and environments under complex

dynamically changing regulations specified by different authors as policies and guarantees that

the policies are consistently enforced, that is, the system execution traces satisfy all required

policies [27].

1.3 Research questions

Based on the presented motivation and problem statement, the main research question for this

study was formulated:

How Combined Educational Programmes (CEPs) can be generated using planning-

based techniques in an educational environment with heterogeneous regulations?

Heterogeneous regulations are regulations governing different aspects of the educational process.

They are different in different domains of the environment and are authored and supported by

different persons independently. As the formulated question is quite general, in order to guide

further investigation it was subdivided into more concrete questions:

1. How can planning technologies be adopted to solve the CEP generation problem?

• Which planning technique is suitable for solving the CEP generation problem?
• How the CEP generation task can be formulated as a planning problem? Which ap-

proach can be adopted for the CEP generation?
• How can diverse user expectations be specified as input CEP requirements? How can

detailed information about the result CEPs be represented to the user?

5
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• How can different mobility schemas be applied during the planning for the CEP gen-

eration and how can composite student mobility scenarios be generated based on these

schemas?

2. How can policy-based management approach be utilised to enable planning in environments

with heterogeneous regulations?
3. When planning is carried out in an environment with regulations supported by different

people independently, how is it possible to have control over the regulations specified by

different people and guarantee that they do not contradict with each other and with the

general principles of the planning environment designed?
4. Is it possible to improve the planning performance relying on specific characteristics of the

CEP development problem area or a planning technique being used to solve the CEP gener-

ation problem?

1.4 Research methodology

The overall research approach adopted in this study is constructive research. The distinctive

feature of this approach is the construction of a novel artefact that can solve a practical problem

in order to elicit new knowledge on how this problem can be solved in principle, and to analyse

and compare the solution with other approaches [46]. The choice of constructive research was

motivated by the initial problem statement that was focused on the problem solving issues2 and

the absence of existing analogues techniques for solving this problem within the student mobility

field. Constructive research is advantageous as by using it a twofold contribution can be achieved: a

construct for solving practical problems can be developed (which is usually produced as an abstract

model or a framework that can be implemented in different ways) and current knowledge can be

extended by studying the construct and the theoretical principles embedded in it. Importantly,

the constructive research is a dominant research method in computer science, which this study

belongs to. The artefacts produced using the constructive approach in computer science could

be algorithms, frameworks, models or languages. It is common that employing the constructive

approach as a main method researchers also utilise other research methods to fulfil the local

tasks [45]. Now, the main steps of this research are presented and specific tools and methods used

at these steps are described.

Step 1. Identification of problem and specification of research question

A problem being explored using the constructive approach should be relevant from both practi-

cal and theoretical perspectives [100]. This means that an outcome of study, specifically, a designed

artefact, should be aimed at resolution of an actual practical problem and, at the same time, its

elaboration should contribute to the theoretical knowledge, for example, by resolving paradoxes or
2Based on it, the research question with the corresponding type was formulated, i.e., ”How. . . ?”.
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providing the lacking knowledge. In order to state such a problem and formulate the research ques-

tion for this study, first of all, the problem domain, the HE student mobility area, was explored.

For this purpose, a literature review was done. It covered educational research sources, specifically,

journal papers and research reports, and normative and counsel literature, such as actual educa-

tional regulations, recommendations and initiatives aimed at the facilitation of student mobility.

The case study approach was neglected for this task, as general problems and issues within the

area of student mobility should be considered, rather than problems of a concrete university or

organisation. Moreover, the case study method would have required substantial time and resources

for this step. Additionally, at this stage an overview of corresponding e-Learning and other in-

formation systems technologies was done. The outcomes of this step were the problem statement

and the research questions specified and a set of requirements to the solution approach from the

educational perspective, formulated during the exploration of the problem area (see Chapter 3).

Step 2. Thorough literature review

In this step, the research background was studied through a detailed review of the relevant liter-

ature. In the review different directions within the e-Learning field were explored and their possible

contributions to the CEP generation were examined. Additionally, the policy-based management

was explored as a technique for management of the CEP generation process in the presence of com-

plex heterogeneous regulations. For the searching and gathering of relevant conference and journal

papers, digital resources such as IEEE Xplore, ACM Digital Library, CiteSeer and SpringerLink

were used.

Step 3. Construction and implementation of solution approach

First of all, as an initial design for the solution a general CEP generation framework was

created. The framework defines all components of the solution, including models, technologies and

users, their roles and interrelations. Within the framework, the overall CEP generation process

was outlined. Next, the refinement of the framework and the detailed CEP generation technique

construction was started. As a core component of the developed technical solution, the policy-

based planning engine was designed, which joins the strengths of the planning and policy-based

management approaches. As is common for the constructive research in the computer science

area [45], modelling and formal methods were utilised as auxiliary tools within the design part

of this study. The hyper-graph model of the planner’s world state and the formal model of the

XACML policy language were introduced. They were utilised during the techniques design in

order to ease the operation with the corresponding objects, as standard rules and operations can

be applied, and guarantee the required properties of the designed techniques. Additionally, as the

designed solution employs the planning technique, effectively, it relies on the modelling method.

For the policy-based planning technique, a model was specified that provides the means to carry

out planning within the student mobility environment and using which the CEP generation task
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can be solved. Finally, in this step the working prototype was implemented.

Step 5. Evaluation of solution approach

First of all, the developed approach was evaluated using two case studies. These case studies

have demonstrated the feasibility of the approach and provided the insights on its functioning.

The case studies were constructed based on different educational scenarios and were different,

in scale in order to evaluate the approach in different settings. One of the case studies was

constructed with the aim of representing the real life case as close as possible. Secondly, the

approach was evaluated based on the specific criteria, which were devised in order to check its

required properties and analyse specific behaviour patterns. Finally, experiments were carried out

in order to evaluate the planning performance of the designed techniques in planning environments

with different characteristics.

Step 6. Deriving conclusions and identification of research contributions

Based on the evaluation of the solution, the conclusions were drawn that describe the achieve-

ments attained using the proposed approach and reveal the connections of the approach with

existing knowledge. Moreover, a set of directions for the future work were identified, within which

more understanding of the topic can be gained and new advances can be reached.

1.5 Scope of the research

According to the problem statement and the research questions posed, in this study we concentrate

on the development of a framework and specific techniques within this framework. Using these

techniques and framework, the CEP generation problem can be solved, so new CEPs can be

generated using existing EPs based on user requirements. This problem was considered more

from a technical perspective, rather than an educational one. The educational domain was taken

as a problem area for this work. Specific characteristics of the HE domain and, particularly, the

student mobility area were explored based on the educational literature and were taken as premises

for the technical solution design. One of the most prominent issues that this work focuses on is

the existence of heterogeneous educational regulations, which are supported by several authors

independently and should be taken into account during the CEP development. For the concrete

technique design, within the range of different CEP types we concentrated on credit mobility CEPs

as these CEPs explicitly involve credit recognition, reflect the nature of student mobility and are

usually prevalent over other mobility types [90].

The educational domain is characterised by a diversity of approaches for the development of

EPs, normative requirements specifications and quality metrics definitions. As this work constitutes

initial steps in the field of computer technology support for the design of mobility programmes,

it accepts an approach based on normative compliance. The technology developed should provide

the means for the specification of specific normative requirements regulating the development of
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mobility programmes. Correspondingly, the mobility programmes produced by the solution should

satisfy these requirements, thereby assuming that they possess the required level of quality inherent

in these requirements.

As the core problem to be solved in this thesis concerns a provision of technological support for

the educational process (i.e., the CEP development) with the aim of its facilitation, it belongs to

the wider e-Learning field. Specifically, the CG techniques exploited in ITSs for solving a problem

of non-mobile EP development constituted the required background for our work. Similarly to

the advanced CG techniques, we have chosen the planning technologies, in concrete, Hierarchi-

cal Task Network (HTN) planning, as the basis for the core CEP generation mechanism design.

The planning technologies provide possibilities for reasoning about educational activities and their

relations with learning resources and domain concepts. Therefore, the EPs can be developed as

detailed networks of educational activities achieving the specified goals. Additionally, the hierar-

chical planning provides abilities for the hierarchical reasoning and utilisation of pre-built scenarios

during this process3. The policy-based management approach was explored to solve the problem of

handling the heterogeneous regulations during the planning. Finally, the problem of the planning

performance improvements was considered in this thesis. In accordance with the central line of

our work, it was assumed that the factors of the performance improvements should be based on

the peculiarities of the designed policy-based planning technique or specific characteristics of the

CEP development problem.

1.6 Success criteria

In order to consider this study a success, first of all, an approach should be proposed that provides

means to generate new CEPs using existing EPs and modules relying on planning techniques. The

approach should be implemented and its feasibility should be demonstrated using case studies.

Additionally, the following specific requirements were stated:

• As the user can have diverse expectations about the CEP that should be developed, it should

be possible to specify CEP requirements from different perspectives and on different levels

of abstraction.
• The approach proposed should support the reasoning about mobility scenarios and physical

tracks that students follow during their education according to CEPs. It should be possi-

ble to specify corresponding requirements and generate arbitrary complex student mobility

scenarios in order to satisfy them.

Secondly, as part of the proposed planning-based CEP generation approach, a policy-based tech-

nique should be designed with which it should be possible to carry out planning in environments
3The problem of planning technology utilisation for EP design is considered in more detail in Chapter 2
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with heterogeneous regulations. These regulations being specified as policies are to be used to

control the planning process. The technique designed should have the following properties:

• Using policies, it should be possible to specify and enforce restrictive regulations, limiting

the applicability of actions, and specify established routines that define how certain tasks

should be executed.
• In order to facilitate the policy specification, policies should be modular and compositional.

It should be possible to specify simple policies independently and unite them using specified

rules into more complex policies.
• It should be possible to restrict a set of regulations that can be imposed by different policy

authors and define procedures for how different regulations interleave with each other during

their evaluation and enforcement.

Finally, one or several planning performance improvement approaches for the developed policy-

based planning technique should be proposed based on the specific characteristics of the policy-

based planning technique itself or the CEP generation problem considered.

• Experiments should show that these approaches can bring performance gains during the CEP

generation.
• Since the performance of the planner depends on the specific characteristics of the planning

environment, performance gains produced by the proposed techniques in environments with

different characteristics should be evaluated and compared.

1.7 Original contributions

The original contributions of this thesis are as follows:

CEP development framework

First of all, the novel planning- and policy-based CEP generation framework was proposed for

the automated development of new CEPs using existing EPs and modules in an environment

with heterogeneous regulations. The CEP generation task was not considered before within the

e-Learning field. It constitutes the novel approach for the student mobility processes support using

computer technologies and is aimed at the student mobility area facilitation.

Policy-based planning technique

The policy-based management approach, which is utilised in different areas of IT, was applied

to the new area, the domain-independent planning. As a result, the novel policy-based planning

technique was developed. It extends the HTN planning with the possibilities to carry out planning

in environments with complex heterogeneous regulations, supported by different people indepen-

dently. The policy-based planner selects and enforces policies during the planning and guarantees
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that the resulting plan conforms with all policies applicable to it. During the development of this

technique, the following subsidiary contributions were made:

• Using the XACML policy language, adopted for the specification of policies in the policy-

based planning, procedures for the authentication decisions processing and resolution of con-

flicts between them can be flexibly specified. On the other hand, the procedure of obligations

processing during the policy evaluation has not received the due attention. In order to pro-

vide the possibility to control which obligations can be produced during the policy evaluation

and how they can be jointly executed, the XACML obligations specification mechanism was

extended and the obligations validation approach was proposed.
• For the XACML policy language there is no mechanism to determine which information

about the subject or resource of the policy evaluation request will be required during its

evaluation before the evaluation has actually started. Correspondingly, the adaptive pol-

icy requests construction procedure was designed in order to generate policy evaluation

requests containing purposely selected information based on the introduced policies.

Formalisation of the CEP generation problem as a planning task

To solve the CEP generation problem using the policy-based planner, the planning environment

describing the student mobility problem area was designed and, in this environment, the corre-

sponding planning task was formalised. Educational processes carried out when a student studies

according to a CEP are formalised using HTN constructs and are modelled during the planning,

trying different variants of the CEP construction. While a similar approach is used in CG tech-

niques in ITSs, the CEP development problem has a number of distinctive characteristics (see

Chapter 2) that were incorporated into the CEP generation planning task specification.

Planning performance improvement techniques

The postponed policy enforcement is a problem-independent mechanism extending the policy-

based planning technique with the possibility to evaluate policies at earlier stages of the planning.

Using this approach, the performance gains are achieved, since dead-ends can be detected earlier

during the planning. When not all required information is available for the decision inference, the

planner postpones the policy request and re-evaluates it later during the planning.

The descending policy evaluation is a performance improvement technique for the CEP gener-

ation planning task, which is based on the postponed policy enforcement approach. This technique

optimises the process of searching for EPs, which will be used as a basis for the CEP construction,

relying on the hierarchical domain structure of the planning environment considered.

Partial policy evaluation for XACML policy language

11



CHAPTER 1. INTRODUCTION

For the postponed policy enforcement realisation, a mechanism was required for the specification

of policy requests containing only some part of the information about the planning action, as well

as, an algorithm for such requests evaluation. Therefore, the XACML policy specification language

was extended and the partial policy requests specification mechanism with the corresponding policy

evaluation algorithm were designed.

1.8 Thesis organisation

The thesis is structured as follows:

Chapter 2 contains a review of existing e-Learning systems and other information technologies

that can form a basis for the CEP generation approach development. An analysis is presented of

how these technologies can be utilised during the CEP development process support. Among the

other technologies, the planning-based CG techniques and the policy-based management approach

are considered with special scrutiny.

Chapter 3 contains the student mobility problem domain analysis, based on which the core

requirements to the CEP generation system were identified. The CEP generation framework,

satisfying these requirements, is presented in this chapter, along with the outline of the general

CEP development process.

Chapter 4 contains a description of the XACML policy specification language, which was

chosen for the specification of regulations. In this chapter, we also describe the construction of

a formal model for the XACML policy language, which is used in Chapter 6 as a basis for the

XACML policy language extension.

Chapter 5 presents the design of the problem-independent policy-based planning technique.

An overview of the planner’s components and the main interaction processes between them, un-

derlying the planner’s functioning, are presented. Then, each component is considered in detail;

models for specification of the corresponding parts of the planning environment and the algorithms

for their processing are developed. As part of the planning technique design, the adaptive policy

request construction procedure is introduced.

Chapter 6 describes the postponed policy enforcement mechanism. This mechanism enhances

the policy enforcement procedure of the policy-based planning technique and provides the pos-

sibilities for the planning performance improvements. For the evaluation of policies during the

postponed policy enforcement, the standard XACML policy evaluation procedure was extended

and the partial policy evaluation procedure was introduced.

Chapter 7 presents a formalisation of the CEP generation problem as a planning task, being

solved by the policy-based planning technique. In addition, this chapter contains a description

of the descending policy evaluation technique, which was designed to improve the performance of

planning for the CEP development. Specifically, in this technique the postponed policy enforcement
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mechanism was applied for the formalised CEP generation planning problem.

Chapter 8 contains a description of the CEP generation system prototype implementation.

Chapter 9 contains an evaluation of the proposed approach and the designed techniques.

The overall CEP generation framework is evaluated using two case studies. The policy-based

planning technique is analysed against the criteria for planning in environments with heterogeneous

regulations. Finally, the performance analysis is done, including the evaluation of performance

gains, produced by the descending policy evaluation technique.

Chapter 10 contains general conclusions and a description of possible future work.
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Chapter 2

Literature review

Objectives:

• Review current e-Learning systems and relevant e-Learning

technologies that can be used to support the CEP generation

process.
• Review policy-based management and existing policy lan-

guages.

2.1 Introduction

Student mobility is promoted at national and international levels, while the problem of techno-

logical support for the mobility processes by the use of computer technologies has not received

the required level of attention. Now there is no system that can provide support for student mo-

bility processes in the automatic generation of CEPs based on existing learning objects (modules

and semesters of EPs). The closest area to this problem is the field of e-Learning where diverse

technologies for technological support of learning processes are being developed. In this chapter,

current prominent e-Learning technologies are reviewed and their correlation and applicability to

the CEP generation problem are analysed (see Section 2.2). It was identified that there are tech-

niques within the e-Learning field that can solve a problem similar to the CEP generation, but

for non-mobile curricula. They are the Curriculum generation techniques being used in Intelligent

Tutoring Systems (ITSs) for the automatic generation of learning paths for students based on

their knowledge and individual characteristics. These technologies have a long history and are now

successfully used within fast-paced modern web, collaborative and multi-agent e-Learning environ-

ments. Among other factors that differentiate the CG and CEP generation tasks, one of the most

important is the fact that CEPs should be developed within educational environments with het-

erogeneous regulations, dictating rules according to which mobility programmes should be built. A

policy-based management technology, which is successfully applied in different application areas,

can be utilised to overcome this limitation. The policy-based management facilitates management

under complex, dynamically changing regulations being specified as policies. Prominent charac-
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teristics of the policy-based management and different policy-specification languages are reviewed

in Section 2.3.

2.2 e-Learning systems

Computer technologies were used for learning support almost from their beginning. With the

development of technologies, their application areas and the value for learning are continually

increasing. Due to a variety of e-Learning technologies, many different definitions of e-Learning

have been proposed [76]. Researchers who formulate the e-Learning definition narrowly concentrate

on the delivering of knowledge by the use of technologies [8, 109] or even on the usage of specific

technologies, for example, the internet technologies [7]. In a broad sense (e.g., in [81, 102, 137]), e-

Learning is interpreted as a learning or teaching facilitated or supported with the use of information

or communication technologies. In [3], it is stated that e-Learning is aimed at the improvement and

(or) extension of one or more significant parts of a learning value chain, including management

and delivery. Correspondingly, e-Learning technologies include a range of tools for the support

of educational activities [105], like learning goals and pathways management, non-digital learning

objects management. Further, we review different types of e-Learning systems and analyse the

possibilities of adopting e-Learning technologies for the development of a system supporting the

CEP generation process.

2.2.1 Virtual Learning Environments (VLEs)

VLE1 is a type of e-Learning system widely used in HE institutions nowadays [178, 35]. They

provide the possibility to author electronic educational content and carry out basic teaching and

learning processes using Web technologies with a range of supplementary services, among which

the support of ‘student-student’ and ‘student-teacher’ communication and the administrative tasks

are highlighted as crucial requirements [21, 53]. VLEs are used for pure distance learning, as well

as for blended learning2, supplementing traditional classroom-based learning. Their widespread

usage in HE institutions motivates the consideration of VLEs within this study. Examples of

modern VLEs are Blackboard, Moodle and Prometheus [104].

The main functions of VLEs are divided into the following areas [31, 104]. Content development

and course design areas include tools for instructional design, content authoring, sharing and

reuse, curriculum management, design of assessments, etc. Collaboration and communication areas

provide a wide rage of commonly used asynchronous and synchronous means of communication,

adapted to educational purposes, as well as specific tools like virtual classrooms, groupwork tools.

Course delivery functions are used to actually conduct the learning process, providing extended
1In different sources, other terms are also used to designate this type of systems, like Learning Management

Systems, Learning Content Management System, Course Management Systems.
2Blended learning is a mode of study when traditional ‘face-to-face’ studies are combined with computer-mediated

learning activities.
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facilities like navigation tools, tracking systems and personal assistants, automated testing and

scoring.

Additionally to the two VLE advantages widely referred in the literature [48, 95, 111], that is,

a flexible anywhere and anytime learning and a reduction of expenses for teaching3, well-designed

VLEs provide some extra value. They provide additional means to actively involve students in

the educational process using new collaboration and communication tools and, hence, to change

their learning mode from passive to active one [21, 79, 180]. Actively using these tools within

the course building schemas that provoke students collaboration, for example, granting to students

some teachers functions, a VLE can become a virtual space where students and teachers share their

knowledge, resources and ideas. For tutors, tracking, assessment and reporting tools of VLE are

the sources of information that can be used as a basis for the analysis and corresponding revision

of the educational process: course content improvement, changing of the presentation mode for a

student, planning future educational courses for specific skills and competences building [53, 107].

Finally, as the course content is specified in a modular and formalised way, it can be actively

re-used in different courses and individual learning paths can be easily built for students.

Despite the fact that VLEs are widely used in universities, the possibilities of their utilisation

for the development of a system supporting the CEP generation process are restricted. VLEs are

focused more on the inner content of the modules and corresponding processes. They lack full-

fledged support of EP curricula, while information about these significantly facilitates the CEP

development process and is needed for a CEP generation system. Moreover, learning path con-

struction and adaptation, when it is required, should be done manually in the VLE by tutors [68].

There are initiatives [5, 108] where VLEs are extended with the adaptation technologies, but they

lie more in the ITS field, which will be considered further (see Section 2.2.2). Actually, if distant or

blended learning modes are used, university VLEs can be used as distant learning platforms for the

CEPs developed by a CEP generation system. Then, the virtual learning mobility can be realised,

that is, when students study according to a CEP, they can be (simultaneously) enrolled and take

part in learning activities in VLEs of different universities participating in the CEP. Moreover,

VLEs can be used as sources of information for the CEP development, as they are widely used in

universities and store valuable information about their educational modules (like credit values, pre-

requisites, learning outcomes, etc.) However, as their specifications lack a fixed standard structure

and often use different units and terms, the utilisation of this information is currently difficult and

requires extra unification and integration efforts4. Therefore, the integration with VLEs and their

usage in a CEP generation system both as sources of information about modules and as target
3These advantages actually correlate with the advantages of the distance learning.
4While IEEE Learning Objects Metadata standard [97] is supported by some VLEs, it cannot represent all

required information for the CEP generation, for example, credit values for modules. So, for harvesting module
information using this standard, a specialised profile based on this standard should be developed.
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distant learning platforms can be considered as an attractive but non-core functionality for a CEP

generation and support solution.

2.2.2 Intelligent tutoring systems (ITSs)

ITSs are tutoring systems providing flexible individualised learning using AI technologies [24].

These technologies are utilised to carry out tasks that traditionally pertain to tutors and help to

create systems, “which know what they teach, who they teach and how to teach it” [123], p. 252.

Historically, ITSs appeared as an extension of Computer-Aided Instruction (CAI) systems, which

were earlier ancestors of VLEs [71]. When web technologies appeared, they were recognised as

a favourable platform for the ITSs, so they started to be actively used for the development of

ITSs [125]. With the migration to the new platform, ITS techniques were also enriched with novel

presentation and navigation methods that originally appeared in the web-technologies field [23].

ITSs were developed for a variety of domains with a focus on different educational tasks. Model-

tracing ITSs are used in problem-solving environments. They are designed to model correct courses

of action for solving specific types of problems. When the student deviates from the correct solution

track, this is detected and the system provides a valuable feedback. For example, the model-tracing

PACT Geometry ITS forms an intellectual environment where students can solve geometry tasks.

This ITS was developed as part of school geometry course [4]. Simulation-based ITSs are developed

for simulation environments, where students can carry out exercises. These ITSs coach students

by providing tutorials, giving tasks using the simulation environment and assessing the results.

For example, AIS-IFT system was developed to carry out ITS functions for a helicopter pilots

simulation environment [133]. Collaborative ITSs carry out tutoring tasks in virtual collaborative

environments where a group of students is working on some task. ITS can guide the collaborative

decision process, propose peers for consultancy, promote collaborations. In the area of medicine,

the COMET system was developed for the collaborative diagnosis of disease under the control of

an artificial tutor [149].

2.2.2.1 ITS architecture

The ITS architecture consists of four main modules: student module, domain module, tutoring

module and communication module [71, 123]. Each of these modules contains a corresponding

model, using which the knowledge required for the functioning of the module is specified.

The domain module is responsible for storage and processing knowledge about the problem

domain that should be taught. Depending on the type of ITS, the knowledge stored in the domain

model is different in nature and has different levels of granularity. In most cases, based on the

domain model, a student’s cognitive state should be built and further tasks for the student should

be selected. For this purpose, the domain model should contain descriptive knowledge about the

domain: concepts, skills and techniques existing within the domain and their relationships. In

17



CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Generalised models and functions of ITS

problem-solving ITS, the domain model should additionally contain procedural and explanatory

knowledge, so that a solution proposed by a student can be checked and informative feedback

can be given. In model-tracing systems, this expert knowledge is encoded using production rules

representing the course of problem solving. At a lower level of granularity, they can even represent

atomic operations that can be carried out by a student when he (or she) solves the problem.

In constraint-based systems, the domain model is formed by constraints defining states which

incorrect students’ solutions can occupy. Domain models of the simulation-based ITSs should

additionally contain information about properties and behaviours for each type of components

within the simulation environment.

In ITSs, learning materials are presented to the students using specially designed digital learning

objects. These learning objects are usually stored in a repository within the domain module. Meta-

data of the learning objects contain their characteristics, required during the instructional planning

and, actually, the tutoring. These characteristics can contain their roles in the tutoring process

(theory, exercise, hint, bibliography, example, etc.), media types (text, picture, film, simulation

problem, test, etc.), levels of complexity and interactivity, and other properties. In order to plan the

tutoring process, which consists of the interaction of the student with the corresponding learning

objects, the learning objects should also be linked with the concepts stored in the domain model.

In addition to the domain model, the domain module should also have mechanisms using which

the domain model can be processed and information required by the student and tutoring modules

can be retrieved from it and provided to these modules.

The student module serves two main purposes: it stores all information about the student and,

based on this information, it infers new knowledge about him (or her). This module receives

information about all activities carried out by the student in the system and, supported with

information from the domain model, dynamically maintains the student model.

The student model is divided into low-level observations of the student activities, his (or her)

knowledge model and information about his (or her) learning style. A history of the student’s
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interactions with the system is stored in the observation model. Depending on the type of ITS,

this model can refer to the learning objects and/or problems studied by the student, his (or her)

assessments results or lower level information (e.g., the number of times a specific page was opened).

In the model-tracing ITSs, this model also contains sequences of operations that were carried out

by students during the problem solving. The student’s knowledge model is usually populated based

on the lower-level observations. Often, it is built using the domain model of the ITS. For example,

the student’s knowledge model can be defined as a subset of the domain model. Using this model,

it is possible to determine the level of mastery for every unit of the domain model. Such a model

is called an overlay model. For the specification of these models, probabilities or fuzzy values can

be used [28]. Information about the student’s learning style can contain conclusions about the

type of tutoring recommended to the student, including the level of interactivity, the format (text

or graphical) of learning objects, the approach (inductive, deductive), the semantic density value,

etc. This information can be derived before the tutoring using special tests, which the student

should pass [126], or it can be updated based on the observations of his (or her) progress during

the tutoring.

The information from the student model, as well as the domain model, is utilised by the tutoring

module to manage the core tutoring process within the ITS. First of all, the tutoring module, based

on the information about student’s knowledge, determines next topic that should be taught to the

student. When the topic is chosen, it determines an educational activity which should be carried

out (e.g., assessment, theory lesson, revision) and chooses a specific learning object which will

be used. During the learning, the tutoring module guides the student and provides him (or her)

with feedback. For example, in the problem-solving ITSs, it evaluates the solutions proposed by

the student or informs him (or her) when a wrong operation is performed during the problem

solving. When a student navigates through the material himself (or herself), the tutoring module

can provide hints or guide the navigation [164]. For these operations, the tutoring module should

make many decisions, influencing the performance of the learning: which topic to choose, which

activities and in what order to use, learning objects with which properties to select, how much to

intervene into the learning process, how detailed hints to provide, etc. First of all, the tutoring

module should be adaptable: all these decisions should be taken based on the information from the

student model. The tutoring module can adapt the difficulty of the learning objects selected, the

nature and order of the activities proposed to the student based on the proficiency and preferences

of the student. Moreover, based on the derived characteristics of the student’s learning style, the

ITS can vary the learning strategy used. Advanced ITSs store the supported learning strategies as

separate pedagogy models and change them to adapt to the student.

The communication module is responsible for all interactions with the student, including screens

layout, dialog management, tracking student behaviour.
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2.2.2.2 ITS main techniques

The major techniques used in the ITS field are as follows [24, 23]:

• Curriculum generation is used “to provide the student with the most suitable individually

planned sequence of knowledge units to learn and sequence of learning tasks (examples, ques-

tions, problems, etc.) to work with” [179], p. 372. Using this technique, the ITS defines or

maintains an optimal curriculum for the student.
• Intelligent analysis of student’s solution techniques are used to analyse solutions pro-

posed by the student. Problems can vary from a simple multiple choice test up to a complex

construction task. In addition to the correctness analysis, these techniques can specify which

component was incorrectly used or constructed, provide some explanations or specify an area

of the student’s domain knowledge that should be improved.
• Interactive problem solving support techniques are used to control the student’s problem

solving process. They can detect deviations from the correct solution construction path,

notify the student about it and provide assistance (refer to the theory, give hints, correct the

solution, etc).
• Adaptive presentation techniques originated from adaptive hypermedia systems. In this

technology, course pages are generated or assembled from pieces of content for a specific

student based on his (or her) knowledge, learning goals and specific characteristics.
• Adaptive navigation techniques are used to adapt links shown on a web page for the

current student, in order to help him (or her) in navigation and orientation.
• Adaptive information filtering is used to select from a large repository few educational

units which fit the student’s request most.
• Intelligent collaborative learning is a group of techniques used to control and promote a

collaborative learning in ITSs. This group includes adaptive group formation, adaptive peers

choice, collaboration support and virtual students techniques.

As the problem of the CEP construction is a special case of the curriculum development problem

being solved using the CG techniques, next we will concentrate on this functionality of ITSs.

2.2.2.3 Curriculum generation techniques

Curriculum generation (CG) is the core functionality in ITSs. The CG techniques can be used to

structure educational material at different levels within ITS. At a high level, it is used to create

sequences of topics that the student should study. At a lower level, it structures learning objects

that are used to teach these topics. As a basis for the development of individualised learning paths

for students, different information can be used. Usually, the current student’s domain knowledge

is used. Some systems also take into account different properties of the student, like the preferred

type of the learning content or medium. Advanced CG techniques based on the information about

20



CHAPTER 2. LITERATURE REVIEW

the student select the tutoring strategy appropriate for the creation of the student’s curriculum [71].

There are two different types of CG techniques: active and passive [23]. When the passive technique

is used, by default the student navigates through a standard course. A system intervenes only when

the student makes a mistake or explicitly asks for assistance. On the other hand, the active type

proactively generates a whole course for the student or at each step determines the learning object

that should be taught next. Obviously, for the CEP generation task the active CG techniques

should be considered.

Different methods were used for the implementation of CG functionality. In general, they can

be classified into graph-based techniques and planning-based techniques. Next, these techniques

are illustrated using examples of concrete ITS systems.

ABITS (Agent Based Intelligent Tutoring System) [28] is an agent-based ITS that

was developed to extend the functionality of traditional VLEs and make the learning process

more personalised and adaptable using the student modelling and CG functions. The domain

model is represented in ABITS as a conceptual graph where nodes are concepts of the underlying

knowledge domain and edges are relations between them. Three type of relations are supported:

prerequisites, sub-concepts and a general relation. Learning objects in ABITS are atomic web-

deliverable resources that deliver lessons, tests and simulations. For storing information about

learning objects, the IEEE Learning Object Metadata (IEEE LOM) standard is used [97]. One

of its data elements is used to map the learning object to a set of concepts within the conceptual

graph that this learning object refers to. The student model consists of the student’s cognitive

state and preferences. In Figure 2.2 relations between the constructs of the student model and

other models are presented. The cognitive state is an overlay of the conceptual graph, where the

level of confidence that the student knows specific concepts is represented by fuzzy numbers. The

student’s preferences are also stored as a set of fuzzy numbers: each number represents the level of

confidence that the student prefers learning objects with specific value of the meta-data attribute

(e.g., specific format, level of interactivity).

Figure 2.2: Conceptual graph, student and learning objects models of ABITS

The automatic CG is carried out in ABITS based on the student model and the learning goal
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that should be achieved. The learning goal is a set of concepts within the conceptual graph. In

the first step, the system finds a list of concepts which should be studied by the student in order

to know all concepts within the learning goal. For this purpose, the depth-first tree traversal is

carried out in the sub-graph formed by the prerequisites relations of the conceptual graph. When

a concept that the student knows is reached, the traversal is stopped. Next, this list of concepts

is transformed into a sequence of learning objects explaining these concepts. A learning objects is

selected for teaching a concept based on the student’s preferences. Finally, required test units are

added into the resulting sequence of learning objects.

The graph-based approach to the curriculum sequencing is widely used. For this approach, it

is crucial how the domain and learning objects models are defined: which relations they contain

and which of them are utilised for sequencing [12]. The CG algorithm in ABITS is a basic algo-

rithm where prerequisites between concepts and student’s preferences are utilised for the concepts

sequencing and learning objects selection. The common alternative is an approach where prerequi-

site relations are defined between the learning objects and this graph is utilised for the sequencing

(e.g., in [89]). In the concept graph, other types of relations can be used during traversing, like

’subconcept’ or ‘similarity’ [172]. Another enhancement used in CG techniques is the utilisation of

traversing algorithms constructing optimal paths based on the defined criteria. For example, in [88],

the joint ordered graph containing both concepts and learning objects is weighted: each learning

object node is assigned with an average time required for its studying. Then, using the graph

traversal algorithm, a path with the minimal duration is constructed. Generally, graph-based

approaches are simple and elegant but they lack mechanisms for the representation of different

knowledge that can be used during the CG. As a consequence, their flexibility and adaptability

is less than for other approaches. In the next paragraphs, an ITS system is presented where the

graph-traversing CG algorithm was extended using planning- and rules-based approaches.

The DCG (Dynamic Courseware Generation) approach, proposed in [25, 171, 172], is

targeted at the development of individualised courses for students based on their knowledge and

characteristics. The domain structure in DCG is represented as an AND/OR graph: nodes repre-

sent domain concepts, edges represent different semantic relations between them. In this domain

structure, different types of relations are used, so the same domain can be represented from differ-

ent perspectives. In addition to common ‘prerequisite’ and ‘aggregation’ relations, special types of

relations can be used to represent different aspects of notions under the consideration, for example,

their physical or functional organisation. Each concept corresponds to a set of teaching materials

that can be used to teach it. The teaching materials, in addition to properties like media type and

complexity, are characterised by their roles in the pedagogical process, for example, introduction,

motivation, example, explanation, analogy or test. The student model is also constructed as an

overlay model, but in DCG it is based on the probabilistic theory.
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The DCG is a combined CG technique that uses graph-based, rule-based and planning tech-

niques. Based on the learning goal specified, that is, a set of concepts that should be taught, the

DCG initiates a bread-first traversal of the domain structure AND/OR graph. At each iteration,

so-called discourse rules are used to control the traversal. The discourse rules are production rules

that define criteria according to which learning materials should be structured for students with

specific characteristics. They define which type of semantic links should be chosen to follow, and

when it is required to switch to another type of semantic links. For example, for an intelligent

student a top-down approach to the discourse can be used, so the traversal should follow refine-

ment links in the concept structure, while for other students the bottom-up approach can be used.

The outcome of the graph traversal is a concepts plan for learning (i.e., a partially ordered set of

concepts).

In the next phase, a teaching strategy is chosen. The teaching strategy is an approach which

should be used to teach a concept to a student. The strategy can be unstructured, meaning that

a student can select which task will be carried out next, or structured, when the student is led by

the system. The structured strategy determines a specific pattern of teaching tasks that should be

sequentially carried out to teach the concept to the student, for example, make an introduction,

present theory, refer to examples and pass tests. Special strategy-selection rules are used to decide

which strategy should be used for a student based on his (or her) characteristics and knowledge.

Each strategy is encoded as an AND/OR tree. Nodes of this tree are teaching tasks, AND and

OR links designate alternative decompositions of these tasks to lower level teaching tasks. During

the curriculum construction, specially specified rules are used to choose between alternative AND-

decompositions in the strategy and to select teaching materials which should be used for the

execution of teaching tasks. These rules are correspondingly referred to as teaching methods and

teaching material selection rules. The resultant sequence of leaf tasks forms a course plan that

should be carried out for teaching the current student. This plan is passed to the executor module

that communicates with the student and performs the teaching tasks.

Extension of the graph-traversal CG approach with the rules- and plan-based techniques in the

DCG led to the construction of a CG system with advanced adaptation possibilities. An approach

for the concepts plan development, a teaching strategy and methods for the execution of teaching

tasks are selected for a specific student using different types of expert rules. The decomposition of

educational tasks using AND/OR graphs is analogous to the hierarchical planning. This approach

is beneficial as all knowledge that is used at different levels of the curriculum design is formalised

and stored in a specialised knowledge base. So it is possible to easily modify and extend the

curriculum design knowledge, and to choose opportune curriculum construction methods from this

knowledge base during the educational programme development for a specific student.

TOBIE (Teaching Operators-Based Instructional Environment) is an ITS that was
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designed with a focus on CG. This functionality in TOBIE is fully implemented using a unified

planning mechanism [173, 170, 174]. The domain knowledge base for TOBIE is represented as a

directed AND/OR graph similar to one in the DCG. It represents a decomposition structure with

different types of semantic links. The domain knowledge base contains different types of knowledge,

stored at different levels, for example, skills and goals decomposition levels, conceptual level,

problem-solving level. The domain knowledge base also stores pedagogic knowledge, for example,

possible curricula specified on the domain concepts level. All knowledge in TOBIE, including the

domain knowledge base, is formalised in a unified and modular way using Teaching Operators

(TOs). A TO is a construct, similar to planning operator, that encodes possible transitions of the

student model using preconditions and effects. When a TO is executed, the corresponding pre-

defined teaching procedure is carried out and the student model is updated according to the effects

part of the TO. TOs can also encode hierarchical structures: within the teaching procedures, lower

level TOs can be referred. Pedagogical knowledge about the context of TO usage is also encoded

within the TO structure. Preconditions of TO define when its execution is appropriate, relying

on available knowledge about the student, for example, his (or her) characteristics and knowledge.

A diagnosis part of TO refers to several remedial operators and a diagnosis operator used for

evaluation of student’s response during the TO execution. When the diagnosis operator detects

an exception, the remedial operators are used to identify an error and carry out the corresponding

remedial procedures.

The instructional planning mechanism in TOBIE provides designers with a large flexibility in

the ITS construction, since in TOBIE unified constructs can be used to define different aspects of

the educational process. However, on the other hand, different types of knowledge are specified in

a mixed form in the knowledge base and cannot be isolated. For example, TOs are specified in a

way that the pedagogic knowledge is merged with the knowledge about organisation of concrete

domain. So, when a new ITS is built, the whole knowledge base should be designed from scratch.

Generally, TOBIE illustrates how planning mechanisms can be utilised at different levels and for

different aspects of the educational programme development.

Analysis of CG techniques towards the CEP generation problem

Pure graph-based techniques are not appropriate for solving the CEP generation problem be-

cause in the student mobility area an overall graph connecting different concepts and learning

objects cannot be built. Learning objects for the CEP development (EPs and their modules) and

specifications of domain concepts are provided by different universities. Relations between them,

for example, the prerequisite relations, are usually defined by the content designers only within a

specific university. Relations between learning objects and concepts used in different universities

can be derived using knowledge-based approaches, but only in a non-binary form as a degree of

confidence that the relation exists or as a measure of the relation strength. Such relations would
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connect a learning object with all other learning objects, so decisions that should be taken during

the CEP construction cannot rely on the absence or presence of the relation, as it is usually done

in the graph-based approaches. More complex threshold mechanisms should be exploited where a

concrete threshold value to use depends on a type of decision being taken (e.g., a recognition or

a prerequisites evaluation) and on local regulations influencing this decision (e.g., how similar two

learning objects should be in order for one of them can be considered as equivalent with another).

Rule-based and planning-based techniques are more appropriate for the CEP generation task

as they are not rigidly tied to graph structures. Moreover, they can support different externally

specified educational strategies that can be utilised for the CEP construction. An appropriate

strategy can be selected based on a current situation during the planning. It is advantageous

to use a planning approach as a basis for the CEP construction because, as opposed to rules,

planning employs action-based approaches with the explicit ordering and time support. This

makes it possible to naturally represent an EP and simulate educational processes using planning

models with a required level of detail. Rule-based approaches are usually used as supplementary

mechanisms to facilitate planning and graph-based techniques. Rules are used to explicitly specify

principles for taking specific decisions during the CEP construction and, hence, make corresponding

processes easily extensible, more intuitive and adaptable. The majority of planning-based CG

systems supports hierarchical planning, so in the next section we will concentrate on this type of

planning.

In current CG techniques, the following issues were found that limit their applicability to the

CEP generation problem:

• Current systems are rigidly designed by one author or a group of colleagues collaboratively.

They lack a support for regulations that are different in different domains (e.g., countries, uni-

versities, faculties) and which are specified and supported by different persons independently.

These regulations include laws, legal acts, established routines and expert assessments, which

are in force only in a specific region and can be applicable only in specific cases. Such reg-

ulations manage various aspects of the educational process, like the structure and content

of curricula, admission rules, student transfer routines, rules governing student progression,

rules for prerequisites evaluation. In spite of the fact that current CG techniques actually

provide the possibility to specify different types of knowledge that can be utilised during CG,

it is assumed that a knowledge base with a specific type of knowledge is specified exclusively

by one person.
• In current ITSs, as an input for the curriculum construction, a set of concepts to study is

specified. When a CEP is developed for a student in a real HE environment, this is not

enough. Two more requirements are critically important: award the student will get at the

end of the education and the structure of the developed CEP. Structure requirements could
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determine universities where the student will study, and how many and which transfers he

(or she) will make during the education.
• The problem domain in current ITSs is defined using concepts and relations between them.

Learning outcomes are usually not supported, what contradicts with the BP requirements.

Learning outcomes contain more information than a list of concepts a student should know.

They can be requirements for the focus of education (learn theory, learn how to apply it, have

an overview, etc.), the level of cognition and other aspects of the student achievements. Simi-

larly, current ITSs lack support for other mechanisms proposed in the BP for the comparison

of learning objects originating from different sources: educational credits and frameworks for

qualifications [54].
• Finally, current ITSs cannot support environments where different terms and unit are adopted

in different domains for description of the same or related notions. For example, these terms

and units can be used to describe learning objects that should be used for the CG, so a

transformation mechanism for them is required.

2.2.3 Planning technologies for Curriculum generation

AI planning technology is useful for generating a plan consisting of actions that achieve a specified

goal state, given a description of the initial state and a formal description of the domain. So

AI planning is a constructive technology that has been applied in many different areas, including

electricity networks, spacecraft mission control, manufacturing, web-services, robotics, evacuation

and unmanned vehicles control.

The theoretical model that underlies classical planning is the action-based state transition

model of a system defined as Sys = 〈S,A, γ〉. S is a set of all system states, A is a set of possible

actions. The state-transition (partial) function γ : S × A → S defines a state where the system

transfers from a current state when an action is carried out. Commonly, a set of restrictions is

applied when a model of the system is specified for planning. It is assumed that the system’s

model is finite (contains a finite number of states and actions), static (is changed only by actions),

deterministic (γ is a partial function) and fully observable (state s is known fully) [116]. In classical

representation, the system’s state is represented as a set of ground positive function-free first-order

literals l(t1, . . . , tn) under the closed-world assumption (this state is also referred to as a planner’s

world state). Actions are represented using operator schemas. The operator schema contains a

precondition, which is a first-order formula that should be true in a world state before the execution

of operator, and an effect defining modifications of the world state that should be carried out as a

result of the operator execution. Effects are represented as sets of positive and negative literals5.

A plan is a sequence of actions that should be executed from the initial state in order to reach a

goal state.
5Positive literals are added to the world state, negative literals are removed from it.
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2.2.3.1 Hierarchical Task Network (HTN) planning

Classical AI planners carry out a trial-end-error choice of actions in order to find a sequence of

actions leading to a goal state. This approach results in a need to explore an excessively large

search space (although heuristics can make the planning more efficient). Prominent examples

of classical planners are STRIPS [61], UCPOP [127], FF [75]. One of the approaches proposed

in order to solve this problem of classical planners is the HTN planning that utilises domain-

specific knowledge in order to guide the planning process and explore only the parts of the search

space that could lead to a correct plan construction. In HTN planning, a planning problem, in

addition to an initial planner’s world state, is specified as a set of tasks. These tasks are abstract

representations of activities that should be carried out by the planner. ’Methods’ (or refinements),

which are specified by a domain author, are used to represent alternative schemas for the execution

of compound tasks. They are used to decompose compound tasks into networks of lower level tasks

and eventually into actions that are executed in the planner’s world state in an ordinal manner

using operators. This approach is different from classical planning in terms of how a planning goal

is specified and how the planning is carried out. Using HTN planning, a user can get more control

over the planning process by the specification of initial network consisting of compound tasks. It

was shown that HTN planning is strictly more expressive than the classical planning [26]. In HTN,

it is possible to specify problems that cannot be specified in classical planning. However, the main

advantage of HTN planning is a considerable reduction of the search space that a planner should

explore using methods, representing knowledge on how a solution should be built. Due to these

advantages, HTN planners are more widely used to solve real-world planning problems than other

types of AI planners [116].

Original ideas of HTN planning were proposed in the NONLIN [155] and NOAH [136] plan-

ners. These ideas were applied and extended in more modern HTN planners described next. O-

Plan2 [154, 37] is a domain-independent general planning and control framework with the ability

to utilise diverse domain knowledge. The focus of the O-Plan2 development was on the extensible

architecture that provides means to support and facilitate interactions between task specification,

planning and execution components. O-Plan2 unites different AI techniques for planning, in-

cluding HTN planning, agenda-based approach, least commitment, different constraints handling

techniques (including temporal and resource constraints). The agenda-based approach resembles

a blackboard system, where a set of ‘issues’ represents outstanding decisions or requirements that

should be resolved. At each planning cycle, the system opportunistically chooses which issue type

and which specific issue should be resolved and calls a Knowledge Source, which possess corre-

sponding processing capabilities in order to make decisions and modify a current plan. Reasoning

over different types of constraints results in possibilities to prune the search space. The generic
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architecture of O-Plan2 provides the means to construct different planners, combining different

Knowledge Sources, constraints managers and other components, and facilitates the support and

extension of the resulting planning systems. O-Plan2 was applied to a wide variety of application

domains, including construction and house building, logistics, crisis response, evacuation operations

and many others.

SIPE-2 [183] is a domain-independent hierarchical, non-linear planner, which was designed

for solving practical problems. It gives much consideration for planning efficiency and reacting

to events that occur during the execution of constructed plan. During the planning, SIPE-2

memorises possible choices and uses a notion of context in order to determine a branch that should

be followed at this point. When an event is produced during the execution, the planner can react

to it initiating re-planning using an alternative branch that involves minimal modifications of the

current plan. Other SIPE-2 possibilities include reasoning about resource and time constraints,

intermingle planning and execution. The planning algorithm of SIPE-2 is a depth-first backtrack

search. In order to achieve heuristic adequacy and produce results to a large set of planning

problems, it utilises different heuristics that limit the search space and reduce the complexity of

the planning. Other features of SIPE-2 include a GUI for interaction with the user during the

planning. SIPE-2 was utilised as a basis for the development of a distributed multi-agent planning

system [44]. Also SIPE-2 was used as a planning engine in the integrated planning environment

Cypress that includes a planning domain specification and storage platform, a reactive execution

system with dynamic re-planning features and a reasoning engine with the uncertainty support.

Examples of SIPE-2 practical applications include air campaigns, military operations, production

line scheduling, construction planning.

SHOP [119] and SHOP2 [117] are domain-independent HTN planners that utilise a forward

tasks decomposition. They decompose tasks and apply operators in the same order as they will

be carried out at the execution stage. This strategy is attractive as at each stage of the planning

the current planner’s world state is fully specified. This provides the means to evaluate complex

conditions to prune irrelevant plans in the current planner’s world state, and call external functions

in order to carry out complex domain-specific computations based on information extracted from

the current world state. SHOP supports only fully ordered task networks in the current task

network and in decomposition methods. In SHOP2, this limitation was relaxed. While it plans

only in a forward manner, its current set of tasks can be only partially ordered. Hence, as SHOP2

supports interleaving of tasks that has been produced as a result of different compound tasks

decomposition, some planning domains can be specified in SHOP2 in a more concise and efficient

form. The described characteristics of SHOP2 led to a distinguished performance award in the

International Planning Competition. SHOP and SHOP2 were applied to a large number of practical

problems, including web-services composition, evacuation planning, project planning and many
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others.

2.2.3.2 Planning technologies for Curriculum generation and Combined Educational

Programmes development

There are a number of examples of planning technologies application to the CG problem [12,

13, 162, 163, 170, 173, 174], some of which were described before. The majority of planning

formalisms used for CG supports hierarchical tasks, because they naturally represent educational

processes and provide additional control of the planning process for a domain author. Moreover, the

hierarchical planning provides gains in the planning performance due to the controlled exploration

of the planner’s search space with the help of methods used for compound tasks decomposition.

In simple, non-hierarchical planning-based CG systems (e.g., [13]), a straightforward approach is

used. Courses are represented as operators. The preconditions specify course prerequisites, while

the effects define the learning outcomes of the courses. This approach is characterised by a limited

expressivity and poor scalability, in comparison with more advanced approaches where learning

objects are used as action and task parameters [163]. In the later approaches, when a learning

object is added to the EP being developed, its role within this programme is specified explicitly.

It is determined by the action that introduces this learning object into the educational plan. This

provides the means to add extra meaning into the resulting educational plan and construct more

complex EPs6. Moreover, this approach gives the possibility to store learning objects externally in a

repository, rather than in the planner’s world state [162]. At the level of compound tasks, which can

be decomposed using methods, a similar differentiation of approaches exists. On the one hand, more

abstract compound tasks and decomposition methods are used to formalise domain-independent

knowledge about the teaching methodologies and routines. On the other hand, planning constructs

analogous to the HTN tasks and methods are used to specify decomposition of concepts that can

be utilised to build up a curriculum or problem-solving methodologies that can be applied only

in specific problem domains (e.g., integration by parts in integration calculus). A clear advantage

of the former case is a possibility to re-use these teaching strategies for different problem areas,

but a concrete approach should be chosen based on the purpose of the system and the level of

granularity at which the hierarchical planning will be applied. For a CEP generation system which

is not tied to a specific domain area and should operate on the level of complete HE curricula, the

former case, where domain-independent abstract tasks and methods are used, is more appropriate.

Moreover, this approach is advantageous for the CEP development as using HTN methods different

EP development routines can be specified.

Current instructional planners tend to use ordered tasks decompositions, where tasks are de-
6For example, learning objects can have several modes of usage that are activated based on its role in the plan,

e.g., the same testing unit used as an intermediate task during the course and as a final test task can apply different
criteria of assessment.
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composed in the same order as they will be fulfilled during the education. As educational goals

are strongly inter-dependent, ordering relations between these goals provide valuable information

during the planning, which determines the planner’s decisions [169]. An optimal choice of the

current action (or current learning object) during the education is possible only when the history

of the student’s education is known. Based on this history, the student’s current knowledge can

be determined and his (or her) preferences and characteristics can be inferred. Moreover, the

teaching strategies and EP development routines defined in a domain-independent manner cannot

be specified without information about the ordering between the tasks that form the strategy.

Several issues arise when planning technologies are applied to the CG problem. As the nature

of the education is non-deterministic and a student’s progression depends on his (or her) outcomes,

much efforts have been spent on the development of reactive instructional planning approaches [172,

169]. In such a system, a curriculum is built in advance but during the educational process the

system ‘senses’ the environment and can react appropriately (e.g., this approach was implemented

in TOBIE [173]). Another challenge, which has not attracted much attention, is the requirement

to present extended information about the curriculum development process and the curriculum

structure rationale to the user. This is required when the resulting curriculum is returned to the

user, who should be able to fully understand the principles of its development and augment it when

this is required. For example, in [162, 163], for these purposes it was advocated that not only the

development process, but the final curriculum itself should be hierarchically structured.

The main drawback of current planning technologies for their application to the CEP genera-

tion problem is the assumption that a single author or a group of closely collaborating colleagues

is responsible for the planning environment specification. The environment consists of methods

and operators, which determine possible actions that could be carried out in the environment and

limitations over them. Relying on this specification, an automated planner develops a plan. In a

CEP generation system that should consider heterogeneous regulations, specified by different au-

thors, this assumption is not fulfilled. For a feasible solution to the CEP generation problem using

planning technologies, it is required that several independent authors should have the possibility to

contribute to the planning domain. Each of them has its own area of responsibility, but as they can

determine requirements for the same process from different perspectives or represent authorities

at different levels responsible for the same process, their areas of responsibility can overlap. In

terms of the planning environment constructs, they can determine conditions on the execution of

specific operator or task and determine task structures produced during a task decomposition in

a specific situation. Additionally, it should be controlled how these authors can influence on the

planning process. It should be possible to specify a set of situations where a specific author can

contribute and control outcomes of his (or her) intervention into the planning process: the overall

feasibility of the planning process should be preserved and possible conflicts between contributions
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of different authors should be resolved. A straightforward approach when each author has a set

of operators and methods, over which he (or she) has full control, does not provide the required

level of control, as outcomes of these operators and methods execution are directly applied in the

planning environment. Moreover, this approach leads to a growth in the number of operators and

methods, as each author should have a distinct set of operators and methods that he (or she) can

specify.

In order to fulfil these requirements, which would enable planning in environments with hetero-

geneous regulations, a specialised mechanism operating on top of the described planning technolo-

gies and extending their functionality is required. Within the field of automated planning, there

are two areas where the related problems are being solved: distributed planning and planning

under control rules.

Control rules-based planners apply the same general approach for the planning efficiency im-

provement as the HTN planners. Specifically, domain-independent planning techniques are ex-

tended with the possibility to encode domain-specific knowledge that can be utilised during the

planning in order to guide the planning process and, thereby, improve the planning efficiency [116].

In the control rules-based planners, such domain-dependent knowledge is specified as heuristic rules.

These rules are used by the planners in order to make decisions during the planning which affect the

planning efficiency and for which other criteria cannot be efficiently used. It is commonly alleged

that the control rules are a special form of the planning algorithm (strategy) specification [10].

Control rules are used to prune parts of the planner’s search space that do not contain correct

plans or contain only less desirable plans (for example, longer or more expensive plans).

Control rules specified as production rules are used in the PRODIGY planner [29] to guide the

search process with the aim of planning time reduction and improvement of the quality of plans.

The PRODIGY planner exploits two planning mechanisms during the planning, namely, state-

space forward search and partial order backward-chaining. Three types of control rules are used in

PRODIGY: reject rule, select rules and prefer rule. Correspondingly, using them it is possible to

prune from the search space one branch or all branches except the selected branch or give priority

to one of the branches. The effects of the rules specify which method of progression should be used

(forward or backward), which goal should be achieved next, which operator should be selected,

which object should be used to instantiate a variable, and so on. Within the condition part of

the rules, information about the current planner’s world state, achieved and unachieved goals, and

other meta-level information based on previous decisions taken during the planning (e.g., selected

or applied operators) can be used. When several control rules are applicable during the planning,

they all should be enforced during the decision taking.

TLPlan [9, 10] is a control rules-based planner where control rules are specified using first-

order version of Linear Temporal Logic (LTL). In contrast with PRODIGY, this planner utilises
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only forward-chaining search. In TLPlan, control rules are specified as logical formulae involving

temporal operators that should be true in all states within the planner’s world states sequence

corresponding to the produced plan. Correspondingly, control rules can make reference only to

information within the planner’s world state (and, using specially added ‘goal modality’, to the

planner’s goal). So, in comparison with PRODIGY, control rules cannot explicitly refer to actions

that should be applied and objects that should be used for the variables’ instantiation in operator

schemas (this limits the possibilities for specification of regulations considerably [11, 70]). The

control rules in TLPlan are checked in an incremental way against the sequence of states corre-

sponding to the prefix of the plan being generated. When it is detected that the control strategy is

violated, the current branch is pruned from the planner’s search space. Thus, in order to compose

the control knowledge in TLPlan, it is not necessary to know details about the planning mechanism

or planning actions specified. Control knowledge is defined as part of the domain description and

determine the properties of this domain that should be satisfied in order to efficiently achieve the

planning goals.

The development the next control rules-based planner, TALplanner, was inspired by

TLPlan [96]. It also employs only the forward chaining search principle and utilises temporal

logic formulae for the specification of control rules. TALplanner is based on Temporal Action

Logic (TAL), a narrative-based linear discrete metric time logic, which is used for reasoning about

actions and changes. In contrast with TLPlan, the evaluation process of the control rules specified

in TAL is optimised using the pre-processing technique [47]. Different sets of optimised control

rules are produced that should be evaluated only after the corresponding operators. These control

rules take into account information about the operator executed and, hence, can be evaluated more

efficiently. Additionally, the specification of operator is also updated by moving some conditions

for the evaluation of control rules into the operator’s precondition.

Other planners that employ control rules for the planning efficiency improvement or as a tool for

the specification of additional constraints on the plan are based on one of the two approaches that

were introduced in the PRODIGY planner (e.g., [106, 98]) and in TLPlan/TALplanner (e.g., [51,

52]). Control rules specified as production rules have a simple and comprehensible structure and

within their effect parts planning actions can be referred to explicitly. As a result, for this type

of control rules-based planners, techniques of control rules generation are created using machine

learning methods [106, 98]. On the other hand, control rules specified using temporal logic are

expressive in using temporal modalities. Modern planners usually utilise compilation approaches,

similar with one used in TALplanner, in order to enforce this type of control rules. For this

purpose, corresponding restrictions on their syntax are adopted [51, 69]. Such control rules are

converted into finite automata that should be simulated during the planning. This provides the

means to evaluate the plan validity based on the control rules. For the specification and simulation
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of these automata, specifications of the operators are extended with corresponding conditions and

automata states updates.

In spite of the fact that control rules are employed to guarantee that the planning process

conforms with the specified requirements, adoption of the described approaches for the specification

and enforcement of educational regulations during the planning for the CEP development has

the following issues. It is supposed that control rules, as well as the core part of the planning

environment, are specified by a single author or a group of collaborating authors, so there is no

mechanism for independent specification of packages with control rules by different authors (within

their areas of responsibility) and their consistent joint enforcement during the planning according

to the purposely defined procedures. When several control rules should be enforced together,

either all of them should be enforced simultaneously (however, this is not always required) or the

approach employing the static numeric priorities is used (however, this approach is not scalable

and flexible). The widely used compilation approach according to which the control rules and the

domain specification should be transformed into a new domain specification, where these control

rules are always enforced, makes the control rules specification inflexible and prevents their timely

updates.

Distributed planning considers problems when several independent problem solvers are build-

ing plans that should be executed within the same environment concurrently or even constitute

parts of a single plan achieving the overall goal. The distributed planning mechanisms should

guarantee that these plans can be executed in a coordinated manner. For this purpose, at a mini-

mum, no conflicts should arise during their execution and, preferably, the overall utility should be

maximised [181]. Therefore, the distributed planning system should produce plans consistent with

each other and achieving the overall goal or (and) the individual planners’ goals. For this purpose,

different specialised coordination mechanisms were designed aimed at the resolution of specific

types of conflicts and interactions during the planning. These mechanisms depend on the type

of environment considered and include plan merging, pre-planning conflict resolution, negotiation

and other approaches [43]. In contrast with the centralised planning, a planning environment for

distributed planning can be specified by several authors independently, but only in parts where

possibilities and preferences of different problem solvers are specified [44]. Correspondingly, the

issue of independent specification of different regulations that control the planning process being

carried out by a single problem solver and their consistent enforcement, which is important for the

CEP generation, is not within the scope of issues considered in the distributed planning area.

Generally, distributed planning does not concentrate on the issue of flexible specification of

different heterogeneous regulations that should be taken into account for solving problems within

some specific planning environment, especially, when these regulations can be updated dynamically.

Rather, it provides the means for resolution of specific types of conflicts and interactions that
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arise in some sorts of planning environments using coordination mechanisms that constitute an

integral part of the automated planning system. Distributed planning techniques, in addition to

the automated planning field, are actively being developed within the multi-agent systems (MASs)

area of research. These systems are also widely used in e-Learning and their applications are

described in the next section.

2.2.4 Multi-agent e-Learning systems (MASs)

A MAS is a system composed of several autonomous agents, functioning continuously within the

environment and communicating with each other either directly, or through the environment [140,

181]. MAS technologies provide the means to construct a complex system as a collection of several

autonomous agents, which can play different roles and perform different functions, and exploit

higher level interaction schemas to define advanced patterns of their interactions. Using this

approach, tasks within complex, open and dynamic (unpredictable) environments can be effectively

solved [82]. The multi-agent approach is advocated for systems that possess some of the following

properties: data, control or expertise are distributed, high flexibility or interoperability is required,

there is a need to concurrently achieve multiple goals or there are multiple methods to solve the

problem [152, 110, 83].

The multi-agent approach is actively exploited for the implementation of distributed e-Learning

environments and integration of existing Learning Objects Repositories (LORs) and e-Learning

systems (e.g., VLEs) for joining the communities and optimisation of educationalists efforts. The

agent paradigm is used for wrapping existing e-Learning systems and organisation of cooperative

service provision (e.g., learning object search service [14, 124]). MAS technologies are used for

management of heterogeneous and dynamic e-Learning environments where it is required to adapt

to changes in a timely manner and guarantee the quality of service. The multi-agent approach

provides a required level of scalability for these environments, and flexibility and adaptability

for their control. Autonomous agents ‘sense’ changes in the environment and optimise service

parameters, foreseeing future changes and adapting them based on known user characteristics

(e.g., this approach is used for management of mobile e-Learning services [147, 148]).

Existing MAS-based e-Learning environments do not support student mobility and do not

provide the CEP generation functions. In some e-Learning systems, the core tutoring process,

including the generation of curricula, is implemented based on the multi-agent approach (e.g., in

ABITS [28], described in Section 2.2.2.3, and other systems [175, 126]). However, the functionality

provided by these systems is equivalent to the already described CG functionality. The main

advantages of this paradigm are seen when it is necessary to actively interact with the student and

generate curricula dynamically, monitoring the student’s actions and reacting to them. In general,

the utilisation of MAS technologies for the implementation of an e-Learning system with the focus
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on the instructional planning, including the CEP generation functionality, is justified when data,

control or expertise should be distributed in it. For the CEP generation process, this depends on

the chosen pattern of interactions within the system, that is, if local LORs are used, where modules

and EP metadata are maintained, or if universities are ready to pass their learning objects to a

central repository, where these learning objects will be utilised for the CEP development, along

with the formalised rules and regulations of their usage, and others issues.

2.3 Policy-based management

Policy-based management is a flexible and effective tool for the information systems management.

Policy-based management is usually used for systems that have difficulties with their control due

to the specific characteristics of these systems or specific requirements for their management. Such

system characteristics can be the distributed nature, autonomy or heterogeneity. Control of such

systems can be difficult, for example, due to the complex rules that these system should conform

to. Another factor, leading to difficulties in the system control, is the dynamic modifications of

these rules and their heterogeneity, meaning that they can define different aspects of the system

behaviour and can come from different sources. Such difficulties arise in many information technol-

ogy domains, like networks, distributed systems, pervasive computing and web services, so different

approaches within the policy-based management field were developed to resolve these difficulties.

Some vendors of network hardware (e.g., Cisco, HP) use policy languages as a standard tool to

control their equipment. In this section, the notion of policy is examined and a classification of

policy rules is provided. Next, we will analyse different policy languages and approaches and choose

a language that can be used to satisfy the requirements specified for a CEP generation system.

2.3.1 Policy definition

In the information technology the most general and well known definition of policy was given by

Morris Sloman:

“Policies are rules governing the choices in behaviour of a system” [39], p.1.

In this definition two things are implied. First of all, the possible behaviour of system is more

general and policies limit possible traces of the system. Secondly, policies should be somehow

enforced for this system, voluntarily or by force. In the following definition, these two aspects are

explicitly stated and more details are provided:

“Policy can be defined as an enforceable, well-specified constraint on the performance

of a machine-executable action by a subject in a given situation” [20], p.368.

In [20], the following clarifications were also given for terms used in this definition:

• Enforceable: using the system infrastructure, it should be possible to sense and control (i.e.,

to prevent or enable) the execution of actions controlled by the policy.

35



CHAPTER 2. LITERATURE REVIEW

• Well-specified: policies are well-defined declarative descriptions.
• Machine-executable action: policies can control not only actions being entirely executed

within a machine environment, but also actions that can be executed outside the machine

environment if afterwards the fact of their execution is reported to the machine.
• Subject: the subject can be a human, a hardware or a software component (or a collection

of such entities).
• Situation: the applicability of policy to a current situation is limited by the policy precondi-

tions and a variety of contextual factors.

A system usually has more possible traces than permitted by the policy, so the policy constrains

the system behaviour [182]. A mechanism that guarantees that the behaviour of the system

satisfies the policies specified for it is called an enforcement mechanism. An enforcement mechanism

depends on the type of system and on a policy language used for the specification of policies. Policy

enforcement is described in Section 2.3.4.

Policies specify only information aspects of the desired behaviour and have declarative seman-

tics. They describe which requirements the system traces should satisfy, without specification of

full action sequences that must be carried out by the system. Due to this property and due to

the presence of enforcement mechanisms, which mediate in interactions between the policies and

the system itself, policies can be separated from the core part of the system. Hence, the policies

can be flexibly changed in a dynamic manner, without the need to modify the system itself (e.g.,

recompile it).

Another important property attributed to policies is persistency [39]. Policies do not represent

actions that are fulfilled only once during the system execution. Instead, the policy governs the

behaviour of the system at present, as well as in the future.

2.3.2 Benefits of the policy-based management

The main benefits of the policy-based management are as follows:

Facilitation of system management under complex regulations. Complex regulations are

specified naturally as a set of short declarative rules applicable only in specific situations

(e.g., people tend to formulate regulations as rules) [18]. Policies specified as sets of such

rules in turn can be combined to form more complex policies using composition mechanisms

that define principles of their interaction and joint enforcement within a single policy. These

policies are automatically enforced using enforcement mechanisms that, among other things,

track the interactions of policies and apply pre-specified conflicts resolution rules [19]. Ad-

ditionally, some policy specification languages have mechanisms that provide the possibility

to specify policies at a more abstract level, for example, specify policies applicable in specific

situation or for specific group of entities. Moreover, for some policy languages additional tools

36



CHAPTER 2. LITERATURE REVIEW

exist for the simplification of policy specification task. They can be specialised GUI for policy

specification [38], policy testing and validation tools [62], policy specification techniques for

non-technical users [144], and others.
Context sensitivity. The enforcement mechanism should select and enforce policies which are

applicable to the current situation. Different policies can be enforced depending on the time,

location, role of the user, etc. [120]
Support for dynamically changing regulations. Policies can be changed when the system is

running without the need to stop it. These changes of policies can be carried out manually

by the administrator or they can be programmed on a specific time or event [80].
Regulations reusability. Policies are declarative representations of behavioural constraints. So

they can be saved, archived and reused, when it is required, during the operation of the

system [141].
Regulations can be supported by different persons independently. Different policies can

be specified and updated independently by different persons, as composition mechanisms are

used to define rules for their combination into an overall policy. Moreover, such policies even

can be stored in a distributed manner and collected only for evaluation (if this is required) [99].
Explicit license for autonomous behaviour. Policies are an appropriate tool for the imple-

mentation of selective control. Policies provide specific instructions for some situations, for

instance, prescribe to execute some action or avoid it. Therefore, the choice of specific deci-

sion that will be carried out, provided that this decision is conformant with the policies, is

at the discretion of the system itself [168].

2.3.3 Types of policy rules

Policies are utilised for the management of different systems and, moreover, are used to control

different aspects of their behaviour, such as access control, administration and interactions. In spite

of this fact, policy languages usually adopt a common general schema for the policy specification

where policies are specified as a set of simpler building blocks that jointly specify the system

behaviour. These building blocks are usually called rules or primitive policies. The types of rules

that are most often used in policy languages are presented in Figure 2.3. This schema was developed

as a result of the review of different policy languages and is based on the results of previous policy

rules analysis attempts [42, 30, 39]. All rules at the schema are divided into complex and simple

rules. As opposed to the simple rules, explicit references to other rules can be utilised within the

specification of complex rules. For example, the delegation rules can define who and under which

conditions can delegate rights granted by specific authorisation rules.
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Figure 2.3: Types of policy rules

2.3.3.1 Authorisation rules

Authorisation rules define which operations can be executed by a user or other active entity (e.g.,

an agent). Positive authorisations define a set of permitted operations; negative authorisations

define a set of denied operations. Authorisations are usually defined in the form ‘subject - action

- resource - condition’. Subject is a set of active entities that this policy is applicable to. Action

defines operations permitted (or denied) for the execution by the corresponding subject. Resource

defines a target object for the operation, that is, a resource being accessed. The condition part

can include arbitrary constraints that define when this rule should be enforced. The following is

an example of an authorisation rule:

“Permit Bob (Subject) to Log-in (Action) to SystemX(Resource) from 9 a.m. till 6

p.m.(Condition)”

Authorisation rules are commonly used in access control policy languages (e.g., XACML [153],

Ponder [41]). Other types of policy languages can also utilise rules similar to the authorisation

rules that define if specific actions can be carried out. For example, in interactions management

policy languages [114], such rules can specify if a specific action can be carried out over a message

by a controller (e.g., forward or deliver).

2.3.3.2 Reactive rules

Reactive rules define the behaviour of a management system, which can be monolithic, like an

administration tool, or distributed and heterogeneous, like a set of administrative agents that

control different equipment throughout the network. These rules are specified using the form

‘event - condition - action’ (ECA). So they define which action(s) a system should carry out in

response to an event occurred within the managed system. The condition part is optional. The

policy author can use it to specify constraints on a current state that should be satisfied in order to

trigger the rule. This type of rule is used in different policy languages, but it is usually attributed
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to the management policy languages. For example, in an administration system it can be required

to send an e-mail to the administrator if a severe virus infection is detected. This can be formalised

using the following ECA rule:

“On System infection (Event), If Virus is severe (Condition), Do Send e-mail (Action)”

ECA rules can also be used to schedule the execution of some maintenance actions, for example,

deep antivirus scanning.

For the implementation of these rules, a set of pre-defined events within a system should be

defined, on which the evaluation of conditions is initiated. Such events can be time-based or action-

based (e.g., a specific packet arrival). Using this type of policy rules, the Internet Engineering Task

Force (IETF) policy model was defined [39].

2.3.3.3 Role-assignment rules

Role-assignment rules define requirements that a user should satisfy in order to assign him (or

her) a specific role. Role-assignment rules are usually used as part of a role-based access control

mechanism implemented using a role-based policy language (e.g., TPL [42]). The evaluation of

these rules for a user is initiated when he (or she) requests access to a system. Usually the role-

assignment rules are used at the server side, where users are not known in advance and in order

get an access to resources a user should possess specific certificates. Role assignment rules are

specified in the form ‘condition - role assignment’. The condition part is used to check if a user

possesses the required certificates and the role assignment part is used to specify which roles should

be assigned to the user, if the condition is satisfied. Based on the roles, assigned according to the

role-assignment rules, an authorisation mechanism should determine specific access rights for the

user.

2.3.3.4 Routing rules

Routing rules are a dedicated type of rules used in network routing policy languages. Routing

rules define permitted traffic routes in a network, based on the known sender and receiver of a

packet and other parameters, like the type of a packet or current time. Path-based routing rules

are a special type of routing rules that were proposed in PPL (Path-based Policy Language) [146].

These rules are more expressive than ordinal routine rules. In addition to a sender and receiver,

explicitly specified path-patterns are used in these rules in order to determine their applicability.

It should be noted that the routing rules are usually rigidly tied to a specific application domain

within a network management or routing field and are not meant for other applications.

2.3.3.5 Delegation rules

Delegation rules are used to define which operations can be delegated from one subject to another.

A delegation rule specifies a set of subjects who can delegate their rights, which rights can be
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delegated and to which subjects these rights can be delegated. The access right being delegated

is usually defined using constructs similar to authorisation rules. Delegation rules can have the

following form ‘Subject - Grantee - Resource - Action - Condition’ that defines that Subject can

grant to Grantee a right to carry out Action on Resource and Grantee can carry out this action

only if Condition is satisfied. Delegation rules are used in access control policy languages, in

addition to the authorisation rules (e.g., in Ponder [41]). Actually, delegation rules are a special

type of authorisation that defines when a subject is authorised to execute a special delegation

action, leading to changes in access rights for other subjects.

2.3.3.6 Obligation rules support

Obligation rules specify which actions should be performed when certain events occur. Obligations

are used in different types of policy languages, from security policy languages to management policy

languages. Several different methods exist for the specification of obligation rules. The utilisation

of a specific method depends on a type of policy language where the obligation is used.

Obligation rules can be classified into obligation rules associated to ECA reactive rules and

obligation rules associated to authorisation rules. The former obligation rules have structures

similar to ECA rules. Correspondingly, they can be triggered by any event which can occur in

the system. A distinct element of this rule is the subject part. A policy author using the subject

part can specify which component or user is responsible for the execution of the triggered action.

Enforcement mechanisms used for this type of obligation can also be divided into two classes.

In the first class, an action triggered by an obligation rule is transferred to a component that

is a constituent of the management (administration) system. This component, being a part of

the enforcement mechanism, must eventually execute this action. For example, in the Ponder

language these components are automated managers, deployed in the environment [49]. In the

second class, subjects of obligation rules are users or autonomous entities. They are informed

about the obligations triggered and should execute them, but, at the same time, they can refrain

from their execution. Such obligations are used in the KAoS policy language, where obligations are

passed for execution to autonomous agents [168]. The following is an example of such obligation

rule:

“UserAgent (Subject) must Notify user (Action), when Contact list member goes on-line (Event),

if time is from 9 a.m. till 9 p.m. (Condition)”

As this obligation should be executed by a personal agent, it can refrain to show this notification,

for example, if it considers that the user is busy at that moment.

Obligations associated to authorisation are specified and enforced along with authorisation

rules. In this group of obligation rules, a special sub-group can be distinguished. This sub-group

contains obligations that should be transformed into authorisation rules for their enforcement.
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Figure 2.4: Obligation types

Such obligations with the form ‘Subject S must do action A on event E ’ are transformed into

authorisation rules that take authorisation decisions based on information about the history of

actions execution: “Subject S cannot do B, if event E has occurred and S has not done A”. Another

example of such obligation is a conditional for of obligation used in the Security Policy Language

(SPL) [134]: “Subject S1 must do action A1 if subject S2 has done action A2”. For enforcement,

this rule is transformed into a policy with a dependency on a future event: “Subject S2 cannot

do A2, if subject S1 will not do action A1”. Such rule is enforceable in SPL using the security

monitors that support transactional autonomicity7.

Another type of obligations associated to authorisation are obligations specified as additional

actions related to an authorisation rule or an authorisation policy. These obligation actions should

be triggered when corresponding authorisation rules (or policies) are enforced during the authori-

sation checks. An example of such a rule is:

“Deny Bob (Subject) to Read (Action) FolderX (Resource) and Make log entry (Obligation)”

which states that when Bob’s access to FolderX is denied, an enforcement mechanism should make

the corresponding record in a log file. Such obligations are implemented in the policy languages

XACML and EPAL [153, 129]. Obviously, the former class of obligations is just another form of

access control rules specification, while the latter class brings additional possibilities for the policy

specification and enforcement.

2.3.3.7 Rule types analysis

In this section, the described policy rule types are analysed and compared for specification and

enforcement of regulations during the planning-based CG. As was shown in Section 2.2.3, a core

element of planning-based approaches is an action. Actions are used as basic constructs for mod-

elling a planning domain using action languages. Correspondingly, actions are the main elements

which a planner reasons about. The planner chooses actions and organises them into a plan being
7Such security monitors can reject actions based on information about events that occur after their execution,

but within the same transaction.
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produced as a result of the planning. Hence, for a policy language that is used for the management

of planning-based CG process, it is advantageous to have action-based rule types. Such rule types

are authorisation, obligation, reactive rule and delegation.

When there is a need to specify educational regulations that impose specific constraints on a

CEP being developed or on an educational process carried out when a student is studying according

to a CEP, authorisation languages can be used, considering that the CEP development process is

implemented out using a planning system. In classical representation for planning problems, every

modification of a system state should be modelled by an action. Hence, in order to have control

over the planning environment and all processes being modelled using it, these constraints can be

specified on actions that actually lead to the planner’s state updates. For example, constraints on

a possible track of a mobile student can be represented using constraints on actions carried out

when this track is modelled during the planning. Authorisation rules provide the means to specify

different constraints based on fine-grained attributes, which describe the action itself or represent

other important information.

Educational regulations also often define routines that should be executed in order to carry out

a specific task or prescribe which actions should be executed in specific situations. For example,

these routines can specify a process that should be carried out when a mobile student joins a

university. Policy rules that can prescribe execution of actions are reactive rules and two types of

obligation rules. Implementation of reactive rules and obligations associated with them will require

implementation of a dedicated mechanism that will monitor the system state and generate pre-

specified events that can trigger the policy rules. However, first of all, in an action-based system

planning, state modifications can be done only as a result of the action execution. Secondly, in

classical representation for planning problems, an action’s effect is fully known before its execution

has started8. So the implementation of additional mechanisms for state monitoring is not required

and the evaluation and triggering of obligations can be united with the selection of actions and

the evaluation of authorisation rules for them. Delegation rules are not relevant for our problem,

as delegation is out of the scope of a planning environment that models the CEP development and

only core educational processes. Moreover, delegation rules can be specified as a special type of

authorisation rules.

2.3.4 Policy enforcement

A policy enforcement mechanism guarantees that the system behaviour conforms with the policies

specified. There are two main approaches for implementation of this mechanism: outsourced and

provisional approaches [30]. Correspondingly, the main difference between these approaches is in a

component that receives information about the current situation, analyses policies and generates
8In classical representation for planning problems, the planning environment is static (does not model external

events) and deterministic [116].
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a policy decision.

The outsourced approach refers to the policy enforcement mechanism which was proposed as

the ISO/IEC 10181-3:1996 [78] standard. Its schema is presented in Figure 2.5, A. The Policy

Enforcement Point (PEP) detects requests to resources and submits corresponding requests to the

Policy Decision Point (PDP) for the policy evaluation. When a policy decision is returned from

the PDP, it enforces it, meaning that it rejects or permits the request. PEP is application-specific

and, in fact, can constitute a part of the application. PDP is application-independent. It carries

out the role of a global policy engine that receives decision requests from PEPs, retrieves the

information needed for their evaluation, carried out the evaluation based on the specified policies

and generates policy decisions. Therefore, the decision taking functionality was moved from the

PEP, which actually enforces decisions, so this approach is called outsourced. It was implemented

in such languages as XACML [153] and EPAL [129].

Figure 2.5: Outsourced (A.) [6], p. 54 and provisional (B.) [103], p. 6 policy enforcement models

The provisional policy enforcement approach was specified within the IETF Policy management

system requirements model [103]9. Its schema is presented in Figure 2.5, B. This approach is

based on two main types of components: application independent Policy Consumers (PCs) and

application (device) specific Policy Targets (PTs). In this approach, PCs only retrieve policies from

the policy repository and distribute them to corresponding PTs, which actually enforce them in

the system. As PTs are application specific, policies should be converted to an application-specific

format at the PT or PC side. This approach was implemented, for example, for the Ponder policy

language [38]. Authorisation policies specified in this language are compiled and deployed as access

control policies for Windows stations or as firewall rules.
9The IETF Policy management requirements model contains specifications of both policy enforcement ap-

proaches.
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2.3.5 Policy composition

In large and distributed systems, like modern enterprises, policies are usually specified and updated

by several persons independently [101]. For some policy languages (e.g., XACML), advanced tech-

niques were developed to combine policies from different sources and enforce them in a coordinated

manner. These techniques include policy groups, scoping and policy composition and involve con-

flicts resolution [184]. A basic mechanism that, in general, facilitates the policy administration

and, in concrete, can be utilised for specification of policies originating from different sources is

policy groups. A policy group unites a set of related policies, which, for example, can refer to the

same domain of the environment or determine a specific aspect of the behaviour. A widely used

approach for the realisation of policy grouping is to allow policies to be arbitrary nested. In this

case, composite policies can be created as groups of lower level policies and form a hierarchical

policy structure. The support for hierarchical policies is advantageous as it provides the means to

structure complex policies and forms the basis for the introduction of policy composition opera-

tions. This approach was used in XACML [153] and SPL [134]. In the Ponder language, several

types of composite policies, which can be nested, were introduced, for example, groups, roles and

relationships [40].

In order to enforce policy groups that originate from different sources in a coordinated way,

a policy language should provide the possibility to specify when a specific policy group should

be enforced and how to resolve conflicts between different policy groups if they arise during the

policy evaluation. To this end, a policy composition is used: a set of policy composition operations

(algorithms) is defined that contain operations used to form higher level policies out of lower level

policies and specify relations between them. Composition operations define how the composed

policies will be processed during the policy evaluation. Composition operations can be used to

determine which policies are applicable and should be evaluated in a specific situation and how

a final decision for a composed policy should be inferred based on the decisions produced by the

evaluated policies. For example, using a scoping, it can be specified for which situations a policy can

be applied (as it was defined in [19]). During the policy evaluation, a policy is processed only if the

corresponding scope expression is satisfied. The scoping is useful when it is externalised from the

policy or policy group specification. Then, the scoping can be used to manage policies received from

different sources: the policy applicability can be controlled without the need to modify the policy

specification itself. For this purpose, an independent scoping operation can be defined or a scoping

expression can be used as a construct within a policy group, thus limiting the applicability of the

constituent policies (e.g., this approach is used in XACML [153]). Using composition operations,

conflict resolution strategies between policies can be defined. For example, if authorisation policies

A, B and C are united into a policy group using some composition operation, this composition
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operation can impose one of the following conflict resolution strategies. If some of policies A,

B or C return positive authorisation decisions and some of them - negative decisions, a positive

decision overrides strategy states that the action will be authorised by the policy group (as at

least one policy authorises the action). On the contrary, if a negative policy decision overrides

strategy is used, the action will not be authorised (according to it, all policies should produce

only positive decisions). A policy composition operation can impose a specific order between the

policies: if a policy returns a positive or negative authorisation decision and policies that have

higher priority have not returned any decision, this decision should be taken as a policy group

decision. Alternatively, more complex or application specific conflict resolution strategies can be

defined.

Accordingly, policy composition provides the means to construct complex hierarchical com-

posite polices using a modular approach simplifying the policy specification and providing the

possibility to enforce policies from different sources. Composition operations are used to define

relations between policies and policy groups that can be specified by different authors. The policy

composition functionality is necessary for the specification of educational regulations governing the

CEP development. These regulations are specified by different parties and at different levels of

the educational system independently (e.g., programme leaders, faculties, universities, states, etc.)

So there is a need to combine these regulations and enforce them during the CEP generation in a

coordinated manner.

2.3.6 Policy languages

In this section, existing policy languages are compared. For the comparison, we have selected policy

languages that support authorisation and obligation rules and for which application-independent

policy enforcement engines exist.

2.3.6.1 Ponder

The Ponder [41, 40] policy language was designed as a universal security and management policy

language with the focus on the distributed systems and networks management. It supports positive

and negative authorisations, obligations and delegation policies. For the specification of a managed

environment and grouping elements within it (e.g., subjects, resources and organisational units),

Ponder supports domain hierarchies. Accordingly, subjects and resources that a policy is applicable

to are specified as domains within these hierarchies. A policy is applicable to all objects that are

descendants of the domains referred to as subjects/resources in this policy. For grouping policies,

the Ponder language supports several types of composite policies. They are roles, which unite

policies with a common subject; relationships, which unite policies managing rights and duties

of roles towards each other; management structures, which represent organisational units and

contain roles, relationships and other management structures; and policy groups, which can unite
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any policies. Composite policies in Ponder can be nested and form hierarchies.

Ponder is an object-oriented declarative policy language supporting inheritance and policy

typing that is useful for the management of policy specifications and their re-use. Policies specified

using the Ponder language are compiled and deployed in the managed infrastructure. Authorisation

policies can be propagated to corresponding infrastructure components as firewall rules or access

control policies for Windows stations. Obligations in Ponder are specified as ECA rules. They

are passed to corresponding automated agents that carry out the administrative actions. These

agents receive events, generated by the event service, and use ECA obligation rules stored in their

knowledge bases in order to infer actions that should be executed in response to the events.

2.3.6.2 KAoS

The KAoS policy service and domain services [167, 150] were developed for enabling policy en-

forcement for agent frameworks (it was used in Nomads, Voyager and other frameworks). They

were also adapted and successfully applied to general Web services environments [168]. KAoS can

run on heterogeneous environments; it supports dynamic policy updates and includes advanced

administration tools. The KAoS domain services provide the possibility to structure objects like

software components, people, resources and policies to facilitate the deployment and support of

policies. KAoS policies are specified based on the KAoS policy ontologies. These ontologies are

used to represent actions, actors, groups, locations and policies themselves. KAoS supports four

types of policies: positive/negative authorisations and positive/negative obligations. Interrelated

policies can be combined into policy sets. The main component of a policy is an action class. It

contains constraints on the action parameters (including action’s subject, target, relations with

other actions) that determine the applicability of the policy. Obligations in KAoS are defined as

an action that should be executed by an autonomous agent relatively to the occurrence of some

event. The events in KAoS can be start or end points of the action execution. The specification of

polices as ontologies provides the means to use corresponding reasoning capabilities, for example,

for the policy analysis and design-time conflicts detection and resolution.

Enforcement mechanisms for KAoS policies are flexible and support both outsourcing and

provisioning models. The implementation of a concrete model depends on the infrastructure used.

For example, for obligations two types of enforcers exist: monitors and enables. Monitors and

enforces observe the execution of obligations. When a monitor detects that an agent has not

fulfilled the obligation, it can apply a sanction to the agent. On the other hand, enablers in such

situation try to carry out the action on behalf of the agent.

2.3.6.3 EPAL

The Enterprise Privacy Authorisation Language (EPAL) [129] was developed by IBM and was

targeted at the specification of enterprise-internal privacy policies that control data-handling within

46



CHAPTER 2. LITERATURE REVIEW

enterprise information systems. EPAL policies and policy requests are specified as XML documents

using defined schemas. They abstract from application-specific details like a data model or an

authentication schema. EPAL supports positive and negative authorisation rules and obligations.

EPAL authorisation rules, in addition to subject, resource and action attributes, contain a ‘purpose’

section. In this section, the purpose for which access is requested should be specified. EPAL policies

use hierarchical categories to specify subject, resources, actions and purposes. This approach is

similar to domains structures in Ponder and provides the possibility to propagate policy rules in a

hierarchy. Rules in an EPAL policy are evaluated according to the specified precedence order and

decision from the first applicable rule is returned. Obligations in EPAL are specified as part of

the authorisation rules. When an authorisation rule is enforced, actions specified in its obligation

section should be performed by the enforcement mechanism.

IBM submitted EPAL version 1.2 to the W3C for consideration as a privacy policy language

standard.

2.3.6.4 XACML

The eXtensible Access Control Markup Language (XACML) [153] is targeted at the specification

and enforcement of access control policies within an enterprise in an application-independent man-

ner. It supports positive and negative authorisation rules and obligations. Authorisation rules

are specified as conditions on attributes of the subject, resource, action and environment, under

which an access can be granted or denied. These conditions are divided into pre-requisite part

(target), which has a restricted form and is used to select policies applicable to a policy request,

and a condition itself, which can be represented as an arbitrary complex condition expression.

Obligations, similarly as in EPAL, are defined as part of the authorisation rules and should be

executed by the enforcement mechanism when the authorisation rule is enforced. XACML expres-

sions support different data types and functions. The content of a resource can be represented as

an XML document within the policy request and used as a source of information to infer a policy

decision.

XACML policies can be defined in a modular manner. Policies consist of policy rules. Policies

themselves are composed into policy sets, which, in turn, can be arbitrarily nested. Component

policies can be distributed throughout the network, as nested policies can be addressed using

references and retrieved for the evaluation when it is required. For the coherent composition of

policy rules and policies in XACML, a set of combining algorithms are used that define different

routines for component policies and rules processing during the policy evaluation and conflicts res-

olution strategies applied at run-time (e.g., rules/policies precedence, modality precedence, single

policy/rule strategy). XACML is an extensible XML-based language. For its extension, standard

extension points are defined in the XACML specification [153]: for new combining algorithms, new
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data-types and functions.

XACML versions 1.0, 2.0 and 3.0 were approved as OASIS (Organisation for the Advancement

of Structured Information Standards) standards [50]10.

2.3.6.5 Policy languages comparison

Policy languages described in the previous sections were compared against the requirements for

a policy language that could be utilised for the educational regulations specification used for

management of a planning-based CEP generation process. These requirements follow from the

analysis of policy rules types, policy enforcement and composition mechanisms in Sections 2.3.3 -

2.3.5. Additionally, the following requirements were added: (i) the possibility to express constraints

on attributes and unite them into complex condition expressions; (ii) the existence of specialised

policy authoring tools which facilitate the policy authoring task.

According to the comparison presented in Table 2.1, only XACML satisfies all the requirements.

This language, along with EPAL and KAoS, employs the outsourced enforcement model and, along

with EPAL, has the required type of obligations. XACML and EPAL are quite similar in their

aims and specification approaches. In spite of the fact that EPAL was designed with the focus on

privacy, the functionality of EPAL v. 2.1 is a subset of XACML v. 2.0 and all significant EPAL

concepts can be expressed using XACML [6]. Importantly, EPAL does not support hierarchical

policy structures and policy composition, which facilitates policy specification especially when

policies manage complex multidomain environments and originate from different sources.

Indeed, XACML is a flexible and extensible industry-strength policy language, which is widely

used for a broad range of applications. It was adopted for the specification of policies in a number

of open source environments, such as HERAS-AF and Axis2, and in some commercial platforms,

like JBOSS, Axiomatics. Additionally, within the XACML community a number of open source

PDPs and supporting tools were developed. It is argued (e.g., in [16]) that the disadvantage of

XACML is its verboseness and it is hard to write and read policies in this language, due to the

fact that it is an XML-based language. In order to mitigate this disadvantage, special authoring

tools are being created that hide these complexities from the users [144]11. Moreover, the usage

of XML provides the possibilities to use XACML on different platforms and easily exchange with

XACML policies.

2.4 Conclusion

In this chapter, a review of the e-Learning field was performed with the focus on the applicabil-

ity of current technologies for the automatic CEP generation problem. ITSs and CG techniques,

which provide an educational curriculum development functionality, were identified as the most
10The most recent version 3.0 was approved in January, 2013 [50].
11Some research-based initiatives even include development of a non-technical users notation for XACML poli-

cies [145].
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relevant techniques within the e-Learning technologies stack. Strengths and limitations of their

application to the CEP generation problem were analysed. It was found that the utilisation of hi-

erarchical planning-based CG approach is the most advantageous for this task. On the other hand,

limitations to the current approaches were identified that relate to the BP mechanisms support,

the specification of CEP requirements, the utilisation of different terms and units representing the

same notions, and others. These limitations should be resolved during the CEP generation solution

design.

One of the main difficulties for the application of current techniques to the CEP generation prob-

lem is the need to specify and enforce heterogeneous educational regulations which are supported

by different persons and which determine how a student mobility programme can be designed. It

was shown that current CG as well as planning techniques do not provide sufficient mechanisms in

order to satisfy the corresponding requirements. Policy-based management and policy specification

languages were explored in this chapter as tools that support specification and enforcement of reg-

ulations developed by different parties independently. A comparison of existing policy languages

was conducted and the XACML policy language was chosen for the specification of educational

regulations and controlling a planning-based CEP development process.

Based on the outcomes of the presented review and analysis as well as on the conducted student

mobility area analysis (see Chapter 3), a CEP development framework is proposed in Chapter 3. In

this framework, we design the core process of CEP generation based on existing EPs and modules.

The described restrictions of the current CG technologies are eliminated, and roles of different

technologies, specifications and people for the CEP development are defined in this framework.

The framework constitutes a basis for the design of a centralised solution that integrates HTN

planning technologies and policy-based management for the generation of CEPs in environments

with heterogeneous regulations (see Chapters 5 - 8).
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Chapter 3

Framework for student mobility programmes

development

Objectives:

• Analyse the student mobility domain area.
• Specify requirements for a student mobility programmes de-

velopment solution.
• Design a framework for student mobility programmes gener-

ation.

3.1 Introduction

Nowadays, the student mobility field is a rapidly growing area [60]. Its development is facilitated by

a number of major international initiatives, including the BP, the Erasmus and Erasmus Mundus

Programmes, the Tuning project. In this chapter, we present a review of this area aimed at

an elicitation of its main characteristics (see Section 3.2). First of all, an overview of different

Combined Educational Programme (CEP) types that involve student mobility activities will be

presented. A subsequent review includes an analysis of the main student mobility processes, a

description of the main mechanisms proposed within the BP and an analysis of other characteristics

and initiatives of the student mobility area. The results of this review will form the basis for

the specification of the main requirements for a student mobility support solution providing the

CEP generation functionality (see Section 3.3). Based on these requirements and the results of

the current technologies review, presented in Chapter 2, the overall CEP generation framework

is designed (see Section 3.4). This framework outlines a general CEP development process and

determines roles and interrelations of different technologies, specifications and users in this process.
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3.2 Student mobility domain area analysis

3.2.1 Student mobility processes analysis

In order to designate any educational pathway involving student mobility activities, in this study

a ’Combined Educational Programme’ notion is adopted. Extending the EP definition (see [131,

160]), a CEP is defined as an approved curriculum route incorporating student mobility activities

that leads to one or several academic awards and is followed by a registered student. CEPs are

classified [93]1 according to a number and types of qualifications, awarded at the end of the course:

Pure credits mobility degree. Only one qualification is awarded by one of the institutions

offering the course. In the degree supplement, a part of the course taken at another education

provider can be indicated.
Two majors or major and minor degrees (dual degrees). One degree with two majors (or

one major and one minor), corresponding to the subject areas studied by the student, is

awarded by one institution2.
Joint degrees. One joint qualification is awarded by several institutions offering the course jointly.
Double (and multiple) degrees. Two (or more) individual qualifications are awarded by dif-

ferent institutions offering the course.

Student mobility processes within different types of CEPs are similar, but the design of these

programmes and their goals are distinct. So in order to focus our attention on a specific case, in

what follows we will concentrate on the pure credits mobility degree type of CEP. This CEP type

reflects the nature of student mobility, and it commonly involves utilisation of existing modules

and EPs without new educational content design.

The education of a student involving student mobility schemas is a complex process cover-

ing several stages and involving different participants (e.g., universities). We, therefore, adopt a

business process modelling approach for the analysis of processes carried out when a student is

studying according to a CEP. If we consider a credit mobility degree programme, there are two

basic mobility schemas:

• Permanent transfer, when a student leaves one EP, moves to another EP and never returns

to the previous EP (see Figure 3.1, B).
• Probation period, when a student moves to another university or EP, but after some period

of education there (without graduation from this EP), he (or she) returns to the original EP,

where he (or she) has studied before (see Figure 3.1, A)).

1An official universally accepted classification for these EPs is absent [122]. Different international HE experts
use different terms and use different definitions for the same terms. We have adopted the classification presented in
international reports [93] and [92] and extended it with ‘credit mobility degree’ CEP type from [91].

2This type of CEP usually involves only internal student mobility.
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Figure 3.1: Student mobility schemas

Based on these basic schemas, more complex student mobility scenarios can be developed.

These scenarios combine the basic scenarios to create more sophisticated CEPs. Such CEPs can

include more than two universities and EPs [151]. An example of such a student mobility scenario

is presented in Figure 3.1, C. First, the student starts the education at EP1, but after the first

semester a probation period in University2 is taken. After the second semester, when studying at

University2, he (or she) returns to his (or her) ‘home EP’, EP1, in the third semester. Finally,

after the third semester, the student moves permanently to EP3 in University3, where a degree is

granted for him (or her).

The student mobility scenarios have the following important characteristics:

• In different domains (e.g., countries, universities, faculties), there are different legal and nor-

mative requirements that affect how educational processes should be carried out. Therefore,

the same high-level educational scenarios are implemented using different lower-level proce-

dures within different domains. For example, when a student transfers from one university to

another with the aim to receive a degree from the destination university, different procedures

should be carried out based on the regulations of the university or faculty (e.g., modules

studied in another university could be eligible or not for the recognition; for the recognition,

the student could have to pass an interview or exam, or modules can be recognised without

additional assessment).
• Results of the student mobility activities, as well as other educational activities in the edu-

cational environment(see [169]), are not known in advance. The execution of the designed

EPs is always subject to the student’s progress.
• When CEPs involving credit student mobility schemas are created, usually existing learning

objects (e.g., terms of EPs and modules) are used as a basis for the CEP development.
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This ensures a reuse of established university programmes, limits the expenses for the CEP

development and eliminates the disruptions of the established university EPs. When existing

EPs are utilised for the CEP development, they can be modified: some modules can be added

or removed, or some optional modules can be done core modules for the student.

On the other hand, if learning objects (e.g., modules) are taken for the CEP development from

different universities, they are not related to each other. In order to determine relations and align

EPs from different universities (possibly in different counties) and recognise previous periods of

education, a set of international initiatives has been started in the area of HE. They are examined

in the following section.

3.2.2 International initiatives in the area of higher education

The Bologna Process (BP) is a well-known initiative aimed at the creation of the European Higher

Education Area (EHEA). The BP provides mechanisms that help to harmonise degrees and quality

assurance standards and make them more compatible and comparable. The student mobility is a

core element in the BP initiatives. Intensification of mobility processes is one of the measurable

results of the BP and one of the main components of the EHEA development [55, 84]. In this

section, the main mechanisms proposed within the BP are described.

Cycles. The BP prescribes that all qualifications in HE should be located within three main

cycles3, which were established by a set of BP initiatives (see [55, 56]). Each cycle corresponds

to a specific academic demands, complexity of knowledge, depth of learning and degree of student

autonomy. A successful completion of a lower cycle gives access to a higher cycle. Additionally, a

shorter cycle within or linked to the first cycle is distinguished. Adoption of these cycles facilitates

the fair recognition of qualifications in different countries.

In the Qualifications Framework of the European Higher Education Area (EHEA

QF) [17], the BP cycles and their descriptors are established as an overarching European frame-

work. Based on this overarching framework, National Qualification Frameworks (NQFs) should be

developed by each participating state (for example, see [132, 138]). A NQF should define all levels

of education and types of HE qualifications awarded at each level of the national HE system4.

Relations between these levels (or qualifications) should be described in the NQF, in concrete,

points of their integration and intersection should be stated. Moreover, the NQF should map

national qualifications and levels to the EHEA QF and BP cycles. Such system formed by the

NQFs and the overarching EHEA QF makes the qualifications provided in different countries more

compatible and comparable with each other.
3Informally, they refer to undergraduate, graduate and doctoral qualifications, but the BP cycles are indicated

using numbers: first, second, third.
4Levels in terms of NQFs have the same meaning as cycles at the EHEA level. A NQF can introduce qualifications

that does not equal to BP cycles, e.g., a cycle can be sub-divided.
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According to the BP, each EP should refer to a NQF level with corresponding complexity

and depth of study. The NQF level in turn should be related to an EHEA QF cycle. Such

interrelations can be used during the student mobility programmes design for the comparison of

EPs from different educational systems. First of all, based on the information about the NQF level

of the qualification that a student has, this qualification can be recognised in order to satisfy the

admission requirements of the receiving university. Secondly, the information about relations of EPs

from different countries received from the qualification frameworks can be utilised to choose EPs

that can be used as a basis for the mobility programme development. It should be noted that these

relations in many cases are more complex than direct correspondence and cannot be determined

precisely, as the NQF levels of these EPs can span across several BP cycles or correspond only to

a part of the cycle.

Another important mechanism is the Learning Outcomes-based education. This mecha-

nism facilitates the development of the competence and student-centred approaches to education.

“Learning outcomes are statements of what a learner is expected to know, understand and/or be

able to demonstrate at the end of a period of learning” [2], p.4. Within the BP, it is required that

all levels in NQF, all EPs and all their components (modules, work placements, etc.) should be

described in terms of learning outcomes. Using learning outcomes, the curriculum is described in

terms of results acquired by the students without direct reference to the teaching process itself.

Learning outcomes should be verifiable. In order to award credits for a learning unit, students

should pass assessments evaluating the corresponding learning outcomes. So learning outcomes

provide a link between EP planning, learning process, assessment and expectations of different

stakeholders [66]. Learning outcomes make different qualifications and their components more

comparable and facilitate the process of credits recognition.

According to the BP, each learning object (e.g., EP, semester or a module) should be described

in terms of learning outcomes that specify results achieved during the education. The recognition

of credits awarded for a learning object should be learning outcomes-based [1]. Decisions about

relations of different learning outcomes can be taken as a result of analysis conducted by several

experts with the experience in the data domain concerned.

Credits are defined in [54] as “quantified means of expressing the volume of learning based on

the workload students need in order to achieve the expected outcomes of a learning process at a

specified level” (p. 35). Credits are specified in terms of notional learning time5 (notional hours).

Credits should be allocated to the EP and to its constituent learning object (years, semesters and

modules). Credits that are allocated to a learning object refer to its level and to the corresponding

set of learning outcomes.
5“The notional learning time is the number of hours which it is expected a student (at a particular level) will

need, on average, to achieve the specified learning outcomes at that level” [177], p. 239.
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The European Credit Transfer and Accumulation System (ECTS) [54], which was

developed within the BP, defines the main principles and requirements of credit allocation and

credit transfer. Credits, allocated to a learning object, are awarded to individual students after

the successful completion of this learning object. Accumulation of a specific number of credits is

a compulsory requirement to award a degree. One ECTS credit is equal to 25-30 notional hours

and one academic year is always 60 ECTS credits. In NQFs and programme specifications, ECTS

credits should be used. If other credit units are used, a conversion scheme to ECTS credits should

be provided.

Moreover, credits achieved according to one EP can be transferred to another EP. An institution

awarding a degree to a student can recognise credits that he (or she) gained during the education

according to an EP of different institution and exempt the student from studying some part of the

EP leading to this degree. In this case, the institution considers that the requirements for credits

and learning outcomes of this part of the EP are satisfied by credits and corresponding learning

outcomes that were recognised. So credits are always recognised in relation to some EP6. Credits

can also be pseudo-recognised: they are acknowledged by the awarding body as credits with

adequate quality, but they are not counted towards the student’s degree. These credits can be

listed in the student’s diploma supplement, but they do not reduce the number of credits that the

student should receive at the awarding institution.

Another EHEA initiative consists of creating networks of partner institutions. Universities

are encouraged to sign partnership agreements with other institutions, facilitating student mobility

processes between these institutions. These partnership models are different from joint degrees, as

they provide a basis for more flexible and student-centred mobility processes [67, 54]. Information

about all the partners of the university should be publicly available [159, 15], so students and other

universities can utilise this information when planning student mobility activities.

3.2.3 Other characteristics of student mobility domain area

The core process of EP design is defined as “a creative and often an innovative activity” [161],

Chapter B1, p. 2. Usually, there is no precise and fixed procedure for the CEP development (neither

for credit mobility CEPs, nor for other types of CEPs). The development of an EP is carried

out based on specific expectations and requirements, available resources and local established

principles. Official guidelines and recommendations (e.g, [1, 58, 130, 59, 64, 63, 159]) aimed at the

student mobility facilitation include some specific, but usually uncoordinated guidelines covering

different aspects of the CEP development. They try to solve a broad range of problems that

occur during the CEP design and execution within academic, organisational, personal, financial

and marketing fields. The majority of these recommendations are not relevant for the design of
6Moreover, the same credits achieved by a student can exempt him (or her) from studying parts of EPs with

different number of credits, according to different recognition cases.

56



CHAPTER 3. FRAMEWORK FOR STUDENT MOBILITY PROGRAMMES
DEVELOPMENT

a CEP generation solution. For example, among these guidelines there are recommendations how

to motivate students to take part in mobility programmes [67], how the funding issues should be

resolved [63], how universities can select their partners [159], etc. But in these recommendations

and guidelines there are some issues that should be taken into account during the CEP generation

solution design:

• The awarding institution is responsible for the quality of all individual modules and other

parts of the programme that are considered when the award is granted, regardless of the

institutions which were involved in the learning process. If the awarding institution delegates

the right to conduct some part of the EP to its partner and even if the partner delegates it

further, the awarding institution should guarantee the quality of the education [159, 64]. For

example, it is the awarding institution who decides about the recognition of credits from other

institutions. Moreover, awards granted by an institution should conform to the statutory

regulations and requirements of the controlling organisations, so it is the responsibility of the

awarding institution to ensure this [130, 159].
• Universities should rigidly specify procedures and principles for making decisions concern-

ing non-standard educational tracks, for example, accreditation of prior learning, advanced

standing, etc. [130]
• In different domains, there are different legal and normative requirements to educational pro-

cesses and to structures of EPs and CEPs. These requirements are compound: they consist

of different sets of requirements, covering different aspects of the educational process and

different cases, they are specified at different levels of the educational system and originate

from different organisations.
• In different domains, different terms can be used to designate the same or similar notions

and different units can be used to measure the same characteristics. There are variations in

qualification levels, units of workload (e.g., in a value of credit point), grading scales, subject

areas classifications, etc. This problem is acknowledged as one of the obstacles for the student

mobility area development [151, 177].

3.3 Requirements to Combined Educational Programme development

solution

As it was stated in Chapter 5.1, the aim of a CEP development solution is the facilitation of the

student mobility area development (by lifting information, academic and financial obstacles). The

main task of a CEP development solution is defined as follows. This solution based on existing

modules and EPs should generate possible CEPs that satisfy the following requirements:

• They should be developed for an individual student or a group of students with similar

characteristics.
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• They should satisfy requirements provided by the requester of the CEP (an educational

organisation or a student).
• They should satisfy regulations specified by the corresponding education providers and edu-

cational authorities.

The following requirements to a CEP generation solution can be specified based on the under-

taken analysis of the student mobility area. CEPs that should be developed by the solution are

usually targeted at individual students when the development is initiated by a student or a group

of students with specific profiles when it is initiated by a university. Hence, the CEP generation so-

lution should take into account information about student characteristics (like previous education,

country of origin, language skills, etc.) for the CEP development.

As opposed to current CG techniques7, within the requirements for CEPs, requirements for

officially approved qualifications are equally or even more important than the requirements for

learning outcomes that the student will achieve. Another important aspect for the institutional

education carried out within the HE environment is the physical location of students during the

education. When a CEP involving student mobility activities is developed, this factor becomes

even more significant, as students should move physically during the education.

So for the specification of CEP requirements within the CEP generation solution a flexible

mechanism should be developed. It should provide the means to specify requirements to award(s),

gained during the education, structure of the CEP and physical movements of the student during

the education.

For the generation of CEPs based on the user requirements, the CEP generation solution should

support different mobility schemas. It should be possible to combine basic mobility schemas to form

more complex student mobility scenarios, which satisfy the input requirements. Additionally, when

a CEP is developed, all applicable educational regulations should be taken into account. These

regulations can control different aspects of the educational process, for example, limit the set of

possible student mobility scenarios, limit possible universities, EPs, modules, where a student can

study. They can determine the structure of the CEP, determine how specific procedures should

be carried out during the education (e.g., how the student transfer, admission or progression

procedures should be carried out). The CEP generation solution should not only guarantee that

the resulting CEP satisfies all the applicable regulations. It should provide the means for the

specification and support of these compound regulations by different persons independently.

The CEP generation solution should use existing EPs as the basis for the CEP development.

In order to compare EPs and modules from different universities, the BP initiatives should be

employed. For each EP and module the learning outcomes, credits and NQF level should be

specified. In order to filter which EPs can be used for the CEP development, the EHEA system of
7See the corresponding review in Chapter 2
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educational frameworks should be used. CEPs should be constructed only from EPs corresponding

to the same or overlapping educational levels. In order to compare individual modules or parts

of EPs and make recognition decisions, their learning outcomes and credits should be compared.

According to the educational recommendations, these procedures and criteria for the decision

taking should be decided and fixed by the education providers. Therefore, they can be represented

as educational regulations and utilised in the CEP generation solution.

Educational regulations and learning objects (e.g., EPs, modules) are usually specified using

locally adopted units and terms that can differ in different domains, even if they refer to the same

or similar notion or characteristic. So the CEP generation solution should support different terms

and units used in the domains, covered by the solution.

3.4 Combined educational programmes generation framework

For the generation of CEPs within the CEP generation solution, a novel framework was developed

based on the requirements described in Section 3.3. This framework determines at an abstract

level how CEPs should be developed. It defines which technologies and specification instruments

are utilised in this process, how they contribute to the CEP development and how they are inter-

related. Moreover, it defines roles of different groups of users in the CEP development process.

This framework combines planning techniques with policy-based management and rule-based ap-

proaches, providing the means to exploit the advantages of all these technologies. Using these

components, based on existing EPs and modules, this framework can generate CEPs that satisfy

user requirements and current regulations. A general architecture of the framework for the CEP

generation is presented in Figure 3.2. The framework is divided into three layers each of which

is responsible for its specific aspect. Each layer contains several key components interacting with

one another and with the components in other layers.

Figure 3.2: CEP generation framework
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3.4.1 Specification layer

The first layer is a specification layer. It contains problem-specific information about the universe

of discourse, that is, the HE environment and student mobility processes. In this layer, information

about educational processes, mobility schemas, existing rules, routines and regulations is created,

stored and maintained. This layer can be divided into two sub-layers. The domain-independent

specification part represents common information about the universe of discourse, which is not

related to any specific domain (e.g., a concrete university or country). This information is a

description of common educational processes contained in a process library. Process descriptions

are maintained by process designers, who should have corresponding competences in the problem

area and process modelling. The domain-dependent specification part contains information specific

to concrete domains. This information is represented as policies, transformation rules and the

domain structure itself. It is created and updated by policy authors responsible for domain policies

and system administrators responsible for specification of transformation rules and supporting the

domain structure. Policy authors or administrators supporting one or several nested domains can

belong to an organisation to which this domain corresponds (e.g., they can be members of the

university or faculty).

The process library contains a set of process models, that is, descriptions of processes carried

out when a student studies according to a CEP. These processes involve student mobility schemas

and ordinary educational processes, carried out within one university. A process is defined in [74],

p. 66 as “a set of interrelated tasks that, together, transform inputs into outputs”. A process

model is an abstract representation of a set of unified processes. Process models in the process

library are represented as a set of (partially) ordered tasks. Process models can be specified

at different levels of abstraction using compound tasks representing distinct sub-processes and

primitive tasks that, on the contrary, do not have inner structure. Primitive tasks correspond to

planning actions. They represent some actions that can be carried out in the environment leading

to its transformation. Special method constructs specify the lower-level processes that compound

tasks can be decomposed into and the conditions when this can be done. Using these methods,

abstract process descriptions can be refined into concrete process specifications containing all the

required details for their execution. Process model specification and enforcement mechanisms are

built based on HTN planning and are presented in Chapter 5, while specific process models that

were developed for the implementation of the CEP generation solution are described in Chapter 7.

The domain structure is a component that models a part of the HE environment that is sup-

ported by a CEP development system. This model has a multi-domain hierarchical organisation,

meaning that it consists of nested domains forming a hierarchy. Domains in this model are uni-

versities, their internal units (i.e., faculties, schools), and higher level domains of the educational
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environment (i.e., regions and countries). Mechanisms for the specification of domain structure

are described in Chapter 7.

Policies specify educational regulations, routines and criteria for decision making that deter-

mine how the educational processes can be carried out and are taken into account during the CEPs

development. Policies are always specified for a specific domain in the domain structure. Policies

are compound, that is, they consist of several sub-policies composed using combining algorithms.

Sub-policies within a domain policy can be used to represent regulations, managing distinct as-

pects of educational processes. For example, different policies can be specified for admission rules

of the university, credits recognition rules, transfer routines for mobile student, degree awarding

requirements, etc. Different policies, even within one domain, can be supported by different policy

authors. Policies, specified by policy authors and saved into the policy repository, are enforced dur-

ing the CEP development in a way that CEPs, produced by the CEP generation solution, should

conform to all the policies applicable to them. Policies are used to limit the set of processes, spec-

ified within the process library, that can be executed during the CEP development. Additionally,

using policies, these processes can be refined: new refined processes are produced that are specific

to a current domain and according to the current regulations can be executed during the CEP

development.

For the specification of policies in the CEP generation framework the XACML policy language

was adopted. A formalised presentation of this language is provided in Chapter 4. Extensions

of this language that enable its usage in our framework as well as principles of its utilisation are

presented in Chapter 5.

Transformation rules are used to define relations between terms and units used in different

domains (or classification systems) in order to designate the same or similar notions or measure

the same characteristics of learning objects. Thus, the transformation rules are used to relate and

compare learning objects specified within different domains (or using terms adopted in different

classification systems). For example, using these rules, credit values and marks can be converted

from the scale of one domain to another. Also they are used to map qualification levels between

NQFs and EHEA QF levels and levels within NQFs of different countries. So in the CEP generation

framework, these rules are utilised when a policy from one domain should be enforced for learning

objects from another domain. Also they can used during the planning, when the conditions (within

the process models) should be evaluated that operate with notions designated by different terms

in different domains. For example, they can be used to select EPs from different domains that can

be used for the CEP construction or to check that an EP award satisfies the user requirements

(user requirements can also be specified in terms of different domains). Transformation rules and

their invocation schema are described in Chapter 5. Examples of rules for the CEP development

are given in Chapter 7.3.2.
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3.4.2 Processing layer

The processing layer is the main operational layer of the framework grouping the core algorithms

involved in solving problems posed by users. These algorithms utilise models stored at the speci-

fication layer and data objects and services from the data layer. Also in this layer, users interact

with the system and utilise services provided by it. Users can be students or members of institu-

tions who develop CEPs for students. A user provides requirements for a CEP and a profile for

student(s) who will study according to this CEP. Based on this information, the solution, utilising

learning objects stored at the data layer, should generate a set of CEPs that satisfy the user re-

quirements and conform to all policies applicable to them. In more detail, this process is described

in Section 3.4.4.

The main component of this layer and the core component of the framework, which was designed

to carry out core solution building processes, is the policy-based planner. This component is

based on three interacting engines. A planning engine carries out planning to solve the specified

problem, utilising the process models from the process library. A policy engine evaluates and

enforces policies, stored in the policy repository, to guarantee that they are not violated in the

resulting plan. A rules engine carries out required transformations during the planning and policy

evaluation utilising provided transformation rules. The core policy-based planner was implemented

as a problem-independent engine, meaning that this component itself has not any knowledge about

the problem area. All required knowledge is provided to it using the models at specification layer,

including rules how data objects and services at the data layer can be used. During the further

development of the planner, some extensions were introduced into it in order to bring gains in the

planning performance, relying on the knowledge about the multi-domain hierarchical structure of

the planning environment.

The basic version of the problem-independent policy-based planner is described in Chapter 5.

The extension of this planner providing the means to evaluate policies at earlier stages of the

planning is described in Chapter 6. This extension is used to improve the planning performance

and utilised in the designed descending policy evaluation technique. This technique provides the

means to evaluate policies for higher-level domains and optimises the process of learning objects

selection during the CEP development, relying on the multi-domain structure of the planning

environment (see Chapter 7).

3.4.3 Data layer

In order to construct a CEP, the policy-based planner requests information about existing EPs

and modules from the data layer. This layer is used to store and operate with descriptions of

Learning objects utilised or generated by the system. These Learning objects are CEPs, EPs and

their components: semesters and modules. These objects and the main operations supported for
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them are described in Chapter 7.

As was said before, for the comparison of credit values and qualification levels of Learning

objects from different domains, transformation rules are used. For the comparison of Learning ob-

jects based on their leaning outcomes, a special Learning objects (LObj) comparison service

should be used. This service should be based on an ontology-based similarity measure between

learning outcomes8. Information about learning outcomes-based relations between Learning ob-

jects can be used for modules recognition and pre-requisites checks for mobile students, when

pre-defined relations between the Learning objects are absent. As different criteria can be used

in different domains to make these decisions, the Learning objects comparison service should sup-

port different measures between Learning objects, computed based on the values of the similarity

measure for corresponding learning outcomes (see Chapter 7).

Thus, in the specification layer, problem-specific models are authored and supported. These

models are utilised in the framework to represent and solve tasks within the concrete problem

area, that is, the CEP development area. The processing layer groups the main computational

algorithms, which are used to process the problem-specific models and apply them for problem-

solving. Thereby, it links specifications and data objects, stored in the data layer. The data layer

contains different data objects that can be used to build a solution in a specific problem statement.

3.4.4 An overview of the CEP generation process

As there is no adopted specific CEP development algorithm or approach in the educational area,

a simulation approach was chosen for the CEP construction in our framework. At the centre

of this approach, we place a process representation of the CEP that is constructed using the

process models specified in the process library. This process model can represent information

about activities carried out when a student is studying according to a CEP or activities relevant

to this process. This information includes any relations of these activities and all its required

parameters. This process can be modelled at the required level of detail at different stages of the

CEP development.

The outcome of the CEP generation is a process representation of the CEP that models the

educational process carried out according to this CEP (we will refer it CEP process). This CEP

process model is constructed using process models using HTN planning, therefore, higher-level

processes can be refined to lower level processes using methods that decompose compound tasks

into sub-processes. Hence, as it is represented in Figure 3.3, the process of CEP construction can

be viewed as a refinement of its process representation.

On the other hand, requirements provided as input data to the solution can represent the user’s

view on the future CEP from different perspectives and can be specified at different levels. So the
8This measure was developed as part of a contiguous research project and was described in [32]
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Figure 3.3: Overview of the CEP generation process

framework should support three types of input requirements: requirements for CEP process, CEP

structure and CEP properties. The requirement for the CEP process is a high-level CEP process

specification. If a user has not requirements for the CEP process, a single highest-level task can

be used as an initial CEP process specification. The requirements for the CEP’s structure are

represented as an Initial track (ITr). ITr specifies in which domains the student will study and

how he (or she) will transfer between them. In ITr, domains at different levels can be used, so it can

specify requirements to a physical track of the student at different levels of abstraction. Finally, a

user can request that the CEP should satisfy some constraints specified for its properties (e.g., on

its award, its duration or its resulting learning outcomes), that is, the CEP property requirements.

The abstract specification of a CEP process, which was provided by a user, is used as a basis

for the CEP generation. It is refined using process models from the process library in order to

receive a fully specified CEP process. During this process, different mobility schemas represented

as process models are tried. These process models are designed in a way that they can be combined

to form arbitrary complex mobility scenarios. Tasks used within the CEP process specification use

as parameters specific EPs, their semesters and modules designating that they should be studied

by the student or other actions should be carried out with them. During the refinement process,

the planner should try different EPs, semesters and modules in order to build a fully specified CEP

that satisfies the provided requirements for structure and properties.

The CEP process simulates the educational process of the student according to a CEP. In

order to guarantee that this process is feasible and can be executed in the HE environment, we

should check that it conforms to the constraints specified in the process library and to all policies

applicable for it. Policies can be specified by members of different universities or higher-level

organisations and represent their requirements to the CEP process. Hence, enforcing them during

the CEP generation, we ensure that the resulting CEP meets the expectations of institutions that

will be involved in the educational process according to the CEP.

As a result of this refinement, we get a fine-grain CEP process representing all the information

about the CEP. A more concise and common representation of the CEP, that is, its structure, can
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be extracted from the CEP process model at the end of the refinement. It represents modules of

this CEP grouped into semesters in a concise table form.

3.5 Conclusion

First of all, in this chapter the student mobility domain area was reviewed, different types of stu-

dent mobility programmes, international initiatives for the student mobility area development and

their mechanisms were considered. Important characteristics and peculiarities of this domain area

were distinguished. These characteristics were used as the basis for the requirements specification

for a solution providing the CEP generation functionality. Subsequently, these requirements are

taken into account during the development of such solution, in concrete, in this chapter they were

utilised for the CEP generation framework design. The main contribution of this chapter is the

design of the framework for the automated development of new CEPs using existing EPs and

modules in an environment with heterogeneous regulations. As was shown in Chapter 2, the CEP

generation problem was not considered before within the e-Learning field, so the designed frame-

work constitutes a new approach for the support of student mobility processes using computer

technologies. Although a similar problem of non-mobile curricula development is being solved

using CG techniques, their application within the new area, the student mobility field, is limited

by a number of factors. These limitations include a lack of support for heterogeneous educational

regulations developed by different persons, for different terms and units designating the same no-

tions, a need for a student mobility scenarios development mechanism, for a flexible mechanism for

the specification of CEP requirements, and others. Within the CEP generation framework design,

mechanisms for the elimination of these restrictions are provided. The framework combines the

hierarchical planning technologies with the policy-based management and rule-based approaches,

providing the means to exploit the advantages of all these technologies.

In the subsequent chapters, components of this framework are described in more detail. Chap-

ter 4 presents the XACML policy language, which will be adopted for the specification of ed-

ucational regulations in the framework. Chapters 5 and 6 present the design of the problem-

independent policy-based planner, which will be used in the framework as its core engine. Chap-

ter 7 describes the problem-dependent specifications that will be utilised in the framework and will

enable the policy-based planner to solve the CEP generation planning problems.
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Chapter 4

XACML policy specification language for-

malisation

Objectives:

• Present the XACML policy specification language.
• Analyse the XACML policy language and the corresponding

processes of policy evaluation and enforcement. Construct

a formalisation for the XACML policy language that can be

used for its extension.

4.1 Introduction

In this chapter, we consider the eXtensible Access Control Markup Language (XACML) policy

language that was chosen in Chapter 2 as a tool for the extension of automated planning tech-

niques in order to carry out planning in environments with heterogeneous regulations supported

by different persons independently. Correspondingly, in the CEP generation framework, which

was proposed in Chapter 3, this policy language will be used for the specification of educational

regulations which govern the educational processes, including the student mobility processes. The

XACML policy language is an XML-based authorisation policy specification language supporting

obligations generated during authorisation checks. The XACML policy language was approved as

an OASIS standard policy language. Its prominent characteristics include extensibility, the support

for different combining algorithms, using which policies and policy groups being specified indepen-

dently can be composed to form higher-level policies, and the support for attribute-based decisions

with the possibility to specify arbitrary complex conditions using a wide range of functions.

When describing the XACML policy language, we also introduce a formalisation for XACML

policies and their evaluation algorithm. In the official specifications of the XACML policy language

([153, 50]), the semantics of the language constructs is introduced using natural language. The

formalisation of XACML proposed within this study is needed when the policy-based planner,

where XACML is used for the specification of policies, is extended and the postponed policy
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enforcement mechanism is introduced (see Chapter 6). For the realisation of this mechanism, the

XACML policy language and its evaluation algorithm should to be extended with the possibility to

evaluate policies in situations when not all relevant information is available. During this extension,

the formalisation is used to introduce the extended policy evaluation algorithm and analyse its

properties (including its interrelations with the original version). Additionally, due to the verbose

XML-based syntax of XACML policies, this formalisation is utilised in this and the subsequent

chapters in order to represent policies in a concise form.

According to its main goal, the formalisation of XACML should concentrate on the representa-

tion of the XACML evaluation algorithm. It should be possible to modify the evaluation algorithm

and to analyse its properties. Additionally, for the completeness of the analysis, the formalisation

should cover all levels of the XACML policy structure. A number of formalisations for the XACML

policy language were already proposed. In contrast with our case, the aim of these formalisations

is usually to provide the tools that can analyse the properties of policies themselves. The common

approach is to represent the policies to be analysed using an established formal representation and

employ its existing reasoning mechanisms in order to analyse the properties of policies, including

inference of policy decisions for specific queries. The formal representations include description

logic [142], binary-decision diagrams [62], defeasible logic [94] and other approaches. Current for-

malisation approaches have several different drawbacks relatively to our goal. First of all, as they

are aimed at the policy analysis, that is, not the analysis of the policy evaluation algorithm, the

process of policies and policy constructs transformation to formal objects is usually not intro-

duced as a formal mapping and is not based on the syntax structure of policies, so possible policy

structures are implied. Other limitations are an absence of formal definitions for policy constructs

themselves, regardless of a specific policy that is formalised at the moment (this makes impossi-

ble to analyse the policy evaluation algorithm itself, eliminating specific policies, e.g., in [62]), an

elimination of important aspects of the policy evaluation, which are not crucial for the business

meaning of the policies (e.g., exceptions that can be raised during the evaluation and which are

represented using special Indeterminate decision in XACML in [94, 62]), formalisation of just some

part of XACML policy structure (e.g., only combining algorithms are formalised in [121, 99], rule

conditions are simplified to Boolean expressions in [62, 94]). Our formalisation is based on the

context-free grammar for abstract syntax that was introduced for XACML. This grammar defines

possible structures for XACML policies. When the formalisation is introduced, all its possible

productions representing different XACML syntax constructs are mapped to objects representing

them formally. These objects, effectively, formalise the process of these constructs’ evaluation. The

formalisation is defined in a compositional manner, so the meaning of each construct is defined in

terms of the meaning of its components. Thus, the properties of the whole XACML evaluation

algorithm can be analysed using the structural induction: it is required to analyse each individ-
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ual construct and infer properties of their composition relying on the structure defined using the

abstract syntax grammar.

The chapter is organised as follows. Section 4.2 contains an overview of the XACML policy

language and the corresponding policy enforcement process. In Sections 4.3 and 4.4, the policy

evaluation process and the introduced abstract syntax grammar for XACML are described. In

Section 4.5, we describe different XACML constructs and provide their formal definitions. Finally,

in Section 4.6 the obligations processing routine is described.

4.2 XACML policy language overview

XACML uses the outsourced enforcement mechanism, based on the PEP/PDP architecture (see

Chapter 2). The XACML specification includes the normative requirements for application-

independent PDP, which carries out the functions of the policy evaluation engine, and possible

variants of the PEP behaviour, which is usually part of the application. PEP controls actions

carried out in its area of responsibility. When policies should be evaluated, it queries the PDP

creating and sending a policy decision request. The PDP evaluates this request, analysing policies

stored in its repository, and infers a decision that contains an authorisation decision and, option-

ally, a set of obligations. In turn, the PEP enforces the decision: it permits or blocks the action

and executes the obligations returned.

Correspondingly, the policy evaluation in XACML is separated into two phases: policy decision

request (policy request) generation and policy request evaluation. For evaluation in the PDP, the

policy request should contain a part of information about the action, which will be used by the

PDP to infer a policy decision. The structure of the policy request in XACML is aligned with

the structure of the authorisation policies and contains four sections: subject, action, resource and

environment, implying that a subject carries out an action on a resource in the presence of some

environmental parameters. Each section contains a set of attributes that describe the corresponding

entity. As XACML is a typed language, all attributes in the policy request are stored along with

their types. Information about the action that cannot be represented using attributes or it is

difficult to do, such as the structure of the resource or its content, can be placed into the request

as a free-structure XML document. So the policy request can contain arbitrary details about the

action, including its subject, resource and environment, where it is being executed, that can be

taken into account during the policy decision inference. Correspondingly, XACML policies specify

conditions over information contained in the policy request that should be satisfied in order to

infer certain policy decisions. Obviously, in this schema, it is possible to provide to the PDP

through the policy request only a part of the information that will be actually used during the

policy conditions checks. Moreover, limiting the policy request size is advantageous as this reduces

the communication expenses, reduces expenses for the policy request formation (some information
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could be explicitly retrieved from external sources) and reduces the time needed to retrieve the

required information from the policy request during the policy evaluation. On the other hand,

when a policy request is generated, there is no insight regarding what information can be required

during the policy evaluation and, correspondingly, what information should be contained in the

policy request. When a required attribute is missing during the evaluation, an indeterminate

decision is produced along with which a description of the missing attribute can be provided. If

the missing information can be provided, it is added into the request and the request should be

re-evaluated1. As part of the policy-based planner design, this drawback was eliminated and the

possibility to generate XACML policy requests considering the information that can be required

during the policy evaluation was provided (see Section 5.6).

There are several authorisation decisions in XACML. In addition to Permit and Deny decisions,

an Indeterminate or Not Applicable decision can be returned. Indeterminate is returned when a

deterministic decision cannot be inferred because of some error (incorrect types of values in the

policy request, errors in policy specifications, etc.) Not Applicable means that none of the policies

can infer a decision for this policy request. When an Indeterminate or Not applicable decision

occurs, PEP’s behaviour is determined by the type of PEP, for example, Permit-biased or Deny-

biased (e.g., Deny-biased PEP permits the action only if Permit was returned and it can discharge

all returned obligations and blocks the action otherwise).

Obligations in XACML are represented as a set of actions produced along with the authorisation

decision. These actions should be executed by a PEP in conjunction with the enforcement of this

decision. In XACML, there is no means to specify a specific routine for how these actions should be

executed, for example, a possible order of their execution or a position of their execution relatively

to the action that was requested (before, during or after). This could be required, for example,

when several obligations are returned that should be executed in a specific order, when some

obligations should be executed after the requested action, for example, in order to save results of

the execution in a log. When XACML is used in the policy-based planner for the specification

of policies enforced during the planning, this is even more important as the plan which is being

developed should contain all actions that should be carried out to achieve a goal and specify all

ordering between these actions significant for its correct execution. During the development of the

policy-based planner, the XACML policy language was extended and this drawback was resolved

(these extensions are described in Chapter 5).

In this study we utilise the XACML policy language version 2.0, as at that time when the study

was done it was the major version approved as an OASIS standard for which an open source policy
1Alternatively, for some missing attributes the PDP can support the function of its request during the evaluation.

This function cannot be provided for the information stored as a free-structure XML document within the request
(as it is requested using an XPath expression). Moreover, these requests should be done only for distinct attributes
and lead to extra expenses.
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evaluation engine was available. The XACML version 3.0, which is the most recent version at the

time of writing, was a developing version at that time: it was not approved yet as a standard2 and

a policy evaluation engine was not available for it.

4.3 Policy evaluation schema

XACML policies are specified in a modular and compositional manner, namely, individual policies

can be specified independently and composed into more complex policies. An example of XACML

policy set is presented graphically in Figure 4.13. The major components of the language are rules,

policies and policy sets. A rule contains an effect part that determines an authorisation decision,

returned when this rule triggers, and a condition part (i.e., a condition expression over information

in the policy request), that determines when this rule can trigger. Policies are used to group related

rules. In turn, policy sets are used to group related policies. Each rule, policy and policy set also

contains a target element. Target is a condition with a restricted structure that determines when

this construct is applicable to the policy request. Using the target mechanism, the scope of a

specific policy and policy set is restricted. All components nested into a policy or policy set are

evaluated only when the condition in its target is satisfied. For example, in Figure 4.1, a condition

in Target0 can specify that this policy is used for the specification of educational regulations within

some university. Correspondingly, conditions in Target1 and Target2 can be used to specify that

Policy1 contains rules for the faculty of Humanities and Policy2 - for the faculty of Computer

Science. Other policies can also be included into this policy set, for example, the overall university

policies. Each policy (or policy set) uses some rule (or policy) combining algorithm that determines

the routine for processing the evaluation results for components nested into the policy (or policy

set). This routine resolves conflicts between them and determines a resulting decision. In order to

designate which combing algorithm should be used for a policy (or policy set) an identifier of the

algorithm is provided within its structure (designated using greyed rectangles with rounded corners

in Figure 4.1). Using these mechanisms, the specification of different policies and policy sets can

be delegated to different authors who can specify the policies independently. Additionally, using

different policies, regulations that manage different aspects of the system behaviour can be easily

specified. During the policy evaluation, all components nested into a policy and policy set are

considered only when its target condition is satisfied. Moreover, different policies can be specified

in different XML files using policy referencing. Each XACML policy has its identifier and, instead

of specification of nested policies in the same file, policy identifiers can be used to refer to policies
2The XACML policy language version 3.0 [50] was approved as an OASIS standard on 22 January 2013. The new

version left the core functionality of XACML unchanged, but introduced the means for the policy author to specify
policies in a more flexible way, relaxing some previously introduced restrictions in the policy specification schema.
Major new functionality was introduced as separate or updated profiles (i.e., the administration and delegation
profile and the multiple decision profile).

3As XACML policies are specified as XML documents, for the aim of their concise and demonstrative represen-
tation a graphical representation is used.
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specified in separate files.

Figure 4.1: An overall schema of policy evaluation

The overall process of XACML policy evaluation was analysed and its structure is represented

schematically at Figure 4.1. In the lower level of the evaluation (represented at the left side of the

figure), values of attributes are retrieved from the policy request using two types of components:

attribute designator and selector. The attribute designators and selectors are used within target

and condition expressions and supply values for their evaluation. The second phase of the policy

evaluation is the evaluation of target and conditions expressions of policies, policy sets and rules.

The results of their evaluation are boolean values. These values are processed according to the

semantics of rules, policies and policy sets. In the XACML standard [153], the semantics of each

policy construct is described and results that should be produced during their evaluation are

specified. In Figure 4.1, this phase is represented as a composition of elements representing the

evaluation of rules, policies and policy sets. The structure of this composition is determined by

the policy structure. As different policy and rule combining algorithms are supported, combining

algorithm that should be used during evaluation of a concrete policy and policy set is determined

based on its identifier specified as part of the policy or policy set (designated using dotted lines).

Formal definitions for these components will be given in Section 4.5.
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4.4 Abstract syntax of XACML policies

The first part of a grammar for the abstract syntax of an XACML policy is presented in Fig-

ure 4.2. This grammar and corresponding abstract syntax was designed based on the description

of the XACML policy language in its specification [153]. It provides the means to distinguish

distinct syntactic constructs of the XACML policy language and determine correct ways of their

composition into XACML policies. The grammar was designed in the focus on the representation

of valid composition of the XACML constructs. For this purpose, obvious possibilities for the ab-

straction of similar constructs using the same non-terminals (e.g., distinct non-terminals were used

for different combining algorithms), what would reduce the number of non-terminals and make the

grammar itself more compact, were omitted. The rest of the grammar is presented in Section 4.5.5.

For the demonstration purposes, only a subset of the XACML policy language (representing its

core functionality) was considered, viz., only two policy and rule combining algorithms (ordered

permit- and deny-overrides), no combining parameters are supported and no optional construct

in a policy can be omitted (e.g., its target). A mechanism for the obligation support is described

separately in Section 4.6.

(1) PolicySet ::= CombPO Target PolicyCombPO | CombDO Target PolicyCombDO
(2) PolicyCombPO ::= Policy | Policy PolicyCombPO | PolicySet | PolicySet
PolicyCombPO
(3) PolicyCombDO ::= Policy | Policy PolicyCombDO | PolicySet | PolicySet
PolicyCombDO
(4) Policy ::= CombPO Target RuleCombPO | CombDO Target RuleCombDO
(5) RuleCombPO ::= Rule | Rule RuleCombPO
(6) RuleCombDO ::= Rule | Rule RuleCombDO
(7) Rule ::= Effect Target BoolVal
(8) Effect ::= Permit | Deny

Figure 4.2: Abstract syntax for XACML policies

An example of the Abstract Syntax Tree (AST) produced using the developed grammar for

the policy set example in Figure 4.1 is presented in Figure 4.3 considering that PolicySet0 is

using the permit-overrides policy combining algorithm, Policy1 - deny-overrides rule combining

algorithm and Policy2 - permit-overrides. As follows from the defined grammar, policy sets can

contain other policy sets and policies, while policies can contain only rules that produce effects

specified in their effect part (either Permit or Deny). One policy or policy set can use only a single

combining algorithm, which is used to process all constituent rules or policies. The rule’s condition

is represented in a grammar as a BoolV al non-terminal that represents any possible expression

that produces a boolean value (true or false).
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Figure 4.3: Example of AST

4.5 A formal model of policy evaluation

In this section, the introduced formalisation of the XACML policy language is described. Within

this formalisation, for policy constructs specified using the abstract syntax grammar in Section 4.4

their formal definitions are given. These definitions specify how this policy construct should be

processed during the policy evaluation, that is, how a result of its evaluation is derived based on

the evaluation results of its constituent components. In order to device a formal definition for the

policy or policy set evaluation routine, it is required to define sets of all possible values used as

its input and output. According to the XACML specification, we will define a set of all possible

outcomes (decisions) of policy and policy set evaluation as the set M1 = {P,D, Ind,N/A}, where

P and D are Permit and Deny decisions, Ind and N/A are Indeterminate and Not Applicable

decisions. When a policy is evaluated, the evaluation results for its constituent rules are used

as input information. In order to represent the rule evaluation results, we have extended the

set M1 into the set M2: M2 = {P,D, PInd,DInd,N/A}, where PInd (or DInd) denotes that

a rule decision was Indeterminate and in its Effect part Permit (or Deny) is specified. This is

required, because, as opposed to policies, when rules evaluation results are combined using some

rule combining algorithm during the policy evaluation, it is important to know which decision,

Permit or Deny, is specified in its Effect part (i.e., it is a decision that this rule could have

returned).

Among other data types used in XACML, truth values have a special role in the policy eval-

uation as they complete the chain of policy conditions evaluation. That is, target and condition

constructs produce boolean decisions which are used at the higher level of some rule or policy
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evaluation, for example, to decide if a rule should fire, or if a policy is applicable to the policy

request. A set of truth values contains three elements in XACML: TRV al = {True, False, Ind}.

The indeterminate value Ind is used to designate that during evaluation of an expression an error

occurred and a concrete value cannot be decided. The set of values with other values data types,

which are supported by XACML, is represented as a set V AL. In XACML, errors that occur dur-

ing the evaluation of expressions should produce an Indeterminate value. So each type of values

has a special element Ind, representing that an error occurred during evaluation of an expression

with specific data type, for example, for integers it is IndInt.

The evaluation of policies is carried out over a policy request provided. A policy request is

defined as a finite list of attribute values attV al and a tree-structure tree, which represents an

XML document providing additional information for the policy evaluation: req = 〈〈attV al1, . . . ,

attV aln〉, tree〉. A set of possible requests is designated as REQ. Each attribute value attV al

is an element of set Identifier × Category × (V AL ∪ TRV al), where Identifier is the set of all

possible attribute identifiers, Category = {Subject, Resource,Action,Environment} designates

which entity this attribute characterises. The value of the attribute is within a union of sets V AL

and TRV al.

In the following sections, formal definitions for procedures carried out when different policy

expressions are evaluated over a policy request are given. These definitions are introduced as se-

mantic functions mapping syntactic policy constructs, specified using the abstract syntax grammar,

to values which represent outcomes of their evaluation. Semantic functions are uniformly named as

evaluate with a superscript designating a syntactic construct that it applies to (e.g., evaluatePS ,

evaluateT , evaluateRule). Correspondingly, policies, policy sets and policy combining constructs

are mapped to values in the decision set M1, rules and rule combining constructs - to values in

the decision set M2 and targets and rules conditions - to values in the truth values set TRV al.

Semantic functions will be specified using semantic equations defining how semantic functions be-

have on different patterns of the syntactic expressions, where each pattern usually corresponds

to one production of the abstract syntax grammar. XACML syntactic expressions within the se-

mantic equations will be represented using strings of terminals and non-terminals of the abstract

syntax grammar. In order to distinguish them from the formal definitions, syntactic expressions

will be enclosed within emphatic brackets (e.g., JCombPO Target PolicyCombPOK). Sets of all

possible syntactic objects represented in the grammar by one non-terminal will be represented

using italicised designation of this non-terminals (e.g., PolicySet).

4.5.1 Policy set evaluation

A policy set evaluation procedure is defined using the function evaluatePS : PolicySet×REQ→

M1. This function maps syntactic constructs for policy set and a policy request to a decision
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Table 4.1: Table of values for Policy evaluation function P e
hhhhhhhhhhhhhhhTarget

Combining decision
P Ind D N/A

False N/A N/A N/A N/A
Ind Ind Ind Ind Ind
True P Ind D N/A

from the set M1 that will be produced during the evaluation of this policy set over the given

request. Semantic equation is given for this function in Formula 4.1, where the first produc-

tion rule at row 1 in Figure 4.2 is considered4. As it can be seen, the target is evaluated first

(evaluateT (JTargetK, req)). It determines if this policy set is applicable to the request. If the

False or Ind value is received, the policy set is not evaluated further. If the target is satis-

fied, the evaluation result for the policy set is determined by combining the constituent policy

and policy sets. If we eliminate information about the lazy evaluation5 of policy set expressions,

the evaluatePS function where permit-overrides (PO) combining algorithm is used can be rep-

resented as evaluatePS(JCombPO Target PolicyCombPOK, req) = P e(evaluateT (JTargetK, req),

evaluateCombPol
P O (JPolicyCombPOK, req) using the auxiliary function P e : TRV al ×M1 → M1,

which is defined on the decision and truth value sets. The truth table for this function is represented

in Table 4.1. When a production rule with the deny-overrides (DO) is used, the same functions are

used to formally define the procedure for its evaluation with an exception that evaluateCombPolDO

is used instead of evaluateCombPolP O . In what follows, evaluate functions are defined directly using

auxiliary functions on the decision and truth values sets with the assumption that expressions are

evaluated from left to right in a lazy manner.

evaluatePS(JCombPO Target PolicyCombPOK, req) = case evaluateT (JTargetK, req) of

False : N/A (4.1)

True : evaluateCombPol
P O

(JPolicyCombPOK, req)

Ind : Ind

4.5.2 Policy and policy set combining algebras

Policies and policy sets produce decisions from the set M1 during the evaluation. When these

policies and policy sets are composed into a policy set using a combining algorithm, these deci-

sions are combined and a resulting decision from the set M1 is produced. In this formalisation,

this combining process was separated into pairwise policy decision combinations. These pairwise
4In this rule the permit-overrides policy combining algorithm is utilised.
5An evaluation strategy is lazy when it delays evaluation of an expression until it is needed. In our case, if a

value of a function is uniquely determined by already evaluated sub-expressions, other its sub-expressions should
not be evaluated.
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Table 4.2: Tables of values for Permit-overrides and Deny-overrides policy combining operations
•POp and •DOp

•p P Ind D N/A

P P P P P
Ind P Ind Ind Ind
D P Ind D D
N/A P Ind D N/A

•d D Ind P N/A

D D D D D
Ind D Ind Ind Ind
P D Ind P P
N/A D Ind P N/A

combinations are formalised using the semantic function evaluateCombPolP O or evaluateCombPolDO

(see Formula 4.2). These functions are applicable to syntactic constructs for permit-overrides and

deny-overrides combining algorithms correspondingly (see rules at rows 2 and 3 in Figure 4.2).

In Formula 4.2, the semantic equation for the case when a policy is combined using the permit-

overrides combining algorithm is presented. This combining algorithm is formalised using the

auxiliary function •POp . If a policy set is used, the function evaluateP is substituted by the func-

tion evaluatePS . If the deny-overrides combining algorithm is used, the function •DOp should be

used. When the PolicyCombPO abstract grammar non-terminal is substituted by a single policy (or

policy set) the function evaluateCombPolP O is defined according to the following semantic equation:

evaluateCombPol
P O (JPolicyK, req) = evaluateP (JPolicyK, req).

evaluateCombPol
P O

(JPolicy PolicyCombPOK, req) = (4.2)

evaluateP (JPolicyK, req) •POp evaluateCombPol
P O

(JPolicyCombPOK, req)

When the permit-overrides combining is used, if a policy has returned Permit this decision

overpowers all other policy decisions and is returned as a decision of the policy set (see Table 4.2).

The Indeterminate decision has a priority over all decisions with the exception for Permit, because

it is implied that the Indeterminate decision could be replaced with Permit if the error had not

occurred. The deny-overrides policy combining is defined according to the same principle, but

Permit and Deny are swapped.

As the domains and co-domains of the functions that model the policy combining are equal,

these functions are operations. So it is possible to formalise policy combining algorithms as an

algebra Ap with two binary operations •POp and •DOp .

Ap = 〈M1, {•POp , •DOp , N/A, P,D}〉 (4.3)

where
•POp : M1 ×M1 →M1 - operation for permit-overrides combining.

•DOp : M1 ×M1 →M1 - operation for deny-overrides combining.
N/A, P and D - three special nullary operations, representing designated elements.
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The tables of values for the binary operations •POp and •DOp (see Table 4.2) are symmetric and

values at their diagonals are equal to the arguments. These values show that these operations in a

complex combining expression, like a•p b•p c, can be evaluated in any order: a ‘maximum’ operand

is always returned. So the following properties hold for the binary operations •POp and •DOp (both

are designated as •p):

• Commutative: a •p b = b •p a.
• Idempotent: a •p a = a.
• Associative: (a •p b) •p c = a •p (b •p c).

So the magmas LPOp = 〈M1, •POp 〉 and LDOp = 〈M2, •DOp 〉 are semigroups and semilattices. As

they are semilattices, natural orders for them can be defined as a 6PO b ⇔ a •POp b = b and

a 6DO b ⇔ a •DOp b = a. A natural order for Permit-overrides semilattice is represented in

Formula 4.4 and for Deny-overrides semilattice - in Formula 4.5.

N/A 6PO D 6PO Ind 6PO P (4.4)

N/A >DO P >DO Ind >DO D (4.5)

As these orders are not dual, the algebra Lp = 〈M1, •POp , •DOp 〉 is not a lattice and absorption laws

a •POp (a •DOp b) = a and a •DOp (a •POp b) = a do not hold for •POp and •DOp 6.

The nullary operations N/A, P and D in the algebra Ap were included in it to designate special

elements. The decision N/A is a universal identity element for the operations •DOp and •POp :

∀a ∈M1 (a •POp N/A = N/A •POp a = a)

∀a ∈M1 (a •DOp N/A = N/A •DOp a = a)
(4.6)

The decisions P and D are adsorbing elements for the operations •DOp and •POp correspondingly:

∀a ∈M1 (a •POp P = P •POp a = P )

∀a ∈M1 (a •DOp D = D •DOp a = D)
(4.7)

According to these properties, the magmasMPO
p = 〈M1, •POp , N/A〉 andMDO

p = 〈M1, •DOp , N/A〉

are monoids. These monoids are not groups (but they are semigroups as was shown earlier), as

they do not have inverse elements.

It should be noted that the presented formalisation of the deny- and permit-overrides combining

introduces some modifications in comparison with the original algorithms defined in the considered

XACML specification [153]. These modifications were introduced to resolve some counterintuitive
6It should be noted that natural orders for •P O

p and •DO
p on the set M1 form two ordered sets that are, in turn,

lattices defined in terms of the order theory.

77



CHAPTER 4. XACML POLICY SPECIFICATION LANGUAGE FORMALISATION

cases of the ‘Indeterminate’ decision processing during the policy combining in XACML. According

to the XACML algorithms, when an Indeterminate decision is combined with a Deny decision when

the permit-overrides is used and with a Permit decision when the deny-overrides is used, a Deny

decision is returned instead of the Indeterminate. These cases are counterintuitive, because when

an Indeterminate decision is resolved into a Deny decision, it is interpreted by the PDP itself.

However, according to the general conception of XACML, the interpretation of Not-applicable and

Indeterminate decisions is a responsibility of the PEP. For this purpose, several types of PEPs

were introduced that differ in how these decisions are processed. Moreover, these cases make the

policy permit-overrides and deny-overrides combining operations asymmetric, while rule-combining

algorithms do not have such anomalies and are symmetric. This can lead to the fact that decisions

unexpected by the policy authors can be produced7.

4.5.3 Policy and rule evaluation

A policy evaluation procedure is defined using the semantic function evaluateP : Policy×REQ→

M1. The policy construct consists of a target and a rule combining constructs. The semantic

expression for the semantic function evaluateP in Formula 4.8 is presented for the first production

rule at row 4 in Figure 4.2. The policy evaluation is carried out using a procedure similar to the

one for the policy set evaluation with the difference that rules are combined to produce a result

decision, instead of policies or policy sets. Hence, the same auxiliary function P e is used in the

definition of the evaluateP function (see Formula 4.8) but the intermediate function f is required,

as rules produce evaluation decisions from the set M2 and, correspondingly, an element in this set is

returned by the rule combining function evaluateCombRuleP O (if the permit-overrides is considered).

The function f : M2 →M1 maps decisions returned by the rule combining function into elements

of the set M1 before the function P e is applied to them. This function maps coincident elements

(P , D and N/A) to each other. The Indeterminate decisions PInd and DInd, which designate

that the Indeterminate decision was returned by a rule with the corresponding effect in its Effect

part, are mapped to the decision Ind. Accordingly, information about the rule’s possible effect is

eliminated in M1, as this information is required only at the rule combining level.

evaluateP (JCombPO Target RuleCombPOK, req) = (4.8)

P e(evaluateT (JTargetK, req), f( evaluateCombRule
P O

(JRuleCombPOK, req))

The definition of the rule combining procedure, represented using the following semantic func-

tion: evaluateCombRule
P O , is equivalent to the policy combining procedure specified using the

function evaluateCombPol
P O (see Formula 4.2). The permit- and deny-overrides rule combining is

7Moreover, in the XACML specification version 3.0 [50] the mentioned inconsistencies were resolved and the
updated versions for permit- and deny-overrides policy combining algorithms were specified.
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Table 4.3: Table of values for Rule evaluation function ReXXXXXXXXXXTarget
Condition

False Ind True

False N/A N/A N/A
Ind DInd or PInd DInd or PInd DInd or PInd
True N/A DInd or PInd D or P

also carried out using auxiliary binary operations: •POr and •DOr (see Section 4.5.4). The evaluation

of individual rule constructs is formalised using the semantic function evaluateRule = Rule×REQ.

The only production rule applicable to the non-terminal Rule substitutes it with the string

Effect Target BoolVal (see the rule at row 7 in Figure 4.2). So a rule consists of an Effect

part (can be Permit or Deny, see the rule at row 8 in Figure 4.2), a target and a condition. A

semantic equation for the evaluateRule function is represented in Formula 4.9 (for the case when

a rule has Permit construct in its effect part). The decision from the Effect part is returned

by the rule if the target and condition, which are Boolean values, are both evaluated to True.

The evaluation of the target is represented using the semantic function evaluateT (JTargetK, req).

When this function returns a True value, this indicates that the rule is applicable and its condition

should be evaluated. If the target is False, the rule is not applicable. If it returns Ind, PInd (or

DInd) is returned designating that Permit (or Deny) could be returned if an error did not occur. A

complete table of values for the Re : EffectSpec×TRV al×TRV al→M2 function, which defines

the rule evaluation procedure, is presented in Table 4.3 (set EffectSpec = {Permit,Deny}).

evaluateRule(JPermit Target BoolValK, req) = (4.9)

Re(P, evaluateT (JTargetK, req), evaluateBoolV al(JBoolValK, req)

4.5.4 Rule combining algebras

Rule combining algorithms are represented as binary operations •POr and •DOr that combine two

rule decisions from the set M2 into a resulting decision also from the set M2: •r : M2×M2 →M2.

These operations were analysed, similarly to the policy combining operations, and are represented

using an algebra Ar:

Ar = 〈M2, {•POr , •DOr , N/A, P,D}〉 (4.10)

where
•POr - is the binary operation for permit-overrides combining.

•DOr - is the binary operation for deny-overrides combining.
N/A, P and D - three special nullary operations representing designated elements.

Tables of values for the two operations are presented in Table 4.4. The permit-overrides com-
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Table 4.4: Tables of values for permit- and deny-overrides rule combining operations •POr and •DOr
•POr P PInd D DInd N/A

P P P P P P
PInd P PInd PInd PInd PInd
D P PInd D D D

DInd P PInd D DInd DInd
N/A P PInd D DInd N/A

•DOr D DInd Permit P(Ind) N/A

D D D D D D
DInd D DInd DInd DInd DInd
P D DInd P P P

PInd D DInd P PInd PInd
N/A D DInd P PInd N/A

bining algorithm gives priority to Permit, and the deny-overrides algorithm to Deny. As in rule

combining it is possible to determine which decision could be returned instead of Ind, two in-

determinate decisions have different priorities relative to the ‘weaker’ deterministic decision (i.e.,

Permit or Deny) in a current algorithm: Permit in deny-overrides and Deny in permit-overrides.

For example, in permit-overrides, PInd overpowers D because if a rule with the Permit effect had

returned a Permit or Deny decision, instead of Ind, this decision would have priority over Deny.

Similarly to the policy combining operations, these rules combining operations are commuta-

tive, idempotent and associative. So the magmas LPOr = 〈M2, •POr 〉 and LDOr = 〈M2, •DOr 〉 are

semigroups and semilattices. As they are semilattices, natural orders for them can be defined (see

Formula 4.11 with the permit-overrides order, Formula 4.12 with the deny-overrides order). As

these orders are not duals, the algebra Lr = 〈M2, •POr , •DOr 〉 is not a lattice.

N/A 6PO DInd 6PO D 6PO PInd 6PO P (4.11)

N/A >DO PInd >DO P >DO DInd >DO D (4.12)

The element N/A is an identity element for both operations •DOr and •POr , so magmasMPO
r =

〈M2, •POr , N/A〉 and MDO
r = 〈M2, •DOr , N/A〉 are monoids (but not groups). Special elements P

and D in the algebra Ar are adsorbing elements for the operations •POr and •DOr .

4.5.5 Target and condition evaluation

The part of the abstract syntax grammar presenting possible structures for targets and conditions

in a XACML policy is shown in Figure 4.4. Both target and condition are specified by a policy

author in a policy body and represent conditions that should be evaluated over a policy request

and return a truth value. The target has a fixed structure that enables a fast retrieval of applicable

policies from a large policy repository. The condition can represent any expression as compositions
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of XACML functions, provided that these functions match in output/input data types. As XACML

supports several data types and a large number of functions, operating with these data types, the

grammar shows only a part of the XACML syntax for targets and conditions expressions, where

only Boolean and integer data types are utilised.

(9) Target ::= Subjects Actions Resources Environments
(10) Subjects ::= Subject | Subject Subjects
(11) Subject ::= Matcher | Matcher Subject
(12) Matcher ::= MatchFunction TypedValue AttributeDesignator | MatchFunction
TypedValue AttributeSelector
<Production rules (10) - (11) should be repeated for Action, Resource and
Environment>
(13) MatchFunction ::= IntEqualF | BoolAndF
(14) TypedValue ::= IntegerType Integer | BooleanType Boolean
(15) AttributeDesignator ::= RequestSlot AttributeIdentifier DataType
(16) AttributeSelector ::= XPathExpression DataType
(17) RequestSlot ::= Subject | Action | Resource | Environment
(18) DataType ::= IntegerType | BooleanType
(19) Val ::= IntAddF Val1 Val2 | IntOneAndOnlyF BagVal | Integer
(20) BoolVal ::= BoolAndF BoolVal1 BoolVal2 | IntEqualF Val1 Val2 | IntIsInF
Val BagVal | IntSetEqualF BagVal1 BagVal2 | Boolean
(21) BagVal ::= RequestSlot AttributeIdentifier IntegerType | XPathExpression
IntegerType | IntUnionF BagVal1 BagVal2 | IntBagF Val1 Val2

(22) Integer ::= <Integer number> Boolean ::= True | False

Figure 4.4: Abstract syntax for XACML policies (cont.)

A fundamental complex data type in the evaluation of conditions and targets is a Bag of

values (BagV al in Figure 4.4). Bags can contain only elements with the same type and each

element can occur several times in a bag. A bag of values can be defined formally as a multi-

set. A set of all possible multisets (including multisets with truth values) will be designated as

MSet. A multiset, among other values, can contain indeterminate values (e.g., IndInt). When

XACML constructs that retrieve values from a policy request are carried out, the retrieved val-

ues are represented as a bag of values. In XACML there two such constructs: an attribute

designator or an attribute selector. The attribute designator construct is used to retrieve at-

tributes from requests using their identifiers. The attribute designator has the following structure:

RequestSlot AttributeIdentifier DataType (see row 15 in Figure 4.4). The first construct

designates which category this attribute corresponds to: subject, resource, action or environ-

ment. The second construct is an attribute identifier and the last construct is a data type. In

our model, we represent the execution of an attribute designator using the semantic function

evaluateDesign : AttributeDesignator × REQ → MSet. The execution of attribute designa-

tors is not considered in detail and can be abstractly represented using the auxiliary function
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getV alueDesign : Category × Identifier × Types × REQ → MSet, where Types is a set of all

possible data type names. This function returns a bag of values with policy request attributes

whose identifiers, categories and types match the designator. Alternatively, an empty bag can be

returned. The attribute selector construct consists of an XPath expression and a data type (see rule

at row 16 in Figure 4.4). When a selector is evaluated, this expression is evaluated over the XML

document representing the decision request. The execution of an attribute selector is represented

using the semantic function evaluateSelect : AttributeSelector × REQ → MSet and formalised

using the auxiliary function getV alueSelect which has the same signature as getV alueDesign but

instead of the category and identifier for the identification of attributes it uses an XPath expression.

4.5.5.1 Target evaluation

Policy and rule targets consist of four levels (see rules at rows 9 - 12 in Figure 4.4). The over-

all target expression (represented as non-terminal Target at the grammar) contains four condi-

tion expressions, corresponding to the four categories in the policy request. As it is shown by

Formula 4.13, the target matches a request if all these conditions are satisfied8. At the next

level, conditions for each category of the request are specified as disjunctive condition expres-

sions. One of these expressions should be satisfied over the data about the corresponding cate-

gory in the request. For example, evaluateSs(JSubject SubjectsK, req) = evaluateS(JSubjectK,

req) ∨ evaluateSs(JSubjectsK, req). At the next level, each construct Subject, Resource, Action,

Environment is specified as a conjunction of lower-level attribute matchers. In turn, each matcher

defines one condition over one attribute value. For example, for the subject part of the target:

evaluateS(JMatcher SubjectK, req) = evaluateMatcher(JMatcherK, req) ∧ evaluateS(JSubjectK,

req).

evaluateT (JSubjects Actions Resources EnvironmentsK, req) = p1 ∧ p2 ∧ p3 ∧ p4, (4.13)

where p1 = evaluateSs(JSubjectsK, req), . . . , p4 = evaluateEs(JEnvironmentsK, req)

Truth-value functions, which were used to specify target expressions, operate on the set TRV al,

which also contains the Indeterminate value. These functions are defined using a method that is

common in definitions of connectivities for three-valued logics: a correspondence of truth values

〈True, Ind, False〉 to numbers 〈1, 1/2, 0〉 is defined. Then conjunction and disjunction are defined

as min and max functions, negation - as the 1− x function9.

Matcher constructs are used at the lowest level of target expressions and can also be defined
8In the XACML specification, it is also required that the target should be evaluated to Ind whenever one of its

constituent conditions (Subjects, Resources, Actions and Environments) has returned Ind (even if some condition
has returned False). This requirement is specific to the highest level of the target evaluation and is not specified for
truth-value functions or other levels of the target.

9This definition of connectivities corresponds, for example, to the three-valued logic of  Lukasiewicz [65] L3
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using a disjunction. A matcher construct consists of a function identifier MatchFunction, an at-

tribute selector or designator and a constant value TypedValue that is specified directly in a policy

(see rule at row 12 in Figure 4.4). As a MatchFunction construct can be used an identifier of a

function with two input parameters that returns a boolean value. The type of its first argument

should match the type of the constant TypedValue and the second argument’s type - the designa-

tor’s or selector’s type. The matcher is evaluated to True if the function MatchFunction returns

true when it is applied to value TypedValue and one of the values in a bag retrieved using the

designator or selector. An example of the matcher definition for the integer type and the ‘equal’

function is presented in Formula 4.14. The auxiliary function equal is used to compare integer

values. The semantic function valueInt returns an integer from the set V AL corresponding to its

syntactic specification Integer (see rule at row 22 in Figure 4.4).

evaluateMatcher(JIntEqualF IntegerType Integer AttributeDesignator K, req) =

if p == ∅ then False else equal(k, p1) ∨ · · · ∨ equal(k, pn), where (4.14)

p = evaluateDesign(JAttributeDesignatorK, req), p ≡ {p1, . . . , pn }, k = valueInt(JIntegerK)

4.5.5.2 Condition evaluation

Conditions in XACML are specified by policy authors as free-structure compositions of functions

which should return a truth value in the set TRV al as a result. The input values for the condi-

tion evaluation are bags of values retrieved using attribute designators and selectors and constant

values specified within the condition structure by the policy author. In order to analyse all pos-

sible transformations of the input bags of values during the condition evaluation, before a truth

value can be returned, all XACML functions should be analysed (i.e., functions described in the

XACML specification [153]). First of all, these functions were classified according to their abstract

signatures. In abstract signatures, only three types of values are distinguished: truth values in the

set TRV al, all other atomic values in the set V AL and bags of values in the set MSet. Also if a

function has several arguments with the same type, in its abstract signature all these arguments

are represented using one argument with the additional ‘+’ suffix.

Based on this table, a chain of possible transformations that can be carried out with input bag

values within conditions can be traced. The corresponding state chart is represented in Figure 4.5.

All values are retrieved from the policy request as bags of values. After the execution of a function,

they can be converted to a single value or a truth value. The truth value can be used in logical

expressions or it can be returned as a result. The single value can be put into a bag (shown using

the backward arrow in the chart, corresponding to the ‘type-bag’ function) or it can be used in

a function that also returns a truth value. In order to represent these transformations of values

in the abstract syntax grammar, from each class of functions in Table 4.5 one concrete function
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Table 4.5: Type of XACML functions according to their abstract signatures
No Type of function Examples
1. V AL+ → V AL Integer-add (IntAddF), string-concatenate
2. TRV al+ → TRV al All truth-value functions: or, not, and (BoolAndF)
3. V AL+ → TRV al Integer-equal (IntEqualF), integer-less-than
4. MSet→ V AL Integer-one-and-only (IntOneAndOnlyF)10

5. V AL,MSet→ TRV al Integer-is-in (IntIsInF)11

6. V AL+ →MSet Integer-bag (IntBagF)
7. MSet+ → TRV al Integer-set-equals (IntSetEqualF)
8. MSet+ →MSet Integer-intersection, integer-union (IntUnionF)

10 Check that there is only one integer in the input bag and return this integer value.
11 Return a bag of integers with all values contained in the input bag parameters.

Figure 4.5: All possible transformations between abstract data types

was chosen and formalised as a production rule (see rules at rows 19 - 21 in Figure 4.4). For the

reduction of the grammar size, only functions with integer and boolean arguments and values were

chosen. Indeterminate values are returned if one of its arguments is an Indeterminate value, or an

Indeterminate value is contained in an input bag, or an error occurred during the evaluation.

4.6 Obligations generation during policy evaluation

Obligations in XACML are specified as part of policies and policy sets. They are represented as

sets of actions. Each action is represented using its identifier and a set of arguments. For each

obligation, it is defined which decision, viz., Permit or Deny, this obligation should be returned

with. When a policy or policy set where an obligation is specified is evaluated into a Permit or Deny

decision and this decision matches a decision for the obligation, this obligation is returned along

with the authorisation decision from this policy or policy set. Considering the policy combining

algorithms described before, obligations propagate upwards in a hierarchical policy set structure.

For example, if a policy set was evaluated to Permit due to a Permit decision returned by a

constituent policy and this policy decision is accompanied with a set of obligations, these obligations

should be attached to a resulting policy set decision along with the obligations specified within the

current policy set. When several policies returned Permit decisions along with their obligations,

all these obligations should be attached to the resulting decision. Policies that were not evaluated

during the policy combining (e.g., when permit-overrides is used and the first policy has returned

a Permit decision), correspondingly, do not return their obligations.
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4.7 Conclusion

This chapter contains the description and the analysis of the XACML policy specification language

which will be used in the next chapter as a tool for the policy specification in the policy-based

planner. As part of this analysis, the following drawbacks were found: first, an absence of knowledge

regarding which information should be included in a policy request being constructed in order to

utilise it during the policy evaluation; second, an absence of the possibility to define as part of

the obligations specification within a policy how these obligations should be executed relatively to

each other and to the requested action (e.g., define an execution order or more complex relations

between them). These drawbacks will be resolved during the policy-based planner design as part

of the XACML policy language extension. The main contribution of this chapter is the introduced

formalisation for the XACML policy language with the focus on the formalisation and analysis of

the XACML policy evaluation algorithm. This formalisation uses as a basis the abstract syntax

grammar introduced in this chapter. Using this grammar, mappings from the XACML syntactic

constructs to objects that represent the process of their evaluation formally were defined. As part of

this formalisation, the XACML policy and rule combining algorithms were formalised as abstract

algebras and their properties were analysed. This formalisation is utilised in Chapter 6 where

an extension of the policy-based planner, viz., the postponed policy enforcement mechanism, is

introduced. For the realisation of this mechanism, the XACML policy language and its evaluation

algorithm were extended with the possibility to evaluate policies in situations when not all relevant

information is available. The formalisation provided the means to formally introduce the extension

of the XACML policy evaluation algorithm and demonstrate its required properties, including its

relations with the original version of the algorithm.
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Chapter 5

Policy-based planner

Objectives:

• Introduce the main components of the policy-based planner

and the main interaction processes between them, which un-

derlie the functioning of the policy-based planner.
• Describe the main elements used for the specification of the

planning environment and the algorithms for their process-

ing.
• Introduce an adaptive policy requests construction technique

for generation of policy requests containing only information

that can be required during the policy evaluation.

5.1 Introduction

Planning operates with a model of the system and produces a plan that should be executed within

this system in order to achieve a goal. Policies specify regulations that determine how actions

should be carried out in the system. A policy-based planner that combines planning technology

and a policy-based approach should enforce policies during the planning. Thus, it should guarantee

that the resulting plan is conformant with all policies that are applicable to it.

Using a policy-based planner, it is possible to apply planning techniques in heterogeneous

environments where different regulations exist that are applicable only for specific parts of the

environment and that control different aspects of processes carried out in that environment. These

regulations can originate from different sources and can be specified by different persons indepen-

dently. In the policy-based planning, such regulations can be specified using a policy specification

language providing the means to combine simple policies specified by different authors into more

complex policies and resolve conflicts between them using combining algorithms. Therefore, in the

policy-based planner, policies are used to extend the functionality provided using the core HTN

planning constructs. Using policies, it is possible to specify additional conditions on the execution

of operators and methods. Additionally, using a policy obligations mechanism, it is possible to
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extend core decomposition methods with additional tasks and actions in order to construct rou-

tines that satisfy requirements specific to the situation when it should be executed, for instance,

specific to a domain of the planning environment. Moreover, the enforcement of policy obligations,

which were generated based on the policies specified, is controlled using the obligations validation

mechanism. It is checked that the obligations do not contradict with the overall principles of the

planning environment and with the rules specified by other policy authors. The specification of

regulations using policies provides the possibility to flexibly modify them. First of all, it is possible

to specify policies that are valid only during a specific time interval. So the planning mechanism

that produces plans with actions that should be executed at a specific moment in the future takes

into account only relevant policies. Moreover, as the policies are specified in an external repository,

they can be updated at run-time of the planner, independently from the core planning environment

updates.

The planning algorithm of the policy-based planner is domain-independent. In order to carry

out planning in a specific problem area, it should be provided with a specially designed planning

environment specification. This approach is widely used in the planning community as it pro-

vides the means to join the efforts of planning specialists working in different problem areas and

re-use (or adapt) the designed problem-independent techniques in different problem areas [116].

Correspondingly, the policy-based planner was designed based on the domain-independent HTN

technique, extending it with mechanisms required for planning in environments with heterogeneous

regulations. In turn, these mechanisms were also designed according to the domain-independent

principles. The resultant policy-based planner can be utilised in different problem domains, where

there are premises for its usage (i.e., planning should be carried out in environments with hetero-

geneous regulations).

In spite of the fact that the policy-based planner is a domain-independent engine, its design is

based on its future utilisation within the CEP generation framework and, correspondingly, on the

requirements specified based on the analysis of the student mobility area (see Chapter 3). First

of all, the policy-based planner supports hierarchical planning. Arguments for the utilisation of

hierarchical planning technology for the student mobility programmes development were stated

in Chapter 2. Additionally, the utilisation of the hierarchical planning technology enables the

fulfilment of some requirements specified for the CEP development solution (see Chapter 3). In

concrete, student mobility scenarios can be modelled and generated during the planning using

decomposition methods, supported by the HTN planning technology used. Next, the policy-based

planner supports planning in environments where different terms and units are adopted in different

domains for description of the same or related notions. In the policy-based planner, such terms

and units can be coherently used since transformation rules are utilised to determine their relations

and to convert them.
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This chapter is organised as follows. An overview of the policy-based planner and its conceptual

model are presented in Section 5.2. In this section, the main functions and interactions of the

planner components are described. Next, each main component of the planner, in concrete, a

planning engine, a policy engine and a transformation rules engine, is described, respectively, in

Sections 5.3, 5.4 and 5.5. In the final part of the chapter, an adaptive policy requests generation

technique that provides the means to generate policy request containing only information that can

be required during the policy evaluation is presented (see Section 5.6).

5.2 Policy-based planner overview and general processes

A high-level architecture of the policy-based planning system is represented in Figure 5.1. Within

this system, three engines are used, namely, a planning engine, a policy engine and a transformation

rules engine. The planning engine contains the planner’s world state model, which is used to

represent a model of the environment where a plan will be carried out. This model is dynamically

updated by the planner as a result of the execution of actions. These actions form a plan that

is simulated within the planner’s environment. When the plan is created, it should be carried

out in a real environment in order to achieve a planning goal. The core planning algorithm

used by the planning engine is domain-independent. For the operation within a specific problem

domain, it utilises specifications of this planning domain containing descriptions of actions, tasks

and decomposition methods, which can be used in this domain1. These specifications describe

general principles and mechanisms of the operation within some problem area which are devised

by a problem domain expert and are usually invariable in time. Within the policy-based planner,

the planning engine also provides the main problem-solving interface: it receives descriptions of

planning problems and provides plans generated for these problems.

Figure 5.1: Overview schema of the policy-based planner
1That is, the planning domain performs the role of the process library.
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The policy engine is used to evaluate policies during the planning. Policies are utilised to specify

requirements that are valid only within a specific context, for example, a specific time interval, a

specific domain within the planning environment or specific properties of the action being executed.

Policies, as opposed to the planning domain, originate from different sources and can be specified

by different authors. Policies can be updated dynamically during the system run. Moreover, policy

can have a validity period, which determines the time interval during which the policy is active

(it should be considered that the planning simulates the execution of actions taking into account

their durations). The policy engine receives policy decision requests from the planning engine with

descriptions of the action that should be executed within the planner’s world state and all required

information related to it. After the evaluation of these policy requests, the policy engine returns

an evaluation outcome to the planning engine that enforces it.

The third main component of the policy-based planner is the transformation rules engine. In

planning environments that cover different areas (e.g., geographical or organisational), different

terms and units can be used to designate the same or related notions, for example, different

terms can be used in different areas to denote the same object or characteristic. In order to

interchangeably use these notions and units, transformation rules are used to define relations

between them. If within some policy or a planning domain specification a term or a value at a

specific scale is required, the policy or planning engine forms a request that is processed based on

available transformation rules by the transformation rules engine.

5.2.1 Conceptual model

The conceptual model of the policy-based planner describes the main constructs used in policy-

based planning and their relations. It consists of the following components:

Figure 5.2: Conceptual model for action
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Primitive action is the central notion of the policy-based planning. Primitive actions model

modifications of the planner’s world state. Thereby, they are used as constructs for the

output plans development. Each action is related with one or several objects that have

distinct roles in its execution (they are its designated objects). Relations between notions

associated to the primitive action are presented in Figure 5.2.
Object represents an entity within the planning environment. Each object is stored in the plan-

ner’s world state and is described by its properties and relations with other objects. Objects

can be used in actions as designated objects with specific roles. Properties and relations of

an object can be modified, as well as new objects can be saved into the planner’s world state

during the planning.
Role describes how a designated object is participating in an action. For different actions, different

sets of roles can be used to designate specific objects of these actions. For example, a role

can be ‘subject’, ‘resource’ or ‘destination’.
Policy. Policies are statements that define requirements to processes being carried out within

the planning environment. Policies can specify which actions can be executed and under

which circumstances and prescribe specific routines for the execution of certain processes.

In order to infer a policy decision, policy conditions can use any information about the

action, including information from the planner’s world state directly or indirectly related to

its designated objects.
Time in policy-based planning is a variable that is maintained by the planner and represents time

being modelled during the planning. When an action is executed, the planner increases a

value of time variable with the length of time interval specified as the action’s duration. As

policies can be dynamically changed, they can be valid only during specific time intervals.
Compound tasks are tasks within the planning environment that are not executed directly, like

actions, but they are decomposed into a partially ordered set of lower-level tasks and actions

using the methods, designed as part of the planning domain. During the planning, compound

tasks should be fully decomposed into primitive actions.
Compound action is a construct that shares the properties of a compound task and a primitive

action. Compound actions are decomposed into lower level tasks and actions, are used to

model modifications of the planner’s world state and are used to construct the resulting plan.

Compound actions, as well as primitive actions, are also related with corresponding sets of

designated object with specific roles.
Obligations are actions or compound tasks that, according to policies, should be executed during

the planning along with the current planning action. Obligations are triggered during the

evaluation of policies against the policy decision request that contains the specification of the

current action being requested.
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Condition is a statement that should be evaluated at a certain point of the plan execution but

that cannot be evaluated during the planning, because of the information missing at the

planning stage. Further execution of the plan is possible only if all corresponding conditions

are satisfied.
Plan specifies how a process designed during the planning should be executed. A plan in policy-

based planning consists of actions connected with sequential and hierarchical relations and

conditions, which should be satisfied during the execution of these actions. So plans have

hierarchical structure that provides additional information about the internal organisation

of the designed process and provides the means to model the process at different levels of

abstraction.
Transformation rule is a rule that defines how to transform or relate a property of an object

specified using terms and units adopted in one domain or classification system to another.

5.2.2 Main interaction processes

This section describes the main mechanisms designed for the interaction of the main components

of the planner. These processes enable evaluation of policies during the planning, construction of

conditional plans and extension of core planning domain decomposition methods using obligations

that are specified in policies.

5.2.2.1 Actions legitimacy and policy evaluation

The specification of environment that is utilised by the policy-based planner can be defined as

a tuple Env = 〈PlanD, TransRule, PolicySpec〉, where PlanD is a specification of the plan-

ning domain containing definitions of actions, compound tasks and methods for their execution,

TransRule is a specification of transformation rules and PolicySpec is a specification for policies

that exist in this environment.

The policy-based planner is based on the classical model of an action-based planning system

(see Chapter 2). In this model, in order to execute an action during the planning it should be

applicable to the current planner’s world state. A state-transition model of the system that the

planner operates with is defined within the planning domain specification PlanD (see Section 5.3).

In concrete, a state-transition function Apply maps a state and an action to a new state that the

system transfers to when this action is executed in this state. This function is defined only for

pairs ‘action-state’ where the action is applicable to the state2.

In policy-based planning, it is additionally required that each action that is executed by the

planner and is included in a plan should be conformant with the policies PolicySpec. So in

addition to the notion of action applicability, the legitimacy of action is introduced. Descriptions
2In this chapter, the term ‘action’ refers to both primitive and compound actions. Primitive actions are specified

using operators in the planning domain. Compound actions are specified using compound action decomposition
methods. The function Apply is defined in Section 5.3.
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Table 5.1: Interpretation of policy decisions by the planning engine
Decision Planner’s reaction
‘Permit’ execute

‘Not applicable’ execute
‘Deny’ backtrack

‘Indeterminate’ backtrack

of designated objects that an action can refer to are stored in the planner’s world state. Hence,

policies are evaluated for an action in relation with the planner’s world state where it is executed.

A policy decision tuple 〈d,OblStr, C〉 is produced as a result of the evaluation of policies for action

a in state s (see Formula 5.1). It contains a policy decision d ( d ∈M1 = {P,D, N/A, Ind}). The

tuple OblStr contains obligations Obli that should be executed during the planning. The tuple C

contains conditions Condj that should be added into the resulting plan and evaluated during the

plan execution. The outcome of the policy evaluation for an action a and a state s is determined

by the policies PolicySpec.

〈s, a〉 ⇒PolEval 〈d,OblStr, C〉 (5.1)

When the planning engine enforces results of the policy evaluation, it processes policy decisions

according to Table 5.1. It executes actions that were evaluated to Permit and Not Applicable

and blocks actions for which Indeterminate or Deny were returned. A Not Applicable decision

designates that policies were not specified for this action-state combination. Since policies spec-

ify regulations that are supplementary for the core planning domain specification, it is assumed

that all actions are permitted by default and policies limit possibilities of their application. An

Indeterminate decision designates that an error occurred during the policy evaluation. When an

Indeterminate decision is returned, the action is blocked due to the fact that the action could be

evaluated into a Deny decision if the error had not occurred.

Definition 5.1. Legitimacy. Action a is legitimate for the execution in state s if policy

decision tuple 〈d, OblStr, C〉 was produced during the policy evaluation for the action a and the

state s and d ∈ {P,N/A} 2

Obligations that are contained in the tuple OblStr represent actions and compound tasks that

should be executed along with the action being evaluated. The actions returned in the OblStr tuple

should also be applicable to the corresponding planner’s world states and should be legitimate.

Therefore, during the planning, the legitimacy of actions is evaluated in a recursive manner. This

recursive process is stopped when no obligations are returned for an action as a result of the policy

evaluation.

The evaluation of policies for an action that should be executed in a current planner’s world

state is divided into two stages. During the first stage, a policy request Req is generated based on

the current planner’s world state and the action that should be executed (see Formula 5.2). Then,
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this policy request is passed to the policy engine that evaluates it using policies specified in its

policy repository (see Formula 5.3).

〈s, a〉 ⇒GenRReq (5.2)

Req ⇒EvalR〈d,OblStr, C〉 (5.3)

The policy request contains information about the action and the relevant information from the

current planner’s world state in a form that can be processed by the policy engine. It contains

information about the action’s designated objects, action parameters and time interval for the

action execution. Information from the current planner’ world state is retrieved only if it could be

used during the policy evaluation. The structure of the policy request is described in Section 5.4.1.

A technique for the selection and transformation of information from the planner’s world state

for the policy request generation is described in Section 5.6. The constructed policy request is

evaluated using the XACML policy evaluation algorithm that was formalised in Chapter 4.

5.2.2.2 Extensions of planning domain using policy obligations

Obligations are compound tasks and actions that should be executed during the planning along

with some planning action. The obligations, which should be executed, are specified in OblStr

tuple of the policy decision tuple produced during the evaluation of policies for this action. When

policy authors specify policies PolicySpec, they define which obligations should be produced for

specific policy requests. Details about the specification of obligations are given in Section 5.4.

Obligations in the OblStr tuple are divided into before-, during- and after-obligations according

to the position where these obligations should be executed relatively to the action being evaluated:

OblStr = 〈OblB , OblD, OblA〉 (5.4)

where Obly = {〈Obl11, . . . , Obl1n〉, . . . , 〈Oblm1, . . . , Oblmk〉}, y ∈ {B,D,A} and Obli - the com-

pound task or action that should be executed. Obligations organised in tuples should be executed

in the order that corresponds to their sequence order in the tuple. Compound tasks and actions

that are returned as obligations should be processed by the planner using the ordinary procedure

that is used for the execution of other compound tasks and actions during the planning. Obliga-

tions can be executed in any order that respects their position relatively to the action for which

they were returned and the sequence orders specified using tuples. If an obligation cannot be

executed by the planner, the original action that it was produced for should be backtracked. If all

obligations were successfully executed by the planner, actions that were generated as obligations

and that were produced during the decomposition of obligations are added into the resulting plan.

When during-obligations are processed, they decompose the action that they were produced for,
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similarly as compound actions are decomposed using methods (during-obligations can be returned

only for compound actions). Further details about the obligations processing are described in

Section 5.3.

Using obligations, policy authors can introduce additional actions and compound tasks into

processes modelled by the planner. As policies can be specified by different persons and be appli-

cable only in specific context, this provides the possibility to flexibly adapt core processes specified

within the planning domain during the planning according to different requirements specified by

policies. Hence, in policy-based planning two sources of new tasks and actions exist: decomposition

of compound tasks and actions by the planning engine and generation of obligations during the

policy evaluation. Since using obligations different policy authors can participate in generation

of new tasks during the planning, there is a need to ensure that a set of obligations generated

can be executed in current situation during the planning (e.g., they do not contradict with each

other) and that policy authors that have specified these obligations have rights for triggering the

generated obligation-action or obligation-task. In order to control these issues, the obligations vali-

dation mechanism was introduced (see Section 5.4.3). Obligations validation rules can be specified

that determine eligible combinations of obligations that can be returned during the evaluation of

policies for a specific action. Obligations validation rules can be specified on a global level, that is,

for the whole planning environment, as well as, for a specific policy. In the latter case, they limit

a set of obligations that can be produced in specific situation by the author of this policy.

5.2.2.3 Conditional plans construction using policy conditions

In policy-based planning, the policy enforcement is performed on a restricted model of the system

specified using the planning domain. This model is deterministic and represents only information

that is known at the planning stage. Concrete outcomes of actions, which will be received during

the execution of the plan, could be different from outcomes expected by the planner or can be

unavailable during the planning. However, using policies, it should be possible to specify any

regulations, including the regulations that operate with information available only during the

execution of the plan.

Policies specified for the policy-based planner, in addition to constraints that should be enforced

during the planning, can determine constraints that should be enforced during the execution of a

plan. These conditions are returned in tuple C along with policy decisions as a result of the policy

evaluation. They are attached to the corresponding action and are saved into the resulting plan.

Conditions in tuple C are divided into before, after and during-conditions. When some condition

is evaluated after the execution of an action, concrete outcomes of the action can be evaluated. If

this condition is not satisfied, further execution of the plan can be forbidden. During-conditions
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should be satisfied during the entire period of the action execution.

C = 〈CB , CD, CA〉 (5.5)

Cx = {. . . , Condi, . . . }, x ∈ {B,D,A}

where CB - before-conditions set, CA - after-conditions set, CD - during-conditions set, Condi
- individual condition statement. The specification of conditions in policies is described in Sec-

tion 5.4.2.1.

Conditions returned within the resulting plan can be utilised by a controller that executes this

plan or they can be analysed by a user in order to understand concrete requirements associated

with the plan (for example, this can be used to choose one plan from available alternatives). In an

educational area, conditions can be used to specify requirements on the learning outcomes of stu-

dents. For example, an after-condition for the action ‘pass exam’ can be a minimum requirement

on a mark that the student should get.

5.3 Planning

This section describes components that are used by the planning engine within the policy-based

planner, including the constructs for the specification of the planning domain for a concrete problem

area. The main planning algorithm implemented by this engine is also presented in this section.

The planning engine of the policy-based planner utilises the HTN planning technology. Existing

HTN planning technology described in the literature [116, 118] was taken as a basis for the planning

engine design and was substantially extended with the object model of the planner’s world state,

policy request initiation mechanism, compound actions and corresponding methods, conditions

and obligations mechanisms, support for hierarchical plans3. Procedures for processing of these

constructs were added to the planning algorithm as presented in Section 5.3.5.

5.3.1 The planner’s world state and its object model

As is commonly done in the planning community, the planner’s world state is defined as a set

of ground positive literals: L = p(τ c1 , . . . , τ cn), where p is a predicate symbol, p ∈ Pred, and

τ c is a term-constant, τ c ∈ Termc. Pred and Termc are respectively the sets of all possible

predicate symbols and term-constants that can be used within the planner’s world model. The

set of all possible planner’s world states is designated by S = 〈s0, . . . , sn〉. In the policy-based

planner, in order to introduce the additional structuring of the planner’s world state and have a

possibility to reason about the planner’s world state at a higher level of abstraction, an object

model of the planner’s world state is defined. For this purpose, all term-constants used in the
3Correspondingly, task network structures, basic operators, consisting of preconditions and effects, and basic

methods, consisting of preconditions and task networks, and their processing principles were adopted.
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planner’s world state are divided into two disjoint sets: objects TermObj and properties TermProp

(TermProp ∩ TermObj = ∅, TermProp ∪ TermObj = Termc). Object-terms are used as object

identifiers, they will be denoted as ObjID, ObjID ∈ TermObj . Property-terms τProp ∈ TermProp

are used to describe these objects, that is, specify their properties. Objects represent entities

within the planner’s domain. Using the division of term-constants into object-terms and property-

terms, information about objects stored in the planner’s world state can be identified and grouped

together.

In the planner’s world state, objects-terms are specified using literals with the reserved predicate

symbol Object. For each object, its type is specified. A definition of object in the planner’s world

state is as follows:

Object (ObjID, ObjType) (5.6)

where ObjID is an object-term and ObjType is a special property-term, representing the object’s

type (ObjType ∈ TermProp
OType ⊂ TermProp)4. All other terms that are not marked using the Object

literal are property-terms. All literals that are used in the planner’s world state are divided into

three disjoint sets: property-literals, relation-literals and fictitious literals5. Property-literals are

literals that contain one only object-term. Relation-literals are literals that contain more than one

object-terms. Fictitious literals are literals that contain no object terms6:

Property-literal L = p(τ c1 , . . . , τ cn), such that ∃!τ ci , τ ci ∈ TermObj (5.7)

Relation-literal L = p(τ c1 , . . . , τ cn), such that ∃τ ci , τ cj , τ ci ∈ TermObj ∧ τ cj ∈ TermObj ∧ i 6= j (5.8)

Fictitious literal L = p(τ c1 , . . . , τ cn), such that ∃τ ci , τ ci ∈ TermObj (5.9)

As was defined in the conceptual model in Section 5.2.1, objects are related with actions using

roles. Correspondingly, object-terms representing these objects are used as action parameters. The

introduced object model constructs are used to retrieve information related to these objects and

present it in the policy request for analysis during the policy evaluation. An algorithm of relevant

information selection and its transformation into a policy request is described in Section 5.6.

In addition to term-constants, within the planning domain specification variables are used.

Identifiers of variables contain prefix ‘?’ (e.g., ?Student). During the planning, variables can

instantiated by any term-constant: either an object-term, or a property-term. A set of all variables

used in a planning domain specification is denoted as Termv. As defined, the planner’s world state

contains only ground literals, so variables cannot be used within it.
4Type for an object Type(ObjID) is returned using function Type(ObjID).
5Here and in the following description, it is assumed that all literals are positive, as it is required for literals in

the planner’s world state. So this will not be stated explicitly.
6It is possible to use fictitious literals in the planner’s world state, but they should be used only for storing

required auxiliary information, e.g., time. Fictitious literals cannot be used during the policy evaluation, because
as they are not related to any objects, their relations with actions that are being evaluated can not be determined
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The policy-based planner constructs plans that span throughout specific time intervals. Hence,

since policies are dynamic, they can be changed during these time intervals. Such policy changes

should be modelled (if they are known in advance), and during the planning only policies that

are in force at the current time should be enforced. Therefore, the planner’s world state should

contain information about the current time. This information should be used to determine time

points and intervals when actions are performed.

Different structures can be used to represent time (e.g., relative time can be represented using

real, natural numbers or absolute time can be represented as calendar dates). In the described

policy-based planner, absolute time values are adopted. Time is represented using 3 values: day of

the month, month and year. They are saved into the planner’s world state using reserved predicate

symbols CurDay, CurMonth and CurYear, respectively (e.g., CurYear(2014)). This provides

the possibility to specify policies that are valid only during specific calendar intervals7 or that are

valid periodically (e.g., in a specific month). Values of the time variables are used as reference

values that indicate a time interval when the action starts and finishes. As this time intervals are

coarsely specified, that is, the minimum time unit is one day, several states of the planner’s world

state model can correspond to the same minimum time unit. Therefore, actions can start and

terminate at the same time unit (i.e., on the same date).

5.3.2 Planning domain specification

In the policy-based planner, the planning domain PlanD is defined as a tuple

〈O,MethCA,MethCT 〉, where O is a set of operators that model the execution of primitive

actions within the planner’s world state model, MethCA is the set of compound actions decompo-

sition methods and MethCT is the set of compound tasks decomposition methods for modelling,

respectively, the execution of compound actions and tasks.

5.3.2.1 Tasks

Three types of tasks are supported by the planner: compound tasks, primitive actions and com-

pound actions. Each task is represented as a task atom TA = TAS(τ1, . . . , τn), where TAS

is a task symbol and τ1, . . . , τn are terms that are used as parameters for this task such that

τ ∈ Termc ∪Termv (task atom parameters can be both term-constants and term-variables). Task

symbols for primitive actions should begin with an exclamation mark ‘!’; compound actions should

begin with an ampersand sign ‘&’. Primitive actions are atomic and they are directly executed

within the planner’s world state model resulting in its update. Compound tasks are not executed

directly, they are decomposed using compound tasks decomposition methods into lower level task

networks. Compound actions unite compound tasks and primitive actions features: they are de-
7This is important when using the planner the processes that are managed based on policies specified in terms

of calendar dates are modelled, e.g., HE regulations.
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composed using compound actions decomposition methods that, in addition to decomposing the

task, modify the planner’s world state. The utilisation of the primitive actions and compound ac-

tions during the planning should conform to policies. When the planning engine is going to apply

a primitive or compound action, the policy decision request should be generated and evaluated

using the policy engine.

When a compound or primitive action is executed, their start and end time points should be

determined. The start and end time points of an action can be different or equal, indicating that

the action is carried out within the same day. The interval between start and end time points of an

action will be referred as its execution interval. It is assumed that modifications of the planner’s

world state that the action brings are carried out at the moment when the action is complete,

that is, at the end time point of the action. When an action is executed, the current time values

in the planner’s world state should be updated (for instant actions, these time values will not be

changed). During the execution of a compound action, other actions can be produced as a result

of its decomposition. Correspondingly, these actions should be executed in a nested manner. In

this case, the nested actions should be executed within the time interval of the compound action

that has produced it.

Another important construct that is used in HTN planning for the specification of planning

problems and decomposition methods is a task network (TN), that is, a partially ordered set of

tasks. We adopt the hierarchical representation of task networks where a task network is defined

as a nested structure:

TN = 〈TN1, . . . , TNn〉 | {TN1, . . . , TNm} | TA (5.10)

〈TN1, . . . , TNn〉 is an ordered task network where tasks should be executed only in the order

specified and {TN1, . . . , TNm} is an unordered task network where tasks can be executed in any

order.

5.3.2.2 Operators

Within the planner’s world state model, primitive actions are executed using operators. In the

policy-based planning, when an action is executed, in addition to its applicability, its legitimacy

should be checked. So the definition of operator, in addition to an expression for the evaluation

of action’s applicability, includes a structure with values for the policy request generation. This

policy request is evaluated to check the operator’s legitimacy.

Definition 5.2. Operator o is a construct that defines a primitive action execution proce-

dure. An operator is defined as a tuple:

o = 〈task(o), precondition(o), duration(o), policyPar(o), effect+(o), effect−(o)〉 (5.11)
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where task(o) = TAi is the operator’s head, the primitive action task atom that this operator

can be applied to, precondition(o) is the precondition expression, duration(o) is the duration ex-

pression, policyPar(o) - the policy parameters tuple, effect+(o) and effect−(o) are, respectively,

positive and negative effects of the operator2

Operators are specified within the planning domain using operator schemas that define all

constituents of the operator. Operator schemas, in addition to constant terms, can contain variables

(as in [116]). An operator is relevant to a ground primitive action task atom TA and can be

applied to it if there is a substitution for all variables in task(o) such that task(o) is equal to

TA. The predicate symbol used in a primitive action task atom determines the operator that can

be used to execute it. Therefore, one predicate symbol can be used only in one operator schema

within the planning domain. The operator’s precondition precondition(o) is used to determine

if the operator is applicable in the current planner’s world state. Preconditions are specified as

expressions that can be evaluated as true or false in a planner’s world state8. Operator o is

applicable if its precondition expression is satisfied in the current planner’s world state (i.e., there

is a substitution of its variables such that the expression becomes a consequent of the literals in the

planner’s world state). duration(o) is an expression where values for three time variables ?DEnd,

?MEnd, ?Y End that represent the end time point of the action are assigned.

The policy parameters tuple policyPar(o) is specified within the operator schema as a tuple

that defines parameters for the construction of policy request representing this operator:

policyPar(o) = 〈ObjSet, ParamSet〉 (5.12)

where the objects set ObjSet = {〈ObjID 1, Role1〉, . . . 〈ObjID n, Rolen〉} defines this action’s des-

ignated objects ObjID j along with their roles Rolej . Objects contained in the objects set will be

used in the policy request as designated objects. The parameters set ParamSet = {〈AParV al1,

AParName1〉, . . . 〈AParV alm, AParNamem〉} is a set representing attributes of the action that

will be contained in the policy request. Each attribute is defined as AParNamei and AParV ali,

the name of the attribute and its value, respectively. In operator schemas, designated objects

ObjID j are specified as variables that are instantiated with object-terms during the application of

the operator. Attribute values AParV ali can be either term-constants, or variables that are in-

stantiated with term-constants. For these variables, only variables used within the operator’s head

can be used. The main aim of the policy parameters tuple is to specify how concrete parameters

used in the operator’s head should be utilised during the policy request generation. Each desig-
8 As opposed to policies, which are specified using the XACML policy language, planning preconditions do not

support other truth values than true and false. When an error occurs during the precondition evaluation, the whole
precondition becomes unsatisfied. The mechanism for the precondition specification and evaluation was adopted
from an existing HTN planner (see Chapter 8). The precondition expressions are specified as literals, functions
and variable assignments, connected using negation, conjunction and disjunction connectives, and additionally can
utilise universal quantifiers.
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nated object in the objects set is represented within the policy request by a distinct component

containing all information about this object that can be required during the policy evaluation.

For this purpose, the ‘subject - action - resource - environment’ model utilised in XACML was

extended in order to represent within the policy request all information about any number of the

designated objects (see Section 5.4).

Each operator schema represents a set of operator instances that are derived when variables in

the operator’s head are instantiated. Such operator instances can be applied during the planning

for execution of tasks atoms that represent primitive actions. It should be noted that values

used in the operator’s head should determine uniquely the substitution that is used to satisfy

the operator’s precondition and the action duration (therefore, they also determine uniquely the

operator’s effects). Further, it is assumed that an operator designated as o can represents only an

operator instance.

Constructs effect+(o) and effect−(o) represent positive and negative effects of the oper-

ator, specified as sets of literals. When an operator is executed, the planner’s world state is

updated, such that literals contained in effect−(o) are removed from the current state and lit-

erals in effect+(o) are added to the current state. Additionally, along with the application of

the operator’s effects, current time values stored within the planner’s world state using literals

CurDay(τ c1 ), CurMonth(τ c2 ), CurYear(τ c3 ) are deleted and new time values CurDay(?DEnd),

CurMonth(?MEnd), CurYear(?Y End) are added. The planner’s world state updates are repre-

sented using the function Applyop : S×O → S, where O is the set containing all possible operator

instances within the planning domain.

Based on the operator instance being applied during the planning, a policy vector is generated

that contains all required information about this operator instance in order to build a policy

request. The policy vector polV ec(o) = PolV ec is derived from the operator instance. The policy

vector is represented as a tuple:

PolV ec = 〈ObjSet, TAS , ParamSet, T Interval〉 (5.13)

So the policy vector extends the policy parameters tuple policyPar(o) with values TAS and

TInterval. TASi is the operator’s head task symbol, which is used as an action in the policy

request. TInterval = 〈ActBeg,ActEnd〉 are parameters identifying the begin and end time points

for this action. They are specified as tuples 〈Day,Month, Y ear〉. Values in the ActBeg tuple are

equal to the current time values and values in the ActEnd are determined using the duration(o)

expression. The policy vector together with the planner’s world state contains all required infor-

mation for generation of the policy request. An operator instance is legitimate if a policy request

generated based on its policy vector and the planner’s world state before its execution (designed
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as Req = GenR(s, polV ec(o))) was evaluated using the policy engine into a policy decision tuple

〈d,OblStr, C〉 (designated as EvalR(Req) = 〈d,OblStr, C〉) where d is a policy decision such that

d ∈ {P,N/A}. The overall policy evaluation process for an operator instance o in a state s is

designated as PolEval(s, polV ec(o)) = 〈d,OblStr, C〉. The process of policy request generation is

described in Sections 5.4.1 and 5.6.

The following is an example of policy parameters tuple specification and generation of a policy

vector for an operator schema with operator’s head !recognise(?Student, ?Mod1, ?Mod2, ?Aim).

The corresponding primitive action task atom designates an action when the module ?Mod1 is

recognised as equivalent to the module ?Mod2 for the student ?Student. The recognition is

carried out with the aim ?Aim, which can be a graduation, a transfer or a prerequisites eval-

uation. In the operator schema, these 4 variables are allocated in the policy parameters tuple

according to the following structure: 〈{〈?Student, Subject〉, 〈?Mod1, ModuleRecognise〉, 〈?Mod2,

ModuleSupport〉}, {〈?Aim, AimOfRecognition〉}〉. This designates that in the policy request the

student should be used as a designated object with the Subject role, the first module parame-

ter - as a designated object with the role ModuleRecognise and the second module parameter -

as a designated object with the role ModuleSupport. The last parameter of the action is used

as an action attribute with the name AimOfRecognition. Based on this operator schema, the

following policy vector should be built, assuming that the start and end time points for this ac-

tion are equal: 〈{〈?Student, Subject〉, 〈?Mod1, ModuleRecognise〉, 〈?Mod2, ModuleSupport〉},

!recognise, {〈?Aim, AimOfRecognition 〉}, 〈〈?CurDay, ?CurMonth, ?CurY ear〉, 〈?CurDay,

?CurMonth, ?CurY ear〉〉〉9.

5.3.2.3 Methods

Methods define possible decompositions of compound tasks and compound actions into lower level

task networks. For each compound task and action, several alternative methods can exist. Methods

for compound actions differ from methods for compound tasks, as methods for compound actions

additionally contain constructs of operators (effects that specify modifications of the planner’s

world state and policy parameters tuples that specify parameters for generation of policy requests).

Definition 5.3. Compound action decomposition method methCA is a construct that

defines the compound action execution procedure. A compound action decomposition method is

a tuple:

methCA = 〈task(methCA), duration(methCA), precondition(methCA),

policyPar(methCA), network(methCA), effect+(methCA), effect−(methCA)〉 (5.14)
9For operator instances, variables will be substituted with corresponding values.
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where task(methCA) is the method’s head, the compound action task atom that this method can

be applied to, network(methCA) is the task network that this compound action is decomposed into,

precondition(methCA) is the precondition expression, duration(methCA) is the duration expres-

sion, policyPar(methCA) is the policy parameters tuple, effect+(methCA) and effect−(methCA)

are, respectively, the positive and negative effects of the method2

Compound action decomposition methods (as well as compound task decomposition methods)

are specified within the planning domain using method schemas that contain variables and constant

terms, similarly with operators. A method is relevant for a ground compound action task atom

TAj if there is a substitution for all variables in the method’s head such that task(methCA) is equal

to TAj (the same is true for compound task decomposition methods). Compound action decompo-

sition method schemas have one construct that is absent in operator schemas: network(methCA).

It is the task network that should be carried out in order to accomplish the compound action.

This task network represents the lower level routine for the execution of this compound action.

Other compound action decomposition method constructs are defined similarly with the opera-

tor’s constructs. duration(methCA) is the expression that is evaluated before the execution of the

method in order to determine the end time point of the compound action. precondition(methCA)

is the precondition expression that determines if this method is applicable to a planner’s world

state. Preconditions are specified as expressions that can be evaluated to true or false. Method

methCA is applicable if its precondition expression is satisfied in the current planner’s world state

before the execution of the method. policyPar(methCA) is a tuple that contains parameters for

the policy request generation. Methods have the same structure of policy parameters tuples and

the same definition of legitimacy as operators. Correspondingly, the same structure for the policy

vector polV ec(methCA) and the same procedure for its generation are used.

Each method schema represents a set of method instances that are derived when its variables are

instantiated. It should be noted that values used in the head of a compound action decomposition

method should determine uniquely the substitution that is used to satisfy its precondition and the

action duration (therefore, they also determine uniquely its effects). In what follows, it is assumed

that a method denoted by methCA (or methCT ) is a method instance.

Constructs effect+(methCA) and effect−(methCA) represent effects of a compound action

decomposition method. They have the same structure as corresponding constructs for operators.

So the execution of compound tasks using decomposition methods can also result in planner’s

world state updates. This is designated using the function ApplyCA : S ×MethCA → S, where

MethCA is the set of all compound action decomposition method instances within the planning

domain.

Definition 5.4. Compound task decomposition method methCT is a construct that

defines the compound task execution procedure. It has the same structure as the compound action
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decomposition method with the difference that the effects, duration and policy vector constructs

are absent2

Applicable (and legitimate) method instances are used during the planning to decompose rel-

evant compound actions and compound tasks in task networks. If method meth10 decomposes

compound action or compound task TAi in a task network TN , task network network(meth) is

used to substitute TAi within the task network TN . All ordering constraints for TAi defined in

TN are applied to all tasks in network(methCA). Considering the nested task network structure,

defined in Section 5.3.2.1, it is required only to substitute the decomposed task TAi in the origi-

nal task network TN with the new task network. When this done, required ordering constraints

are applied automatically. As opposed to compound tasks, during the execution of compound

action decomposition methods, additional precondition checks are required. When a compound

action TAc has been decomposed using method methCA within a task network TN and task

network network(methCA) has been successfully executed, the effects of methCA and time up-

dates should be applied to the current planner’s world state. The execution of the task network

network(methCA) may result in the planner’s world state modifications and current time updates,

so the state produced after the network(methCA) execution should be checked. Preconditions of

methCA should be also satisfied in this state, as preconditions guarantee the correct execution of

the action’s effects. Time value in this state should be equal or less than the new time value that

will be applied by methCA
11 (end time point for the compound action is determined using the

duration(methCA) expression in the corresponding method schema before the decomposition of

the compound action).

5.3.3 Plan representations

The policy-based planner produces conditional plans that, in addition to actions, contain conditions

that should be evaluated during the plan execution. These conditions are specified based on

information that is available only during the plan execution and is not available during the planning.

So these conditions are used to ensure that the execution of the plan will satisfy all requirements

specified by the policy authors in their policies even if these requirements cannot be evaluated

during the planning.

A plan that is produced by the planning algorithm has a linear form. The planning en-

gine executes actions (using operators) in an order, according to which they will be carried out

during the execution of the plan. Therefore, when an action is executed, it is inserted in the

plan at the position next to the previous action performed. When a compound action TAc

10Denotes either method methCA for compound actions or method methCT for compound tasks.
11Actions produced during the execution of network(methCA) should be within the time interval for the action

TAc, as they specify the procedure for its execution on a lower level of detail. The strict equality is not obligatory
because compound actions are used as independent actions that have their own preconditions, effects and duration,
which are not inferred from the lower level actions. Moreover, the specification of actions on a lower level is optional,
meaning that for some compound actions lower level routines can be unspecified.
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is decomposed using a method methCA, it is added into the plan using auxiliary primitive ac-

tions !CA start(TAc, 〈CB , CD, CA〉) and !CA end(TAc, 〈CB , CD, CA〉) that designate the start

and end points of the compound action (〈CB , CD, CA〉 are condition sets that were generated

during the evaluation of policies for this action). Correspondingly, !CA start is added before

network(methCA) is executed by the planning engine. Action !CA end is added after its execu-

tion. Between these auxiliary actions, actions that were carried out by the planning engine during

the execution of network(methCA) are placed.

Thus, the plan that is originally produced by the planner is a tuple Planlin = 〈a1, a2, . . . , an〉,

where ai is an action structure representing a primitive action:

ai = 〈TAi, 〈CB , CD, CA〉〉 (5.15)

where TAi is a task atom for a primitive actions, CB , CD, CA are the sets of conditions that were

generated during the evaluation of policies for this action.

Primitive sctions !CA start and !CA end are used in linear plans along with other primitive

actions and designate the start and end time points of the corresponding compound actions. In

order to get a hierarchical representation of this plan, it should be processed by a converter that

transforms a linear plan Planlin into its hierarchical representation based on the auxiliary actions

!CA start, !CA end. A hierarchical plan is a tuple Planhier = 〈a1, . . . ,az〉, where am = am if am
represents a primitive action within the am action structure or am = 〈TAi, P lanhieri , 〈CB , CD, CA〉〉

if it represents a compound action (TAi is a compound action task atom itself). Planhieri is a

hierarchical plan that should be executed in order to execute this compound action. CB , CD, CA
are the before, during and after conditions that were generated during the evaluation of policies

for TAi. For example, if there is a linear plan Planlin = 〈. . . , a1, a2, a3, a4, a5, a6 . . . 〉, where

a2 = 〈!CA start(&Make transfer(. . . ), . . . ), 〈C1, C2, C3〉〉, a3 = 〈!Pass assessment(. . . ), ∅〉, a4

= 〈!Recognise(. . . ), ∅〉, a5 = 〈!CA end(&Make transfer(. . . ), . . . ), 〈C1, C2, C3〉〉, this plan will

be converted into the following nested hierarchical plans structures: Planhier1 = 〈. . . , a1, 〈&Make

transfer(. . . ), P lanhier2 , 〈C1, C2, C3〉〉, a5〉 and Planhier2 = 〈a3, a4 . . . 〉 (see Figure 5.3).

Figure 5.3: Example of hierarchical plan generation
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5.3.4 Obligations processing

The obligations returned in a policy decision tuple OblStr during the evaluation of policies for a

primitive or compound action (e.g., PolEval(s, PolV ec(o)) = 〈d,OblStr, C〉), are processed by the

planning engine. The before-, during- and after-obligation sections OblB , OblD and OblA within the

obligations tuple OblStr are converted into task networks. The overall structure of each obligation

section OblB , OblD and OblA ({〈Obl11, . . . , Obl1n〉, . . . , 〈Oblm1, . . . , Oblmk〉}) corresponds to the

structure of task networks (see Section 5.3.2)12. Individual obligations Obli used in these sections

are represented as task atoms (any task atom types can be used as obligations).

Task networks produced based on before- and after-obligations (OblTNB , OblTNA ) are executed by

the planning engine respectively before and after the action that was evaluated. During-obligations

can be generated only for compound actions. Task networks produced based on them (OblTND )

are used to decompose this compound action, similarly as it is decomposed by a compound action

decomposition method. Suppose, during the policy request evaluation for compound action TAc,

before-, during- and after-obligation task networks OblTNB , OblTND and OblTNA were generated.

Additionally, a compound action decomposition method is applied to the compound action TAc

and produces a task network network(methCA). Then, the generated obligation task networks

extend the task network network(methCA) according to the following task network structure:

〈OblTNB , {OblTND , network(methCA)}, OblTNA 〉. This new task network guarantees that before-

and after-obligations are carried out before and after the task network representing the evaluated

action. During-obligations can be executed in any order with the task network network(methCA),

produced by the decomposition method. As before-obligations can change the planner’s world state

when they are executed, after their execution (and before the TAc execution) the preconditions

and policies for TAc should be re-evaluated. The preconditions should be satisfied and the policy

request should be permitted and produce the same before-obligations as were just carried out (if

the obligations are not equal, this means that the resulting plan will not satisfy the actual policies).

Policy obligations are used in policy-based planning as the means to extend task networks

produced during task decompositions. Using obligations, the same compound tasks or actions

being decomposed using the same method can be executed by different task networks. These

task networks extend the task network specified in the applied method in order to satisfy specific

requirements, which are imposed using policies and which depend on a specific situation when

this method is applied to. Examples of task network extensions introduced using obligations are

presented in Figure 5.4. The compound action decomposition method methCA decomposes task

&Degree into three sequential primitive actions: 〈!Admit, !Study, !Graduate〉. Different extensions

of this method using obligations are designated using thick arrows. In the first case, for the
12Further, we will use the function PolEvalTN that behaves similarly with PolEval, but returns an obligation

structure with task networks produced based on the corresponding obligations: 〈OblT N
B , OblT N

D , OblT N
A 〉.
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primitive action !Admit, some policy requires that an entrance exam should be passed before a

student can be admitted (represented using primitive action !Pass exam). The extended task

network produced when this obligation is added is shown using dotted lines. In the second case,

some policy requires that after the primitive action !Study is executed, a student should pass an

assessment (e.g., a government evaluation) before he (or she) can graduate. In the third case,

when the compound action &Degree itself is evaluated, the before-obligation Preliminary course

is returned. This designates that before studying a degree, a student should successfully finish a

preliminary course.

Figure 5.4: Different variants of task execution

5.3.5 Planning algorithm

During the planning, it is required to evaluate policies based on information from the current

planner’s world state. Hence, the current planner’s state should be fully specified during the

process of planning in order to have the possibility to retrieve the required information. The

utilisation of HTN planning technology where tasks and actions are processed in the same order

as they will be carried out during the plan execution provides the means to design a planner

where at each planning step the current planner’s state is fully specified. This type of HTN

planner (see [116, 118]) was taken as a basis for the planning algorithm design and was extended

with processing routines for the novel constructs introduced earlier, that is, the compound actions

and compound actions decomposition methods, policy conditions and conditional plans, policy

obligations and task networks generation based on obligations, initiation of policy evaluation.

A novel stack-based mechanism for controlling the overall planning routine and processing of

introduced constructs was designed.

A planning problem for the policy-based planner is defined as a tuple 〈s0, TN, P lanD〉, where

s0 is an initial state, TN is a task network that is used to specify a task which should be solved,

PlanD is a domain description. The planning algorithm that is used to find a solution plan solving
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the task network TN from the state s is presented in Figure 5.5. This algorithm produces a linear

plan Planlin that can be executed from the state s, contains only applicable and legitimate actions

and is generated from a decomposition tree that was built for the initial task network TN and

uses only applicable (and legitimate) methods and operators. A planning algorithm is a recursive

function that at each iteration chooses and processes one task from the current task network TN

using an operator or a method and makes corresponding updates of the current task network and

the planner’s world state. Then, it makes a recursive call in order to process the next task from

TN . Tasks for processing are chosen in the same order as they will be carried out when the

resulting plan is executed.

A task network TN can be partially ordered, hence at each iteration only tasks that can

be executed first can be selected. A primitive action TAi is executed by operator instance o

which is applicable and legitimate for the current state s and the action TAi. When a primitive

action is executed, it is removed from the current task network TN . The planner’s world state

is updated according to the operator’s effects. Additionally, when a primitive action is processed,

the corresponding action structure ai = 〈TAi, 〈CB , CD, CA〉〉 is created where the action itself and

conditions generated are saved. This action structure is added into list Plan, where the plan is

constructed. A compound task is decomposed by an applicable method: a task being decomposed

is substituted by a task network specified in network(methCT ) part of the method. A compound

action is decomposed by an applicable and legitimate method. Auxiliary tasks !CA start(TAi, C)

and !CA end(TAi, C) are added into the task network to mark its start and end points. Auxiliary

actions !CA start and !CA end are executed using fictitious operators that do not introduce any

modifications into the planner’s world state. During the execution of !CA end action, a check is

carried out that the current time value do not exceed the time values that were calculated as end

time point for the compound action (see Section 5.3.2.3).

A stack-based mechanism was developed for processing of obligations and execution of com-

pound actions. Compound actions and task networks produced based on obligations should be

processed using special routines that guarantee that each compound action or obligation task net-

work is executed without interleaving with other tasks13 (i.e., in a nested manner). Additionally,

as was specified in Sections 5.3.4 and 5.3.2.3, after the execution of before-obligations and com-

pound actions, special procedures should be carried out. For example, tasks produced during the

decomposition of a before-obligation compound task OblTNi should be executed before the action

TA that the obligation OblTNi has been generated for. When the before-obligation OblTNi was

executed, the applicability and legitimacy of the original operator that had been applied to action

TA should be re-evaluated.

Therefore, during planning, the Stack is used to split the decomposition process into several
13When the planning function is called, any action can be chosen if for this action there is no precedence relation.
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stages to track the execution of the compound actions and obligations and carry out corresponding

checks and activities after their execution. Task networks that are temporarily used as root task

networks for the planning algorithm (i.e., it is a task network from which the planner chooses a task

for processing at the each stage of the planning process) are saved on to this stack. For example,

when OblTNB is received during a policy request evaluation, it is saved on to Stack and, further,

the planning procedure will be carried out only within the task network OblTNB . When all tasks in

OblTNB are decomposed and executed, OblTNB is retrieved from the stack and the operator that has

produced this obligation is re-evaluated in the new state. If it is not legitimate or not applicable or

new before-obligations are not equal to the previously executed, the planner backtracks. A stack is

required since obligations and compound actions can be nested, for example, during the execution

of an action within one before-obligations task network OblTNB , other before-obligations OblTN ′

B

can be produced. When OblTN
′

B is fully decomposed, this task network is removed from the stack

and the previous task network on the stack is used as root task network. Compound actions and

after-obligations are also placed on the stack when their execution is started. When a compound

action is executed, the planner re-evaluates preconditions and applies effects for the corresponding

compound action decomposition method.

5.4 Policies

For the specification of policies in the policy-based planner, the XACML policy language is used.

This section describes the extensions introduced into the XACML policy language and conventions

for the specification of policies that can be used in the policy-based planner and a policy request,

which is used to pass information from the planning engine to the policy engine.

5.4.1 Policy request

In the policy-based planner, policy requests are generated for actions and compound actions based

on the information specified in their policy vectors: 〈{〈ObjID 1, Role1〉, . . . 〈ObjID n, Rolen〉},

TAS , {〈AParV al1, AParName1〉, . . . , 〈AParV alm, AParNamem〉}, 〈ActBeg, ActEnd〉〉. Infor-

mation about the designated objects ObjID 1, . . . , ObjID n that can be required during the policy

evaluation is stored in a current planner’s world state. So during the policy request generation, this

information is extracted from the planner’s world state and is added into the policy request along

with the information contained in the policy vector. Policy requests in the policy-based planner

have the following structure:

Req = 〈{DesignObj1, . . . , DesignObjn}, ActionPar, T imePar〉 (5.16)

where DesignObji are constructs representing the designated objects, ActionPar is a construct

representing action parameters and TimePar is a construct representing time parameters. This
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Global: Stack = 〈TN〉, Planlin = 〈〉.

PPplan(state s,domain PlanD)
0. TN = get(first(Stack))
Case 1: TN is not empty. Nondeterministically choose TAi such that no other
task is constrained to precede TAi in TN:
1. If TAi is primitive task:

1.1 Nondeterministically choose operator o that is relevant for TAi,
applicable and legitimate in s (PolEvalTN (s, polV ec(o)) = 〈d, 〈OblTNB , , OblTNA 〉, C〉).

1.2 If (OblTNB 6= ∅) then
push(〈OblTNB , TAi, o〉, Stack)
Return PPplan(s, P lanD)

else ApplyOperator(TAi, C,OblTNA , s, o, P lanD) endif
2. If TAi is compound task:

2.1 Nondeterministically choose method methCT that is relevant for TAi and
applicable in s.

2.2 Substitute task TAi in TN with network(methCT )
2.3 Return PPplan(s, P lanD)

3. If TAi is compound action:
3.1 Nondeterministically choose method methCA that is relevant for

TAi, applicable and legitimate in s (PolEvalTN (s, polV ec(methCA)) =
〈d, 〈OblTNB , OblTND , OblTNA 〉, C〉).

3.2 If OblTNB 6= ∅ then
push(〈OblTNB , TAi,methCA〉, Stack)
Return PPplan(s, P lanD)

Else ApplyCA(TAi, C,methCA, OblTND , OblTNA , TN, s, P lanD) endif

Case 2: TN is empty. Pull value from Stack:
1. If 〈OblTNB , TAi, x〉 was pulled (x is o or methTNCA):

1.1 If x is not applicable or is not legitimate in s then Return failure
endif (PolEvalTN (s, polV ec(x)) = 〈d, 〈Obl′TNB , Obl′TND , Obl′TNA 〉, C ′〉)

1.3 If OblTNB 6= Obl′TNB then Return failure endif
1.4 If x is an operator then ApplyOperator(TAi, C ′, Obl′TNA , s, x, P lanD)

else ApplyCA(TAi, C ′, x,Obl′TND , Obl′TNA , TN, s, P lanD) endif
2. If 〈TNCA,methCA,OblTNA 〉 was pulled:

2.1 If methCA is not applicable in s then Return failure endif
2.2 If OblTNA 6= ∅ then

push(〈OblTNA 〉, Stack)
Return PPplan(Applyca(s,methCA), P lanD)

Else Return PPplan(Applyca(s,methCA), P lanD) endif
3. If 〈OblTNA 〉 was pulled:

3.1 Return PPplan(s, P lanD)
4. If TN was pulled:

4.1 Return true.

Figure 5.5: Planning algorithm
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ApplyOperator(TAi, C,OblTNA , s, o, P lanD)
1. Add action structure 〈TAi, C〉 to tail of plan Planlin

2. Substitute task TAi in first(get(Stack)) with ∅
3. If OblTNA 6= ∅ then push(〈OblTNA 〉, Stack) endif
3. Return PPplan(Applyop(s, o), P lanD)

ApplyCA(TAi, C,methCA,OblTND , OblTNA , TN, s, P lanD)
1. TNCA = 〈!CA start(TAi, C), {network(methCA), OblTND }, !CA end(TAi, C)〉
2. Substitute TAi in first(get(Stack)) with ∅
3. push(〈TNCA,methCA,OblTNA 〉, Stack)
4. Return PPplan(s, P lanD)

Figure 5.6: Planning algorithm (cont.)

definition extends the standard XACML policy request definition, which is based on the ‘subject-

action-resource-environment’ model (Chapter 4). In addition to the subject and resource parts,

policy requests in the policy-based planner can contain specifications for several designated objects

with different roles. The specifications of these objects are based on constructs utilised in standard

XACML requests: named attributes and tree-structured elements containing additional informa-

tion about the object. So designated objects are specified within the policy request according to

the following structure:

DesignObji = 〈{〈‘id’, ObjID i〉, 〈‘type’, ObjType i〉, 〈‘role’, Rolei〉, (5.17)

〈ParNamei1, ParV ali1〉, . . . 〈ParNameik, ParV alik〉, }, ObjCont i〉

The specification of the designated object contains a set of named attributes, represented as ‘name-

value’ pairs, and an object context. The set of named attributes contains several obligatory at-

tributes including the object-term for the designated object ObjID i (i.e., its identifier), its type

ObjType i extracted from the planner’s world state (see Section 5.3.1) and its role in the action

Rolei. Other attributes of the designated object are stored in the planner’s world state as binary

property-literals, that is, the property-literals that have two terms and one of which is the object-

term of the designated object, like p(ObjID i τ
c). These literals are retrieved and represented as

attributes with attribute names ParNameij = p and attribute values ParV alij = τ c14. So during

the policy request generation, all binary property-literals for the designated objects are represented

in the policy request using named attributes that can be retrieved during the policy evaluation

using Attribute Designators based on their names. All other required information about the des-
14The order of terms within the literal is not represented in the ‘name-value’ attribute structure, from which

during the policy evaluation information is retrieved using Attribute Designator policy constructs (see Chapter 4).
If the order of terms in binary literals with object-terms, representing designated objects, should be taken into
account during the policy evaluation, these literals should be retrieved by Attribute Selectors. In this case, they will
be represented within object contexts where the order of terms within literals is explicitly specified (see Section 5.6).
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ignated objects can be represented in the policy request using object contexts ObjCont i and can

be retrieved using Attribute Selector policy constructs. Object contexts are special tree structures

that can contain all required information about an object stored within the planner’s world state,

viz., information represented as binary and non-binary property-literals and relation-literals con-

taining its object-term and information about all property and relation literals with object-terms

for objects that are related with this object through the chain of one or several relation-literals.

Information is added into the object context only if it can be used during the policy evaluation,

that is, if it can be retrieved by an Attribute Selector within a policy applicable to the correspond-

ing policy request. Detailed information about the object context structure and the algorithm for

its generation is contained in Section 5.6.

ActionPar = {〈‘action-id’, TAS〉, (5.18)

〈AParName1, AParV al1〉, . . . 〈AParNamem, AParV alm〉},

The policy request construct ActionPar, representing information about the action itself, contains

only named attributes (see Formula 5.18). Each action has one obligatory attribute containing

the task symbol of the corresponding task atom TAS . All other attributes are action parameters

that were specified in the policy vector as tuples 〈AParV aly, AParNamey〉. Time parameters

TimePar = 〈〈‘start’, dateBeg〉, 〈‘end’, dateEnd〉〉 represent time values when the action starts

and finishes. These values are retrieved from the policy vector elements 〈ActBeg,ActEnd〉 and

are also represented as named attributes: for instance, dateBeg is a date of the action start point

in the date format supported by XACML.

This definition of policy request extends the standard XACML policy request structure with

the possibility to specify several designated objects with different custom roles within the policy

request. Using this extension, it is possible to specify policy requests and, correspondingly, poli-

cies for actions that cannot be represented using ‘subject-resource’ schema (or it is difficult), for

example, actions that are applied only to one object or that have relationships with several objects

(e.g., in transportation problems in planning it is often required to specify for actions ‘from’ and

‘to’ destination objects). However, actually, for the specification of each object within a policy

request standard XACML constructs are used (named attributes15 and tree structures). So for

the implementation of the policy-based planner, a mapping for these policy requests and policies

to standard XACML policy requests and policies was defined, providing the means to re-use the

standard XACML policy engine. Using this mapping, in the XACML policy requests several des-

ignated objects are specified as sub-parts of one entity. Details about the implementation are given

in Chapter 8.
15When the XACML policy request is generated, data types for named attributes are determined using pre-defined

function (see Chapter 8).
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PolicySet0

CombDO Target0

PolicySet1

Target1 Policy1

PolicySet2

Target2 Policy2

Figure 5.7: Example policy structure

5.4.2 Policy specification

Policies are specified by different authors and contain the specification of constraints that should

be enforced during the planning or during the plan execution and additional actions, for example,

obligations that should be executed during the planning as ordinary planning tasks or actions.

As was described in Chapter 4, different policies and policy sets can be grouped into policy sets

for which combining algorithms are specified. These combining algorithms are used to control

processing of different policies and resolve conflicts between their decisions when several policies

return (different) decisions for the same policy request. For the policy-based planner, the same

principle is used.

In order to avoid conflicts between different policies, it is required that the overall policy for

the policy-based planner should be specified as one policy set containing other policies nested into

this policy set in a hierarchical manner. Within this policy set, different policies and policy sets

can be contained. The structure of this policy set and the combining algorithms used in it are

not restricted. Using the XACML target mechanism, it is possible to delegate the specification of

different policies to different persons and guarantee that these policies are taken into account during

the evaluation only in situations for which their authors are responsible. For example, there are

two policy authors who can specify policies independently but their policies should be applicable

only within their areas of responsibility (e.g., for different actions). Then, the policy structure

for PolicySpec can be defined (see Figure 5.7), such that a higher-level policy set consists of two

sub-policy sets united using the Deny-overrides policy combining operation. When conditions on

actions corresponding to each policy author are specified in targets of these policy sets (JTarget1K

and JTarget2K), it is guaranteed that these and all lower level policies will be evaluated only when

these target conditions are satisfied. Hence, policies JPolicy1K and JPolicy2K, specified by different

authors, can be placed into these policy sets and it is guaranteed that they will contribute to a

policy decision only within their areas of responsibility.

For the specification of policies referring to designated objects specified according to the ex-

tended model of the policy request (see Section 5.4.1), the Attribute Designator element of XACML

was extended. In the policy-based planner, this element can refer a named attribute of any des-

ignated object contained in the request. The Extended Attribute Designator refers the required
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attribute by its identifier and a role of the object within the current action16. Similarly, extended

target policy elements were introduced that can refer to any designated objects within the pol-

icy request. As was described in Section 5.4.1, these policies are converted into an intermediate

representation in standard XACML syntax for processing.

5.4.2.1 Conditions specification

Conditions in the policy-based planner are used to specify constraints that should be satisfied at

a specific point of the plan execution. Conditions are specified similarly to obligations as part of

policies and policy sets (for this purpose, the policy definition in XACML was adapted). They

are returned when this policy or policy set returns a Permit decision. Conditions are defined as a

tuple:

Cond = 〈Position, Constraint〉 (5.19)

where Position ∈ {before, during, after} defines when the condition should be checked relatively

to the action for which it is defined. This can be done directly before or after the action, or the

condition should hold during the whole action execution interval. Constraint defines a condition

itself. It can be defined using a natural language, if the constraint will be evaluated by a person,

or it can be formally stated as a Condition element of XACML, then it can be evaluated by a

machine. Conditions returned by different policies are united and are returned by the policy engine

to the planning engine for processing.

5.4.2.2 Time constraints

A plan, developed by the policy-based planner, has start and end time points. During the execution

of this plan, regulations can be modified and these updates can be planned in advance. So policy

authors should have the possibility to specify these future policy updates. The system should know

which policies are applicable at a concrete moment in time.

If time constraints are not specified in a policy, this policy applies to all actions. However,

some policies are applicable only during specific time intervals which are defined as their operation

periods [StartPol, F inPol]. All actions carried out by the planning engine should be applicable

during all time points between their start and end time points (during the action execution inter-

val). Hence, a policy is applicable to an action if its operation period intersects with the action

execution interval: [StartPol, F inPol] ∩ [dateBeg, dateEnd] 6= ∅. Three cases of their intersection

are shown in Figure 5.8. In order to implement this condition in a policy, constraints on the ac-

tion’s time interval should be included into its target. They should consider all possible types of

intersections: (StartPol ≤ dateBeg and FinPol ≥ dateBeg)or(StartPol ≤ dateEnd and FinPol ≥

dateEnd) or (StartPol ≥ dateBeg and FinPol ≤ dateEnd).
16Attribute Selector policy element can refer to any information within the policy request, so it should not be

extended.
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Figure 5.8: Examples of policies, applicable to an action

5.4.2.3 Obligations specification

In policy-based planning, specification of obligations is based on standard XACML obligations

with several extensions. Obligations generated by the policy engine are processed by the planning

engine: they should be executed as planning tasks. One of the drawbacks of XACML that was

detected in Chapter 4 is related to obligations enforcement. In XACML, there are no means to

specify a routine how obligations returned along with a policy decision should be executed: as a

required order of their execution or as a position relatively to the action that was requested. For the

specification of policies in the policy-based planner, this drawback was resolved and corresponding

constructs were added for the specification of obligations.

An obligation is specified within a policy or policy set as the following tuple:

Obl = 〈Position, TASi , 〈Par1, . . . , Parn〉, Order〉 (5.20)

where Position is used to specify its position relatively to the action being evaluated, elements

TASi and 〈Par1, . . . , Parn〉 are the task atom symbol and the list of parameters that together

specify the compound or primitive action or the compound task that should be executed. Order

determines the ordering relation between obligations, if several obligations were generated during

the evaluation of the policy request.

The position parameter Position ∈ {before, during, after} determines how this obligation

should be executed relatively to the action being evaluated. If the position is equal to ‘before’ or

‘after ’, the task, which is specified in this obligation, should be executed directly before or after this

action. Position can be equal to ‘during’ only if a compound action is being evaluated17. So the

‘during’ position means that the compound action should be decomposed and the during-obligation

is used as task network that is used for the decomposition.

The task symbol TASi in the obligation specification is the task atom symbol that should be used

in the task that should be executed. Using the tuple of parameters 〈Par1, . . . , Parn〉, parameter

terms of this task are determined. Each obligation parameter Parj can contain a term-constant or

refer to an attribute within the policy request. In the latter case, Parj = 〈AttType,AttrName〉,

where AttType defines an element within the policy request that the referred attribute belongs to
17This is guaranteed by the obligations validation mechanism which will be described in Section 5.4.3
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(it can be ‘action’, ‘time’ or a role of the designated object), AttrName contains the name of the

attribute that should be retrieved. So using the task atom symbol and the parameters tuple, a

planning task (compound or primitive action, or compound task) that should be executed by the

planner based on the obligation is fully specified.

Several obligations with the same position can be generated for the same policy request, so the

planning engine should linearise them. By default, such obligations are processed as an unordered

task network. The planning engine will try any possible ordering of tasks representing obligations

and will utilise for further planning all task sequences that were successfully executed. However,

a policy author may want to enforce a specific ordering for these obligations that the planning

engine should follow. For this purpose, into the specifications of obligations an ordering parameter

Order should be added that defines the possible order of their execution. The ordering parameter

Order can be ∅ or tuple 〈OrdID, OrdNum〉, where OrdID is an identifier of the ordering relation

and OrdNum is a number that specifies the order of the considered obligation within this relation.

Obligations with the same ordering relation should be executed sequentially in an ascending order

according to this number. When there are several obligations with the same ordering number,

they can be executed in any order. Each obligation can refer to only one ordering relation. If an

ordering information is not specified for an obligation, it can be executed in any order relatively

to other obligations.

As was described in Chapter 4, obligations are specified within different policy sets and policies

and are returned from these policies to an upper level of policy evaluation when their policies

produce Permit decisions. Obligations in the policy-based planner are produced only for Permit

decisions, because only when an action is permitted, it can be executed by the planning engine18.

The obligations generated during the policy evaluation are enforced in a controlled manner in

the policy-based planner using the obligations validation mechanism, which is described in Sec-

tion 5.4.3.

5.4.3 Obligations validation mechanism

The obligations returned by the policy engine for a policy request have a great impact on the

planning process, since they are executed by the planning engine, change the planner’s world state

and they can be included into the resulting plan. On the other hand, obligation are specified

within policies by different policy authors. Using a policy target mechanism, it is possible to

specify the scope of policy requests, for which a policy is applicable. However, when a policy

becomes applicable, any obligations can be produced (i.e., any obligations that were specified in

it by its author). An HTN planning domain should be devised as a set of coordinated methods

and an uncontrolled intervention into the planning process is undesirable. So a mechanism is
18In a situation when the policy decision is Not applicable, the action is also executed by the planning engine but

obligations cannot be returned for this action, since no policies were applicable for it.
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required to define the extent to which obligations can intervene into the planning. Additionally, the

specification of the constituent policies for a specific policy set can be delegated to different persons,

so a person responsible for the whole policy set should have the ability to control obligations being

generated by the constituent policies. The standard XACML policy combining algorithms do not

provide this ability. In order to satisfy these two requirements, an obligation validation mechanism

was proposed.

<VALRULE> ::= ’(’ <COMPACTION> [<BEFOREPART>] [<DURINGPART>] [<AFTERPART>] ’=>’
<POLICYLIST> ’)’ | ’(’ <PRIMACTION> [<BEFOREPART>] [<AFTERPART>] ’=>’ <POLICYLIST> ’)’
<BEFOREPART> ::= ’(’ ’before’ <ORPART >’)’ | ’*b’
<DURINGPART> ::= ’(’ ’during’ <ORPART> ’)’ | ’*d’
<AFTERPART> ::= ’(’ ’after’ <ORPART> ’)’ | ’*a’
<ORPART> ::= ( <ANDPART> )+
<ANDPART> ::= ’(’ [’ordered’] <TASK> + ’)’
<ACTION> ::= <COMPACTION> | <PRIMACTION>
<COMPACTION> ::= ’&’ <NAME> | ’&’ ’*’
<PRIMACTION> ::= ’!’ <NAME> | ’!’ ’*’
<TASK> ::= <ACTION> | <NAME>
<POLICYLIST> ::= ’(’ <POLICY>+ ’)’ | ’*’
<POLICY> ::= <NAME>
<NAME> ::= (’a’-’z’|’A’-’Z’|’0’-’9’)+

Figure 5.9: Syntax for validation rules

The obligations validation mechanism is based on validation rules. A validation rules registry,

V alidRules, defines which obligations validation rules are used within which policies: V alidRules =

{〈PolicyRef, {V alRule}〉}. The tuple 〈PolicyRef, {V alRule}〉 contains a set of rules that are

utilised for policy specified using the policy reference PolicyRef . If PolicyRef is empty, these

rules are used to validate a whole set of all obligations returned by the policy engine. A gram-

mar for the specification of validation rules is shown in Figure 5.9. Using a validation rule, it is

possible to specify which obligations can be generated for a primitive action (〈PRIMACTION〉)

or a compound action (〈COMPACTION〉) being evaluated and which ordering relations should

exist for them. A grammar for the validation rules specification is presented in Figure 5.9. Each

validation rule has parts for representation of the requirements for before, after and during obli-

gations. Constructs 〈COMPACTION〉 and 〈PRIMACTION〉 are used to specify actions for

which a rule is applicable. When a set of obligations is produced during the evaluation of a policy

request containing task symbol TAS , these obligations can be validated using rules where con-

structs 〈COMPACTION〉 or 〈PRIMACTION〉 match task symbol TAS , that is, they are equal

or the wild card ‘∗’ is used in 〈COMPACTION〉 or 〈PRIMACTION〉. The obligation rule

validates this set of obligations, if before, during and after parts of this rule validate respective

sub-sets of this obligation set. Hence, using validation rules it is possible to specify constraints on

obligations with different positions and interrelations between them. As defined in the grammar,
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for primitive actions only before and after obligations can be used, as it is stated in the obligation

definition. Within each validation rule part, several alternative conditions on obligations with the

same position are specified. Two types of these conditions can be used: unordered and ordered. An

unordered condition requires that all required obligations were generated during the policy eval-

uation. Using an ordered condition, additionally, it is possible to check that returned obligation

can be ordered according to the required order (it should be noted that these obligations can be

already partially ordered). Moreover, if an ordered condition is used for the validation, this order

is enforced for the validated obligation set. Sub-sets of this obligations set corresponding to rule

parts with ordered constraints should be ordered according to the required order. For each action,

several validation rules can be specified. For a successful validation, the set of obligations should

satisfy one of them. A wild card ‘∗’ is used to designate the fact that this rule is applicable to any

compound or primitive action. A wild card ‘∗’ with a letter corresponding to the before, after or

during validation rule parts designates that this rule permits any set of obligations (even an empty

set) in the corresponding position. Optionally, a rule can contain a list of policy and policy set

identifiers. If this list is specified, this rule can be used to validate only obligations returned by

policies (or policy sets) included in this list.

The validation of obligations, returned during the policy evaluation, can be carried out at

different levels. At the top-level, validation rules can be specified by an author of the planning

domain. These rules are applied to a result obligation set, returned by the policy engine. An aim

of the planning domain author is to guarantee that returned obligations can be executed at this

point of the planning based on the modelled environment principles. For example, an entrance

exam should be before an admission of student to university. There is no reason to require a

student to pass an entrance exam after an admission or during his (or her) studying at university.

Policy lists usually are not used at this level, because the planning domain author is responsible

for maintaining the validity of all obligations carried out within the environment. Hence, all sets

of obligations returned by the policy engine should be validated by a validation rule. When such

rule is not found, an Indeterminate decision is produced.

Additionally, validation rules can be specified by policy set authors. These validation rules

are used to validate obligations returned by constituent policies for this policy set. Constituent

policies generate obligations along with policy decisions. Decisions, returned by these policies,

are combined using a combining algorithms. If a result decision matches a decision returned by

a constituent policy, the obligations that this policy has generated should be returned by the

policy set as its own obligations. When obligations validation rules are specified for this policy

set, only obligations validated using these rules can be returned from this policy set. At this

level, obligations validation rules can contain policy lists. A policy set author can specify distinct

rules for different constituent policies using the lists of applicable policies within the validation
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rules. Obligations returned by some policy can be validated only by a policy rule where its policy

identifier is specified within the rule’s policy list. A validation rule where the wild card symbol

‘∗’ is specified instead of a policy list can be used for any policy. So at this level, obligations

returned by different policies are validated separately. If obligations returned for some policy were

not validated using the specified validation rules, the Indeterminate decision is returned.

In Figure 5.10 two examples of validation rules are presented. The first rule defines that an en-

trance exam obligation can be executed before an admission action. The second rule defines a pos-

sible routine for the execution of transfer IP student transfer action. During the execution of this

compound action, a recognition procedure should be carried out (compound action &Recognise)

and the remaining difference in the EPs should be discarded (action !Discard difference).

(!Admit (before (Entrance exam)) => * )
(&transferIP (during (&Recognise !Discard difference)) => * )

Figure 5.10: Examples of validation rules

5.5 Transformation rules engine

Within the planning environment, the same object properties for different objects can be specified

using different terms or units. That is, these terms are used to refer to the same or related notions

and the units are used to measure the same characteristic. For example, these terms and units

can be adopted in different domains or according to different classification systems. However,

specific policies as well as the planner’s domain methods and operators are usually specified using

a specific set of terms or specific units (i.e., a scale) and cannot interpret other terms and units.

The transformation engine operates with rules that specify how to convert values of properties

from one scale to another. A basic transformation rule has the following structure:

property2(?OBJ, ?val2, Scale2)[, ?val1 = 〈conversion expr〉]→ property1(?OBJ, ?val1, Scale1)

(5.21)

where names of properties property1 and property2 can be equal or different and specify which prop-

erties are related (or converted) by this rule. Names of properties correspond to predicate symbols

of binary property-literals containing the object-term of the concerned object. conversion expr is

an optional element. It is used to convert numeric values from one scale to another. Otherwise, a

mapping from one constant value to another is defined. A property-literal representing the object

property that should be converted should be stored in the planner’s world state and have the same

structure as predicates in the transformation rules.

When the planning or policy engine requires a value of object property in a scale specific to

a concrete domain or classification system, it makes a request to the transformation rules engine.

In the request, it passes the following values: 〈property,ObjID, Scale〉, where property is a name
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of the object property that is used as a predicate symbol in the planner’s world state. The object

that this property describes is represented using its object-term ObjID. Scale is an identifier of the

target scale, to which the value should be converted to by the transformation rules engine. During

the policy evaluation, these requests are initiated using a special type of attribute designators. In

the planning environment, a special function will be implemented that can be used in operators

and methods preconditions to request the converted values from the transformation rules engine

(see Chapter 8).

When the transformation rules engine receives a request, it analyses its rule base in order to

decide if a conversion of the requested property is supported. If it is supported, it processes the

request using the literals from the planner’s world state, which are used to infer the new value of

the property.

5.6 Adaptive object contexts generation technique for policy request

construction

As was stated in Section 5.4.1, during the policy requests generation relevant information about

designated objects which is stored in the planner’s world state and which can be used during the

policy evaluation should be extracted and presented as object contexts in the request. An object

context is a tree structure that contains required information about the object stored within the

planner’s world state, viz, information represented as binary and non-binary property-literals and

relation-literals containing its object-term and information about all property and relation literals

with object-terms for objects that are related with this object through the chain of one or several

relation-literals. This section presents a mechanism for selection of the relevant information and

its transformation into object context.

This mechanism consists of two sub-techniques. The first technique is a transformation tech-

nique that defines how part of the planner’s world state that contains information about some

object can be transformed into its context. For its implementation, a hyper-graph model of the

planner’s world state will be introduced. The transformation technique will be defined based on

the introduced hyper-graph model of the planner’s world state. The second technique is the ab-

stract contexts technique. Using this technique, part of the planner’s world state that contains

information related to a designated object within a policy request is selected for the transforma-

tion into the object context. This object context should be included into the considered policy

request. In this technique, policies loaded into the policy repository are pre-processed and abstract

object contexts are generated for them. An abstract context specifies what information about an

object used as a designated object within a policy request can be used within conditions for these

policies. During the policy request generation, based on these abstract contexts concrete contexts

for specific designated objects are generated using information stored in the planner’s world state.
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This technique should select all information that can be used during the policy evaluation, but, on

the other hand, it should select only the minimum required information, as this reduces the policy

request size.

5.6.1 Hyper-graph of planner’s world state and its object model

In Section 5.3.1, the planner’s world state was defined as a set of ground positive literals p(τ c1 , . . . , τ cn).

The following properties are important and should be taken into account during the design of the

planner’s world state model: the order of terms in a literal is important, one term can be included

in one literal several times in different positions, literals with the same predicate symbols can con-

tain different number of terms. The planner’s world state can be represented as a hyper-graph HS .

A hyper-graph is a generalisation of a graph where each edge can contain any number of vertices.

In HS , each vertex t ∈ T represents an entry of a term in a literal in the planner’s world state.

Each edge l ∈ L, l ⊆ T is a set of vertices representing term entries related to the same literal.

HS = 〈T,L〉

T = {t},L = {l}
(5.22)

So each reference to the same term in the planner’s world state is modelled by different vertices

in the hyper-graph HS . Each edge represents vertices corresponding to terms within one literal.

Fictitious literals are not included into the hyper-graph model of the planner’s world state, as they

are not used during the policy evaluation. All vertices in HS are divided into two sets corresponding

to object-terms and property-terms: O = {. . . , Oi, . . . } and P = {. . . , Pj , . . . }. Similarly, all edges

are divided into two disjoint sets corresponding to relation-literals LR and property-literals LP .

T = O ∪P,O ∩P = ∅

L = LR ∪ LP ,LR ∩ LP = ∅
(5.23)

The hyper-graph HS is labelled using four labelling functions (see Formula 5.24). Edges are

labelled using the labelling function η with predicate symbols that are used in corresponding

literals. Vertices are labelled according to terms that they represent: object-terms with the labelling

function α and property-terms with the labelling function β. Functions α, β and η are not injective,

because one term and one predicate symbol can be used in the planner’s world state several times.

The labelling function ε maps a pair containing one edge and one vertex in the hyper-graph HS to

an integer number, indicating the sequencing number of the term represented by the vertex within
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the literal represented by the edge.

α : O→ TermProp
OType × TermObj

β : P→ TermProp , η : L→ Pred

ε : L×T→ N

(5.24)

A hyper-graph HS for the planner’s world state is not connected (every its edge is included

in its own connected component). A connected component is a maximal subgraph where each

two vertices are connected by some path. The total number of connected components is equal

to k(HS) = |L|. An example of hyper-graph HS for a planner’s world state is represented in

Figure 5.11. It contains two objects Obj1 and Obj2 with different types, one property for each

object and one relation, connecting these two objects. The hyper-graph corresponding to this

planner’s world state is presented in Figure 5.12. Terms entry labels are shown inside the edges.

a1 : Object(ObjID 1, ObjType 1)
a2 : Object(ObjID 1, ObjType 2)
a3 : Prop1(ObjID 1, τ

c
Prop1, τ

c
Prop2)

a4 : Prop2(ObjID 2, τ
c
Prop3)

a5 : Rel1(ObjID 1, ObjID 2, τ
c
Prop4)

Figure 5.11: Example of the planner’s world state

Figure 5.12: Hyper-graph of the planner’s world state example

In order to use the hyper-graph model of the planner’s world state as a basis for the transfor-

mation technique specification, it should represent and distinguish all object-terms, property-terms

and literals of the planner’s world state and relations between them. Object types are represented

in labels. The sequence order of the terms in a literal is represented using terms entry labelling

function ε. If one term is included into the same literal several times, it will be represented using

different vertices with the same object or property label. Different edges with labels which have

the same predicate symbols obviously can include different number of vertices.

In order to retrieve all the required information about an object from the hyper-graph of the

planner’s world state and represent it in policy request, based on HS a planner’s world state object

model hyper-graph HObj is defined. It represents the same information as HS with the following
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difference. All object vertices with the same object labels are shrunk into one vertex, so edges

representing literals with the same object-terms are connected to each other. The object model

hyper-graph HObj is defined as:

HObj = 〈OO ∪PO,LO〉 (5.25)

where PO ≡ P and each object-term in the planner’s world state is represented by only one

vertex is the set OO = {OO}. So the set of object vertices in the hyper-graph HS is divided into

equivalence classes. In one equivalence class all vertices are labelled with the same object label

(Oi ∼α Oj ⇔ α(Oi) = α(Oj)). All object vertices Oi ∈ O in HS from one equivalence class

are represented in HObj by one object vertex (OOi ∈ OO) corresponding to this equivalence class

(OO ↔ O/ ∼α). Object labelling function αO is defined for the set OO such that if Oi in HS is

represented as OOi
in HObj , then αO(OOi

) = α(Oi).

The edges of the object model hyper-graph LO are defined using the common procedure for

vertices being shrunk. Each edge lj in the hyper-graph HS is represented in the hyper-graph HObj

using edge lOj
such that lOj

is equal to lj with the difference that object vertices are substituted

using the mapping introduced earlier. Edges labelling function ηO and terms entry labelling func-

tion εO are defined similarly as in HS . Example of hyper-graph HObj for the planner’s world state

in Figure 5.11 is represented in Figure 5.13.

Figure 5.13: Object model hyper-graph for the example planner’s world state

The hyper-graph HObj , obtained using the described rules, is a connected hyper-graph where

relations between edges are established using object terms. All vertices representing the same

property terms are still different. Correspondingly, the hyper-graph HObj is divided into several

connected components k(HObj), each of which represents a set of literals related to each other.

When information about a designated object is selected from the planner’s world state, only the

connected component where its object-term is included should be considered, as the rest part of

the planner’s world state is not related to this object. The hyper-graph HObj has one limitation:

a literal that contains the same object-term in different positions cannot be represented in HObj ,

as vertices that represent such terms will be shrunk into one vertex. This restriction is avoided at
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the level of implementation, because at the level of implementation only hyper-graph model HS

is stored in full for a planner’s world state. When information about relations of object-terms is

needed, it is received using a mechanism operating with HS and data structures introduced on top

of it19 that returns a set of edges from HS with the required object-term.

5.6.2 Abstract contexts

Contexts of designated objects are represented in policy requests as trees. These trees have root

nodes corresponding to object-terms of these designated objects. The trees are presented in a

request as XML documents. These documents can be accessed during the policy evaluation using

AttributeSelector elements that are used in policy conditions and contain XPath expressions.

Using these XPath expressions, it is specified which information from the object context will be

retrieved and, correspondingly, utilised during the policy evaluation. When policies are uploaded

into the policy repository, these XPath expressions are analysed and special constructs, called

abstract contexts, are created. Abstract contexts are an abstracted and merged representation of

all XPath expressions used within different policies. Abstract context AC is specified as a set of

abstract context trees ACTree.

Definition 5.5. Abstract context tree is a tree ACTree = 〈V,E, vR〉. Root vertex vR

represents a set of objects. For a situation when an object from this state is used as a designated

object in a policy request, the abstract context tree specifies which literals from the planner’s world

state related to this object can be requested using AttributeSelectors during the policy evaluation

(and, hence, which literals should be added into its context). V = {. . . , v, . . . } is a set of vertices

labelled using function FuncOType with object types values (FuncOType : V → TermProp
OType).

Special universal vertex vANY is a vertex for which the label is not specified. Root vertex vR ∈ V

can be a universal or an ordinary vertex. E = {. . . , e, . . . } is a set of edges labelled using function

FuncPred with predicate symbols (FuncPred : E → Pred). Special edge eANY is used to designate

an edge for which the label is not specified2

Each edge in an abstract context tree represents a set of literals in the planner’s world state (and,

correspondingly, edges in HObj). Edge e = 〈v1, v2〉 in ACTree matches edge lO = {to1, . . . , ton} in

HObj (vertex tox can be an object or property vertex) in relation with vertices toi and toj (toi , toj ∈ lO) if

the following conditions are satisfied: predicate symbol ηO(lO) = p is equal to e’s label FuncPred(e)

or a universal edge is used; some vertex toi ∈ lO matches vertex v1 and some vertex toj ∈ lO, such

that toj 6= toi , matches vertex v2. When an edge e matches edge lO in relation to vertices toi and toj ,

this is designated as match(e, lO, toi , toj). A universal vertex in ACTree matches any vertex in HObj .

An ordinary vertex v in ACTree matches object-vertex OO in HObj if second(αO(OO)) = ObjT (v),

i.e., their type labels are equal (non-universal vertex in abstract context tree can match only with
19For storing information about links between vertices and its fast retrieval, special constructions are defined on

top of the HS (see Chapter 8).
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object vertices in HObj).

Abstract context trees are built from XPath expressions, contained in policies, and represent

location paths used in these expressions. Abstract context trees are constructed in a way that a

root vertex corresponds to an object for which a context is built. If in an abstract context tree

there is a path from the root to some vertex, in some XPath expression there is a location path

that can use during the evaluation of the expression literals matching to edges on this path.

When policies are analysed, several abstract context trees are generated. These trees can

contain mergeable paths. A vertex v1 is mergeable with vertex v2 and as a result of merging vertex

vm is produced if FuncOType(v1) = FuncOType(v2), then FuncOType(vm) = FuncOType(v1), or

if v1 = vANY ∨ v2 = vANY , then vm = vANY . An edge e1 = 〈v11, v12〉 is mergeable with edge

e2 = 〈v21, v22〉 into edge em = 〈vm1, vm2〉 if vertices v11 ↔ v21 and v12 ↔ v22 are mergeable into

vertices vm1 and vm2 and if FuncPred(e1) = FuncPred(e2) (then FuncPred(em) = FuncPred(e1))

or e1 = eANY ∨ e2 = eANY (then em = eANY ).

In order to store only distinct abstract trees in an abstract context, when a new abstract tree is

generated, it is analysed whether it can be merged with any tree already contained in an abstract

context. If a sequence of edges starting from the root vertex or only a root vertex can be merged

with the corresponding path of an existing abstract context tree, they are merged20. A merged

path substitutes corresponding path in an existing abstract context tree and the rest part of the

new tree is added to the abstract context tree. If a new tree cannot be merged with any existing

tree, it is added as a new one. Using this principle, during the matching of an abstract tree with

the planner’s world state (or its object hyper-graph), each literal considered at the moment in the

planner’s state corresponds to only one edge in the abstract context tree.

Using abstract contexts, it is possible to select all literals from the planner’s world state that

can be utilised during the XPath expressions evaluation within policies. It should be noted that

this representation of abstract context trees applies some restrictions on XPath expressions that

they can correctly represent. These restrictions are specified in Chapter 8, where a technique for

XPath analysis and abstract context trees generation is described.

An overall schema of abstract contexts-based policy requests generation is presented in Fig-

ure 5.14. At this schema, two phases are presented separately: the pre-planning phase when the

abstract contexts are generated during the policy loading and the planning phase when a policy re-

quest is generated with object contexts for its designated objects, based on corresponding abstract

contexts. When policies have been loaded, they are analysed and produced abstract contexts are

saved into an abstract context registry. In order to separate abstract contexts that are used for

specific types of policy requests, a leading variables mechanism is used. It is based on the assump-
20If a universal vertex is used as a root in new tree, or some sub-path, starting from the root, consists of universal

vertices and edges, all abstract context trees should be merged with these universal vertices and edges.
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Figure 5.14: Policy request generation schema using abstract contexts

tion that all policy requests and all policies can be divided into classes such that all policies from

one class can be applicable only to policy requests from the class corresponding to it. Policy and

policy requests can be divided into such classes if in each policy request there is a set of obligatory

attributes (called leading variables) and in each policy there is a condition on values of these at-

tributes (or such conditions propagate to a policy from a higher-level policy). The abstract context

registry is organised in a way that all abstract contexts referring to one class of policy requests

are stored separately. For each combination of leading variables values V al1 × · · · × V aln and a

designated object’s role, distinct abstract context AC ≡ {. . . ACTree . . . } is created. So when a

policy request is generated, based on current values of leading variables V al′1 × · · · × V al′n and a

role of the designated object ObjID, it is possible to determine which abstract context should be

used for the concrete contexts generation for the designated objects. Using this mechanism, it is

possible to reduce an area of applicability of abstract contexts and, hence, reduce the amount of

information that should be extracted from the planner’s world state.

5.6.3 Generation of object contexts

A concrete object context, built using corresponding abstract context, represents information from

the planner’s world state that can be used during the policy evaluation. An algorithm for generation

of a concrete context for an object represented as vertex o within HObj is presented in Figure 5.15.

As an input information, it receives the object o, for which a context should be built, a connected

component k(HObj) containing o and an abstract context AC selected from the registry based on
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the policy request. First, an abstract context tree in AC containing the root vertex that matches

o is determined. According to the rules of the abstract contexts construction, there is at most

one such tree within the abstract context AC. As a source of information for the object context

construction, the connected component of the hyper-graph k(HObj) is used. The abstract context

tree is used to determine which edges from it should be converted and represented as the object

context. During the object context construction, these two graphs are analysed and a third graph,

the resulting object context tree, is created.

Generate(Object vertex o, Hyper-graph k(HObj), AbsCont AC)
1. Select ACTree in AC, such that o matches vR (vR ∈ ACTree)
2. If there is no such ACTree then Return empty context 〈〉 endif
3. CurVAC := vR; CurVHobj := o
4. Add CurVCont := clone(o) into ContextTree
5. Call Analyse(CurVAC , CurVHobj , CurVCont, ContextTree)
6. Return ContextTree.
Analyse (vertex CurVAC,vertex CurVHobj,vertex CurVCont, context ContextTree)
1. Loop 1 for each edge lO adjoining with CurVHobj in k(HObj)
2. Loop 2 for each vertex to ∈ lO not equal to CurVHobj

2.1. If there is child v for CurVAC in ACTree (e = 〈CurVAC , v〉) such that
match(e, lO, CurVHobj , to) then:

2.1.1. If lO was not added into ContextTree during current loop 2 cycle
then:

2.1.1.1.S := clone(lO), convert S into Bipartite graph GK(S)
2.1.1.2.Add GK(S) into ContextTree by merging vertex CurV ′Hobj in

GK(S) with CurVCont (CurV ′Hobj is vertex in GK(S) cloned from CurVHobj)
endif
2.1.2. Analyse(v, to, to′

, ContextTree) (to′ is vertex in ContextTree cloned
from to)

endif
End loop 2
End loop 1

Figure 5.15: Object context generation algorithm

At each step of the algorithm, three vertices are used as current vertices within the three

graphs being used. At the beginning, the current vertex for the ACTree, CurVAC , is set up with

its root and the current vertex CurVHObj for the k(HObj) - with o. Next, a depth-first search of

paths in k(HObj), matching edges in ACTree, is started. All vertices in edges of k(HObj) that are

incident with CurVHObj are analysed. If in the ACTree there is an edge incident with the current

vertex CurVAC that can match with an edge of k(HObj), the whole edge of k(HObj) is added

into the resulting context ContextTree. In order to construct ContextTree as a tree, this edge is

converted into an equivalent Bipartite graph, which represents the same information but presented

as an unordered graph. This graph is added into ContextTree and is connected with the current

vertex CurVCont. When the matching edge is found and its processing is finished, the current

vertices in all three graphs are updated and a new iteration of the search process in initiated. As
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it can be seen, in this process ACTree guides the search process. It is used to determine which

edges should be added into the context. Moreover, as ACTree is a tree, cycles, which can exist in

k(HObj), are resolved. When we add an edge to ContextTree, we clone it and connect only to one

vertex in the ContextTree (i.e., the current vertex).

Definition 5.6. Object context ContextTree built for object vertex o in HObj is a tree

〈V C , EC , vR o〉, where V C = {. . . , vC , . . . } is a set of vertices labelled using function FuncHobj .

Function FuncHobj maps a vertex in the context to an element of the object model hyper-graph

HObj , that is, its vertex or edge: FuncHobj : V C → OO ∪PO ∪ LO. Root vertex is labelled with

o: FuncHobj(vR o) = o. Vertices of the context tree represent literals related with the object o21

in the planner’s world state (and, correspondingly, edges of the object model hyper-graph HObj)

that can be used during the policy evaluation. An edge lOj of the object model hyper-graph

HObj , containing vertices tO1 , . . . , tOk , is represented in ContextTree as a vertex labelled with lOj

and vertices vC1 , . . . , vCk adjacent with this vertex and labelled with tO1 , . . . , tOk
. A vertex vCi in

ContextTree labelled with an object-vertex OOi
has a child vertex labelled with an edge lOm

only

if the object-vertex OOi is included in the edge lOm in HObj2

An example showing how a Bipartite graph for k(HObj) is transformed into an object context

tree based on the abstract context tree is represented in Figure 5.16. At the graphical representation

of the context tree, labels produced by a terms entry labelling function ε′ : V C → N are presented.

This function is an updated version of the terms entry labelling function ε, which defines ordering

of terms in literals in the object model hyper-graph. For a vertex in ContextTree representing a

term (i.e., labelled with a vertex in HObj), function ε′ returns its sequence number in the literal

represented as its parent node. For a vertex in ContextTree representing a literal (i.e., labelled

with an edge in HObj), function ε′ returns a sequence number in this literal for the term represented

by its parent vertex.

The resulting ContextTree is converted into an XML document and inserted into the policy

request as a designated object context. Each vertex in the context tree is represented as an element.

So these elements are nested according to their positions in the tree. Vertices representing object-

terms are represented as elements with object types used as tag names. Object identifiers and their

sequence numbers in literals (ε′) are represented as their attributes. Vertices representing literals

are transformed into elements with predicate symbols used as tag names. Vertices representing

property-terms are transformed into elements with their sequence numbers in literals used as tag

names. Property-terms themselves are stored in the content of these elements.
21Object o is represented in the planner’s world state by the corresponding object-term.
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Figure 5.16: Transformation of Bipartite graph for k(HObj) into an object context

5.7 Conclusion

In this chapter, the policy-based planner was described, which carries out the role of the main

processing engine in the CEP generation framework (see Chapter 3). An overview of the policy-

based planner, its main components and interaction processes between these components, which

form the basis for the policy-based planner operation, was given. The policy-based planner consists

of three main components: a planning engine, a policy engine and a transformation rules engine.

Each component was described in detail including the specifications that are utilised by each of

these components in order to carry out their functions. In the policy-based planner, these three

components were integrated into the single planning engine, what provided the means to jointly

exploit their advantages during the planning.

The main contribution made in this chapter is a design of the policy-based planner that provides

the means to carry out planning in environments with heterogeneous regulations. The policy-based

management approach was applied to the new area, the HTN planning technology, extending its

possibilities. As was shown in Chapter 2, existing planning technologies do not satisfy require-

ments for planning in environments with heterogeneous regulations that are different in different

domains, manage different aspects of the plans being developed and are specified by different

persons independently. Additionally, during the design of the policy-based planner, the following

contributions were made. Using the transformation rules, the policy-based planner can operate

with different terms and units adopted to designate the same or similar notions and measure the

same characteristics. The XACML policy language was extended. The policy specification and

evaluation mechanisms were extended in order to have the possibility to specify how obligations

produced during the evaluation of a policy request should be executed relatively to each other

and to the action being evaluated. The obligations validation mechanism was introduced in order
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to have control over obligations produced during the policy evaluation: which obligations can be

generated in a current situation,; how they should be executed relatively to each other and to

the action being evaluated; which obligations can be produced by a specific policy. Moreover, the

adaptive technique for the construction of policy requests, specifically, their object context parts,

was designed. The object context represents information about an object stored in the planner’s

world state. While XACML does not provide mechanisms to determine what information will

be required during the policy evaluation, the adaptive object context construction technique was

designed to develop object contexts containing only information that can be required during the

policy evaluation.

In the planner described in this chapter, policies can be evaluated for an action when all

information about the action is fully known. In the next chapter, an extension to the policy-based

planner, a postponed policy enforcement mechanism, providing the possibility to evaluate policies

at earlier stages of the planning, when not all information about the action is known, is introduced.
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Chapter 6

Postponed policy enforcement mechanism

Objectives:

• Introduce a mechanism that enables the evaluation of policies

at earlier stages of the policy-based planning, when not all

required information could be available.
• Extend the XACML policy evaluation algorithm in order to

process policy requests, containing only partial information

about the planner’s world state.

6.1 Introduction

Policies in policy-based planning, being specified externally from the planning domain, determine

how planning should be carried out in specific situations, that is, which actions should be executed

and which actions should be avoided. In the designed policy-based planner, policy requests are

generated and evaluated for primitive and compound actions at the moment of their execution.

Thus, the information specified using policies is consulted only at the later stage of the planning,

that is, at the moment when a specific policy decision inferred based on this information must be

enforced during the planning. As was examined within the planning community (e.g., in [157, 34]),

the ability of the planner to recognise important events, which should occur during the planning,

earlier is critical for the good performance of the planner. Information about the anticipated events

and their effects can be used for reasoning at the current stage of the planning. For example, based

on this information, conflicts and interactions within the current plan can be detected earlier, so

they can be resolved or considered during the choice of future planning actions. Correspondingly,

this can help to prune the search space and avoid future backtracking.

This chapter introduces a postponed policy enforcement mechanism providing the means to

evaluate policies at earlier stages of the planning. Using it, policy requests can be generated

and evaluated for planning actions that should be executed later on during the planning, but for

which some information is already available. These are primitive and compound actions that are
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contained in the current task network and actions that will be added in it during the planning as

a result of compound tasks decomposition. When these policy requests are constructed, not all

required information could be available. So new constructs were added into the planning domain

in order to differentiate which information can be changed into the planner’s world state in the

future course of the planning and determine which new information can be added (e.g., which

effects can be introduced during the execution of a compound task). For this purpose, high-

level effects and increasing/decreasing effects set mechanisms were introduced. Correspondingly,

using these mechanisms, partial policy requests can be generated that contain only part of the

information that can be required during the policy evaluation. The XACML policy evaluation

procedure was extended in order to evaluate such policy requests. When partial policy requests

are evaluated, the resulting decision can be indeterminate if the policy request does not contain

all the required information. In order to indicate this situation, a new Indeterminate temporal

decision was introduced into the XACML policy language. When it occurs, the partial policy

request should be postponed and re-evaluated when more information is available to refine it. But

the main performance gains of the postponed policy enforcement should be made when an exact

decision is produced during the partial policy evaluation. If this decision is Deny, a dead-end

is detected and a large part of the search space can be pruned. If this decision is Permit, the

evaluation of future policy requests that refine the current request can be eliminated. This leads

to the planning time reduction and provides the means to produce the solution faster.

This chapter is organised as follows. First, a number of placeholders are introduced for the

specification of partially known objects in Section 6.2.1. These placeholders are used in partial

policy requests and constructs designating future modifications of the planner’s world states as

described in Section 6.2.2. A routine enabling the introduction of partial policy requests during

the planning, which guarantees that each partial policy requests represents at least one policy

request being carried out later on during the planning, is presented in Section 6.2.3. The overall

schema of postponed policy enforcement is described in Section 6.2.4. Later in this chapter,

a modified version of the XACML policy evaluation procedure supporting evaluation of partial

policy requests is described (see Section 6.3). The partial policy evaluation procedure for XACML

is introduced as an extension of the XACML policy evaluation formal model described in Chapter 4.

As the partial policy evaluation procedure is defined using the corresponding formal model, it is

possible to guarantee that the partial policy evaluation is an extension of the standard XACML

policy evaluation procedure and it possesses the required properties (i.e., the monotonicity, see

Section 6.3).
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6.2 Postponed policy enforcement

6.2.1 Constructs for partially known information specification

The postponed policy enforcement mechanism is based on the possibility to evaluate policies earlier

during the planning. During this evaluation, the policy request vector that should be evaluated and

the corresponding planner’s world state can be known only partially. So for their specification three

types of placeholders were introduced. Since during the course of the planning more information

becomes known, these placeholders should be substituted by ordinary terms eventually.

Definition 6.1. Null property is a special property-term ‘NIL’ that can be used as a

placeholder for an object’s property value. When a ‘NIL’ term is used in a property- or relation-

literal, this means that this literal can be substituted by one or several literals where the ‘NIL’

term is substituted by different property-terms12

Definition 6.2. Dummy object is an object that is known partially. Its known properties

and relations are saved in a special set being supported by the planner (it will be referred as

Dummy Objects Space DumObjSps). These properties and relations can contain only invariant

literals2. All other properties and relations of dummy objects are considered as unknown at the

current stage of the planning2

Definition 6.3. Hierarchy of properties is a tree G = 〈TermG , EG , τG0 〉, where TermG =

{. . . τGr . . . } is a set of hierarchical property-terms τGr ∈ TermProp, EG = {. . . 〈τGl , τGm〉 . . . } is a set

of edges that define the tree structure and τG0 ∈ TermG is a root of the tree. All property-terms

in TermG except the leaf terms are used as placeholders: hierarchical property term τGr ∈ TermG

can be substituted by any property-term τGk ∈ TermG , if τGk is a descendant for τGr . If in a

planning domain there are several hierarchies of properties G1, . . . ,Gf , their sets of hierarchical

terms TermG1 , . . . , T ermGf should not overlap2

Dummy objects are specified within the planner’s world state similarly with ordinary objects.

For this purpose, special predicate symbol Dummy is used (see Formula 6.1). Each dummy object

is represented as an object-term DumID, used for its identification, and has a type ObjType. In

contrast to null properties, one dummy object can be substituted only by one ordinary object.

When an object-term DumID occurs several times, the same ObjID should be used for its substi-

tution. In order to store which object-terms ObjID have been used to substitute specific dummy

objects DumID and do not substitute them with other object-terms in the future course of the
1If several ‘NIL’ terms are used within one literal, the overall set of terms that substitute the ‘NIL’ terms should

be distinct.
2Invariant literals are literals that cannot be modified in the planner’s world state, i.e., there are no positive or

negative effects within the planning domain specification that have the same predicate symbols.
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planning, a substitution θ = {. . . 〈DumID, ObjID〉 . . . } is used3.

Dummy(DumID ObjType) (6.1)

Set TermDumObj contains all object-terms representing dummy objects. A set of known properties

and relations for a dummy object, contained in the Dummy Objects Space, is returned using the

function DumDescr(DumID).

Definition 6.4. Partially specified literal Lpart is a literal that contains a dummy object,

or a placeholder “NIL”, or a non-leaf hierarchical property-term:

Lpart = p(τ c1 , τ c2 ..., τ cy) (6.2)

where p is a predicate symbol and ∃τ cd, d∈[1,y] (τ cd = NIL ∨ τ cd ∈ TermDumObj ∨ (τ cd ∈ TermG ∧

∃τGs (〈τGs , τ cd〉 ∈ EG)))2

In the following, when a term “literal” is referred, it can be a partially specified literal or a fully

known one. Such literals will be denoted as L̃. During the planning, partial literals are refined

into more specific literals where some placeholders were resolved and, finally, into a fully known

literals. If a literal L̃j = pj(τ c1j , . . . , τ cnj) is a refinement of literal L̃i = pi(τ c1i, . . . , τ cni) considering

previous substitutions for dummy objects θ or they are equal, they are connected by a refinement

or equal relation under substitution θ: RefEqll(L̃j , L̃i, θ)4. It holds in the following cases:

• Literals are equal: pi = pj and ∀k ∈ {1, 2, . . . , n} ( τ ckj = τ cki ).
• If pi = pj and for all h ∈ {1, 2, . . . , n} such that τ chi 6= τ chj one of the following conditions

should hold:

– Term τ chj substitutes null-term τ chi: τ chi = NIL and τ chj ∈ TermProp (designated as

ref null(τ chj , τ chi)).
– Property-terms τ chj and τ chi are in the same hierarchy of properties G and τ chj is a

descendant of term τ chi (designated as ref hier (τ chj , τ chi)).
– A substitution of dummy object-term τ chi into object-term τ chj exists in θ:

∃〈DumID, ObjID〉 ∈ θ ( τ chi = DumID ∧ τ chj = ObjID ).
– Dummy object-term τhi is substituted by object-term τhj under the substitution θ

(designated as ref dum (τhj , τhi, θ)5): τhi ∈ TermObjDum and τhj ∈ TermObj and

Type(τhi) = Type(τhj) and ∀L̃d ∈ DumDescr(τhi) ( ∃Lj ∈ CurState ( RefEqll(Lj ,

L̃d, θ
′) )), where CurState ∈ S - current planner’s world state and θ′ = θ ∪ 〈τhi, τhj〉.

An object-term τhj can substitute a dummy object-term τhi if they have the same type
3 For each dummy object-term DumID only one substitution can be defined.
4If the substitution θ is empty, this relation can be designated as RefEqll(L̃j , L̃i).
5If the substitution is empty, this relation can be designated as ref dum(τhj , τhi).
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and for each known property or relation of τhi the object τhj has a property or relation

that refines it. When the object τhj has substituted the dummy-object τhi, substitution

θ is extended with the pair 〈τhi, τhj〉.

Additionally, if in L̃i the same dummy object-terms are used in different positions, these

dummy object-terms should be substituted by the same object-terms in L̃j .

6.2.2 Partial policy requests

Partial policy requests represent known information about policy requests for actions that will be

executed later during the planning. Partial policy requests are generated based on partial policy

vectors. They are special policy vectors referring to actions that will be executed during the future

course of the planning and, possibly, containing placeholders. Partial policy vectors are attached

to tasks in a current task network: to primitive actions, representing that the partial policy request

will be generated for this action, and to compound tasks and actions, representing that it will be

generated for this action or for an action that will be executed during its decomposition.

In order to introduce a definition for the partial policy vector a loose time interval construct

should be introduced. A loose time interval is a time interval TIntervalp = 〈ActBeg′, ActEnd′〉

that is used as a placeholder for a policy request’s time interval. It shows that the exact time

interval for this request TInterval (TInterval = 〈ActBeg,ActEnd〉) is unknown but it will be

within the specified loose time interval: [ActBeg,ActEnd] ⊆ [ActBeg′, ActEnd′].

Definition 6.5. Partial policy vector PolV ecp is a policy request vector where dummy

objects can be used as designated objects, ‘NIL’ properties and non-leaf hierarchical properties

can be used as action parameters, a loose time interval TIntervalp can be used instead of an exact

time interval2

Similarly to partially specified literals, a refinement or equal relation is defined for partial policy

vectors. When a partial policy vector PolV ecpj = 〈{〈ObjID 1j , Role1j〉, . . . 〈ObjID nj , Rolenj〉},

TASj , {〈AParV al1j , AParName1j〉, . . . , 〈AParV almj , AParNamemj〉}, 〈ActBegj , ActEndj〉〉 is

a refinement of partial policy vector PolV ecpi or equal to it under substitution θ, they are connected

by a refinement or equal relation RefEqlr(PolV ecpj , PolV ec
p
i , θ)6. It holds in the following

cases:

• Partial policy vectors are equal: ∀k ∈ {1, . . . , n} ( ObjID ki = ObjID kj ∧ Roleki = Rolekj)

and TASi = TASj and ∀h ∈ {1, . . . ,m} ( AParV alhi = AParV alhj ∧ AParNamehi =

AParNamehj ).
• Partial policy vectors are not equal, TASi = TASj and:

– For all q ∈ {1, . . . , n} such that (Roleqi = Roleqj ∧ ObjID qi 6= ObjID qj),

ref dum(ObjID qj , ObjID qi, θ).
6If the substitution is empty, this relation can be designated as RefEqlr(PolV ecp

j , PolV ec
p
i ).
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– For all q ∈ {1, . . . ,m} such that (AParNameqi = AParNameqj ∧ AParV alqi 6=

AParV alqj ∧AParV alqi ∈ TermDumObj), ref dum(AParV alqj , AParV alqi, θ).
– For all q ∈ {1, . . . ,m} such that (AParNameqi = AParNameqj ∧ AParV alqi 6=

AParV alqj ∧AParV alqi = NIL), ref null(AParV alqj , AParV alqi).
– For all q ∈ {1, . . . ,m} such that (AParNameqi = AParNameqj ∧ AParV alqi 6=

AParV alqj ∧AParV alqi, AParV alqj ∈ TermG), ref hier(AParV alqj , AParV alqi).
– If TIntervalpi 6= TIntervalpj , then TIntervalpj ⊂ TInterval

p
i .

If a partial policy vector is attached to task TA, this task should correctly implement this

partial policy vector. The task TA correctly implements the partial policy vector PolV ecp, if in

every possible execution of TA a policy request is generated based on the policy vector PolV ec

that refines PolV ecp or is equal to it: RefEqlr(PolV ec, PolV ecp). A set of partial policy vectors

assigned to a task TA is returned by function requests(TA). This property can be specified for

each type of the planning tasks as follows:

• A primitive action TAj correctly implements a partial policy vector PolV ecpi , if

the operator that can be applied to TAj contains policy vector PolV eci such that

RefEqlr(PolV eci, PolV ecpj ).
• A compound task or action TAk correctly implements a partial policy vector PolV ecpi , if

during each possible decomposition of TAk an operator or a compound action decomposition

method is carried out that contains a policy vector PolV eci such that RefEqlr(PolV eci,

PolV ecpi ).

When a task is decomposed during the planning, new tasks produced by the decomposition method

are assigned with partial policy vectors that were specified for them by the method author. In order

to guarantee that all partial policy vectors are correctly implemented by corresponding tasks, the

required correctness checks were introduced into operators and methods execution routines (see

Section 6.2.3). It should be noted that as partial policy requests are preliminary policy checks,

they are specified by the methods’ authors optionally7. If some partial policy vectors that could

be added for tasks produced as a result of the decomposition are omitted, the corresponding policy

checks will be done during the execution of primitive and compound actions using the ordinary

evaluation mechanism of the policy-based planner.

6.2.2.1 Constructs for future planner’s states projection

For the construction of partial policy requests that refer to future planner’s world states, partial

specifications of these future states should be derived based on the current planner’s world state.

In order to develop this specification, updates of the current planner’s world state that will be
7Provided that checks that guarantee correct implementation of partial policy vectors are satisfied.
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carried out and updates that might be carried out should be known. For this aim, Increasing and

Decreasing effects sets and high-level effects constructs will be defined in this section.

High-level effects

The performance gains of the postponed policy enforcement depend on the possibility to derive

exact policy decisions earlier during the planning, that is, during the evaluation of policy requests

generated for partial policy vectors. As the probability to derive an exact policy decision is higher

for a partial policy request that contains more information, it is beneficial to know which updates

will be done in future planner’s world states in order to represent this information in the partial

policy requests. A high-level effect construct will be introduced in this section in order to represent

additions for the planner’s world state that will be carried out during the execution of compound

tasks and actions.

Definition 6.6. High-level effect for task TA is a positive literal L̃ such that during every

possible execution of TA at least one literal L that refines L̃ or equal to it (RefEqll(L, L̃)) must

be added into the planner’s world state2

A set of high-level effects assigned to task TA in a current task network is returned by function

effects(TA). For each type of the planning tasks, the definition of high-level effects can be

specified as follows:

• If a high-level effect L̃i is assigned to a primitive action TAj , each operator that can be

applied to TAj should add to the planner’s world state literal Li such that RefEqll(Li, L̃i).
• If a high-level effect L̃i is assigned to a compound task or action TAk, during each possible

decomposition of TAk an operator or compound action decomposition method should be

executed that adds to the planner’s world state literal Li such that RefEqll(Li, L̃i).

When a task is decomposed during the planning, new tasks produced by the decomposition method

are assigned with high-level effects that were specified for them by the method’s author. In order to

guarantee that for all literals assigned as high-level effects the corresponding properties are fulfilled,

required correctness checks will be introduced into operators and methods execution routines (see

Section 6.2.3). It should be noted that as high-level effects are preliminary effects specifications,

they are introduced by the methods’ authors optionally8 to provide more information about future

planner’s world states for the policy evaluation.

Increasing and Decreasing effects sets

In order to take into account other possible modifications of the planner’s world state, intro-

duced by tasks and actions, Increasing and Decreasing effects sets will be introduced. For each

task in a current task network, two sets of tasks are defined:

Definition 6.7. Necessary Precedents set PN (TA, TN) is a set of tasks in task network

TN that must be executed before the task TA2
8Provided that checks that guarantee their correctness are satisfied.
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Figure 6.1: Example of compound task decomposition method methCTi
execution

Definition 6.8. Possible Precedents set PP (TA, TN) is a set of tasks in task network

TN that can be executed before the task TA (that are not planned after the task TA)2

As can be seen, for each task TA in a task network TN : PN (TA, TN) ⊆ PP (TA, TN). For

example, in Figure 6.1 in the lower task network TN2 for task TA3 necessary and obligatory

precedents sets are: PN (TA3, TN2) = {TA1, TA2}, PP (TA3, TN2) = {TA1, TA2, TA4, TA5, TA6}

(precedence relations are denoted using arrows).

In order to operate with possible effects that can be introduced into the planner’s world state

during the execution of tasks in a current task network, each task symbol TASi within the planning

domain is associated with the following sets.

Definition 6.9. Possible Negative Effects set PosNegEff(TAS) is a set of predicate

symbols used in literals that can be removed from the planner’s world state during the execution

of a task (which can be a primitive/compound action or a compound task) with the task symbol

TAS2

Definition 6.10. Possible Positive Effects set PosPosEff(TAS) is a set of predicate

symbols used in literals that can be inserted in the planner’s world state during the execution of a

task (which can be a primitive/compound action or a compound task) with the task symbol TAS2

Sets PosNegEff(TAS) and PosPosEff(TAS) can be determined automatically using a re-

cursive procedure, deriving the possible effects set for a compound task as a union of possible effects

sets for tasks that can be produced as a result its decomposition, using any method applicable to

it. For actions, possible effects sets are determined as a union of predicate symbols used in effects

of any applicable operator9. For compound actions, which have effects and can be decomposed

using methods, these two unions are, in turn, merged in order to produce the possible effects set.
9Obligations that can be generated for actions during the policy evaluation are also taken into account. A list of

possible obligations for an action is retrieved from the obligation validation rules specified.
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Correspondingly, when a method is applied, the possible effects set for the decomposed task is a

superset relatively to the union of possible effects sets of all produced tasks or is equal to it.

Using the defined sets of predicate symbols and tasks, it is possible to derive the set of effects

that can change the planner’s world state before the execution of a task in the current task network.

The specified sets take into account all possible ways how tasks in the task network can be executed.

Definition 6.11. Decreasing Effects (DE) Set DE(TA, TN) is a set of predicate symbols

used in literals that can be removed from the planner’s world state before or during the execution

of the task TA in the task network TN (see Formula 6.3)2

Definition 6.12. Increasing Effects (IE) Set IE(T, TN) is a set of predicate symbols

used in literals that can be added to the planner’s world state before or during the execution of

the task TA in the task network TN (see Formula 6.4)2

DE(TA, TN) = ∪TAi∈PP (TA,TN){PosNegEff(TSim(TAi))}∪PosNegEff∗(TSim(TA)) (6.3)

IE(TA, TN) = ∪TAj∈PP (TA,TN){PosPosEff(TSim(TAj))} ∪ PosPosEff∗(TSim(TA)) (6.4)

Increasing (or Decreasing) effects set for a task TA is derived as a union of Possible Positive

Effects sets (or Possible Negative Effects sets, respectively) for tasks that can be executed before

TA. The function TSim(TA) returns a task symbol TAS for the task atom TA, which is used to

determine the possible effect sets. The sign ‘∗’ for Possible Positive Effects and Possible Negative

Effects sets of the task TA denotes that these sets are included into the IE and DE sets only

when TA is a compound action or task. IE and DE sets for the task TA are utilised to determine

possible changes of the planner’s world state that can happen before the evaluation of a partial

policy request represented using a partial policy vector attached to the task TA. So when the task

TA is a compound task, it is required to add possible effects of this task into the IE and DE sets

as this policy request can be evaluated during the execution of some action produced as a result

of TA decomposition. So before the evaluation of this policy request, any effect from the possible

effects set for TA can be introduced. When the task TA is a primitive action, it is known that

effects of this action will be applied after the evaluation of the policy request for this task, so they

should not be included into the IE and DE sets for this primitive action.

6.2.2.2 Partial policy requests generation

Partial policy vectors, assigned to tasks in a current task network, are used for the construc-

tion of partial policy requests referring to future planner’s world states. These policy requests

are generated based on a planner’s world state using the same procedure that was described

for ordinary policy requests in Chapter 5. But for the construction of a partial policy request

based on a partial policy vector attached to task TA0 in a task network TN , instead of the
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current planner’s world state CurState the planner’s world state State′ is used. In this state,

known updates that will be done before the execution of the task TA0 are reflected: State′ =

{∪TAi∈PN (TA0,TN){effects(TAi)} ∪CurState}/LDES , i.e., high-level effects for tasks which nec-

essarily will be executed before the task T0 should be added to the current planner’s world state

CurState and all literals LDES that can be removed from the planner’s world state are removed

from State and excluded from the high-level effects being added. Set LDES is a subset of the set

∪TAi∈PN (TA0,TN){effects(TAi)} ∪CurState and contains all literals from this set with predicate

symbols in ∪TAj∈PP (TA0,TN)DE(TAj , TN)10. Additionally, when during the construction of the

partial policy request it is required to get properties and relations for a dummy object DumID (for

examople, when it is used as a designated object), they are retrieved from the Dummy Objects

Space: DumDescr(DumID).

So the partial policy request Reqp is a policy request (see Section 5.4.1) where a dummy object,

a null property, a non-leaf hierarchical property-term or a loose time interval is used. A partial

policy request can be evaluated correctly only taking into account the IE and DE sets for the

task that its partial policy vector is attached to. These sets represent modifications that can be

introduced before the execution of the considered action during the planning. So in a postponed

policy enforcement, the input information for a policy request evaluation is represented as a partial

policy request tuple: PRtuple = 〈Reqp, IE(TA, TN), DE(TA, TN)〉. According to the previous

definitions, a partial policy request tuple PPRtuplei = 〈Reqpi , IE(TAi, TNi), DE(TAi, TNi)〉 is a

refinement of a partial policy request tuple PRtuplej = 〈Reqpj , IE(TAj , TNj), DE(TAj , TNj)〉 if

the following modifications were introduced to the PRtuplei tuple in comparison with the PRtuplej
tuple:

• The partial policy vector is refined.
• Attribute values for the designated objects are refined if they are dummy objects.
• New properties and relation literals are added for dummy objects within the designated

object contexts or existing properties and relation literals are refined for them.
• Properties and relations are added into the designated object contexts, if their predicate

symbols are contained in IE(TAj , TNj).

It should be noted that if a Dummy object is refined, refined versions of all its properties and

relations contained in Reqpj should be contained in Reqpi . A fully known policy request tuple is a

tuple that contains an ordinary policy request and the IE and DE sets are empty.

6.2.3 Operators and methods execution routines

According to the previous sections, extra activities should be carried out when methods and oper-

ators are executed during the postponed policy enforcement: high-level effects and partial policy
10Predicates that can be added into the planner’s world state are processed using another mechanism, described

in Section 6.3.
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vectors should be assigned to tasks produced as a result of the decomposition and properties that

guarantee correctness of this assignment should be checked.

First of all, definitions of methods and operators described in Section 5.3.2 are updated. When

methods are specified, tasks in their task networks are provided with unique numbers used for

their identification. So all tasks are specified as tuples 〈TaskID, TA〉, where TaskID is a task

number, TA is a task atom. Additionally, the definitions of compound action and compound task

decomposition methods (will be designated as meth) are augmented with the following components

(see 5.14), in order to specify which high-level effects and partial policy vectors assignments should

be done within the current task network and which updates to the Dummy Objects Space should

be introduced:

• HLeffectsSpec(meth) = {. . . 〈TaskIDi , L̃i〉 . . . } is a set of tuples containing a task number

and a high-level effect. The high-level effects L̃i should be assigned to the tasks with TaskIDi
during the decomposition.

• PRV ecSpec(meth) = {. . . 〈TaskIDj , PolV ecpj 〉 . . . } is a set of tuples containing a task number

and a partial policy vector. The partial policy vectors PolV ecpj should be assigned to the

tasks with TaskIDi during the decomposition.
• DumStruc−(meth) = {. . . L̃m . . . } is a set of literals that should be removed from the

Dummy Objects Space during the decomposition.
• DumStruc+(meth) = {. . . L̃o . . . } is a set of literals that should be added into the Dummy

Objects Space during the decomposition. The literals L̃o = po(τ1o, . . . , τeo) should contain

at least one term representing a dummy object: ∃h ∈ {1, 2, . . . , e} ( τho ∈ TermDumObj).

During the execution of methods, the specified activities should carried out. In addition to this,

correctness checks should be carried out during the execution of operators and methods in order

to guarantee that the required properties for the high-level effects, partial policy vectors and other

components, introduced in the previous sections, are satisfied. These correctness checks, carried

out during the decomposition of a compound action TA0 into task network TN using a method

methiCA, are presented in Figure 6.2. High-level effects and partial policy vectors attached to task

TA0 should be refined by some (high-level) effects or (partial) policy vectors generated during

the decomposition. Finally, properties and relations of dummy objects that were removed by this

method from the Dummy Objects Space should be asserted into it in a refined form. When an

operator or a compound task decomposition method is carried out, only relevant part of these

checks should be performed. During the planning, substitution θ is used to store substitutions of

dummy objects that have been carried out. It is updated when new substitutions are introduced

and is utilised to check that the same dummy object-terms are refined to the same ordinary object-

terms. When the planner backtracks, substitutions carried out during the cancelled operations are

removed from this substitution.
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For all high-level effects L̃j (L̃j ∈ effects(TA0)) check that:

∃〈TaskIDk , L̃k〉 ∈ HLeffectsSpec(methiCA) ( RefEqll(L̃k, L̃j , θ) )
or ∃Lm ∈ effect+(methiCA) ( RefEqll(Lm, L̃j , θ) ).

For all partial policy vectors PolV ecph (PolV ecph ∈ requests(TA0)) check that:

∃〈TaskIDn , PolV ecpn〉 ∈ PRV ecSpec(methiCA) ( RefEqlr(PolV ecpn, PolV ec
p
h, θ) )

or RefEqlr(polV ector(methiCA), PolV ecph, θ)

For all removed dummy objects properties and relations L̃z
(L̃z ∈ DumStruct−(methiCA)) check that:

∃L̃x ∈ DumStruct+(methiCA) ( RefEqll(L̃x, L̃z, θ) ).

Figure 6.2: Correctness checks for compound action decomposition method execution

These checks guarantee that during the planning all high-level effects, partial policy vectors

and other constructs used for the partial policy requests generation are refined or remain constant.

Additionally, during the planning, IE and DE sets for the same tasks within the current task

network can only be reduced or remain unchanged. When an operator is applied, possible negative

and positive effects sets for the action executed are excluded from the IE and DE sets of all tasks

where this action was included in the Possible Precedents sets. When a method is executed,

as it was stated before (see Section 6.2.2.1), a possible effects set for the task decomposed is

a superset for a union of possible effects sets for all tasks added into the task network during

the decomposition. Since in IE and DE sets, where the decomposed task has contributed to,

its possible effects sets should be substituted by the union of possible effect sets of the tasks

produced during the decomposition, these IEs and DEs cannot contain more elements than before

the decomposition. Moreover, when a partial policy vector attached to some new task during the

decomposition is connected using refinement or equal relation with a partial policy vector attached

to the task decomposed, IE and DE sets for the new task should be included into the IE and

DE sets for the decomposed task or be equal to them. This is true as IE and DE sets for the

new task are equal to the IE and DE sets for the decomposed task, with an exception that in the

expression for their calculation possible effects sets for the task decomposed are substituted by the

union of possible effects sets for the new task and tasks from the generated task network that can

be executed before it. So during an operator or method execution, partial policy request tuples

created for partial policy vectors that remain the same during this planning step are refined or

remain constant. Moreover, partial policy request tuples are refined or remain constant if they

are created for partial policy vectors connected with the refinement or equal relation: one partial

policy vector is attached to the task processed by the method (or operator) and another is attached

to a task generated during the decomposition (or it corresponds to an action executed).

The method’s constructs introduced in this section should be specified by the author of planning
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domain based on his (or her) knowledge about possible execution traces for the tasks generated

during the decomposition. The execution traces are determined by other methods and operators

specified in the planning domain. A planning domain static analysis technique can be introduced in

order to generate some high-level effects and partial policy vectors automatically, which can simply

this specification task for the domain author. Based on the equality of task atoms’ signatures, it

is possible to predict which method or operator can be applied to which tasks. Variables used at

the same positions can be propagated to lower level task atoms (and correspondingly to effects

and policy vectors). Using this mechanism, it is possible to build possible decomposition traces

for all tasks within the domain specification, based on which some signatures for high-level effects

and partial policy vectors can be inferred. But this simple analysis would not give comprehensive

results, since it does not include analysis of operator and method preconditions, which determine

their applicability during the planning based on current variables values and perform variables

instantiation. So, in any case, the results of this technique should be corrected by the domain

author manually: at least he (or she) should put dummy objects, null properties and hierarchical

properties instead of the variables in the inferred signatures, which were not mapped to task atom’s

variables. Additionally, he (or she) can significantly extend them, manually analysing the methods

and operators: some variables can be instantiated, dummy objects description can be added. Also

as a set of operators and methods that can be utilised during an execution of a task can be limited

based on the analysis of its preconditions and preconditions of higher-level tasks, more high-level

effects and partial policy vectors can be specified.

6.2.4 Postponed policy enforcement

A postponed policy enforcement is based on the evaluation of partial policy request tuples created

for policy vectors attached to tasks in a current task network during the planning. A partial

policy evaluation algorithm was designed (see Section 6.3), which can correctly process partial

information in these tuples. As a partial policy requests tuple contains only known information

and can be modified later on during the planning, an exact policy decision for some partial policy

requests cannot be determined. In order to represent such situation, an additional policy decision

for the XACML policy language was introduced.

Definition 6.13. Indeterminate Temporal decision is an additional decision introduced

for the XACML policy language. It indicates that none of decisions in set M1, containing the

standard XACML policy decisions M1 = {P,D, Ind,N/A}, can be produced during the evaluation

of a partial policy request tuple because not all required information is available2

The set of standard XACML policy decisions M1 will be denoted as Permanent policy decisions

set. Obviously, during the evaluation of partial policy requests, permanent decisions can also be

produced, even if the request is specified partially. For example, available information can be
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sufficient to infer exact decisions for all applicable policies, or Indeterminate Temporal decisions,

produced during the evaluation, can be overpowered by permanent decisions during the policies

or rules combining. Obviously, when a policy request tuple is fully known, a permanent decision

should be produced for it.

The Indeterminate Temporal decision is distinct from the Indeterminate decision within the

Permanent policy decisions set. The latter decision indicates that there was an error during the

evaluation that prevents a policy engine to produce a Permit or Deny decision. This decision is

generated when policies are specified incorrectly or when data with wrong data type are retrieved

from the policy request. The difference with Indeterminate Temporal can be illustrated with the

following example. Assume that during the policy evaluation some obligatory attribute should be

retrieved from the policy request, but this attribute is missing there. The standard Indeterminate

decision should be produced in this situation if it is known that more values cannot be added for

this attribute as a result of the partial policy request refinement. Indeterminate Temporal should

be produced when new values can be added. So the standard Indeterminate decision should be

returned when it is known that further refinement of the partial policy request tuple will not lead

to a substitution of this decision by a permanent policy decision. In order to distinguish two

Indeterminate decisions, a new set of policy decisions is introduced: Mp
1 (see Formula 6.5). The

standard Indeterminate decision from the set M1 will be referred as ‘Indeterminate Permanent’

decision.

Mp
1 = {P,D, IndPerm, IndTemp,N/A} (6.5)

When the postponed policy enforcement is utilised during the planning, after the execution of

each method and operator a special routine is carried out that evaluates partial policy requests

for vectors attached to tasks within the current task network. The underlying principle of the

postponed policy enforcement, which makes possible enforcement of decisions produced as a result

of the partial policy requests evaluation, is now briefly explained. Any permanent decision returned

during the evaluation of a partial policy request tuple should persist when this tuple is refined.

That is, for any partial policy request tuple refining it, the same permanent decision should be

returned. Based on this fact, at each planning step decisions produced as a result of partial policy

requests evaluation can be enforced by the planner: when a request is permitted the planning can go

forward; when it is denied a backtrack should be done; when an Indeterminate Temporal is received

the request should be postponed and re-evaluated later, when more information is available. Partial

policy request tuples evaluated at some planning step are refined at the subsequent steps of the

planning. Hence, if Permit is received as a result of the partial policy vector evaluation, when

at the next planning step the same vector or a vector refining it11 is evaluated Permit decision
11It is a vector assigned to a task produced during the decomposition or evaluated during the operator execution

that is connected with the refinement or equal relation with the permitted vector and .
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Evaluate (old task network TN ′, old state State′, new task network TN ′′, new
state State′′)

1. Determine set of partial policy vectors SPolV ecp that are attached to tasks
in TN ′′ and do not have ‘Permit ’ labels

2. Loop for every PolV ecpi ∈ SPolV ecp:

2.1. Construct sets IE(T ′′, TN ′′) and DE(T ′′, TN ′′) for task T ′′ (a task that
PolV ecpi is attached to) using formulas 6.3, 6.4

2.2. If partial policy request tuple for PolV ecpi can produce new results,
considering TN ′ and State′ updates then evaluate it using the partial
policy evaluation algorithm (see Section 6.3). Process the decision
returned:
•Permit or Not Applicable. Add ‘Permit ’ label to partial policy vector
PolV ecpi in task network TN ′′

•Deny or Indeterminate Permanent. Return Failure
•Indeterminate Temporal. Carry on evaluation
endif

End loop
3. Return Success

Figure 6.3: Partial policy requests evaluation algorithm

will also be returned. In order to avoid superfluous policy evaluations, partial policy vectors for

which Permit decisions were produced are marked with ‘Permit’ label and are not evaluated at

the subsequent planning steps. Additionally, these ‘Permit’ labels are propagated to partial policy

vectors that refine the permitted vectors.

An algorithm carried out after each planning step, when the postponed policy enforcement

is used, is presented in Figure 6.3. During the execution of this algorithm, first of all, partial

policy vectors attached to tasks in a current task network are selected for the execution. Then,

partial policy request tuples are constructed for them and evaluated. Results of their evaluation are

analysed and processed as this was described earlier. When a failure is produced by this algorithm,

backtracking is required. Using this algorithm, during the postponed policy enforcement it is

guaranteed that all policy request vectors are evaluated into permanent policy decisions eventually.

Moreover, during the postponed policy enforcement, fully specified policy vectors, that should

be evaluated when an operator or a compound action decomposition method is carried out, are

evaluated only if they do not have ‘Permit’ labels assigned to them. As can be noted, this algorithm

has a restricted functionality as it does not support all policy evaluation outcomes utilised in policy-

based planning (see Chapter 5). In concrete, it does not support policy obligations and conditions.

Correspondingly, in order to resolve this restriction, this routine and the introduced partial policy

evaluation algorithm should be updated for their support12.
12As will be shown in Chapter 7, in the CEP generation problem, the postponed policy enforcement is utilised at

the planning stage when obligations and conditions are not used. So this restriction does not limit the usage of the
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During the execution of this routine, it is possible to evaluate all partial policy vectors without

“Permit” labels. But in order to reduce the number of evaluations, only vectors for which partial

policy tuples were updated during the last planning step are evaluated. A partial policy vector

PolV ecpi , attached to a task TA′′ in task network TN ′′ is evaluated if the planner’s world state

is updated or if this is a new partial policy vector, added during the last planning step, or if the

vector PolV ecpi refines a partial policy vector in TN ′13 that was attached to the task processed

during the last planning step, or if one of the following conditions is satisfied. These conditions

should be satisfied for the task TA′′ in TN ′′ and a task TA′ in TN ′ that has a policy vector

corresponding to PolV ecpi : this vector should be equal to PolV ecpi and be attached to the same

task (TA′ = TA′′) or the task processed during the last planning step:

1. A set of high-level effects for tasks in PN (TA′′, TN ′′), in comparison with the corresponding

set for tasks in PN (TA′, TN ′′), contains new high-level effects or some high-level effects are

refined.
2. For IE and DE sets: IE(TA′′, TN ′′) ⊂ IE(TA′, TN ′) or DE(TA′′, TN ′′) ⊂ DE(TA′, TN ′).

If the planner’s world state was not changed, a partial policy vector copied to a new task

produced during the decomposition should not be re-evaluated, if these conditions are not satisfied

for it. For example, condition two is satisfied if a partial policy vector is copied to a task TA

within the task network network(meth), generated by during the decomposition of method meth,

and there is some task in network(meth) that should be executed before TA and that has some

high-level effects assigned. In Figure 6.1, such vector is PolV ecp3 as the high-level effects L̃1 and L̃2

are introduced for the tasks TA1 and TA2 that should be executed before the task TA3, which has

PolV ecp3 attached. Also these conditions are taken into account for partial policy vectors that are

not modified during some planning step. For example, in Figure 6.1, when task TA0 is decomposed

using method methCTi, partial policy requests for tasks TA4, TA5 and TA6 should be evaluated

only if set IE or DE is reduced for them.

6.3 Partial policy evaluation

6.3.1 Requirements to partial policy evaluation

A partial policy request tuple introduced at some planning step is refined at further planning steps,

until at some planning step a fully known policy request tuple is generated. After each refinement,

the partial policy request tuple is evaluated (if this is required). A schema in Figure 6.4 shows how

partial policy evaluations are carried out during the planning. A partial policy evaluation should

satisfy the following property that makes it possible to enforce decisions produced as a result

of partial policy evaluation during the planning. This is the permanent decisions preservation
postponed policy enforcement for the CEP construction.

13It is the task network before the last operator or method execution.
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property: if a permanent decision from the set M1 is produced for a partial policy request tuple,

it cannot be changed to any other decision when the partial policy request tuple is refined. The

refinement or equal relation for partial policy request tuples, introduced in the previous section,

is a partial order relation on the set of all possible tuples PRtuple, which will be denoted as v.

On the set of policy decisions Mp
1 , a partial order representing possible changes of policy decision

as a result of the policy tuple refinements can also be introduced as represented in Figure 6.5.

This order is based on the fact that an IndTemp decision can be substituted by any permanent

decision when the partial policy request tuple is refined. This partial order will be referred as

the approximation order: it represents the ‘less defined than or equal’ relation for the amount of

information carried by different policy decisions (IndTemp carries less information than any other

decision). If we represent a partial policy evaluation of a policy set as a function ParEvaluatePS :

PolicySet× PRtuple→Mp
1 , then the permanent decisions preservation property is formalised as

a monotonicity of this function defined in terms of the partial orders on sets PRtuple and Mp
1

(provided that policy set J PolicySetK is constant):

PRtuplei v PRtuplej → (6.6)

ParEvaluatePS(J PolicySetK, PRtuplei) vParEvaluatePS(J PolicySetK, PRtuplej)

Figure 6.4: Partial policy evaluation process

Figure 6.5: Approximation order on set Mp
1

When the postponed policy enforcement is used, the partial policy evaluation mechanism is

used instead of the standard XACML policy evaluation, even if a fully known policy request tuple

is evaluated. So the partial policy evaluation should be an extension of the standard XACML policy
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evaluation. If all required information is available during the evaluation, the outcomes of the partial

policy evaluation should be equal to the outcomes of the standard policy evaluation mechanism.

Suppose, we introduce a function evaluatePSext that extends the ordinary policy evaluation function

evaluatePS (see Section 4.5.2) and returns decision IndTemp if input policy request tuple is not

fully known. Then, this requirement can be formalised as follows: function ParEvaluatePS should

refine function evaluatePSext (provided that policy set JPolicySetK is constant): evaluatePSext v

ParEvaluatePS . That is, for all PRtuplei:

evaluatePSext(JPolicySetK, PRtuplei) v ParEvaluatePS(JPolicySetK, PRtuplei) (6.7)

So the partial policy evaluation must have the following properties:

• The permanent decision preservation (i.e., the function ParEvaluatePS should be mono-

tonic).
• It should be an extension of the standard XACML policy evaluation (i.e., the function

evaluatePSext should be approximation of ParEvaluatePS).

Another desired property of the partial policy evaluation, which improves the planning perfor-

mance and reduces the planning time, is the following. Based on a partial policy request tuple a

partial policy evaluation mechanism should tend to return a permanent decision when it is pos-

sible (i.e., when it does not contradict to the requirements described above). The motivation of

this requirement is that only permanent decisions lead to performance gains during the postponed

policy enforcement.

In Chapter 4 it was shown how a policy set evaluation function evaluatePS can be specified as

a composition of functions (a structure for this composition is determined by a policy set being

evaluated). In order to define the partial policy evaluation function ParEvaluatePS , it is assumed

that the XACML policy specification mechanism remains the same. So policies in the partial policy

evaluation can also be formally represented as a composition of functions (the same principles of

how to infer a composition of functions based on a policy set specified are used). But functions

used in these compositions in order to represent the policy constructs should be updated. These

functions should be defined on extended domains, which can additionally represent incomplete

information, and define how values added to these domains should be evaluated. In the following

sections these functions are described. In order to guarantee that the monotonicity and extension

requirements are satisfied for the function ParEvaluatePS , it is can be shown that they are

satisfied for all its constituent functions, as a composition of monotonic functions is monotonic

and two compositions of monotonic functions are related with approximation relation if they have

the same structure and all functions in one composition are approximations of the corresponding

functions in another composition. The former statement is a known theorem in the order theory

147



CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.1: Table of values for Policy evaluation function P ep
hhhhhhhhhhhhhhhTarget

Combining decision P IndPerm IndTemp D N/A

False N/A N/A N/A N/A N/A
IndPerm IndPerm IndPerm IndPerm IndPerm IndPerm
IndTemp IndTemp IndTemp IndTemp IndTemp IndTemp

True P IndPerm IndTemp D N/A

(e.g., in [22]), whereas the later statement can be easily proven using transitive property of orders.

The described updates of the functions do not specify how loose time intervals are processed, as

their processing will be described separately in Section 6.3.7.

6.3.2 Policy set evaluation function

The auxiliary policy set evaluation function P e : TRV al × M1 → M1, which was introduced

to define the policy set evaluation routine (see Chapter 4), processes the truth value returned

from the policy set target and a decision in the set M1 returned from the policy combining (see

Table 4.1). For a partial policy evaluation, a new function P ep : TRV alp × Mp
1 → Mp

1 that

defines the policy set evaluation routine was introduced. Its input policy combining decision, as

well as, its output decision are members of the set Mp
1 , the set of decisions for the partial policy

evaluation. The truth values set TRV al, which is a co-domain of the target evaluation function,

was extended by value IndTemp, referring to a situation when not all required information is

available in the partial policy request tuple in order to produce a permanent truth value. But,

in contrast to the Indeterminate Permanent truth value, which is represented as IndPerm in

this set, for IndTemp it is known that it should be refined into a permanent truth value (True,

False or IndPerm) when the policy request tuple is refined into a fully known policy request

tuple. So TRV alp = {True, False, IndTemp, IndPerm}. Only one ‘less defined’ value IndTemp

is contained in this set, so its partial order of approximation is flat. It can be defined using the

following orderings: IndTemp v True, IndTemp v False, IndTemp v IndPerm. Similarly to

the order defined for the set Mp
1 , this partial order shows how a truth value can be changed when

the partial policy request tuple is refined.

The table of values for the function P ep is presented in Table 6.1. According to the XACML

specification, a policy set should be evaluated only if its target is true. Hence, in rows where

the target is equal to False, IndPerm or IndTemp, the policy combining value has no influence

and even is not evaluated. When the target is IndTemp, this means that a permanent decision

cannot be produced for this partial policy request tuple. In this case, IndTemp is returned by P ep,

because the resultant permanent policy decision will depend entirely on a future target evaluation

result. The situation when a target is True but policy combining decision is IndTemp is equivalent

and IndTemp should also be returned.
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Figure 6.6: Approximation order on TRV alp ×Mp
1 set

In order to check the monotonicity of the P ep function, it is required to check that during each

possible modification of its argument values, such that new argument values refine old values, its

resultant value is also changed from a less defined value to a more defined one (or it is constant).

As the function P ep has two arguments, an approximation order that can be used to represent

refinement relations on its arguments is an approximation order on the Cartesian product of their

domains. Such order for product TRV alp ×Mp
1 is shown in Figure 6.6. In order to check the

monotonicity using the table of values, it is required to analyse each value produced by the function

when it has IndTemp in (at least) one of its arguments. If IndTemp is a value for the left argument,

the output value should be less defined than every other value in the same column of the table or

it can be equal to it (if IndTemp is in the right argument, the row values are analysed). As can be

seen, this requirement is satisfied. The second requirement that P ep should be an extension of P e

is easily checked. If the column and the row representing input IndTemp arguments are removed,

the table of values for P ep is transformed into one for P e (with the introduced re-naming of Ind

decisions and truth values).

6.3.3 Policy and policy set combining algebras

Policy combining operations that were introduced to formalise the permit- and deny-overrides

policy combining algorithms are operations •POp and •DOp . Properties of algebras, which they form

on the set of policy decisions M1, were analysed in Section 4.5.2. In order to use these operations

in the partial policy evaluation, they were extended to the set Mp
1 . These new operations are

designated as •POpp and •POpp . Tables of values for them are presented in Table 6.2. Properties

of algebraic structures with the •POp and •DOp operations (see Section 4.5.2) should be preserved

for new operations in order to keep the essence of these combining algorithms. Hence, elements

Permit P and Deny D should be adsorbing elements for operations •POpp and •DOpp correspondingly.

In natural orders defined by the permit- and deny-overrides, the new IndTemp decision should

be situated immediately after the adsorbing decision. In this case, the highest priority for the

adsorbing decision is preserved and the new operations are monotonic. Assume that we place
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IndTemp to another position in the natural order for the permit-overrides and when IndTemp

is combined with some other decision X (excepting P ) decision X is returned as a result. If in

future input IndTemp is refined into P , decision X must be changed into P , as it is the absorbing

element, what contradicts with the monotonicity property.

Table 6.2: Tables of values for permit- and deny-overrides policy combining operations •POpp and
•DOpp

•POpp P IndTemp IndPerm D N/A
P P P P P P

IndTemp (1) P (2) IndTemp IndTemp IndTemp IndTemp
IndPerm P (3) IndTemp IndPerm IndPerm IndPerm

D P (4) IndTemp IndPerm D D
N/A P (5) IndTemp IndPerm D N/A

•DOpp D IndTemp IndPerm P N/A
D D D D D D

IndTemp D IndTemp IndTemp IndTemp IndTemp
IndPerm D IndTemp IndPerm IndPerm IndPerm

P D IndTemp IndPerm P P
N/A D IndTemp IndPerm P N/A

Permit- and deny-overrides policy combining operations for the partial policy evaluation •POpp
and •DOpp have the same properties as the ordinary permit- and deny-overrides policy combining

operations (see Section 4.5.2): they are commutative, idempotent and associative. So the corre-

sponding magmas LPOpp = 〈MP
1 , •POpp 〉 and LDOpp = 〈MP

1 , •DOpp 〉 are semigroups and semilattices.

The natural orders for them are extensions of natural orders for semilattices of the ordinary pol-

icy combining operations. Therefore they are not duals, so the algebra that contains these two

semilattices is not a lattice. As extra decisions are inserted to the central parts of the natu-

ral orders, the designated elements of the algebra Ap are preserved in the corresponding algebra

App = 〈MP
1 , {•POpp , •DOpp , N/A, P,D}〉.

In order to show that operations •POpp and •DOpp are monotonic, it is required to trace updates of

operation outcomes when their operands are refined according to the approximation order for the

Cartesian product Mp
1 ×M

p
1 (it can be constructed similarly to the order for TRV alp×Mp

1 product

in Figure 6.6). Outcomes of the operations should be updated according to the approximation order

on the Mp
1 set. As these operations are symmetric, it is sufficient to check these properties only

for values below or above the diagonal of their tables of values. We consider values below or at the

diagonal of the table for the operation •POpp (see Table 6.2). Cases where operands of this operation

can be refined are denoted using numbers in brackets. As can be seen, when IndTemp is changed

to any other decision for these cases, the resulting decision is either constant or is updated from

IndTemp to a permanent decision. Hence, the monotonicity property is satisfied (analogously,

for the deny-overrides operation it is also satisfied). The requirement concerning the extension of
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operations •POp and •DOp is also satisfied.

6.3.4 Policy and rule evaluation functions

During the policy evaluation, the truth value returned when a target is evaluated and the decision,

produced during the rule combining, are processed and a decision in the set Mp
1 is produced.

As was specified in Section 4.5.3, rule combining results, as well as the rule evaluation results,

are specified using decisions in the set M2 (different from the policy evaluation decision set M1),

because it is required to distinguish which effect a rule could return if Indeterminate did not occur.

For the partial policy evaluation, set Mp
2 is defined based on the set M2, similarly as the set Mp

1 was

defined. New decisions, corresponding to the Indeterminate Temporal decision, are introduced. As

it is required to distinguish possible rule effects, two such decisions were added (see Formula 6.8).

The approximation order on the set Mp
2 is presented in Figure 6.7(A.) and represents possible

updates of rule decisions during the policy request tuple refinement.

Mp
2 = {P,D, P (IndPerm), D(IndPerm), P (IndTemp), D(IndTemp), N/A} (6.8)

Similarly with the ordinary policy evaluation (see Section 4.5.3), in the partial policy evaluation

the function P ep, which was utilised for policy sets, is used to formalise the policy evaluation also.

Additionally, function fp is defined to transform a decision in the set Mp
2 , produced during the rules

combining, into the set Mp
1 (see Figure 6.7 (B.)). Considering the defined approximation orders

on the sets Mp
2 and Mp

1 , this function is obviously monotonic, because it maps both P (IndTemp)

and D(IndTemp) decisions into the Indeterminate Temporal decision in Mp
1 .

Figure 6.7: Approximation order on set Mp
2 (A.) Graph for decisions mapping function fp : Mp

2 →
Mp

1 (B.)

The rule evaluation function for the partial policy evaluation Rep : EffectSpec × TRV alp ×

TRV alp →Mp
2 processes truth values generated as a result of the target and condition evaluation

and considers the effect (Deny or Permit) in the Effect part of the rule. The table of values for

function Rep (see Table 6.3) indicates that it is an extension of the rule evaluation function Re

(see Section 4.5.3). If the Indeterminate Temporal decisions are removed, the table of values for
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Table 6.3: Table of values for rule evaluation function RepXXXXXXXXXXTarget
Condition False IndPerm IndTemp True

False N/A N/A (5) N/A N/A

IndPerm
D(IndPerm)

or
P(IndPerm)

D(IndPerm)
or

P(IndPerm)

D(IndPerm)
or (6)

P(IndPerm)

D(IndPerm)
or

P(IndPerm)

IndTemp
D(IndTemp)

or (1)
P(IndTemp)

D(IndTemp)
or (2)

P(IndTemp)

D(IndTemp)
or (3)

P(IndTemp)

D(IndTemp)
or (4)

P(IndTemp)

True N/A
D(IndPerm)

or
P(IndPerm)

D(IndTemp)
or (7)

P(IndTemp)
D or P

the ordinary rule evaluation function Re will be obtained (considering the introduced re-namings).

As the evaluation of a rule is similar with the policy evaluation, this function was defined using

the same principles: condition should be evaluated and contribute to the result decision only when

the target is evaluated to True (see Section 4.5.3).

The monotonicity of the function Rep can be evaluated if an order defined on the Cartesian

product of sets TRV alp × TRV alp is taken as domain order (it is presented in Appendix A in

Figure A.1) and the order in Figure 6.7(A.) is taken as the order for function results. A specific

decision used in the rule effect part is not considered, as Indeterminate decisions with different

effects (e.g., P (IndTemp) and D(IntTemp)) are related with the same ordering structure in Mp
2 .

All values in the table of values for Rep should not be checked, as permanent decisions cannot

change their values. Only values of the function produced when at least one of its arguments is

IndTemp should be considered (they are denoted with numbers in brackets in Table 6.3)14. All the

possible changes of function values based on possible modifications of input values that conform

with the order on TRV alp×TRV alp set are analysed separately in Appendix A as Formulae A.1 -

A.7. Based on the results of this analysis it can be concluded that function Rep is monotonic. For

example, if a value of condition is IndTemp and the value of target is not True, any permanent

Truth value that could substitute IndTemp value in the condition will not change the resultant

rule decision (see cases 5 and 6 and Formulae A.5, A.6). Hence, the condition value should be

ignored and a permanent decision, determined based on the target value, should be returned. For

cases 1 - 4, when the target of a rule is evaluated as IndTemp, IndTemp is also returned by the

rule evaluation function. This is due to the fact that the value of target always determines the

overall result of the rule evaluation. Even if the value of a condition is a permanent decision, this

does not give the possibility to infer a permanent decision for the rule. The monotonicity in these

cases is assured, as IndTemp decision returned can be refined into any permanent decision (see

Formulae A.1 - A.3).
14As was stated earlier, we consider only values situated below or at the diagonal of the table.
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Table 6.4: Table of values for permit-overrides and deny-overrides rule combining operations •POrp
and •DOrp
•POrp P P(IndT) P(IndP) D D(IndT) D(IndP) N/A

P P P P P P P P

P(IndT) (1) P (2)
P(IndT) P(IndT) P(IndT) P(IndT) P(IndT) P(IndT)

P(IndP) P (3)
P(IndT) P(IndP) P(IndP) P(IndP) P(IndP) P(IndP)

D P (4) ×
P(IndT) P(IndP) D D D D

D(IndT) (8) P (5) ×
P(IndT)

(9)
P(IndP) (10) D (11)

D(IndT) D(IndT) D(IndT)

D(IndP) P (6) ×
P(IndT) P(IndP) D (12)

D(IndT) D(IndP) D(IndP)

N/A P (7)
P(IndT) P(IndP) D (13)

D(IndT) D(IndP) N/A

•DOrp P P(IndT) P(IndP) D D(IndT) D(IndP) N/A
P P P P P P P P

P(IndT) P P(IndT) P(IndT) P(IndT) P(IndT) P(IndT) P(IndT)
P(IndP) P P(IndT) P(IndP) P(IndP) P(IndP) P(IndP) P(IndP)

D P P(IndT) P(IndP) D D D D
D(IndT) P P(IndT) P(IndP) D D(IndT) D(IndT) D(IndT)
D(IndP) P P(IndT) P(IndP) D D(IndT) D(IndP) D(IndP)

N/A P P(IndT) P(IndP) D D(IndT) D(IndP) N/A

6.3.5 Rule combining algebras

Rule combining algorithms were formalised as operations •POr and •DOr and properties of corre-

sponding algebras were analysed in Section 4.5.4. In the partial policy evaluation, permit-overrides

and deny-overrides rule combining operations •POrp and •DOrp , defined on set Mp
2 , should extend these

operations and preserve their properties. Tables of values for operations •POrp and •DOrp are presented

in Table 6.4. Absorbing elements in these operations should be preserved. Hence, when decision

P (IndTemp) or D(IndTemp) is combined with an absorbing element, this adsorbing element can

be returned as a result of the operation (e.g., in permit-overrides, if one operand is P (IndTemp)

or D(IndTemp) and another is Permit, when the former operand is refined into another decision

the result of the operation is guaranteed to be Permit). Additionally, when the permit-overrides is

used, if P (IndTemp) is combined with any other decision excepting Permit P (IndTemp) should

be returned. If we assume that P (IndTemp) operand is refined into Permit, the result of the

operation should also be refined into Permit, but the only decision that can be refined into Permit

is P (IndTemp). Analogously, since D(IndTemp) can be refined to Deny, when it is combined

with N/A or D(IndPerm), D(IndTemp) should be returned (since Deny is an absorbing element

for these decisions and the only decision that can be refined into Deny is D(IndTemp)).

Permit-overrides and deny-overrides rule combining operations have the same properties, as the
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corresponding operations in ordinary policy evaluation (see Section 4.5.4): they are commutative,

idempotent and associative. Natural orders for these operations are specified in Formulae 6.9

and 6.10. These orders are not duals, so an algebra containing two these operations is not a

lattice. As new decisions were added into the central parts of these orders, their identity and

absorbing elements are the same: N/A is the identity element, P and D are absorbing elements

respectively for permit-overrides and deny-overrides.

N/A 6POrp D(IndP ) 6POrp D(IndT ) 6POrp D 6POrp P (IndP ) 6POrp P (IndT ) 6POrp P (6.9)

N/A >DOrp P (IndP ) >DOrp P (IndT ) 6DOrp P 6DOrp D(IndP ) >DOrp D(IndT ) >DOrp D (6.10)

For the monotonicity analysis of operations •POrp and •DOrp , the approximation order on the set

Mp
2 ×M

p
2 should be used to define possible operands refinements. The approximation order on

the set Mp
2 represents possible result decision refinements. As these operations are symmetric, it

is sufficient to analyse only one triangle in their tables of values. For operation •POrp , cases when

operands of the operation can be refined are presented using numbers in brackets in its table of val-

ues. Proofs of the monotonicity property for these cases are presented in Appendix A. As operation

•DOrp was defined by analogy, the same results are expected for it. The monotonicity property is not

satisfied for some of the cases, which are designated using the ‘×’ symbol in Table 6.4 and frames

in Appendix A. In these cases, a Deny-based decision (i.e., Deny, D(IndTemp), D(IndPerm))

is combined with P (IndTemp) and, as a result, P (IndTemp) is returned. But the operand with

P (IndTemp) decision can be refined into a N/A decision, and N/A is the identity element for this

operation. Hence, after such refinement, the operation will return the Deny-based decision that was

used as an input and that the P (IndTemp) decision cannot be refined to (because P (IndTemp)

can be refined only to a Permit-based decision and N/A). Hence, the operations •POrp and •DOrp are

not monotonic.

But it can be shown that the non-monotonicity of the permit-overrides and deny-overrides

operations does not lead to the non-monotonicity of the overall policy set evaluation function.

This is due to the fact that a composition of two non-monotonic functions can still be monotonic.

As was shown in Section 6.3.4, the result of rule combining in the set Mp
2 is mapped to the set Mp

1

using the function fp, before it can be processed by the policy evaluation function P ep. Hence,

it is possible to analyse the monotonicity of the function composition fp ◦ •POrp that has domain

Mp
2 ×M

p
2 and co-domain Mp

1 . If this composition is monotonic, then the overall monotonicity of

the policy evaluation is not broken.

The proofs of the monotonicity for composition fp ◦•POrp are presented in Appendix A. Only the

cases where the non-monotonic behaviour of the operation was found were considered (for other

cases the monotonicity is assured at the rules combining level). It was shown that for all three
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cases of •POrp non-monotonicity when composition fp ◦ •POrp is considered instead of •POrp , output

values become monotonic. These facts are explained by the nature of the fp function that eliminates

bindings to Permit and Deny effects for Indeterminate decisions. Hence, in cases that were rejected

because the P (IndTemp) decision produced cannot be refined into a Deny-based decision in the

set Mp
2 , result decision P (IndTemp) is mapped into IndTemp, which can be refined into any other

decision in set Mp
1 , according to its approximation order.

6.3.6 Target and condition evaluation functions

6.3.6.1 Information retrieval from partial policy request tuples

In the standard XACML policy evaluation, all information retrieved from a policy request is

represented as Bags of values. When the partial policy evaluation is used, in order to retrieve

attribute values, attribute designators and selectors should retrieve values from the partial policy

request tuple. For the representation of a retrieved values set that are known partially, an open

bag construct is introduced.

Definition 6.14. Open bag is a bag of values that contains all known attribute values from

a partial policy request tuple, provided that more values can be added for this attribute when the

partial policy request tuple is refined2

Ordinary attribute designators and selectors were extended in order to process partial policy

request tuples and return ordinary bags or open bags, depending on the fact if new values can be

added for this attribute when the partial policy request tuple is refined.

Attribute designators can retrieve only named attributes from the policy request. One named

attribute can contain several values (i.e., it can occur in the policy request several times) and

can belong to designated objects, action or time attributes. Action attributes are specified within

the partial policy vector and can use placeholders, representing that they are known partially.

Based on the policy request generation procedure (see Chapter 5), designated object’s attributes

are generated based on binary property-literals containing object-terms of the designated objects.

There are several possibilities as to how these property-literals can be represented partially in the

policy request tuple, which should be taken into account by an attribute designator. First of all,

in a partial policy vector, dummy objects can be used as designated objects. Therefore, based

on dummy objects definition, existing property-literals for them can be represented partially and

new property-literals can be added. Even if these objects are not dummies, their property-literals

can be part of high-level effects and, correspondingly, they also can be partial-literals and contain

placeholders. Finally, the predicate symbol for a property-literal (it is used as an attribute identifier

in the policy request) can be contained in IE (or DE) set and, therefore, more property-literals

with this predicate symbol can be added (or some of them can be removed) in the policy request

further during its refinement. Time attributes of the policy request are not considered in this
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section, their processing is described in Section 6.3.7.

Definition 6.15. Open Attribute Designator has the same behaviour as the attribute

designator, but it should return an open bag with attribute values retrieved from the partial policy

request tuple, instead of an ordinary bag, in the following cases:

• An attribute of a designated object is being retrieved and this object is a dummy object, that

is, its object-term is contained in the set TermDumObj . The object-term for the designated

object is specified in the policy request as a value of attribute with ParName = id.
• An attribute of a designated object is being retrieved and the identifier of attribute is included

in the IE or DE set of the partial policy tuple.
• Among other attribute values retrieved by this attribute designator, a null property, an

object-term for a dummy object or a non-leaf hierarchical property is contained152

All these situations indicate that the attribute values retrieved by this attribute designator can be

augmented, when the partial policy request tuple is refined. In some special cases, an empty open

bag should be returned even if some values were retrieved from the request. An empty open bag is

returned when an identifier for designated object is being retrieved (it is contained in id attribute)

and an object-term for a dummy object is received. In this case, the value retrieved by the

designator can be substituted during the further planning, so it is removed from the resulting bag.

When the identifier of the attribute being retrieved is contained in the DE set of the policy request

tuple, the attribute designator always retrieves an empty bag, since literals with the corresponding

predicate symbols are removed from the planner’s world state which is used for the partial policy

request construction (see Section 6.2.2.2). Hierarchical properties are not removed from an open

bag returned by an Open attribute designator, since they are analysed using a specialised procedure

during the evaluation of higher-level expression (see Section 6.3.6.3).

The Open attribute designator returns open bags in all situations when new values can be

added into resulting bag, when the partial policy request tuple is refined. When a bag of retrieved

values can be eliminated, an empty open bag is returned. The approximation order on a disjoint

union of all possible bags and open bags representing possible modifications of a retrieved bag

during the partial policy request tuple refinement is defined as a subset or equal relation (which

takes into account repetitive values also). So when the partial policy request tuple is refined, a

bag or open bag retrieved by an Open attribute designator is preserved constant or also refined

according to the defined approximation order.

An attribute selector using XPath expression retrieves attribute values from contexts of desig-

nated objects placed into the policy request in the form of XML document. Nodes retrieved by the

XPath expression are interpreted as a bag of values. According to the object context generation
15The null property or the object-term for a dummy-object are not included in the resulting open bag.
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technique (see Section 5.6), the object context, constructed for a partial policy request, can contain

dummy objects, null and hierarchical properties. In order to determine if more values can be added

into a node set retrieved by an attribute selector or some nodes can be substituted, the resulting

node set should be analysed. Additionally, since XPath expressions are queries over XML docu-

ments that use location paths to navigate to a resulting node set, it is required to trace paths in

the object context that can be used to reach resulting node set during the XPath expression eval-

uation. For this purpose, it is required to analyse location paths that form the XPath expression.

Location paths are constructed as a sequence (or a tree-structure) of location steps. Each location

step in a location path refers to a set of nodes in the XML document being processed, which are

determined relatively to the XML document root node. Only a subset of the XPath specification

is supported by the policy-based planner imposing the constraint that each node, used during the

XPath evaluation, should be explicitly referred by some location step is the XPath expression16.

Within location steps specifications in an XPath expression, object types and predicate symbols

for properties and relations are used in order to define which nodes these location steps should

refer to. So objects which a location step refers to can be dummy objects and more properties

can be added for it. Referred relations and properties can be included in the IE or DE sets and,

hence, more nodes that the location step refers can be added or they can be eliminated. These

situations should be considered in order to determine if an open bag (or an empty open bag) should

be returned by the attribute selector.

Definition 6.16. Open Attribute Selector has the same behaviour as the attribute

selector, but it should return an open bag with attribute values retrieved from the partial policy

request tuple, instead of an ordinal bag, in the following cases:

• Some location step refers to a node set that contains an object-term for a dummy object.
• XPath expression retrieves a null property, an object-term for a dummy object or a non-leaf

hierarchical property17.
• Some location step uses as a node name a predicate symbol from the IE or DE set2

In all these cases more values can be added into the result nodes set when the policy request tuple

being evaluated is refined. The second and third conditions can be detected based on the values of

nodes retrieved by the attribute selector or using analysis of nodes names, utilised in the XPath

expression. In order to decide if the first condition is satisfied, first of all it is checked if in this

planning state there is a dummy object with a type mentioned in the XPath expression. If a

location step referring to this object type is found, a set of nodes that this location path refers to

is determined. For this purpose, a sub-XPath expression is constructed to retrieve a set of nodes
16Location paths and specific constraints on supported XPath expressions are considered in more details in

Chapter 8.
17The null property or the dummy object identifier are not included in the resulting open bag.
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that this location step refers to. If a dummy object is included in this object set, the open bag

should be returned, since the evaluation of further location steps can be based on properties and

relation of this object.

Additionally, an empty open bag should be returned regardless of the number of nodes retrieved

if in the predicate part of an XPath expression:

• Some location step refers to a node set containing a dummy object.
• Some location path retrieves a null property, a non-leaf hierarchical property-term or an

object-term for a dummy object.
• Some location step uses as a node name a predicate symbol from the IE or DE set.

In these cases an empty open bag is returned, as nodes retrieved by an XPaths expression can be

eliminated when the partial policy request tuple is refined. Analysis of a predicate part in an XPath

expression is distinct, as it can contain nested location paths that specify conditions restricting

a set of nodes referred by the location step, that this predicate part belongs to. Predicate parts

can contain different conditions, including negation. So when a number of nodes referred by some

location step within a predicate part is extended, this can lead to the reduction of nodes retrieved

by the location path that this predicate part belongs to. So when this situation is detected, an

empty open bag is returned. Techniques for the analysis of location paths within predicate parts

are the same as for other location paths. So the Open attribute selector returns open bags in all

situations when new values can be added into the resultant bag. When the bag of retrieved values

can be eliminated, an empty open bag is returned.

6.3.6.2 Target evaluation and truth-value functions with Indeterminate Temporal

value support

Truth-value functions are used in targets and conditions. For the partial policy evaluation, they are

defined as operations on the set TRV alp = {True, False, IndPerm, IndTemp}, which contains

additionally Indeterminate Temporal truth value IndTemp. There are three truth-value operations

in the partial policy evaluation, as well as in the ordinary evaluation: conjunction ∧p, disjunction

∨p and negation ¬p. Their tables of values are presented in Table 6.5. As can be seen, they were

designed as an extension to the truth-value operations used in the standard XACML. Similarly

with the standard XACML truth-value operations, the new operations ∨p and ∧p are commutative,

idempotent and associative. Additionally, the identity and absorption values True and False are

preserved for them. However, in comparison with the standard operations, orders defined based

on the new operations are not duals. The reason for this is the fact that these operations should

be monotonic according to the approximation order on the set TRV alp and when both operations

are applied to IndTemp and IndPerm, the IndTemp value should be returned. Indeed, since

IndTemp can be refined into any permanent decision, it should be guaranteed that this refinement

158



CHAPTER 6. POSTPONED POLICY ENFORCEMENT MECHANISM

Table 6.5: “A ∧p B” and “A ∨p B” operations definitions in TRV alp

A ∧p B False IndTemp IndPerm True
False F F F F

IndTemp F IT IT IT
IndPerm F IT IP IP

True F IT IP T
A ∨p B False IndPerm IndTemp True

False F IP IT T
IndPerm IP IP IT T
IndTemp IT IT IT T

True T T T T

Table 6.6: “¬p A” operation definition in TRV alp

F IP IT T
T IP IT F

will not lead to updates of operation values that are not refinements. This is possible only when the

operation result is always IndTemp if IndTemp is used as an operand, with the exception for the

absorbing values. When an absorbing value is used as an operand, regardless of the other operand

values, the absorbing value should be returned as the resultant value. As can be checked based on

the tables of values, this behaviour guarantees the monotonicity of operations. Correspondingly,

the distribution and absorption laws for the conjunction and disjunction operations over the set

TRV alp are not tautologies18.

The negation operation ¬p preserves under negation both Indeterminate values: ¬p(IndTemp) =

IndTemp and ¬p(IndPerm) = IndPerm. Obviously, Indeterminate values should not be changed

to True or False values under negation. The temporal characteristic of the indeterminate value

also cannot be changed, since IndPerm and IndTemp have different but not opposite meanings.

For example, it is wrong that “If a is temporally unknown, its negation is unknown permanently”.

All functions used during the target evaluation in the ordinary policy evaluation can be rep-

resented using conjunction and disjunction (see Section 4.5.5.1). Hence, target evaluation for the

partial policy evaluation can be represented similarly using the defined truth-value functions ∨p

and ∧p. A lower level matcher, which executes a given function over a constant value and a bag of

values, requires additional modifications. The bag of values is produced using the Open attribute

designator or the Open attribute selector. When an open bag is returned by this component, this

bag should be processed using the following mechanism: for each value in this bag it should be

checked, if it matches a constant value according to the function provided. If some of the values in

the open bag match, the True value should be returned. Otherwise, IndTemp should be produced

by this matcher. The monotonicity requirement is satisfied by such a matcher. When one match
18Counterexamples are a ∨ (a ∧ b) 6= a, if a = IP and b = IT for absorbing and a ∨ (b ∧ c) 6= (a ∨ b) ∧ (a ∨ c) if

a = IP , b = 0, c = IT for distribution.
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occurs with a value in the open bag, it will occur when this bag is refined, because values from an

open bag cannot be eliminated during the refinement. When an empty open bag is returned by the

attribute selector or designator, IndTemp should be produced, since this bag can be augmented

with new values.

6.3.6.3 Condition evaluation functions

In Chapter 4, the condition is formalised as a composition of functions, constructed according

to a specification of condition in a policy rule. For the partial policy evaluation, these functions

should be extended to correctly process open bags, retrieved by the Open attribute designators

and selectors. During the evaluation of a condition, each of these bags is transformed into a truth

value returned as a condition evaluation result. Each transformation is carried out by one function.

All possible transformations were analysed and grouped according to the involved abstract data

types in Section 4.5.5.2. A chart with all possible transformations was presented in Figure 4.5. In

the partial policy evaluation, signatures for all functions that have bag arguments or return bags

of values are updated in order to have the possibility to process and return both ordinary bags

and open bags. In this section, each of possible transformations is considered and the behaviour

of functions, implementing these transformations, is specified for partial policy evaluation. The

monotonicity of functions within each class is analysed.

‘Bag - Value’ and ‘Value - Value’ transformations.

There are two functions that implement ‘Bag - Value’ transformation: ‘Int-is-one-only’, ‘Int-

bag-size’19. The former function gets a bag with one value and returns the individual value,

corresponding to it. If the type of input value does not correspond to the output type or if an

input bag contains more than one value (or none of them), the Indeterminate result is returned.

The latter function returns an integer value equal to a number of values in its Bag argument.

When an open bag is used as an argument of these functions, its output value is undefined: it

can become Indeterminate (e.g., if more values are added into a bag processed by ‘Int-is-one-only’)

or it can increase (e.g., if more values are added into a bag processed by ‘Int-bag-size’). In order

to represent a value that can be substituted by any value with the corresponding data type special

temporal zero elements were defined for each data type: Θtype (for integer type it is ΘInt). When

this element is added to a set representing all possible values with corresponding data type, a

discrete flat order is defined on the resulting set: temporal zero element can be refined into any

other value, including Indeterminate value. In the partial policy evaluation, all functions which

process or return individual values are defined on lifted sets of possible values with corresponding

data types that among other values include a temporal zero element.

When an input bag for the function ‘Int-is-one-only’ or ‘Int-bag-size’ is an open bag, it should
19In this section, examples of functions consider only integer data type, but in the XACML specification the same

functions are defined for other data types.
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return a temporal zero element ΘInt. It represents the fact that a value of this function is unknown

and can be refined into any value with the corresponding data type, including the Indeterminate

value. These functions are monotonic, since when an input open bag is refined into another open

bag a value of function is always constant and is equal to the temporal zero. When the input open

bag is refined into an ordinary bag, the resultant temporal zero is refined into a concrete value.

When a temporal zero value is processed by a function implementing ‘Value - Value’ transfor-

mation (e.g., arithmetic operations) the temporal zero should be processed in a strict manner: if

an input value is a temporal zero, an output value of the function should also be a temporal zero.

This guarantees the monotonicity of the function.

‘Value - Truth’ transformation.

As an example of these functions, comparison and equality functions can be considered (e.g.,

‘equality’, ‘more’, ‘less’, ‘inequality’). The domains and co-domain for these functions are flat, so

in order to guarantee the monotonicity they return Indeterminate Temporal value when at least

one of its arguments is a temporal zero value.

‘Value - Bag’ transformation.

There is only one function implementing this transformation in XACML: ‘Int-bag’. This func-

tion can be applied to different number of arguments with the same data type. It returns a bag

containing all values from the input arguments. A set of functions that represent formally this

XACML function should process temporal zero values. When a temporal zero is used as an argu-

ment, this function should not include it into the output bag, but it should produce an open bag

instead of an ordinary bag. Functions defined according to this principle are monotonic, since when

its input argument is refined from a temporal zero into any other value (including Indeterminate

value), this value should be added into the output bag. Correspondingly, if the content of the

output bag is augmented, a new output bag refines the bag that was returned before.

‘Bag - Bag’ transformation.

There are three XACML functions implementing this transformation: ‘Int-union’, ‘Int-

intersection’ and ‘map’. ‘Int-union’ and ‘Int-intersection’ process two bags and return, respectively,

their union and intersection without considering repetitive elements. The map function transforms

all values from an input bag into values of an output bag using a function whose name is provided

as the function’s argument. When one of these functions receives an open bag as an argument,

it should return output values in the open bag also. This guarantees the monotonicity, since the

addition of new elements into argument bags for these functions will not lead to the elimination of

the resulting bag. So when one or several input bags are refined, the output bag is constant or is

also refined, if new elements are added.

‘Bag - Truth’ transformation.

Functions implementing this transformation should be divided into several classes according
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to the possible modifications of output truth values that these functions can introduce when new

values are added into their input bags. If we consider an additional order ≤tr on the set TRV al,

such that False ≤tr Ind ≤tr True, these classes can be defined based on a monotonicity property

of these functions.

Increasing function is a function whose output value can be changed only from False to True

according to the order ≤tr, when new values are added into any of its bag arguments. Gen-

erally, these are functions that require at least one matching between elements of input bags.

For example, function ‘Int-is-in’ processes an integer value and a bag of integer values and

returns a True if this value is contained in the bag. Function ‘any-of’ follows the same prin-

ciple, but additionally it receives a function name as an argument that should be used to

compare values.
Decreasing functions is a function whose output value can be changed only from True to False

according to a dual order for ≤tr, when new values are added into any of its bag arguments.

Generally, these functions require matches for all values within their input bags. For example,

function ‘Int-set-equals’ processes two bags of values and returns true only if these bags are

equal (without considering repetitive values). Function ‘all-of’ is analogous to ‘any-of’, but

it returns true only if the constant input value matches all values in the bag20.
Left-argument-increasing function is a function that has two bag arguments. If new values

are added into its left bag argument, while its right bag argument is constant, the value can

be changed only from False to True, according to the order ≤tr. If new values are added into

its right bag argument, while the left argument is constant, the value can be changed only

from True to False, according to a dual order for ≤tr. An example of such function is ‘any-

of-all’, which in addition to two bags receives a function name as an argument. This function

returns true if any value from the left bag matches all values in the right bag according to

the provided function.
Left-argument-decreasing function is a function opposite to Left-argument-increasing func-

tion. An example of this function is ‘all-of-any’ XACML function, which is true if any value

from the right bag matches all values in the left bag according to the provided function.

Modifications of these functions required for their usage in the partial policy evaluation obviously

depend on the type of a function. An overall mechanism for usage of these functions during the

partial policy evaluation is presented in Figure 6.8. Several correction functions were specified that

should be applied to a value returned by an original function when one of its arguments is an open

bag. Each correction function is a function from the set TRV al to the set TRV alp that introduces

updates required to guarantee the monotonicity of the functions composition. These functions are
20During the partial policy evaluation, this and other higher order functions process evaluation results for con-

stituent functions as if these function are connected with conjunction or disjunction operations (see Section 6.3.6.2).
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Figure 6.8: Correction mechanism, applied to function ‘Func’

True-preserving correction function γTr, False-preserving correction function γFl and

Constant correction function γAll. As follows from their tables of values in Table 6.7, the

True-preserving correction function modifies the False and Indeterminate Permanent values, the

False-preserving correction function modifies the True and Indeterminate Permanent values and

maps them to Indeterminate Temporal. Other input values for these functions are preserved. The

constant correction function maps all input values to Indeterminate Temporal.

The required correction function should be chosen for each of the considered classed of functions.

The correction function should preserve only values that cannot be updated during the refinement

of its input open bags. For values that can be updated during the input open bag refinement,

Indeterminate Temporal should be returned. For the increasing functions, since True is a supremum

for the order ≤tr in TRV al, True value cannot be changed during the input open bag refinement.

So the True-preserving correction function should be used for their correction: FuncInc ⇒ γTr ◦

FuncInc. Based on the same principle, decreasing functions should be corrected by the False-

preserving correction function since False is an infinum for the order ≤tr in TRV al: FuncDecr ⇒

γFl ◦ FuncDecr. For the Left- and Right-argument-increasing functions, the choice of a correction

function depends on the fact in which argument an open bag is used. For the Left-argument-

increasing function when its left argument is an open bag and right argument is an ordinary bag,

True-preserving correction function should be used. When the left argument is an ordinary bag

and the right argument is an open bag, the False-preserving correction function should be used.

When both arguments are open bags, there is no guarantee if the output value will increase or

decrease. Hence, the Constant correction function should be used: FuncConst ⇒ γAll ◦FuncConst.

For the Left-argument-decreasing function, the True- and False-preserving functions are utilised
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Table 6.7: Tables of values for True- and False-preserving correction functions γTr and γFl and
Constant correction function γAll

A γTr(A)
True True

IndPerm IndTemp
False IndTemp

A γFl(A)
True IndTemp

IndPerm IndTemp
False False

A γAll(A)
False IndTemp

IndPerm IndTemp
False IndTemp

in the opposite cases. So when an open bag is used as one of the arguments for each of these

functions, a composition of functions that are used instead of the original function is guaranteed to

be monotonic. Only values that cannot be updated during the possible refinements of input values,

are returned as a result of the composition. All values that can be updated during the input values

refinements are substituted by the IndTemp value, which can be refined into any other value.

‘Truth - Truth’ transformation.

Functions implementing this transformation are the same with the truth-value functions con-

sidered in Section 6.3.6.2.

Additionally, during the condition evaluation, non-leaf hierarchical properties (see Section 6.2.1)

retrieved by an attribute designator or selector can be a processed. These hierarchical properties

will be refined into lower level hierarchical properties and this should be considered during the eval-

uation of expressions. When a hierarchical property which is not a leaf node in the corresponding

hierarchy is processed by a function, distinct from the equality relation, it should return a temporal

zero value or IndTemp, because its specific value is not known. The equality function processes hi-

erarchical properties based on their positions in the corresponding hierarchy of properties. If these

values belong to different hierarchies, False is returned. Otherwise, for their processing, a hierar-

chical property τGi is associated with a set of its descendant leaf nodes: design(τGi ) = {τGi1, . . . , τGin}

and these sets are used to compare positions of different properties in the hierarchy. Additionally,

it is distinguished if the hierarchical property was retrieved from the policy request (in this case,

it can be refined further) or it is contained in a policy as a constant value. Constant values are

denoted as τGiconst. When sets of leaf nodes corresponding to two arguments of the equality func-

tion do not intersect: design(τGi ) ∩ design(τGj ) = ∅ (regardless if they are constant or not), they

cannot represent the same value and False is returned. If both arguments are not constants, True

is returned if these hierarchical properties are equal and both are leaf-nodes, otherwise IndTemp

is produced. Two constant values are processed as ordinal values and True is returned if they are

equal, False is produced otherwise. If only one of the arguments is constant, True is returned when

a set of leaf nodes for the non-constant property is included or equal to a leaf nodes set for another

operand. In this case, a value that the non-constant hierarchical property will be refined into is

guaranteed to be included in the set of values represented by the constant value. Otherwise, the

concrete decision is undefined and IndTemp is returned.
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6.3.7 Loose time intervals processing

During the evaluation of policies, loose time intervals TIntervalp = 〈ActBeg,ActEnd〉 are pro-

cessed using the same procedure as ordinary time intervals (see Section 5.4.2.2). So a policy is

considered applicable, if it does not have an operation period (i.e., it is always applicable) or if its

operation period intersects with the time interval specified in the policy request, which can be a

loose time interval. Additionally, when the loose time interval is considered, decisions produced by

policies applicable only during some subset of this time interval are modified, since when it will be

substituted by a strict time interval such policies can become inapplicable. So if these policies are

applicable to the current situation (the decision produced is not N/A), the IndTemp decision is

returned regardless of the decision produced by the core part of the policy. The IndTemp decision

represents the fact that the decision can be updated when the strict time interval will be defined.

6.4 Conclusion

The main contribution of this chapter is the postponed policy enforcement mechanism that was

introduced to improve the planning performance for the policy-based planner, designed in Chap-

ter 5. The principle that earlier recognition of dead-ends during the planning can improve the

planning performance was applied to the policy enforcement process in the policy-based planner.

In the postponed policy enforcement, policies can be evaluated at earlier stages of the planning.

For this purpose, partial policy requests corresponding to actions that should be executed during

the future course of the planning are generated and evaluated. Decisions that can be produced

based on these requests are enforced during the planning. If this decision is Deny, a dead-end

is detected and a large part of the search space can be pruned. If this decision is Permit, the

evaluation of future policy requests that refine the current request can be eliminated. This leads

to the planning time reduction and provides the means to produce the solution faster.

Another contribution of this chapter is the extension of the standard XACML policy evalua-

tion and the introduction of the partial policy evaluation procedure supporting the partial policy

requests evaluation. During the generation of policy requests in the postponed policy enforcement,

not all required information could be available. Correspondingly, a new mechanism was designed

in order to construct partial policy requests containing only known part of the information about

the future policy request along with the indications on modifications that can be expected. For

the evaluation of these partial policy requests, the standard XACML policy evaluation mechanism

was extended and the partial policy evaluation procedure was introduced. In order to represent

a situation when a standard XACML policy decision cannot be inferred during the evaluation, a

new Indeterminate Temporal decision was introduced. When an Indeterminate Temporal decision

is produced during the planning, the partial policy request should be postponed and re-evaluated

when more information is available. The partial policy evaluation procedure was designed as an
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extension of the formal model of the XACML policy evaluation introduced in Chapter 4. Using

this formal model, it is possible to guarantee that the partial policy evaluation possesses properties

required for its correct usage during the postponed policy enforcement: the partial policy evalua-

tion should be an extension of the ordinary policy evaluation and should be monotonic, meaning

that, when a partial policy request is refined during the planning, the policy decision should be

preserved constant or also refined according to the specified approximation order.

The postponed policy enforcement mechanism will be utilised when the planning domain for

the CEP generation problem is specified (see Chapter 7). This mechanism will be used for the

development of a descending policy evaluation technique. The descending policy evaluation is a

problem-specific technique that optimises the process of EPs selection during the CEP development

and utilises the postponed policy enforcement as its basic principle.
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Chapter 7

Planning for Combined Educational Pro-

grammes development

Objectives:

• Describe specifications designed to tailor the policy-based

planner for solving the CEP generation problem, including

the planning domain specification.
• Describe the descending policy evaluation technique that op-

timises the EPs selection process during the CEP develop-

ment and is aimed at the planning performance improve-

ment.

7.1 Introduction

In order to solve the CEP generation problem using the policy-based planner, designed in Chapter 5

as a problem-independent planning engine, it should be provided with a specially designed planning

environment specification and the CEP generation problem should be formalised as a planning

problem in this environment. This chapter presents the specification of the planning environment

for the CEP development, including the models of Learning objects (LObj) utilised for the CEP

construction, and describes how the CEP generation problem is formalised and solved in this

environment.

In Section 7.2, all specifications that refer to LObjs and their relations are covered. In Subsec-

tion 7.2.1, we describe how different LObjs utilised in the CEP generation framework are specified.

These LObjs include existing objects provided for the CEP generation as input and new objects

generated by the solution for the internal use or as a CEP generation outcome. In Subsection 7.2.2,

we present different measures, which can be used to compare the content of LObjs, developed in

different universities. In Subsection 7.2.3, we specify a hierarchical multi-domain environment,

which defines the overall structure of the planning environment for the CEP development. Do-

mains represent different areas or entities within the HE environment, organised hierarchically.
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This model of the environment relate LObjs designed in different domains and policies specified

for these LObjs at different levels of the educational system. Moreover, the hierarchical structure

of the environment provides the possibility to carry out planning at different levels of this hierar-

chy. Finally, in Subsection 7.2.4, we describe how properties of LObjs that can be described using

terms and units adopted in different classification systems and scales (i.e., educational levels and

credits) are specified and converted using the designed transformation rules.

In Section 7.3, all specifications and algorithms related to the core planning processes are

covered. In Subsection 7.3.1, we describe how CEP requirements can be specified by a user1. These

requirements form the planning problem statement. Additionally, in Subsection 7.3.1, the designed

planning domain specification, viz., operators and methods that are used to actually carry out

planning for the CEP development, is described. In Subsection 7.3.2, we describe the descending

policy evaluation technique, which was developed to extend the policy-based planning algorithm

in order to improve the planning efficiency for the higher-level phase of the CEP construction

procedure and provide the means to reduce time required to produce first planning outcomes for

the user. The descending policy evaluation technique is based on the utilisation of problem specific

characteristics of the CEP generation problem, namely, its hierarchical multi-domain environment,

and it is based on the postponed policy enforcement mechanism, which was described in Chapter 6.

7.2 Learning objects and their relations specification

7.2.1 Learning objects specification

The most general definition of Learning object (LObj), given in IEEE LOM standard, states

that ”a learning object is defined as any entity - digital or non-digital - that may be used for

learning, education or training“ [97], p.1. Other approaches to defining LObjs [128, 176, 115]

restrict this definition and specify the following LObj properties: LObj is self-contained (LObj can

be taken independently from other LObjs), reusable (LObj can be used in multiple educational

contexts different from the original one) and has independent educational purpose(s) explicitly

stated. We adopt these properties of LObjs for the CEP generation framework. Additionally, in

the CEP generation framework, we require that LObjs are described from three perspectives, in

accordance with the BP initiatives (see Chapter 3): content, namely, using learning outcomes;

workload, namely, using credits; and complexity and depth of study, for this purpose mappings to

corresponding levels in educational frameworks are used.

Similarly to other approaches for the LObjs management [128, 176, 115], we assume that LObjs

can be aggregated and as a result of their aggregation new LObjs are produced. An atomic LObj

in the CEP generation framework is a module.
1As was specified in Chapter3, users of the CEP generation solution can be students or members of institutions

who develop CEPs for students.
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Definition 7.1. Module is defined as a tuple:

Mod = 〈ModName, Con
S
lo, Cr, Level, Pre, Provmod〉 (7.1)

where ModName is the title of the module, ConSlo = {lo1, lo2, ..., lon} is the set of learning outcomes

of the module, Cr is a specification of the credits that student earns, Level is a specification of

the module’s level that defines the depth and complexity of the module, Pre is a specification of

the module’s prerequisites that a student should satisfy in order to study this module, Provmod is

the official education provider for this module2

The representation and comparison of learning outcomes are described in Section 7.2.2. Credits

are specified by the tuple Cr = 〈CrV al, CrScale〉, where CrV al is the number of credits and CrScale
is the scale according to which one credit unit is defined. Usually, a country (or other domain)

where this credit unit is adopted is used as the scale. The educational level of the module is

defined as Level = 〈LevName, LevScale〉, where LevName is the level name which this module

corresponds to and LevScale is the qualification framework where this level is defined. Prerequisites

Pre = 〈{lo1, lo2, ..., lom}, {Mod1,Mod2, ...,Modk}〉 contain learning outcomes that the student

must gain and modules that he (or she) must study. The module’s education provider Provmod is

specified as a university or other lower-level entity within the university structure, for example, a

faculty or a school (see Section 7.2.3). Modules can be united into modules groups.

Definition 7.2. Modules group is a subset of modules studied within the same semester.

The modules group joins optional modules that are managed by a common set of modules selection

rules and is specified as a tuple:

Group = 〈GroupSMod, Cr〉 (7.2)

where GroupSMod = {Mod1,Mod2, ...,Modn} is the set of optional modules in this group, Cr is

the minimal number of credits that the student should receive for studying this group2

Selection rules that are used to guide the student’s choice of modules from this group are

specified using the modules selection policy. This policy is used during the planning to manage

the optional modules selection process. When a module within modules group is considered for

the selection, this policy can permit or deny the corresponding action. Additionally, this policy

determines when a modules group can be closed, that is, when enough modules were chosen for

the student.

On a higher level of detail, modules and groups of modules are united into semesters.

Definition 7.3. Semester is a LObj that is formed by two sets: a set of modules SemS
Mod =

{Mod1,Mod2, ...,Modk} that are compulsory for studying in this semester and a set of modules
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groups SemS
Group = {Group1, Group2, ..., Groupj} that contain optional modules:

Sem = 〈SemS
Mod, Sem

S
Group, P rovSem, TEMPSem〉 (7.3)

Additionally, semester contains Provsem parameter, that is the official education provider where

students are studying during this semester (e.g., a university), and TEMPSem tuple, containing

temporal parameters of the semester2

We assume that students can transfer from one EP to another only between semesters, as this

happens in the majority of the cases in HE, and that all modules within one semester Sem should

be provided by one education provider Provsem2. The tuple TEMPSem = 〈Dur, St, F in〉 contains

the duration of this semester in days Dur and sequence numbers of months of the year when this

semester starts and finishes: St and Fin3. We assume that all modules included into a semester

are studied in parallel, so they all share the same temporal properties of the semester.

Definition 7.4. Educational programme (EP) is a LObj formed by a sequence of

semesters at the end of which one or several awards are granted:

EP = 〈EPOSSem, EPSAWARD, P rovEP 〉 (7.4)

where EPOSSem = 〈Sem1, Sem2, . . . , Semp〉 is a tuple of semesters that forms this EP. EPSAWARD =

{. . . Awardi . . . } is a set of awards that the student gets when he (or she) finishes this programme,

ProvEP is the education provider for this EP (e.g., a university)2

Each award Awardi is defined as a tuple 〈AwardName, P rovaw, AWS
Area, Level〉, where

AwardName is the title of the award, Provaw is the education provider (e.g., a university) that

issues this award4, AWS
Area = {Area1, Area2, ..., Areau} is the set of fields of study of this award

(usually, there is only one major field, but some awards can include subsidiary fields also) and the

tuple Level = 〈LevName, LevScale〉 specifies that the level of this award is LevName according to the

qualifications framework LevScale. Usually, the qualifications framework corresponds to a country

(or other domain) where the award is issued. The tuple of semesters EPOSSem contains semesters in

the order according to which they will be studied by the student. The semesters are specified in

an uninterrupted manner: durations of semesters include durations of adjacent vacations, so, for

adjacent semesters, the next semester should start immediately after the end point of the previous

semester. EPs defined in such way represent several paths that students can take by selecting dif-
2We consider only the pure credits mobility CEP type and do not consider the virtual mobility, which allows to

study modules from different providers in parallel (see Chapter 3).
3For example, for January ‘1’ is used, for February - ‘2’, etc. Semester duration ‘Dur’ is an auxiliary parameter

since it is considered that semesters start on the first day of the month and end on the last day (the duration of
semester cannot be longer than a year). ‘Dur’ parameter is used to calculate duration of the education easier, when
several semesters are studied sequentially.

4In our model, one award can be granted only by one university. In order to take into account joint degrees, this
part of the model should be extended.
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ferent optional modules. When a student studies according to an EP, a concrete educational track

is constructed for him (or her): optional modules contained in the modules groups within this EP

are selected. The groups themselves should be closed, what indicates that the required number of

optional modules was chosen. When an optional module is chosen or a group is closed, a special

label is added to it (a special literal with this module or group in the terms list is added into the

planner’s world state). In our definition, EP is an ordinary educational programme that is provided

by one education provider (e.g., by one university). Therefore, all modules and semesters within

one EP should be provided by the same education provider ProvEP . Education providers for the

awards Provaw can be equal to the EP education provider ProvEP or they can be specified as

higher-level entities within the university structure, such that the EP education provider ProvEP
is situated within the award education provider Provaw (for example, EP education provider is a

faculty within the university, but awards are issued by the university itself).

In order to define a CEP, we introduce an artificial LObj type: an EP interval. The EP interval

is a LObj produced based on an EP by selecting its part such that it can be studied by a student

in an uninterrupted way. The EP interval does not contain the EP’s award.

Definition 7.5. EP interval from n to m |EP |[n,m] is a tuple of semesters that contains

all semesters in EPOSSem tuple from the nth semester to the mth semester inclusive25

Definition 7.6. Combined educational programme (CEP) is a tuple: CEP =

〈CEPOSintEP , CEPSAWARD〉, where CEPOSintEP = 〈|EP1|[n1,m1], . . . , |EPk|[nk,mk]〉 is a totally ordered

set of EP intervals that form this CEP, CEPSAWARD is the set of awards that the student gets

when he (or she) graduates from the CEP2

The order of EP intervals in the set CEPOSintEP corresponds to the order according to which

these EP intervals will be studied by the student. An EP interval |EPi|[ni,mi] used at ith position

in the tuple CEPOSintEP of a CEP is called an ith slot of this CEP. EP intervals for the CEP can be

taken from different universities (education providers), then it is external mobility programme, or

they can be from the same university (education provider), then it is internal mobility programme.

Some EP intervals used in a CEP can be parts of the same EP, then this CEP implements a

probation period mobility scenario (or a temporal mobility scenario, as the student returns to its

original EP). EP intervals in a CEP should not overlap in time, but between adjacent semesters

some ‘idle time’ can exist6.

LObjs that should be accessed during the planning should be placed into the planner’s world

state. For this purpose, they are represented using literals. For example, the fact that a module
5In order to easily retrieve durations of EP intervals during the planning, durations of all possible EP intervals

that can be produced based on EPs within the planner’s world state are stored within the state using literals
‘duration interval’. In term lists of these literals, the EP interval is identified using the EP identifier and numbers
of start and end semesters. The duration of EP interval is specified in days and, additionally, as number of years
and months.

6Constraints on the maximum ‘idle time’ are specified as part of the CEP requirements (see Section 7.3.1.1)
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Modi has credits tuple Cri = 〈CrV ali, CrScalei〉 is represented as literal credits spec(Modi, CrV ali,

CrScalei). In the defined LObjs model, not all LObj attributes are specified on each level of the

model, that is, not for all types of LObjs. For example, learning outcomes were defined only at

modules level, credits - at modules and modules groups levels. Values of attributes corresponding to

higher level LObjs, which can be used during the policy evaluation, can be derived as an aggregation

of corresponding attributes for its constituent LObjs. As all properties of a LObj and its relations

with the constituent LObjs are stored in the planner’s world state, any required information about

a LObj can be retrieved during the policy evaluation using AttributeSelectors, including properties

of LObjs that form a higher-level LObj, and represented as a bag of values. Moreover, the policy

author can specify restrictions that define which specific values should be retrieved, for example,

credits of all compulsory modules in an EP interval, or credits of all selected optional modules

within a modules group. So, using the XACML conditions mechanism supporting complex sets-

based and numeric-based expressions, it is possible to define any possible aggregations of retrieved

values and impose required constraints on them.

7.2.2 Learning outcomes-based relations between Learning objects

Comparison of educational content taught within LObjs is carried out based on their learning

outcomes. As the basis for this comparison, we use similarity measures between two individual

learning outcomes simlo(lo1, lo2) ∈ [0, 1] and between two modules simmod(Mod1,Mod2) ∈ [0, 1],

adopted from [32]. These similarity measures show how similar two los or two modules Mods are,

based on their textual description7. During the CEP development, content of LObjs should be

compared when modules prerequisites are evaluated, for the comparison of lo-prerequisites and

modules-prerequisites with los and modules that the student has studied, and when a student

makes a transfer, for the comparison of modules that the student has studied with the modules in

the EP that he (or she) transfers to, in order to make the recognition. Specific constraints that

should be satisfied in order fulfil a prerequisite or in order to recognise a module are specified as

constraints in corresponding policies. These constraints, among other conditions, should include

restrictions on the minimum values of the corresponding similarity measures. For example, the

following policy can be specified:“In order to fulfil a module prerequisite specified as loi within the

module tuple Modi, similarity measure sim(loi, loj) between loi and some learning outcome loj

that the student has already achieved should be more then N% threshold value”. Additionally, other

constraints can be imposed in such policies, for example, that the learning outcome loj should

be studied not more then K months ago. Analogous policy constraints can be specified for the

fulfilment of prerequisites specified as modules and on the recognition of modules.
7In order to obtain values of these similarity measures for specific los and Mods, their textual description should

be converted into ontologies with the pre-defined structure using a dedicated recogniser. These ontologies are
processed using the alignment algorithm that derives the value of the similarity measure. Details can be found
in [32].
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Policy conditions containing constraints on the described similarity measures are specified by

the policy authors at their discretion and can include arbitrary complex expressions. In order to

reduce the complexity of specification of these policy conditions, pre-configured policy functions

that are used to derive higher-level similarity measures between learning outcomes, based on values

of lower level similarity measures simlo(loi, loj) and simlo(Modi,Modj), can be introduced. When

these functions are used in a policy condition, they should substitute some part of the condition

that otherwise has to be specified by the policy author by hand. The following functions were

introduced in the CEP development solution being developed, but other functions can also be

specified when this is demanded. The first example of such aggregated measure is a maximum

similarity measure calculated between a learning outcome loj and a learning object LObj:

µmaxlo (LObj, loj) = maxloi∈LObj{simlo(loi, loj)} (7.5)

where LObj can be a module, a semester or an EP interval. loi is a learning outcome in the learning

outcomes set ConSlo corresponding to some module in LObj (or to LObj itself if it is a module). This

measure shows which the most similar learning outcome exists in LObj for learning outcome loj .

This measure can be required when lo prerequisite is being evaluated. Then, loj is a prerequisite and

LObj is an EP interval that the student has studied. The analogous maximum similarity measure

for modules µmaxmod (LObj,Modj) was implemented based on the simmod(Modi,Modj) similarity

measure.

Another aggregated measure that was introduced is the average between maximum similarity

measures. This measure defined for modules similarity measures is represented in Formula 7.6.

The measure Kavg
mod(LObji, LObjj) is equal to a sum of maximum similarity measure values (µmaxmod )

calculated between modules contained in LObjj and the learning object LObji divided by the

number of modules in LObjj . The LObj can be a semester, an EP or its interval. This measure

can be used in order to specify policy conditions based on the fact how at the average modules

contained in LObjj are similar with modules in LObji. The analogous measure Kavg
lo can be defined

between two LObjs based on the learning outcomes similarity measure8.

Kavg
mod(LObji, LObjj) =

∑
{Modo∈LObjj} µ

max
mod (LObji,Modo)

|LObjj |
(7.6)

7.2.3 Hierarchical multi-domain structure and policies for Learning objects

The educational environment, where LObjs for the CEP development are stored, has a hierarchical

structure. It consists of nested domains where each higher level domain contains objects within
8Generally, measures Kavg are relations between two sets (either containing learning outcomes, or modules) that

are defined similarly with inclusion measures in [139]. The inclusion measure of a set A into a set B indicates which
part of the set A is included into the set B, i.e., what is the percentage of elements in A contained also in B.
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lower level nested domains. This environment is formalised as a multi-domain hierarchical struc-

ture, which is a special type of hierarchy of properties (see Chapter 6). This hierarchy of properties

is not only used to specify object properties at different levels of hierarchy, but also it represents

an overall structure of the planning environment considered and is connected with policies defined

for this planning environment.

Definition 7.7. Multi-domain hierarchical structure (a domain tree) is a hierarchy of

properties D = 〈TermD, ED, τD0 〉, where TermD = {. . . , Dy
x, . . . } ∪ {. . . , LObji, . . . } is the union

of all domains Dy
x (they can be countries, universities, regions, etc.) and all LObjs LObji stored

in the environment. They are organised hierarchically according to ED = {. . . , 〈Dy1
x1
, Dy2

x2
〉, . . . },

which defines the structure of the planning environment2

Each domain Dy
x, except the root domain of the tree τD0 , has indexes that identify its place

in the domain tree: x - level of the domain in a tree, y - number of the domain on this level.

Domains represent different entities in the educational environment on a higher-level, for example,

countries, regions, universities, and entities within the university, for example, faculties, schools,

which provide the educational services. Education providers for modules, semesters and EPs

ProvMod, ProvSem and ProvEP are specified as smallest, most specific domains within the domain

tree (i.e., as domains that do not have children). So LObjs are added into the domain tree as leaf-

nodes, which are children of their education provider domains ProvLObj . CEPs are not included in

these LObjs, since they are produced during the planning and are not stored in the environment.

Therefore, each domain in a domain tree structure is defined as set of its descendant LObjs:

Dy
x = {. . . , LObji, . . . }. The fact that the domain Dyi

xi
is a descendant of the domain D

yj
xj or is

equal to it can be designated as Dyi
xi
⊆ Dyj

xj . Edges of the domain tree are specified using predicates

in(Di, Dj), where Dj is a child domain or LObj and Di is a parent domain.

Figure 7.1: Hierarchical multi-domain environment (domain tree)

In the CEP generation problem, policies have hierarchical structure reflecting the domain tree

of the environment. Each domain Dy
x and learning object LObji in the domain tree corresponds

to a policy set Polyx (for some domains and LObjs, the policy set can be empty). The policy
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set Polyx corresponding to the domain Dy
x is applicable only to LObjs situated within Dy

x. The

policy set Poly
′

x′ corresponding to a LObj is applicable to this LObjs and all its constituent LObjs.

This policy set contains policies managing different aspects of the educational processes and LObjs

usage within this domain (within this policy set different policy organisations are possible, which

are determined by local practises). Since domains are nested in a hierarchical structure, scopes of

policies corresponding to domains connected with ‘ascendent-descendent’ relation intersect. When

these policies generate conflicting decisions, a deny-overrides policy combining algorithm is used.

So a policy request should be permitted only when the policy set of the domain where the action is

carried out is permitted and all policy sets corresponding to its ancestor domains are permitted (or

some of these policy sets can be evaluated to ‘N/A’). An example of policy structure illustrating

organisation of higher-level policies in a hierarchical multi-domain environment is presented in

Formula 7.7. In this example, domain D0 is the root domain containing domains D1
1 and D2

1.

Each of these domains contains two sub-domains: D1
2, D2

2 and D1
3, D2

4. In addition to the policies

shown in the formula, these domains can contain their own policies. Then, these policies should

be added into the corresponding policy sets as additional operands of the combining operations.

P e(evaluateT (JTargetD 0K, req),

P e(evaluateT (JTargetD1
1
K, req),

evaluatePS(JPolicySetD1
2
K, req) •DOp evaluatePS(JPolicySetD2

2
K, req), req)

•DOp (7.7)

P e(evaluateT (JTargetD2
1
K, req),

evaluatePS(JPolicySetD3
2
K, req) •DOp evaluatePS(JPolicySetD4

2
K, req), req), req)

In the targets of policies that form the overall policy hierarchy TargetD1
1

and TargetD2
1

and targets

of policy sets PolicySetD1
2
, PolicySetD2

2
, PolicySetD3

2
and PolicySetD4

2
, constraints on the set of

LObjs that these policies are applicable to should be specified. In actions used in the planning

domain specified (see Section 7.3.1), the main LObj that the action is applied to is contained with

the role ‘resource’. This LObj determines the domain where this action is carried out. So, in order

to form the hierarchy, constraints in these targets should be satisfied only when a LObj used in the

policy request as ‘resource’ is within the domain that these policy sets correspond to. As a domain

tree is a hierarchy of properties, this condition can be represented using an equality function,

which for hierarchical properties is evaluated according to the ‘equal or included’ principle (see

Section 6.3.6.3).
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7.2.4 Transformation rules for Learning objects properties

In the policy-based planner, transformation rules are used to convert properties of objects specified

using terms adopted in one domain or classification system to another (viz., from one scale to

another). Numeric properties are converted using conversion expressions. For non-numeric values,

mappings of values from one scale to another are defined. Generally, notions from different scales

can be related directly or through an intermediate scale.

For credit values conversion, two ways are used. When it is required to convert a credit value

in a national credit system into another national system, an intermediate representation using

literal hours(LObj,HLObj) is used. It indicates how many notional hours is required to study a

learning objects LObj. An example of transformation rules for conversion of credit values from

one national credit system (ScaleA) to another national credit system (ScaleB) is presented in

Formula 7.8. Using the first rule, it is possible to derive how many notional hours HLObj it takes

to study a LObj, for which credits values are specified in ScaleA. Using the conversion expression

?HLObj =?CrV alA · RateA, where RateA is the number of notional hours corresponding to one

credit in ScaleA, the core calculations are carried out. The second rule defines how many credits

should be allocated to LObj in the national credits system ScaleB. Predicate symbol credits is

utilised in policies and the planning domain specification when it is required to refer to credits

values of LObjs. Using this predicate, values converted according to the described procedure are

accessed, as well it is possible to retrieve a credit value of LObj in the national credit system as

it is specified in the planner’s world state (for this purpose, the third rule in Formula 7.8 is used).

For conversion of credits from ScaleB to ScaleA, transformation rules analogous to rules 1 and 2

in Formula 7.8 should be specified.

credits spec(?LObj, ?CrV alA, CrScaleA), (?HLObj =?CrV alA ·RateA)→ hours(?LObj, ?HLObj)

hours(?LObj, ?HLObj), (?CrV alB =?HLObj/RateB)→ credits(?LObj, ?CrV alB , CrScaleB)

credits spec(?LObj, ?CrV al, ?CrScale)→ credits(?LObj, ?CrV al, ?CrScale) (7.8)

On the other hand, credit values are converted without intermediate representation in notional

hours when it is required to convert national credits into ECTS credits: credits spec(?LObj,

?CrV alN , ?CrScaleN ), (?CrV al = expr(?CrV alN ))→ credits(?LObj, ?CrV al, ECTS), where expr()

is an expression for conversion of national credits ?CrV alN into ECTS credits ?CrV al, which can

be specified using more complex expressions than a linear function.

Qualification levels in NQFs are mapped to levels EHEA QF. Mappings between specific

levels in NQFs and levels of EHEA QF are stored in the planner’s world state using literals

equiv(LevEHEAName , Lev
NQF
Name, Lev

NQF
Scale), where LevNQFName is a level in NQF LevNQFScale being equiva-
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lent to level LevEHEAName in EHEA QF. Using these mappings, based on an educational level of an

award in NQF it is possible to determine which level in EHEA QF this award corresponds to. For

this purpose, the rule in Formula 7.9 is used. Literals level(Award, LevName, LevScale) are used

to denote a fact that an award corresponds to a certain level LevName in the framework LevScale,

which can be either a NQF or an EHEA QF. In order to retrieve all awards corresponding to the

same EHEA QF level, literal eqLev(Award, LevName, LevScale) is used (see Formulae 7.10, 7.11).

In the rule in Formula 7.10, an EHEA QF level that these awards should correspond is specified

explicitly in the eqLev literal, as LevName. In the rule in Formula 7.11, instead of it a NQF level

is specified and the awards should correspond to an EHEA QF level being equivalent to this level.

level(?Award, ?LevNQFName, ?Lev
NQF
Scale), equiv(?LevEHEAName , ?Lev

NQF
Name, ?Lev

NQF
Scale)→

→ level(?Award, ?LevEHEAName , ehea qf) (7.9)

level(?Award, ?LevEHEAName , ehea qf)→ eqLev(?Award, ?LevEHEAName , ehea qf) (7.10)

level(?Award, ?LevEHEAName , ehea qf), equiv(?LevEHEAName , ?Lev
NQF
Name, ?Lev

NQF
Scale)→

→ eqLev(?Award, ?LevNQFName, ?Lev
NQF
Scale) (7.11)

Using transformation rules, it is also possible to define correspondence between other properties, for

example, language qualifications or fields of study for awards. Currently, only one scale is supported

for each of these properties: respectively, the Common European Framework of Reference for

Languages (CEFR) [36] and the International Standard Classification of Education (ISCED)’s

fields of education classification [166].

7.3 Planning procedures for CEP development

7.3.1 HTN planning domain for CEP generation process

7.3.1.1 Input requirements for CEP generation

The input requirements for the CEP generation are specified as a tuple 〈ReqStruc, ReqProp, ReqProc,

Student, D〉, where ReqStruc, ReqProp and ReqProc are requirements for the CEP from the struc-

tural, properties and process perspectives respectively, Student is the student for whom the CEP

should be developed and D is the domain tree that specifies the educational environment for the

CEP development.

The structural requirements ReqStruc are specified as an Initial track: ReqStruc = ITr. The

definition of the track is based on the notion of the CEP’s slot (it is an EP interval used for the

CEP construction at the specific position of the CEP structure, see Section 7.2.1).

Definition 7.8. Track is a sequence of domains, EPs and EP intervals that defines the

structure of CEP. It divides the CEP into a sequence of slots and introduces constraints on how
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these slots can be constructed:

Track = 〈Sl1, . . . , Sli, . . . , Sln〉, Sli ∈ TermDD EP (7.12)

where TermDD EP = {. . . , Dy
x, . . . }∪{. . . , EPi, . . . }∪{. . . , |EPj |, . . . } is the union of the sets of all

domains and all EPs within the domain tree D and all EP intervals that can be constructed based

on these EPs. Sli is a constraint for the ith slot. If it is specified as an EP (or an EP interval), the

corresponding slot in the CEP should be constructed based on an interval of this EP (or based on

this EP interval itself). If it is a domain, this slot should be constructed based on an interval of

an EP within this domain2

The Initial track (ITr) is a track that is provided by the user as the CEP structure requirements.

So a slot’s constraint in the ITr Sli ∈ TermDD EP restricts the set of EP intervals which can be used

in order to construct the corresponding slot in the CEP. Therefore, the ITr defines the number

of transfers that the student should make during the education according to the CEP and their

high-level specification: from which domain to which domain the transfer should be done. From

the structural perspective, the planning process can be represented as follows. Initially, based on

the provided ITr, corresponding EP intervals are chosen for all slots. The resulting sequence of

EP intervals is called a Basic Track (BTr). During the further planning, this BTr is refined into a

concrete educational route for a student, where optional modules are chosen and some modules can

be removed. So from the structural point of view, the planning is seen as a refinement of the ITr.

At each step of the planning, the current track that was derived from the ITr and that represents

the current solution is designated as Track.

In addition to the structural requirements specified as ITr, the set of EPs that can be used for

solving a concrete CEP development problem is also limited. Within the domain tree D, only EPs

that can be used for the CEP construction are specified.

The CEP property-requirements determine specific characteristics of the future CEP. The fol-

lowing property-requirements can be specified by the user:

ReqProp = 〈AwardReq, tBeg, tEnd, δt〉 (7.13)

where AwardReq = 〈ProvReqaw , Area, LevReqName, Lev
Req
Scale〉 are requirements to the award that the

student should receive as a result of the education at the CEP. ProvReqaw = Dy
x is a domain where

education provider Provaw issuing this award should be situated: Uniaw ⊆ UniReq. Since do-

mains from different levels of the domain tree can be used, this requirement can be represented

flexibly on different levels of abstraction, for example, specific countries, regions or universities

can be used. LevReqName and LevReqScale determine the educational level that this award should cor-
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respond: the level name LevReqName and the qualification framework identifier LevReqScale. If this

requirement is specified as a level in the EHEA QF, all awards that correspond to NQF lev-

els being equivalent to this level can be used. If a level in a NQF is specified, only awards at

this NQF level can be used. Area is the field of study that the required award should refer

to. Other property-requirements determine temporal constraints for this CEP. tBeg and tEnd

are the earliest begin time and the maximum end time for the CEP. δt determines the max-

imum distance in months between two semesters taken sequentially in CEP. Hence, it speci-

fies the maximum ‘idle time’ between adjacent slots. In addition to the property-requirements,

for the CEP generation problem statement, properties of the student that will be enrolled in

the CEP being developed are provided: Student = 〈StudName, StudCountry, LangStud, HistStud〉,

where StudName is the identifier of the student, StudCountry is the student’s country of origin,

LangStud = {〈LangName i, LangV al i, LangScale i〉} is the set of languages that the student knows

at the corresponding level: LangName i is the language identifier, LangV al i is the level of the

knowledge according to the scale LangScale i. HistStud is the history of student’s education in-

cluding HE EPs and pre-HE certificates. Details about the data model used for the student’s

properties specification are given within case studies in Chapter 9.

The CEP process requirements are specified as an initial task network ReqProc = TN , that

will be decomposed during the planning in order to produce a fully specified CEP process model.

Planning tasks in the CEP generation framework represent how certain parts of the track are

implemented, for example, which EP interval is used for its construction and what is the role of

this part of the track in the educational (mobility) scenario. Therefore, these tasks link slots of the

track, LObjs used for their construction and mobility scenarios that are utilised in the CEP being

constructed. In the next sections, details about planning tasks used during the CEP generation

and about the specification of the initial CEP process requirements, viz., the initial task network,

are given. Additionally, these sections describe how CEPs are constructed using these tasks and

decomposition methods designed for them.

7.3.1.2 BTr development phase

In the first phase of the CEP development, a BTr is constructed based on the process, struc-

ture and property requirements specified for the CEP. Planning tasks that are used within the

current task network during this CEP development phase are compound tasks that relate a part

of the track, an EP interval and a student studying according to the CEP. Such task assigns

to this part of the track a specific role within the mobility programme being developed. Corre-

spondingly, planning tasks used in this CEP development phase have the following parameters:

Student, T rack(NSl
e , N

Sl
i ), EPpar, where the parameter Student represents the student that this

CEP is being developed for, Track(NSl
e , N

Sl
i ) represents a part of the track Track from the NSl th

e

179



CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

slot to the NSl th
i slot, EPpar is an optional parameter representing a set of EP intervals that

can be used to construct the part of the CEP represented by the parameter Track(NSl
e , N

Sl
i ).

The EPpar parameter can be specified as an EP interval, then within this part of the track this

EP interval should be studied, or as AwardReq, then an interval of EP that satisfies these award

requirements should be studied within this part of the track.

Higher-level planning tasks used in the BTr development phase are tasks Degree, Start Degree,

Start Degree Probation, Finish Degree, Finish Degree fin and Proceed Degree. The task

Degree(Student, T rack,AwardReq) is the highest level task that refers to the whole track Track.

Hence, this task represents the whole CEP being developed. Correspondingly, the current task

network that contains this task cannot contain other tasks. This task specifies that at the end

of the education the student Student will receive an award that satisfies requirements AwardReq.

The structure of the CEP should conform with the structure requirements specified by the track

Track. The task Start Degree(Student, T rack(1, NSl
e )[, |EP |[1,m]]) represents the initial part of

the CEP, being developed for the student Student, that is covered by the part of Track from its

first slot to the NSl th
e slot. The start point of this task is an admission of the student to an EP.

At the end point of this task, the student transfers from this EP to a new EP permanently, that

is, he (or she) will not return to this EP back. The optional parameter |EP |[1,m] indicates the

EP interval that the student is admitted to and that he (or she) transfers from. It is possible

that during the execution of this task the student changes EPs several times and studies in other

universities. The task Finish Degree(Student, T rack(NSl
s , N

Sl
e ), AwardReq) represents the final

part of the CEP, being developed for the student Student, that is covered by the part of Track

from the NSl th
s slot to the NSl th

e slot. The start point of this task is the student’s transfer to

an EP whose award satisfies requirements AwardReq. At the end of its execution, the student

is graduated from this EP and receives the corresponding award. During the execution of this

task, the student can transfer from and to this EP several times. Another high-level task is

Proceed Degree(Student, T rack(NSl
s , N

Sl
e )[, AwardReq]) that represents the intermediate part of

CEP, being developed for the student Student, that is covered by the part of Track from the

NSl th
s slot to the NSl th

e slot. The start point of this task is the student’s transfer to an EP9

that he (or she) has not been admitted to and not the EP the student intends to graduate from.

At the end of its execution, the student transfers from this EP. AwardReq are requirements for

the award that the student should receive at the end of the education. EPs that are used in

all but the last slot of the CEP should not satisfy all these requirements. Indeed, these award

requirements are used to limit the set of EPs that can be used in these slots. All these EPs

should have awards in the same area as specified in AwardReq and they should have levels equal

or equivalent to the educational level specified in AwardReq (this level can be specified in EHEA
9The student can transfer to this EP for the first time, or he (or she) can return to this EP.
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QF or in some NQF). The tasks Start Degree Probation and Finish Degree fin are used to

specify the temporal transfer scenario, when the EP that the student is admitted to and that he

(or she) will graduate from is the same. They are used to specify the initial and the final parts of

the CEP, while intermediate tasks, for example, the Proceed Degree task is used to specify the

educational process between them. Other tasks used in the BTr development phase are described

in Appendix B (they are all compound tasks specified there).

The role of BTr development tasks during the planning is to define the mobility scenario

that will be used in this CEP, map this scenario to specific parts of the track and select EP

intervals that will be used in these slots. As tasks used in this phase define roles of corresponding

parts of the track, these roles are defined only in relation to other tasks used in the same task

network. So the task networks used in this CEP development phase are fully ordered, meaning

that the initial task network is fully ordered and all decomposition methods contain only ordered

task networks. The order of tasks in these task networks should correspond to the order of track

intervals that they represent. Additionally, it is required that tasks utilised in task networks during

the planning cover the whole track and do not intersect. So adjoining tasks in a task network

should refer to adjoining parts of the track. If a task network is 〈. . . , t1(. . . T rack(NSl
s1 , N

Sl
e1 ) . . . ),

t2(. . . T rack(NSl
s2 , N

Sl
e2 ) . . . ) . . . 〉, then track parts Track(NSl

s1 , N
Sl
e1 and Track(NSl

s2 , N
Sl
e2 ) should be

adjoining and NSl
s2 = NSl

e1 + 1. These requirements are applied to task networks used as initial

CEP process requirements ReqProc and to tasks networks being produced during the planning.

For example, the task network in Formula 7.14 represents a mobility scenario with one permanent

transfer: the transfer after which the student will not return to the previous EP again.

〈Start Degree(S, Track(1, 3), |EP |[n,m]), F inish Degree(S, Track(4, 4), AwardReq)〉 (7.14)

BTr development tasks used in a current task network can refer to parts of the track containing

different number of slots. For example, in Formula 7.14, the task Start Degree covers the part

of the track from the first to the third slots. Such BTr development tasks are decomposed during

the planning. As a result, new transfers are introduced and tasks covering less number of slots are

produced. In the BTr development phase, the lowest level tasks are tasks that cover only one slot

of the track and, in some cases, contain EP intervals that will be studied in these slots. Based on

these tasks, the BTr is determined: it is the sequence of EP intervals used in tasks in the current

task network. Such tasks will be referred as the BTr specification tasks.

Decomposition methods used in the BTr development phase represent a specific basic student

mobility scenario being applied in a specific part of the CEP. The student mobility scenario can be a

a permanent transfer, when the student does not return to the previous EP, or a temporal transfer,

when the student returns back to the previous EP, viz., the probation period scenario. Different
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decomposition methods are specified for the following parts of the CEP: an initial part of the CEP,

when the EP that the student has been admitted to is concerned, an intermediate part or a final

part, when an EP that the student will graduate from is concerned. Different methods for the

same student mobility scenarios being used in different parts of the CEP are required because the

contexts of these scenarios are different. For example, whether a student will eventually graduate

from the EP that he (or she) transfers to or whether a student will return and graduate from the

EP that he (or she) transfers from. Correspondingly, actions that will be used to implement these

scenarios in lower level task networks are different.

The highest-level taskDegree can be decomposed using three methods that implement three dif-

ferent mobility scenarios. One permanent transfer scenario (see Formula 7.15) introduces the task

network consisting of Start Degree and Finish Degree tasks (for example, like in Formula 7.14, if

the track consists of 4 slots). Two permanent transfers scenario (see Formula 7.3.1.2) additionally

introduces the task Proceed Degree between them. This results in two permanent transfers that

should be carried out during the education according to the CEP. This method represents the

situation when a student between the EP that he (or she) has been admitted to and the EP that

he (or she) will graduate from studies at one or more other EPs. The temporal transfer scenario

(the probation period scenario) is represented in Formula 7.3.1.2. It is specified using three tasks:

Start Degree Probation designating an initial period of study according to an EP before the pro-

bation, Proceed Degree designating the probation period and Finish Degree fin designating the

period of the study at the EP after the students returns to it and before the graduation. Other

decomposition methods used in the BTr development phase are described in Appendix B. These

methods apply the temporal transfer scenario to tasks that have different roles in the higher-level

mobility scenario, so they should be implemented using different lower level actions. Addition-

ally, a method is introduced that realises the one permanent transfer scenario within parts of the

CEP that are implemented by ‘intermediate’ EPs (i.e., not the starting or finishing EPs) (see For-

mula 7.18). It is applied to a Proceed Degree task that covers more than two slots of the track.

As a result of its execution, two Proceed Degree tasks are introduced. The first task covers one

slot and has the EP interval specified. The second task covers the rest of the slots and should be

applied to an interval of EP which is different from the previous EP.

Degree(S, Tr,AwardReq)→ (7.15)

〈Start Degree(S, Tr(1, F1), |EP |[1,m]), F inish Degree(S, Tr(F1 + 1, F0), AwardReq)〉

A method that can be chosen to decompose a task during the planning is restricted by the size

of the track interval that is covered by this task and corresponding domain constraints contained

in the ITr. So it is checked if the part of the track covered by the task being decomposed can
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be divided into smaller parts (in other word, if new BTr development tasks can be introduced)

and it is checked if the tasks introduced can be carried out according to constraints in the ITr

for the corresponding slots (for example, for the temporal transfer, it is checked that accord-

ing to the domain constraints the student will be able to return the EP that he (or she) has

transferred from). Examples of different decompositions for a Degree task covering a four slots

track are presented in Figure 7.2. Cases A. and B. show a variant when initially one permanent

transfer scenario is applied, then one of the introduced tasks is decomposed using the temporal

transfer scenario method for the corresponding part of the CEP (suffixes str and fin refine

the role of the higher-level task by modifications introduced using the further applied scenario).

Case C. shows how the task network produced using the high-level temporal transfer method

can be decomposed using one permanent transfer for intermediate EPs method. Using the latter

method, one permanent transfer is introduced between tasks referring to ‘intermediate’ EPs in

this CEP. Additionally, there are complex mobility scenarios where primitive mobility scenarios

applied to the initial and finishing parts of the CEP overlap, for example, as in the task network

〈Start Degree str, F inish Degree str, Start Degree fin, F inish Degree fin〉. In order to gen-

erate such task networks, a one-slot Proceed Degree task generated during the decomposition of

a Start Degree task is implemented by the first task of the task network that can be produced

during the decomposition of the Finish Degree task, that is, the Finish Degree str task. Sub-

sequent one-slot Proceed Degree tasks within the task network produced by the Start Degree

task can be implemented by Finish Degree ret tasks10. For example, the Proceed Degree task

in the task network 〈Start Degree str, Proceed Degree, Start Degree fin〉 can be decomposed

into a Finish Degree str task. Then, the task Finish Degree should be decomposed only to task

networks that represent the final part of the higher-level temporal transfer mobility scenario, that

is, to the task Finish Degree fin or the task networks 〈Proceed Degree, F inish Degree fin〉,

〈[Proceed Degree, ] Finish Degree ret, Proceed Degree, F inish Degree fin〉. As it can be seen

in Appendix B, some one-slot BTr development tasks do not contain EP intervals. In order to

reduce the overall number of decomposition methods, for these one-slot tasks the decomposition

methods that select EP intervals were joined with the BTr validation methods that should be

applied to these tasks next (see Section 7.3.1.3).

Initial CEP process requirements ReqProc can be specified as a high-level task Degree when

the user does not want to impose any constraints on the CEP process. Then, all possible CEP

processes can be generated based on the CEP structure and property-requirements. Alternatively,

the sequence of BTr development tasks can be provided as input process requirements. Using it,

the user can define which mobility scenarios can be used in specific parts of the CEP. For the
10The task Finish Degree ret represents an intermediate part of the education at the EP that the student will

graduate from. At the start point of this task, the student returns to this EP after studying at another EP. At the
end, the student makes a temporal transfer from this EP. This task is described in more detail in Appendix B.

183



CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

specification of the CEP process requirements, the described BTr development tasks are used in a

restricted form: EP intervals are absent in their parameters. All information about possible EPs

that can be used in these tasks is contained in the CEP structure, so the CEP process requirements

are specified as complementary requirements relatively to the CEP structure requirements. The

provided task network should define a correct mobility scenario and should comply with the CEP

structure defined by the ITr. Thus, when the CEP process requirements are specified as a task

network, at first, the planner tries to derive the task network with the same structure from the

corresponding Degree task. If this succeeds, the planning is started from the produced task

network.

Degree(S, Tr,AwardReq)→ (7.16)

〈Start Degree(S, Tr(1, F1), |EP |[1,m]), P roceed Degree(S, Tr(F1 + 1, F2), AwardReq),

F inish Degree(S, Tr(F2 + 1, F0), AwardReq)〉

Degree(S, Tr,AwardReq)→ (7.17)

〈Start Degree Probation(S, Tr(1, F1), |EP |[1,m]), P roceed Degree(S, Tr(F1 + 1, F2), AwardReq),

F inish Degree fin(S, Tr(F2 + 1, F0), |EP |[n,k])〉

Proceed Degree(S, Tr(S0, F0), AwardReq)→ (7.18)

〈Proceed Degree(S, Tr(S0, S0), |EP |[n,m]), P roceed Degree(S, Tr(S0 + 1, F0), AwardReq)〉

Based on the CEP requirements, during the task network decomposition in the BTr development

phase different complex mobility scenarios can be generated for the CEP being developed. Different

scenarios can be produced depending on the methods applied, on the order of their application

and on a chosen division of the track into intervals covered by different tasks. Additionally, during

this decomposition, EP intervals are chosen based on the ITr constraints, award requirements and

temporal constraints. Additionally, when EP intervals are selected, their educational content can

be analysed in order to restrict the set of EPs that can be utilised for the construction of one

CEP. Only similar EP intervals can be selected for the CEP construction based on the values of

similarity measures defined in Section 7.2.2. As a result of the BTr development phase, a BTr is

constructed as a sequence of EP intervals11. During the planning, the BTr development phase is

not executed at once. As soon as a one-slot task that can be implemented first is produced, this

task is decomposed further and lower level actions are produced initiating corresponding policy

checks.
11With the exception for tasks that do not contain EP intervals. For these tasks, the EP interval will be selected

during the next decomposition within the BTr validation phase
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Figure 7.2: Examples of different decomposition methods application

7.3.1.3 BTr validation phase

In this phase, the BTr development tasks produced in the previous phase are decomposed one

level lower, into primitive and compound actions. The produced task networks define at the

EP intervals level a detailed CEP execution scenario that refines the BTr constructed. Actions

used in this task network initiate corresponding policy evaluations, in order to validate the CEP

constructed. Additionally, during their execution, the CEP is designed at lower level of detail:

obligations are produced and compound actions are decomposed into lower-level tasks, initiating

the further decompositions.

Generally, decomposition methods used in this phase decompose the tasks produced in the BTr

development phase into lower level actions according to their definitions. Decomposition methods

for tasks described in the previous section are represented in Formulae 7.19 - 7.23. The follow-

ing actions were introduced in order to represent the execution of the BTr development tasks in

this phase. These actions designate concrete situations that occur during the education of a stu-

dent according to the CEP at the EP intervals level. Primitive actions !admitP , !admitT and

!graduate designate the admission and graduation to/from CEP. Two actions for admission are

used to distinguish situations when the student is admitted to an EP that he (or she) will graduate

from (!admitP ) or an EP that he (or she) will transfer from in the future at a permanent basis,

that is, the student will not finish this EP (!admitT ). Compound actions &choose modules and

&study interval designate procedures for the optional modules selection and for studying an EP

interval in a specific slot of the BTr. Additionally, several actions were introduced to designate

incoming and outgoing transfers of a student to and from the EP interval. Incoming transfers

are actions carried out when the student transfers to an EP interval. Outgoing transfers are,

respectively, executed when the student transfers from an EP interval. Correspondingly, a pair

of these action is used to model a student’s transfer. Using the incoming and outgoing transfer
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actions, policies for the home and destination universities can be evaluated separately. Outgoing

and incoming transfer actions are divided into permanent and temporal transfer actions: they are

designated using suffixes transfer IP , OP , IT , OT . Temporal outgoing and permanent incom-

ing transfer actions &transfer IP and !transfer OT are used when the student will graduate

from the corresponding EP (for the outgoing transfer - the previous EP, for the incoming transfer

- the next EP). Respectively, actions &transfer IT and !transfer OP are used when the student

will not graduate from the EP. These types of transfer actions are distinguished since during the

execution of the former actions the university should check if it will be possible to award a degree

for the student. Additionally, a specialised incoming transfer action &transfer IRP is used to

highlight the situation when the student returns to the EP that he (or she) has studied earlier

and is going to graduate from it. For example, when the Proceed Degree task is decomposed, the

first action is &transfer IT , which indicates that the student transfers to an EP that he (or she)

will not graduate from, the last action is !transfer OP , which indicates that the student transfers

from this EP (but he (or she) can temporarily return to it in the future). Other methods used in

this CEP development phase are specified in Appendix B.

Start Degree(S, Tr(NSl, NSl), |EP |[n,m])→ (7.19)

〈!admitT (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !transfer OP (S, Tr,NSl, |EP |[n,m])〉

Finish Degree(S, Tr(NSl, NSl), AwardReq)→ (7.20)

〈&transfer IP (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !graduate(S, Tr,NSl, |EP |[n,m])〉

Proceed Degree(S, Tr(NSl, NSl), [|EP |[n,m] or Award
Req])→ (7.21)

〈&transfer IT (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !transfer OP (S, Tr,NSl, |EP |[n,m])〉

Start Degree Probation(S, Tr(NSl, NSl), |EP |[n,m])→ (7.22)

〈!admitP (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !transfer OT (S, Tr,NSl, |EP |[n,m])〉

Finish Degree fin(S, Tr(NSl, NSl), |EP |[n,m])→ (7.23)

〈&transfer IRP (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !graduate(S, Tr,NSl, |EP |[n,m])〉

Primitive and compound actions introduced at this level are provided with policy parameters

tuples that have the uniform structure. For example, for the action &study interval(Student,
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Tracki, N
Sl, |EP |[n,m]), where NSl is the number of the slot in the track Tracki that this ac-

tion corresponds to, the following policy parameters tuple is defined: 〈{〈Student, Subject〉, 〈EP,

Resource〉}, {〈NSl, Slot〉, 〈Tracki, T rack〉, 〈n, Interval start〉, 〈m, Interval end〉}〉, where stu-

dent object is used as a subject, EP object is used as a resource and numbers of the start and

finish semesters for the EP interval are used as action attributes, along with the number of cor-

responding slot. For all actions, excepting the &study interval action, start and end time points

are the same. For the &study interval action, duration is equal to the duration of the correspond-

ing EP interval (i.e., the sum of durations of corresponding semesters). When actions introduced

at this phase are executed, their effects are saved into the planner’s world state. These effects

represent the history of the student’s education according to the CEP and are saved in relation

with the corresponding slots of the track. For example, when the action &study interval is ex-

ecuted, a history literal with the predicate symbol ‘history’ is added into the planner’s world

state: history(Student, T racki, NSl, EP, n,m), where Tracki is the track being developed during

the plannings and NSl is the number of the slot in this track. In addition to these literals, other

important milestones of the student mobility scenario execution are saved in the planner’s world

state, for example, the fact that a probation period was started. These effects are used for opera-

tors and methods precondition evaluation (e.g., in order to determine if an EP was already studied

by the student, so it is prohibited to select it in some subsequent tasks). Moreover, these effects

are used during the policy evaluation in order to derive a policy decision based on the history of

the student’s education. Effect for actions that are generated during this phase are specified in

Appendix B.

7.3.1.4 Low-level routines

In the next phase of the CEP development, based on the primitive and compound actions produced

during the decomposition of the BTr development tasks, routines for the design of lower level CEP

processes are initiated. These processes operate at the modules level and can be classified into

compulsory and optional processes.

Compulsory processes, which should be carried out in any CEP, are generated using routines ini-

tiated using decomposition methods for compound actions &choose modules and &study interval.

Before an EP interval can be studied, all groups of optional modules should be closed, mean-

ing that optional modules should be chosen such that corresponding policy requirements, gov-

erning their selection, are satisfied. As within an EP interval there can be several groups of

optional modules and within one group there can be different number of modules, methods

for the &choose modules task are carried out using recursion. At the higher level, all groups

within the EP interval are considered sequentially in a recursive manner using the method for the

Choose modules find groups compound task. At the lower level, for each group different vari-
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ants for the modules selection that results in the group closure are tried using the method for the

Choose modules group compound task. Therefore, all possible combinations of the optional mod-

ules selection are tried (see Appendix B). When a module is selected, the action !choose module

containing this module as a parameter is carried out. When a group is closed, action !close group is

carried out. The &study interval compound action is also implemented using two recursive meth-

ods. The higher-level method for the Find sems compound task sequentially processes semesters

within the considered EP interval. The lower-level method for the Find modules compound

task processes core and selected optional modules within one semester (see Appendix B). Actions

!study mod(Student, |EP |[n,m], Semi,Modj , N
Sl, T rackk) are used to denote the fact that module

Modj within the semester Semi of |EP |[n,m] was studied by the student Student at NSl th slot of

the track Trackk. These actions are carried out sequentially during the planning, while during the

education they are studied in parallel. Obviously, this process is perceived more naturally using

parallel actions in a resulting plan. So we introduced ‘pseudo-parallel’ actions. These actions are

modelled during the planning sequentially and are connected using their effects and preconditions,

being evaluated against the current planner’s world state. However, in the resulting plan, these

tasks are represented as parallel actions. This is modelled using auxiliary actions !concur start,

!concur end and !change line, which are inserted into the plan using decomposition methods in

order to mark concurrent parts of the plan. !concur start and !concur end designate start and

end points of a segment with parallel plan sections. !change line is used to designate the end

of one parallel section and beginning of the next section. When the resulting plan is generated,

these auxiliary action are analysed and are used to convert this sequential plan into the plan with

parallel sections (see example in the second case study in Chapter 9).

Execution of optional processes and task networks that represent them is initiated using obli-

gations. Obligations are specified by policy authors as part of the policy specification. In order

to generate a correct CEP process, obligations should be triggered only in certain situation, when

these obligations can be executed according to the educational process. In order to restrict a set

of obligations that can be generated during the evaluation of a policy request with certain action,

corresponding obligations validation rules were designed as part of the planning domain specifica-

tion (see its subset in Figure 7.3). Since all these rules are valid for the whole domain, asterisk

symbol is used in their policy lists.

The first and second obligation validation rules specify that in order to admit a student to

a university, he (or she) might need to pass exams. So the admission action can be augmented

with the !sit exam obligation. Another educational routine for which different variations exist is

a modules prerequisites evaluation routine. Generally, for studying a LObj by a student, either

all its prerequisites should be satisfied or only certain part of the prerequisites should be satisfied.

Another variation is a level in the EP structure at which the number of unfulfilled prerequisites
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1. ((!admitP (before (!sit exam)) => ∗)
2. (!admitT (before (!sit exam)) => ∗)
3. (!study mod (before (&check prereq mod)) => ∗)
4. (&check prereq mod (during (Satisfy prereq mod all)) => ∗)
5. (&check prereq mod (during (Satisfy prereq mod)) => ∗)
6. (&study sem (before (&evaluate precond sem))(after (!ic prereq sem)) => ∗)
7. (&study sem (before (&evaluate precond sem all)) => ∗)
8. (&recognise (during (Recognise 1 1)) => ∗)
9. (&transfer IP (during (ordered &recognise !discard difference)) => ∗)
10. (&transfer IP (during (ordered &recognise &move to sem)) => ∗)
11. (&transfer IP (during (ordered &recognise &evaluate difference)) => ∗)
12. (&transfer IP (during (ordered &recognise &evaluate difference intermed
&move to sem)) => ∗)
13. (&transfer IP (during (ordered &evaluate difference)) => ∗))
14. (&transfer IP (during (ordered !discard difference)) => ∗)

Figure 7.3: Obligation validation rules

is aggregated and evaluated. For example, there can be constraints that a certain percent of

prerequisites should be satisfied for each module, or this percent is calculated for modules within

the current semester or for all modules within the current EP interval. If prerequisites are evaluated

separately for each module, a before-obligation action &check prereq mod should be generated for

the action !study mod (see the third rule). For this action, a during obligation should be used

to specify which specific procedure should be used to evaluate prerequisites12. These procedures

are represented by the task Satisfy prereq mod or task Satisfy prereq mod all (see rules four

- five). The former task specifies that some module’s prerequisite can be not satisfied, while the

latter task requires that all prerequisites should be satisfied. During the execution of the task

Satisfy prereq mod, action !satisfy prereq mod is executed for each prerequisite of the module.

Policies for this action specify conditions for fulfilment of this prerequisite. If this action cannot

be executed, the planner continues planning. When all prerequisites for the module are evaluated,

the action !ic check prereq mod is executed in order to estimate the overall number of satisfied

and not satisfied prerequisites (specific threshold should be specified in conditions of corresponding

policies) and derive a final decision if this module can be studied by the student. On the contrary,

when the task Satisfy prereq mod all is used, further planning is blocked if some prerequisite is

not satisfied. Another approach to the prerequisites evaluation requires that all prerequisites of

modules in one semester should be evaluated within one procedure (i.e., without the division of

prerequisites in groups corresponding to their modules). For this prerequisites evaluation, there

are two possible compound actions that can be used as before-obligations: &evaluate precond sem
12These obligations are separated to have the possibility to specify them in policies separately, for example, in

different policies.
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and &evaluate precond sem all (see rules 6 - 7). Similarly with the previous pair of prerequisites

evaluation tasks, the latter task requires that all prerequisites should be satisfied, while the former

task requires just certain percent of satisfied prerequisites. During the decomposition of the former

task, the additional after-obligation !ic prereq sem is used to estimate if the required number of

prerequisites are satisfied. Examples of different prerequisites evaluation schemas are presented in

Chapter 9.

Using obligations, policy authors can also define a routine for the execution of incoming stu-

dents’ transfers. During a student’s transfer the following tasks can be carried out. Possible

combination of these tasks are specified using the obligations validation rules 9 - 14 in Figure 7.3.

First of all, the planner can try to recognise modules of the EP that the student transfers to.

In this case, the compound action &recognise should be returned as a during-obligation for the

action &transfer IP . In turn, a during obligation for the compound action &recognise should

specify which type of recognition can be used. In the current version of the CEP generation so-

lution, only one-to-one modules recognition is supported (i.e., one module must be recognised by

one another module) (see rule 8). During the execution of this task, modules are recognised using

the action !recognise module 1 1(Mod1,Mod2, Student, T rackk, N
Sl, |EP |[n,m]), where Mod2 is

a recognised module, Mod1 is a module studied by the student that is used to support the recogni-

tion. When a module is recognised, it is marked using a special flag. After the &recognise action,

other tasks should be used that process the recognition results and introduce other possibilities to

process modules, that were not recognised by the &recognise action. Using the compound action

&move to sem, unrecognised modules that the student should have studied can be moved into

the EP interval that the student transfers to. The second possibility is to recognise such modules

using additional assessments. During the decomposition of the task &evaluate difference, which

is returned as a during-obligation, actions !evaluate are applied to such modules and it is checked if

policies permit their assessment and recognition. At the end of the task networks produced during

the &evaluate difference and &move to sem decomposition, action !discard difference is used

to estimate if modules that were not recognised and were not moved into the EP interval can be

neglected and the transfer can still be carried out. The action !discard difference can also be

returned as an independent during-obligation (see rule 9), when if the during obligations set for

the action &transfer IP does not contain obligations &evaluate difference and &move to sem.

An example of the &recognise action execution is presented in Chapter 9.

Primitive and compound actions used in this phase have different policy parameters tuples

structures, but the general approach is that the student is used as a subject and the main LObj

that the current action is applied to (it can be a module, a semester or an EP) is used as a resource.

If other LObjs are used as parameters of this task, they are represented as additional designated

objects with corresponding roles. For example, in the action !recognise module 1 1(Mod1, Mod2,
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Student, T rackk, N
Sl, |EP |[n,m]) module Mod1, that is, the module used to support the recogni-

tion, is used as a designated object with the role ‘ModToSupport’ and module Mod2, that is, the

recognised module, is used as a designated object with the role ‘Resource’.

The resulting plan represents a detailed CEP process that should be executed during the

education of the student according to the resulting CEP. As this plan is hierarchical and each

semester and EP interval is designated by compound actions &study sem and &study interval,

the CEP structure can be easily extracted. Modules of this CEP are contained as parameters in

actions !study mod. They can be easily grouped into semesters, as actions with modules that belong

to the same semester are carried out within the same &study sem compound action. Optional

modules used in this CEP can be distinguished by the !choose module actions, performed during

their selection.

7.3.1.5 Variations of overall CEP construction procedure

Two variants of the CEP generation procedure were designed. In the first variant, after the user

specifies the CEP requirements, the planner carries out all three phases of the CEP development

and produces a fully specified CEP for the user. The drawback of this variant is the fact that the

user should wait until the planner develops a fully specified CEP that can be returned for his (or her)

evaluation. Moreover, the user can be not satisfied with the produced CEP, for example, because he

(or she) have not specified all the CEP requirements that he (or she) intended. In order to overcome

this drawback, the second variant of the CEP construction procedure was introduced. In this

variant, the user is provided with preliminary results of the planning: these are BTrs constructed

in the first phase of CEP generation and validated at its second phase (see Sections 7.3.1.2 -

7.3.1.3). As was shown, BTrs are used as a basis for the further generation of detailed CEPs, so

they provide general information about these CEPs. The BTrs can be constructed faster for the

user, based on them the user can intervene into the planning process. He (or she) can modify

input requirements and run the BTr development and validation phases again, if unsatisfactory

or empty results were received. Alternatively, the user can select one or several BTrs that he (or

she) prefers that will be passed to the next phase of the CEP generation. The CEP generation

solution designed can support both variants of CEP construction procedure: ordinary and with

intermediate BTr results. They can be selected by the user based on concrete parameters of the

problem and the planning environment used, specifically, based on the scale of the problem. The

second variant, when initially only BTrs are designed, is advantageous for the large scale problems

as the user can intervene into the CEP construction at the earlier stages and can guide the planning

process. As a result, CEPs that satisfy the user more can be produced. Moreover, in addition to

the overall optimisation of the CEP construction process, a performance improvement technique

was designed specifically for BTr development and validation phases (see Section 7.3.2).
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7.3.2 Descending policy evaluation technique

During the BTr development and validation phases, a large search space should be explored if

high level CEP requirements have been specified and a large set of EPs that can be used for

the CEP construction has been provided to the system. The crucial difficulty is the search for

EP intervals that can be used for the construction of a CEP in a way that all policy constraints

specified for this CEP are satisfied. Policies specified at different levels of the hierarchical multi-

domain structure impose limitations on the consistent use of these EPs. The postponed policy

enforcement mechanism, which was developed in Chapter 6, provides the means to improve the

performance of policy-based planning by earlier evaluation of policies during the planning and,

correspondingly, to generate results of the planning in less time. In this section, the postponed

policy enforcement mechanism is applied to the BTr development problem, in concrete, to the EP

interval search process. As a result, a problem-specific technique for the planning performance

improvement is developed. This technique is the descending policy evaluation.

7.3.2.1 Utilisation of postponed policy enforcement for CEP generation problem

The CEP generation planning domain was extended in order to utilise the advantages of the

postponed policy enforcement. For this purpose, first of all, high-level effects, which can represent

the known part of future effects, and partial policy vectors, representing known information about

policy request parameters, should be defined. The core process of the BTr development is the

selection of EP intervals for slots in a track, so these EPs and their positions in the track are

used as high-level effects of compound tasks in the BTr development phase. EP intervals can be

represented as Dummy objects that have properties and relations representing the known part of

their specification. In the initial stages of the planning, this information can be derived based on

the corresponding constraints specified in the ITr and requirements for an award that should be

received at the end of the education.

For example, if a higher-level Degree task is provided as an initial task network, it is known

that the last slot of the track will be constructed based on EP that has an award with a level

that is equal or equivalent to the level requirements 〈LevReqName, Lev
Req
Scale〉. It is known that this

award should have problem area equal to the Area parameter provided as a requirement for

the resulting award. Moreover, any EP that can be used in this slot will be within a domain

Dlower, that is, a lower level domain between the domain used in the corresponding slot of the

ITr and the domain used in the award’s requirements. In this technique, in addition to the do-

main tree hierarchy of properties, we have defined a set of property hierarchies for educational

levels: levels in the EHEA QF are used as roots in these hierarchies and levels in NQFs equiv-

alent to them are used as leafs. Hence, the Dummy EP for the last slot in the BTr can be

defined as EPDm 1 = 〈{}, {, 〈Dlower, {Area}, 〈LevReqName, Lev
Req
Scale〉〉}, Dlower〉. The fact that the
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set of semesters is empty and there is only one area in the area set (while a real EP might have

more than one area) conforms with the definition of a Dummy object. During the processing of

this object, it will be considered that any other properties and relations can be added to it. So

we have updated the Degree task processing in the following way. If this task is specified as

an initial task network, before the actual planning starts, a high-level effect is assigned to this

task. This high-level effect designates the history literal referring to the last slot of the track that

will be added into the planner’s world state when the corresponding &study interval will be exe-

cuted: history(Student, T racki, n, EPDm 1, NIL,NIL), where n is the number of the last slot in

Tracki. Obviously, in addition to the high-level effect, partial policy vectors can be assigned to this

task. These partial policy vectors represent actions !graduate and &study interval because for

the Degree task it is known that these actions will be carried out during each possible decomposi-

tion. For example, the partial policy vector for the !graduate action is the following: 〈{〈Student,

Subject〉, 〈EPDm 1, Resource〉}, !graduate, {〈n, Slot〉, 〈Tracki, T rack〉, 〈NIL, Interval start〉,

〈NIL, Interval end〉}, T IntervalP 〉, where TIntervalP is a loose time interval equal to interval

〈tBeg, tEnd〉. It should be noted, other high-level effects and partial policy vectors for the task

Degree cannot be specified, because according to the Dummy object definition each Dummy ob-

ject is distinct, meaning that the same Dummy object-terms should be substituted by the same

ordinary object-term. For the Degree task it is unknown where equal EPs will be used within

a track, so only when further decomposition methods are applied, more high-level effects can be

added.

BTr development methods described before were modified such that these methods add some

specific new information for the partial policy evaluation when they are applied during the planning.

They assign new high-level effects, add more partial policy vectors or refine existing high-level ef-

fects and partial policy vectors. For example, during the execution of method Degree(. . . T rack(1,

4) . . . )→ Start Degree(. . . T rack(1, 3) . . . ), F inish Degree(. . . T rack(4, 4) . . . ), illustrated in Fig-

ure 7.2, case B (first method), the following new structures should be assigned to new tasks being

produced during the decomposition. Based on the task Start Degree, it is known that EP intervals

of the same EP will be used in slots one and three. Hence, a new Dummy EP can be specified for

these slots: EPDm 2 = 〈{}, {〈, D′lower, {Area}, 〈Lev
Req
Name

′
, ehea qf〉〉}, D′lower〉, where D′lower is the

lower domain between domains in ITr for slots one and three. The educational level is specified as

a level LevReqName

′
in EHEA QF because awards of non-final EPs within a track should correspond

to the EHEA QF level of the final award. Correspondingly, this Dummy EP is used in history

high-level effects for slots one and three. Partial policy vectors with this Dummy EP can also be

added to the task Start Degree. These partial policy vectors refer to the first and third slots. For

the first slot, partial policy vectors with actions &study interval, !admitT and !transfer OP are

added. For the third slot, partial policy vectors with actions &study interval, !transfer OP and
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&transfer IT are added.

The illustrated principle is used for the specification of high-level effects and partial policy

vectors for other methods also. When during the application of a method it is known that in

some slots the same (or distinct) EPs are used, corresponding Dummy EPs can be specified and

added into the method definition as new high-level effects and partial policy vectors that should be

assigned during its execution to the produced tasks. Additionally, in order to satisfy the correctness

requirement, each high-level effect and partial policy request of the task that this method is applied

to should be propagated to lower level tasks or refined. Loose time intervals are equal to the interval

for the Degree task (〈tBeg, tEnd〉) with the difference that a current time is used as the start point

of the interval if some actions were already executed13.

Using this principle, when one-interval BTr specification task is produced during the decom-

position, high-level effects and partial policy vectors of the task that has been decomposed are

refined and a specific EP interval is determined. Then, corresponding high-level effects and partial

policy vectors become equal to effects and policy vectors that will be assigned and evaluated by

lower level actions. So, for these policy vectors, only permanent decisions are produced during the

policy evaluation.

7.3.2.2 Descending policy evaluation algorithm

During the BTr development, it is required to explore a large set of EPs stored within the planning

environment and select EP intervals that can be used in the BTr in a way that all policies are

satisfied. The planning domain for the BTr development phase contains few methods, so the

following property holds when the CEP requirements are specified loosely, meaning that domain

constraints in the ITr and resulting degree are specified at higher levels of the domain tree. The

average number of possible EPs that can be used for the instantiation of an EP-variable within a

planning task (n(EP )) is much greater than the average number of methods applicable to this task

(nM) multiplied by the average number of possible instantiations of other variables used within

the methods’ preconditions (n(Pre))14: n(EP ) � n(Pre)·n(M). In such situations, the Fewest-

Alternatives First (FAF) strategy can be adopted to improve the planning performance. This

strategy is used for the selection of flaws for processing during the planning. It was shown that it can

improve the planning performance in a broad range of HTN planning domains [156]15. According

to this strategy, the instantiation of EP-variables should be postponed during the planning (i.e.,

the least-commitment approach should be used for the EP-variables instantiation) and during the
13Additionally, after the execution of an action, a specialised procedure is used to update time intervals in partial

policy vectors assigned to tasks in the current task network. When the &study interval action is carried out, which
represents the execution of an EP interval, start time points of possible time intervals in these partial policy vectors
should be updated.

14For example, variables for the start and end semesters of the EP interval that will be used in the tasks produced.
15 This strategy analyses the number of possible branches produced when certain flaw is resolved and selects the

flaw that brings less branching. So in contrast to the static strategies, which select flaws based on their types, it
selects preferable flaws dynamically based on a current situation.
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application of methods EP-variables should be kept non-instantiated.

Using the CEP generation planning environment peculiarities, this principle can be extended.

Based on the fact that policies are organised hierarchically according to the domains tree and are

related with the Deny-overrides combining algorithm, it follows that a policy request containing

an EP should be permitted by policies of all domains where this EP is included. Correspondingly,

when it is required to select an EP for an EP-variable, initially a domain can be selected instead

of selecting an EP value. This domain value represents an area where this EP will be situated.

Namely, when the EP-variable will be instantiated by a specific EP, this EP should be selected from

this domain. During the planning, the domain value for the EP-variable is refined: the domain

value is substituted with lower-level domains nested in the original domain. So the domains are

updated in a descending manner, limiting the EP search area. When a new domain for an EP is

selected, partial policy requests referring to this EP and containing known information about it

should be evaluated against the policies of this domain. When a partial policy request is evaluated

into a permanent decision, this decision refers to the whole set of EPs situated within the current

domain, because when the policy request is refined, the same decision should be produced for all

these EPs. This provides the possibility to prune several EPs from the search space earlier during

the planning when some request is denied, so improving the planning performance.

DescPE(PolV ecP - partial policy vector, EPDm - Dummy EP, Dyi
xi - domain or EP,

SReqP - set of partial policy vectors)
1. Evaluate partial policy request for PolV ecP

2. If result is Deny or IndPerm then Return Failure endif
3. If result is IndTemp then add a copy of PolV ecP into SReq

P endif
4. If result is Permit or N/A and Dyi

xi is EP then:
4.1. Re-evaluate all partial policy vectors in SReqP with known EP equal

to Dyi
xi.

4.2. If any Deny has occurred then Return Failure else Return Dyi
xi endif

endif
5. Loop for all children Dyk

xk of Dyi
xi in the domain tree:

5.1. If Dyk
xk is EP then Check requirements to EP. If requirements are not

satisfied then Continue with next Dyk
xk endif endif

5.2. Update domain of EPDm with Dyk
xk, add EPDm into PolV ecP

5.3. Assign Res := DescPE(PolV ecP , EPDm, Dyk
xk, SReqP ). If Res 6= Failure

then Return Res endif
EndLoop

6. Return Failure

Figure 7.4: Basic descending policy evaluation algorithm

An algorithm for the descending policy evaluation is presented in Figure 7.4. The descending

policy evaluation is carried out for partial policy vectors that were defined in Section 7.3.2.1. Each

of these partial policy vectors PolV ecP contains a Dummy EP (EPDm) that represents all known

195



CHAPTER 7. PLANNING FOR CEP DEVELOPMENT

information about the EP used as a designated object with the ‘Resource’ role and is attached to

a one-slot task TA in a current task network. Before the algorithm is called, initial domain value

Dxi
yi

for EPDm is determined. It is equal to a domain value in the corresponding slot of ITr. So as

input, the procedure DescPE gets a partial policy vector PolV ecP , a Dummy EP EPDm, which is

used in this vector, and a domain Dxi
yi

, which is equal to the domain of EPDm. Additionally, a set

SReqP is provided as an input for the procedure DescPE. When this procedure is called for the first

time for a policy request and an EP, this set is empty. During the recursive calls, it is populated

with postponed policy request vectors. The procedure is carried out recursively searching for an EP

in a domain tree in a descendant manner: in each cycle an input partial policy vector is evaluated,

results of the evaluation are processed and a child value of the domain Dxi
yi

is chosen as a new

domain for the Dummy EP EPDm. The policy vector PolV ecP is evaluated only against policies

in a current domain Dxi
yi

. When this partial policy request is permitted, this means that these

policies should not be evaluated further for any EPs that will be found within this domain. If it is

denied, a backtrack should be done as this means that this request will be denied for all these EPs.

If IndTemp decision is returned for this request, this means that a permanent decision cannot be

determined for this request and the request should be saved into the SReqP set and re-evaluated

when a concrete EP will be selected. So if the partial policy request is permitted and the current

value of Dxi
yi

is EP (and all policy vectors in SReqP were permitted) this EP is returned as a result.

It should be also noted that the returned EP should satisfy the user requirements, so in step 5.1.,

when a new domain value Dxi
yi

is selected and it is an EP, it is checked if this EP satisfies the

user requirements. In Figure 7.4, the descending policy evaluation procedure was illustrated as an

example for one partial policy vector and for a one-slot task, meaning that the constraint on its

domain specified in the ITr can be immediately enforced. The complete version of the descending

policy evaluation procedure will be considered in the next sections.

7.3.2.3 Domain refinement

The performance of planning depends on the possibility to make critical decisions earlier and

postpone other decisions until a good opportunity occurs [154]. According to this principle, the

descending policy evaluation procedure was split into several stages and these stages are carried out

in different steps of the planning. Each stage corresponds to the evaluation of policies in one do-

main. So finer-grain decisions can be taken during the planning. The descending policy evaluation

procedure can be interrupted at a certain stage and the planner can switch to the decomposition of

tasks within the current task network. One stage in the descending policy evaluation is realised as

a domain refinement operation. In order to implement these operations, the original planning envi-

ronment is modified. All tasks are specified as localised tasks TAD := 〈task(TAD), domain(TAD)〉,

where task(TAD) is an original task atom, domain(TAD) ∈ TermDD EP is a domain value for the
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task task(TAD) that indicates that it should be executed within the domain domain(TAD) (that

is, the descending policy evaluation algorithm has stopped at this domain for the task TAD). So

EPs used in all tasks generated during the decomposition of the task TAD should be within the

domain domain(TAD).

When the planning starts, no restrictions are specified on the domains of tasks within the initial

task network, that is, a root domain is used as domain value. Methods in the descending policy

evaluation are divided into two disjoint sets: decomposition methods and domain refinement meth-

ods. Decomposition methods are produced based on the BTr development methods, used to the

solve the BTr development tasks (see Section 7.3.1.2). The following updates were introduced for

these methods: during the decomposition, they do not instantiate EP variables and do not modify

the tasks’ domains. The decomposition of tasks in a current task network using these methods is

represented in an abstract way using the function RE(TAD0 , N0). This function represents which

updates to a current state of the planner can be introduced when certain task in a current task

network is decomposed by some decomposition method. So this function is applied to state N0, a

state of the planner formed by the current planner’s world state PlanState(N0) and the current

task network tasks(N0) (N0 = 〈PlanState(N0), tasks(N0)〉), and to task TAD0 , a task in the cur-

rent task network tasks(N0). This function returns a set of alternatives states {N1, . . . Ni . . . , Nk}

produced as a result of the TAD0 decomposition: the task TAD0 is substituted in these states by

alternative task networks TNi16. Constraints on these states, imposed by the updates introduced

for decomposition methods, are specified in Formula 7.24. In each produced state Ni, within the

task networks TNi that substituted the task TAD0 domains for all tasks are equal to the original

domain of the task TAD0 . Additionally, according to the postponed policy enforcement, during the

application of new methods, new partial policy vectors and high-level effects are generated and

existing vectors and high-level effects are refined, as was described in Section 7.3.2.1.

RE(TAD0 , N0) = {N1, . . . Ni . . . , Nk}

∀i ( Ni is equal to N0 where TAD0 is substituted by TNi, (7.24)

∀TADj ∈ TNi ( domain(TADj ) = domain(TAD0 ) ) )

Domain refinement methods are added into the planning domain as a new set of methods. Possible

domain refinements carried out by these methods for a certain task in a current planner’s task

network are represented by the domain refinement function RD(TAD0 , N0). This function is applied

to a current planner’s state N0 and task TAD0 in a current task network tasks(N0). This function

returns a set of alternative states produced when a domain refinement method is applied to the
16These alternative states are produced by different methods, applicable to the task TAD

0 , and different instanti-
ations of variables in their preconditions.
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task TAD0 . In these states, the domain for the task TAD0 in the current task network is updated

by a new domain value, which is a descendant of its original domain. The rest part of the task

TADi and the rest of the task network is not modified by a domain refinement method (except

in the situation when an EP for the task TADi is selected instead of a new domain value, then

the EP-variable within TADi should be instantiated). The constraints on the produced set of

states, imposed by a domain refinement method definition, are specified in Formula 7.25. Using

these methods, the descending policy evaluation is implemented. When a domain refinement is

executed, one step within the descending policy evaluation procedure is carried out. So during

the domain refinement, partial policy vectors corresponding to the current task are evaluated in

a new domain. Correspondingly, when an EP in found, the postponed partial policy vectors are

re-evaluated based on new available information.

RD(TAD0 , N0) = {N1, . . . Ni . . . , Nk}

∀i ( Ni is equal to N0 where TAD0 was substituted by TADi , (7.25)

domain(TADi ) ⊆ domain(TAD0 ) )

Execution of operators is represented in an abstract way using the function ROp(TAD0 , N0). This

function is applied to a current planner’s state N0 and a primitive action TAD0 in a current task

network tasks(N0). This function returns a set of alternative states produced when an applicable

and legitimate operator is applied to the action TAD0 . In the produced states, both the current

planner’s world state and task network are updated. The only exception to the standard operators

execution procedure is the fact that during the descending policy evaluation an operator cannot

be applied until the action task is not fully specified (including a concrete EP that is used instead

of the Dummy EP). Compound actions and obligations are not supported in the current version

of the descending policy evaluation algorithm, because in the BTr development phase of the CEP

construction they are not used.

As was stated, the domain refinement is implemented using domain refinement methods. Three

different types of domain refinement methods are designed. In the general case, for each compound

planning task three domain refinement methods with different types should be specified17. Each

method implements a specific phase of the descending policy evaluation process. Successive appli-

cation of these methods to tasks in a current task network realises the descending policy evaluation

algorithm. The domain refinement procedure introduced extends the basic algorithm for descend-

ing policy evaluation presented in Figure 7.4: it can be applied to any task, not only to a one-slot

task.
17But as will be described later, these methods can be applied only when a specific constraint on this task is

satisfied.
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An abstract state transition diagram illustrating updates introduced to tasks in a current task

network during the planning is presented in Figure 7.5. Abstract states of tasks are determined

by three parameters of the task: number of slots that this task covers in the track (NSl(TAD)),

flag indicating if the domain constraint from the corresponding slot of the ITr was applied for this

task (Enf ITr) and, additionally, when Enf ITr is false and NSl(TAD) = 1, the third parameter is

used to show if the condition domain(TAD) = ITrConstr1 (TAD) is satisfied. The latter parameter

indicates if a current domain of the task domain(TAD) is equal to the domain constraint for this

task in the ITr ITrConstr1 (TAD)18. It is required as there can be situations when the flag Enf ITr

is not set up but the ITr domain constraint for the task is already satisfied. For each state of a task

determined by values of these parameters, a distinct type of domain refinement method is designed.

This guarantees that for each task during the planning at most one domain refinement method

can be applied. Figure 7.5 represents abstract states of tasks and how they are changed during

the planning using the task decomposition and domain refinement. Updates of states carried out

using task decompositions are designated as double arrows lines. During the decomposition, one

task can be substituted by a set of new tasks, but all these tasks can be only in states that the

decomposition arrow points at.

Figure 7.5: State transition diagram for task states during the planning

The domain refinement methods are shown in the figure as single arrowed solid lines. Domain

refinement method M1 is applied to tasks covering several slots of the track. This method assigns

a new domain value equal to the Least Common Ancestor (LCA) for domains that are used as

constraints for slots covered by this task in the ITr. The number of slots NSl(TAD) that are

covered by task TAD is reduced during the task decomposition. So domain refinement methods

M2 and M3 are applied to tasks corresponding to only one slot in the track. Method M2 enforces

the domain constraint from ITr for this task: domain(TAD) := ITrConstr1 (TAD). So it is applied

when current domain of the task is not equal to this domain constraint. Additionally, it sets the

flag Enf ITr to True. Method M3 substitutes the current task’s domain with one of its children.

It is applicable either when the flag Enf ITr is set to True or when the current domain is equal
18The function ITrConstr

1 (TAD) returns a domain constraint in the ITr for the slot that the task TAD corresponds
to. This function is determined only for one-slot tasks.
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to the domain constraints from the ITr: domain(TAD) = ITrConstr1 (TAD). The second condition

is required as during the application of method M1 the enforced LCA value could be equal to the

ITr domain constraint for some slot covered by the TAD task. In this case, during the later task

decompositions, the task corresponding to this slot will be generated already with the domain equal

to its ITr domain constraint. This situation is detected using method M3 and after its application

the flag Enf ITr is set to True, as required. All these domain refinement methods are specified

in a way that they can be applied only when the corresponding conditions on the task state are

satisfied and when the new domain value that they are going to assign is distinct from the current

task’s domain.

7.3.2.4 Algorithms for planning with domain refinement

The descending policy evaluation technique was developed for the BTr development phase of the

CEP generation. During the CEP generation, only fully ordered task networks are used, so in

this section we consider planning with ordered task networks: tasks(N) = 〈TAD1 , TAD2 , . . . , TADn 〉,

that is, ordered task networks are used in problem statements and ordered task networks are used

in methods.

Domain refinement methods constitute a distinct type of methods that should be used alter-

natively with task decomposition methods. In each step of the planning, the planner first of all

chooses which type of method should be applied19. When it backtracks, it can select new methods

only with the same type. So in each planning step, the planner can either execute an operator,

or apply a decomposition method, or apply a domain refinement method. These options will be

referred to as distinct operations.

An algorithm for planning with domain refinement is presented in Figure 7.6. As an input,

this algorithm receives a current state of the planner N and initially empty plan P . In each step,

the first task in the current task network TADCur is processed. In order to choose an operation

that will be applied, the FAF strategy [158] is used, that is the operation with the minimum

branching factor is chosen20. So the branching factors KBr(TADCur) for operations that can be

applied to the first task TADCur are initially estimated. For a compound task, possible operations

are task decomposition and domain refinement. When the branching factors for these operations,

KBr
E (TADCur) and KBr

D (TADCur), respectively, are both equal to zero for the current task, this

indicates a failure, since such task cannot be executed. When both branching factors are equal to

a non-zero value, the domain refinement operation takes precedence over the task decomposition

operation. This decision is based on the following fact. If a task decomposition method is applied
19 Otherwise, the search will not be systematic, that is the same solutions can be produced in different search

branches that the planner explores when it backtracks. This is due to the fact that the decomposition and domain
refinement methods perform different, alternative transformations of the current task network.

20The branching factor is equal to number of alternative search branches that the operation produces, that is the
number of alternative states that should be explorer in the nest step.
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first, one task can be decomposed into several tasks. Hence, further, domains of all new tasks

should be refined separately in different planner’s steps, increasing the overall number of steps.

For a primitive action, domain refinement methods cannot be applied and only operators are used.

When the operation that will be executed is chosen, one state from the set of its output values

is selected. The postponed policy enforcement procedure is applied for this state, in order to

evaluate partial policy requests attached to tasks in its task network (see Section 6.2.4). Only new

partial policy requests and partial policy requests for which new information could be added are

evaluated. If the postponed policy enforcement procedure is successfully executed, this state is

processed further during the planning. When an operator has been executed, the corresponding

action is added to the plan structure P .

DescendingPE(State N,Plan P )
1. If tasks(N) = 〈〉 then Return endif
2. Assign TADCur := first(tasks(N))
3. If TADCur is compound task then estimate KBr

D (TADCur) and KBr
E (TADCur):

3.1 If KBr
D (TADCur) = KBr

E (TADCur) = 0 then Return Failure endif
3.2. If KBr

E (TADCur) = 0 or KBr
D (TADCur) ≤ KBr

E (TADCur) then
Nondeterministically retrieve Ni from RD(TADCur, N). Execute postponed policy
enforcement procedure. If Failure is returned then Return Failure endif endif

3.3. If KBr
D (TADCur) = 0 or KBr

D (TADCur) > KBr
E (TADCur) then

Nondeterministically retrieve Ni from RE(TADCur, N). Execute postponed policy
enforcement procedure. If Failure is returned then Return Failure endif endif

endif
4. If TADCur is primitive action then estimate KBr

Op(TADCur):
4.1 If KBr

Op(TADCur) = 0 then Return Failure endif
4.2. Nondeterministically retrieve Ni from ROp(TADCur, N)
4.3. Update P: P := 〈P, TADCur〉
4.4. Execute postponed policy enforcement procedure. If Failure is returned

then Return Failure endif
endif

5. Call DescendingPE(Ni, P )

Figure 7.6: Ordered planning algorithm with domain refinements

A drawback of the descending policy evaluation, which follows from its design, is the existence

of additional steps required to select an EP (these steps should be done in order to check if policies

in different domains are satisfied). The FAF strategy that we have followed when choosing between

domain refinement and task decomposition methods is a universal method that can lead to the

decrease of the overall number of planning steps and that can be applied to different types of

planners and planning problems. However, in order to apply it efficiently, the planner should

have the possibility to select planning operations in each step of the planning from the available

alternatives, in a way that the overall number of planning steps is decreased (different variations of

this principle were described in [158]). In the previous algorithm, potential gains of this strategy
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are limited, since we consider at each planning step only one task, the first task in the current task

network. So in order to improve gains of this approach, we designed an extended version of the

planning algorithm with domain refinements that can process tasks within the current task network

in any order. Additionally, the application of the unordered planning to the BTr development task

is motivated by the problem specification mechanism that was defined for the CEP generation

problem. Domain constraints in ITr can be specified at different levels of the hierarchy, so they

can limit different parts of the track with different extents. However, according to the described

principle, decisions which are restricted the most should be made earlier during the planning to

reduce the planner’s search space. So, as such decisions could refer to slots near to the end of

the track, there is a need for a planning algorithm providing the possibility to apply planning

operations to different tasks within the current task network in any order during the planning.

In order to apply methods and operators in an unrestricted manner, the following constraints

and modifications to the planning domain specification were introduced. When the unordered

planning is used, the current planner’s world state is not specified fully as operators changing

it are carried out non-sequentially during the planning. Accordingly, in order to ensure that

preconditions of operators and methods are correctly evaluated, they should refer only to literals

with predicate symbols that are not used in operator effects, that is, to the constant part of the

planner’s world state. When an operator is executed, the operator’s effects are not added to the

planner’s world state directly. They are saved in the planner’s world state through specialised

literals Positive(TaskID, p, τ1, . . . , τn), where TaskID is the identifier of the action that has been

carried out and constructs p, τ1, . . . , τn define the literal used in the effect. The predicate symbol

Positive designates that this is a positive effect. Negative effects are added using the same structure

with the Negative predicate symbol. When an operator is executed, the action is not deleted from

the current task network. Instead, it is added into the set SAProc containing actions that have

been already executed and should not be processed further during the planning. Each task in a

current task network is assigned an unique identifier TaskID that is used to relate effects saved

into the planner’s world state with the position within the current task network where they were

added. Since we use only fully ordered task networks, it is possible to restore a sequence according

to which the effects were executed, in order to build a (partial) planner’s world state model for

every point of the current task network.

Effects saved using this procedure in the planner world state are unavailable during the pre-

condition evaluation. They are analysed and used only to create (partial) policy requests, when

a partial policy vector should be evaluated or when an operator referring to some task within the

current task network is carried out. Positive and high-level effects should be added to a policy

request if they are assigned to a task before the action for which the partial policy request is cre-

ated and if they are not clobbered by a negative effect. A positive effect is clobbered by an equal
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negative effect assigned to a task after the task referred in the effect and before the task for which

the policy request is evaluated. A high-level effect is clobbered by a negative effect that refines it

(or is equal to it) and that is assigned to a task after the task referred in the effect and before the

task corresponding to the policy request, or it is assigned directly to the effect’s task.

If there is a need to specify interrelations between different actions and methods during the

planning, like it is done using preconditions and effects, special auxiliary literals are used. These

literals are specified using a dedicated set of predicate symbols. These predicate symbols can be

used in preconditions and they can be added during the planning. However, they are not related to

any specific planner’s world state and are not processed during the policy request generation. They

are used to manage the decomposition process globally21. For example, for the BTr development,

literal used(EP ) designates that the EP was already used in some task within the current task

network, so it cannot be used in other tasks during the planning. In order to define relations

between different tasks, in corresponding methods and operators preconditions referring to these

literals can be used.

DescendingPEunord(State N)
1. If ∀TADi ∈ tasks(N) ( TADi ∈ SADone) then Return Success endif
2. Estimate (update) values of KBr

D (TADi ), KBr
Op(TADi ), KBr

E (TADi ) for all TADi ∈
tasks(N)
3. If primitive action TADp exists such that KBr

Op(TADp ) = 0 then Return Failure
endif
4. If compound task TADc exists such that KBr

D (TADc ) = KBr
E (TADc ) = 0 then Return

Failure endif
5. Choose operation RX(TADi , N), TADi ∈ tasks(N) using the following rules:

- Choose operation with minimum branching factor KBr
min, KBr

min 6= 0
- If several operations have KBr

X (TADi ) = KBr
min, choose an operation based on

operation type priority: first RD, second RE, third ROp
- If several operations with the same type have KBr

X (TADi ) = KBr
min, choose a

task that precedes other tasks in task network tasks(N)
6. Nondeterministically select Ni from RX(TADi , N)
7. Execute postponed enforcement procedure for Ni. If Failure is returned then
Return Failure endif
8. Call DescendingPEunord(Ni)

Figure 7.7: Unordered version of the planning algorithm with domain refinements

An algorithm for planning with domain refinements when operators and methods can be applied

in an order that does not correspond to the order of their application during the plan execution is

presented in Figure 7.7. During each step of the planning, all tasks within the current task network

are analysed. Branching factors for operations applicable to them are estimated22. Similarly as the
21Only a part of the planning domain that is used in the BTr development and validation phases was specified in

this manner. Moreover, the overlapping mobility scenarios were eliminated.
22Not all branching factors are calculated at each iteration. Branching factor values are saved and re-evaluated

only when their values can be updated.
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previous algorithm, the operation with the minimum branching factor is chosen. If there are several

such operations, operation type precedence and operation position precedence are used. Next, the

chosen operation is applied. After the operation is applied, the postponed policy enforcement

procedure is applied to evaluate partial policy requests attached to tasks within the current task

network (only new partial policy requests and partial policy requests for which new information

could be added are evaluated). A plan during the unordered planning is not created as a separate

entity. Since actions are kept in the task network after they are executed, when the planning is

finished, the current task network is analysed and the plan is retrieved from it based on the ordering

of tasks. In order to derive time intervals used in partial and fully specified policy requests, a

specialised mechanism is used, which extends the mechanism used for the ordered version of the

descending policy evaluation. In this mechanism, not only the start time point for an interval

depends on the actions that should be executed before the policy request, but also the end time

point depends on actions that should be executed after the request.

7.4 Conclusion

The main contribution of this chapter is following. In order to implement the CEP development

solution using the problem-independent policy-based planner, described in Chapter 5, the planning

environment for this problem area was designed and the CEP generation problem was specified as

a planning task in this environment. The specification of this environment includes specification of

LObjs, which are used as input and output of the CEP generation process, transformation rules,

which are used to transform LObj properties from one scale to another, and the multi-domain

hierarchical structure that contains the LObjs and defines the overall structure of the planning

environment, interrelations between the LObjs and policies. Importantly, the core processes car-

ried out when a student studies according to a CEP were also specified in this chapter as HTN

planning decomposition methods. These processes are utilised during the planning for the CEP

development. An additional contribution made in this chapter is the application of the postponed

policy enforcement mechanism, described in Chapter 6, to the CEP development planning prob-

lem, what resulted in the descending policy evaluation technique development. The descending

policy evaluation technique is a problem-specific technique that is aimed at the planning perfor-

mance improvements within the initial stages of the CEP development process. In concrete, this

technique optimises the process of EP intervals selection for the BTr development.

The planning environment specifications described in this chapter should be utilised to solve

concrete CEP generation problems. The operation of this planning environment will be considered

in Chapter 9, where corresponding case studies are described. The performance gains that can be

achieved by the descending policy evaluation technique are also analysed in Chapter 9.

204



Chapter 8

Implementation

Objectives:

• Introduce the general architecture and the scope of the pro-

totype.
• Provide understanding of the internal organisation of the

prototype modules.

8.1 Introduction

In order to evaluate the techniques presented in the previous chapters, a prototype tool was devel-

oped. First of all, this prototype tool implements the domain-independent policy-based planning

technique (see Chapter 5) and its extension described in Chapter 6, viz., the postponed policy

enforcement mechanism. When this prototype is provided with the tailored planning environment

specifications that describe the student mobility problem domain (see Chapter 7), it is able to

solve the required task: develop CEPs based on existing EPs and provided requirements.

In order to use the prototype for the CEP development, all necessary information about both

the educational environment where the CEP generation problem should be solved and the task that

should be solved should be provided. The planning domain specification, which contains methods

and operators, specifies the processes carried out within the CEP generation problem area and is

stored within the planner in a compiled, unchanging form (see Figure 8.1). Policies that define edu-

cational rules and regulations for different domains are specified using the XACML syntax in XML

files. They should be saved in a directory where the prototype is configured to retrieve them from.

When the prototype is started, it loads policies from this directory, uploads them into its internal

registry and waits for the planning problems. A planning problem is provided into the planner as

an initial planner’s world state specification and an initial task network. The planner’s world state

contains specification of the educational environment where the CEP generation task should be

solved: the domain tree and the specifications of available EPs. CEP property-requirements, ITr

and a description of the student are also provided within the initial planner’s world state, where

they can be easily utilised during the planning (see Figure 8.1). The initial CEP process model is
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specified as an initial task network. The planning starts when a file with an initial planner’s world

state and an initial task network are provided to the system. However, as policies are dynamic and

can be changed when the planner is running, the following mechanism for dynamic policy updates

was developed. When the policies are updated in the policy directory, names of the policies are

also added to a special file. It contains two policy name lists: one for updated policies and another

for deleted policies. Each time when the planning is initiated, the prototype checks policy updates

in this file and modifies its internal policy repository respectively. When the planning is finished,

the planner shows to the user the CEP process models that has been generated during the planning

and that solves the specified problem.

The descending policy evaluation technique (see Section 7.3.2) was implemented also as part

of the prototype tool. Correspondingly, two versions of the planning domain were developed. The

first version supports the ordinary policy-based planning technique only. In the second version, the

descending policy evaluation technique and, respectively, the postponed policy enforcement, which

it is based on, were implemented. Moreover, the second version of the domain was developed in

such a way that both ordered and unordered planning algorithms can be used (see Section 7.3.2).

So the prototype can be launched in three modes: first, when the ordinary policy-based planning is

used; second, when the descending policy evaluation technique is used with the ordered algorithm;

and third, when this technique is used with the unordered planning algorithm.

The architecture of the prototype is presented in Figure 8.1. Components whose main purpose

is information processing are represented as rectangles. Components whose main function is data

representation are represented as ellipses. Repositories storing data which is rarely modified and

which persist between planning sessions are presented as cylinders. The prototype tool includes

the following main modules:

• Planner module is a component implementing the core planning processes (see Section 8.2).

When required, the planner module interacts with the other components. It requests the

policy evaluation mediator if policies should be checked during the planning and the trans-

formation rules evaluator if rules should be applied to infer new information. Additionally,

the planner module implements functions for interaction with the user using the command

line: initiation of the planning problem solving and display of the results.
• Policy analyser analyses policies when they are loaded into the prototype and generates the

corresponding abstract contexts (see Section 8.4). These abstract contexts are saved into

the abstract context repository of the policy evaluation mediator. The abstract contexts are

used during the planning for the generation of policy evaluation requests (see Chapter 5).

Once the policies are processed by this module, they are registered in the policy repository

within the Policy evaluator.
• Policy evaluation mediator was developed as a component for the realisation of all interme-
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diate processes between the planner module and the policy evaluator (see Section 8.3). The

policy evaluation mediator based on policy request vectors provided by the planner module

generates XACML policy evaluation requests that are passed to the policy evaluator. When

the policy evaluator has evaluated the request, the policy evaluation mediator should process

policy evaluation outcomes and provide the final decision concerning the planning process

continuation or backtracking. Optionally, if the policy evaluation outcomes contain obliga-

tions, the policy evaluation mediator should transform them into an equivalent task network

and return to the planner as well. In order to carry out these functions, the policy evalua-

tion mediator uses a registry with abstract contexts generated from policies loaded into the

system, has access to the object model of the planner’s world state and contains a registry

with obligation validation rules.
• Policy evaluator (see Section 8.5). The main function of the policy evaluator is the evaluation

of XACML policy requests. Its main components are the XACML policy engine and the

policy repository. In addition to the standard XACML policy evaluation, this policy engine

implements mechanisms for the partial policy evaluation, described in Section 6.3.
• Transformation rules evaluator is used to transform notions that are used within the plan-

ner’s world state to other scales using transformation rules (see Section 8.6). The main

components of the transformation rules evaluator are a rules engine and a repository with

transformation rules. The rules evaluator is requested by the planner module and the policy

evaluator, when they require the rules engine to process the request and infer new values

using the transformation rules.
• Supporting components are not presented in the figure. They are subsidiary components

that are utilised by all core components of the prototype. These components are a logging

component and a configuration component. The logging component is used to display log

information to the screen or save it to a log file. Using a set of configuration variables, a

user can specify which events are displayed to the screen and information about which evens

should be saved in the log file. There are 10 different log variables, each of which can specify

different log levels for one event type. The configuration component should read from a file

and apply a set of settings that determine different aspects of the prototype configuration,

for example, a path to the policy directory, the version of the planning algorithm used.
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8.2 Planner module

The planner module was built based on the original SHOP2 planning tool [117], as its extended

and modified version. The SHOP2 is an HTN planner that decomposes tasks and applies operators

in the same order as they will be carried out during the plan execution. This provides a means to

utilise within the method and operator preconditions expressions, which are evaluated against the

current planner’s world state, for example, universal quantifiers, numeric expressions, call external

functions. Currently, there are two implementations of SHOP2, which were developed in University

of Maryland: lisp-based version and java-based version, JSHOP21. In terms of functionality these

versions are almost equal with the difference that JSHOP2 does not support lisp expressions for

comparison and evaluation functions. They are replaced by custom comparison functions and

call-terms, which are implemented as java-functions. We use the JSHOP2 implementation in

the prototype because this guarantees the smooth integration of the planner into the java-based

environment of the prototype. Moreover, as opposed to the lisp version, JSHOP2 is based on

domain-compilation approach: a planning domain specification developed should be compiled into

java-classes that are invoked during the planning. These java-classes are then used as part of the

prototype tool. This approach provides the means to utilise optimisation techniques that can be

applied to the domain during the compilation [77].

Based on the original JSHOP2 planning algorithm, three versions of the policy-based planning

algorithm were developed for this prototype: the ordinary policy-based planning algorithm (see

Chapter 5), the ordered version of the descending policy evaluation planning algorithm and the

unordered version of the descending policy evaluation planning algorithm, which can process tasks

within the current task network in any order (see Section 7.3.2). In the first version of the planning

algorithm, obligations and compound actions support was added to the SHOP2 planner. Addition-

ally, the possibility to transform a linear plan, which is created by the planning algorithm, into a

hierarchical plan was added. Operators and methods for the ordinary version of the policy-based

planner are specified using JSHOP2 syntax (see [77]). Compound actions decomposition methods

were introduced as a distinct class of methods, which unite operators and methods constructs.

Expressions for the assignment of time variables, which define action durations, are specified as

part of preconditions of the corresponding operators and methods. Policy evaluation initiation

and requests to the transformation rules evaluator are implemented using custom call-terms (see

Section 8.2.1). The implementation of the planning algorithm with the descending policy eval-

uation support includes the introduction of different method types (domain refinement and task

decomposition), routines for the estimation and storage of branching factor values, production of

partially known planner’s world states for any task within the current task network (this requires
1http://www.cs.umd.edu/projects/shop/description.html [Accessed 22.04.2014]

209



CHAPTER 8. IMPLEMENTATION

high-level effects support, increasing and decreasing effects sets generation). Additionally, several

packages of custom call-terms were developed, which are used as an elegant tool for extension of

the functionality provided by the planner. These functions are used for policy evaluation and rules

engine requests initiation, for the implementation of problem-specific functions required during the

CEP generation (e.g., a function to check the ‘idle time’ CEP constraint, a function to check that

optional modules selections do not repeat during the planner’s backtracks).

8.2.1 Custom call-terms for policy-based planner implementation

Custom call-terms in JSHOP2 provide a means to call custom functions during the evaluation

of an operator or method precondition. Using the call-terms, parameters of these functions are

passed and their values are returned to the precondition expression (as a value of the call-term).

Call-terms are used in the ordinary version of the policy-based planner for two purposes: in order

to initiate the evaluation of policies for an action and to carry out a request to the transformation

rules engine.

Policy evaluation is initiated using call-term Policy eval that should be included into precon-

ditions of operators and compound actions decomposition methods. The signature of this call-term

corresponds to the policy parameters tuple: Policy eval(ObjSet, ParamSet). Using this call-term,

the planning domain author determines how variables used in the operator or method should be

formed into the policy parameters tuple, which provides values for the policy request generation.

These variables are used along with corresponding object roles and action parameters names in

ObjSet and ParamSet constructs, which are specified as lists within the operator and method

schemas (only list structure is supported by JSHOP2). Function corresponding to Policy eval

call-term is called when this term is evaluated during the evaluation of operator’s or method’s

precondition. It receives all designated objects and action parameter values, which are provided

to it as call-term parameters. After this, this function determines the action name as the task

symbol of the operator or method, from which the function was called, and values ActBeg and

ActEnd, which it extracts from values assigned to time variables during the evaluation of action

duration. Using these values, a fully specified policy vector is built. This vector is passed to the

policy evaluation mediator. A Boolean value returned from the mediator is provided as a value of

this call-term. If this value is not equal to true, further planning is blocked, as this designates that

the precondition is not satisfied.

Transformation rules engine requests are initiated by call-term getRulesV alues. This

call-term should be added into precondition expressions of methods or operators where it is re-

quired to utilise a property value in a certain scale, while in the planner’s world state this property

can be specified in different scales. The following parameters should be provided to this call-term

to initiate a request to the rules engine: getRulesV alues(PredicateSymbol, ?ObjID, scale), where
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PredicateSymbol is a constant representing predicate symbol used as a name of the property that

should be received, ?ObjID is a variable that should be instantiated with an object-term for which

the property is being determined, scale is a constant representing the scale to which the property

of ?ObjID, designated using PredicateSymbol literal, should be transformed. The function imple-

menting the getRulesV alues call-term passes these parameters to the interface component of the

rules engine as a request for possible values of the term X in literal PredicateSymbol(ObjID, X,

scale). The rules engine can derive several values for this term, so call-term getRulesV alues always

returns a list of values. This list of values should be assigned to a variable in the preconditions

expression and processed during the precondition evaluation.

8.2.2 Planner’s world state object model

The planner’s world state consists of two parts: lower level planner’s world state, represented

as literals, and higher-level object model of the planner’s world state. The object model was

implemented as data structures on top of the lower-level planner’s world state of JSHOP2 (which

is a set of ground positive literals). The class diagram for this part of the prototype is represented

in Figure 8.2 and an example of the planner’s world state is shown in Figure 8.3. Classes State and

TermList are used to represent literals stored in the ordinary planner’s world state of JSHOP2.

In JSHOP2, each predicate symbol is mapped to an unique integer identifying it. Therefore, the

lower-level planner’s world state is contained in object State as an array of lists where one list is

used to represent all literals with the same predicate symbol. The index of the array is an integer

indicating the predicate symbol. Each node in the list contains a sequence of terms representing

terms of the corresponding literal. It is modelled using nested structure of TermList objects, where

each object contains a head term, viz., the current term, and a tail of the list, viz., the rest terms

in this list (the tail is represented as another TermList object).

Classes StateGraph, StateObject and IncidenceElem were designed to implement the object

model of the planner’s world state. The object model of the planner’s world state is effectively a

hyper-graph. We have implemented it using the incidence lists data structure [73]: each vertex-

object (i.e., the StateObject object) contains a list of references to incidence edge-objects. This

data structure was chosen based on the following premises: first of all, it provides the possibility to

represent hyper-edges; secondly, it is a structure that fits for storage of sparse graphs that the object

model of the planner’s world state belongs to; thirdly, it is appropriate for effective implementation

of common operations with it (i.e., addition/deletion of edges, retrieval of edges incidence to the

current vertex); moreover, in this structure, edges and vertices are represented as distinct objects

so it is possible to reuse existing objects representing logical terms (i.e., TermList objects) as edges

without the need to duplicate information. For storage of vertices representing objects within the

object model hypergraph of the planner’s world state, an array Objects is used. It is contained in

211



CHAPTER 8. IMPLEMENTATION

StateGraph class, which is a subclass of State class. The index of the array identifies the object

within the object model of the planner’s world state: it is equal to the identifier of the object-term

representing this object (each term in JSHOP2 is mapped to an unique integer). Each object-vertex

is represented as StateObject object. Within this object, three separate lists for different types of

incidence edges are stored: BinPropList for binary properties, PropList for other properties and

RelList for relations edges. This provides the possibility to process these edges separately. Each

edge in the lists is represented using an IncidenceElem object containing an integer identifying the

predicate symbol of the literal and a reference to the TermList object with the sequence of literal’s

terms. Therefore, in the designed ad-hoc structure for the planner’s world state object model,

only the required minimum information is stored. It includes information about object vertices

and their relations within the object model hypergraph. Information about property vertices and

edges themselves is stored using the ordinary JSHOP2 objects.

Figure 8.2: Class diagram for the planner’s world state

8.3 Policy evaluation mediator

The policy evaluation mediator was developed to support interactions between the planner mod-

ule and the policy evaluator and carry out transformations of data structures from the JSHOP2

object model to the XACML object model and back. In order to perform these functions, this

module stores abstract contexts and obligations validation rules in corresponding repositories (see

Figure 8.1). A class diagram for the policy evaluation mediator is represented in Figure 8.4. The

policy evaluation mediator carries out the following main functions:

Policy requests generation. The policy evaluation mediator is called when a policy evaluation
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Figure 8.3: Example of the planner’s world state

call-term is processed during the planning: the policy request vector, containing all required

parameters for the policy request generation, is provided from the planner and the policy

evaluation mediator starts the policy request generation using the algorithm described in

Chapter 5. When generating a request, it uses information stored in the object model of

the planner’s world state and the abstract contexts registry. The policy request definition

in the policy-based planner extends the standard XACML policy request, so the following

conventions are utilised to construct the policy request. Contexts for designated objects are

stored within the tree element as its first level children. In order to distinguish designated

objects with different roles, a role of designated object is used as a prefix for all nodes within

its context. Attribute values for designated objects distinct from objects with ‘Subject’ or

‘Resource’ roles are stored as resource attributes. In order to distinguish attributes of different

objects, a concatenation of a role of the designated object and an attribute identifier is used as

an identifier of this attribute. Corresponding conventions are also used for the specification of

policies. Additionally, since attribute values in XACML are stored and processed in a typed

form, when a policy request is generated, data types of attributes should be determined.

Data types for object attributes are fixed for a pair containing an attribute identifier AttrID
and an object role. For every designated object, obligatory attributes type, id and role have

String data types. For action attributes, data types are fixed for a pair containing an action

name and an attribute name. Obligations and conditions used in the policy-based planner
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are specified as extensions of ordinary obligations in the XACML policy language. After a

request is generated, it is passed to the policy the evaluator for the evaluation. In the class

diagram of the policy evaluation mediator (see Figure 8.4), the PolicyEvaluation class is

responsible for this functionality.
Policy evaluation outcomes processing. After a policy decision request is evaluated by the

policy evaluator, the policy evaluation decision is interpreted by the policy evaluation me-

diator according to the rules defined in Chapter 5 and the outcome (a Boolean value) is

returned to the planner module. Obligations returned by the policy evaluator are processed

and transformed from the XACML object model into an internal data structure: information

about all obligations and conditions attached to one policy decision is represented by one

ActionOutcomes object (see Figure 8.4). For both conditions and obligations, three lists

are contained in the ActionOutcomes object: a before, during and after list. Conditions are

stored as String objects in the corresponding lists. Before, after and during lists of an obli-

gation are represented as OblList objects. This object can contain ordered and unordered

lists and supports transformation of stored obligations into corresponding task networks.

Each obligation in a list is contained as an OblTaskProcessed object. After all obligations

returned by the policy evaluator are transformed into the internal object model, they are

validated against the obligations validation rules, which were specified for the action being

evaluated at the planning domain level. This is carried out by the ObligationV alidRules

object. If the obligations are successfully validated, the ActionOutcomes object is returned

to the planner module for further processing. In order to transform a list of obligations

from the internal object model to the JSHOP2 object model, the OblList object has function

generateTaskNetwork that performs this transformation and returns JSHOP2 TaskList

object containing an equivalent task network. During this transformation, atomic tasks are

generated by the generateTask method of the corresponding OblActionProcessed objects.
Obligations validation rules retrieval and storage. Obligation validation rules are specified

in a file using the language a grammar for which was specified in Chapter 5. When the system

is launched, this file is parsed and objects corresponding to obligation validation rules objects

are created. The ObligationV alidRules object is used as a registry for obligation validation

rules at both the planning domain and policy levels. The ObligationV alidRules class has

methods for the obligation validation rules parsing and for the validation of obligations. The

obligations validation rules registry is also requested by the policy evaluator when it requires

validating intermediate obligations at the policy level.
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Figure 8.4: Class diagram for the policy evaluation mediator

8.4 Policy analyser

In order to generate a policy decision request that contains all relevant information from the

planner’s world state, the abstract contexts mechanism was introduced in Chapter 5. Abstract

contexts are used to specify which information can be required for the evaluation of XPath expres-

sions contained in policies. The policy analyser was developed in order to analyse policies being

loaded into the system and generate abstract contexts for them. The policy analyser consists of

three blocks that sequentially process XPath expressions used in policies: extractor searches and

extracts XPath elements from Attribute Selector elements of XACML policies; parser parses and

verifies these XPath expressions and builds Abstract Syntax Trees (ASTs); and context genera-

tor transforms an AST into a set of abstract context trees, that are used to update the abstract

contexts registry.

In order to implement the parser, we used the ANTLR2 parser generator that generates LL(∗)

parsers based on context-free grammars. This gives the possibility to specify our grammar without

limitations on lookahead. Using this tool, we generate a lexer and parser from the lexer and parser

grammar rules that are specified within a single grammar file using the unified ANTLR syntax. For

this purpose, we have adopted the ANTLR grammar for the XPath language3, which fully conforms
2http://www.antlr.org/ [Accessed 22.04.2014]
3http://blog.jwbroek.com/2010/07/antlr-grammar-for-parsing-xpath-10.html [Accessed 21.04.2014]
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to XPath language specification v.1.0 [33]. We have introduced the following modifications to this

grammar: first, we removed syntax constructs that are not supported by the abstract context

generator4; second, we have added to this grammar AST generation constructs. Additionally, we

have split some right hand-side expressions for parser rules into several sub-expressions in order to

have the possibility to specify distinct generative parts for each sub-expression. ANTLR provides

convenient tools for the specification of AST generation rules in-line with main parsing grammar

rules: operators and rewrite rules. Rewrite rules are more expressive. When they are added to the

rules of the parsing grammar, a full-fledged generative grammar is specified.

We have used ASTs as intermediate data structures between XPath expressions and abstract

context trees in order to eliminate XPath elements that are not used for the abstract contexts

generation and to represent the XPath expression as a tree structure, which provides the basis

for the abstract context trees generation. A basic element of an XPath expression is a location

path, which selects a set of nodes relative to a current set of context nodes5. A location path is

a sequence of steps, separated by ‘/’ symbols. Each step is an expression that defines how new

context nodes can be determined based on the current context node. An AST fragment generated

from one location path has the following form: each step in a path is represented by one node

‘STEP ’, which is a child of a node ‘ABSPATH’ if it is an absolute path or ‘RELPATH’ if it is a

relative path (an absolute path starts with ‘/’ symbol, a relative path starts with a step element).

Parsing/rewrite rules 2 - 4 in Figure 8.5 were specified to generate such AST structures during

the XPath parsing. Generative part of a rewrite rule is specified after the ‘->’ sign (see rules 1

and 4.)6. This part is added to the AST when the corresponding parsing rule is applied during

the XPath parsing. If the rewrite part is not specified, all constructs in the right-hand side of the

parting rule are added to the AST next to the node that was added last (see rules 2 and 3). As

can be seen, if any information is not used for the abstract context construction, it is omitted in

the AST7. For this purpose, redundant elements are omitted in the generative part of the rewrite

rule or, if a rewrite is not specified for the parsing rule, they are marked by operator ‘!’ in the

right-hand side of the parsing rule.

‘STEP ’ nodes have child nodes representing constructs that are used in the XPath expression

to specify how new context nodes should be selected. Thus, a ‘STEP ’ node may have child

constructs representing step’s axis, a node test expression (full qualified node name or a pattern
4Only child, attribute and parent axes are supported. Non-abbreviated syntax for axes is eliminated. As follows,

each element within the XML document that can be utilised during the XPath evaluation should be explicitly
referred in the XPath expression.

5At any time point during the XPath expression evaluation, there is a set of nodes called (current) context nodes.
Each expression (and sub-expression) being evaluated should be applied to each node in this set. As a result of the
expression execution, the current node in the context set is substituted with new nodes produced by the expression.

6When ‘ˆ(. . . )’ construct is utilised, the first element in the brackets is used as a sub-root of the AST, other
elements are its children.

7For example, they are specific symbols (e.g., colons in prefixed qualified names, steps separators in location
paths, brackets) or constructs representing whole entities (e.g., comments, text nodes, variable references).
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to select a node based on its name and type) and a predicate (see rule 4 in Figure 8.5). The axis

is used to define how new context nodes are related with the current context node. The node test

expression is used to select nodes based on their names and types. Finally, predicate part is used

to specify additional conditions that new context nodes should satisfy. By default, ‘child’ axis is

used for all nodes, so this axis is not represented in the AST. When axes ‘.’ and ‘..’ are used,

they are marked in the AST, since they change the way how next context nodes are determined

relatively to the current context node and this should be considered during the abstract context

construction (see rules 4 and 5). Attribute axis ‘@’ is also not represented in the AST since abstract

contexts does not specify restrictions on XML attributes (steps with this axis are not eliminated

during the AST construction since they can contain predicate parts that specify restrictions on

XML elements). Rules 6 and 7 parse ‘nodeTest’ construct of the step, which defines a pattern

that the XML entity should satisfy for its usage as a new context node. In abstract contexts, only

XML elements are represented, so other XML entities, for example, processing instructions and

comments (they are represented as ‘NodeTypeOthers’ token), are ignored. When no restrictions

on some part of the element name are defined in the XPath expression (e.g., placeholders ‘*’ or

‘node ()’ (represented as ‘NodeTypeNode’ token) are used), specialised node ‘ANY’ is added

into the abstract context. Specified parts of the element name (they are represented as ‘NCName’

token or ‘qName’ non-terminal) are added as AST nodes.

1. locationPath : relativeLocationPath ->ˆ(RELPATH relativeLocationPath)
| absoluteLocationPathNoroot->ˆ(ABSATH absoluteLocationPathNoroot);

2. absoluteLocationPathNoroot : ’/’! relativeLocationPath;

3.relativeLocationPath : step (’/’! step)∗;

4. step : nodeTest predicate∗ ->ˆ(STEP nodeTest predicate∗)
| abbreviatedStep ->ˆ(STEP abbreviatedStep)
| ’@’! nodeTest! predicate∗ ->ˆ(STEP predicate∗);

5. abbreviatedStep : ’.’ ->ˆ(SELF) | ’..’ ->ˆ(GOUP);

6. nodeTest : nameTest | NodeTypeNode ’(’ ’)’ ->ˆ(ANY)
| NodeTypeOthers! ’(’! ’)’! | ’processing-instruction’! ’(’! Literal! ’)’!;

7. nameTest : ’ ∗ ’ ->ˆ(ANY) | NCName ’ : ’! ’ ∗ ’ ->NCNameANY | qName;

Figure 8.5: Parsing/rewrite rules for processing location paths and generation of AST

In XPath there are points where location paths can be nested or branched, meaning that more

than one step should be applied to the context node during the XPath expression evaluation.

Nesting of location paths can happen in filter expressions and in steps’ predicates. These parts of

the expression can contain separate location paths. In AST, a nested location path is represented as

a subtree whose root is added as a child node to the ‘STEP ’ node representing location step in the

predicate or filter expression. XPath constructs that can lead to branching are logical connectives
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(and, or), set operations (union), comparison operations (equal, less, more), and others. These

constructs can contain several location paths as operands. When such operations are processed,

the AST should be branched: a new node representing the operation is added and each lower

level location path is added as its child (see examples of rules for processing of these situations in

Figure 8.6).

1. Disjunction: orExpr : E = andExpr (’or’ F = andExpr)∗ ->ˆ(OR $E $F ∗);

2. Conjunction: andExpr : G = equalityExpr
(’and’ H = equalityExpr)∗ ->ˆ (AND $G $H∗);

3. Equality: equalityExpr : A = relationalExpr
((’ = ’|’! = ’) B = relationalExpr)∗ ->ˆ (EQUAL $A $B∗);

4. Relations: relationalExpr : C = additiveExpr
((’ < ’ | ’ > ’ | ’ ≤ ’ | ’ ≥ ’) D = additiveExpr)∗ ->ˆ (REL $C $D∗);

5. Arithmetic operations: additiveExpr : I = multiplicativeExpr ((’-’ | ’+’) J =
multiplicativeExpr)∗ ->ˆ (ADD $I $J∗);

Figure 8.6: Examples of parsing/rewrite rules that introduce AST branching

The complete grammar for XPath parsing and AST generation is represented in Appendix C8.

An example of XPath expression, retrieving information from the context of a designated object

with role ‘Subject’, and an AST that was generated for it are presented in Figure 8.79. This XPath

retrieves names of modules related using any relation with a subject who knows English language

at the level of ‘4’. This XPath request contains two predicate parts: for steps Sub : student and

Sub : lang. At the points of AST corresponding to these predicate parts, the AST is extended

with subtrees with OR root nodes. Nodes representing relative location paths contained in these

predicates parts were generated within these subtrees. This XPath expression contains three

operators that lead to AST branching: two equalities and one conjunction.

The algorithm for the abstract context generation based on AST is represented in Figure 8.8.

The procedure AddPath initiates the abstract context tree generation: it finds the first step and

generates the abstract context tree root. The procedure STEPproc processes STEP nodes of the

AST representing the location path in a recursive manner and generates the rest of the abstract

context tree. When location paths represented in an AST are converted into abstract context

trees, each location path is transformed into a path in the tree. All STEP nodes that are children

of the same RELPATH / ABSPATH are transformed into a simple path. Each STEP node is

mapped to a vertex if the previous step was transformed into an edge or to an edge otherwise (see

lines 2 and 3 in the procedure STEPproc). STEP nodes are processed from left to right in the
8It should be noted that examples of rules from this grammar described in this section were adapted to facilitate

the readability of the grammar rules, in concrete, tokens were defined implicitly in rules’ bodies.
9Within an XML document representing a designated object context, the role of this object in the policy request

is specified in prefixes of XML nodes.
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Figure 8.7: XPath expression, corresponding AST and abstract context tree

AST and new elements are added in the abstract context tree from the root vertex to leaves10.

When a new absolute location path is found, a new abstract context tree is created (see line 4.3 in

the procedure STEPproc). When a new relative location path is found within a subtree where the

current STEP node is used as a root, a new branch for this location path is added to the current

abstract context tree (see line 4.4). This new branch is added to a vertex or an edge representing

the current STEP node. If this STEP node was transformed into a vertex, the first STEP node

of new relative location path is added as a new edge for this vertex. If this STEP node was

transformed into an edge, this edge is cloned and the first STEP node of the new relative location
10When AST STEP nodes are transformed into abstract context vertices, nodes representing a property of an

object are transformed into V ANY vertex, since abstract contexts are not used to filter objects based on their
properties (AST nodes representing object properties are detected using their names: they satisfy the ‘PN ’ pattern,
where N is a position of the property in the literal).
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path is added as a vertex incident with the clone of this edge. After one abstract context tree

is generated, it should be checked that all its edges and vertices have the same prefix (or some

edges and vertices can have no prefix) (see line 4 in the procedure AddPath). GOUP steps are

processed specially. They move the current element in the abstract context tree being generated

one element higher: to the previous vertex or edge. It should be noted, when the evaluation of an

XPath expression used as a top-level expression in an Attribute Selector element is started, the

AddPath procedure is utilised, supporting both absolute and relative top-level XPath expressions.

This is possible since the current context node in this situation is equal to the root of the XML

document being processed.

When the abstract context tree is built, it is added to the abstract contexts registry within

the policy evaluation mediator. As was described in Chapter 5, abstract contexts are organised

using the leading variables mechanism. Each combination of values of leading variables and a role

of the designated object is mapped to a set of abstract context trees. In the prototype, we used

one leading variable: the domain variable. The abstract contexts registry is constructed using

Hashtable objects for mappings and HashSet objects for storage of abstract context trees. The

mapping Domain × Role → {V ertexElement} is stored in order to map a domain value and a

role value to a set of abstract context trees that were generated from XPath expressions retrieving

information from contexts of designated objects with this role used in policies for this domain

(V ertexElement objects contain root vertices of abstract context trees).

All policies specified for a domain are also in force for all its descendant domains. Therefore,

when the ordinary version of the policy-based planning is used, an abstract context tree generated

is ‘merged’ with a tree set for the current domain and tree sets for all lower level domains11. The

‘merge’ operation is used since extracted abstract context tree can repeat some part of an abstract

context tree that already is in the tree set. In this case, only distinct part of the tree should be

added. Correspondingly, a new tree is added to the tree set only if its root vertex is not mergeable

with a root vertex of any tree in the set. Rules for the identification of mergeable vertices and

edges are described in Chapter 5.

8.5 Policy evaluator

The core component of the policy evaluator is the XACML policy engine. This engine carries out

the evaluation of policies for the XACML policy evaluation requests provided. In the prototype,

we have adopted the Enterprise Java XACML 2.0 policy engine12, which fully supports XACML

2.0 specification. We have extended this policy engine in order to introduce mechanisms for

the partial policy evaluation (see Section 6.3). This XACML policy engine has the following
11During the descending policy evaluation, separate policy requests are generated for each domain, so this is not

required.
12http://code.google.com/p/enterprise-java-xacml/ [Accessed 23.04.2014]

220



CHAPTER 8. IMPLEMENTATION

Inputs: CurNode - the first ABSPATH/RELPATH node found during the left
depth-first tree traversal of AST.

Procedure AddPath (CurNode)
1. CurNode := first left STEP child node for CurNode
2. Construct abstract context vertex V based on child nodes of CurNode,
CurElement := V
3. If CurNode has more STEP nodes next to the right then:

3.1. CurNode := next to the right STEP node for CurNode
3.2. Call STEPproc (‘vertex’, CurElement, CurNode)
endif

4. If not all prefixes within the tree with root CurElement are the same or
absent then Raise an exception endif
5. Add the tree with root CurElement to the abstract context registry

Procedure STEPproc (CurType, CurElement, CurNode)
1. If first child of CurNode is GOUP then:

1.1. If CurType = ‘edge′ then CurType := ‘vertex′ else CurType := ‘edge′ endif
1.2. NewElement := element (vertex or edge) of abstract context tree that is

incident with CurElement and is closer to the root
1.3. CurNode := next node to the left from CurNode in AST
1.4. Call STEPproc (CurType, CurElement, CurNode)
endif

2. If first child of CurNode is not SELF and CurType = ‘edge’ then:
2.1. Build NewElement vertex from child nodes of CurNode, add it to the

abstract context tree and make incident with CurElement
2.2. CurType := ‘vertex’
endif

3. If first child of CurNode is not SELF and CurType = ‘vertex’ then:
3.1. Build NewElement edge from child nodes of CurNode, add it to abstract

context tree and make incident with CurElement
3.2. CurType := ‘edge’
endif

4. If there is OR node in child nodes of CurNode then Loop for each OR:
4.1. If NewElement is not instantiated then NewElement := V ANY endif
4.2. FoundPath := first ABSPATH or RELPATH node found during left

depth-first tree traversal of subtree with the OR root node
4.3. If FoundPath = ABSPATH then Call AddPath (FoundPath) endif
4.4. If FoundPath = RELPATH then:

4.4.1. If CurType = ‘edge’ then Element := a copy of NewElement else
Element := NewElement endif

4.4.2. NewNode := first STEP node of FoundPath subtree
4.4.3. Call STEPproc (CurType, Element, NewNode)

Endloop endif
5. If CurNode does not have STEP nodes next to the right then Return endif
6. CurNode := next to the right STEP node from CurNode
7. Call STEPproc (CurType, NewElement, CurNode)

Figure 8.8: Algorithm for Abstract context generation from AST

advantages, in comparison with other XACML engines. It has cache mechanisms, which improve

the performance of the policy evaluation. The policy cache facilitates retrieval of policies applicable

to policy requests being processed. The evaluation results cache saves policy evaluation outcomes
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for the processed policy requests. During backtracking, the planner module can generate repeating

policy requests, so this feature is highly required (although for the performance experiments in

Chapter 9 this functionality was disabled). Other useful features of this engine are extensibility

and integrability of its architecture. Next, it is described how these possibilities of the XACML

policy engine are utilised in the prototype.

The policy evaluator was integrated with the transformation rules evaluator using the mech-

anism of pluggable attribute retrievers, provided by this policy engine. A rules engine attribute

retriever was developed which is called in order to form a request to the rules evaluator. In the

policy specification, the specially introduced Attribute Designators construct is used, which desig-

nates that it is required to retrieve attribute values in specific scale. This Attribute Designator, in

addition to the attribute identifier, contains the scale parameter Scale, which is equal to a scale

in which the value should be returned. This Attribute Designator element is evaluated during the

evaluation of the corresponding policy. When its attribute identifier is equal to a predicate symbol

contained in the list of predicate symbols supported for transformation, the rules engine attribute

retriever is called. It creates a request 〈property,ObjID, Scale〉 to the transformation rules engine.

The attribute name specified in the Attribute Designator is used as the property name property.

The designated object ObjID for which the attribute is being retrieved is determined based on

its role, which is also specified in the Attribute Designator. Another possibility to call the rules

engine attribute retriever is during the evaluation of an Attribute Selector with an XPath expres-

sion. When it is detected that the XPath expression retrieves a property of an object and the

predicate symbol of the property-literal is contained in the list of predicate symbols supported for

transformation, the rules engine attribute retriever is called. In this case, the Scale parameter

for the request should be specified in the predicate part of the XPath step retrieving the property

value.

Moreover, using the extensibility of this policy engine, as part of the partial policy evaluation

implementation, the new combining algorithms and evaluation components, supporting the Inde-

terminate temporal decision and other new values, were developed and registered in the policy

engine instead of standard algorithms. Finally, new functions that can be used in policy conditions

were implemented using functions provider functionality of the policy engine. type -bag-sum(

Bag) function calculates the sum of all numbers in the Bag. modules sim max( Modules bag,

Module, Thrs) function is used for the comparison of modules based on the maximum similar-

ity measure (see Section 7.2.2). It returns True, if the module module is similar with one of the

modules contained in the modules set Modules bag by more than threshold Thrs13.
13Comparison of modules is based on known values of the modules similarity measure simmod(Mod1,Mod2).
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8.6 Transformation rules evaluator

The transformation rules evaluator is requested by the planner module and the policy evaluator

when they need to infer new values during the policy evaluation or during the precondition evalua-

tion using rules specified by the domain author. For the rules engine, we have adopted tuProlog14,

a java-based Prolog engine, which readily integrates into the java environment of the prototype.

The rules evaluator also contains the rules repository, which stores the prolog rules (see Figure 8.1).

The interface component of the rules evaluator is used to support interactions with the requesting

modules: generate prolog queries using information provided, retrieve required information from

the planner’s world state and extract result values from the evaluation outcomes.

8.7 Conclusion

This chapter describes the prototype developed to test the techniques designed in the previous

chapters. The scope of the implementation, the process of the prototype usage and its overall

environment were described. The general architecture of the prototype and descriptions of each of

its main components were provided. Several core techniques for the policy-based planner imple-

mentation were described in more detail, in concrete, the abstract contexts generation technique,

which involves the policy analysis and XPath expressions parsing, and the implementation of the

object model for the planner’s world state. The main contributions of this chapter are the devel-

opment of the general architecture of the prototype implementing the CEP generation framework

and a more detailed design of its components. This prototype will be used in Chapter 9 for the

evaluation of the solution proposed in this thesis.

14http://alice.unibo.it/xwiki/bin/view/Tuprolog/ [Accessed 08.07.2011]
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Evaluation

Objectives:

• Show using case studies the feasibility of the CEP generation

solution designed.
• Evaluate the required properties of the policy-based planner,

which is used as a core engine in the CEP development so-

lution.

9.1 Introduction

In this chapter, the described research is evaluated and its practical applicability is shown. Two

case studies, described in Section 9.2, illustrate the practical applicability of the presented research

for the CEP development support. In these case studies, policy-based planning is used to solve

a planning problem where a set of possible CEPs satisfying the user’s requirements should be

developed based on existing EPs. In Section 9.3, we analyse properties of policy-based planning

that were specified as input requirements for its development. It was required that the planning

should be carried out in environments with heterogeneous regulations managed by several persons

independently. In Section 9.4, several series of experiments are described that were carried out

to analyse the performance of the policy-based planner in planning environments with different

characteristics and evaluate the performance gains produced by different versions of the descend-

ing policy evaluation technique: the version with the ordered planning and the version with the

unordered planning.

9.2 Case studies

9.2.1 Case study 1

In case study one, a medium scale planning environment in considered. In order to create a

sufficiently large planning environment, a domain tree is built using fictitious domains and EPs.

This makes the planning problem easily scalable, as analogous EPs and policies can be used. In

order to solve the CEP generation planning problem in this environment, we have applied the
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approach described in Section 7.3.1.5. In this approach, the planner initially develops a set of

BTrs which are provided to the user and he (or she) has a possibility to update the problem

statement or choose a concrete BTr for the further CEP development. In order to demonstrate the

different possibilities for the BTr development, in addition to the ordinary policy-based planning

(see Chapter 5), the ordered and unordered versions of the descending policy evaluation technique

are used, which were designed to improve the performance of the BTr development phase when

large-scale planning problems are considered (see Chapter 7).

In the scenario for this case study, a CEP with two permanent transfers should be developed

for a student (i.e., when the student does not return to EPs where he (or she) has studied already).

Moreover, this CEP should contain only partner transfers (when receiving and home universities

are partners) according to the established partner network (see Chapter 3).

Planning environment. The domain hierarchy for this case study is presented in Figure 9.1.

There are 2 countries, 5 universities and 15 EPs in this domain. All these EPs are unified: they

have 4 semesters (6 months duration each) and lead to identical awards, BSc in Computer science.

For the aims of this case study, only high-level descriptions of the EPs are provided (without

modules specifications). Within these EP descriptions, it is specified which languages are used for

teaching. The policies of the universities in this domain require that students know all languages

from this set in order to study an EP.

Figure 9.1: Domain tree schema (case study 1)

Policies. Examples of schemas for Country1 and Uni11 policies are presented in Figure 9.2.

Policy sets corresponding to different domains are specified in different files, so they are shown

separately in the figure. Lower level policy sets and policies are specified using nested structures.

XACML AttributeDesignator elements are designated like ordinary variables in the figure. For

example, the ‘in’ attribute designator in policy set targets: this attribute designator is applied to

a resource designated object and returns a domain where this object (i.e., the corresponding LObj)

is contained. As was specified in Section 7.2.3, domains and LObjs form a domain tree, which is a

hierarchy of properties, hence equality relations for them are evaluated considering their positions

in the current domain tree (see Chapter 6). Therefore, a policy set is applicable to all LObjs
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included into a domain which is used in the equality relation in its target. AttributeSelectors,

which select values from the policy request using XPath expressions, are designated as Selector

[〈V alue description〉], where expressions in square brackets describe values retrieved using the

AttributeSelector’s XPath. For example, Selector [EP language] attribute selector is used in a

condition of rule in the policy P6 that specifies requirements to language level of a student. It

returns a set of languages that are required for the education at the EP where the student wants

to study.

In this case study, analogous policies are specified for all domains at the same level. The country

policy sets (for example, PS2) contain only policy sets with language constraints, consisting of two

policies. The policy for international students P2 contains a rule that such students in order to

study in this country should know one of the languages that can be used for teaching in this

country, at the required level1. For native students, the separate policy is specified where language

requirements are omitted (it is assumed that such students know the required languages). The

university policy sets contain the following policies. Firstly, an university admission policy P5

prescribes that only students with certificates from specific countries can be admitted for studying

at BSc programmes. Next, the policy set PS4 defines a partner network for the university using

the following rules. If a student transfers from another university, he (or she) can be admitted

to the university only if the previous university is within a specified set of partner universities.

The policy P3 within this policy set defines inner-universities transfers rules: these transfers are

permitted only for native students2. In addition to the mentioned earlier policy for EP language

requirements (P6), the university policy P7 imposes limitations on durations of EP intervals that

can be studied in the university. If a student transfers to the university for a probation period (in

this case, the action tranfer IT is used to designate a temporal transfer), the duration of study

should be less than 7 months. If a student transfers to a university to get a degree (in this case,

the action tranfer IP is used to designate a permanent transfer), he (or she) should study at the

EP that he (or she) will graduate from for a period longer than 10 months.

Policies in different domains differ in constants used in their condition parts. Policy constants

for all policies are presented in Table 9.1. For example, a partner network policy for the university

Uni21 can be read as “in case of inter-university transfer, the student can transfer to Uni21 only

from Uni22 or Uni12”. The partner network, defined by these policies, is presented in Figure 9.1. It

also should be noted that this case study considers only BTr development, so in all policy requests

the student is used as as an designated object with the role ‘subject’ and the EP interval that this

action refers to is used as an designated object with the role ‘resource’.

1Language levels are specified and compared according to the CEFR scale.
2That is, they are permitted for students from the country where the corresponding university is situated.
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Table 9.1: Specification of constants, used in policy rules for different policies (case study 1)
Policies Domains / Constants

P S2 Study policy (P2
Foreign students)

For Country1 For Country2
Lang1, Lang3 Lang2, Lang3, Lang4

P S4 Partner network
(P4 Inter transfer)

For Uni11 For Uni12 For Uni13 For Uni21 For Uni22
Uni12 Uni11, Uni13 Uni12 Uni12 Uni11, Uni13
Uni22 Uni21 Uni22 Uni22 Uni21

P5 Admission Country1 Country1 Country1 Country2 Country2
Country2 Country2

P6 Language level (EP
requirements)

EP1, EP2 : EP4, EP5 : EP7 : Lang3 EP10, EP11 : EP13 : Lang2
Lang1 Lang1 EP8, EP9 : Lang2 EP14, EP15 :

EP3 : Lang1, EP6 : Lang3 Lang1 EP12 : Lang3, Lang3,

Lang3, Lang4, Lang4

Problem statement. It is required that a CEP with three slots and two transfers is created

for student Student1. The higher-level task Degree(Student1, T rack1, Awardreq) is used in the

problem definition as the initial task. The ITr specified as Track1 = 〈Country1, Country2, Uni21〉

(see Figure 9.1) determines sets of EPs that can be used in each of the three slots of this CEP.

The student should start the education in Country1, then transfer to Country2 and, finally, make

a transfer within Country2 in order to graduate from university Uni21. So the student must

make two permanent transfers during the education. A fragment of the initial planner’s world

state, which is used in this problem, is presented in Figure 9.3. In this problem, only a minimum

amount of information necessary for this case study is specified. It is defined that Student1 is from

Country1 and has a certificate from this country. He (or she) knows languages Lang1 and Lang2 at

levels 6 and 4 respectively, according to the CEFR. His (or her) goal that should be achieved using

the CEP developed is a degree in the area of Computing according to the ISCED taxonomy with a

level equivalent to the first cycle of the EHEA QF issued by an education provider in Country2. As

is shown in Figure 9.3, values of properties that can be specified using different scales are specified

along with their scales, as was described in Chapter 7. This enables the conversion of these

properties using transformation rules. Additionally, the time constraints for the resulting CEP are

specified within the initial planner’s world state: minimum CEP start date (tBeg = 〈01, 09, 2011〉),

maximum CEP end date (tEnd = 〈15, 09, 2013〉) and a maximum time interval between adjoining

EP intervals in the CEP (δt = 3).

Course of planning. In order to solve the problem, we first use the original version of

the policy-based planning. When the planner is started, abstract contexts are created based on

Selector elements of the policies given. As all policies are homogeneous, abstract contexts for

different domains on the same level are equal. Abstract contexts generated based on the country

and university policies are presented in Figure 9.4. According to the country’s context, only

information about the student’s language qualification and citizenship should be added into the

228



CHAPTER 9. EVALUATION

Figure 9.3: Initial planner’s world state (case study 1)

context. According to the university’s abstract contexts, in addition to the student’s language

qualification and citizenship, information about his (or her) previous education should be added:

both about EP intervals studied within the CEP being developed and pre-HE certificates, that are

analysed when the student is admitted to a university. In addition, for the EP used as a designated

object with the ‘Resource’ role, information about the award level and durations of possible EP

intervals should be added. Since policies for a specific domain are in force for all its descendant

domains, abstract contexts derived for a domain are merged with contexts for all its ascendant

domains. In this case study, abstract contexts for EPs are absent and contexts for countries are

included in the contexts for universities. Correspondingly, the abstract context that is used during

the generation of a policy request where an EP is used with the ‘resource’ role is equal to the

abstract context for the university of this EP.

Figure 9.4: Abstract contexts for university and country policies (case study 1)

The task networks decomposition structure that the planner has generated before the first CEP

is found is presented in Figure 9.6. Numbers in circles designate the order of the decomposition

execution. The initial task Degree(Student1, T rack1, Awardreq) can be decomposed only using
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method represented in Formula 7.3.1.2 that implements two permanent transfers student mobility

scenario. One permanent transfer student mobility scenario (see Formula 7.15) cannot be applied,

since it is not applicable to three-slot tracks. The probation period student mobility scenario (see

Formula 7.3.1.2) is not applicable, since the same EP cannot be used in the first and the last

slots. Therefore, when the planning starts, using the method in Formula 7.3.1.2, the Degree task

covering three slots is decomposed into three one-slot tasks. The EP interval |EP1|(1,1) is chosen

within Country1 for the Start degree task (when the planner backtracks, other applicable EP

intervals from Country1 will be tried for the Start degree task). Next, the tasks generated are

decomposed in the order according to which they will be executed during the education: first, the

task Start degree is decomposed into three actions and they are immediately executed3. During

the execution of actions, policy requests are generated and evaluated. These policy requests are

evaluated against policies for the Country1 and Uni11 domains. Example of the policy request for

the &study interval compound action, which is generated using the described abstract context,

is presented in Figure 9.54. According the abstract context, information about student’s language

skills is added into the context of the student object5. Relying on his (or her) level of lang1

language, Country1 policy returns a Permit decision. During the policy evaluation for the Uni11

domain, his (or her) language skills are checked against the EP1’s language requirements, which are

represented using EP language attribute of the resource designated object (it is retrieved using an

attribute designator in the policy). These requirements are also satisfied. Policy decisions generated

by the domain policy sets are combined using deny − overrides policy combining algorithm and

finally a Permit decision is returned by the policy engine. Other information added into the policy

request contexts is required by policies for other actions, for example, information about student’s

certificates and the educational level of the EP that the student studies is used during the admission

policy evaluation. Information about studied EP intervals (represented using history predicate)

is absent in the planner’s world state, as the considered action &study interval is carried out

within the first slot of the track. Information about EP interval durations for the EP used as the

resource designated object is represented in literals with predicate symbol ‘duration interval’6. It

is utilised by the EP interval durations policy of the university. In the described manner, all policy

requests generated for actions that decompose the Start degree task are evaluated. They all are

permitted and corresponding operators are successfully executed.

Next, the task Proceed degree is decomposed into actions. During this decomposition, the EP
3&choose modules compound action is not used in this case study, as at the level of the BTr development optional

modules are not selected within EP intervals used in the BTr.
4The policy request is shown without the time parameters.
5It is used in the request as designated object with the ‘Subject’ role.
6The first, second and third terms in this literal specify the EP interval (they contain the identifier of EP object

and numbers of the start and end semesters of the considered EP interval). The fourth and fifth terms specify
duration of the considered EP interval, that is, the number of years and months. The last term contains the
duration in days.
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Figure 9.5: Policy request for &study interval action. Original policy-based planning.

interval that will be used in the second slot is chosen within Country2. For each EP in the country,

only two EP intervals (|EP |(2,2) and |EP |(2,3)) are considered, because the planner checks that the

time interval between the adjoining EP intervals does not exceed the specified limit. In our case

study, it is three months so after the last odd semester in |EP1|(1,1) only an even semester can be

the first semester in slot 2. First, EP intervals for EP10, EP11 and EP12 are sequentially tried,

but they all are denied during the evaluation of policies for the action &tranfer IT . These EPs

belong to Uni21 that does not have partner relations with Uni11, where the student has studied

during the first slot. In Figure 9.6, numbers of dead-end decompositions are shown inside red

circles. For each rejected EP interval, two decompositions have been spent: the decomposition of

Proceed degree, when an EP interval is chosen, and the operator execution for the &transfer IT

action, when it is recognised that this branch is illegitimate. After these dead-ends, the planner

tries the |EP13|(2,2) interval, which is from the Uni22 university and which can be used in this

slot according to the partner network policy of the university Uni11. Other policy checks for

this EP return positive or N/A results as well: conditions in the EP interval duration policy are

satisfied, as duration of this interval is 6 months, the language level policy returns ‘Permit’ since the

student knows Lang2. Finally, the task Finish degree is processed in the similar manner. An EP

interval |EP10|(3,4) is tried first. All actions generated with this EP interval are legitimate: the EP

interval duration is one year (this is enough for the interval duration policy for the &transfer IP

action) and Student1 knows language Lang 2 (this is required for studying EP10 according to

the language level policy). After the execution of the !graduate action, the first BTr is found:

〈|EP1|(1,1), |EP13|(2,2), |EP10|(3,4)〉.
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Figure 9.6: Task network decompositions structure. Original policy-based planning.

When the first BTr is found, the planner starts backtracking: from the last produced tasks

to the first task. For each task, it searches for other possible EP intervals. This case study was

designed in a way that in each slot only one EP interval for each EP can be used: other BTrs are

incorrect because of the EP interval duration policy, or the overall CEP duration constraint7 or the

limit on time intervals between slots (i.e., ‘idle time’). From the partner network diagram it is clear

that possible sequences of universities where the student can study are 〈Uni11, Uni22, Uni21〉 and

〈Uni13, Uni22, Uni21〉. There are no sequences starting from 〈Uni12, Uni21〉, because Student1 is

from Country1 and inner-university transfers are denied for international students by the policy

of Uni21 university. The EP language requirements limit the number of EPs that can be used in

each university. In the first slot, the student can study only EP1 and EP2 in Uni11 and EP8 and

EP9 in Uni13. In the second slot, only EP13 is legitimate, and in the third slot - EP10 and EP11

in Uni21. All 8 BTrs where different combinations of these EPs are used were generated by the

planner.

Figure 9.7: Task network decompositions structure. Descending policy evaluation.
7Duration of actions, which update time variables during the planning, are equal to durations of the corresponding

EP intervals.
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When the descending policy evaluation technique is used, abstract contexts are not merged

with contexts for the descendant domains, because policy requests are evaluated separately for

each domain. Hence, abstract contexts constructed for country policies and university policies (see

Figure 9.4) are used separately, for the generation of policy requests at the country and univer-

sity level. Since abstract contexts for EPs are absent, the designated object contexts for policy

requests at this level are not created. The task network decompositions structure generated dur-

ing the planning before the first BTr is found is presented in Figure 9.7. The ordered version of

descending policy evaluation decomposes tasks from left to right, in the same order as tasks are

executed during the education. The order of decompositions execution is shown using numbers

in circles. Domain refinement methods are designated as red arrows, decomposition methods -

as black ones. The first decomposition is the same as in the previous version8 with the differ-

ence that for all three generated tasks EP intervals are not selected. Instead, the root domain

is used as the current domain for these tasks. In addition, during this decomposition high-level

effects and partial policy vectors are created and attached to the generated tasks. One high-level ef-

fect history(Student1, T rack1, Slot num,Dum EPi, NIL,NIL) is attached to each Start degree,

Proceed degree and Finish degree tasks. It shows that Student1 in slot Slot num studies EP

Dum EPi. Dum EPi is a dummy EP created for this slot and representing all known properties

of the EP which will be used studied in this slot. These properties include the currently known

domain of the EP (country or university), the level and area of its award, which are known from the

student’s requirements (in our case it is a degree in Computing with a level equivalent to the first

cycle of the EHEA QF). High-level effects with predicates passed exams and admitted are attached

to the Start degree task and one with education predicate is attached to the Finish degree task.

Additionally, after the first decomposition, each task has three partial policy vectors attached, rep-

resenting 3 actions that will be executed when this task is fully decomposed. Each partial policy

request uses Student1 object in the subject role and the corresponding Dum EPi object in the

resource role. Action parameters in these partial policy requests contain only slot number. Time

intervals of these requests are loose, they represent possible action execution time computed based

on the CEP start and end time limits. These partial policy requests are not evaluated at this stage

of the planning, because they refer to the root domain, which does not contain policies.

The ordered descending policy evaluation algorithm first chooses for processing the task

Start degree. Only domain refinement methods are applicable to this task at this stage, so the

planner refines the domain for this task in the following sequence: root → Country1 → Uni11 →

|EP1|(1,1) and updates the domain of the dummy EP used in the corresponding high-level effect

and partial policy vectors. In the second step, it applies the domain constraint specified in the

corresponding slot of the ITr (Country1 domain) and sets Enf ITr flag to true. During each re-
8Similarly with the original policy-based planning, other methods cannot be applied to the Degree task.

233



CHAPTER 9. EVALUATION

finement of the domain, the planner evaluates all three partial policy requests in a new domain.

The policy request for the action &study interval in the domain Counrty1 is presented in Fig-

ure 9.8. This policy request uses DummyEP1 as a resource. Only in attribute is specified for it,

because other binary object properties for this dummy EP are not known at this stage. Context

information about this object is not required according to the abstract context at the county level.

The context for the student object, which is used as a resource designated object, contains only

information about the language levels and citizenship, because other available information is not

required according to the corresponding abstract context. This partial policy request is evaluated

to Permit, because it contains all available information for evaluation of the policy set for the

Country1 domain. Partial policy requests for !admitT and !transfer OP are evaluated to N/A,

because country policy sets do not contain corresponding policies. Partial policy requests for the

Uni11 domain can be derived from the country policy requests if the domain of DummyEP1 is

updated to Uni11 and information about student’s certificate is added into the subject’s context

and information about DummyEP1 level is added into the resource’s context, according to the

university abstract contexts in Figure 9.4. So the partial policy request for !admitT is evaluated

to Permit according to the Uni11 policies, because this request indicates that the student has a

certificate from the Country1 domain and an EP that will be used in this action will have a level

equivalent to the first cycle of the EHEA QF9. Partial policy requests for the !transfer OP and

&study interval actions are evaluated to N/A and IndTemp respectively. A permanent decision

for the latter request cannot be inferred as the request does not specify languages required for

studying the EP. These requirements should be checked during the evaluation of the language level

policy (partial policy evaluation mechanism detects that language requirements can be added to

the resource context further, as a dummy EP is used). During the final domain refinement, the EP

interval is chosen for the Start degree task. DummyEP1 is substituted with real EP1 and, hence,

a fully specified policy request can be generated. Policy requests generated for EP1 return N/A,

since corresponding policies are not specified. However, after their evaluation, postponed policy

request for the &study interval action is re-generated and re-evaluated for the Uni11 policy. This

policy request becomes equal to the request in Figure 9.5 and is evaluated to Permit. After these

domain refinements, the task Start degree is decomposed into actions !admitT , &study interval

and !transfer OP . During their execution, high-level effects are changed to ordinary effects. Poli-

cies for them are not evaluated since all required evaluations were carried out for higher-level

tasks.

Next, domain refinements are applied to the Proceed degree task. The domain constraint

from the ITr is applied and the domain is changed to Country2. Evaluation of partial policy
9Since a dummy EP is used as a resource, new information can be added about it but available information

about its level is sufficient to infer a permanent decision by this policy.
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Figure 9.8: Partial policy request for &study interval action in Country1 domain. Descending
policy evaluation.

requests for Country2 is identical to evaluation of requests for the previous task at the country

level (request with &study interval action is evaluated to Permit, other requests - to N/A).

After this, the university is chosen. First, Uni21 is tried, but then the partial policy request with

the &transfer IT action is evaluated to Deny, because of the partner network policy. During

backtracking, the next university, Uni22, is tried. The partner network policy for this university

permits the transfer, but the interval duration policy returns IndTerm, because the dummy EP

is used and durations of its semesters are not specified. These decisions are combined into the

IndTemp decision, indicating that action &transfer IT should be re-evaluated further. When

the interval |EP13|(2,2) is chosen for this task, it is evaluated as Permit. The planning proceeds

for the Proceed degree and Finish degree tasks without dead-ends until the first BTr is found.

Partial policy requests for actions &study intervals and &transfer IP are evaluated to IndTemp

at the university level, because the EP language constraints and intervals durations are not known

then. However, when this information is available, they are permitted. Other policy requests

are evaluated to N/A. It should be noted that the domain constraint in the ITr is specified for

the Finish degree task at the university level. So, when this constraint is applied, policies are

evaluated for university Uni21 and country domain Country2 in one step, therefore, only two

domain refinements are required for this task. When the first BTr is found, the planner starts

backtracking. When a domain refinement operation is backtracked, the next possible EP interval
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or domain is tried, in order to develop new BTrs. So the planner generates all 8 BTrs, which were

created by the previous version of the planning algorithm.

The task networks decomposition structure generated when the unordered version of descending

policy evaluation is used is the same as the structure for the ordered version. The difference is in the

order according to which the tasks are processed. The numbers of steps for the unordered version

are shown in diamonds in Figure 9.7. This version of the planning algorithm uses the branching

factor minimisation principle to select a task for further processing. Minimum branching factors

for tasks Start degree, Proceed degree and Finish degree at different steps of the planning, when

they are specified for different domains, are shown in Table 9.2. Branching factors estimated before

the application of ITr domain constrains are equal to one (only one domain refinement method

can be applied). Therefore, tasks with the root domain are decomposed one immediately after the

other. After these domain refinements, partial policy requests are evaluated in new domains: for

the first and the second slots they are Country1 and Country2. For these requests Permit and N/A

decisions are returned. For the third slot, Uni21 is used, so policy requests for &transfer IP and

&study interval are evaluated to IndTemp because of the partner network and language policies.

After this step, the minimum branching factors are equal to the number of branches generated

using the domain refinement methods, that is, to the number of children for the current domain.

So the task Proceed degree, having the minimum KBr (equal to 2), is refined next at step 5. First,

Uni21 is chosen and a dead-end is detected. But it is not the action &transfer IT at slot 2 that

is evaluated to Deny. Indeed, the partial policy request for this action is evaluated to IndTemp,

because university in slot 1 is unknown in this step. However, after the evaluation of the policy

requests for the Proceed degree task, postponed partial policy requests for other tasks are re-

evaluated. The partial policy request for the action &transfer IP , attached to the Finish degree

task, is evaluated to Deny, because, based on the universities chosen, an inner-university transfer is

detected, which is prohibited for international students by the university policy. So the last domain

refinement is backtracked and the next university Uni22 is tried for the task Proceed degree. All

policy requests after this refinement are evaluated to IndTemp andN/A, so the planner successfully

goes to the next iteration where it processes the Start degree task, for which the Country1 domain

is refined into Uni11. For partial policy requests attached to the Start degree task, all policies

are evaluated to Permit, IndTemp and N/A. After their evaluation, postponed policy requests

for Proceed degree and Finish degree are re-evaluated (however, decisions for these requests are

not updated). When the current domain for a task is a university, the minimum branching factor

for such task is equal to the number of possible EP intervals, which can be used in this task.

Hence, branching factor increases when a university is chosen as a task’s domain. In this case

study, each university has the same number of EPs, so such tasks have equal branching factors

(equal to 9). Therefore, EP intervals for tasks within the current task network are chosen in
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the order according to which these tasks will be executed during the education. When an EP

interval is selected, the minimum branching factor is equal to number of branches that can be

generated using decomposition methods (because domain refinement cannot be applied to such

tasks anymore). Only one decomposition method, producing one branch, can be applied to such

tasks, so they are decomposed immediately and primitive actions produced are immediately carried

out (they also have branching factors equal to one). Therefore, primitive actions are carried out

in the same order as in the ordered version. Additionally, when an EP interval for one task is

selected, branching factors for other tasks where EP intervals are to be selected are re-evaluated

and reduced based on the information about the already chosen EP interval (see lines 9 - 14 in

Table 9.2). All policy requests generated for tasks with known EP intervals are fully known and

permanent decisions are always returned for them. Using the unordered version of descending

policy evaluation, the same set of BTrs as when using the previous versions is generated.

Table 9.2: Minimum branching factors for tasks estimated before planning step execution
Step Start dgr P roceed dgr F inish dgr Step Start dgr P roceed dgr F inish dgr

2. Root - 1 Root - 1 Root - 1 13. - Uni22 - 6 Uni21 - 9
3. Country1 - 3 Root - 1 Root - 1 14. - EP13 - 1 Uni21 - 3
4. Country1 - 3 Country2 - 2 Root - 1 19. - - Uni21 - 3
5. Country1 - 3 Country2 - 2 Uni21 - 9 20. - - EP10 - 1
7. Country1 - 3 Uni22 - 9 Uni21 - 9
8. Uni11 - 9 Uni22 - 9 Uni21 - 9
9. EP1 - 1 Uni 22 - 6 Uni21 - 9

Discussion. In the presented case study for the BTr development, three versions of policy-

based planning technique were used. It can be concluded that in all three versions the same

scenario for the CEP construction was chosen, the same alternative EP intervals for the BTr

construction were considered and all required policies were correctly evaluated. So all 8 correct

BTrs were found by each version. The difference between the original policy-based planning and

the ordered descending policy evaluation is in the task network decompositions structures, since

the decomposition methods used in the original version were divided into domain refinements

and new decomposition methods. The domain refinement methods introduce extra steps into the

planning, during which policies can be evaluated for higher-level domains. These extra steps bring

performance gains, when policy requests are denied at domain levels. This can be seen at the

considered fragments of the decompositions structures. The same deny decision received from the

university policy leads to one extra step during the descending policy evaluation and 12 extra

steps during the original policy-based planning. In Table 9.3, it is shown that the number of steps

required to find all plans has reduced from 674 to 469 when the descending policy evaluation is

applied10. Another feature of the descending policy evaluation, which leads to a reduction of the
10Technical decompositions, which are executed along with the problem-specific decompositions in order to realise

the descending policy evaluation, were not counted here. These decompositions are plain and do not involve choice
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steps number, is the fact that all policy requests become fully specified when an EP interval is

chosen for a compound task. Hence, if a policy request is denied at this level, it is not required to

decompose such task to primitive actions and execute them. For example, this happens when for

some ‘. . . degree’ task it is discovered that an EP cannot be studied by the student, because of

the language policies. On the other hand, new domain refinement operations increase the number

of policy request evaluations, since policies should be evaluated separately for different domains

and re-evaluated several times if the IndTemp decision is received for a partially known policy

request. Despite of this increase, the main characteristic, CPU time, is reduced, when the ordered

descending policy evaluation is applied. The reason for this is the fact that the average time

for evaluation of one policy request in the original version is 0, 1s11. All policies applicable to

an EP should be checked during this period. Such significant amount of time is also caused by

time-consuming operations with XML-based XACML policies and requests. For the descending

policy evaluation, the average time of a policy request evaluation is 0, 034s, because only policies

for the current domain are involved12. Generally, during the descending policy evaluation, when

a partial policy request is evaluated at some domain, policies of this domain are evaluated for

all EP intervals belonging to this domain. Only when some required information about an EP

interval is missing, these policies should be re-evaluated separately for each EP interval that will

be considered. On the other hand, in the original version, domain policies are always evaluated

for each EP interval separately, even if during their evaluation information about the EP interval

is not required. As we can see, in this case study the cumulative effect of the optimised policy

evaluations and the number of steps reduction resulted in 50% CPU time reduction for the ordered

version of descending policy evaluation.

Table 9.3: Three versions of the planning algorithm comparison (case study 1)
All plans First plan

Version Plans CPU time Steps Requests CPU time Steps Requests
ORG 8 54 674 404 8,68 25 15

DPEORD 8 26,74 469 794 7,09 22 34
DPEUNORD 8 21,43 211 438 7,88 22 48

When the unordered version of the descending policy evaluation is applied, using the branching

factor minimisation principle the structure of the search-space tree should be optimised, meaning

that the number of nodes should be reduced. Despite the fact that we have not seen this effect in

the fragment developed for the first plan (22 steps were used by both versions), when all possible

plans are developed by the planner, the number of states is reduced by 55 % (see Table 9.3)13.

points, like problem-specific decompositions.
11When the average time for the evaluation of one policy request is estimated, only requests that have some

applicable policies are taken into account, that is, requests that produce decisions distinct from ‘N/A’.
12Irrelevant policies are filtered at the initial step of policy evaluation using the policy targets mechanism.
13Moreover, we have carried out an additional experiment where 2 versions of the descending policy evaluation

were compared for the problem when all policy requests are evaluated to Permit. The size of the full search-space
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Another positive impact of the unordered planning is the possibility to determine legitimate paths

on the universities level, without the need to decompose tasks to the EP level. For example, the

transfer between the second and third slots is illegal for the current student if the student transfers

within one university, Uni21 (i.e., the transfer is from one EP to another). As we have seen, this

was detected in step 5 when the unordered version is used. So Uni21 is not considered further as a

possible university in the second slot and the university Uni22 is chosen for this. Moreover, when

during the further planning the university Uni12 is considered for the usage in the first slot, it is

immediately rejected during the re-evaluation of the partial policy request for the &transfer IT

action in the second slot, since the transfer to Uni22 is not a partner transfer. Whereas, in order to

reach the same outcomes using the ordered version, it is required to try all possible combinations

of EP intervals within Uni12 for the first slot and within Uni21 for the second slot (6 EP intervals

and one EP interval, respectively). All together, more than 78 steps were required for this14. The

number of policy requests reduction is less than the reduction for the number of steps and is equal

to 45%. Indeed, when the unordered version is used, extra policy evaluations should be carried out.

After a task is decomposed, in addition to the evaluation of requests for this task, policy requests

that have been evaluated to IndTemp and attached to other tasks should be re-evaluated. Finally,

taking into account the fact that the average amount of time required to evaluate one policy request

has slightly increased to 0, 035 sec., the overall CPU time was successfully reduced from 26, 7 to

21, 4 sec.

BTrs generated by the planner in this case study should be used for the initial analysis of

CEPs that can be created. Using them, a user can reformulate the planning task or select a BTr

that will be used as the basis for the detailed CEPs elaboration. Hence, the user can direct the

planner to a preferable area of the search space. The procedure of the detailed CEP construction

based on the chosen BTr is similar to the problem considered in the next case study, where the

planning task is specified using lower level domains and EPs. As was shown, the descending

policy evaluation performance gains depend on policy decisions, received during the planning, and

other peculiarities of the planning domain. Impacts of different factors on the descending policy

evaluation performance will be evaluated using series of experiments in Section 9.4.

9.2.2 Case study 2

The second case study considers a small scale planning problem where it is required to develop a

CEP with one permanent transfer. The ITr for this problem consists of one lower level domain

and an EP, so this significantly limits the planner’s search space for the BTr development. In this
tree, which was generated by the planner in this experiment, is reduced from 2057 to 1740 states using the unordered
version. This shows that the positive effect of the branching factor minimisation principle in this case study occurs,
even when the parts of the search-space are not eliminated by Deny decisions.

14We have counted only steps which were used to produce a fully valid transfer from Country1 to Uni21 and have
not considered steps leading to intermediate dead-ends, occurred during this search.
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case study, we consider that a detailed specification of the CEP should be developed (including

the process and structure models). Additionally, this case study illustrates the possibility to solve

problems in a real educational environment, so most of the problem data (policies and EPs) are

adopted from the real world.

Planning environment. A domain hierarchy (see Figure 9.9) represents a part of a real

HE environment. A small-scale problem is considered, so only the required domains and EPs are

included into the domain hierarchy. It contains three countries: Russia, UK and Ukraine. In each

country, one university is presented: Bauman Moscow State Technical University (BMSTU) in

Russia, Kharkov Polytechnic university (KhPU) in Ukraine and University of Birmingham in UK.

Four EPs are added: three MSc, which are used for the CEP construction, and one BSc, which is

used for the specification of the previous education of the student. All MSc EPs are adopted from

real EPs in corresponding universities. Their complete descriptions are constructed in accordance

with the EP model in Chapter 7 and placed into the planner’s world state. Descriptions of these

EPs are presented in Appendix D and contain description of their semesters, compulsory and

optional modules, including their credit values and pre-requisites.

Figure 9.9: Domain tree schema (case study 2)

For the comparison of modules from different EPs in terms of their learning outcomes values,

the similarity measure simmod(Modi,Modj) will be used (see Chapter 7)15 This measure is used

for the recognition of modules and module’s prerequisites checks during the policy evaluation. In

addition to this similarity measure, in policy rules conditions the maximum similarity measure for

modules µmaxmod (LObj,Modi) is used to estimate the similarity of a module and a larger LObj (e.g.,

semester or EP interval). As was described in Section 7.2.2, this similarity measure is equal to

the maximum similarity measure between the module Modi and some module Modj contained in

LObj: µmaxmod (LObj,Modi) = maxModj∈LObj{simmod(Modi,Modj)}. For example, in the BMSTU

policy, there is a condition that a module-prerequisite is satisfied if its similarity with some module
15We consider values of this measure as given in this case study.

240



CHAPTER 9. EVALUATION

studied by the student is more than 70 %. Moreover, at a higher level of the planning, learning

content-based measures are used to filter EPs that are considered for some slot based on already

known EP intervals in other slots of the CEP. In concrete, when |EPj | has been chosen in the first

slot, an interval of EPi can be used in the second slot only if the value of the average between

maximum similarity measures Kavg
mod(|EPj |, EPi) ≥ 0.5. This measure was defined in Section 7.2.2

as an average of maximum similarity measures between |EPj | and modules in EPi (in |EPj | only

modules studied by the student are considered, in EPi - all optional and compulsory modules)16.

Policies. For this case study, some policies are adopted from policies in force in real domains,

other policies are fictitious. As can be seen in Figure 9.10, within a policy set for a domain, policies

and policy sets managing distinct aspects of the education are specified. In order to distinguish

the application fields for these policies, first of all, their targets contain conditions on the action

used in the policy requests and, additionally, some extra conditions can be used (e.g., on the type

of resource). As a full CEP development procedure is carried out in this case study, the policies, in

addition to constraints, specify obligations, which are used to construct domain-dependable task

networks extensions during the planning

As example, a schema of the Russia policy set is represented in Figure 9.11. Its admission policy

set PS2 is composed of a policy for students with BSc degrees from Russia, Ukraine or Kazakhstan

P3 and policy for other students P4. Rules for these policies were extracted from Russian ministry

orders and Federal laws ([112, 113]): students can be admitted to an MSc degree if they have a

BSc degree in the same area from a state university in Russia, Ukraine or Kazakhstan; if they

have BSc degrees in the same area from other countries, these degrees should pass the official

recognition procedure. Other students cannot be admitted to MSc programmes. Other policies in

Russia policy set are the diploma award policy P1 and the study policy P2. The diploma award

policy specifies the number of credits that a student should have in order for the university can

grant him (or her) an MSc degree. Credits requirements are specified in credit units adopted in

Russian Federation (RF) domain (one credit is equal to 36 notional hours). In order to convert

credit values in credit units of other domains, corresponding transformation rules are used17. The

study policy specifies requirements to the structure of EPs in RF: each module should be more

than two credits, each semester should not contain more than 35 credits and not less than 1/8 of

them should be credits earned using optional modules. These policies were extracted from State

Educational Standard for MSc degrees in Software Engineering [135]18.

Other policy sets for domains are described in Appendix D. For instance, they include the
16When a CEP is constructed using |EPj | and EPi, some modules in EPi should be recognised based on |EPj |

modules. The introduced requirement is aimed to filter EPs which are not similar to each other and which, therefore,
cannot be used for the CEP construction.

17In this case study, credit units adopted in UK domain are also used. We assume that one such credit unit
corresponds to 10 notional hours.

18Regulations specified in this standard were re-formulated in order for they can be enforced on the introduced
LObj data model.
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Figure 9.10: High-level policy schema (case study 2)

following policies. Prerequisites evaluation policies determine the method used to take a decision

if prerequisites for an EP interval are satisfied and the condition which is checked for an individual

prerequisite of a module. For example, the BMSTU policy set PS4 specifies that for each module

60% of prerequisites must be satisfied19. Policies for optional modules groups are usually specified

within EP policy sets. They define possible combinations of modules that should be selected in

order to close this group of optional modules. The transfer policies specify the procedure that

should be carried out to fulfil the student transfer, for example, if a credits recognition should

be done, which type of recognition can be used (one-to-one, one-to-many or many-to-many), if

the student must or can pass an additional assessment procedure in order to recognise his (or

her) credits. Additionally, these policies determine conditions that should be satisfied in order to

recognise a module or carry out a student transfer, for example, how many credits can/must be

recognised, how many modules can be recognised by an additional assessment.

19The BMSTU policy for individual prerequisite evaluation was specified earlier in this section.
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Problem statement: student Pavel from Ukraine with a BSc in Programming from KhPU

is going to enter BMSTU and study an MSc in Software engineering. However, he wants to study

in two different universities during his MSc course. After some period of study in BMSTU, he

means to transfer to the School of Computer science in University of Birmingham and graduate

with an MSc in Computing there. The initial task, which should be solved by the planner in this

case study, is Degree(Pavel, T rack2, Award
r). Track2 = 〈EP3, D

3
1〉 is provided as ITr. It is a

2-slots track, where in the first slot an interval of EP3 should be used and in the second slot an EP

interval can be buil from any EP within the D3
1 domain (see Figure 9.9). The previous education

and language skills of the student are specified within the initial planner’s world state. The award

requirement Awardr specifies that the goal of the student is a UK degree in Computing (according

to the ISCED taxonomy) with an MSc level (according to the UK NQF, i.e., level 7). Moreover,

similarly to the previous case study, within the initial state time constraints for the result CEP

are specified (tBeg = 〈20, 08, 2011〉, tEnd = 〈30, 10, 2012〉, δt = 3).

Course of planning. As a two-slot track is used in the problem statement, the initial task

Degree can be decomposed only by the method implementing a ‘permanent transfer’ scenario

(see method 7.15). In turn, tasks Start degree and Finish degree are one-slot tasks and can be

decomposed only into task networks containing primitive and compound actions. According to the

ITr constraints, during the decomposition of the Degree task EP intervals |EP3|(1,1), |EP3|(1,2) and

|EP3|(1,3) can be chosen for the Start degree task. During the decomposition of the Finish degree

task, |EP1|(2,3), |EP1|(3,3) and |EP2|(2,3), |EP2|(3,3) are considered, as EP1 and EP2 satisfy the

domain ITr constraints and their awards satisfy the requirements for the target award. These

EP intervals are sequentially tried during the planning. However, as we have the time limitation

such that a CEP duration should be less than one year and two months, EP intervals |EP3|(1,2)

and |EP3|(1,3) are eliminated. So |EP3|(1,1) is used in the first slot. When EP2 intervals are

tried during the planning for the second slot, they are filtered by the constraint on the average

of maximum similarity measures (Kavg
mod(|EP3|(1,1), EP2) = 0.47). This average value for EP1 is

equal to 0.69, so at the second slot only EP intervals |EP1|(2,3) and |EP1|(3,3) are considered20.

A detailed description of the planning procedure, where these EP intervals are tried, is described

further.

First, the task Start degree(Pavel, T rack2(1, 1), |EP3|(1,1)) is decomposed using the first method

in Figure 9.1221. The student is admitted, modules are chosen and he studies the EP interval

|EP3|(1,1). Eventually, the student transfers permanently to another EP. When the first action,
20According to the time constraints specified, both these EP intervals can be used in the second slot, when
|EP3|(1,1) is used in the first slot.

21In the task network decomposition schema, only auxiliary actions !concur start, !concur end and !change line
are shown, which are used to define pseudo-parallel actions (see Chapter 7). Auxiliary actions CA start and CA end
(see Chapter 5), which are used to define compound actions, are eliminated in order to simplify the schema and
make it more readable.
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Figure 9.12: Task network decompositions structure in case study 2

!admitT , is executed (point 2 in Figure 9.12), the policy request is permitted by the corresponding

policies within EP3 and Russia policy sets (P10 and P3). Additionally, the admission policy for

EP3 specifies that students must pass an exam in math. So the before-obligation !sit exam is

generated during the policy evaluation. A new policy request for the !sit exam action is created

during its execution. According to the policy P11, this request is evaluated to Permit and an after-

condition is generated designating that the student’s mark for this exam should not be less than 4

(point 3 in Figure 9.12). When the before-obligation !sit exam has been executed, preconditions

and the policy request for !admitT are re-evaluated. It is checked that their outcomes are not

changed during the before-obligation execution.

Next, the compound action &choose modules is decomposed and executed (see point 4 in

Figure 9.12). This compound action is decomposed into the task Choose modules find groups,

which searches for groups of optional modules within the current EP interval and processes them

in separate threads using pseudo-parallel actions. Since |EP3|(1,1) contains only one group of

optional modules, this task contains in the decomposition structure only one thread. For each

group found, a task choose modules group is generated, which recursively tries to select different

combinations of modules, until the group can be closed. A policy request for action !choose module

is evaluated to Permit if this module can be chosen, considering already chosen modules from this

group. A policy request for the action !close group is evaluated to Permit if the current group

can be closed according to the policy. For the optional modules group in |EP3|(1,1), containing

modules A7 and A11, the policy P8 specifies the following rules: only one module can be chosen

from the group and the group can be closed if one (and only one) module is chosen. During the

execution of the choose modules group task (see point 6), first, a module A7 is chosen and the

policy request for the !close group action is permitted (see point 7), so the group is closed and
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other its modules cannot be chosen. The planning goes further, but when the !close group and

!choose module actions and the corresponding decompositions are backtracked, moduleA11 is tried.

The compound action &study interval models a study period, carried out according to the EP

interval |EP3|(1,1)|. It is decomposed into one compound action &study sem(. . . , |EP3|(1,1)|, . . . ),

representing the education of the student in one semester: the first semester of EP3. In turn, this

task is decomposed into a pseudo-parallel actions, at each thread of which the student studies one

module (it is modelled using an action !study mod). The details of the process of &study interval

action execution is described in Section 9.3.2 (the schema of the &study interval decomposition

is shown in Figure 9.15). During its execution, it is checked that according to the policies the

student can study all modules. Additionally, during the evaluation of policy requests for actions

!study mod, before-obligations are generated initiating the module prerequisites evaluation. The

prerequisites evaluation method and specific conditions that should be checked are specified in the

policy set PS4 using obligations and have been described earlier. During the execution of these

obligations, it is confirmed that prerequisites of obligatory and selected modules in |EP3|(1, 1) are

satisfied.

Figure 9.13: Task network decompositions structure in case study 2 (cont.)

The primitive action !transfer OP is used to designate a permanent transfer, meaning that the

student has transferred from BMSTU and will not return to it in the future. There are no policies

for this action, so it is evaluated to N/A. The Finish degree task is decomposed into an ordered

task network (see the first decomposition in Figure 9.13), consisting of &transfer IP compound

action, which models the process of transferring the student to University of Birmingham with the

aim to graduate from it, and compound actions &choose modules and &study interval, applied
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to the EP interval |EP1|(2,3). At the end of this task network, action !graduate designates the

graduation of the student from EP1 and granting him the corresponding award.

Transfer rules are defined in the University of Birmingham by faculties. The policy P20 of

the Computer science school always permits compound action &transfer IP , but generates two

during-obligations, hereby defining the routine according to which this transfer should be carried

out (see point 2 in Figure 9.13). The compound action &recognise indicates that modules of EP1

can be recognised during the transfer (if the student has studied equivalent modules in another EP).

After the possible recognitions are carried out, the next compound action &evaluate difference is

used to estimate the difference that could remain between the interval |EP1|(1,1), which the student

should have studied, and the recognised part of |EP1|. This task also provides the possibility to

pass extra exams in order to decrease this difference and make the transfer possible. The policy

P23 specifies the procedure for the recognition. According to it, when a policy request with the

action &recognise is evaluated, the during obligation Recognise 1 1 is returned. This task defines

the recognition routine during which only one-to-one modules recognition can be carried out. The

task Recognise 1 1 produces pseudo-parallel actions processing one module in one thread. Recur-

sively, it processes all modules in the EP interval |EP1|(1,3)
22 using tasks Recognise 1 1 recurs

and Recognise module 1 1. The former task implements the recursion. The latter task is ap-

plied to the module which is recognised in the current thread. During its execution, all modules

that the student has studied are tried as possible variants for the recognition. So, the next task

Process module to recognise is applied to two modules: the module that can be recognised and

the module that was studied and can support this recognition (see point 6). The latter modules,

which were used to support a recognition, cannot be used for further recognitions. Therefore, the

method for the decomposition of Recognise module 1 1 goes over all possible studied modules and

stops when a new variant of recognition is found. If the new variant of recognition is not found, the

planning goes forward, as not all modules must be recognised according to the task Recognise 1 1.

In this manner, all possible variants of the recognition can be tried one by one. When an optional

module is recognised, additionally, the action !choose module is executed and a trial to close the

corresponding modules group is carried out23. In our case study, the policy P21 permits to ex-

ecute an action !recognise module 1 1(Mod1,Mod2, . . . ) when simmod(Mod1,Mod2) ≥ 0.7 and

the number of credits for Mod1 is equal or greater than Mod2’s credits. The first possible variant

of recognition is A8 → B1, A3 → B2, A1 → B11, A7 → B4, A4 → B5. During the execution of the
22During the transfer, modules from both intervals of the EP, which the student transfers to, can be recognised:

the interval of the EP that the student is going to study and the EP interval that the student should have studied
before the transfer according to the EP.

23In Figure 9.13, point 7, a variant when the compulsory module B1 is recognised is represented. In
tasks Recognise module 1 1, Process module to recognise, Choose module close group, which are carried out
for its recognition, dummy na parameter is used instead of the optional modules group. Therefore, the task
Choose module close group, which is designed to select an optional recognised module and try to close the group
where it is contained, is decomposed into an empty task network.
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task &evaluate difference, using the action !discard difference it is checked that the minimum

requirement for the recognised modules are satisfied and the transfer can be carried out. In case

not enough modules have been recognised, during the execution of &evaluate difference action

the student can pass additional assessments based on which more modules can be recognised (this

is designated by the action !evaluate). The policy P22, which defines constraints for the execu-

tion of !discard difference action, requires that all modules that the student should have studied

according to the EP interval |EP1|(1,1) (i.e., a part of the EP before the transfer) must be recog-

nised. The only module that is not recognised within this EP interval is B3. However, this module

contains only 10 UK credits, so, according to the policy P22, the student can pass an exam and

this module will be recognised for him. Therefore, during the execution of the method decompos-

ing the &evaluate difference compound action, the action !evaluate is executed for this module

(see point 12)24. As a result, all required modules are recognised for the student and the action

!discard difference is permitted for the execution by the policy P22 (see point 14). Next, when

the compound actions &choose modules and &study interval are executed, the action !graduate

is evaluated according to the policies P13 and P15. The policy P13 requires that the student should

have not less than 180 UK credits (or an equivalent amount of credits in other scales). The policy

P15 requires that not less than a half of these credits is granted for modules studied by the student

in the University of Birmingham. These two conditions are satisfied, so the action !graduate is

permitted and the award of EP1 is granted to the student.

Table 9.4: CEP structure generated (case study 2)
Semester University Module / Credits Sum

1 BMSTU A1 A2 A3 A4 A5 A6 A7 (Opt.) A8 RF Cr.
4 4 4 3 4 3 5 3 30

2 Univ. of B6 (Opt.) B7 (Opt.) B8 UK Cr.
Birmingham 20 10 30 60

3 Univ. of B9 UK Cr.
Birmingham 60 60

The process model of the designed CEP is presented in Figure 9.14. The corresponding CEP

structure is presented in Table 9.4. During backtracking, for the same BTr, 〈|EP3|(1,1), |EP1|(2,3)〉,

another possibility for the recognition of modules is found. In |EP1|(1,1), modules B4 and B11 can

both be recognised using the module A1 as well as A7. Therefore, in the new recognition variant,

modules that are used for the recognition of B4 and B11 are swapped. The process model for the

second variant is updated correspondingly, but the CEP structure model is not changed. During

the further backtracking, |EP1|(3,3) is tried in the second slot. So semesters 1 and 2 of EP1 should

be recognised during the transfer. However, according to the recognition rules in the policy set
24After a module is evaluated, it is processed using the same procedure, as when it is recognised. When the

module is optional (e.g., module B3), it is chosen and a trial to close the corresponding modules group is carried
out.
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PS12, this cannot be done because the difference in modules content is too large. When this is

detected, the backtracking is continued and, finally, when it comes to the action &choose module

within the Start degree task, the module A11 is chosen from the group of optional modules in

|EP3|(1,1), instead of A7. With the updated set of modules in |EP3|(1,1), the planning goes further,

but during the execution of the &study interval compound action it is detected that the module

A11 cannot be studied by this student25. Thereby, the found CEP with the two possible process

models is the only CEP, which can be created to solve the problem in this case study.

Figure 9.14: CEP process model generated (case study 2)

9.3 Planning in environments with heterogeneous regulations

The policy-based planner was designed to provide the means to use the automated planning tech-

niques in environments where regulations, which determine legitimate processes, are composite,

applicable only in certain contexts and are specified by different persons. The policy-based planner

provides this possibility using the policy language as a tool for the specification of such regula-

tions. As was demonstrated in the case studies, the XACML policy language can be used to specify

educational regulations that possess the described properties of the heterogeneity. These regula-
25According to the policy P9, the student studying this module should be a citizen of RF.
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tions were specified as separate policies and policy sets, which manage different aspects of the

educational process and are applicable only in certain contexts. These policies can be specified by

different persons independently, because during the policy evaluation policy decisions, returned by

different policies, are combined using policy combination algorithms, which determine the routine

for the conflict resolution. Moreover, different policies and policy sets can be specified in different

files. In this section, we will analyse the possibilities of the policy-based planner to enforce relevant

policies depending on the current situation during the planning.

9.3.1 Enforcement of relevant policy constraints

In this section, we analyse how different sets of constraints can be specified and enforced during

the planning and possible levels of granularity of these constraints. For this purpose, we use the

planning environment specified for the first case study. In that case study, policies were used to

specify different constraints on the educational processes modelled using the planning environment.

As was shown in Section 9.2.1, the same policies are evaluated and the same plans are generated

by all three versions of the policy-based planning algorithm, so in this section we consider only the

original policy-based planning algorithm.

Using this planning environment, we observe which factors can result in changes of the policies

being enforced during the policy evaluation. For this purpose, 9 scenarios with different planning

problems were created. In these scenarios, different ITrs and students, for which a CEP should be

developed, are used. In addition to Student1, used in the first case study, Student2 and Student3
are introduced. These students have certificates from Country2 and aim to get a degree in the area

of Computer Science issued in Country2 with a level equivalent to the first cycle of the EHEA QF

(BSc). Student2 knows languages Lang2 and Lang3, while Student3 knows only Lang2. We have

considered in detail the evaluation of two policy requests and collected policy decisions returned

during the evaluation of these policy requests in different scenarios runs. Some of these policy

decisions along with the policy requests are presented in Table 9.5. Using information about these

decisions, we can see which policies are enforced during the policy evaluation at specific points

during the planning (i.e., which policies have returned non-N/A decision).

First of all, a policy is enforced only if the policy request contains a relevant EP: an EP that

is a descendant for the domain of this policy. As can be seen in Table 9.5, admission policies

for Uni11, Uni12 and Uni13 return non-N/A decisions only for policy requests (with the !admitT

action) where an EP from the corresponding university is used26. The action, which is used in

the policy request, also determines the policies that should be enforced. When an action in a

policy request matches an action in the policy target, this policy becomes applicable. For example,

admission policies and study policy sets return non-N/A decisions only when the corresponding
26When N/A* decision is used, the fact that the policy is irrelevant was detected using higher-level policies, e.g.,

an N/A decision was returned by a target of the whole university policy set.

250



CHAPTER 9. EVALUATION

Table 9.5: Policy decisions received during execution of different scenarios
Scenario Policy request Policy decisions

EP Pol. Pol. Pol. PS Study Country1
# Student ITr at Action Admit Admit Admit Target P home P int.

1 slot Uni11 Uni12 Uni13 student student

1 Student1 〈Uni11,
Country2,
Uni21〉

EP1
or
EP2
or
EP3

admitT Permit N/A* N/A* N/A - -
study int. N/A N/A* N/A* Applic. Permit N/A

2 Student2 admitT Deny N/A* N/A* N/A - -
3 Student3 admitT Deny N/A* N/A* N/A - -

4 Student1

〈Uni12,
Country2,
Uni21〉

EP4
or
EP5
or
EP6

admitT N/A* Permit N/A* N/A - -
study int. N/A* N/A N/A* Applic. Permit N/A

5 Student2
admitT N/A* Permit N/A* N/A - -

study int. N/A* N/A N/A* Applic. N/A Permit

6 Student3
admitT N/A* Permit N/A* N/A - -

study int. N/A* N/A N/A* Applic. N/A Deny

7 Student1

〈Uni13,
Country2,
Uni21〉

EP7
or
EP8
or
EP9

admitT N/A* N/A* Permit N/A - -
study int. N/A* N/A* N/A Applic. Permit N/A

8 Student2
admitT N/A* N/A* Permit N/A - -

study int. N/A* N/A* N/A Applic. N/A Permit

9 Student3
admitT N/A* N/A* Permit N/A - -

study int. N/A* N/A* N/A Applic. N/A Deny

action is used in the request. Hence, actions in policy targets designate phases of the process

modelled during the planning when this policy should be enforced. Furthermore, different policies

can be enforced based on finer grain aspects (e.g., different properties of the student, the EP or the

action). For example, within the study policy set for Country1, two policies are distinguished: for

home students and international students. In the policy targets of these policies, a condition on

the citizenship property of the subject is used. Hence, different policies are enforced for Student1
from Country1 and for Student2 and Student3 from Country2.

In order to illustrate other cases of independent policy enforcement, we run three more scenarios

in the same planning environment. These scenarios are run for Student2 and different ITrs (see

Table 9.6). We analyse policy decisions returned by the university partner network policies for

policy requests with !transfer IT and !transfer IP actions in slots 2 and 3. As can be seen from

the table, different policies are enforced depending on the EP which was studied by the student

immediately before the policy request. If the previous EP and the EP where the student is going

to transfer to are from the same university, the policy for inner-university transfer is enforced.

Otherwise, the inter-university transfer policy is employed within the partner network policy to

derive a decision about legitimacy of the student transfer. Therefore, different policies can be

enforced based on the information about actions that have been executed by the planner before

the policy request evaluation. This history information can be utilised if it has been saved as the

effect of an action in the planner’s state and has any relations with designated objects in the policy

request being evaluated.

Hence, during the policy-based planning, when an action is executed, different policies can be

enforced depending on the planner’s action itself and all information about this action that can

be included into the policy request, generated by the policy-based planning mechanism for this
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Table 9.6: Policy decisions received during execution of different scenarios (cont.)
Scenario History Policy request Policy decisions

PS Partner PS Partner
# ITr EP at EP at EP Action network Uni21 network Uni22

1 slot 2 slot used P Inner P Inter P Inner P Inter
transfer transfer transfer transfer

1
〈Uni12,
Uni21,
Uni21〉

EP6 - EP10 or transfer IT N/A Permit N/A* N/A*
EP11 (slot 2)

EP6 EP10 EP11
transfer IP

Permit N/A N/A* N/A*
(slot 3)

2
〈Uni13,
Uni21,
Uni21〉

EP7 - EP10 or transfer IT N/A Deny N/A* N/A*
EP11 (slot 2)

3
〈Uni13,
Uni22,
Uni21〉

EP7 - EP13
transfer IT N/A* N/A* N/A Permit

(slot 2)

EP7 EP13 EP10 transfer IP N/A Permit N/A* N/A*
EP11 (slot 3)

action. This information includes the action name, action parameters, objects used as designated

objects for this action. Moreover, all information that can be retrieved about the designated objects

from the planner’s world state can also affect the policy applicability: their binary properties, like

citizenship of the student, or relations with other objects and information that can be extracted

about these objects, like education providers of EP intervals studied by the student. Information

inferred using transformation rules can also be taken into account, like number of credits assigned

to a module that can be converted to credit units of different countries. The history about the

execution of actions, which have been carried out by the planner, can be taken into account if it is

saved into the planner’s world state as effects that have some relations with designated objects in

the policy request. Changes in this information can result in the enforcement of different policies,

as within targets elements of policies, constraints on this information can be specified limiting

the policy applicability. In the considered case study, the hierarchical organisation of policies is

used: first of all, all policies are divided based on the domains that they are applied to. The

domains form a hierarchy and one action corresponds only to one leaf-domain, so conflicts can

occur only between policies corresponding to domains laying on a path from the root domain to

the leaf-domain. Conflicts between these policies are resolved in a way that Deny decision takes

precedence, that is, in order to execute an action, it should be permitted (or an N/A decision can

be produced) by all these policies. Within the domain policies, first of all, constraints on action

names are used to distinguish different policies, next, other finer grain constraints can be used. In

general, other criteria with different priorities and different number of levels can be used to define

a hierarchical policy structure or other policy structures can be specified using XACML targets

and policy nesting mechanisms (e.g., a flat structure, where only one policy can be applicable

to a policy request). Different organisations of policies determine when a specific policy can be

applicable and how conflicts are resolved, when several policies return decisions for the same policy

request.
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9.3.2 Enforcement of established routines

In this section, we analyse the possibility to enforce different established routines using the policy-

based planner. In a planning environment with heterogeneous regulations, in order to carry out the

same task, different procedures can be used in different domains or even within the same domain.

For example, in the second case study, different routines can be carried out when the student

transfers from one university to another. They can differ in a way how credits are recognised and

how a decision about the student transfer is taken. In terms of the HTN planning, this results in

a requirement to decompose the same task into different task networks, depending on the domain

where it is executed and, possibly, other factors. Moreover, rules that determine the resulting task

network can be specified by different persons independently.

In the policy-based planner, the task networks generation mechanism, which is based on policy

obligations, is developed in order to support planning environments with such regulations. We will

examine the task networks generation mechanism using the second case study, where it was used

for the specification of routines for the evaluation of prerequisites. When a CEP is developed for

a student, the prerequisites of modules should be checked. However, usually some number of un-

fulfilled prerequisites can be permissible. The number of unfulfilled prerequisites can be evaluated

on the level of modules, on the level of semesters or EP intervals. Hence, different routines for the

estimation of unfulfilled prerequisites and for taking the decision if a student can study this EP

interval can be specified. For example, assume that in BMSTU prerequisites should be evaluated

for each module separately. In the BMSTU policy set, it is specified that for the !study mod action

a before-obligation &check prereq mod should be generated (see Figure 9.15). This prescribes that

before studying a module, a prerequisites evaluation procedure should be applied. Moreover, for

the compound action &check prereq mod, different routines can be used as well. For example, in

BMSTU, not all prerequisites for a module must be fulfilled, specifically, in order to study a mod-

ule, only 60 % of its prerequisites should be met. In the BMSTU policy set, this is specified using

a rule that for the &check prereq mod action a during-obligation Satisfy prereq mod should be

generated. The task Satisfy prereq mod is used to enforce the described rule. During its exe-

cution, all prerequisites of the module are checked and, then, the action !IC check prereq mod

is executed. Policy constraints for this action are used to check if the required number of the

module’s prerequisites is satisfied. A fragment of the task network representing one semester study

period at BMSTU is shown in Figure 9.15.

In contrast, the University of Birmingham prerequisites are evaluated on the level of semesters

in the considered case study. In the corresponding policy set, there is a policy that for each

compound action &study sem a before-obligation &check prereq sem and an after-obligation

!IC check prereq sem should be generated (see Figure 9.16). During the execution of the &check
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Figure 9.15: Task network representing one semester study period, generated within the BMSTU
domain

prereq sem compound action, all the prerequisites of modules that should be studied in the

corresponding semester are evaluated. The action !IC check prereq sem is executed after the

&study sem compound action. It is used to finally decide if all conditions for studying this

semester, including the prerequisites, were satisfied by the student27. In the University of Birm-

ingham policy, there is a condition that this action is permitted only if the sum of credits for the

unfulfilled module-prerequisites is less than 30 UK credits. As we can see, different task network

structures were generated in these two domains during the execution of same task. These differ-

ences have appeared due to different obligations, specified for the involved actions in the domain

policies.

Therefore, using the task networks generation mechanism of the policy-based planner, dif-

ferent task networks can be generated depending on obligations specified in the policies being

enforced. The task networks produced during the decomposition are extended using before- and

after-obligations generated during the policy evaluation for actions contained in this task network.

During-obligations extend the task network in depth and form a new level of the task network de-

composition. In the policy-based planner, obligations generated during the policy evaluation can

form their own task network, with the corresponding ordering constraints. They are united with

the task network of the planning method being applied using HTN planning constructs. There-

fore, structures of task networks being generated in policy-based planning are determined by two

specifications: HTN planning methods, specified in the HTN planning environment, and policy

obligations, specified in policies. The HTN planning methods are applicable throughout the whole
27It is executed after the &study sem action because during the execution of &study sem a set of modules that a

student will study in this semester can be changed. In some domains, modules that student cannot study according
to the policies can be removed from the EP.
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Figure 9.16: Task network representing one semester study period, generated within the University
of Birmingham domain

environment and are changed only with the HTN planning environment, while obligations, speci-

fied as part of policies, possess all useful policy properties. They can be changed dynamically, while

the planner is running. Obligations can be specified by different persons independently, as part of

different policies. Moreover, they are enforced only in specific situations, when the whole policy,

containing it, is applicable in a current situation. The possible level of granularity for obligations

specification is the same as for policy constraints, which were analysed in Section 9.3.1, because

an obligation is tied to the policy where it is specified. In order to specify which obligations can

intervene into the planning process when a certain action is executed, the obligations validation

mechanism was developed. Using this mechanism, it is possible to define the set of task networks

that can be returned by the policy engine in response to a policy request with a specific action.

9.3.3 Planning in an environment with dynamically changing regulations

Heterogeneous regulations are supported by different persons independently, hence, they can be

updated by them in an uncoordinated manner. Policies used in the policy-based planner can be

updated even when the planner is running. First of all, these dynamic updates of policies are

possible, because the whole policy set is a composition of separate policies and policies sets, which

can be managed and updated independently (e.g., different files are used for the specification of

policies authored by different persons). Secondly, dynamic policy updates are possible, as policies

are specified in a declarative form using the policy specification language, externally from the

planner and its planning domain specification. So, as opposed to the planning domain, which

should be rigidly designed as a single whole and is contained as an integral part of the planner,
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individual policies can be updated dynamically and asynchronously. The planner checks policy

updates when it is running. If an update or deletion of some specific policy is detected, an

updated policy is loaded into the system and the outdated policy is deleted. These policy updates

are applied during the planning for the next planning problem. The only restriction, which was

purposely imposed, is the following: when a specific problem is being solved, an unalterable policy

set should be used, otherwise the solution developed can be inconsistent.

9.4 Performance analysis

In this section, the analysis of performance gains achieved by two versions of the descending

policy evaluation technique, in comparison to the original policy-based planning procedure, is

presented. These performance gains were already shown in the discussion part of case study 1

(see Section 9.2.1). It was shown that performance of different versions of the policy-based plan-

ning algorithm is determined by the planning problem, including policy characteristics and HTN

decomposition tree characteristics. In this performance analysis, we take into account different

characteristics of the planning problem and, by varying it, make conclusions about its effects on

the performance (similarly to [185, 87]).

We adopt the planning problem of case study 1 as the basis for the planning problem used

in this performance analysis. Several modifications were introduced to this planning problem, in

order to make it more homogeneous, in order to eliminate incidental impacts on performance. The

domain tree of the planning problem used in the analysis is a regular tree with branching factor

3 (it is the same as the tree in Figure E.1, A., but with 3 EPs in each university). Domains

used as constraints in the ITr are all situated on the same level of the tree (countries level) and

are all distinct. Therefore, the same number of EPs is considered when the planner is searching

an EP interval to be used in different slots. One of the most influential factors on the policy-

based planning performance are decisions being generated during the policy evaluation. In order

to control this factor, we have substituted XACML policy sets specified for domains and EPs by

random variables that takes a value Deny with probability p and Permit with probability 1 − p

(therefore, this variable has Bernoulli distribution). Each time a policy request should be evaluated

against a policy set of specific domain (or EP), the value of this variable is used to determine the

policy evaluation outcome. Probability p is called policy stringency. Using these ‘simulated’

policies definitions, policies with different stringencies can be easily modelled using the p value. If

we relate the policy stringency value with real policies, it corresponds, for example, to the ratio

of the number of possible values defined in a policy for some attribute to the number of specific

objects used in the planning domain that can be used as a value of this attribute. In concrete, in

the partner network policy in case study 1, policy stringency corresponds to the ratio of the number

of universities, from which a transfer is denied, to the overall number of universities in the domain:
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ptransfer = |UNI/PUni
T r |

|UNI| , where UNI is set of all universities, PUni
Tr - the set of universities from

which a transfer is permitted according to the policy. The evaluation of real XACML policies is

associated with computational costs, so the prototype’s computations are suspended for an amount

of time required for a policy decision inference. In our experiments, we use delay values equal to

the average time intervals for a policy request evaluation found in case study 1, considering the

version of the planning algorithm.

Another policy characteristic affecting the performance is the ratio of IndTemp decisions and

permanent decisions, being returned for partial policy requests during the evaluation. We also

model this policy characteristic using random variables, that have Bernoulli distribution, with two

outcomes: if an IndTemp decision is returned during the evaluation or not. The probability to

receive an IndTemp decision as a result of the policy evaluation is determined by the amount of

information that is absent in the partial policy request. Therefore, we fix the probability to get an

IndTemp decision for a partial policy request with specific properties as a reference value: it is a

request where all information is known excepting the EP interval used as a resource. The policy

characteristic that determines the probability to get an IndTemp decision for such partial policy

request is designated z and will be called reference IndTemp probability. Based on α = 1− z, we

will determine the probability τ to get a permanent decision for all policy requests using formula

τ = α
k +

∑
i=1,(k−1)

α
k ·Qi + (1−α)·Qk, where k is the number of the slot for which policy request is

evaluated and Qi - variable indicating if an EP interval is known in slot i (it is equal to 1 when it

is known, 0 otherwise). This formula was designed based on the following premises, when a policy

request is fully known τ should be equal to 1, meaning that IndTemp cannot be produced during

the evaluation of this request. When a partial policy request contains all information excepting

the EP interval used as a resource, it should be equal to α. For each unknown EP interval before

slot k, the τ value should be reduced by a constant amount (i.e., α
k ). When no EP intervals are

known, τ should not be equal to 0, since policies can utilise other information contained in the

policy request, excepting the information about EP intervals (in our case, this minimum τ value is
α
k ). Varying z, we can model how policies process partial policy requests. IndTemp decisions are

generated with the probability 1− τ . Therefore, the probability to a get Deny decision is equal to

τ · p.

9.4.1 Policies characteristics impact analysis

In the first series of experiments, we analyse how policy characteristics influence the policy-based

planning performance, the CPU time required to find a solution of a planning problem. Using

the policy evaluation simulation mechanism, we can model policies with different properties (i.e.,

p and z values). During the run-time, Permit or Deny decision is chosen as an outcome of the

policy request evaluation using a generated random number from 0 to 1, whose value is compared
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with the current p value. As we use the same planning tasks for all runs, these random numbers

fully determine a set of resulting plans, found by the planner. In order to compare performance of

different versions of the planning algorithm, they should solve exactly the same planning problems.

We achieve this by running our planning problem with the same seed that is used to generate

random numbers for the choice between Permit and Deny decisions during the evaluation of a

specific policy request (the same decisions will be generated for the same policy requests when

different versions of the planning algorithm are used to solve the same planning problem).

Experiment 1.1. Policy stringency p changes. In this experiment, we analyse how the

mean CPU time changes for planning problems with different values of policy stringency p. The

z value is fixed in this experiment and is equal to 0. The utilisation of the same p and z values

guarantees that policy decisions appear with the same probabilities, but specific policy decisions

received during the planning (especially for domains) have big impact on the planning process. In

order to analyse the mean planning performance, we have selected 10 random planning problems

(they are specified as 10 different seeds for the Permit and Deny generation), for which at least

one plan can be found when the highest p value concerned is used28. We run these 10 problems

using the three versions of the planning algorithm with different p and measure the CPU time,

the number of policy requests evaluations and the number of planner’s states traversed during the

planning (i.e., the number of recursive calls of the planning function). Two latter characteristics

are used for explanation purposes for the main characteristic, the CPU time. The average values

for these 10 problems were taken for the analysis. Graphs of these characteristics are presented in

Figure 9.1729. As performance gains can be different for planning problems where it is required

to find all possible plans and problems when planning stops after the required number of plans is

found, two values for each characteristic were measured: the final value when all possible plans are

found and the value when 16 plans were found30. As can be seen from the figure, absolute values

are decreasing with the growth of p for the all-plans planning problems, since for the greater p less

number of plans can be found (the average number of plans is shown in rectangles on the plot).

However, for planning problems with a limited number of plans, values are increasing since with

the growth of p each plan becomes more difficult to find.

As can be seen in the graphs for CPU time, the descending policy evaluation technique brings

considerable performance gains in comparison with the original policy-based planning technique.
28The maximum p value is 0.15, since for larger values of the policy stringency very few planning problems have

at least one solution.
29As the CPU time is influenced by many factors and can vary for the same runs, each planning problem is run

3 times with the same settings and the average time for these 3 runs was taken.
30 The number of plans was limited in order to analyse the behaviour of the planner when it successfully finds

the required number of plans in comparison with the unrestricted case, when the required number of plans is not
limited. Moreover, in order contrast this scenario with the unrestricted case and prevent the traversal of the whole
planner’s search space, the plans limit value should indent from the maximum number of possible plans. Therefore,
the value 16 was chosen in a way that for all p values the planner should find the required number of plans and for
the maximum p value the plans limit should be approximately the half of the overall number of plans.
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Figure 9.17: Experimental results for different values of policy stringency p

Ratios of CPU time values for the ordered descending policy evaluation to values of the original

policy-based planning varies from 0.45 to 0.55 (see Figure 9.18) and the difference between full

or limited problems is not big. The unordered version of the descending policy evaluation has

CPU time values similar with the ordered version for the full problems for all p. Meanwhile, it

has higher CPU time values in comparison with the ordered version for problems with the limited

number of plans. Nether-the-less, the CPU time for this version never exceeds the CPU time for

the original policy-based planning algorithm. As can be seen, time ratios for both versions of

the descending policy evaluation for the full and limited problems have a downward trend when

p increases, since when Deny decisions occur more frequently the descending policy evaluation is

more advantageous. Therefore, both versions of the descending policy evaluation require less CPU

time to solve the same planning problems than the original version of the policy-based planner.

Moreover, the descending policy evaluation is more beneficial when the policies are more strict.
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Figure 9.18: CPU time ratios for different values of policy stringency p

In order to understand the reasons of such CPU time ratios, the number of planner’s states

visited and the number of policy requests evaluated should be analysed. The number of planner’s

states for all-plans problems for the ordered descending policy evaluation is approximately equal

to the corresponding values when the original planner version is used, for the most of p values, but

exceed these values for p less than 0.07. This results from the fact that in general the descending

policy evaluation requires extra planner’s states, but when Deny decisions occur they are detected

earlier in the state-space (because domain and even EP policies are evaluated for compound tasks).

This means that some states, which should be generated in order to detect these dead-ends when

the original policy-based planning is used, are not produced. This forms the gain of the descending

policy evaluation technique. The unordered descending policy evaluation increases the number of

states for all p values. This happens because for the current planning problem the shape of the

decomposition AND/OR graph, which determines the shape and size of the planner’s search space,

is not optimal for the FAF strategy. The similar fact was examined in [158], where it was shown

that on average the FAF heuristics decreases the number of states during the planning, but there

are cases when it fails to do this. This happens when the FAF principle prescribes to postpone a

refinement and each option of this refinement starts a long chain of refinements without branches.

In our problem, such refinements are decompositions of the ‘ . . . degree‘ compound tasks into

several actions, which should be sequentially executed by operators (the application of an operator

does not introduce options, so the branching factor is equal to one). During the ordered planning,

these tasks are decomposed immediately when they are produced, on the higher levels of the

planner’s state-space tree. However, when the unordered planning and the FAF strategy are used,

as the number of possible options for such decompositions31 is usually greater than the number of

possible decompositions for other tasks, these decompositions are postponed for later. However,

before these decompositions are executed, decompositions with branching factors more than one

can be carried out. Therefore, the number of times these decompositions are carried out during
31It is equal to the number of possible EP intervals.
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the planning is multiplied by the branching factors of all decompositions that have been executed

before them.

When it is required to find the first 16 plans, the number of states ratios for both versions of

the descending policy evaluation to the original policy-based planning algorithm are better than

the corresponding ratios for the all-plans problems. When p is greater then 0.05, the number of

states for the ordered descending policy evaluation is even less than the corresponding value for

the original planning algorithm (the same is true for the unordered version with p more than 0.11).

The reason of this behaviour is the fact that when the planner searches for an EP in some slot

and the number of plans is limited, the planner stops at some suitable EP and does not try all

possible EPs (often this can be the first EP that satisfies the corresponding requirements). This

leads to the change in the ratio of Deny and Permit decisions occurring during the planning:

more Deny decisions occur and, therefore, more EPs are rejected by the planner, relatively to the

overall number of EPs considered. As we have shown before, the increase in the number of Deny

decisions is beneficial for the descending policy evaluation performance (this is valid for Deny

decisions generated at the domain level, as well for Deny decisions generated at the EP level, since

additional decompositions of compound tasks to action tasks can be avoided then). Similarly with

the experiment when the number of plans is unlimited, the unordered descending policy evaluation

shows worse results in the number of states traversed than the ordered descending policy evaluation.

However, when only the first 16 plans are considered, the results of the unordered versions are even

worse. This happens because the minimisation of a state-space graph that the FAF strategy is

trying to achieve can give profits only when the whole state-space graph is explored.

Graphs for the number of policy requests replicate graphs for the number of states with different

interrelations. Ratios between the ordered descending policy evaluation and the original version

increase from 0.8−1.2 up to 1.2−1.5, because most of the states in the descending policy evaluation

correspond to several policy evaluations, while in the original policy-based planning only some

states require a policy evaluation. The ratios of the unordered descending policy evaluation to

the ordered version are decreased. Such results were shown because states that produce ‘long

chains’, which have prevented the unordered version from the reduction of the state-space size, do

not require any policy evaluations at all. This means that during the planning, in spite of not-

reduced state-space graphs, the number of policy evaluations decreases by the utilisation of the FAF

strategy. In fact, for the full planning problem, the unordered version of the descending policy

evaluation generates equal or less number of policy requests than the ordered one. Differences

between the CPU time graphs and policy evaluation graphs are caused by the different amounts of

time required for a policy request evaluation in different versions of the planning algorithm. The

relative position for two descending policy evaluation graphs are kept similar, while the original

version, due to large time expenses on policy evaluations, significantly exceeds the other versions
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in CPU time.

Experiment 1.2. Indeterminate Temporal decision rate z changes. In this experiment,

we vary the reference IndTemp probability z, which determines the number of policy requests for

which a permanent policy decision can be generated in presence of incomplete information (based

on information about the current domain, the student and his (or her) history of education32.

Therefore, it indicates the amount of information that is required in order to produce a permanent

decision during the policy evaluation. The experiment schema was the same as in the previous

experiment. The same 10 seeds were used for the generation of random values for the Permit

and Deny decisions determination, and additional 10 seeds were used in these problems for the

generation of random values for the IndTemp decision generation. These problems were run on 3

versions of the planning algorithm with different z values. Since during the original policy-based

planning only fully known policy requests are used, the z value has no effect on it. Thus, this

version was run only once for each problem. Furthermore, we have carried out this experiment for

4 different values of p to analyse how z influences the performance in the presence of policies with

different stringency. The resulting diagrams are presented in Figure 9.1933. In the figure, we show

only graphs for all-plans problems since the same trends exist in graphs for 16 plans problems.

In order to analyse the changes of the observed values, for each value with z > 0 the ratio to

the corresponding value with z = 0 is calculated. We analysed how these ratios change with the

growth of z. For this purpose, we have divided these ratios received using the same version of the

descending policy evaluation algorithm into sets with fixed p and applied the regression analysis to

each of this set. We used the linear regression model where the dependent variable is the ratio and

the explanatory variable is the z value. Values of regression coefficients for z, determined using the

ordinary least squares method for these sets, are shown in Figure 9.19 above the column charts.

Figure 9.19: Experimental results for different values of z (see also Figure E.2)
32In some policy requests, the information about the history of education can also be unavailable.
33Since IndTemp decisions are resolved into Deny or Permit decisions which are under the control of p value,

the number of plans generated in each planning problem is determined by p and is not influenced by z (the average
number of plans for these p values can be found in Figure 9.17)
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As is shown in Figure E.2 in Appendix E, the number of planner’s states increases with the

growth of z. When an IndTemp decision is generated due to the absence of some information,

utilised in policies for the evaluation of a policy request, the planner continues planning and

traverses the next states. However, later, when more information is available, this policy request

can be resolved to Deny. In this case, all states visited by the planner from the IndTemp decision

occurrence up to the Deny disclosure constitute planner’s overheads. As can be seen from the

column and the regression coefficient graphs, the number of states increases with the growth of z

faster for the unordered descending policy evaluation. This happens because during the ordered

descending policy evaluation the planner at one time considers only one EP interval selection

problem, for one slot. Therefore, immediately after the evaluation of policies for an EP interval,

the planner chooses the EP interval itself. So all IndTemp decisions occurred during the evaluation

of domain policies are resolved into permanent decisions during the next 1 - 2 states. When the

unordered version is used, after an IndTemp decision occurred, the planner can choose to switch

to another slot and this IndTemp remains unresolved for longer. Thus, the average lifetime

for IndTemp decisions during the unordered policy evaluation is longer. Moreover, during the

unordered planning, the probability of IndTemp decision is higher since in addition to current EP

interval previous EP intervals can also be unknown during the policy evaluation. The regression

coefficient for both versions of the descending policy evaluation grows with the increase of p. This

happens because overhead states occur when IndTemp is resolved into Deny and this situation

occurs more frequently when policy stringency is higher.

The same patterns can be detected in the number of policy evaluations diagram (see Figure E.2),

with the difference that the values are growing faster. This tendency occurs because each partial

policy request that was evaluated as IndTemp is re-evaluated in further planner’s states, where

new information for its evaluation is added, until the IndTemp decision is resolved. Since the

number of policy evaluations has greater impact on the CPU time, the growth of the CPU time

with the increase of z repeats the growth of the policy evaluations number (see Figure 9.19). In

spite of the negative effects of the IndTemp probability increase, the ordered descending policy

evaluation shows better CPU time results than the original policy-based planning for all considered

z values. The unordered version of the descending policy evaluation shows better CPU time only

for small p and z values: for values greater than p = 0.03 and z = 0.25 it shows worse results

than the ordered version. Moreover, for z > 0.5, it requires more CPU time even than the original

policy-based planning algorithm (for z = 0.5 this happens only for p ≥ 0.11).

9.4.2 Domain tree characteristics impact analysis

In this section, it is analyse how characteristics of the domain tree influence the performance of

the policy-based planner. It should be noted that modifying the domain tree characteristics, we
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also change the planning problem that should be solved. For example, changing the number of

EPs, we change the number of plans that can be found by the planner.

Experiment 2.1. Number of EPs changes. In this experiment, we analyse the performance

of the planner operating with different number of EPs. We change the number of EPs in each

lower-level domain from 3 EPs, which were used in the previous experiment, to 6 and 9 EPs. The

resulting planning problems are solved using different versions of the planning algorithm, with

different p values. The z value in this experiment is fixed and is equal to 0.25. As in the previous

experiments, in order to estimate the average performance we use 10 different planning problems,

specified as 10 pairs of seed values (one seed for the Permit and Deny decisions generation and

another - for the IndTemp generation). Based on the values provided using these 10 planning

problems, average values are calculated. They are presented as column diagram in Figure 9.20.

Figure 9.20: Experimental results for different number of EPs (see also Figure E.3)

Obviously, when the number of EPs is increased, more plans can be found in planning problems

with the same p value. Therefore, all values demonstrate a growth in the diagrams. Furthermore,

as can be seen in Figure 9.20 and from the graphs for the CPU time ratios in Figure 9.21, when

more EPs are available, the CPU time ratios for both versions of the descending policy evaluation

are improved. For 3 EPs, the ratios are in the interval 0.57− 0.74, for 6 EPs 0.53− 0.35 and for 9

EPs 0.28− 0.44. Such results are shown because, when each domain contains more EPs, if a Deny

decision is received during the evaluation of policies for the domain, more EPs are eliminated. As

usual, with the growth of policy stringency, the time ratios for both versions of the descending

policy evaluation are decreasing. Importantly, with the growth of the EPs number, the unordered

descending policy evaluation starts to outperform the ordered version. For the number of EPs

greater than three, the unordered descending policy evaluation for all three versions and all p

values shows the best results.

In order to reveal the reasons of such behaviour, we need to refer to diagrams for the number

of states and policy evaluations (see Figure E.3). The unordered descending policy evaluation
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Figure 9.21: CPU time ratios for different number of EPs

traverses less states for 6 and 9 EPs. This happens because, when the number of EPs is greater,

decompositions that produce long chains of states without branches and that precluded the un-

ordered version from the number of states reduction, have greater branching factors (Kbr). These

decompositions are decompositions of ‘. . . degree’ tasks into actions, so their branching factors are

equal to the number of EP intervals from one university that can be used in current slot, according

to the ITr constraints. Since the difference with branching factors for other tasks increases, the FAF

strategy, which tries to minimise the branching factors, becomes more advantageous in comparison

with the ordered version, which applies the decompositions with large Kbr earlier. The mapping

of the number of states diagram to the policy evaluations diagram is similar to the corresponding

mappings in the previous experiments. The number of policy evaluations for the original policy-

based planning becomes markedly less than the number of evaluations for the ordered descending

policy evaluation. The ratio of the unordered descending policy evaluation to the ordered one is

decreased, because, as it was said before, states within long non-branched chains, which prevent

to reduce the number of states in unordered planning, do not contain policy evaluations. Finally,

the CPU time diagrams in Figure 9.20 resemble the diagrams for the policy evaluations with the

following difference. Regardless the number of EPs and the p value, the original policy-based

planning demonstrates worse results than other planning algorithms.

Experiment 2.2. Domains tree structure changes. In this experiment, we analyse the

planner’s performance for problems with domain trees that have different structures. We vary the

branching factor Kbr and the number of levels NLev in the domain tree. As the basis, we have

taken the planning problem with 6 EPs in each university from the previous experiment. First,

the impacts of the branching factor changes are analysed. For this purpose, we have varied the

number of universities in each country34. Planning problems with Kbr equal to 1, 2, 3, 9 and 18 are

built. The number of EPs in each country was kept constant in order to keep the complexity of the
34The number of universities in our problems is equal to the branching factor value.
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planning problem constant as well. Thus, for the problem with Kbr = 1, all 18 EPs are situated

in one university. With the growth of Kbr, the number of EPs in one university is decreasing. For

Kbr = 18, each of 18 universities has only one EP. Examples of the domain trees with Kbr = 3 and

2 are presented in Figure E.1, A. and B. In the next phase, for the planning problem with Kbr = 2,

we have modified the number of levels in the tree. First, we have added the level of departments

(see Figure E.1, C.). Next, above the universities level, we have added a level of regions. During

these modifications, Kbr was kept constant, so the number of domains at the lower level of the

domain tree gradually increased (while keeping the overall number of EPs constant). Similarly as

in the previous experiments, 10 random problems were used to get the average values.

When we are increasing the Kbr value, the CPU time for the descending policy evaluation is

increasing, relatively to the values for the original policy-based planning (see Figure 9.22). This

happens because with the growth of Kbr, extra domains are added to the domains tree. This forms

extra overheads, since they should be traversed during the descending policy evaluation. On the

other hand, the probability to reject an EP based on the domain policies is kept constant and

is equal to p, so benefits from the introduction of these new domains are absent. Moreover, if a

Deny decision is produced at a domain level, the smaller number of EPs is eliminated. Hence, the

results of experiment have shown that the descending policy evaluation produces better results for

problems with domain trees with smaller Kbr value. However, in this experiment, by keeping the

p value constant, we have assumed that the same number of policies is allocated in each university

domain, regardless of the current number of domains. In reality, if we would like to reduce the

number of domains in a domain tree, we will need to add extra policies to the remaining domains.

For example, we are using a domain tree with the structure ‘Country → Department → EP ’. If

we would like to substitute departments with universities, we will need to allocate the department

policies to the university nodes, in addition to the university policies allocated there already.

Figure 9.22: Experimental results for different values of Kbr (task with 2 levels)

In the next part of this experiment, we modify the number of levels in the domain tree, adding
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one or two new levels. Therefore, we assume that new policies should be specified at the new

levels. In order to correctly simulate the time required for the evaluation of policies, we need to

adjust the delay time modelling the policy decision inference (see Section 9.4.1)35. In order to get

the average CPU time required for a policy request evaluation for problems with 4 and 5 levels,

we have added the required number of levels to case study 1, have specified policies for these new

domains (equal to the university policies) and carried out the required measurements. The average

CPU time that we have got for the original policy-based planning have increased up to 0.13s for

4 levels and to 0.16s for 5 levels respectively. As could be predicted, the average CPU time for a

policy request evaluation have not changed significantly for both versions of the descending policy

evaluation. These values are used as policy evaluation delays during the current experiment.

Figure 9.23: Experimental results for number of levels NLev (Kbr = 2)

The CPU time diagrams for planning problems with different numbers of levels NLev, as well as

ratios graphs are presented in Figure 9.23. With the introduction of new levels, new domains are

added also into the domain tree. This leads to the increase of the number of states, because for each

domain a distinct state should be used during the descending policy evaluation. On the over hand,

because, along with these domains, new policies are added into the policy repository, the probability

that an EP will be rejected because some policy at the domain level is evaluated as Deny increases.
35Delay time values that were used in the previous experiments were measured for case study 1, which has 3 levels

in the domain tree.
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This tends to reduce the number of states during the descending policy evaluation with large p

values. Therefore, as is shown using the number of states ratio graphs, for the ordered descending

policy evaluation, with the growth of NLev the ratio for small values of p is approximately the

same or getting greater. While for larger values of p, this ratio is decreased or kept around its

previous value. For the unordered descending policy evaluation, the same tendency exists, but, in

addition, with the growth of NLev number of states ratio is kept approximately the same or getting

worse. This happens because with the introduction of extra levels, we decrease the number of EPs

in the lowest domains. This reduces the difference of Kbr values for lower and higher domains

and makes the domain tree more homogeneous. Thus, the advantages of the unordered planning

with the FAF strategy become weaker. As a result, for NLev = 5, the unordered descending policy

evaluation requires more states than its ordered version.

The changes of graphs for the number of policy evaluations in relation to the graphs for the

number of states are the same, as in the previous experiments: the ratio between the ordered

descending policy evaluation and the original policy-based planning is increasing and the ratio

between the unordered descending policy evaluation and the ordered one is decreasing. CPU

time values in addition to the planner’s states and policy evaluations numbers are influenced by

the average time required for one policy request evaluation. This value increases for the original

policy-based planning with the growth of NLev, so this influences positively on the presented ratios

for CPU time. As a result, with the growth of NLev, the changes of the CPU time are similar

to the changes of the ratio for the number of states (i.e., the negative trend observed when the

number of policy evaluations is considered is levelled). Moreover, as opposed to the number of

states ratios, when the unordered descending policy evaluation is used, CPU time for problems

with 4 levels is better for all p than CPU time values for the ordered version36. However, for

problems with 5 levels in the domain tree, the unordered version shows the worst results for all

NLev. The reason of this is the large number of states generated by the planner for these runs due

to the homogeneous structure of the domain tree. Therefore, it can be concluded that addition of

new levels with corresponding new policies improves the ratios for the ordered descending policy

evaluation. These improvements are explained by an increase in probability for rejection of an EP

based on its domain policies and by an increase of time for one policy request evaluation during

the original policy-based planning. However, as with the growth of NLev number of domains

grows exponentially and the number of EPs in each domain decreases, these improvements are

appreciated only up to some limited number of levels in a tree. Moreover, the described changes of

the domains tree shape result in weakening of the advantages for the unordered descending policy

evaluation, because the shape of the tree becomes more homogeneous.
36The reason of this change is the fact described in Section 9.4.1: policy requests are not generated for the long

state chains without branching that have prevented the unordered version of the descending policy evaluation to
decrease the number of states
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9.5 Conclusion

The main contribution of this chapter is the fact that the feasibility of the CEP generation solution

for the development of CEPs based on existing EPs in environments with heterogeneous regula-

tions was confirmed. For this purpose, first of all, we utilise case studies where CEP development

problems are solved using the designed CEP generation solution. The first case study uses a plan-

ning environment where only fictitious EPs and policies are used. In this case study, we considered

the problem of BTr development, for a mobility scenario with two transfers. Additionally, in this

case study three different planning algorithms were tried and compared: the original policy-based

planning technique, the ordered descending policy evaluation and the unordered version of the

descending policy evaluation. Initial comparative analysis of these three algorithms illustrated

performance gains achieved by the descending policy evaluation techniques and showed the ne-

cessity for a more detailed analysis of their performance in planning environments with different

characteristics. The second case study is a small scale case study, which considers a student mobil-

ity scenario with one transfer. For this case study, a considerable part of the planning environment

was adopted from the real educational environment (including domains, EPs and policies). In

this case study, fully specified CEPs, represented by the process and structural CEP models, were

developed.

Additionally, we have analysed the properties of the CEP generation solution that were spec-

ified as input requirements for its development, that is, the possibility to carry out planning in

environments with heterogeneous regulations. Using specially developed scenarios, we have anal-

ysed the possibilities for independent specification and enforcement of policies during the planning,

provided by the means of the policy-based planning mechanism designed. We have shown which

information from the planner’s state can be utilised to decide if a policy is applicable to a specific

planner’s state and, correspondingly, if the decision of this policy should be enforced during the

policy-based planning. Additionally, we have analysed the possibility to enforce established rou-

tines, which are specified using policies, during the planning. For this purpose, the task networks

generation mechanism based on the policy obligations was explored. Finally, the possibility to

carry out planning in environments with dynamically changing regulations was analysed.

The additional contributions of this chapter are the results of the performance analysis carried

out for different versions of the policy-based planning algorithm. In the experiments conducted,

we have simulated the XACML policy decision generation using random variables with the known

distributions. Using this mechanism, we were able to analyse how different policy characteristics

impact on the planner’s performance. First of all, it was revealed that the descending policy eval-

uation technique can decrease the CPU time required to solve a planning problem, in comparison

with the original policy-based planning algorithm. The main reasons for this outcome are the
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reduction of time required for one policy request evaluation and the possibility to reject all EPs

within one domain, when during the evaluation of policies for this domain a Deny decision is

produced. Consequently, as was shown in all experiments, performance gains of the descending

policy evaluation technique are increasing with the growth of the policy stringency. The exceptions

where the descending policy evaluation failed to improve the CPU time were problems with large

domain tree branching factors. It was revealed that the growth of the branching factor has a neg-

ative impact on the descending policy evaluation’s performance. In problems where the branching

factor Kbr was so large that in each lowest domain only one EP was allocated, both versions of

the descending policy evaluation technique required more CPU time than the original policy-based

planning. It was also shown that when the probability to get an IndTemp decision increases,

the CPU time required to solve the problem using the descending policy evaluation techniques is

increasing. Additionally, it was found out that this negative impact is stronger for the unordered

version of the descending policy evaluation.

The ratio between CPU time for the ordered descending policy evaluation and the unordered

version varies. In addition to the IntTemp probability, it depends on the shape of the domain tree,

where the planning problem is being solved. The most influential positive factor for the unordered

descending policy evaluation performance is the number of EPs, allocated in the lowest domains.

When this value increases, the time ratio between the unordered descending policy evaluation and

its ordered version decreases and the unordered version starts to show the best results among all

three versions of the planning algorithm. Additionally, it was found out that the homogeneity

of the domain tree has a negative impact of the performance of the unordered descending policy

evaluation. When a domain tree (which includes EPs as well) has a more homogeneous structure,

meaning that equal branching factors are used for all nodes in the domain tree (and, therefore,

in the corresponding task decomposition structure), the unordered descending policy evaluation

shows worse results.
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Chapter 10

Conclusion

Objectives:

• Summarise the thesis.
• Revisit the original contributions.
• Revisit the success criteria.
• Give details about possible future work.

10.1 Summary

Student mobility is a rapidly developing area, being promoted at both national and international

levels. While its development is beneficial for students and universities, nowadays there is no

technical solution providing support for the student mobility programmes development process.

In this thesis, a novel Combined Educational Programmes (CEP) generation technique for the

student mobility support was developed using both automated planning technology and policy-

based management. This technique provides possibilities to plan for new CEPs in an environment

with heterogeneous educational regulations, which govern different aspects of the educational pro-

cess and are specified by different authors independently (e.g., education providers). Our investi-

gation of current e-Learning technologies, specifically planning-based Curriculum Generation (CG)

techniques, revealed that development of curricula in such environments is still an unresolved is-

sue. In CG techniques, as well as in automated planning, it is assumed that the environment

specification is elaborated by one author or a group of authors in a close collaboration.

Based on these findings and based on the undertaken analysis of the student mobility area,

an overall CEP generation framework was constructed and, using it, the approach for solving the

CEP development problem was introduced. Within this framework, a novel policy-based planning

technique was coined. This technique extends existing planning techniques and provides means for

different people to specify requirements to the planning processes independently. This is enabled

by the utilisation of the XACML policy language, which was selected for the specification of these

requirements within the policy-based planning technique. In contrast to the overall CEP generation

framework, the policy-based planning technique is based on problem-independent mechanisms and
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can be used for solving problems in different problem areas.

In addition to the flexible approach for specification of requirements for the planning process

using different policies that can be devised independently and can be applicable only in specific

situations, the developed policy-based planning technique preserves the required level of control

over this process. For this purpose, standard XACML policy specification mechanisms are utilised

and novel extensions for this policy language were introduced, facilitating the specification and

enforcement of obligations.

For the problem-independent policy-based planning technique, a planning environment specifi-

cation was designed within which CEP generation problems can be solved. The overall approach

of this study assumes that specific requirements for the CEPs development should reflect local

educational regulations, routines and criteria for decision making, which are specified by different

educators in different ways. Therefore, the specification of the overall CEP planning environment

reflects only essential student mobility and general educational processes and requirements. With

the aid of the policy-based planning, regulations in force in different domains can be specified

as policies and enforced during the planning. According to the Bologna Process (BP), for the

construction of a CEP, Learning objects (LObjs) (modules and Educational Programmes (EPs))

of different universities should be compared based on their credits, educational levels and learn-

ing outcomes. In the developed technique, for the comparison of educational levels from different

qualification frameworks and credit values given in credit units adopted in different domains, a

transformation rules mechanism is utilised. For the learning outcomes comparison, a specialised

similarity measure was adopted. Again, threshold values for this similarity measure and similarity

measures derived from it are specified in policies by different policy authors at their discretion and

are checked during the CEP development.

Possible planning performance improvements for the policy-based planning were also investi-

gated in this thesis. Specifically, the planning-time policy enforcement peculiarities and specific

characteristics of the CEP development problem were explored as sources of the performance

improvements. Based on this, the advanced policy enforcement mechanism for the policy-based

planning, viz., the postponed policy enforcement, was designed. For the CEP generation plan-

ning problem, a dedicated performance improvement technique, namely, the descending policy

enforcement, was developed relying on the postponed policy enforcement.

10.2 Original contributions

CEP development framework

First of all, the novel CEP development framework was proposed for the generation of CEPs based

on existing EPs and modules in an environment with heterogeneous regulations, governing different

aspects of the educational process. Within the framework, the CEP development approach was
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introduced and roles of different technologies, models and users in it were defined. The task of new

CEPs generation has not been considered before within the e-Learning field, so it constitutes the

novel approach for the student mobility processes support using computer technologies.

Policy-based planning technique

The policy-based management approach was applied to a new application area, namely, the

problem-independent Hierarchical Task Network (HTN) planning, and the policy-based planning

technique was designed. This provided the possibility to carry out planning in environments with

heterogeneous regulations, supported by different people independently. These regulations are

specified as policies using the attribute-based policy specification language. Different policies can

be applicable in different situations or they can specify requirements to the same process, but from

different perspectives. The independently specified policies are consistently enforced during the

planning, so the resulting plan conforms with all policies applicable to it.

Obligations validation mechanism. In the policy-based planning technique, policies should

be specified and enforced in a controlled manner. Procedures for the authorisation decisions

processing and conflict resolution between them can be defined using the standard XACML

policy language constructs. As analogous mechanisms for the XACML policy obligations are

absent, the XACML obligation specification mechanism was extended and a novel obligations

validation mechanism was proposed. Using obligations validation rules, it is possible to

determine which obligations can be produced in specific situations and define a required order

of their execution. In addition to the validation of the whole obligations set produced by the

policy engine, it is possible to validate obligations generated by specific policies separately.

That is, an author of a composite policy can specify validation rules that determine which

obligations can be produced by a specific subordinate policy.
Adaptive policy requests construction. During the policy-based planning, for each planning

action a policy evaluation request should be generated that contains the specification of action

and information from the planner’s world state about the objects that this action refers to. As

in the XACML policy language there is no mechanism to determine which information in the

policy request will be required during the policy evaluation at the moment of request creation,

the adaptive policy requests construction procedure was designed in Chapter 5. Using it,

policies are analysed at the time of their specification. Based on the information extracted

at this stage, during the policy request generation special constructs called object contexts

are created and placed into the policy request. These contexts contain all information about

the object that can be required during the policy evaluation.

Formalisation of the CEP generation problem as a planning task
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For solving the CEP generation problem using the policy-based planner, the corresponding planning

environment was specified and the CEP generation problem was formalised as a planning task in

this environment. For this purpose, CG techniques, which are used to solve a similar problem for

non-mobile EPs, were adapted to the student mobility problem area. The CEP generation problem

has a number of distinctive characteristics that were incorporated into the CEP generation planning

environment specification. For example, there is support for different student mobility scenarios,

utilisation of EPs and modules from different education providers, support of educational modules

recognition as an integral part of the programme design, and others. For the representation

of developed CEPs to the users, CEP process model was designed. It describes the educational

process carried out when a student is studying according to a CEP in a detailed and comprehensible

form.

Planning performance improvement techniques

Within this study, two planning performance improvement techniques were designed for policy-

based planning by the means of enhancements introduced into the process of policy enforcement

during the planning. The principle that the planning performance can be improved if future

dead-ends can be detected earlier during the planning was applied to the policy-based planning

and resulted in the development of the postponed policy enforcement mechanism. In this

mechanism, dead-ends can be detected when policies are evaluated at earlier stages of the planning.

For this purpose, policy evaluation requests corresponding to future actions are generated and

evaluated during the planning. If during the evaluation of these requests a standard XACML

policy decision can not be inferred due to an absence of required information, such requests should

be postponed. During the planning, such policy requests are refined when new information arises

for them and re-evaluated based on this information.

The postponed policy enforcement mechanism was applied to the CEP generation problem and

the descending policy evaluation technique was designed. This performance improvement

technique optimises the LObj selection process during the CEP construction. Known information

about the LObj is used for the policy evaluation and is incrementally refined during the planning.

Additionally, this technique relies on the hierarchical multidomain structure of the considered

planning environment. Policies for different domains are evaluated independently in descending

order, gradually limiting the scope for the LObj selection.

Partial policy evaluation for XACML policy language

The partial policy evaluation for the XACML policy language was introduced in Chapter 6 as an

extension of the standard XACML policy request specification technique and its policy evaluation

algorithm. It solves the problem of policy evaluation requests specification and their evaluation

when some part of the information about the planning action is absent but it is known that it
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will be provided in future. For this purpose, a new Indeterminate Temporal policy decision was

introduced to designate a case when this missing information prevents a standard XACML policy

decision inference. The partial policy evaluation was designed relying on the formal model of the

XACML policy language, introduced in Chapter 4.

10.3 Revisiting success criteria

To answer the research questions and satisfy the success criteria, defined in Chapter 5.1, the

CEP generation technique was developed. It was initially presented in Chapter 3, where the CEP

generation framework and the overall CEP development process were introduced. In the subsequent

chapters, it was refined and specified as a planning problem within the specially designed planning

environment. Finally, its feasibility has been shown using the case studies in Chapter 9, which

exploited educational problems characterised by different scales and involving different mobility

scenarios.

As users of this technique can have different requirements to the CEPs being developed, a

specialised mechanism for specification of diverse user requirements was envisaged in the CEP

generation framework. This mechanism was implemented as a part of the planning environment

formalisation in Chapter 7. According to it, requirements to the CEP can be specified from three

different perspectives. Structure requirements are defined as a Basic track (BTr) of the future

CEP, process requirements are specified using an initial task network and properties requirements

are specified as constraints on the CEP properties. For provision of the additional flexibility during

the CEP requirements specification, users can utilise compound tasks from different levels of the

task network and entities situated at different levels of property hierarchies (e.g., the domains

tree). Another distinctive feature of the CEP development is a requirement to deal with mobility

scenarios and physical movements of the student. In the technique developed, based on the specified

CEP requirements, that is, on the BTr and high-level specification of the educational process,

possible student mobility scenarios are generated. For this purpose, HTN decomposition methods

representing different basic student mobility schemas are utilised. These methods can be applied

in a nested manner and produce arbitrary complex composite mobility scenarios that satisfy the

student’s requirements.

The heterogeneity of regulations governing the CEP generation has led to the development of the

novel policy-based planning technique. These regulations are formalised using the XACML policy

language providing the means to independently specify simple policies that are applicable only in

certain situations and combine them into more complex policy sets. The policy-based planning

technique, designed in Chapter 5, provides means to control the planning process based on the

XACML policies specified. Authorisation policies are used to restrict the applicability of actions

during the planning; obligations are used to extend the decomposition methods with additional
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actions in order to conform to the routines established. In order to provide different authors

with a tool for independent policy specification, the policy scoping and combining mechanisms

of the XACML policy language are utilised. They are used to define when certain policies can

be applied and establish the procedures for processing of decisions returned by different policies.

Using the novel obligations validation mechanism designed for XACML in this study, it is possible

to define a set of possible obligations that can be returned by different policies and even specify

valid combinations of obligation actions (see Chapter 5).

Finally, for improvement of the planning performance, the postponed policy enforcement mech-

anism was designed as an extension of the policy-based planning in Chapter 6. The performance

gains are caused by the improvements introduced into the planning-time policy enforcement. The

descending policy evaluation technique, designed in Chapter 7, applies this mechanism to the CEP

generation planning problem and relies on the specific characteristics of the CEP development

planning environment. In Chapter 9, the performance gains produced by different versions of the

descending policy evaluation were evaluated and the impacts of different policies and planning

environment characteristics were analysed in four series of experiments. It was shown that this

technique is advantageous and leads to a decrease in CPU time in environments with a high policy

stringency1 and environments where permanent policy decisions can be produced during policy

evaluation for higher level domains. The performance of the descending policy evaluation also

depends on the shape of the planning environment domain structure. The descending policy eval-

uation is based on the possibility of evaluating policies jointly for all EPs within some domain, so

the descending policy evaluation shows better results in environments with a large number of EPs.

On the other hand, this technique failed to bring performance gains in environments with high

fragmentation, since high values of domain tree’s branching factor lead to superfluous evaluations

of policies in supplementary domains.

10.4 Future work

Obviously, there are many possibilities for continuation and extension of the presented research.

Some of the possible future extensions are as follows:

Enhancement of the CEP generation planning environment specification

Now only the pure credits mobility CEP type and only one-to-one modules recognition is supported

in the designed CEP generation planning environment. Hence, while keeping the same approach to

for the educational and mobility processes modelling, the specification of this planning environment

can be extended to include other CEP types, for example, double and joint diploma degrees, more

possibilities for recognition or a virtual mobility support, when a student physically is studying at
1That is, with a high ratio of Deny and Permit decisions produced.
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his (or her) home university but takes online or blended modules at other universities via the VLE

technology.

Optimisation of modules-based CEP generation phase

Another interesting direction is performance improvement for lower level CEP generation processes,

operating at the modules level. The descending policy evaluation technique, which was developed,

covers only higher-level stages of the CEP construction, that is, the BTr construction. However,

lower level processes of the detailed CEP development are also computationally intensive, as they

involve solving several interrelated constraints satisfaction problems: recognition of modules, op-

tional modules selection and modifications of the modules sets in semesters. In this study, the

development of detailed CEP process models was implemented using the trial-and-error approach.

In the case studies, these processes were tried for a small-scale problem, involving only two EPs,

but required significant computational time. In future, these processes should be analysed in more

detail and a more advanced approach should be designed, for example, based on existing techniques

in the constraints satisfaction or truth-maintenance areas.

Enhancement of user interface and user-interaction processes

Now, the CEP generation system is implemented as a prototype without a GUI and with elemen-

tary user interactions processes. The specification of planning problems to be solved should be

done externally in a file and pre-compiled so that they can be used by the tool. A GUI that can be

developed for this system should provide convenient facilities for the CEP requirements specifica-

tion and support visual representation of the developed CEPs. The CEP requirements specification

phase can be implemented as a dialog with the user, supporting intermediate consistency checks

and providing hints. Another issue arising when system-user interactions are considered is the re-

quirement for an analytical functionality, so that a user can compare and analyse CEPs and BTrs

developed by the system. This issue was touched on in Chapter 6, when the CEP construction

procedure was described. As a solution, a user could be provided with a set of metrics that he

(or she) can use for the analysis and comparison of different CEP and BTrs produced. Corre-

spondingly, based on the comparison results, the user can select the required CEP or update input

requirements.

Development of a combined descending policy evaluation technique

As was discussed during the performance analysis, different versions of the descending policy

evaluation (i.e., ordered or unordered) give better results depending on specific characteristics of

the policies and planning environment. Moreover, these characteristics can vary in different areas

of the planning environment being used. Therefore, a combined technique is required that supports

both versions of the descending policy evaluation. Using this technique, it could be possible to
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analyse the planning environment and, based on its properties, apply more efficient version of the

descending policy evaluation (moreover, machine learning methods can be used for this derivation).

Application of the policy-based planning in a new problem area

As was mentioned, the core policy-based planning technique is a problem-independent planning

technique. Therefore, an interesting question that arises is how it behaves in other problem do-

mains. The motivating factor for choosing the policy-based planning as a tool for solving a planning

problem is the existence of heterogeneous requirements that should be taken into account during

the planning and that should be authored by different people. The scope of applications for auto-

mated planning technologies is being constantly extended, and new application areas are appearing,

so more challenging tasks for planning, where planning is applied in a global context, will appear.

One such area, which was identified as promising for the application of planning along with the

policy-based management techniques, is a scientific workflow generation. Planning technologies

are successfully utilised for the construction of automatic workflow generation systems. However,

these workflows are usually implemented for large scale systems, utilising resources of different sci-

entific organisation, for example, using a grid infrastructure [72]. Requirements for usage of these

resources are determined by the resource owner independently but they should be coherently taken

into account when a specific workflow is planned. Therefore, policy-based planning can be used

during the scientific workflow development to ease the problem of specification and enforcement of

these requirements.
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Appendix A

Evaluation of monotonicity for Partial pol-

icy evaluation algorithm

Monotonicity of Rule evaluation function for Partial policy evaluation

Rep : EffectSpec× TRV alp × TRV alp →Mp
2

Figure A.1: Approximation order for TRV alp × TRV alp set

Each case above the line presents initial evaluation of Rep function. Under the line, for this

case each possible updates of Rep arguments are considered, such that new values are more defined

then initial argument values (according to the order in Figure A.1). At the bottom of the case,

function results are compared according to the order defined on the Mp
2 set. {P |D} designates

either Permit or Deny, depending on the value in the effect part of the rule considered.

Case 1:

Rep : IndTemp × False × {P |D} → {P |D}(IndTemp)

Rep : True × False × {P |D} → N/A

Rep : False × False × {P |D} → N/A

Rep : IndPerm × False × {P |D} → {P |D}(IndPerm)

{P |D}(IndTerm) vMp
2
N/A, {P |D}(IndTerm) vMp

2
{P |D}(IndPerm)

(A.1)
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Case 2:

Rep : IndTemp × IndPerm × {P |D} → {P |D}(IndTemp)

Rep : True × IndPerm × {P |D} → {P |D}(IndPerm)

Rep : False × IndPerm × {P |D} → N/A

Rep : IndPerm × IndPerm × {P |D} → {P |D}(IndPerm)

{P |D}(IndTerm) vMp
2
N/A, {P |D}(IndTerm) vMp

2
{P |D}(IndPerm)

(A.2)

Case 3:

Rep : IndTemp × IndTemp × {P |D} → {P |D}(IndTemp)

Rep : True × True × {P |D} → {P |D}

Rep : True × False × {P |D} → N/A

Rep : True × IndPerm × {P |D} → {P |D}(IndPerm)

Rep : True × IndTemp × {P |D} → {P |D}(IndTemp)

Rep : False × ∗ × {P |D} → N/A

Rep : IndPerm × ∗ × {P |D} → {P |D}(IndPerm)

Rep : IndTemp × ∗ × {P |D} → {P |D}(IndTerm)

{P |D}(IndTerm) vMp
2
N/A, {P |D}(IndPerm), {P |D}(IndTerm), {P |D}

(A.3)

Case 4:

Rep : IndTemp × True × {P |D} → {P |D}(IndTemp)

Rep : True × True × {P |D} → {P |D}

Rep : False × True × {P |D} → N/A

Rep : IndPerm × True × {P |D} → {P |D}(IndPerm)

{P |D}(IndTerm) vMp
2
N/A, {P |D}(IndPerm), {P |D}

(A.4)

Case 5:
Rep : False × IndTemp × {P |D} → N/A

Rep : False × False × {P |D} → N/A

Rep : False × True × {P |D} → N/A

Rep : False × IndPerm × {P |D} → N/A

N/A vMp
2
N/A

(A.5)
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Case 6:

Rep : IndPerm × IndTemp × {P |D} → {P |D}(IndPerm)

Rep : IndPerm × False × {P |D} → {P |D}(IndPerm)

Rep : IndPerm × True × {P |D} → {P |D}(IndPerm)

Rep : IndPerm × IndPerm × {P |D} → {P |D}(IndPerm)

{P |D}(IndPerm) vMp
2
{P |D}(IndPerm)

(A.6)

Case 7:

Rep : True × IndTemp × {P |D} → {P |D}(IndTemp)

Rep : True × False × {P |D} → N/A

Rep : True × True × {P |D} → {P |D}

Rep : True × IndPerm × {P |D} → {P |D}(IndPerm)

{P |D}(IndTerm) vMp
2
N/A, {P |D}(IndPerm), {P |D}

(A.7)

Monotonicity for Permit-overrides Rule combining operation for Partial

policy evaluation •POrp : Mp
2 ×Mp

2 →Mp
2

Case 1:
•POrp : P (IndTemp) × Permit → Permit

•POrp : ∗ × Permit → Permit

Permit vMp
2
Permit

(A.8)

Case 21:

•POrp : P (IndTemp) × P (IndTemp) → P (IndTemp)

•POrp : ∗ × Permit → Permit

•POrp : P (IndPerm) × P (IndTemp) → P (IndTemp)

•POrp : N/A × P (IndTemp) → P (IndTemp)

•POrp : P (IndPerm) × P (IndPerm) → P (IndPerm)

•POrp : N/A × P (IndPerm) → P (IndPerm)

•POrp : N/A × N/A → N/A

P (IndTemp) vMp
2
N/A,P (IndPerm), P ermit, P (IndTemp)

(A.9)

1This case was evaluated considering •P O
rp commutativity.
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Case 3:
•POrp : P (IndPerm) × P (IndTemp) → P (IndTemp)

•POrp : P (IndPerm) × Permit → Permit

•POrp : P (IndPerm) × P (IndPerm) → P (IndPerm)

•POrp : P (IndPerm) × N/A → P (IndPerm)

P (IndTemp) vMp
2
P (IndPerm), P ermit

(A.10)

Case 4:

•POrp : Deny × P (IndTemp) → P (IndTemp)

•POrp : Deny × Permit → Permit

•POrp : Deny × P (IndPerm) → P (IndPerm)

•POrp : Deny × N/A → Deny

P (IndTemp) *Mp
2
N/A, , P (IndTemp) vMp

2
P (IndPerm), P ermit

(A.11)

Case 5:

•POrp : D(IndTemp) × P (IndTemp) → P (IndTemp)

•POrp : ∗ × Permit → Permit

•POrp : N/A × P (IndTemp) → P (IndTemp)

•POrp : Deny × P (IndTemp) → P (IndTemp)

•POrp : D(IndPerm) × P (IndTemp) → P (IndTemp)

•POrp : D(IndTemp) × P (IndPerm) → P (IndPerm)

•POrp : Deny × P (IndPerm) → P (IndPerm)

•POrp : D(IndPerm) × P (IndPerm) → P (IndPerm)

•POrp : N/A × P (IndPerm) → P (IndPerm)

•POrp : D(IndTemp) × N/A → D(IndTemp)

•POrp : Deny × N/A → Deny

•POrp : D(IndPerm) × N/A → D(IndPerm)

•POrp : N/A × N/A → N/A

P (IndTemp) *Mp
2
Deny,D(IndPerm), D(IndTemp)

P (IndTemp) vMp
2
P (IndPerm), P ermit, P (IndTemp)

(A.12)
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Case 6:

•POrp : D(IndPerm) × P (IndTemp) → P (IndTemp)

•POrp : D(IndPerm) × Permit → Permit

•POrp : D(IndPerm) × P (IndPerm) → P (IndPerm)

•POrp : D(IndPerm) × N/A → D(IndPerm)

P (IndTemp) *Mp
2
D(IndPerm), P (IndTemp) vMp

2
P (IndPerm), P ermit

(A.13)

Case 7:
•POrp : N/A × P (IndTemp) → P (IndTemp)

•POrp : N/A × Permit → Permit

•POrp : N/A × P (IndPerm) → P (IndPerm)

•POrp : N/A × N/A → N/A

P (IndTemp) vMp
2
P (IndPerm), P ermit,N/A

(A.14)

Case 8:
•POrp : D(IndTemp) × Permit → Permit

•POrp : ∗ × Permit → Permit

Permit vMp
2
Permit

(A.15)

Case 9:
•POrp : D(IndTemp) × P (IndPerm) → P (IndPerm)

•POrp : Deny × P (IndPerm) → P (IndPerm)

•POrp : D(IndPerm) × P (IndPerm) → P (IndPerm)

•POrp : N/A × P (IndPerm) → P (IndPerm)

P (IndPerm) vMp
2
P (IndPerm)

(A.16)

Case 10:
•POrp : D(IndTemp) × Deny → Deny

•POrp : Deny × Deny → Deny

•POrp : D(IndPerm) × Deny → Deny

•POrp : N/A × Deny → Deny

Deny vMp
2
Deny

(A.17)
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Case 112:

•POrp : D(IndTemp) × D(IndTemp) → D(IndTemp)

•POrp : Deny × Deny → Deny

•POrp : D(IndPerm) × Deny → Deny

•POrp : N/A × Deny → Deny

•POrp : D(IndTemp) × Deny → Deny

•POrp : D(IndPerm) × D(IndPerm) → D(IndPerm)

•POrp : N/A × D(IndPerm) → D(IndPerm)

•POrp : D(IndTemp) × D(IndPerm) → D(IndTemp)

•POrp : D(IndTemp) × N/A → D(IndTemp)

•POrp : N/A × N/A → N/A

D(IndTemp) vMp
2
D(IndPerm), Deny,N/A,D(IndTemp)

(A.18)

Case 12:

•POrp : D(IndPerm) × D(IndTemp) → D(IndTemp)

•POrp : D(IndPerm) × Deny → Deny

•POrp : D(IndPerm) × D(IndPerm) → D(IndPerm)

•POrp : D(IndPerm) × N/A → D(IndPerm)

D(IndTemp) vMp
2
D(IndPerm), Deny

(A.19)

Case 13:
•POrp : N/A × D(IndTemp) → D(IndTemp)

•POrp : N/A × Deny → Deny

•POrp : N/A × D(IndPerm) → D(IndPerm)

•POrp : N/A × N/A → N/A

D(IndTemp) vMp
2
D(IndPerm), Deny,N/A

(A.20)

2This case was evaluated considering •P O
rp commutativity.

300



APPENDIX A. EVALUATION OF MONOTONICITY FOR PARTIAL POLICY
EVALUATION ALGORITHM

Monotonicity of composition Permit-overrides Rule combining operation

for Partial policy evaluation (revised for composition fp ◦•POrp : Mp
2 ×Mp

2 →

Mp
1 )

Case 4:
Deny × P (IndTemp)

•P O
rp−−−→ P (IndTemp) fp−→ IndTemp

Deny × Permit
•P O

rp−−−→ Permit
fp−→ Permit

Deny × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

Deny × N/A
•P O

rp−−−→ Deny
fp−→ Deny

IndTemp vMp
1
Permit, IndPerm,Deny

(A.21)

Case 5:

D(IndTemp) × P (IndTemp)
•P O

rp−−−→ P (IndTemp) fp−→ IndTemp

∗ × Permit
•P O

rp−−−→ Permit
fp−→ Permit

N/A × P (IndTemp)
•P O

rp−−−→ P (IndTemp) fp−→ IndTemp

Deny × P (IndTemp)
•P O

rp−−−→ P (IndTemp) fp−→ IndTemp

D(IndPerm) × P (IndTemp)
•P O

rp−−−→ P (IndTemp) fp−→ IndTemp

D(IndTemp) × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

Deny × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

D(IndPerm) × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

N/A × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

D(IndTemp) × N/A
•P O

rp−−−→ D(IndTemp) fp−→ IndTemp

Deny × N/A
•P O

rp−−−→ Deny
fp−→ Deny

D(IndPerm) × N/A
•P O

rp−−−→ D(IndPerm) fp−→ IndPerm

N/A × N/A
•P O

rp−−−→ N/A
fp−→ N/A

IndTemp vMp
1
Permit, IndPerm,Deny,N/A, IndTemp

(A.22)

Case 6:

D(IndPerm) × P (IndTemp)
•P O

rp−−−→ P (IndTemp) fp−→ IndTemp

D(IndPerm) × Permit
•P O

rp−−−→ Permit
fp−→ Permit

D(IndPerm) × P (IndPerm)
•P O

rp−−−→ P (IndPerm) fp−→ IndPerm

D(IndPerm) × N/A
•P O

rp−−−→ D(IndPerm) fp−→ IndPerm

IndTemp vMp
1
Permit, IndPerm

(A.23)
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Appendix B

CEP generation planning domain specifi-

cation

Planning tasks definitions for Basic track development and validation

Degree(Student, T rack,AwardReq) task designates complete education of the student Student

at an EP or CEP whose structure satisfies the ITr requirements (specified as Track) and

which results in the award satisfying the requirements AwardReq.
Start Degree(Student, T rack(1, NSl

e )[, |EP |[1,m]]) task designates initial stage of the education

according to a CEP designed for the student Student. It corresponds to the initial part of

the track Track(1, NSl
e ), where NSl

e is the number of the last slot covered by this task. At

the beginning of this task, the student is admitted to an EP. At the end of this task, the

student transfers permanently from it1. During the execution of this task, the student can

change EPs several times. Optionally, this task can contain EP interval |EP |[n,m], which will

be utilised as a basis to construct the CEP structure in this part of the track2.
Finish Degree(Student, T rack(NSl

s , N
Sl
e ), AwardReq) task designates the final stage of the ed-

ucation according to a CEP within the interval of the track from NSl
s to NSl

e , designed for

the student Student. At the beginning of this task, the student transfers to an EP that he

(or she) wants to graduate from (i.e., the permanent incoming transfer is carried out). At

the end, the student graduates from this EP with a degree that satisfies the requirements

AwardReq. During the execution of this task, the student can change EPs several times.
Proceed Degree(Student, T rack(NSl

s , N
Sl
e )[, |EP |[n,m]orAward

Req]) task designates the interme-

diate stage of the education according to a CEP within the interval of the track from NSl
s

to NSl
e , designed for the student Student. At the beginning of this task, the student moves

or returns to an EP that he (or she) is not intended to graduate from (i.e., the temporal

incoming transfer is carried out). At the end, the student transfers from this EP (i.e., the

permanent outgoing transfer is carried out). During the execution of this task, the student
1That is, the student will not return to this EP in the future.
2This parameter is specified for this task when it was generated during the planning, as a result of higher-level

compound task decomposition, rather than it has been specified in the CEP process requirements ReqP rop. Then,
some initial part of this EP interval (or the whole EP interval) should be studied at the first slot of this track. These
rules are applicable for other compound tasks that have EP intervals in their term lists.
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can change EPs several times.
Start Degree Probation(Student, T rack(1, NSl

e )[, |EP |[1,m]]) task designates the initial stage of

the education according to a CEP within the interval of the track from slot 1 to slot NSl
e ,

designed for the student Student. At the beginning of this task, the student is admitted to

an EP that he (or she) wants to graduate from. At the end, the student temporarily transfers

from it3. During the execution of this task, the student can change EPs several times.
Start Degree str(Student, T rack(1, NSl

e )[, |EP |[1,m]]) is derived from Start Degree. At the end

of this task, the student transfers from the current EP, which he (or she) is not intended to

graduate from, but he (or she) will return to it in the future.
Start Degree ret(Student, T rack(NSl

s , N
Sl
e )[, |EP |[n,m]]) task designates the intermediate stage

of the education according to a CEP within the interval of the track from NSl
s to NSl

e ,

designed for the student Student. At the beginning of this task, the student returns to an

EP that he (or she) has studies before and that he (or she) is not intended to graduate from.

At the end, the student transfers from it, but is going to return to it in the future.
Start Degree fin(Student, T rack(NSl

s , N
Sl
e )[, |EP |[n,m]]) task designates the intermediate stage

of the education according to a CEP within the interval of the track from NSl
s to NSl

e ,

designed for the student Student. At the beginning of this task, the student moves to an EP

that he (or she) has studies before, but which he (or she) is not intended to graduate from.

At the end, the student transfers from this EP (the student will not return to this EP in the

future).
Finish Degree fin(Student, T rack(NSl

s , N
Sl
e ), [, |EP |[n,m]orAward

Req]) is derived from

Finish Degree. At the beginning of this task, the student transfers to an EP that

he (or she) has already studied before and that he (or she) wants to graduate from (without

further transfers).
Finish Degree str(Student, T rack(NSl

s , N
Sl
e )[, |EP |[n,m]]) is derived from Finish Degree. At

the end of this task, the student transfers from the EP temporarily (he (or she) will return

to this EP in the future and will graduate from it).
Finish Degree ret(Student, T rack(NSl

s , N
Sl
e )[, |EP |[n,m]]) task designates the intermediate stage

of the education according to a CEP within the interval of the track fromNSl
s toNSl

e , designed

for the student Student. At the beginning of this task, the student moves to an EP that he

(or she) has studied before and that he (or she) wants to graduate from. At the end, the

student temporarily transfers from this EP.
!admitP (Student, T rack, 1, |EP |[n,m]) action designates admission of the student Student to the

university at the EP interval |EP |[n,m]. ‘P’ indicates that this student will graduate from

this EP. The task is always executed in first slot.
3That is, he (or she) will return to this EP in the future.
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Effects+: admitted(Student, T rack, 1, EP, n,m), assessed(Student, LevName, LevScale,

P rovEP ), graduate(Student, T rack,EP )
!admitT (Student, T rack, 1, |EP |[n,m]) action designates admission of the student Student to the

university at the EP interval |EP |[n,m]. ‘T’ indicates that the student will not graduate from

this EP. The task is always executed in first slot.
Effects+: admitted(Student, T rack, 1, EP, n,m), assessed(Student, LevName, LevScale,

P rovEP ), not graduate(Student, T rack,EP ).
&choose modules(Student, T rack, k, |EP |[n,m]) task is a compound action designating the pro-

cedure for the optional modules selection within the EP interval |EP |[n,m] for the student

Student in slot n. This procedure is carried out during the decomposition of this compound

action.
&study interval(Student, T rack, k, |EP |[n,m]) task is a compound action designating the proce-

dure of studying according to |EP |[n,m] in slot k (by the student Student). This procedure

is carried out during the decomposition of this compound action.
Effects+: history(Student, T rack, k, EP, n,m).

!graduate(Student, T rack, k, |EP |[n,m]) action designates graduation of the student Student from

the EP interval |EP |[n,m] in slot k.
Effects−: assessed(Student, LevName, LevScale, P rovEP ).
Effects+: education(Student, T rack, k, EP, n,m).

&transfer IP (Student, T rack, k, |EP |[n,m]) action designates an incoming transfer of the student

Student to the EP interval |EP |[n,m] in slot k such that the student will graduate from this

EP (while before the graduation the student can transfer from and to this EP several times).

This action also indicates that the student has not studied at this EP earlier.
Effects+: graduate(Student, T rack,EP ).

&transfer IRP (Student, T rack, k, |EP |[n,m]) action designates an incoming transfer of the stu-

dent Student to the EP interval |EP |[n,m] in slot k such that the student has studied at this

EP earlier and will graduate from this EP in the future (while before the graduation the

student can transfer from and to this EP several times).
Effects−: interrupted(Student, T rack, k′, EP, n′,m′).
Effects+: probation(Student, T rack, k′ + 1, k − 1, EP,m′ + 1, n− 1).

&transfer IT (Student, T rack, k, |EP |[n,m]) action designates an incoming transfer of the student

Student to the EP interval |EP |[n,m] in slot k such that the student will not graduate from

this EP (before this action, the student may have studied at this EP before).
Effects+: not graduate(Student, T rack,EP ).

!transfer OP (Student, T rack, k, |EP |[n,m]) action designates an outgoing transfer of the student

Student from the EP interval |EP |[n,m] in slot k such that the student will not graduate from

this EP (after this action, the student can also carry out transfers to and from this EP).
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!transfer OT (Student, T rack, k, |EP |[n,m]) action designates an outgoing transfer of the student

Student to the EP interval |EP |[n,m] in slot k such that the student will return to this EP

and will graduate from it in the future.

Effects+: interrupted(Student, T rack, k, EP, n,m).

Decomposition methods for Basic track development and validation

One permanent transfer high-level scenario. This method splits Degree task into two sub-

task. A student starts his (or her) education at one EP (designated using Start Degree task,

the EP interval is |EP |[1,m]), then he (or she) transfers to another EP and graduates from it

(designated using Finish Degree task). 1 ≤ F1 < F0
4, 1 ≤ m < EPl, where EPl is the total

number of semesters in EP .

Degree(S, Tr,AwardReq)→

〈Start Degree(S, Tr(1, F1), |EP |[1,m]), F inish Degree(S, Tr(F1 + 1, F0), AwardReq)〉 (B.1)

Two permanent transfers high-level scenario. This method splits Degree task into

three sub-tasks. Student starts his (or her) education at one EP (designated using Start Degree

task), then he (or she) transfers to another EP (designated using Proceed Degree task) and then

he (or she) transfers to the third degree, which he (or she) graduates from (designated using

Finish Degree task). 1 ≤ F1 < F2 < F0, 1 ≤ m < EPl.

Degree(S, Tr,AwardReq)→

〈Start Degree(S, Tr(1, F1), |EP |[1,m]), P roceed Degree(S, Tr(F1 + 1, F2), AwardReq),

F inish Degree(S, Tr(F2 + 1, F0), AwardReq)〉 (B.2)

Temporal transfer high-level scenario (probation period). This method splits Degree

task into three sub-tasks. Student starts his (or her) education at one EP (designated using

Start Degree Probation task), then he (or she) temporally transfers to another EP (designated

using Proceed Degree task) and then he (or she) returns to the first EP and graduates from it

(designated using Finish Degree fin task). 1 ≤ F1 < F2 < F0, 1 ≤ m < n ≤ EPl.

Degree(S, Tr,AwardReq)→

〈Start Degree Probation(S, Tr(1, F1), |EP |[1,m]), P roceed Degree(S, Tr(F1 + 1, F2), AwardReq),

F inish Degree fin(S, Tr(F2 + 1, F0), |EP |[n,EPl])〉 (B.3)

4In this section, F0 designates the number of the last slot in the track.
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Temporal transfer scenario (probation period) within starting EP in high-level

permanent transfer scenario. This method splits Start Degree task into three sub-tasks.

Student starts his (or her) education at one EP (designated using Start Degree str task), then

he (or she) temporally transfers to another EP (designated using Proceed Degree task) and then

he (or she) returns to the first EP, transfers from it and never returns back (designated using

Start Degree fin task). 1 < F1 < F2, 1 ≤ n < k ≤ m.

Start Degree(S, Tr(1, F2), |EP |[1,m])→

〈Start Degree str(S, Tr(1, F1 − 1), |EP |[1,n]), P roceed Degree(S, Tr(F1, F2 − 1), AwardReq),

Start Degree fin(S, Tr(F2, F2), |EP |[k,m])〉 (B.4)

Temporal transfer scenario (probation period) within initial part of starting EP

in high-level permanent transfer scenario. This method splits Start Degree str task into

three sub-tasks in a recursive manner. Student starts his (or her) education at an EP that he (or

she) will not graduate from (designated using Start Degree str task), then he (or she) temporally

transfers to another EP (designated using Proceed Degree task) and then he (or she) returns to

the first EP and makes another temporal transfer (i.e., the student will return to this EP in the

future) (designated using Start Degree ret task). 1 < F1 < F2, 1 ≤ n < k ≤ m.

Start Degree str(S, Tr(1, F2), |EP |[1,m])→

〈Start Degree str(S, Tr(1, F1 − 1), |EP |[1,n]), P roceed Degree(S, Tr(F1, F2 − 1), AwardReq),

Start Degree ret(S, Tr(F2, F2), |EP |[k,m])〉 (B.5)

Temporal transfer scenario (probation period) within final EP in high-level per-

manent transfer scenario. This method splits Finish Degree task into three sub-tasks. After

transferring to the EP that the student will graduate from (designated using Finish Degree str

task), the student takes a probation period at another EP (designated using Proceed Degree task).

When it is finished, the student returns to the previous EP and graduates from it (designated using

Finish Degree fin task). S0 < F1 < F0, n ≤ m < k ≤ EPl. Additionally, when it is considered

that temporal transfer mobility scenarios used within the CEP are intersected, this task can be

decomposed into task networks 〈Proceed Degree, F inish Degree fin〉 and 〈Finish Degree fin〉.

Finish Degree(S, Tr(S0, F0), AwardReq)→

〈Finish Degree str(S, Tr(S0, S0), |EP |[n,m]), P roceed Degree(S, Tr(S0 + 1, F1), AwardReq),

F inish Degree fin(S, Tr(F1 + 1, F0), |EP |[k,EPl])〉 (B.6)
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Temporal transfer scenario (probation period) within the last part of final EP in

high-level permanent transfer scenario. This method splits Finish Degree fin task into

three sub-tasks in a recursive manner. After transferring to the EP that the student will graduate

from and that he (or she) has already studied (designated using Finish Degree ret task), the

student takes a probation period at another EP (designated using Proceed Degree task). Then,

the student returns to the EP, which he (or she) originally has transferred to (designated using

Finish Degree fin task), and graduates from it. S0 < F1 < F0, n ≤ m < k ≤ EPl.

Finish Degree fin(S, Tr(S0, F0), |EP |[n,EPl])→

〈Finish Degree ret(S, Tr(S0, S0), |EP |[n,m]), P roceed Degree(S, Tr(S0 + 1, F1), AwardReq),

F inish Degree fin(S, Tr(F1 + 1, F0), |EP |[k,EPl])〉 (B.7)

Temporal transfer scenario (probation period) within initial part of higher-level

probation period scenario. This method splits Start Degree Probation task into three sub-

tasks in a recursive manner. Student starts his (or her) education at the EP (designated using

Start Degree Probation task), then he (or she) temporally transfers to another EP (designated

using Proceed Degree task) and then he (or she) returns to the first EP and makes another transfer

from it (but the student will return and graduate from this EP in the future) (designated using

Finish Degree ret task). 1 < F1 < F0, 1 ≤ n < k ≤ m.

Start Degree Probation(S, Tr(1, F0), |EP |[1,m])→

〈Start Degree Probation(S, Tr(1, F1 − 1), |EP |[1,n]), (B.8)

Proceed Degree(S, Tr(F1, F0 − 1), AwardReq), F inish Degree ret(S, Tr(F0, F0), |EP |[k,m])〉

Permanent transfer scenario between ‘intermediate’ EPs. This method splits

Proceed Degree task into two sub-tasks in a recursive manner and introduces a permanent trans-

fer between them. The student sequentially studies in two EPs. He (or she) has not started his (or

her) higher education from any of them and will not graduate from any of them as well. S0 < F0,

1 < n ≤ m < EPl. Additionally, when it is considered that temporal transfer mobility scenarios

used within the CEP are intersected, this task can be decomposed into tasks 〈Finish Degree str〉

or 〈Finish Degree ret〉.

Proceed Degree(S, Tr(S0, F0), AwardReq)→ (B.9)

〈Proceed Degree(S, Tr(S0, S0), |EP |[n,m]), P roceed Degree(S, Tr(S0 + 1, F0), AwardReq)〉

One-slot tasks processing: each of the following methods implements a one-slot task using
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compound and primitive actions according to its definition.

Start Degree(S, Tr(NSl, NSl), |EP |[n,m])→ 〈!admitT (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OP (S, Tr,NSl, |EP |[n,m])〉 (B.10)

Finish Degree(S, Tr(NSl, NSl), AwardReq)→ 〈&transfer IP (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!graduate(S, Tr,NSl, |EP |[n,m])〉 (B.11)

Proceed Degree(S, Tr(NSl, NSl), [|EP |[n,m] or Award
Req])→

〈&transfer IT (S, Tr,NSl, |EP |[n,m]),&choose modules(S, Tr,NSl, |EP |[n,m]),

&study interval(S, Tr,NSl, |EP |[n,m]), !transfer OP (S, Tr,NSl, |EP |[n,m])〉 (B.12)

Start Degree Probation(S, Tr(NSl, NSl), |EP |[n,m])→ 〈!admitP (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OT (S, Tr,NSl, |EP |[n,m])〉 (B.13)

Start Degree str(S, Tr(NSl, NSl), |EP |[n,m])→ 〈!admitT (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OP (S, Tr,NSl, |EP |[n,m])〉 (B.14)

Start Degree fin(S, Tr(NSl, NSl), |EP |[n,m])→ 〈&transfer IT (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

&transfer OP (S, Tr,NSl, |EP |[n,m])〉 (B.15)

Start Degree ret(S, Tr(NSl, NSl), |EP |[n,m])→ 〈&transfer IT (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OP (S, Tr,NSl, |EP |[n,m])〉 (B.16)
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Finish Degree str(S, Tr(NSl, NSl), |EP |[n,m])→ 〈&transfer IP (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OT (S, Tr,NSl, |EP |[n,m])〉 (B.17)

Finish Degree ret(S, Tr(NSl, NSl), |EP |[n,m])→ 〈&transfer IRP (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!transfer OT (S, Tr,NSl, |EP |[n,m])〉 (B.18)

Finish Degree fin(S, Tr(NSl, NSl), |EP |[n,m])→ 〈&transfer IRP (S, Tr,NSl, |EP |[n,m]),

&choose modules(S, Tr,NSl, |EP |[n,m]),&study interval(S, Tr,NSl, |EP |[n,m]),

!graduate(S, Tr,NSl, |EP |[n,m])〉 (B.19)

Planning tasks definitions for obligatory low-level processes

Choose modules find groups(Student, T rack, k, |EP |[n,m]) compound task is used to close all

groups within the EP interval |EP |[n,m] using recursion. When backtrack is carried out,

different modules selection variants for the groups closure are tried.
Choose modules group(Student, T rack, k,Group, |EP |[n,m]) compound task is used to process

the group Group and recursively try all possible variants of the modules selection searching

for the variants when the group can be closed.
!choose module(Student, T rack, k,Mod,Group, |EP |[n,m], InEPint) action is carried out when

the optional module Mod within the group Group is selected. InEPint parameter is used

to indicate if this group is contained in the EP interval that will be studied by the student

or only recognised for him (or her).

Effects+: module chosen(Student, T rack, k,Mod,Group,EP, n,m, InEPint).
!close group(Student, T rack, k,Group, |EP |[n,m], InEPint) action is used when the group of op-

tional modules Group within the EP interval |EP |[n,m] is closed.

Effects+: group is closed(Student, T rack, k,Group,EP, n,m, InEPint).
Find sems(Student, |EP |[n,m], i, T rack, k) compound task is used to recursively process all mod-

ules within the EP interval |EP |[n,m]. Parameter n+i is used to determine the next semester.
&study sem(Student, |EP |[n,m], Sem, Track, k) compound action indicates that the student

Student has studied semester Sem in slot k of the track Track.
Find modules(Student, |EP |[n,m], Sem, Track, k) compound task is used to find and process all

modules within the semester Sem.
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!stud mod(Student, |EP |[n,m], Sem,Mod, Track, k) action designates that the student Student

has studied module Mod in slot k of the track Track.

Effects+: studied mod(Student, T rack, k,Mod,EP, n,m).

Decomposition methods for obligatory low-level processes

Compound action &choose modules decomposition method. Using this method, the re-

cursive task Choose modules find groups is generated and it is designated that it can contain

‘pseudo-parallel’ actions.

&choose modules(S, Tr, k, |EP |[n,m])→

〈!CA start(choose modules(S, Tr, k, |EP |[n,m]), ∅, ∅, ∅), !concur start(),

Choose modules find groups(S, Tr, k, |EP |[n,m]),

!concur end(), !CA end(choose modules(S, Tr, k, |EP |[n,m]), ∅, ∅, ∅)〉

(B.20)

Recursive groups processing method. This method contains two branches that are tried

sequentially. In the first branch, one group that has not been processed yet is marked using

a flag and processed. If all groups are marked, the second branch is carried out and the task is

decomposed into an empty task network. This method was designed such that during the backtrack

different orderings for groups are not tried.

Choose modules find groups(S, Tr, k, |EP |[n,m])→

〈Choose modules group(S, Tr, k,Group, |EP |[n,m]), !change line(),

Choose modules find groups(S, Tr, k, |EP |[n,m])〉 | 〈∅〉

(B.21)

Recursive modules selection methods. This method contains two alternative branches for

decomposition of Choose modules group task referring to a group of optional modules. The first

branch straight away tries to close the group. If this fails, in the second branch one module is

selected and the task Choose modules group is carried out again for this task. When this method

backtracks, different variants for the modules selection are tried.

Choose modules group(S, Tr, k,Group, |EP |[n,m])→

〈!close group(S, Tr, k,Group, |EP |[n,m], 1)〉 | 〈!choose module(S, Tr, k,Mod,Group, |EP |[n,m], 1),

Choose modules group(S, Tr, k,Group, |EP |[n,m])〉 (B.22)

Compound action &study interval decomposition method. Using this method, the re-
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cursive task Find sems is generated.

&study interval(S, Tr, k, |EP |[n,m])→ (B.23)

〈!CA start(&study interval(S, Tr, k, |EP |[n,m]), ∅, ∅, ∅), F ind sems(S, |EP |[n,m],0,Tr,k),

!CA end(&study interval(S, Tr, k, |EP |[n,m]), ∅, ∅, ∅)〉

Recursive semesters processing method. This method contains two branches that are

tried sequentially. In the first branch, the next unprocessed semester is processed. If all semesters

within the EP interval have been processed, the second branch is carried out and the recursion is

stopped.

Find sems(S, |EP |[n,m],i,Tr,k)→

〈&study sem(S, |EP |[n,m], Semn+i, T r, k), F ind sems(S, |EP |[n,m], i+ 1, T r, k)〉 | 〈∅〉
(B.24)

Compound action &study sem decomposition method. Using this method, the recursive

task Find modules is generated and it is designated that it can contain ‘pseudo-parallel’ actions.

&study sem(S, |EP |[n,m],Sem,Tr,k)→

〈!CA start(study sem(S, |EP |[n,m], Sem, Tr, k), ∅, ∅, ∅), !concur start(),

F ind modules(S, |EP |[n,m], Sem, Tr, k),

!concur end(), !CA end(study sem(S, |EP |[n,m], Sem, Tr, k), ∅, ∅, ∅)〉

(B.25)

Recursive modules processing method. This method contains two branches that are tried

sequentially. In the first branch, the one unprocessed module is marked using a flag and processed.

If all modules within the EP interval has been processed, the second branch is carried out and the

recursion is stopped. This method was designed such that during the backtrack it does not try

different module orderings.

Find modules(S, |EP |[n,m], Sem, Tr, k)→

〈!study mod(S, |EP |[n,m], Sem,Mod, Tr, k), !change line(),

F ind modules(S, |EP |[n,m], Sem, Tr, k)〉 | 〈∅〉

(B.26)
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ANTLR grammar for XPath parsing and

AST generation

grammar XPathGr;

options {
output = ’AST’; }

tokens {
RELPATH; ABSATH; STEP; GOUP; UNION; OR; AND; EQUAL;
REL; ADD; MULT; ANY; SELF; }

PATHSEP : ’/’; LPAR : ’(’; RPAR : ’)’; LBRAC : ’[’; RBRAC : ’]’; MINUS :
’-’; PLUS : ’+’; DOT : ’.’; ASTER : ’*’; DOTDOT : ’..’; AT : ’@’; COMMA :
’,’; PIPE : ’|’; LESS : ’<’; MORE : ’>’; LE : ’<=’; GE : ’>=’; EQ : ’=’;
NEQ : ’!=’; COLON : ’:’;

main : expr;

locationPath :
relativeLocationPath ->ˆ(RELPATH relativeLocationPath)
|absoluteLocationPathNoroot->ˆ(ABSATH absoluteLocationPathNoroot) ;

absoluteLocationPathNoroot : PATHSEP! relativeLocationPath;

relativeLocationPath : step (PATHSEP! step)∗;

step :
nodeTest predicate∗ ->ˆ(STEP nodeTest predicate∗)
| abbreviatedStep ->ˆ(STEP abbreviatedStep)
| AT nodeTest predicate∗ ->ˆ(STEP predicate∗);

nodeTest :
nameTest
| NodeTypeNode LPAR RPAR ->ˆ(ANY)
| NodeTypeOthers! LPAR! RPAR!
| ’processing-instruction’! LPAR! Literal! RPAR!;

predicate : LBRAC! expr RBRAC!;

abbreviatedStep :
DOT ->ˆ(SELF)
| DOTDOT ->ˆ(GOUP);

expr : orExpr;

primaryExpr :
variableReference!
| LPAR! expr RPAR!
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| Literal!
| Number!
| functionCall!;

functionCall : functionName LPAR ( expr ( COMMA expr )∗ )? RPAR;

unionExprNoRoot : pathExprNoRoot (PIPE unionExprNoRoot)?
->ˆ(UNION pathExprNoRoot unionExprNoRoot?)
| PATHSEP PIPE unionExprNoRoot ->ˆ(UNION unionExprNoRoot);

pathExprNoRoot :
locationPath
| filterExpr ( PATHSEP! relativeLocationPath)? ;

filterExpr : primaryExpr predicate∗ ;

orExpr : E = andExpr (’or’ F = andExpr)∗ ->ˆ(OR $E $F ∗);

andExpr : G = equalityExpr (’and’ H = equalityExpr)∗ ->ˆ (AND $G $H∗);

equalityExpr :
A = relationalExpr ((EQ|NEQ) B = relationalExpr)∗ ->ˆ (EQUAL $A $B∗);

relationalExpr :
C = additiveExpr ((LESS|MORE|LE|GE) D = additiveExpr)∗ ->ˆ (REL $C $D∗);

additiveExpr :
I = multiplicativeExpr ((MINUS|PLUS) J = multiplicativeExpr)∗

->ˆ (ADD $I $J∗);

multiplicativeExpr :
K = unaryExprNoRoot ((MUL|’div’|’mod’) L = multiplicativeExpr)?

->ˆ (MULT $K $L?)
| PATHSEP ((’div’|’mod’) multiplicativeExpr)?
->ˆ(MULT multiplicativeExpr?);

unaryExprNoRoot : MINUS∗ unionExprNoRoot;

qName : NCName (COLON! NCName)?;

functionName : qName;

variableReference : ’$’ qName;

nameTest :
ASTER ->ˆ(ANY)
| NCName COLON! ASTER ->NCNameANY
| qName;

NodeTypeOthers :
’comment’
| ’text’
| ’processing-instruction’;

NodeTypeNode : ’node’;

Number : Digits (’.’ Digits? )?
| ’.’ Digits;

fragment
Digits : (’0’..’9’)+;

Literal :
’ ˝ ’ ˜’ ˝ ’∗ ’ ˝ ’
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| ’ ´ ’ ’ ˝ ’∗ ’ ˝ ’;

Whitespace : (’ ’ | ’\t’ | ’\n’ | ’\r’)+ {$channel = HIDDEN;} ;

NCName : NCNameStartChar NCNameChar∗ ;

fragment
NCNameStartChar : ’A’..’Z’ | ’ ’ | ’a’..’z’ | ’\u00C0’ .. ’\u00D6’

| ’\u00D8’ .. ’\u00F6’ | ’\u00F8’ .. ’\u02FF’ | ’\u0370’ .. ’\u037D’
| ’\u037F’ .. ’\u1FFF’ | ’\u200C’ .. ’\u200D’ | ’\u2070’ .. ’\u218F’
| ’\u2C00’ .. ’\u2FEF’ | ’\u3001’ .. ’\uD7FF’ | ’\uF900’ .. ’\uFDCF’
| ’\uFDF0’ .. ’\uFFFD’ ;

fragment
NCNameChar :

NCNameStartChar | ’-’ | ’.’ | ’0’ .. ’9’
| ’\u00B7’ | ’\u0300’ .. ’\u036F’ | ’\u203F’ .. ’\u2040’ ;
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Case study 2 planning environment speci-

fications

Educational programmes specification

EP1: MSc in Advanced Computer Science. University of Birmingham.1

Award

Level MSc (UK NQF)

Title Advanced Computer Science

Area Computing 48 (ISCED)

Education provider School of Computer Science, University of Birmingham

Structure

ID Name Cr. Sem. 1 Sem. 2 Sem. 3 Prereq

(09 - 12)2 (01 - 04) (05 - 09)

B1 Research Skills 10 Oblig.

B2 Compilers and Languages 10 Opt.(Group2)

B3 Human Computer Interaction 10 Opt.(Group1)

B4 Distributed Systems 10 Opt.(Group1)

B5 Parallel Programming 10 Opt.(Group2)

B6 Enterprise Systems 20 Opt.(Group2) B13, B14

B7 Formal Methods 10 Opt.(Group2) B15, B18

B8 Second semester mini-project 30 Oblig. B14, B17,

B18

B9 Project 60 Oblig.

B10 Networks 10 Opt.(Group1)

B11 Intelligent Robotics 20 Opt.(Group1)

B12 Computer Security 20 Opt.(Group1)

1This EP is a part of referred MSc. It contains only a subset of optional modules, contained in the original MSc.
Additionally, minor modifications were introduced into MSc modules, i.e. prerequisites were added for modules B7
and B8, start and end dates of semesters were adapted.
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2Here and in subsequent tables numbers in brackets in columns referring to EP semesters are sequence numbers
(in a year) of the start and end months for these semesters.

• 50 Credits should be chosen from Group1

• 30 Credits should be chosen from Group2

Credit values for modules in EP1 (the third column in the EP structure table) are specified in

educational credit units adopted in UK. We assume that one such credit unit is equal to 10

notional hours.

EP2: MSc in Robotics. University of Birmingham.3

Award

Level MSc (UK NQF)

Title Robotics

Area Computing 48 (ISCED)

Education provider School of Computer Science, University of Birmingham

Structure

ID Name Cr. Sem. 1 Sem. 2 Sem. 3 Prereq

(09 - 12) (01 - 04) (05 - 09)

C1 Intelligent Robotics 20 Oblig.

C2 Robot Vision 20 Oblig.

C3 Advanced Robotics 20 Oblig.

C4 Graphics 10 Opt.(Group4)

C5 Planning 10 Opt.(Group4)

C6 Machine Learning 10 Opt.(Group3)

C7 Int.to Evolutionary Computation 10 Opt.(Group3)

C8 Int.to Neural Computation 10 Opt.(Group3)

C9 Intelligent Data Analysis 10 Opt.(Group4)

C10 Computational Vision 10 Opt.(Group4) C13

C11 Computational Modelling 10 Opt.(Group4)

with MATLAB

C12 Component-based Software 10 Opt.(Group3)

C13 Project 60 Oblig.

• 20 Credits should be chosen from Group3

• 40 Credits should be chosen from Group4

3This EP is a part of referred MSc. It contains only a subset of optional modules, contained in the original MSc.
Minor modifications were introduced into the MSc modules, start and end dates of semesters were adapted.
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Credit values for modules in EP2 (the third column in the EP structure table) are specified in

educational credit units adopted in UK. We assume that one such credit unit is equal to 10

notional hours.

Additional modules for prerequisites

ID Name Cr.

B13 Databases 15

B14 Object-Oriented Programming 10

B15 Discrete mathematics 10

B16 Object-Oriented Design 20

B17 Software Engineering Processes 10

C13 Analytical Geometry 10

EP3: MSc in Software Engineering. BMSTU. 4

Award

Level MSc (RF NQF)

Title Software Engineering

Area Computing 48 (ISCED)

Education provider Bauman Moscow State Technical University (BMSTU)

4Minor modifications were introduced into the MSc modules, i.e. prerequisites were added for modules A3 and
A6, start and end dates of semesters were adapted.
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Structure

ID Name Cr. Sem. 1 Sem. 2 Sem. 3 Sem. 4 Prereq

(09 - 12) (01 - 08) (09 - 12) (01 - 06)

A1 Distributed Systems 4 Oblig.

A2 Research Work 4 Oblig.

A3 Compilers Development 4 Oblig. A22

A4 Parallel Computations 3 Oblig.

A5 Real Time Systems 4 Oblig.

A6 Object Oriented Analysis 3 Oblig. A23

and Design

A7 Network Protocols 5 Opt. A24

Development (Group5)

A8 Research Methods 3 Oblig.

A9 Philosophy 2 Oblig.

A10 Digital Signals Processing 6 Oblig.

A11 Intellectual Data Analysis 5 Opt.

(Group5)

A12 High-Performance Computing 4 Oblig.

A13 Research Work 9 Oblig.

A14 Robotics and 4 Oblig.

Automatic Systems

A15 Software Development 5 Opt.

Methodology (Group6)

A16 Decision Theory 5 Opt.

(Group6)

A17 Philosophy (cont.) 2 Oblig.

A18 Foreign Language 3 Oblig.

A19 Operational Systems 6 Opt.

Design (Group7)

A20 Software Verification 4 Oblig.

A21 Research Work 8 Oblig.

A22 Pattern Recognition 7 Oblig.

Algorithms

A23 Computational Linguistic 6 Opt.

(Group7)

A23 Project 30 Oblig.
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• One and only module should be chosen from Group5

• One and only module should be chosen from Group6

• One and only module should be chosen from Group7

Credit values for modules in EP3 (the third column in the EP structure table) are specified in

Russian Federation educational credit units. One credit unit is equal to 36 notional hours.
Additional modules for prerequisites

ID Name Cr.

A22 Discrete Mathematics 4

A23 Object-Oriented Programming 5

A24 Formal Languages Theory 3

Policy specification
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Figure D.2: Schemas for BMSTU and EP3 policy sets
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Figure D.3: Schemas for UK and University of Birmingham policy sets322
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Appendix E

Experimental results for performance anal-

ysis

Figure E.1: Examples of domains trees used for performance analysis
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Figure E.2: Experimental results for different values of z (Experiment 1.2)
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Figure E.3: Experimental results for different number of EPs (Experiment 2.1)
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