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A Wide Spectrum Type System

for Transformation Theory

Abstract

One of the most difficult tasks a programmer can be confronted with is the migration of a legacy

system. Usually, these systems are unstructured, poorly documented and contain complex program

logic. The reason for this, in most cases, is an emphasis on raw performance rather than on clean

and structured code as well as a long period of applying quick fixes and enhancements rather than

doing a proper software reengineering process including a full redesign during major enhancements.

Nowadays, the old programming paradigms are becoming an increasingly serious problem. It has

been identified that 90% of the costs of a typical software system arise in the maintenance phase.

Many companies are simply too afraid of changing their software infrastructure and prefer to con-

tinue with principles like “never touch a running system”. These companies experience growing

pressure to migrate their legacy systems onto newer platforms because the maintenance of such

systems is expensive and dangerous as the risk of losing vital parts of sources code or its documen-

tation increases drastically over time. The FermaT transformation system has shown the ability to

automatically or semi-automatically restructure and abstract legacy code within a special interme-

diate language called WSL (Wide Spectrum Language). Unfortunately, the current transformation

process only supports the migration of assembler as WSL lacks the ability to handle data types

properly. The data structures in assembler are currently directly translated into C data types

which involves many assumptional “hard coded” conversions. The absence of an adequate type

system for WSL caused several flaws for the whole transformation process and limits its abilities

significantly. The main aim of the presented research is to tackle these problems by investigating

and formulating how a type system can contribute to a safe and reliable migration of legacy sys-

tems. The described research includes the definition of key aspects of type related problems in

the FermaT migration process and how to solve them with a suitable type system approach. Since

software migration often includes a change in programming language the type system for WSL

has to be able to support various type system approaches including the representation of all rele-

vant details to avoid assumptions. This is especially difficult as most programming languages are

designed for a special purpose which means that their possible programming constructs and data



types differ significantly. This ranges from languages with simple type systems whose programs

are prone to unintended side-effects, to languages with strict type systems which are constrained

in their flexibility. It is important to include as many type related details as necessary to avoid

making assumptions during language to language translation. The result of the investigation is a

novel multi layered type system specifically designed to satisfy the needs of WSL for a sophisticated

solution without imposing too many limitations on its abilities. The type system has an adjustable

expressiveness, able to represent a wide spectrum of typing approaches ranging from weak typing

which allows direct memory access and down casting, via very strict typing with a high diversity

of data types to object oriented typing which supports encapsulation and data hiding. Looking

at the majority of commercial relevant statically typed programming languages, two fundamental

properties of type strictness and safety can be identified. A type system can be either weakly or

strongly typed and may or may not allow unsafe features such as direct memory access. Each

layer of the Wide Spectrum Type System has a different combination of these properties. The ap-

proach also includes special Type System Transformations which can be used to move a given WSL

program among these layers. Other emphasised key features are explicit typing and scalability.

The whole approach is based on a sound mathematical foundation which assures correctness and

integrates seamlessly into the present mathematical definition of WSL. The type system is formally

introduced to WSL by constructing an attribute grammar for the language. Type checking and

type inference are used to annotate the Abstract Syntax Tree of a given WSL program with type

derivations which can be used to reveal and indicate possible typing errors or to infer types if the

program did not feature explicit type declarations in the first place. Notable in this approach is

also the fact that object orientation is introduced to a procedural programming language without

the introduction of new semantics. It is shown that object orientation can be introduced just by

adjusting type checking rules and adding some syntactical notations. The approach was imple-

mented and tested on two case studies. The thesis describes and discusses both cases in detail

and shows how a migration which ignores type systems could accidentally introduce errors due

to assumptions during translation. Both case studies use all important aspects of the approach,

including type transformations and object identification. The thesis finalises by summarising the

whole work, identifying limitations, presenting future perspectives and drawing conclusions.
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Chapter 1

Introduction

“We can’t solve problems by using the same kind of

thinking we used when we created them.”

Albert Einstein

Objectives

• Motivate the use of type systems in current software migration projects.

• Formulate the research question.

• Outline the scope of the thesis.

• Highlight original contributions.

• Give a brief overview of the thesis organisation.

1.1 Motivation and Aim of Research

The constant innovation process of technology relegates an increasing number of existing soft-

ware systems to old legacy systems. Many of today’s legacy systems were implemented in low

and medium level languages for various reasons: the most common probably being performance.

Fortunately, with recent improvements in processor performance and compiler technology, raw per-

formance is less of an issue than other limitations of low and medium level languages such as bad

code comprehensibility due to high complexity or cryptic code statements and unreliability due

to hidden side effects. Assembler and C are infamous examples for such languages [Moy92]. High

level languages have emerged in recent years which focus on the construction of abstract models
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with a high abstraction from the details of computer architecture. Key features like unambiguous

syntax, well defined coding policies and encapsulation help to produce code with less side-effects

and a clear comprehensible design. The Java language from Sun Microsystems is an example of

this new mainstream [GM95]. Unfortunately, many companies do not take advantage of such tech-

nologies. Capers Jones, and Harry Sneed and Chris Verhoef give concrete numbers on the current

situation of traditional corporations like banks, insurance companies, utility providers, retailers

distribution, etc. Almost 70% of all business critical software runs on mainframes where 10% of

the code is written in assembler (approximately 140-220 billion lines of code), 20% in C or C++

(approximately 180 billion lines of code) and 30% in COBOL (approximately 225 billion lines of

code) [SV01, Jon98]. Companies who still rely on these legacy systems feel a growing pressure to

migrate their legacy systems onto newer platforms as the maintenance of such systems is expensive

and dangerous. However, despite the rising pressure many companies refrain from migrating their

systems onto more recent platforms because of costs and/or the risk of instability a migration may

cause. Unfortunately, this fear is not without reason as critical instability can be introduced during

the migration process due to wrong code translations or by unidentified side effects which did not

harm the system on the legacy platform. Consider for example the following C code which is a

function to calculate the mathematical faculty of a number:

long facul ( int f ) {

long i , ret ;

ret = 1;

for ( i=1; i< f+1; i ++) {

ret = ret * i ;

}

return ret ;

}

Listing 1.1: Example of a Faculty Function in C

Assuming that this function is part of a bigger system which is to be translated into Fortran during

a migration project, the translated code might look as follows:

FUNCTION facul ( f )

IMPLICIT NONE

INTEGER facul , f

INTEGER ret , i

ret = 1

2
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i = 1

DO WHILE ( i< f+1)

ret = ret * i ;

i = i + 1

ENDDO

facul = ret ;

END

Listing 1.2: Example of a Faculty Function in Fortran 77

The problem in this migration is that the translation is based on a common assumption in C

regarding the length of data types:

sizeof (int) = sizeof (long)

The length of a data type determines its storage capacity i.e. the range of concrete numbers which

can be stored. In this case the assumption is that the storage size of an integer variable is equivalent

to the storage size of a long variable. However, as the following table1 demonstrates, this is only

true for certain platforms:

Length data type int Length data type long Platform Examples

16 32 PDP-11 Unix (later, 1977), Early MC6800

32 32 IBM 370, VAX Unix, Convex, some Microsoft

operating systems

32 64 Most 64/32 Unix systems

Table 1.1: Data Type Lengths in C on Various Platforms

Unfortunately, this table is not the final truth as it is also possible, at least with some compilers, to

alter the length of data types by using special command line switches. To make the situation even

worse, the length is not the only problem which makes software migration such a difficult business.

Another problem may arise with the encoding of data: Data can be stored in little endian or

big endian format and numbers may be stored in binary, BCD (Binary Coded Decimal), Packed-

Decimal or even proprietary formats (e.g. on older CRAY platforms). Migrating too quickly

1Data taken from John Mashey, The Long Road to 64 Bits, 2006 [Mas06].
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and in a dilettantish way can be as expensive as staying too long on an old platform [Dug07].

Being aware of this situation, the research community has worked on several approaches to solve

these problems since the early 90’s. Meanwhile, Software Reengineering and Software Evolution

have become well established research areas. Particularly program transformation technology has

proved to be highly successful as a practical solution for industry. The approach described in

this thesis extends the FermaT transformation system which is an industrial-strength approach

utilising provably correct program transformations to restructure, abstract and simplify legacy

systems by preserving or refining the semantics which guarantees that the transformed program

logic is equivalent to the original program logic. FermaT uses an own intermediate language called

Wide Spectrum Language (WSL) to represent and transform legacy code. Unfortunately, WSL

does not define specific data types which, in turn, has created many problems in the past. The

presented research aims to give insight into the nature of these problems and proposes a rigorous

approach to solve them.

1.2 Research Method

The research area of this thesis belongs to software engineering which is usually a rigorous disci-

pline aiming to enable successful production of high quality software with certain constrains such

as time, costs, security and/or safety. As is also the case with the majority of computer science

research the described research belongs to the field of constructive research where “constructive”

refers to contributions to knowledge being developed as a new algorithm, method, model, frame-

work or theory. As this investigation has been funded by industry and developed in an academic

environment, the presented research in this thesis aims to be both: highly practical and academi-

cally rigorous. The thesis will make use of formal methods which can be defined as mathematically

based languages, techniques, and tools for specifying and verifying systems. Formal methods can

be used to increase the stability and reliability of a system by revealing inconsistencies, ambiguities,

and incompleteness [CW96]. The presented research was realised as follows:

Step 1: Identification of the Problem, Research Question and Hypotheses.

At the outset of this scientific investigation was a problem which needed to be addressed. An

understanding of the problem in its full scope was obtained by initial literature studies. Previous
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research projects which had an impact on the identified problem were gathered and analysed. Most

helpful for this were digital resources such as ACM Digital Library, CiteSeer, IEEE Xplore, and

SpringerLink. Search engines such as Google were also used for discovering and for crosschecking

the relevant information. Unfortunately, only a small number of papers and books had a significant

impact on the type system related topics which were important for the presented research. Notable

in this sense are the books: “Types and Programming Languages” by Benjamin C. Pierce [Pie02]

as well as “The Art of Compiler Design: Theory and Practice” by Thomas Pittman and James

Peters [PP92].

Step 2: Construction of an Abstract Solution Model and Implementation of the Ap-

proach.

A major challenge was the nature of WSL as an intermediate language, able to represent code

constructs for various languages with different type system approaches. As the relevant problems

and requirements became more and more clear, the initial idea of a layered type system which is

able to adjust to different type system approaches was considered. A prototype software was then

developed to demonstrate the applicability of the proposed approach and to make assessment from

the academic- and engineering perspectives possible.

Step 3: Validation and Verification of Hypotheses.

The conducted hypotheses was verified by case studies and validated by means of defined criteria.

The case studies demonstrated the feasibility of the approach and showed that it is possible to ob-

tain reliable results in reasonable time. The case studies were carefully selected to be representative

and to show the potential application space of the targeted application domain.

Step 4: Deriving Conclusions.

Conclusions were drawn from the experiences of the evaluation. New research questions were raised

to motivate further research in this area.
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1.3 Research Question

To give a direction for the investigation, a research question was raised and formulated. The

research was driven by a number of problems which are inherent in current software migration

technology. This thesis tries to answer the following overall research question:

How can a type system contribute to a safe and reliable migration of legacy systems in current

software migration projects?

To answer this question in its full spectrum and to address certain issues in detail, a number of

sub questions were formulated:

1. What are the key aspects of type related problems in the FermaT software migration and

how can they be solved?

2. How can a mathematical foundation of the approach be formulated to make it reliable?

3. How can the type system be enforced?

3.1. How can the type information be represented?

3.2. How can the process of type checking by done accurately?

3.3. How can the process of type checking be efficient and scalable?

4. Which type system properties should be included into the new type system approach?

4.1. What are the properties of type systems in current legacy systems?

4.2. What are the properties of type systems in potential migration target languages?

4.3. How is it possible to cope with different levels of type strictness?

5. How can tool support be provided for the proposed research?

1.4 Research Hypotheses

1. A type system can solve many migration related problems and contribute significantly to the

accuracy of a migration result. Especially, problems related to the separation of code and
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data, as found in the current FermaT migration approach, which may not recognise faults

and even introduce new errors to a migrated software system.

2. No single type system approach is suitable for the Wide Spectrum Language of FermaT

as the type systems of potential migration target languages and potential migration source

languages are very different in terms of “typefulness”2 and type strictness.

3. The approach should focus on procedural languages as migration source languages as most

of today’s legacy systems are written in procedural oriented code.

4. A semi-automatic approach which allows manual intervention should be favored for the im-

plementation because not enough information can be gathered from source code alone. Es-

pecially, when migrating into object oriented languages.

5. Despite a sound mathematical foundation it is not possible to migrate a legacy system into

a new language with a 100% accuracy. Every implementation of migration software has to

find a good “mixture” of accuracy, practicability and efficiency.

1.5 Scope of Thesis

This thesis is not about advances in type theory. It is rather a structured approach to develop a

sophisticated type system for softare migration. The type system itself is actually a composition

of many different existing type system approaches. The thesis concentrates on the motivation,

description and realisation of this multi layered type system. Its scope includes:

1. Analysing the current FermaT migration process and identify certain flaws which can be

tackled by a sophisticated type system.

2. Definition of key features and mathematical foundation.

3. Definition of a type checking strategy which finds a balance between reliability and effective-

ness.

4. Definition of all type system layers with their features and data types.

2See the paper of Cardelli [Car91] for an explanation of this term.
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5. Definition of type system transformations to move a given program among the type system

layers.

6. Implementation of the type system using FermaT’s Wide Spectrum Language (WSL) as code

representation language and the Type System Editor as supporting tool to perform type

checks and apply type system transformations.

7. Description of two case studies which evaluate the approach.

1.6 Original Contributions

This thesis includes the following original contributions:

1. The most significant contribution is the proposal of a Wide Spectrum Type System. A type

system for a single programming language with adjustable expressiveness and strictness.

The combination of the Wide Spectrum Language with the Wide Spectrum Type System is

a major contribution for current software migration technology.

2. An approach for migration of procedural oriented code into object oriented code has been

developed. The definition of special OSTRUCTs with procedure pointers allows a step by

step migration from procedural code into object oriented code.

3. Type system transformations have been defined which are able to move a given program

among the layers of the wide spectrum type system i.e. to change the type strictness and

“typefulness” of the program.

4. For each layer of the Wide Spectrum Type System a slightly different WSL language definition

had to be developed. These definitions usually includes new data types and sometimes also

new program statements (e.g. TYPEDEF, DEFINE, ...).

5. A set of supporting tools has been developed which demonstrates the applicability, scalability

and reliability of the approach.
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1.7 Organisation

The thesis is organised in chapters, sections and subsections. Each of these entities can be un-

ambiguously identified by a specific number. Figures and tables have unique two part numbers

whereby the first number describes their chapter while the second number is continuous counted

within the chapter. A list of all figures, listings and tables can be found after the table of contents

in the beginning of this document. The document structure is as follows:

Introduction: The current introductory chapter which includes the motivation and aim of the

presented research, the research method used, the initial research questions, the conducted

research hypotheses, the document scope, the original contributions and this outline.

Background and Related Research: A literature review covering all related background

information which influenced the proposed approach. This includes software engineering and

software evolution, formal methods, the FermaT transformation system and its theory as well

as history, concepts, characteristics and implementation details of type systems.

Foundation of the Wide Spectrum Type System: Defines key features, the mathemat-

ical foundation and efficient enforcement strategies are described and certain aspects and

implications of these definitions are discussed.

Preliminaries: Gives an overview about essential concepts which are needed to understand the

presented approach.

Anatomy and Realisation of the Wide Spectrum Type System: This chapter describes

every type system layer with all its data types and features in detail.

Algorithms for Derivation, Verification and Transformation: All related algorithms which

are used to introduce, alter or check the type system are described and discussed in this

chapter.

Tool Support and Evaluation: The implementing tools are presented, described and evaluated.

This chapter shows also how the proposed approach could be integrated into the current

FermaT migration approach.
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Case Studies: Two case studies are evaluated in this chapter to demonstrate the practical

applicability of the research.

Conclusion and Future Research: This chapter summarises the whole thesis, evaluates the

success of the research and draws conclusions. It also describes certain limitations of the

approach and states suggestions for future research.
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Chapter 2

Background and Related Research

“We always strain at the limits of our ability to

comprehend the artifacts we construct - and that’s

true for software and for skyscrapers.”

James Arthur Gosling

Objectives

• Present and summarise related work of the thesis.

• Introduce basic concepts related to software reengineering and software evolution.

• Evaluate existing approaches of type systems in common programming languages.

• Discuss general properties of type systems for programming languages.

• Review the FermaT system as example of current reengineering and migration technology.

• Review related reengineering and migration approaches.

2.1 Introduction

This chapter reviews and summarises related work for the FermaT transformation system and the

Wide Spectrum Type System. It presents some critical aspects of current software engineering

and explains why so many of today’s software products are unstable. It will furthermore introduce

and discuss the FermaT transformation theory and will elaborate some weaknesses in its current

implementation due to the absence of a sophisticated type system in WSL. The chapter will

furthermore describe the long history of type systems in programming languages, their concepts

and characteristics and how they can be used to make program development more reliable.
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2.2 Software Engineering and the Software Crisis

In times where industry has realised the vision of ubiquitous and pervasive computing [Wei91] the

demand for specialised software is continuously rising. Software has become a highly successful

commercial product. Unfortunately too much of recently produced software is late, over budget

and shows far too often unexpected behavior. This is the result of low-price / time-to-market

pressure and the fact that the resource allocation for software development projects are often done

by “non-technical” managers who have little or no knowledge about the technical details [Bro75].

Software very quickly becomes complex and the development effort is very hard to estimate. The

calculated development time of software is almost always too short despite the knowledge that

many defects are only revealed after extensive testing. The result of this can be seen in many of

today’s unstable and insufficient software products. Software is in fact vulnerable in every step of

its realisation process, from specification to concrete implementation. With each realisation step

Figure 2.1: Development stages of a software systems in which vulnerabilities can be introduced

vulnerabilities might be introduced which may cause the software:

• to malfunction or show unintended behaviour;

• to produce incorrect or corrupted results; or
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• to be eligible for attacks against its integrity due to malicious intents.

Errors or misconstruction introduced in the upper layers are most serious as each succeeding layer

is highly dependent on its predecessors. As early as 1972 Edsger W. Dijkstra [Dij72] expressed the

issues of software engineering precisely in two sentences:

“To put it quite bluntly: as long as there were no machines, programming was

no problem at all; when we had a few weak computers, programming became a mild

problem, and now we have gigantic computers, programming has become an equally

gigantic problem. In this sense the electronic industry has not solved a single problem,

it has only created them, it has created the problem of using its products.”

Edsger W. Dijkstra, The humble programmer, 1972

Research projects have been discussing this problem and since the 1960s it has become a well-

established research area known as software engineering. Many approaches have been researched

to “tame” the so called software crisis [NR69] but as Brooks stated in his essay [Bro87] there is

“no silver bullet”, which means none of the approaches will be able to solve the whole problem.

“There is no single development, in either technology or in management technique,

that by itself promises even one order-of-magnitude improvement in productivity, in

reliability, in simplicity.”

Frederick P. Brooks, Jr., No Silver Bullet, 1987

In his essay he identifies four properties of irreducible essence of modern software systems and

gives reasons why he thinks that the software crisis cannot be solved and no “silver bullet” will

ever be found.

Complexity This is an inevitably property of all large software systems. In mathematics and

physics great progress was made by constructing simplified models of complex phenomena,

deriving properties from the models, and verifying those properties by experiment. This is

possible because the complexities ignored in the models were not the essential properties
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of the phenomenon. Abstracting away the complexity of a software entity will often also

abstract away its essence which would make it useless.

Conformity Another significant amount of complexity comes into a software when it is constrained

to conform to interfaces of a human institution or other systems.

Changeability It is much easier to change a software product (e.g. via a patch or update) than

an automobile or some other complex object from the real world. After an automobile is

sold it is unlikely that its features will be changed a lot. Vendors will introduce new features

when a new series of these automobiles are produced. Software on the other hand is just a

collection of Bits in memory. It is common practice to produce a rather unstable software

product and introduce it to the market as soon as possible. Then, after the first money has

been generated, the development concentrates on releasing patches to fix the most serious

bugs - many products of Microsoft and their Service Packs are an infamous example of this.

Comparing this to the real world, no one would ever buy a car with deficient brakes or only

3 tires.

Invisibility When constructing a complex physical object the designers and constructors have blue

prints and floor plans which provide an accurate overview. For complex software there is

no unifying geometric representation of its structure. The only way to describe software in

detail with all relevant information is by several distinct but coherent and interacting graphs.

The statement “no silver bullet” does not mean that there is no solution at all for the problems, but

there will not be a general solution. Every approach has and will have advantages and drawbacks.

Therefore it depends on the system and its environment if an approach is appropriate or not.

2.3 Maintaining Legacy Applications

Reviewing today’s software systems which are used in industry it becomes clear that most of

the huge software systems have a long development history including numerous modifications and

extensions. Much knowledge and money has been put into these systems over the years to make

them useable and sufficiently stable. Considering this it is no surprise that most companies are

simply too afraid about changing their software infrastructure over night. However, depending on
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the age of the software the risk of losing vital parts of source code or its documentation increases

drastically. This can be due to damaged backups, bad version management, lost compilers or

malfunction of old hardware which cannot be replaced. Furthermore, as the system has changed

over time there is a growing danger that malicious code with negative side effects may have been

introduced. Fatally, the introduced code by itself could be clean and free of errors whereby the

side-effects arise when the code interacts with other components of the system. A large number of

these errors occur because of unclean interfaces and usage of data which implies “defaults” (e.g.

floating point numbers are not simply truncated but rounded when they are converted to integers).

Most interfaces are poorly or not at all documented, which forces programmers to make dangerous

assumptions about possible input, output and error values. Implementing a function point in a

“low-level” language requires nearly two to three times as many lines of code (which may include

faults) as in a higher level language (e.g. Assembly (Basic) to C or C to Java), and costs nearly

three times as much [Jon96]. Notable is that the vast amount of costs (over 90%) does not arises

in the development stage, but in the maintenance stage when adjustments and new functionalities

are added to the system [Bro75]. The following table is taken from Programming Languages, Table

Release 8.2, March 1996 [Jon96] by Capers Jones, Chairman, Software Productivity Research, Inc.:

A “low-level” language is much harder and more expensive to maintain, than a high level language.

Language Language Level Average Source Statements
per Function Point

Assembly (Basic) 1.00 320
Assembly (Macro) 1.50 213

C 2.50 128
COBOL 3.00 107

FORTRAN 77 3.00 107
C++ 6.00 53
JAVA 6.00 53

Table 2.1: Level of Programming Languages

It can be difficult to carry out extensive enhancements to a legacy system if not impossible if the

developers of the system have left the company. A recent example of such a situation happened

in the US state of California. Since the state is about $15bn in debt, the government was forced

to take action by cutting the salaries of California’s 200,000 state employees and by firing 10,000

employees additionally. Unfortunately, the reconfiguration of the government’s aging COBOL-

based payroll system would have taken six months. State controller John Chiang refused to issue

reduced pay checks because it was simply not possible to change the system quickly enough. The
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irony of this example is that the only ones who could have made the changes - part time retired

COBOL programmers - were among the 10,000 fired employees [Man08]. Such examples are,

unfortunately, rather the rule than the exception. A recent survey (Computerworld survey of IT

managers) revealed that 62% of the surveyed organisations still use Cobol in their organisation.

By way of comparison 61% use Java, 26% use C, 23% use C# and 7% use Fortran. For most

of the surveyed companies, which use Cobol, the software was an internally developed business

application and 58% of all companies which use Cobol still develop new business applications in this

language [Mit06]. In a recent assessment of Gartner Inc. regarding the age of software languages

and tools [Dug07] it was stated that:

“Most organizations are overwhelmed with volunteers to try out the “hot” new tech-

nologies. Few find a similar level of excitement when it comes to legacy languages and

tools. However, the legacy application portfolio continues to run the business, and a

revolutionary replacement of languages and tools is simply not feasible in most orga-

nizations. ... Taking a longer view, a legacy language such as COBOL has at least

another decade of useful life, with few practical threats for small and midsize businesses

on the horizon.”

Jim Duggan (Gartner Inc.), Assessing the Age of Software Languages and Tools, 2007

2.4 Software Evolution

A very critical requirement for a software to be usable for commercial purposes is that the system

must be continuously adapted to current business processes. This continuous process of software

reengineering is today known as software evolution [YW03]. Lehman formalised over a period of

twenty years eight Laws of Software Evolution [Leh96]:

Continuing Change A program that is used must be continually adapted else it becomes progres-

sively less satisfactory.

Increasing Complexity As a program is evolved its complexity increases unless work is done to

maintain or reduce it.
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Self Regulation The program evolution process is self regulating with close to normal distribution

of measures of product and process attributes.

Conservation of Organisational Stability The average effective global activity rate on an evolving

system is invariant over the product life time.

Conservation of Familiarity During the active life of an evolving program, the content of successive

releases is statistically invariant.

Continuing Growth Functional content of a program must be continually increased to maintain

user satisfaction over its lifetime.

Declining Quality Programs will be perceived as of declining quality unless rigorously maintained

and adapted to a changing operational environment.

Feedback SystemProgramming Processes constitute Multi-loop, Multi-level Feedback systems and

must be treated as such to be successfully modified or improved.

Industrially used large-scale software system usually have a long life-cycle. During this time the

software evolution process will complete many cycles. Unfortunately, some changes might also

have bad side effects such as reduced performance or decreased reliability [Par94]. Four types of

software changes can be identified [Swa76, LBSB80]:

Perfective Changes to improve or enhance the product (e.g. adding new user requirements, enhance

performance, usability, etc.)

Corrective Changes which fix defects in the system.

Adaptive Changes to integrate the system into changing environments (e.g. new operating systems,

language definitions, database management systems, etc.).

Preventive Changes to enable or improve future maintainability and reliability of a system.

Because software evolution is a critical though essential process for every business company, re-

searchers are constantly investigating ways to make it as safe and reliable as possible. In recent

years formal methods have become more and more interesting for this purpose, as they provide

ways to “prove” correctness.
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2.5 Formal Methods and Software Evolution

In the recent past formal methods in the form of mathematically based languages and transfor-

mation techniques have proven to be suitable for specifying and verifying software systems. This

can be extremely helpful for the whole software evolution process. Baumann et. al. [BFK+94]

for example even stated that reverse engineering methods must be based on a sound (formal)

foundation to avoid the extraction of wrong information during the reverse engineering process.

Wrong information can introduce new errors or side-effects into the program being maintained.

To achieve this he suggests formal denotational semantics as a foundation. Another application,

for formal methods within the software evolution process, is to increase the comprehension by

revealing inconsistencies or ambiguities [CW96]. An approach for Software Evolution which uses

formal methods should consist of the following essential components [YW03]:

1. The semantic model has to be a sound mathematical logical structure where all terms, for-

mulas and rules have a precise meaning.

2. A specification language is used to describe the intended behavior of the system.

3. The verification system and the refinement calculi are rules that allow verification of prop-

erties and refinement of specifications.

4. Defined development guidelines show how a method should be used.

5. Supporting tools supply the proof-of-concept for a proposed method.

Two main advantages of using formal methods can be identified. First, formal methods provide a

rigorous and precise description of the described system. This can greatly increase the quality of the

new system. Secondly due to the soundness of a formal method approach the reengineering process

can be automated provably correct in many parts. This may decrease the costs for reengineering

dramatically [YW03]. One fundamental achievement in this area has concentrated on program

transformation theory and is realised within an industry-strength toolset called FermaT [WB95,

War99, War04] released under the General Public License (GPL) and currently available1 for

Microsoft Windows and Linux/Unix.

1http://www.cse.dmu.ac.uk/∼mward/fermat.html
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2.6 History of FermaT

The roots for the transformation theory of FermaT go back to 1989 [War89]. In the early 1990s

a prototype transformation system was developed at Durham University. The implementation

language of the so called “Maintainer’s Assistant” [WCM89] was LISP. Although it already in-

cluding a large number of transformations it was very much an “academic prototype”. The main

aim of which was to test and evaluate the ideas. More precisely, little attention was paid to the

time and space efficiency of the implementation. Nevertheless the tool proved to be highly suc-

cessful and was able to reengineer moderately sized assembler modules into equivalent high-level

language programs. The Maintainer’s Assistant already utilised a special intermediate language

called WSL (Wide Spectrum Language) on which all the transformations operated. At that time,

programs were represented as LISP structures and the transformations were written in LISP. The

next version of the tool was called GREET (Generic Reverse Engineering Tools). It was decided to

extend the WSL language to add domain-specific constructs, creating a language for writing pro-

gram transformations. The extensions included an abstract data type for representing programs

as tree structures, constructs for pattern matching, pattern filling and iterating over components

of a program structure. The extension was called METAWSL [WZ05] and all transformations

from the Maintainer’s Assistant, typically with enhancements, were rewritten in METAWSL and

translated to LISP via the Concerto case tool builder. Additional many new transformation were

added to the transformation catalogue. For the latest version (called FermaT) the underlying run-

time language was changed from common LISP to Scheme. All remaining parts of the system were

reimplemented in METAWSL and a METAWSL to Scheme translator was implemented (also in

METAWSL) which was then used to bootstrap the whole system to a Scheme implementation in

a few weeks work. The FermaT system is now implemented almost entirely in METAWSL. To

enhance the usability of the FermaT tool a new graphical interface called “FermaT Maintainer’s

Environment” was developed in 2006. This graphical interface is written entirely in the object-

oriented language Java and can be used to learn about FermaT and to test the ideas of research

projects which relate to transformation theory.
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2.7 FermaT Program Transformation Theory

The FermaT transformation system uses formal proven program transformations, which preserve

or refine the semantics of a program while changing its form. These transformations are applied

to restructure and simplify legacy systems, currently with emphasis on assembler systems, and

to extract higher level representations (specifications). By using a suitable sequence of transfor-

mations, the extracted representation is guaranteed to be equivalent to the original code logic.

Equipped with advanced code slicing techniques the FermaT transformation system is additionally

very useful for analysing tasks [War04, WZ06]. In contrast to simple line by line language migration

technologies, FermaTs semantics preserving code transformations enable the original application

to be automatically cleaned-up, simplified and restructured. Once migrated, these systems are

substantially easier to maintain and to evolve. Furthermore, it is ensured that only functional

code is migrated to the new language. The process used by the FermaT transformation system

consists of three basic steps [War04]:

1. Translation of legacy code to WSL;

2. Translate and restructure data declarations;

3. Apply semantics-preserving WSL to WSL transformations;

(a) For migration: translate the high-level WSL to the target language.

(b) For analysis: apply slicing or abstraction operations to the WSL to raise the abstraction

level even further.

2.7.1 The WSL language

The core of the FermaT transformation system is the WSL language. It is based on a small kernel

language which itself is based on infinitary first order logic. WSL contains all the operations needed

for a programming and specification language including Dijkstra’s guarded commands [Dij76] and

a specification statement which is able to represent any WSL program [War04]. The intention is

to form a language which acts as an intermediate language when processing a legacy system. WSL

was designed for reengineering tasks and covers:
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• Simple, regular and formally defined semantics

• Simple, clear and unambiguous syntax

• A wide range of transformations with simple, “mechanically checkable” correctness conditions

• The ability to express low-level programs and high-level abstract specifications

The heart of the WSL language is a very small and mathematically tractable kernel language. This

language already supports all necessary operations needed for a programming and specification

language. In the context of this tiny kernel language it is relatively easy to prove the correctness

of a transformation, but the language is not very expressive for programming. For that reason the

language is extended into an expressive programming language by defining new constructs in terms

of the kernel. In his paper [War04] Ward describes the extension in a series of layers with each layer

building on the previous language level. The “Wide Spectrum” in “Wide Spectrum Language”

Figure 2.2: WSL Language Levels

refers to the range of operations, from “low level” things such as assignments, IF statements

and GOTOs to high level operations such as specification statements. The language is also “wide”

because it suits all stages of reverse engineering [YW03]. Besides having all the usual programming

structures and commands, WSL also contains commands, functions and routines for operating on

programs written in WSL. As mentioned before, this reflexive extension was named METAWSL.

This gives the opportunity for specifying, writing, analysing, rewriting, and simplifying programs

within the same language.
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2.7.2 Mathematical Foundation of WSL

The Kernel language is based on infinitary first order logic [War04]. Infinitary logic, originally

developed by Carol Karp [Kar74], is an extension of ordinary first order logic which allows con-

junction and disjunction over (countably) infinite lists of formula, but quantification over finite

lists of variables. The kernel is defined by just four primitive statements and three compound

statements. Let P and Q be any infinitary logical formula and x and y be any finite lists of

variables. The primitive statements are:

1. Assertion: {P} is an assertion statement which acts as a partial skip statement. If the

formula P is true then the statement terminates immediately without changing any variables,

otherwise it aborts (abnormal termination and non-termination are treated as equivalent i.e.

a program which aborts is equivalent to one which never terminates);

2. Guard: [Q] is a guard statement. It always terminates, and enforces Q to be true at

this point in the program without changing the values of any variables. It has the effect of

restricting previous non-determinism to those cases which will cause Q to be true at this

point. If this cannot be ensured then the set of possible final states is empty, and therefore

all the final states will satisfy any desired condition (including Q);

3. Add variables: ADD(x) ensures that the variables in x are in the state space (by adding

them if necessary) and assigns arbitrary values to the variables in x. The arbitrary values

may be restricted to particular values by a subsequent guard;

4. Remove variables: REMOVE(y) ensures that the variables in y are not present in the

state space (by removing them if necessary).

The compound statements are:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Non-deterministic choice: (S1 ⊓ S2) chooses one of S1 or S2 for execution, the choice

being made non-deterministically;
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3. Recursion: (µX.S1) where X is a statement variable (a symbol taken from a suitable set of

symbols). The statement S1 may contain occurrences of X as one or more of its component

statements. These represent recursive calls to the procedure whose body is S1.

When thinking in terms of an ordinary programming language some of these constructs, particu-

larly the guard statement, seem to be unfamiliar, while other constructs such as assignments and

conditional statements are missing. The answer to that is that assignments and conditionals can

be constructed out of these more fundamental constructs. For example:

WSL Construct WSL Code Representation in Kernel Language

Assignment x := 1 ADD(x); {x = 1}

if-then-else if B then S1 else S2 ([B]; S1) ⊓ ([¬B]; S2)

In fact the guard statement by itself cannot be implemented in any programming language. For

example, the guard statement [false] is guaranteed to terminate in a state in which false is true.

In the semantic model this is easy to achieve: the semantic function for [false] has an empty

set of final states for each proper initial state. As a result, [false] is a valid refinement for any

program. Morgan [Mor94] calls this construct “miracle”. Such considerations have led to the

Kernel language constructs being described as “the Quarks of Programming”: mysterious entities

which cannot be observed in isolation, but which combine to form what were previously thought

of as the fundamental particles. Further details on the definition of WSL are given in the article

“Pigs from Sausages” by Martin Ward [War04].

2.7.3 Semantics of a WSL Program

The mathematical model for WSL defines the semantics of a program as a function from states

to sets of states. A state is simply a function which gives a value from a given set H to each of

the variables in a given set V of variables. The set V is called the state space. For each initial

state s, the function f returns the set of states f (s) which contains all the possible final states of

the program when it is started in state s. The function f is called a state transformation which

represents a collection of symbols structured according to the syntactic rules of infinitary first order

logic, and the definition of the WSL kernel language. A special state ⊥ indicates non-termination
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or an error condition. A state predicate is a set of proper states - states other than ⊥. If ⊥ is in the

Final program
states

Initial program
states

Non-terminating
or error states

Figure 2.3: Semantics of a WSL Program

set of final states, then the program might not terminate for that initial state. If two programs are

both potentially non-terminating on a particular initial state, they are consider to be equivalent

on that state. A program which might not terminate is no more useful than a program which

never terminates. It is not interesting despite whatever else it might do. The semantic function is

defined to be as such that whenever ⊥ is in the set of final states, then f (s) must include every

other state. This restriction also simplifies the definition of semantic equivalence and refinement.

If two programs have the same semantic function then they are said to be equivalent. For further

details see “Pigs from Sausages” and “Analysing and Abstracting Legacy Assembler Code via

Conditioned Semantic Slicing” by Martin Ward [War04, WZ06]. If for example = is defined as the

equality relation then the interpretation of x = y on the value set H = {0,1} is the state predicate

{{x 7→ 0,y 7→ 0},{x 7→ 1,y 7→ 1}}. Suppose the state si j = {x 7→ i,y 7→ j}. The state transformation

function of the assertion statement {x = y} is:

{s00 7→ {s00},s01 7→ {s00,s01,s10,s11,⊥},s10 7→ {s00,s01,s10,s11,⊥},s11 7→ {s11},⊥ 7→{s00,s01,s10,s11,⊥}}

The state transformation function of the guard statement [x = y] is:

{s00 7→ {s00},s01 7→ {},s10 7→ {},s11 7→ {s11},⊥ 7→ {s00,s01,s10,s11,⊥}}

The state transformation function of the add statement ADD(x) is:

{s00 7→ {s00,s10},s01 7→ {s01,s11},s10 7→ {s00,s10},s11 7→ {s01,s11},⊥ 7→ {s00,s01,s10,s11,⊥}}
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The state transformation function of the assignment x := y or ADD(x); [x = y] is:

{s00 7→ {s00},s01 7→ {s11},s10 7→ {s00},s11 7→ {s11},⊥ 7→ {s00,s01,s10,s11,⊥}}

2.8 Proof Theoretic Refinement And Equality

Two approaches can be used to define the equality or the refinement of a program [War04, WZ07].

Through the semantic function : Two programs are equivalent if their state transformation func-

tions are identical. A program f1 is refined by f2, written f1 ≤ f2, iff for every initial state s,

f2(s) ⊆ f1(s). The statement {false} is refined by every other statement, while the statement

[false] refines every other statement.

Through the Weakest Precondition : Another way to define refinement and equality is the Weakest

Precondition (WP) first introduced by Dijkstra [Dij76].

For a given program P and its state transformation function f () and condition R on the final

state space, the weakest precondition WP(P,R) is the weakest condition on the initial state such

that if P is started in a state satisfying WP(P,R) then it is guaranteed to terminate in a state

satisfying R (see table 2.2 for an example). All proper states satisfy TRUEand no program states

satisfy FALSE. In his thesis [War89] Ward proves that P can be mapped to a state transformation

f and R can be mapped to a state predicate e such that WP( f ,e) is the state predicate s which

satisfies f (s) ⊆ e. The refinement relation using weakest precondition can be expressed as follows.

ProgramP ConditionR WP(P,R)
x := 5 x > y y < 5
a := 2 * b + 1 a = 13 2∗b+1= 13⇒ b = 6
if x = 1 then x := 5 else x := 6 fi x > z (x = 1∧z< 5)∨ (x 6= 1∧z< 6)

Table 2.2: Weakest Precondition Example

A program F1 is refined by F2, written F1 ≤ F2, iff:

∀R.(WP(F1,R) ⊆ WP(F2,R))

Instead of looking at all possible postcondition for a particular WP of statements, it is sufficient

to check only two special postconditions being true and x 6= x′ where x is a list of all the variables
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in the final state space and x′ is a list of new variables not used elsewhere [War04]. For example

to prove F1 ≤ F2 which is the refinement of program F1 by program F2 under a set of assumptions

∆ it is sufficient that the formula:

WP(F1, true) ⇒ WP(F2,true) ∧ WP(F1,x 6= x′) ⇒ WP(F2,x 6= x′)

can be proved (or deducted) from the set ∆ of assumptions or sentences (formula with no free

variables). This case is written:

∆ ⊢ F1 ≤ F2

The proof that this definition of refinement is equivalent to the definition of refinement in terms

of semantic functions is given in Wards thesis [War89]. If both ∆ ⊢ F1 ≤ F2 and ∆ ⊢ F2 ≤ F1 then

F1 and F2 are equivalent, written: ∆ ⊢ F1 ≈ F2. A transformation is any operation which takes a

statement F1 and transforms it into an equivalent statement F2 (where ∆ is the set of applicability

conditions for the transformation). An example of an “applicability condition” is a property of

the function or relation symbols on which a particular transformation depends. For example,

the statements x := a⊕b and x := b⊕a are equivalent when ⊕ is a commutative operation. The

transformation can be written as:

{∀a,b.a⊕b= b⊕a} ⊢ x := a⊕b ≈ x := b⊕a

To prove the equality or the refinement is of uttermost importance for a transformation theory as

it is the only way to prove that a transformation is indeed correct. Experience showed that without

such features the results may be faulty especially when the transformation of code is automated.

An example of an approach with a weak formal foundation was described in an article by Jacques

J. Arsac [Ars79] in 1979. In the article the following transformation was described (page 3):

Let f ,g∈ F

do f od ≡ do g od ⇔ do f od ≡ do g; f od

F here represents the set of sequences of statements (if-then-else, do ... od, assignments, etc.).

Despite his claims that all presented transformations are correct by proof, it can be shown that

at least some of them (e.g. the example transformation above) are not correct. Concerning the
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example above, consider the statement:

f = exit(1)

g = SKIP

Because of the iff equivalence in the transformation definition the programs in figure 2.4 should

be all equal. In fact, they are clearly not. While both programs on the right do exactly the same

(terminate immediately), only the program in the upper left corner is semantically equivalent. The

program in the lower left corner, however, will result in an infinite loop. This means that with this

transformation it is possible to combine a non-terminating program with a terminating program

and transform them into a terminating one which was clearly not intended by the author. The

Figure 2.4: Disproof of Arsac’s transformation

example shows that the notions of equivalence and refinement must be carefully defined, as they

form in most cases very fundamental parts of any theory. Fortunately, in type theory, similar

notions are easier to define: Equivalence can be related to the definition of type equality (see

section 2.14.2), while refinement can be related to subtyping which is a rather common concept in

many type systems (see section 2.13).

2.9 Specification Statement

As mentioned before the Wide Spectrum in the name “Wide Spectrum Language” refers to the

range of operations which span from “low level” to “high level” [WZ06]. Abstract specifications are

very useful for both forward and reverse engineering (see Bachman’s Reengineering Cycle [Bac88]).
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It is indispensable for a language designed for reengineering tasks to be able to represent those

abstract specifications as part of the language. As a consequence the refinement of a specification

into an executable program, or the reverse process of abstracting a specification from executable

code, can both be carried out within a single language. This has motivated the definition of the

specification statement for WSL. Informally, a specification describes what a program should do

without saying explicitly how it should do that. A specification can be formalised as a list of

variables (the variables whose values the program should change), a formula defining the relation-

ship between the old and new values of the variables and any other required variables. A simple

combination of kernel statements is used to construct the specification statement :

x := x′.Q

x is a sequence of variables (with old values) and x′ the corresponding sequence of “primed variables”

(with new values) while Q is any formula. The statement assigns new values to the variables in x so

that the formula Q is true. If no new values for x can be found which satisfy Q then the statement

aborts. For example, the specification statement for sorting the array A could be:

A := A′
.(sorted(A′)∧ permutation(A′

,A))

In [War04] it is shown that any WSL program can be specified using a single specification state-

ment. Within the kernel language the specification statement can be defined as:

x := x′.Q =DF {∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

The initial assertion of the specification statement ensures that the specification statement is guar-

anteed to be null -free. This means that for every input state the set of output states is non-empty.

A null program is a program for which the set of output states is empty for one or more initial

states. For example the guard [false] can never be satisfied. Interestingly this program satisfies any

specification since a specification must satisfy the given postcondition. A null program is therefore

a correct refinement of any specification, but is also not implementable (since the physical machine

must terminate in some state if it is guaranteed to terminate). To avoid the possible specification

of unimplementable programs in the refinement process it is indispensably necessary to prove that

a specification cannot specify a null program. This null -free property is the fundamental difference
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to the specification statement of Morgan [MR87] which is directly derived from the weakest precon-

dition. The Morgan specification statement is written x : [Pre,Post] where Pre and Postare formulas

of infinitary first order logic. The statement is guaranteed to terminate for all initial states which

satisfy Pre and will terminate in a state which satisfies Post. Both formulas will thereby only assign

to variables in the list x. In Ward’s notation an equivalent statement is {Pre}; add(x); [Post]. The

disadvantage of Morgan’s specification statement is that the user is responsible for ensuring not

to refine into an (unimplementable) null statement since the statement does not abort if the set

of output states is empty. Furthermore, there is no guarantee that any program can be written as

a single Morgan specification statement: the simple program x := x + 1 , for example, cannot be

written as a single Morgan specification statement.

2.10 Flaws in the Current Migration Process

At first glance the FermaT migration concept looks very reasonable and sound. However, the

authors were slightly superficial in the second step of their migration process. By taking a closer

look into the step “Translate and restructure data declarations”, it turns out that the current

process simply extracts the data structures and translates them into the target language. Although

the data structures are stored in an (internal) intermediate data format during the migration

process, they are never altered or checked throughout the whole migration process. Because WSL

cannot represent any data types, the data structures are separated from the code at a very early

stage of the migration process. The absence of a “sophisticated” type system which, according to

Cardelli [Car91], is essential for any proper software evolution approach, has caused several flaws

within the FermaT migration approach:

• Abstraction transformations on data structures are currently not possible. While WSL is a

powerful programming language, able to represent source code at various levels of abstraction,

data structures are only preserved and therefore kept at a low-level. A target language must

be able to approximate the behavior and layout of the legacy data structures very closely.

This becomes very difficult or even impossible if the type system of the target language

is more strict or defines certain data types differently. Examples of these problems are the

exclusion of unsafe data types in target languages (e.g. data types which allow direct memory
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access in Java or C#) or a proprietary data format in source languages (e.g. floating point

numbers on CRAY SV1 machines or all IBM System/360 based mainframes which use the

IBM Floating Point Architecture).

• Hidden flaws like implicit type casting can cause a loss of data if data of current business

rules are beyond the initial specifications. These errors are in most cases very serious because

they may lead to wrong results only with certain input data. The current migration process

is unable to trace these hidden errors as it migrates the data separately from the code.

• Pointers cannot be expressed at all. For these purposes the current implementation of FermaT

uses the pseudo array a[] which models the memory of the computer. This can only be a

temporary solution as it is not part of the language specification and makes WSL code

ambiguous.

• Variables which are in a special data format (e.g. packed decimal format) cannot be distin-

guished adequately from normal variables.

So far the only working source language is assembler which can either be translated to C or COBOL.

In the book [YW03] pp. 78-79 the authors claim:

“An obvious disadvantage of working in a separate language to the source language

of the legacy system is that translators to and from WSL will have to be written. For-

tunately, for the “old fashioned” languages typical of legacy systems, this is not much

more difficult than writing a parser for the language, which in turn is a simple appli-

cation of well-developed compiler technology for which there is a wide variety of tool

support available.”

In fact this cannot be true because of the above-mentioned drawbacks. The simple example

presented in section 1.1 illustrates the possible flaws. Even if the C program is translated to

FORTRAN through WSL, the mentioned problems remain as WSL does not support data types

nor specification of lengths for data types. As shown in table 1.1 different computing platforms

might define different lengths for data types. On these platforms the variables would lose some

Bits of precision during operation. Fatally, the program would appear to work correctly at first

and only later, depending on the input data, it might produce corrupted results. Because WSL
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does not have an explicit type system, information like the length of data types would have to

be added manually during the translation process. But even with this information the migration

may fail as the program could still contain implicit type casts which may not have affected the

original code but would cause the translated code to produce corrupted results. This would be the

case, for example, if a type cast has to fill an integer variable with a long value which would be

out of range only on the new platform where long and int are of different lengths. The current

migration process comprises a great danger to introduce hidden errors as long as the real problem

- the separation of code and data - is not solved. The presented research addresses this with the

development of a special type system for WSL which takes all type related migration issues into

account.

2.11 Other Migration Approaches

The comparison of the Wide Spectrum Type System to other approaches is very difficult as the

FermaT migration approach itself is quite unique. The idea of an intermediate language which is

able to represent programs on various levels as well as a fully automated migration approach which

performs provably correct code abstraction transformations is not common for software migration

tools. Also the idea of a type system with adjustable expressiveness can hardly be found in any

publication since such a type system only makes sense for intermediate languages like WSL which

need adaptation abilities to such an extent.

2.11.1 Migration of Assembler Code

Most automated migration approaches for assembler migration have taken the form of a “brute

force” conversion simply mapping an assembler instruction directly to corresponding code in a

high level language. The resulting code is often more complex and slower than the original code

[WZH04]. The semi-automated approaches which require manual modification on the other hand

usually use an own abstract representation of the program rather than a textual format. The

Bogart tool of Feldman and Friedman’s approach [FF95] for example uses data flow and control

flow for manipulations. Bogart produced code which was between half and three quarters as large

and more than twice as fast as a “brute force” conversion. However, prior application, extensive
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manual modification of the assembler code was required. The consequence of this is that the

migration becomes expensive (an experienced programmer can modify about 3600 lines of code

per month) and error prone (“Manual preparation of the code has probably damaged the code’s

quality” [FF95]). Moreover, the translation result was hard to comprehend since it was assumed

that “the resulting code was not required to be particularly readable”[FF95]. Taking all this into

account even the authors concluded that: “extensive manual work is not only harmful for the

resources it requires, it may also endanger the whole translation enterprise”[FF95].

2.11.2 Migration of High-Level Languages (HLL)

Despite, the 140-220 billion lines of assembler code which are still in use[SV01, Jon98], the majority

of research towards industrial-strength software migration approaches focused on the migration of

high-level languages. A considerable number of research projects have investigated the migration

from procedural languages into object-oriented languages since the early 90s. The approaches

ranged from wrapping the whole legacy system or some of its components in wrapper objects [Sne00]

to highly complex processes which involve many steps. Most of them rely on the interaction with a

maintainer to capture domain- and application-specific knowledge and use high level information

such as dataflow analysis [Sne92, PZL98, GK95]. A rather uncommon approach was developed in

1998 which collected all procedures of a legacy system into one class (called god class) and then

utilised “design-transformations” to split the system into many classes [PZL98]. Despite many

years of research the success remains questionable. A recent survey among 59 Italian information

technology companies showed that only 36% of the surveyed companies used special tool support

for software migration[TDPR+08]. In contrast to assembler migration where supporting tools are

desperately needed due to the masses of code which need to be handled, the migration of higher-

level languages such as C, COBOL, etc. are often done without advanced tool support. In the

majority of cases the surveyed companies used only some basic utilities provided by operating

systems. Among the companies who used a tool, some used an ad-hoc proprietary tool developed

by the company itself while others used commercial or free tools only for parts of the migration

process. Only in 2 cases ( 5%) a specific migration toolset such as the Transformation Assistent2 was

used for the whole process. The majority of surveyed migration projects dealt with a programming

2http://www.relativity.com/pages/transformation-assistant.asp
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language change. The targeted languages were mostly Java, C# and Visual Basic while the most

common source language was COBOL. Interestingly, the main problem, which was identified by the

authors, was the reengineering of data: “ensuring data consistency seems to be the main problem

companies have during a migration”[TDPR+08].

2.12 History of Type Systems in Programming Languages

The proposed type system for WSL adapts and combines many popular type system approaches

into one coherent model. Though it is not possible to combine all approaches into a single type

system, it is possible to define a multi layered type system with distinct layers to model several

approaches and defined transition transformations to move a program among these layers. The

following sections describe the mathematical origin of type systems and some of the most popular

interpretations for software technology. For the approach of the Wide Spectrum Type System, the

approaches of imperative and object oriented programming languages where most influential.

2.12.1 Lambda Calculus

Originally type theories were a discipline of logic which subsequently became increasingly interest-

ing for the programming languages in the area of computer science. The roots of type systems date

back to 1940 when Alonzo Church presented his Theory of Simple Types [Chu40] as an extension

to his lambda calculus. The lambda calculus was the result of an attempt by Alonzo Church

and Stephen Kleene to formalise a generalised theory about functions and logic in the early 1930s

[Kle35, Chu36]. The calculus forms a rewrite system consisting of a formal language together

with some reduction and conversion rules. The advantage of the language was that the formal

syntactical definition involved only 3 terms.

T ::= [a-z]+ | (T T) | λ a.T

The terms are variables (with any name), application and abstraction or lambda. An abstraction

accepts input and produces an output by rewriting all the occurrences of its input variable with
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the input.

(λx.x)t → t

Functions with multiple arguments are modelled through cascading abstractions:

(λx.(λy.xy))

A simple example showing the basic abilities of the lambda calculus is a function to change the

order of a triple:

(λx.(λy.(λz.zyx)))abc→ cba

It is possible to model normal numbers and operations for the normal decimal system as well as

for boolean algebra (binary numbers and operations like AND, OR, XOR, etc.). In 1936 Kleene

discovered that this minimal model is expressive enough to formalise all properties of recursive

functions. A year later Turing showed that the Turing computability is equivalent to the Lambda

definability. This meant the lambda calculus was as powerful as every programming language. The

approach can be seen as the first step towards encapsulation and reusable code as Peter Landin

[Lan65] stated that most programming languages are rooted in the lambda calculus, which provides

the basic mechanisms for procedural abstraction and procedure (subprogram) application. In fact

most of the current functional programming languages like ML or Haskell primarily implement the

lambda calculus with some extensions. One of the first was John McCarthy who used the lambda

calculus in the late 50’s for the core functions of the programming language LISP. The calculus

was already very powerful but it lacked the strong normalisation property which means that every

sequence of rewrites in a rewrite system eventually terminates to a term in normal form. The

problem occurred when applying a term to itself. Consider, for example, the Lambda term:

(λx.xxx)

Applying a normal variable to the function would rewrite to a normal form:

(λx.xxx)a→ aaa

But applying the function to itself would never result in a normal form:
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(λx.xxx)(λx.xxx) → (λx.xxx)(λx.xxx)(λx.xxx)

Therefore the simply typed lambda calculus was introduced by Church in 1940 as an attempt to

avoid these inconsistencies. With the simply typed lambda he introduced a strongly normalising

version of the calculus. The given typing rules excluded the application of a function to itself. At

first this was just an extension of the untyped lambda calculus but a more modern view considers

the typed lambda calculi as the more fundamental theory and the untyped version only as a

special case with only one type [Pie02]. Although strong normalisation is a very useful property for

logicians it has the serious drawback that a language with this property is not Turing complete and

therefore is not able to express all computable functions. All programs written in that particular

language would always terminate. Due to the origins of the lambda calculus there is a gap between

type theory and types in computer languages. In the logic area the calculi are still extended to

form even more complex and powerful type systems while computer science tries to keep the type

systems as simple and flexible as possible [PS94]. Nevertheless the introduction of types showed a

possibility to define more clearly what the intention of a function is and how to prevent misusage.

2.12.2 Type Systems In Imperative Programming Languages

The first programming languages which appeared had of course more emphasis on performance than

on a good structure. Computer programs were very machine dependent and much less complex

than nowadays. Debugging could easily be done by inserting some PRINT statements and the

few defined data types were directly supported by the underlying hardware. The main aim of a

programming language was to ease the task of generating assembler code for formulas and to control

the input/output devices. However, as soon as the programming languages introduced concepts

like subroutines, global and local variables; the programs became increasingly complex and the

need for types and type checking emerged. The most important reason for types was of course

efficient resource allocation and fast object code but also to define a clean interface between two

subsystems and to handle complex data structures (e.g. arrays, lists, tree structures, hash tables,

and their combinations) in a safe way. The safety of types was accorded greater consideration

than previously because the increased complexity of programs resulted in a growing danger of

accidentally producing malicious or meaningless code. More and more different programming
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languages appeared each with its own type system. The designer of a language had to make a

decision between restriction, which reduces the applicability of the language, and freedom, which

can result in a language producing unsafe code. Two extreme cases in the history were the languages

FORTRAN and C.

The FORTRAN Language

The FORTRAN language first appeared in 1956 [Int56] for the IBM 704 computer and contained

32 statements. Most of them controlled the IO devices (e.g. READ DRUM, PUNCH). The FOR-

TRAN I release had no procedural programming facilities but it already supported two important

data types. The 2 data types could be allocated in 1, 2 or 3-dimensional arrays. A variable was

either integer (called fixed point) or floating point. The declaration of a data type for a variable

was done when the name was written. A fixed point variable began with I,J,K,L,M or N and

floating point with any other character except these 3. It was not possible to use both data types

in one expression (e.g. A = I ∗B) although it was possible to convert between floating point and

fixed point. Functions used in expressions were either built into FORTRAN or were accessible as

a pre-written subroutine in 704 language on the FORTRAN master tape. The next version FOR-

TRAN II emerged in the year 1958. This version included facilities for procedural programming. It

was possible to put highly frequented code segments into a subroutine or, when a return value was

required, into a function. Now it was also possible to write routines in FORTRAN itself. Further-

more, it introduced the COMMON block; the possibility to declare global variables. A FORTRAN

III came up in the same year that allowed inline assembler but it was never released as a product.

Over the next years FORTRAN II also supported the DOUBLE PRECISION and the COMPLEX

data type. The great disadvantage of the FORTRAN languages was the machine-dependency. It

was very difficult to port a program from one platform to another. Therefore in 1961 a decision

was made to completely rewrite the FORTRAN compiler to improve speed and to remove the

machine dependent features from the FORTRAN language. FORTRAN IV appeared in 1962 and

now included the LOGICAL data type. As the popularity of FORTRAN was constantly increas-

ing the American Standards Association (now known as ANSI) formed a committee to develop

an “American Standard Fortran” which became the first industry-standard version of FORTRAN

3These conventions were still present in later FORTRAN versions. A FORTRAN program has to start withimplicit none to
avoid this implicit declaration.
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known as FORTRAN 66. From that time FORTRAN was standardised by the ANSI. The standard

was largely based on the FORTRAN IV. During the next years compiler vendors introduced their

own extensions to “Standard Fortran” prompting the ANSI to revise the FORTRAN standard. In

April 1978 a new standard was released known as FORTRAN 77. Along with other changes, the

language now provided improved support for structured programming (e.g. block IF statements

with ELSE and ELSE IF) and the CHARACTER data type for processing character-based data.

Historically FORTRAN 77 is probably the most important dialect of FORTRAN because it was

standard for about fifteen years. In 1992 the successor of FORTRAN 77, known as FORTRAN

90, was finally released. This version was a major step towards object-orientation although the

real object orientation support came about in the FORTRAN 2003 release. FORTRAN 90 was

now supporting modules to group procedures and data together, an improved argument-passing

mechanism allowing interfaces to be checked at compile time and abstract/derived data types.

Five years later a minor revision of the standard was undertaken to fix some outstanding issues

from the Fortran 90 standard. The standard was then called FORTRAN 95. The most recently

used standard is the FORTRAN 2003 standard which has now finally introduced object oriented

programming support. Along with other modern features like type extension and inheritance, poly-

morphism, dynamic type allocation, type-bound procedures, allocatable components and deferred

type parameters. FORTRAN is a current programming language with probably the longest his-

tory [All81, Bac98]. The emphasis since the very beginning has been to abstract from the machine

towards mathematics.

“The FORTRAN language - closely resembling the ordinary language of mathemat-

ics, ... FORTRAN therefore in effect transforms the 704 into a machine with which

communication can be made in a language more concise and more familiar than the

704 language itself.”

The FORTRAN I Manual, 1956

It is an example of a well defined programming language which has fewer critical side-effects than

C, for example. The property of type safety was introduced very early and for this reason the

language has been able to “survive” over such a long period of time.
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The C Language

Another important language in the history of programming languages is the C language. In terms

of type safety it can be seen as the inferior opposite of the well defined FORTRAN language.

The C language is a general-purpose computer programming language developed between 1969

and 1973 by Dennis Ritchie at Bell Telephone Laboratories for the Unix operating system. It is

the most commonly used programming language for writing system software like drivers or kernel

modules for operating systems. C is a successor of the B language which was developed by Ken

Thompson in 1970. Although many important ideas of C stem from the BCPL language developed

by Martin Richards. B is a stripped down version of the BCPL programming language. Dennis

Ritchie developed C to create a new language which inherited Thompson’s taste for concise syntax.

The key to its success was a powerful mix of high-level functionality and detailed low-level features

required to program an operating system. The main characteristic of the C language is the simple

and minimal core language while any extra functionality such as mathematical functions and file

handling is provided by library routines. Another important feature of C were fundamental data

types like characters, integers and floating point numbers of several sizes but also compositional

data types for higher order data types. Unlike BCPL and B which were ‘typeless’ languages. Con-

secutively most components of the Unix System were rewritten in C, culminating in the kernel

itself in 1973. In 1978, Dennis Ritchie and Brian Kernighan published the first edition of The C

Programming Language which served for many years as the informal specification of the language

[KR78]. The described version of C is commonly referred to as “K&R” C. During the 1980s, it

was adopted for use with the IBM PC, and its popularity began to increase significantly. At the

same time, Bjarne Stroustrup and others at Bell Labs began work on adding object-oriented pro-

gramming language constructs to C, resulting in 1985 in a language called C++ [Sto85]. Although

C++ has become a widely spread programming language it has many drawbacks due to its roots

in the C language [Joy92]. In 1983, the American National Standards Institute (ANSI) formed

a committee to define a standard specification of C. The first official standard was completed in

1989 and ratified as “Programming Language C”. This version of the language is often referred to

as ANSI C, or sometimes C89 (to distinguish it from C99). The book by Ritchie and Kernighan

has been revised and is now available as a second edition according to the new standard [KR88].

In 1990, the ANSI C standard (with a few minor modifications) was adopted by the International
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Organization for Standardization (ISO) as ISO/IEC 9899:1990. This version is sometimes called

C90. Therefore, the terms ‘C89’ and ‘C90’ refer to essentially the same language. One of the aims

of the ANSI C standardisation process was to produce a superset of K&R C (the first published

standard), incorporating many of the unofficial features which had been subsequently introduced.

However, the standards committee also included several new features, such as function prototypes

(borrowed from the C++ programming language), and a more capable preprocessor. The syn-

tax for parameter declarations was also changed to reflect the C++ style. C89 is supported by

current C compilers, and most C code being written nowadays is based on it. It appears that C

has many disadvantages in terms of safety and portability. The simplicity of the language forces

programmers to define all complex data structures (sets, hash tables, lists, trees, graphs etc.) in

terms of pointers which can easily cause buffer overflows and memory leaks due to the absence of

an automated garbage collection and array bounds checking. Another disadvantage are the many

defaults and unofficial features which have been integrated into the language over the past years

and which make so many programs platform and compiler dependent. In early versions of C for

example, only functions that returned a non-integer value needed to be declared if used before the

function definition; a function used without any previous declaration was assumed to return an

integer. Many defaults have no obvious logical reason but they are there and a programmer needs

to be aware of them. It is most likely that many software quality flaws stem from unknown defaults

[Joy92] which would be reported as errors if the language had been defined in a more strict and

safe manner.

2.12.3 Type Systems In Object Oriented Programming Languages

In 1990 the “object oriented programming” (OOP) emerged. A very foundational book proposing

object oriented programming was published in 1988 by Bertrand Meyer [Mey97] who originally

designed the now ISO-standardised OOP language Eiffel. The roots of this paradigm go back

to the 1960’s when the programming language Simula was created [Hol94] and when the nascent

field of software engineering had begun to discuss the idea of the software crisis [NR69]. The

OOP approach addressed the problem of maintaining software quality in a new way by strongly

emphasising modularity and encapsulation along with other paradigms, particularly, inheritance

and polymorphism. It uses “objects” to model real-world objects in software. The communication
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with other objects is provided through a defined interface. These techniques are in fact there

to constrain the programmer to access a certain software construct only through its interface.

The advantage of this is that another programmer can change the software construct without

introducing side-effects to other software components by simply providing the same interface as the

old implementation. Although every constraint will more or less hinder the software development

process, the interface constraint has far more benefits than disadvantages. In fact, it is most likely

that this constraint is the reason for the great success of the OOP paradigm. A very current and

popular language based on the OOP paradigm is the Java language.

The Java Language

The Java technology was originally created as a programming tool in a small, closed-door project

from SUN called “The Green Project” initiated by Patrick Naughton, Mike Sheridan, and James

Gosling in 1991. In summer 1992 the team emerged with a working demo. It was an interactive,

handheld home-entertainment device controller called *7 (Star Seven). The Java language itself

was created by James Gosling specifically for *7 [Byo98]. After failing to find a market for *7, the

technology was developed further towards web applications. At that time the Internet was still

difficult to use. And HTML was only able to present static content. With the Java technology,

however, the web pages could be extended with dynamic features. It was now possible to move

“behavior” in the form of applets along with the content. The new technology was demonstrated

with a Mosaic based Web-Browser called “WebRunner” which later evolved into the “HotJava”-

Browser. The first public release of Java and the HotJava web browser was on May 23, 1995 at

the SunWorld conference. The initial Java Development Kit (JDK) was released on January 23,

1996. Since then the technology has matured and the current Java language features a huge API

including over three thousand classes. Despite the dramatic enhancements over time, the primary

goal of the Java language remains unchanged. To provide portable and platform independent code

and to learn from the mistakes made in C and C++.

“Java must enable the development of secure, high performance, and highly robust

applications on multiple platforms in heterogeneous, distributed networks. ... Java is

designed for creating highly reliable software. It provides extensive compile-time check-

ing, followed by a second level of run-time checking. Language features guide program-
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mers towards reliable programming habits. The memory management model-no pointers

or pointer arithmetic-eliminates entire classes of programming errors that bedevil C and

C++ programmers. You can develop Java language code with confidence that the sys-

tem will find many errors quickly and that major problems wasn’t lay dormant until

after your production code has shipped.”

J. Gosling and H. McGilton, The Java Language Environment[GM95], 1995

The language favors a safe and strong type system which prohibits explicit pointer arithmetics. The

vast number of available Java applications present proof that this is indeed not necessary for most

applications. Especially this constraint, in fact, involves many more benefits than disadvantages.

2.12.4 Type Systems In Functional Programming Languages

The functional programming paradigm is directly derived from the previouly mentioned lambda

calculus. It conceives computation as the evaluation of mathematical functions by avoiding state

or mutable data. In contrast to imperative programming which emphasises the changes of states,

the functional programming paradigm emphasises the application of functions [Hud89]. Often the

languages feature multi-paradigms (e.g. LISP features functional, imperative and object oriented

paradigms) but all functional programming languages can be categorised into pure and impure.

Whereas pure functional programming languages (e.g. Haskell) have no side effects, allowing to

rigorously reason about their behavior, a pure language, for example, can substitute y= f (x)∗ f (x)

into z = f (x); y = z∗ z eliminating the second, possible time-costly, evaluation. Disallowing side

effects provides the referential transparency property, which makes it easier to verify, optimise,

and parallelise programs. Although this is a very useful feature, most of the pure functional lan-

guages have been emphasised in academia rather than in commercial software development. Other

features are recursion which is equivalent to iteration in imperative languages, dynamic typing and

strict, non-strict and lazy evaluation which refer to how function arguments are processed when

an expression is being evaluated. The first and still a very popular language in this area is the

LISP programming language.

41



Background and Related Research

The LISP Language

The first functional-flavored language was LISP, developed by John McCarthy at MIT. Lisp was

first implemented by Steve Russell on an IBM 704 computer. Russell had read McCarthy’s paper

[McC60], and realised that the eval function could be implemented as a Lisp interpreter which was

a surprise for McCarthy [McC78]. Since that time many dialects have been derived from it most

notably Scheme, Common LISP and Emacs LISP. The name LISP comes from “List Processing”.

LISP was originally created as an algebraic list processing language for artificial intelligence work

based on Alonzo Church’s lambda calculus. After its creation it became the favored program-

ming language for artificial intelligence research. It is believed that LISP pioneered many ideas in

computer science. Particular tree structures, garbage collection, automatic storage management,

dynamic typing and the initial ideas of today’s object oriented programming paradigm [JG93].

Lists are the main data structures of LISP. The LISP source code itself is made up of lists. There-

fore LISP is called a “homoiconic” language where programs are represented as data structures. A

program can manipulate source code as a data structure allowing programmers to extend LISP or

even create their own languages. Languages with the feature of looking at their own source code

are nowadays knows as reflexive languages. All program code in LISP is written as s-expression.

A function call is a parenthesised list where the name of the function comes first followed by its

arguments. The function application f with three arguments could be written like ( f x y z). Lisp

utilises a dynamic type system which means the types are inferred and not explicitly written.

This achieves run-time type flexibility and speed of program development by neglecting execution

speed. To move towards the goal of achieving the safety and execution speed of traditional com-

piled languages, LISP encouraged the idea of type inference (e.g. [Bak90]). Type inferencing is

the mechanical extraction of “type declarations” from a program. This information can be used

by traditional compiled languages. An optimising compiler can then use this more precise type

information to generate more efficient code. Although functional programming languages are not

the most commonly used programming languages, there is no doubt that they founded many of

the essential ideas of today’s programming paradigms.

“Lisp has jokingly been called “the most intelligent way to misuse a computer”. I

think that description is a great compliment because it transmits the full flavor of liber-

ation: it has assisted a number of our most gifted fellow humans in thinking previously
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impossible thoughts.”

Edsger W. Dijkstra, The humble programmer, 1972

2.13 Concepts of Type Systems

This section discusses several concepts which have emerged in various programming languages and

which are related to type systems:

Data Types The data types of type systems can be seen as a constraint of a variable which defines

its domain. The domain is thereby the set of possible values which the variable is able to

represent. It also defines how the data stored in a variable should be interpreted.

Interfaces of functions With a type system it is possible to define interfaces for functions. Such

interfaces define precisely the parameter values and the return value of a functions. This

significantly reduces the potential of passing wrong parameters to a function. Also the

amount of necessary code for a program can be reduced as many error handling routines

become obsolete with a type system.

Abstract types Abstract types are intended to protect internal program structures from unwanted

external intervention. An abstract data type combines variables along with functions which

operate on them. It is possible to allow only certain functions within the data type to be

called by functions from the outside.

Polymorphism Polymorphism allows a function to handle data of different types with the same

interface. Several types of polymorphism are distinguishable. They can be categorised as

follows [Car91]:

• Ad hoc polymorphism allows a function to behave in different ways, depending on

the type of a parameter.

• Generic polymorphism makes functions behave in a uniform way over all relevant

types. Two subcategories can be identified:

– Parametric polymorphism uses a type parameter or type variable instead of

concrete variables with types. A generic written append function which is able to
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connect all kinds of lists is an example of such polymorphism.

– Subtype polymorphism uses a subtype hierarchy and the fact that a subtype

always embodies all features of its parent. A function written to handle a specific

type can therefore handle also all its subtypes.

Subtyping Subtyping defines relationships between types which can be used to construct a hier-

archy of types (see section 5.5 as an example). A subtype is usually more specialised than

its parent, i.e. a subtype is a refinement of its parent. The ordering of types in this is very

useful:

• Any subtype can be converted into its parent without losing any information.

• All operations which work on a specific type should also work with all its parents.

2.14 Characteristics of Type Systems for Programming Languages

Several properties can be used to characterise and evaluate a certain type system regardless whether

it is from an imperative, functional or object oriented programming language.

2.14.1 Type Checking Strategies

There are principally two ways in which a program can be executed. Either the source code

is compiled into machine language or the source code is directly executed via an interpreter.

Both ways have advantages and disadvantages for the type checking. A statically typed language

distinguishes between the compile-time and the run-time phases of program processing. All type

checks are done during compile-time. This means that all types must be known when compiling

the program. Furthermore, it is not possible to change the type of a variable during run-time.

A programmer is enforced to think more about the types of his data structures. The result is

clean source code. In production environments a statically typed language should be preferred

[Pie02]. In a dynamically typed language the whole or parts of the type checking is done via

runtime. These languages can be used for rapid prototyping to evaluate an idea or to quickly

test a new approach - although also statically typed languages like Java have been used for this

approach [Gos97]. Dynamic types languages appear more often in interpreted languages. They are

44



Background and Related Research

usually slower than compiled languages and should not be preferred for production environments.

However, the possibility to influence and/or check the type of a variable during runtime offer

many possibilities which are hard, if not impossible, to acquire in statically typed languages. Most

interpreted languages have a type system but do not feature explicit type annotations. In these

cases a type belongs to the value of the variable and not to the variable itself - types are in these

cases sets of values [CW85].

2.14.2 Definition of Equality

One of the most important decisions when designing a type system is the definition of the equality.

This property defines in which cases two objects are seen as equal. The equational theories vary

widely from language to language. Most type systems can be categorised in one out of two cases

being structural type systems and nominative (or by-name) type systems [Car04]. Many popular

programming languages like C, C++ or Java have a nominative type system meaning that two

types are equal if the declaration uses the same type name. In contrast some modern languages

like Haskell or ML follow the structural type system approach whereas two types are equal if

they have the same structure, meaning every feature within a type must have a corresponding or

identical feature in the other type. A special form is the duck typing were the type is bound to the

value of a variable and no longer to the variable itself. It can mainly be found in languages with

dynamic typing and was mainly inspired by the Ruby language from Yukihiro Matsumoto [Mat01].

The languages emphasise the interfaces of an object rather than the specific types, well-designed

code improves its flexibility by allowing polymorphic substitution. The standard example for duck

typing in the Python language is the file-like classes. If a class implements some or all of the

methods of the class file; it can be used everywhere where file would normally be used without

implementing the interface of the file classes. Of course some objects have limitations and the

duck typing cannot help where the use of an object does not make sense. The word duck typing

comes from an aphorism: “If it waddles like a duck, and quacks like a duck, it’s a duck!”.
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2.14.3 Safety of A Type System

Although types can also be used for performance tuning the safety aspect remains the main aim of

a type system [Car04, ACPP91]. The design of the safety includes a trade off. The more safe a type

system is, the less freedom remains for a programmer. In C for example the main philosophy was:

“The programmer knows what he does“ [KR88]. This implies that the programmer - or rather -

his algorithm can do what he wants with the data in the memory. The Java language on the other

hand is more restrictive and takes the aspect of encapsulation more seriously. The language is type

safe and in most cases the exception handling system tells the programmer what has gone wrong

[GM95]. The drawback is that this language cannot be used for every task (e.g. programming in

the kernel space of an operating system like Linux or Windows). The advantage, however, is that

no Java program is able to seriously harm its runtime environment due to ill-typed programming

constructs. The main reason for C to be categorised as unsafe is the fact that it allows pointer

arithmetic and thus give the programmer direct access to the memory [Moy92, Joy92]. In the

white paper of Java the developers clearly underline the point by writing: “

The memory management model-no pointers or pointer arithmetic-eliminates entire

classes of programming errors that bedevil C and C++ programmers.”

J. Gosling and H. McGilton, The Java Language Environment[GM95], 1995

2.14.4 Accuracy of A Type System

Another point which must be considered when defining a type system is its accuracy. A strong

typed or memory-safe language is a language that does not allow undefined operations to occur.

Consider the example:

x := 5;

y := "20";

print x + y;

Listing 2.1: Simple Code Example

Weakly typed languages would try to compute a result despite the different types of the operands

for example 25 (Visual Basic), 520 (Java Script) or the result depends on the left-most operator
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so x+y= 25 while y+x= 520 (Apple script). A strongly typed language on the other hand would

simply reject those programs as ill-typed.

2.14.5 Scalability of Type Systems

Whether the type checking is still efficient when used in large scale software projects mainly depends

on the type checking strategy and the defined complexity and flexibility of the type system itself.

If a programming language uses only static typing, the size of a program does not matter at all

because the type checking is performed before the program is compiled. After the static type

checking is complete all type annotations are usually deleted which means that the type system is

not used at all in the compiled executable. The drawback of course is that the abilities of statically

checked type systems cannot be as complex and flexible as dynamically checked type systems (see

section 2.14.1). Dynamically checked type systems on the other hand are very flexible and safe but

can slow down the program significantly. Especially if the type system is very complex and many

type checks and type conversions have to be done during runtime. Dynamic type systems can be

very helpful in the first stage of a software project. However, when the system matures and comes

into production environments a statically typed language should be preferred [Pie02].

2.15 Type Inference

The ability to simply infer the types of variables automatically makes many programming tasks

easier. The programmer is left free to omit type annotations while maintaining type safety. This

can be very helpful at the beginning of a project. In the prototype stage a developer just wants

to quickly express his/her ideas and see if the project is at all feasible or not without worrying

about accurate typing. For this “rapid prototyping” the type inference technique can be very

useful. However, later when a project advances and grows to a complex software system it may

be vital for it to allow only explicitly written typed annotations to obtain efficiency and more

reliability [PS94]. Type inference is often very closely related to the type checking. The only

difference is that the type checking algorithm tries to validate the declared types by means of the

usage of the variables, while the type inference algorithm tries to infer the types from the usage of

the variables. Or in other words instead of checking constraints the type inference generates and
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records constraints for later consideration to infer the most general types for the variables [Pie02].

A common algorithm based on the typed lambda calculus for type inference is the Hindley-Milner

or Damas-Milner algorithm. The origin of this algorithm dates back to 1958 to the type inference

algorithm for the simply typed lambda calculus devised by Haskell B. Curry and Robert Feys.

Roger Hindley extended their work in 1969 and proved that the algorithm will always infer the

most general type. In 1978 Robin Milner independently provided an equivalent algorithm. In

1985 Luis Damas finally proved that Milner’s algorithm was complete and extended it to support

systems with polymorphic references. The complete algorithm can be found in [Pie02] (page 321

ff.). Another algorithm particularly designed for object oriented languages is presented in [PS91]

and again published in the book [PS94]. This algorithm is interesting because it is simple, powerful

and generally more related to the problems of programming languages in contrast to the approaches

based on the lambda calculus. A common feature of all discussed approaches for type inference

algorithms is that they operate in 2 steps:

1. Firstly they generate some constraints based on the untyped code they are analysing.

2. Secondly the algorithm tries to solve these constraints with the most general type possible.

2.16 Summary

This chapter reviewed and summarised related work for the FermaT transformation system and

the presented approach of a Wide Spectrum Type System. It presented some critical aspects of

current software engineering and explained why many of today’s software products are unstable.

The problems are not new and many reasons have been identified since the time of the software

crisis. It is also known that no single solution in either technology or in management can by

itself solve the problem. Huge software systems which are used in industry have usually a long

development history. Most companies are afraid of changing their legacy systems over-night but

keeping them too long is also dangerous as most of them run on old outdated hardware which is not

produced anymore and are written in old programming languages which only a few programmers

still know. The solution to this is software evolution which means to update or reengineer software

systems continuously and adapt them to current business processes and technologies. However,

any change in software system remains critical and needs approaches based on formal methods
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to avoid the introduction of new errors or negative side-effects. A sophisticated solution for soft-

ware reengineering and migration is the FermaT transformation theory. The approach is based on

provably correct program transformations and has been researched since 1989. It has been imple-

mented within the industrial-strength FermaT transformation system which uses its own specially

designed intermediate programming language called Wide Spectrum Language. WSL is based on a

small kernel language which itself is based on infinitary first order logic. Experience showed that a

transformation theory without a strong formal foundation is prone to errors. WSL’s denotational

semantics define a program as a function from states (initial states) to sets of states (set of final

states) which makes it possible to prove two programs as semantical equivalent even if their syntax

is different. However, WSL and the migration process of FermaT have also several weaknesses due

to the absence of a sophisticated type system. Type systems in programming languages have a

long history which started with the Lambda Calculus. Today, they can be found in almost every

current programming languages as they make a program more reliable by revealing inconsistencies

in expression and procedure interfaces and, in case of explicit type systems, by forcing program-

mers to explicitly state their intention of usage for every variable. Over the recent years a huge

variety of type systems with different type checking / inference strategies, definitions of equality,

safety, accuracy and scalability have evolved. The presented approach uniquely combines many

type system approaches into one coherent model to provide WSL with a suitable solution for its

ability to represent programs on a wide spectrum of abstraction levels.
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Chapter 3

Preliminaries

“Good judgement comes from experience, and

experience comes from bad judgement.”

Frederick Phillips Brooks, Jr.

Objectives

• Present how a programming language with a type system is constructed.

• Discuss and evaluate common approaches for the single construction steps.

• Describe the design decision which a designer of a programming language has to make.

• Introduce attribute grammars and their useful features for the type system.

• Illustrate the construction of a programming language with a practical example.

3.1 Introduction

This chapter gives an overview with references to later sections of the thesis about essential concepts

which are needed to understand how the WSL programming language can be extended with the

Wide Spectrum Type System. The chapter will elaborate how a programming language with a type

system is constructed and present different approaches of how a type system can be used to identify

malicious code. It will present and discuss ways of describing the semantics of a programming

language. The chapter will also introduce concepts which can be used for type validation and the

formal definition of the type system in general. Finally a small but complete example of a language

definition will be presented to illustrate the presented concepts with a concrete example.
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3.2 Composition of A Programming Language With A Type System

To fully understand what a type system can do and what the consequences are when types are

introduced it is indispensable to review how a programming language is defined. In this context,

it does not matter if the language is explicitly or implicitly typed. Normally a language is defined

with 3 relations [Pie02]:

• The syntactical relation defines how the single atoms are named and how the terms can be

constructed. This is commonly done via the Backus-Naur form (BNF).

• The typing relation constrains all the possible terms and sorts them into well-typed and

ill-typed categories. Only the well-typed terms are considered as valid. This is commonly

done via so called inference rules assigning types to terms (see section 3.8 for an example).

• The semantic relation at last defines how the terms may behave and how they should be

executed. This can be done via operational, denotational or axiomatic approaches.

Coming from the simply typed lambda-calculus, two major ways of how a language definition can

be organised have transpired in the past:

• The Curry-style first defines the terms of a language then the semantics are defined and

finally a type system is defined that rejects terms whose behavior is unwanted.

• The Church-style on the other hand also first defines the syntactical relation but then it is

extended already in the second step with a typing relation. The semantics are only defined

for the remaining terms which have already been validated through the type system. Notable

within this approach is that the question: “What is the behavior of an ill-typed term” will

never arise.

Languages with an implicit type system are in most cases defined in the Curry-style while most

explicit typed languages prefer the Church-style definition [Pie02].
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3.3 Syntax of a Programming Language

The first step when defining a new language is to define the syntactical definition. This is done by

defining grammatically how the single terms of a language can be constructed. This is similar to the

grammar rules of a spoken language. Usually context-free grammars (CFG) are used to express

the syntax for most of today’s programming languages. A context-free grammar is a grammar

which is defined through production rules of the form:

V → w

V is a single non-terminal symbol, and w is a string of terminal and/or non-terminal symbols

which can be empty. The term “context-free” refers to the fact that non-terminal symbols can

be rewritten without regard to the context in which they occur. This allows every context-free

language to be recognised by a non-deterministic push down automaton. A programming or formal

language is context-free if they can be generated by a context-free grammar. The Backus Naur

Form (BNF) was introduced by John Backus and Peter Naur to represent such grammars. In 1959

Backus presented a first approach of a description language which later evolved into BNF at the

first World Computer Congress in Paris. The first version of BNF was created as part of creating

the rules for Algol 60 [Bac60]. A BNF specification is a list of derivation rules, written as:

<symbol> ::= <expression with symbols>

Consider, for example, the number expression from Algol-601:

<number> ::= <unsigned number>

| + <unsigned number>

| - <unsigned number>

<unsigned number> ::= <decimal number>

| <exponent part>

| <decimal number><exponent part>

<exponent part> ::= #<integer>

<decimal number> ::= <unsigned integer>

| <decimal fraction>

1This is taken from Appendix D of the CDC Algol-60 Version 5 Reference Manualc© 1979 Control Data Corporation
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| <unsigned integer><decimal fraction>

<unsigned integer> ::= <digit>

| <unsigned integer><digit>

<decimal fraction> ::= .<unsigned integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A serious drawback was that the BNF was not able to express options and repetitions could not

be directly expressed. This causes many definitions to be unnecessary long and complicated to

understand. This motivates the definition of the EBNF originally developed by Niklaus Wirth

[Wir77]. The extension included option [] , repetition (possibly empty) {} and group () while the

brackets <> could be omitted. Terminals in EBNF are strictly enclosed in quotation marks. The

example above would look like this when written in EBNF:

number ::= [ "+" | "-" ] unsigned number

unsigned_number ::= decimal_number [ exponent_part ] | exp onent_part

exponent_part ::= "#" integer

decimal_number ::= unsigned_integer [ decimal_fraction ] | decimal_fraction

unsigned_integer ::= digit | unsigned_integer digit

decimal_fraction ::= "." unsigned_integer

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Nowadays many more extensions of the BNF are available to express nearly everything. One

common feature of many variants is the use of regexp wild-cards such as * and +. The example

above expressed in an EBNF including regexp wild-cards would look like this:

number ::= [ "+" | "-" ] unsigned number

unsigned_number ::= decimal_number [ exponent_part ] | exp onent_part

exponent_part ::= "#" integer

decimal_number ::= unsigned_integer [ decimal_fraction ] | decimal_fraction

unsigned_integer ::= digit+

decimal_fraction ::= "." unsigned_integer

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Nowadays the Backus Naur Form can be seen as the de-facto standard for specifying the syntactical

relation of programming languages. It led also to powerful software tools know as Compiler-

Compiler. These tools are able to “compile” a language parser out of a BNF-like definition. The
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EBNF is currently defined by ISO standard ISO/IEC 14977:1996(E) [Int96].

3.4 Abstract Syntax Tree

As the name suggests the abstract syntax tree abstracts from the source program the syntactic

structure, without the spelling of particular identifiers, keywords, comments, spaces and line breaks.

The Abstract Syntax Tree is generated from the Parse Tree by omitting nodes which have no

semantic meaning [PP92]. Consider, for example, the program:

IF x = 0

THEN y := 1

ELSE PRINT (" Goodby cruel world ") FI

Listing 3.1: Example Code

The first step is to split up the whole program into distinct tokens called Lexer Tokens: According

Figure 3.1: Example Lexer Tokens

to the syntactical definition of a language, a parser can now generate the Parse Tree (see figure

3.2). This tree is rather huge and difficult to process. The actual Abstract Syntax Tree (AST)

therefore omits all nodes which are semantically not relevant (see figure 3.3). This makes the

processing of the tree a lot easier and faster. The “if” represents a conditional statement “Cond”

which has two guards. The code behind a guard node is only evaluated under a certain condition.

The code after the first guard requires that x is equal to 0. If this is not the case the second

guard will be evaluated. The code behind the second guard will always be executed when the

guard is evaluated because the guard condition is always true. At a first glance the tree might
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Figure 3.2: Example Parse Tree

Figure 3.3: Example Abstract Syntax Tree

look more complex and indeed it is definitively harder to understand for the human. But looking

closer from the perspective of a machine, it is much easier to traversal a tree structure than a

sequence of characters. Furthermore, the tree represents a data structure which can be used to

store additional information (e.g. constrains for type checking). In past decades the theory for

language parsing and compiler design has been the focus of many research projects. No other area

in computer science has been so extensively discussed than programming language and compiler

design [PP92].

3.5 Typing of a Programming Language

The main purpose of type systems for programming languages is to prevent the occurrence of

execution errors during the running of a program [Car04]. While types are usually not very helpful

in hand proofs, they do help with mechanised proofs of correctness [LP99]. Many ways have

been developed to introduce type systems in various formal systems. However, many compilers

of programming languages tend to just hard code the type checking, omitting a formal definition.

Mostly functional and some object oriented programming languages tend to have a sound formal
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foundation and thus also a sound formal definition of a type system. A type system consists of

defined data types and typing rules that are used to assess the type correctness. If all expressions

of a program obeys these rules then the program can be considered as type safe. Each typing rule

has the following form (see section 4.4 for the formal definition):

Γ1⊢ℑ:T1...Γn⊢ℑ:Tn
Γ⊢ℑ:T

Premise Judgment
Conclusion Judgment

Each typing rule has one or more premise judgments and one conclusion statement. The conclusion

statement must match an evaluated expression before the typing rule is applicable. With every

applicable typing rule the conclusion judgments must hold if all premise judgments are true [Car04].

In 1968 Donald E. Knuth developed attribute grammars which can be elegantly used for expressing

type checking rules (see section 4.4).

3.6 Semantics of a Programming Language

To be able to use a programming language it is necessary to define precisely how a particular term

should be evaluated. Pierce et al. [Pie02] identified three major approaches to formalise this so

called semantic relation of a language.

1. Operational semantics

2. Denotational semantics

3. Axiomatic semantics

A clean distinction between the different approaches is not always possible, but all known ap-

proaches to formal semantics of programming languages use the above techniques, or some combi-

nation thereof.

3.6.1 Operational Semantics

The operational semantics approach is maybe the most simple but also the most flexible approach

of the three. The semantics are defined by an abstract machine which uses the terms of the
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language as input. The behavior is defined by a transition function for each of the states which

either gives the next state or halts the machine (stuck state).

3.6.2 Denotational Semantics

Denotational semantics capture the behavior of terms in a more abstract view then the operational

semantics. At first the approach defines a number of semantic domains. The second step is to define

interpretation functions which map terms into elements of these domains. The major advantage

of this approach is that it does not get lost in the details of evaluation. It merely abstracts the

essential concepts of the language. The properties of the chosen semantic domains can be used to

derive powerful rules for reasoning about the behavior. These rules can prove that two programs

have the same behavior which is called “semantical equivalent” or that a given program satisfies

some specification. Section 2.7.3 describes the definition of WSL which is based on denotational

semantics.

3.6.3 Axiomatic Semantics

This form of semantic definition is the most mathematical approach. Instead of first defining the

behavior and then afterwards deriving rules from it this approach tries directly to formalise the

semantics by rules; the so called axioms. The advantage of the approach is that the focus is from

the beginning on the process of reasoning about programs. The disadvantage is of course the time

consuming definition and the complicated and complex form that is not as easy to understand as

the other approaches.

3.6.4 Other Variants of Formal Semantics

Many specialised approaches can be found to formalise the semantic meaning of a programming

language. Some very common ones are:

1. Algebraic Semantics

Algebraic semantics of a programming language is a form of axiomatic semantics based on
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algebraic laws. The basic idea of the algebraic approach to semantics is to identify and name

different sorts of objects and to associate operations with these sets of objects. Algebraic

axioms are then used to describe the properties.

2. Action semantics

This approach tries to split the formalisation process of denotational semantics into two

layers (the macro- and micro semantics). To simplify the specification it predefines three se-

mantic entities (actions, data and Yielders). Action semantics are a mixture of denotational,

operational and algebraic semantics.

3. Attribute grammars

Besides the use of attribute grammars described in section 3.7, they can also be used to for-

mulate semantic meaning. Attribute grammars can be understood as denotational semantics

where the target language is the original language extended with attribute annotations.

Some other approaches which will not be described further are: Categorical (or “functorial”)

Semantics, Concurrency Semantics and Game semantics.

3.7 Attribute Grammars

A fundamental step in computer science was the invention of attribute grammars by Donald E.

Knuth in 1968 [Knu68] [Knu90]. An attribute grammar extends the productions of a formal

grammar with attributes. With these attributes it is possible to restrict the set of syntactical

correct strings of a particular language to those that meet certain semantic constrains which is

ideal for a type system. For example: The declared or inferred type of any variable or sub-expression

must be consistent with its use. Formally it can be seen as a triple:

GA = (G,A,F)

Consisting of a context-free grammar G, a finite set of attributes A and a finite set of attribute

assertions, or predicates F about the attributes. The attributes can be categorised into two types.

The synthesised attributes are computed according to some evaluation rules while the inherited

attributes are computed from parent nodes. These types of attributes can be used to model a data
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flow of attribute information which can be very useful when the assertion of a tree node needs an

attribute value from a sibling node. Synthesised attributes must be processed first as inherited

Figure 3.4: Data Flow Between Inherited and Synthesised Attributes

attributes depend on them. Each attribute and assertion is associated with a single non-terminal

or terminal of the grammar. Each assertion refers only to those attributes associated with its

grammar production - although it is possible to define some functions for the assertions which can

be used to access global data structures (e.g. a symbol table for variables to check if a variable is

declared or to get its declared type). A string in the language G is also in the language GA iff all

applicable assertions f (e.g. typing rules) hold true for all applicable nodes.

G⇒ GA ⇐⇒∀ f ∈ F. f = true

Consider the simple expression language:

condition ::= expression condition_operator expression

expression ::= value operator value

operator ::= boolean_op | integer_op

boolean_op ::= "OR" | "AND"

integer_op ::= "+" | "-"

condition_op ::= "="

number_condition_op ::= "<" | ">"

value ::= boolean | number

boolean ::= true | false

number ::= digit+

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

This language can be extended with the attribute “type”. The prefix “^” defines a synthesised

attribute while “! ” defines an inherited attribute. Because the evaluation will only be performed on

semantically relevant nodes, only nodes which are used in the Abstract Syntax Tree have assertions.

The different names for the attributes inside a production are only introduced to distinguish each of

them for the assignment. In the Abstract Syntax Tree every tree node will have only one attribute:
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condition(^t1) ::= expression(^t2) condition_operator( !t3) expression(^t4)

[t2 = t4 & t2 = t3 & t1 = t2 & t3={boolean}]

expression(^t1) ::= value(^t2) operator(!t3) value(^t4)

[t2 = t4 & t2 = t3 & t1 = t2]

operator(!t) ::= boolean_op(!t) | integer_op(!t)

boolean_op(!t) ::= "OR" | "AND" [t = {boolean}]

integer_op(!t) ::= "+" | "-" [t = {integer}]

condition_op(!t) ::= "=" [t IN {boolean,integer}]

number_condition_op(!t) ::= "<" | ">" [t = {integer}]

value(t) ::= boolean(t)

| number(t)

boolean(^t) ::= true | false [t = {boolean}]

number(^t) ::= digit+ [t = {integer}]

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

In the expression production the synthesised value of attribute type2 is passed down via the

inherited attribute type3 to the production operator which passes the value further down to

boolean operator or integer operator which than checks if the operands have the correct type.

Therefore the tree has to be evaluated bottom-up and each node having nodes with inherited at-

tributes as children must be evaluated top-down a second time. Consider for example the small

program:

5 + 3 = 4 + 4

The corresponding Abstract Syntax Tree would look as in figure 3.5 (to trace the data flow the

“type” attributes are numbered according to their usage and the flow direction is marked). Besides

all their advantages, attribute grammars naturally also have some drawbacks. The handling of non-

local information is not trivial and depends on the definition of special functions for the assertions

as well as a proper attribute evaluation strategy (e.g. left-right evaluation) in the tree. Another

difficulty with very complex attribute grammars is to avoid a possible circular evaluation. Section

4.4.5 shows an example of how a type checker can use the previously mentioned attribute grammars

to efficiently check a given program against typing rules.
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Figure 3.5: Abstract Syntax Tree With Attributes

3.8 Example of a Language Definition

To show the possibilities of typed languages this section introduces a brief example of a language

definition containing only boolean and number expressions. Four syntactically correct programs

are presented of which two would end up in a stuck state, i.e. run-time error. Notably, these

programs can be rejected before execution by a type system as ill-typed.

3.8.1 Syntactical Definition:

term ::= boolean

| "if" term "then" term "else" term

| number

| "iszero" "(" term ")"

zero ::= "0"

number ::= ("1" | "2" | "3" | "4" | "5"

| "6" | "7" | "8" | "9") (number | zero)*

boolean ::= true | false
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It is already possible to write programs. But to be able to evaluate these programs the semantic

relation for the language is required.

3.8.2 Semantic Definition (Operational Semantics):

i f true then t2 else t3 → t2

i f f alse then t2 else t3 → t3

iszero(zero) → true

iszero(number) → f alse

t1 → t ′1
i f t1 then t2 else t3 → i f t ′1 then t2 else t3

t1 → t ′1
iszero(t1) → iszero(t ′1)

With this definition it is now possible to write a compiler which can translate programs into

machine code. Consider, for example, the following programs:

(1) if iszero (0) then true else false

(2) if false then 0 else 1

(3) if 1 then true else false

(4) if true then iszero ( true ) else false

Listing 3.2: Example Programs

The first program would evaluate to true in the following derivation tree:

iszero(0) → true

i f iszero(0) then true else f alse→ i f true then true else f alse

i f iszero(0) then true else f alse→ true

The second program would evaluate 1 and the third and fourth, although syntactically correct,
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would end up in a stuck state as their evaluation is not defined by the semantics. The programs 3

and 4 are therefore meaningless or erroneous programs. The disadvantage of the current language

definition is that the errors are only detected when the programs are evaluated. In large scale pro-

grams with many branches it is very difficult and in many cases impossible to test the evaluation of

all possible branches. Fortunately, type systems can be used to reject many meaningless programs

without the need of evaluation.

3.8.3 Type System Definition:

As the language contains only boolean and number expressions it is sufficient to only define two

types:

T ::= bool | int

The type system itself is defined by the following typing rules:

true, f alse: bool

0,1,2,3,4,5,6,7,8,9 : int

t1 : bool t2 : T t3 : T
i f t1 then t2 else t3 : bool

t1 : int
iszero(t1) : bool

The primitive values are either boolean or int. The first expression in an “if” statement must be

of type boolean while its branches can have any type. An “if” statement in this case returns the

value and type of the expression which is evaluated. The “iszero” has an argument of type integer

and the statement returns always a value of type boolean. To check and verify the correctness of

typing a “type derivation” tree is constructed which consists of concrete instances of typing rules

[Pie02]. A program is considered as type safe if such a tree can be constructed for every one of

Figure 3.6: Example Type Derivation Tree
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its expressions. Figure 3.6 shows the “type derivation” tree of program 1. With the aid of typing

rules, it is possible to reject the third and fourth program before evaluation as ill-typed because

the “type derivation” cannot be constructed, i.e. a sequence of inference rules which defines the

type cannot be found. If the type system is not too complex and all variable types are known a

good type checker can fairly quickly distinguish whether a term is ill typed or not.

3.9 Summary

This chapter gave an overview about essential concepts for the construction of programming lan-

guages such as the definition of the syntax via BNF, the construction of a type system with the

definition of data types and typing rules as well as the definition of semantics via operational,

denotational or axiomatical approaches. Furthermore, it introduced attribute grammars which

can add attributes and attribute assertions to an already defined context-free grammar. Attribute

grammars will help in the next chapter to formally defines the type system around WSL and to val-

idate the type correctness of a given program. The chapter finalised with an example construction

of a simple programming language by defining its syntactical, semantic and typing relation.

64



Chapter 4

Wide Spectrum Type System

“Computer Science is no more about computers

than astronomy is about telescopes.”

Edsger Wybe Dijkstra

Objectives

• Define the key features of the Wide Spectrum Type System.

• Introduce the type system to WSL formally by using attribute grammars.

• Describe the process of type checking and type inference.

4.1 Introduction

This chapter gives an initial introduction into the Wide Spectrum Type System. It will at first

discuss its main features which are the layered approach, the emphasis on explicit typing, the

awareness of variable precision and storage size and scalability. The chapter will then formally

introduce the type system into the WSL programming language by using attribute grammars. It

will conclude by explaining how the type checking and type inference algorithms work.

4.2 Approach of the Wide Spectrum Type System

The object oriented programming paradigm has demonstrated that the introduction of defined

interfaces using data types between distinct software components is a major step towards main-
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taining software quality [PS94]. Data types should define explicitly the possible values and possible

operations of a variable. They should prevent a program from performing illegal operations which

may cause the program to abort unexpectedly. In an explicitly typed programming language the

declaration of a variable can be seen as an invariant assertion. A type checker can check the usage

of a variable throughout the program against this invariant assertion. Type checking can be seen as

the mechanisation of a mathematical proof. A successful type check, especially in strongly-typed

languages is like a certificate for the program verifying that it is free of certain types of errors.

Almost all of today’s commercially relevant programming languages use data types to reduce the

amount of introduced errors during the development process. Although data types are used for

clarification they do not have a clear and generally standardised definition themselves. However,

two fundamental properties can be identified when looking at the majority of commercially relevant

static typed programming languages [Pie02]:

• Weakly / Strongly typed: A strongly typed language does not allow an operation to suc-

ceed on arguments which have the wrong type while weakly typed languages provide the

programmer with much more freedom to use any variable as desired directly through the use

of pointers or by type cast.

• Safe / Unsafe typed: A language is type-safe if it does not allow operations or conversions

which might cause an abnormal termination of the program. Unsafe typed languages on

the other hand rely more on the programmer to realise a reliable and sophisticated imple-

mentation giving him the freedom to program in unusual ways, for example, to enhance

performance.

Almost every programming language has its own understanding of data types and in many cases

certain features of the type system are decided by the concrete compiler when the executable is

generated (e.g. by obeying certain command line options). This means that in some cases the

concrete definition of a data type depends not only on the chosen programming language but

also on the used compiler. Nevertheless, this diversity of type systems can be very helpful for

developers. For every single software project a developer can choose an appropriate programming

language which provides as much security as required whilst preserving as much flexibility as

possible. Unfortunately, the advantage of a high diversity of type systems becomes a problem
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when an important software program or, even more seriously, its programming language becomes

older and eventually a legacy. The reengineering or migration of these systems is very hard because

of the implicit implications and assertions which come with data types. As discussed in section

2.10 also the FermaT migration process has several flaws in the absence of a sophisticated type

system. To tackle these flaws the Wide Spectrum Type System approach was developed to take

the diversity of type systems found in current legacy applications as well as potential migration

target languages into account. The approach puts emphasis on commercially relevant programming

languages:

• like FORTRAN 77, COBOL and C which were utilised for the majority of legacy systems as

potential source languages.

• like C, C++, FORTRAN 95, Java and C# which are currently the most reasonable migration

targets as potential target languages.

The approach is designed to have the following key features:

• Layered Approach

• Emphasising explicit typing

• Awareness of Varying Precision and Storage Size of Variables

• Scalability

4.2.1 Layered Approach

Almost all programming languages are designed for a special purpose. Therefore their possible

programming constructs and data types differ significantly. Some languages allow unsafe con-

structs like pointers (e.g. C) to give as much possible freedom to the programmer and to allow

very hardware related programming [KR88] while the fundamental philosophy of other languages

prohibit particular those unsafe constructs in order to guarantee a high-level of safety (e.g. Java

[GM95]). Despite the philosophy also the range of possible data types differs a lot from language

to language. Because of this diverseness of approaches and philosophies an intermediate language
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which features only a single type system approach is always insufficient. The solution presented

in this thesis therefore proposes a layered type system. Figure 4.1 shows the layered approach in

more detail. Each layer represents a separate type system with a distinct set of data types and a

certain level of security i.e. level of strictness.

Figure 4.1: Layered Wide-Spectrum Type System

• Dynamic Typed WSL represents the current untyped WSL.

• Simple Typed WSL represents the current WSL with explicit typing. This layer is mainly

used if an untyped program should be typed through type inference.

• Weak Unsafe Typed WSL is used to represent weakly typed languages like C which

feature pointers and allow any form of type casting.

• Strong Unsafe Typed WSL focuses on languages which have a stronger typing. Although

unsafe constructs like pointers are still allowed, a type cast can only perform “upcasting”

operations which guarantees that no information gets lost. Any other alteration of typing

has to be done through special conversion functions.

• Strong Safe Typed WSL is like the previous layer except for the disallowance of direct

memory access through pointers.
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• Object Oriented Typed WSL represents an WSL with Object Oriented typing. A proce-

dural program on this layer can be converted step-by-step into an Object Oriented program.

Most common procedural programming languages can be translated to and from WSL using one of

these layers. Although the Wide Spectrum Type System introduces an object oriented layer, it is

far less expressive and flexible as other state-of-the-art object oriented languages such as Java, for

example. Instead, it offers a carefully defined mixture of procedural and object oriented facilities by

avoiding to introduce new semantic definitions. The intention of this layer is to ease the migration

from procedural into object oriented code by preserving the procedural structures and wrapping

the object definition around them1. All other layers, however, are as expressive as their intended

source / target languages. Special Type System Transformations can be used to raise or lower the

level of strictness (see section 6.5). If a program uses constructs which are illegal on the destination

layer, the maintainer can either apply some of FermaTs semantic preserving code transformations

or carefully alter the source code directly. Unfortunately, the usage of pointers still creates many

difficult problems which may hinder a successful transition among the safely typed layers.

4.2.2 Emphasising Explicit Typing

A critical issue in any migration process is the implicit conversion of data types. If a type needs

to be converted during an arithmetic expression it is common practice to convert the type of the

variable implicitly. In fact this makes the code shorter and normally easier to read but it has

great potential to corrupt the processed data. Even if the migration process is successful and the

translation is accurate, these conversions may cause errors as the reengineered system might have

to operate on different input data. An infamous example of such an error is the flight of the first

Ariane 5 space rocket which was launched on June 4, 1996. The Ariane 5 software reused the

specifications from the Ariane 4, despite the fact that the Ariane 5 flight path was significantly

different and beyond the range for which the reused code had been designed. Especially, the much

greater acceleration of the Ariane 5’s caused the primary and back-up guidance computers to

crash after the start. This caused a misguidance of the launcher’s nozzles by false data, critically

misleading the missile. This led to a cascade of problems, culminating in the self-destruction of the

1Section5.11 and5.3.14explains how common object oriented features can be represented in the Object Oriented Typed layer
without introducing new semantics to WSL.
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entire rocket 37 seconds after launch. Luckily, there was no human loss but with costs of around

0.36 Billion USD it is one of the most expensive computer bugs in history. The initial cause for this

disaster was the unsafe design involving a data conversion between 64-bit floating point to 16-bit

integer. Although the run-time environment would have been able to cope with such errors, it was

decided to turn these features off due to efficiency considerations [Eur96, Lan97]. To help identify

any potentially dangerous constructs, the type checker of WSL enforces the explicit expression of

every type cast within a program. It, furthermore, disallows any type casts which involve a loss of

precision in its strongly typed layers.

4.2.3 Awareness of Varying Precision and Storage Size of Variables

Most programming languages leave out the fact that a machine will always be finite while mathe-

matics are generally not. The data type int for example will always be just an approximation of

the mathematically set of integers Z whereby the accuracy of this approximation highly depends

on the amount of allocated memory. A 4 byte long signed integer for example would be able to

represent any value between -2.147.483.648 to 2.147.483.647 while all attempts to express a number

outside this range will result in an overflow. Another example is the data type float . A float

should approximate the algebraic set of real numbers R which is not only infinite but uncountable

infinite. Unlike integers, which are either precise or, in case of an overflow, totally wrong, a float-

ing point numbers is within its limits not precise due to rounding errors. Consider the irrational

number PI expressed in 4 byte, 8 byte and 16 byte precision:

PI Precision

3.14159265358979323846 16 byte

3.14159265358979310000 8 byte

3.14159274101257320000 4 byte

While the first digits of the number are always correct, the mantissa differs significantly towards

the end. Unfortunately, it is unpredictable where exactly the inaccuracy begins as it is highly

dependent on the represented value. This means that a check for the correctness of a result is

almost impossible and the preserving of data precision is one of the major challenges during the

migration process. If a legacy system is largely scaled and the target platform defines the lengths
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for several data types differently, the trace of resulting errors can be like looking for a needle

in a haystack. The problem gets even more serious if a programming language does not have a

standardised length for data types. In C, for example, the length of a data type is decided by the

concrete compiler which builds the binary executable code. An example of an extreme difficult

code migration is to port a large scale C program from a Cray SV1 to an IBM machine with

AIX as operating system. Although the process does not involve any code translation, the data

types “short”, “int” and “float” would lose at least 4 bytes of precision in any case. Furthermore,

it would lose by default at least 4 bytes for the data types “long” and “long double” unless the

“xlc” compiler switches “-q64” and “-qlongdouble” are used [Int05]. Another difficulty arises when

migrating between platforms which have different pointer sizes to address their memory. This

is the case when migrating from old 16 bit CPUs to standard 32 bit CPUs or from any 32 bit

assembler or C to AS400 Cobol which uses 128 bit pointers [Int94]. Examples like these show that

a clear and precise definition of data types is an essential precondition for any successful evolution

of software. Because of WSL’s aim to operate as an intermediate language its Wide Spectrum

Type System puts a strong emphasis on a clear and unambiguous storage definition by including

the length of a data type in its definition. For example:

• A list of 5 elements starting with an index of 1 is declared as LIST[1:5] .

• A list with a dynamic range can be declared as LIST[1:*] or LIST[0:*] .

• A variable with a known storage size is declared with its type, followed by a star, followed

by its storage size e.g. a 4 byte integer is declared as INTEGER*4.

• A variable whose storage size is not known can be denoted as <TYPE>*0 e.g. inferred types

or variables with variable storage size like STRING in Java. Only in this case the platform

and language specific default storage size of its data type is used.

4.2.4 Scalability

Another important requirement for any practical approach is its scalability. The scalability within

this approach means mainly the performance of the type system verification process and the type

transformations. The runtime of a processed legacy system, however, is never affected as the Wide
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Spectrum Type System uses only static typing which means that all type information of a program

is deleted when it is translated into machine language for execution. The verification process and

the type transformations on all type system layers should remain efficient and yield results within

a reasonable time when applied on large scale systems. The following design decisions were made

to achieve this:

• The definition of the types is simple and flexible as more complicated definitions usually

cause a large overhead during verification and tend to be more error prone.

• Type checks are localised and involve as few elements as possible. Therefore, only expressions

are checked and not whole statements.

• The type checker stops immediately after a typing error is encountered. This reduces the

check-modify-recheck cycle and avoids the identification of follow-up errors which might be

caused by a previous error.

• The machine readable typing rules are organised in hash tables. This technique assures that

only relevant typing rules are used when checking expressions of a program.

Of course the phrase reasonable time is very abstract and ambiguous. Therefore the type checking

and type inference algorithms for this approach were implemented and tested (discussed later in

section 7.4). A performance tests which succeeded in reasonable time was the type inferencing

and type checking of a large WSL module consisting of around 9000 lines of code with about

180 variables. A full type check took 1 minute while the type inferencing algorithm needed only

40 seconds. The reason for this is that a type check runs through the code for each variable

separately while the type inference algorithm loops only until no new types can be inferred. The

implemented type check is linear to the code size and number of variables while the time for type

inference depends also on the code itself i.e. used constants and operators in formulas as well as

dependencies between variables.
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4.3 Introduction of the Wide Spectrum Type System to WSL

The extension of a theoretical model, in this case the language definition of WSL, has to be done

very carefully so as to avoid accidentally introducing ambiguities or inconsistencies. In terms of

the Wide Spectrum type system the most important question is: What is the actual effect of the

Wide Spectrum Type System on WSL and the current set of code transformations? Obviously the

introduction of a type system to WSL would be very difficult if it changed some of its semantics.

In some circumstances this could even mean that many of FermaT’s transformations would have

to be proven again as the current proofs for the correctness of these transformations are based on

the untyped version of WSL [War04]. To avoid such steps the typing information is exclusively

taken from the legacy system itself or, if the legacy system does not feature a type system, the

type inference algorithm is used to capture implicit typing and make it explicit. Inferred types, in

this sense, can be seen as assertions which only reveal what is already implicitly stated inside a

program. An inference error is concluded if a variable is not used consistently throughout the code.

Furthermore, the suggested integration into the transformation process places the introduction of

the type system into WSL after the transformations have been applied (see section 7.4.5). In fact,

the Wide Spectrum Type System is only to be used to validate the typing of a transformed legacy

system against the typing rules of the targeted programming language.

4.4 Mathematical Foundation

The Wide Spectrum Language (WSL) is enhanced with a Wide Spectrum Type System by ex-

tending the normal grammar of WSL to an attribute grammar. Attribute grammars were firstly

mentioned by Donald E. Knuth in 1968 [Knu68] while the proposed approach was derived from

[PP92]. An Attribute grammar extends the productions of a formal grammar with attributes.

With these attributes it is possible to restrict the set of syntactical correct strings of a particular

language to those that meet certain semantic constraints. In a type system such a constraint could

be: The declared or inferred type of any variable or sub-expression must be consistent with its

use. The advantage of this approach is that the semantic constraints i.e. typing rules can be

defined, outside the current semantic definition of WSL, for each layer of the layered type system
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separately. This means that the behavior of the type checker can be easily adjusted by changing

the operational set of typing rules. Another advantage is that the algorithms for type checking

and type inference are very similar and can operate on the same set of constraints.

4.4.1 Attribute Grammar for WSL

The attribute grammar of WSL is a triple: A = (G,V,F) consisting of the context-free grammar

G of untyped WSL with added productions for typing2, a finite set of distinct attributes V which

in this case always represent types, and a finite set of assertions F about the attributes known as

typing rules. Each attribute is associated with a single non-terminal or terminal of the grammar

and each typing rule is associated with a single production. A string which is valid in the language

of G is also valid in the language of A iff for every attached attribute of every terminal- and

non-terminal node of the abstract syntax tree at least one assertion holds true.

4.4.2 Typing Judgments

The assertions F are described by type judgments. A typical judgment has the form:

Γ ⊢ ℑ : T

Here Γ is a static type environment and ℑ is an assertion. It is defined that Γ entails ℑ. The type

environment is an ordered list of distinct variables and their types. The empty environment is

denoted ⊘. All free variables of ℑ must be declared in Γ. Within the Wide Spectrum Type System

a judgment will assign the type T to the terminals or non-terminals of their assigned production.

4.4.3 Typing Rules

Typing rules assert the validity of certain judgments on the basis of other judgments that are

already known to be valid. The judgment whose validity should be asserted is known as conclusion

2This is a necessary syntactical extension to enable the userto write data types when declaring variables or type casts when
converting types.
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judgment. Some production might have more than one judgment associated. Therefore, each judg-

ment has one or more premise judgments which must be true before the validity of the conclusion

judgment is checked. If the premise judgment is empty the conclusion is true for all applicable

expressions. The optional premise judgments together with the conclusion judgment form a typing

rule:

Γ⊢ℑ:T1...ℑ:Tn
Γ⊢ℑ:T

Premise Judgment
Conclusion Judgment

4.4.4 Correctness of Algorithms

Given the set of functions of all type transformations and object identification algorithms Ω, the

set of possible WSL programs Σ, the set of applicable typing rules ∆ and the type check function

C.

let T ∈ Ω and P∈ Σ and R∈ ∆

f orall R,T,P : T(P) ≈ P

i f f C(P)∧C(T(P))∧R

The correctness and accuracy of the type checking and type inferencing depends mostly on the

typing rules which are the axioms of the formal type system. Each layer of the Wide Spectrum

Type Systems has over 100 single typing rules which need to be correct. So far, their correctness

was verified by applying them on various case studies (see chapter 8) and code examples including

large quantities of FermaTs own WSL source code.

4.4.5 Example

The following example will demonstrate the possibilities of attribute grammars in combination with

a type system with a simple language consisting of only two operations and 4 values. During the

example the grammar of the language will be enhanced with attributes to perform type checking

on two programs. Let the given context-free grammar G be:

T → T +T | T OR T| ”0” | ”1” | ”TRUE” | ”FALSE”
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According to this definition the following programs would be valid:

1) 1+0+1

2) 1+0+FALSE OR TRUE

Now, to enhance the grammar of the language, an attribute “type” which can be either INTEGER

or BOOLEAN is defined for each terminal and non-terminal statement of the grammar. These

attributes form a finite set of distinct attributes V and will enhance any derived Abstract Syntax

Trees with extra information. To restrict the set of syntactical correct strings (programs) of the

simple language a set of assertions (typing rules) F is defined:

Γ⊢A:BOOLEAN Γ⊢B:BOOLEAN
Γ⊢A OR B:BOOLEAN

Γ⊢A:INTEGERΓ⊢B:INTEGER
Γ⊢A + B:INTEGER

Γ⊢0:INTEGER Γ⊢1:INTEGER

Γ⊢TRUE:BOOLEAN Γ⊢FALSE:BOOLEAN

These assertions will be used to fill the Abstract Syntax Tree with extra information. The Typing

Rules in this example were chosen to be quite strict by prohibiting constructs like TRUE + FALSE.

If the language should support such features it would also have been possible to define the first

two typing rules like this:

Γ⊢A:T Γ⊢B:T
Γ⊢A OR B:T

Γ⊢A:T Γ⊢B:T
Γ⊢A + B:T
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With this definition the operations + and OR could be used with any type provided that the two

operands have the same one. After the definition of the attributes V and assertions F the attribute

grammar A can now be constructed as:

A = (G,V,F)

Using this attribute grammar a parser with a type checker would construct the Abstract Syntax

Trees from the two programs, as shown in Figure 4.2 and 4.3. The first program will be parsed and

checked without error messages because all applicable typing rules can be validated. The second

program, however, will produce an error because the typing rule for the ”+” production on the

top requires that all operands i.e. child nodes must be of type INTEGER which is not the case.

Figure 4.2: Abstract Syntax Tree Program 1

Figure 4.3: Abstract Syntax Tree Program 2

4.5 Type Checking and Type Inference

Attribute grammars make the process of type checking and type inference very elegant as the

Abstract Syntax Tree with attributes can be directly mapped to a “type derivation” tree. As
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demonstrated in section 3.8 this tree has to be built for every expression for a program before it

can be declared as type safe. For the Wide Spectrum Type System the type checker uses defined

typing rules to fill the Abstract Syntax Tree with attribute values which at the same time also

builds the “type derivation” tree. Consider the following excerpt of a Strong Safe Typed WSL

program and its Abstract Syntax Tree:

IF x = 0 THEN y := "HELLO " ELSE z := "GOOD BYE"

Listing 4.1: WSL Example Code

Figure 4.4: WSL Example Code

The program has the three variables x, y and z. The variable x is of type integer while y and z are

strings. The process of type checking is carried out in 3 basic steps:

1. Insert the attribute values for every tree node representing a variable (Variable or Var Lvalue).

2. Insert the attribute values for every tree node representing a static value in the program (e.g.

String, Number, etc). These are mostly the typing rules which have no premise judgment.

3. Verify all expressions in the program. The type checker sequentially picks the top node of

every expression and tries to verify it. In many cases this fails due to missing attribute values

in one or more child nodes. In this case these child nodes (and if necessary also their child

nodes) are verified first.

78

pics/inference_check_example.eps


Wide Spectrum Type System

The typing rules have to be in a machine readable format. The rules are stored in a table with 2

columns (premise and conclusion). Table 4.1 shows an excerpt of this table and the corresponding

typing rules. These typing rules are the ones which are used for the example code. The Wide

Premise Conclusion Typing Rule

Number:INTEGER Γ ⊢[0-9]+ :INTEGER

String:STRING Γ ⊢[0-9,a-z]+ :STRING

Child(A):T1 Equal:BOOLEAN
Γ ⊢A:T1 ∧ B:T1

Γ ⊢A = B:BOOLEAN

Child(A):T1 Assign:T1
Γ ⊢A:T1 ∧ B:T1
Γ ⊢A := B:T1

Table 4.1: Typing Rules for Example

Spectrum Type System assesses only expressions and not whole statements because statements

usually do not return any type and their correct expression has already been verified during the

syntactical analysis. The first two typing rules are synthesised attributes of the attribute grammar

and thus do not have any premise. They are true in every applicable situation e.g. the type

INTEGER can be written straight away to the node attribute in the Abstract Syntax Tree whenever

the node “Number” is encountered. The third and fourth typing rule determine inherited attributes

of the attribute grammar. Thus they are based on other attributes and have a premise judgment

which must be true before they can be used. The third rule can be read like: Every node “Equal”

in the Abstract Syntax Tree is to be typed as BOOLEAN. All child nodes (Child(A) ) must be of

the same type (T1) - T1 is therefore just a place holder for any type. The fourth typing rule is

almost the same as the third except that the type of the “Assign” node is to be of the same type

(T1) as all child nodes. Figure 4.5 shows the type check of the example code in listing 4.1. At

first the synthesised attribute values for nodes which represent constants or variables are inserted.

Using these attributes as a foundation, the type checker is able to determine the values of inherited

attributes using the typing rules of table 4.1. If the information of variable types are missing it is

possible to use these typing rules also for type inference. In this case the attributes of the nodes

which represent variables become also inherited attributes. The value of these attributes is always

inherited from the attribute values of their parent node. Figure 4.6 shows the type check of the

example code in listing 4.1. In this way type inference is very similar to type checking. The only

difference is that the attribute from nodes which represent variables are inferred from their parent
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Figure 4.5: Type Check Example

node. If the parent node has no type than the attribute temporarily has the value void . If the

variable type can be inferred somewhere else in the program the void attribute is set to the correct

value according to the inferred type. The program is accepted if the types of all variables can

Figure 4.6: Type Inference Example

be inferred consistently as a specific type. However, the program is rejected if a variable cannot

be inferred or if the inferred types of a variable differ e.g. in one place the variable is inferred as

INTEGER and in another place the variable is inferred as STRING. In the Wide Spectrum Type

System type inference is only used to infer the explicit typing of an untyped program or to refine

explicit typing further e.g. during a type system transition when the new type system has a more
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diverse type system. This means that after the type inference process is complete the inferred data

types are written explicitly into the source code of the program. It is very unlikely that variables

cannot be inferred as a program usually works on variables. This kind of problem can only occur

if the inferred program segment is part of a bigger system and a variable is only passed through

to some externally declared functions or if the variable is only used as a dummy e.g. a return

value of a function which is not used. In all other cases a type can be inferred from assignments

or operations. Some examples are:

• If a variable is initialised the type can be inferred from the type of the constant.

• If a variable is used in some operations the type can sometimes be inferred from the operation

itself e.g. the union operator is only defined for SETs or LISTs depending on the type system

layer.

• If a variable is used in some statements the type can be derived from its place in the parameter

list e.g. all child nodes which represent variables of the FOR statement must be of type

INTEGER.

• If a variable is used as parameter of a function the type can be derived if the function is

declared within the processed source code or declared as EXTERN

• If a variable is used in an operation which involves other variables it might be possible to

derive the type from one of these variables.

Although the results of type inferencing are in most cases correct and useable, it cannot replace

the benefits of explicit typing as the result of type inference may not always correspond to the

real intentions of the programmer. Only if the intentions of a programmer for variables are stated

through explicit typing, it is possible to check and verify their consistency and validity according

to the typing rules of the used type system.

4.6 Summary

This chapter gave an introduction into the Wide Spectrum Type System and its key features.

Looking at the majority of commercial relevant statically typed programming languages, two
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fundamental properties of typing strictness (weak or strong) and safety (safe or unsafe) can be

identified. The layers of the Wide Spectrum Type System are structured accordingly so WSL can

represent most of them. Special Type System Transformations can be used to move a given WSL

program among these layers. Other key features are the explicit typing of the Wide Spectrum Type

System, the definition of storage sizes for variables and scalability. The features of strict typing

and definition of storage sizes thus have very similar purposes. Both features aim to define used

data structures, regardless of the layer on which they are defined, as precisely as possible to avoid

translation related errors. Introducing the Wide Spectrum Type System with attribute grammars

eases the construction of typed WSL significantly as the current language definition needs only

a small syntactical change to write typing expressions within the source code while finite sets of

distinct attributes and assertions are just added to the definition. As long as the typing rules are

correct, the set of correct programs successfully becomes a set of type correct programs. Another

advantage of attribute grammars is that the type checker annotates the Abstract Syntax Tree with

type derivations. The resulting type derivation trees which are directly mapped into the Abstract

Syntax Tree can be easily used to reveal typing related errors. Even without explicit type declara-

tions in the first place the typing rules and derivation trees can be used to infer data types directly

from the source code with type inference.
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Chapter 5

Anatomy and Realisation of the Wide

Spectrum Type System

“The unavoidable price of reliability is simplicity.”

Charles Antony Richard Hoare

Objectives

• State general definitions and conventions.

• Provide an overview of the introduced data types.

• Discuss the layers of the type system in detail.

5.1 Introduction

This chapter explains how types and statements of the Wide Spectrum Type System are realised.

It elaborates in detail which general definitions are valid for all the layers and describes all possible

data types which can be found on at least one layer of the Wide Spectrum Type System. Special

emphasis is put on the OSTRUCT data type which is used for object oriented structures. The

chapter continues with special type directives which enable features like name alias, definition of

artificial data types or external variables and with the introduction of a hierarchy of types which

is used for the strongly typed layers to prevent the loss of data through type casts. The rest of the

chapter goes through all layers of the Wide Spectrum Type System and explains for each layer its

purpose, the supported data types and special features.
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5.2 General Definitions

The purpose of a programming language is to abstract certain hardware related details away so a

programmer can express more what he intends instead of how it should be realised. However, in

some cases (e.g. when programming drivers for operating systems) it is inevitable and desired to

define exactly how the computer should do certain hardware related operations. Therefore, every

programming language has to find a balance between abstract expressions and direct hardware

access. WSL is called Wide Spectrum Language because it can represent a wide range of program-

ming constructs ranging from low level GOTO blocks (called Action System) to high level abstract

mathematical specifications (called specification statement) [YW03]. To support the character of

WSL to serve as an intermediate language during the migration process of a legacy system the

Wide Spectrum Type System is an adjustable type system featuring several distinct type system

layers. These layers are not designed for a particular programming language but rather for classes

of programming languages in terms of their type systems. To be useful and safe, however, the Wide

Spectrum Type System needs some general definitions which are the same on all of its layers. The

following definitions assure that all general information which are vital for the migration process

can be stated within the WSL source code:

• The definition of equality is always nominative. This means that two variables have the same

type only if their declarations use the same type name.

• The type of every variable must be known.

• The size of non-container variables can be stated in bytes as part of their variable declaration

with the star “* ” declarator (e.g. INTEGER*4 for a 4 byte INTEGER). Explicit statement

of a variables precision within its declaration (see section 4.2.3) is considered to be a very

important hardware related detail to prevent the unintended loss of data. The concrete

data storage format, however, is not specified. Programs which need to process similar data

types with a different storage1 format may use the TYPEDEF directive (see section 5.4) to

distinguish them.

• The size of container variables can be stated with a range as part of a variable declaration with

1An example of this would be a program which converts proprietary CRAY floating point numbers into standard IEEE 754-1985
floating point numbers.
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the range “[<start>:<end>] ” declarator (e.g. LIST[1:5]<INTEGER*4> a LIST containing 5

elements of 4 byte INTEGERs). It is also possible to state dynamic allocation on one or

both ends of the range, either with a star (complete dynamic allocation) or with a variable

(allocation upon initialisation).

• Container types can only contain content of one type. This type must always be stated in

the declaration (e.g. a list which holds strings can be declared as LIST[*:*]<STRING*0> ).

• Conversions between data types which are not carried out through a conversion function,

have to be explicitly stated by a type cast.

• The operands of any operator must have the same type in any expression. At least one cast

has to be inserted if two operands have different types.

• On all layers of the Wide Spectrum Type System, WSL offers the standard numeric operators:

“+”, “- ”, “* ”, “/ ”, “** ”, “MOD”, “DIV”; the list and string operator “++” for concatenation;

the boolean operators “<”, “>”, “=”, “<>”, “<=”, “>=”, “IN ”, “NOTIN”, “AND”, “OR”, “NOT”;

and the standard SET operators: “/\ ”,“\/ ”,“\ ”.

• Many other operations like ABS or INT are provided through intrinsic functions see [WH03]

for further details.

5.3 Data Types of the Wide Spectrum Type System

This section introduces all data types which can be found on one or more layers of the Wide

Spectrum Type System. Table 5.1 presents an overview of the data types which can be found on

a certain layer.

5.3.1 VOID

The VOID data type is a special data type which represents the undefined type. This data type

cannot be declared and is only used during the type checking and type inference process to mark

a node in the Abstract Syntax Tree which has a (yet) unknown data type. An example of this is

when the type inferencer encounters an assignment which involves only two variables (e.g. a := b )
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Table 5.1: Overview of Data Types

during the type inference process. Both of the variables would get the type VOID because the

type inferencer cannot immediately decide of which type the variables are (see section 6.3 for

further details). However, once the type inferencing is finished all locations of each variable in the

Abstract Syntax Tree are revisited and their inferred type must be either a single concrete type or

the undefined type VOID. Another example are statements which are part of an expression which

do not have any type (e.g. pattern variables of IFMATCH statements).

5.3.2 POINTER

The POINTER data type stores an address of computer memory. Pointers can be used in two

ways:

1. As a static pointer to the memory which is set once during the declaration. After its initial-

isation any access to the variable would access the memory address it points to.

2. As a pseudo array which represents the memory of the computer. An access into the array

would access the corresponding memory address. The pointer itself can now be represented

by an ordinary integer.

In the following example the variable val would be filled with the content of 8 bytes in the memory

starting from address 10FFA678hex:

EXTERN VAR <LIST[*:*] < POINTER*8> :: mem >;
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VAR <

INTEGER*4 :: ptr := 0x10FFA678 ,

INTEGER*8 :: val := 0,

>:

val := mem[ptr ]

ENDVAR

Listing 5.1: POINTER Example

In the dynamic typed version of WSL only the 2nd version was implemented by the array a[]

which, by default, was used as a LIST<POINTER*1> .

5.3.3 LIST

A LIST is an ordered collection of elements. An element in this sense can be any data type. Apart

from the LIST definition of the Dynamic Typed layer all elements must be of the same type. The

type of the elements must be stated when the LIST is declared. The size of a LIST is also defined

during the declaration. Unlike the content type, the size parameter is optional as it differs from

language to language whether the dimensions are known or dynamically managed. They can be

also inserted manually if the dimensions cannot be determined by a translator directly (e.g. if the

dimension is defined through malloc statements in C). Listing 5.2 shows the declaration of the

lists n1, n2 and n3.

LIST[1:5] < INTEGER> :: n1 := <1, 2, 3, 4, 5>,

LIST[*:*] < LIST[0:*] < INTEGER>> :: n2 := <<1, 2, 3>, <1, 2>, <1>>

LIST[x :y ]< LIST[0: a]< INTEGER>> :: n3 := <<1, 2, 3>, <1, 2>, <1>>

Listing 5.2: LIST Example

The list n1 contains 5 elements which can be addressed through n1[1] to n1[5] . Lists n2 and n3

are two-dimensional lists which have no explicit size. The dimension is not specified or specified

during runtime with a variable. This means that the runtime environment has to take care of

allocation and management. A * at the start index will initialise the array with a default start

index (dependent on the target programming language of the migration). A possible use for this

in a project is when the source language does dynamic array allocation and the array is only used

with “push” and “pop” commands. In general, however, the use of “*” is dangerous and should
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be avoided if possible as the resulting code is usually ambiguous and hardly portable.

5.3.4 SET

SETs are like LISTs except that they are ordered and each of its members is unique. Before

introduction of a SET data type WSL uses the LIST data type as internal data structures to

represent sets. Operations on a set are carried out under the assumption that it is indeed an

ordered LIST where every element is unique. A list with more than one element has always to

be converted to a set via the @Make_Set function before any set operations are applied. Only the

Strongly Typed layers of the Wide Spectrum Type System contain the data type SET which is

able to guarantee that set operations are always used in conjunction with SET variables.

5.3.5 SCALAR

Historically the “scalar” in computing was intended as an opposite of vector, so as to distinguish

from the idea of vector processing in computer processor design. Within the Wide Spectrum Type

System a SCALAR is a type of variables that can only hold single values but does not distinguish

between numbers or characters. The data type SCALAR is only used for the Simple Typed WSL

and its variables can represent any scalar value. Depending on their values throughout a program,

the data type of all SCALAR variables has to be redefined to either INTEGER, STRING, REAL,

FIXED or POINTER.

5.3.6 STRING

A string is used to store a sequence of characters which usually represent a text. Each character

has the size of 1 byte encoded according to ASCII character set. Multiple STRINGs can be

concatenated with the ++ operator. Unlike the C string it is not possible to access single characters

of the string directly. All access to single characters has to be done through the intrinsic function

SUBSTRwhich guarantees that only memory within the string variable can be addressed.
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5.3.7 INTEGER

The data type INTEGER approximates the mathematical set of integers (Z). It represents by

default a signed integer in 2’s complement format. However, if the definition of another represen-

tation or interpretation is needed the maintainer can use the TYPEDEF construct. Artificial data

types can be used to model special interpretations like unsigned, 1’s complement or BCD (Binary

Coded Decimal).

5.3.8 BOOLEAN

The logical data type BOOLEAN, is a primitive data type which can have only one of two values:

TRUE or FALSE. Within the computer memory it is represented as a 1 byte INTEGER which

holds either 0 or 1. This data type can be used to hold any conditional expression using one or

more Boolean operations such as “<”, “>”, “=”, “<>”, “<=”, “>=”, “IN ”, “NOTIN”, “AND”, “OR”,

“NOT” which correspond to some common operations of Boolean algebra and arithmetic.

5.3.9 HASH_TABLE

The hash table data structure associates keys with values. Its primary operation is to lookup

a given a key and find the corresponding value. It works by transforming the key using a hash

function into a so called “hash” (a number) which is used as an index in an array to locate the

desired location (“bucket”) where the desired value should be. HASH TABLEs are very efficient

and can insert and retrieve values usually almost instantly. A hash table may be created by setting

a variable equal to HASH TABLE. The output of example 5.3 would be “5” and “spong ”.

T:= HASH_TABLE ;

T .(" foo "):=5;

T .(67):=" spong ";

PRINT (T .(" foo "));

PRINT (T .(67))

Listing 5.3: HASH_TABLE Example
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5.3.10 STRUCT

The struct data type groups multiple variables together in a named group:

STRUCT :: ADDRESS := <

SCALAR *30 :: name := "Default " ,

SCALAR *20 :: l ine1 := "Default " ,

SCALAR *20 :: l ine2 := "Default " ,

SCALAR *20 :: city := "Default " ,

STRUCT :: postcode := "Default "

STRUCT :: outcode := <

SCALAR *2 :: area := "XX",

SCALAR *2 :: distr ict := "XX"

>,

STRUCT :: incode := "Default "

SCALAR *1 :: sector := "X"

SCALAR *2 :: unit := "XX"

>

>

>,

ADDRESS :: strl := {ADDRESS} <

"STRL , De Montfort Universi ty ",

"Gateway House ", "The Gateway ",

"Leicester ", "LE" ,1 , 9, "BH" >,

ADDRESS :: def := {ADDRESS} < >

Listing 5.4: STRUCT Example

The group in Listing 5.4 declares a template. With this template it is possible to declare variables

of type “Address” which will have the given structure. An initialisation can be given as a casted

list of elements. The default values from the template are taken for every missing element. This

ensures that every variable of the group must have an initialisation. In Listing 5.4 the variable

strl is directly initialised with an address while the variable def would get the default values of

the template.
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5.3.11 REAL

The data type REAL is to approximate fractional numbers. It is defined as standard floating

point number according to IEEE 754-1985 Standard [IEE85]. The advantage of floating-point

representation over fixed-point representation is that it can support a much wider range of values.

The drawback is that the numbers can be inaccurate due to normalisation and rounding errors.

5.3.12 FIXED

As the REAL data type also the FIXED data type is to represent fractional numbers. But in

contrast to floating point numbers this type represents fixed point numbers. The advantage of this

is that calculations with fixed point numbers are always accurate (to the specified limit of fraction

digits). However, such precision limits the range of values significantly. The number has a defined

number of fraction digits while all previous numbers are treated as magnitude digits. The number

of fraction digits is denoted by the initialisation value (e.g. FIXED*4 :: f = 1.90F would declare a

4 byte fixed point with 2 decimal digits of fraction). As with the type INTEGER the TYPEDEF

construct can be used to model special interpretations like binary fixed point numbers or BCD.

5.3.13 COMPLEX

The data type COMPLEX is to approximate the mathematical set of complex numbers. It is

implemented using two REAL variables for the real and imaginary unit of the number. Complex

Numbers can either be written in component (z= x+yi) or phasor (z= z ·eiθ) form.

COMPLEX *4 :: c1 := CN :543.456+4.3456 i ,

COMPLEX *4 :: c2 := CN :543.456 e4 .3456 p

Listing 5.5: COMPLEX Example

Example 5.5 shows the declaration of two complex numbers which use two 4 byte REALs. C1

is declared in component form while C2 is declared in phasor form. WSL supports all standard

operations like addition, subtraction, multiplication and division.
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5.3.14 OSTRUCT

The Object Oriented Typed layer introduces the OSTRUCT construct which is an enhanced version

of the container data type STRUCT. It is designed to model a class template for a stateful object.

Additionally to the abilities of a STRUCT (to combine several variables), an OSTRUCT can define

procedure pointers and is able to inherit all definitions from other OSTRUCTS. A drawback of

using procedure pointers is that all procedure names have to be unique throughout a program.

However, this can be solved by using name mangling techniques like the ones used in early C++

compilers which were implemented as simple C code translators. The advantage of procedure

pointers is that procedural structures are preserved while global variables which are only used by

procedures within the same OSTRUCT can be consecutively localised via transformations (see

section 6.5). Another advantage is the ability to support multi-inheritance. Listing 5.6 presents a

very simple program written in Object Oriented Typed WSL. Modifier constructs for encapsulation

like PUBLIC or PRIVATE can be used to expose procedures which are involved in dependencies

between objects or to hide procedures which are only used for internal processing purposes.

BEGIN

VAR <

INTEGER*4 :: a := 0,

OSTRUCT :: superclass := <

PUBLIC INTEGER*4 :: b := 0,

>,

OSTRUCT :: class1 := <

INHERIT superclass ,

PUBLIC INTEGER*4 :: c := 0,

PUBLIC PROC foo( INTEGER*4)

>,

class1 :: object1 := < >,

>:

a :=1;

object1 .b = 2;

! i object1 . foo (a);

ENDVAR

WHERE
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PROC foo( INTEGER*4 d) ==

a := a + b + c + d

END

END

Listing 5.6: OSTRUCT Example (1)

If a procedure is moved into an OSTRUCT all of its calls have to be exchanged by a corresponding

call to a procedure pointer using the invoke command !i . Technically, the invoke command adds

substitution variables for parameter and wraps a VAR environment with two parallel assignments

involving the attributes of all involved objects and their current values around the call. In this

exampe the call:

!i object1.foo(a);

can be mapped to:

VAR <b := object1.b, c := object1.c>:

foo(p_1)

<object1.b = b, object1.c = c>

ENDVAR;

With the wrapped VAR environment the OSTRUCT variables b and c become “global variables”

for the procedure foo . The mapping between the invoke command and the wrapping VAR envi-

ronment is possible because local variables are in WSL generally dynamically bound rather than

statically bound (see the WSL manual [WH03]). To find the binding of a global variable in a

procedure body, the interpreter looks firstly at the environment of the proc call and not the envi-

ronment of the proc definition itself. In the case of this example procedure foo would work on the

correct local attribute variables b and c. The complete code from listing 5.6 would look in Strong

Safe Typed WSL like this:

BEGIN

VAR <

INTEGER*4 :: a := 0,

STRUCT :: superclass := <

INTEGER*4 :: b := 0,
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>,

STRUCT :: class1 := <

INTEGER*4 :: b := 0,

INTEGER*4 :: c := 0,

>,

class1 :: object1 := < >,

>:

a :=1;

object1 .b = 2;

p_1 := a;

VAR <b := object1 .b , c := object1 .c>:

foo(p_1 )

<object1 .b = b, object1 .c = c>

ENDVAR;

a := p_1

ENDVAR

WHERE

PROC foo( INTEGER*4 d) ==

a := a + b + c + d

END

END

Listing 5.7: OSTRUCT Example (2)

The expression of the object oriented example in a procedural layer of the Wide Spectrum Type

System demonstrates the possibility to introduce object oriented features with ordinary syntactic

code transformations. If a call to another object would occur inside the procedure foo object1

(e.g. to procedure bar ) the object variables would need to be updated before and after the call by

a parallel assignment:

...

STRUCT :: class2 := <

INTEGER*4 :: d := 0,

INTEGER*4 :: e := 0,

PUBLIC PROC bar ( INTEGER*4)

>,

class2 :: object2 := < >,

...
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PROC foo ( INTEGER*4 d) ==

...

p_1 := b;

<object1 .b = b, object1 .c = c>;

VAR <d := object2 .d , e := object2 .e>:

bar (p_1 )

<object2 .d = d, object2 .e = e>

ENDVAR;

<object1 .b = b, object1 .c = c>;

b := p_1 ;

...

Listing 5.8: OSTRUCT Example (3)

5.4 Directives of the Wide Spectrum Type System

To enhance the expressiveness, the Wide Spectrum Type System supports 3 directives:

• TYPEDEF

The TYPEDEF directive can be used to create own specific artificial data types which are

in fact sub-types of intrinsic data types. The new data type accepts the same range of values

as the original data type. Technically this directive creates a child node in the hierarchy of

types which guarantees that the artificial data type can always be upcasted into the intrinsic

data type. The technique is especially helpful if the type system of a program has to be

changed into a more expressive one. This is the case, for example, if a program from the

Simple Typed layer has to be transformed to satisfy the requirements for the Weak Unsafe

Typed layer. The TYPEDEF directive is used to specify the types INTEGER, STRING

and POINTER. These types are then used to successively replace any SCALAR declaration

according to type inference results (see section 6.5).

• EXTERN

A variable can be declared as EXTERN if the variable is used in the program but declared

somewhere else. With this directive it is possible to define just the type of a variable to

satisfy the requirement that the type of every variable must be known.
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• SYMBOL

The directive SYMBOL introduces an alias for a particular variable. After this directive the

variable can either be called by its original name or its alias. This directive is only available

within the Simple Typed Layer and the Weak Unsafe Typed Layer and used to model aliasing

constructs (e.g. in C the #define construct). If a program has to be transformed onto a

strongly typed layer, all occurrences of the alias have to be replaced by the original name.

5.5 Hierarchy of Types

All types of the Wide Spectrum Type System can be grouped into a type hierarchy whereby each

type can have several sub-types but only one super type. The sub-type (super type) relation is

transitive: if C is a sub-type of B and B is a sub-type of A, then C is a sub-type of A. At the top

Figure 5.1: Hierarchy of Data Types

are the more general data types while the more specific data types can be found at the bottom.

The most general data type which is at the top of the hierarchy is by definition the type VOID.

The type VOID cannot be written directly in the source code and is only used during the type

inference process for the denotation of an “unknown” type. The generality of a data type refers

to its possible values. The data type POINTER is placed at the very bottom of this hierarchy as

it can be casted into every other type but no other data type can be casted into a POINTER.
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The set of a sub-type’s possible values is always a sub-set of its super type’s set of possible values.

Newly defined types:

• by TYPEDEF are always direct successors of the derived intrinsic type.

• by STRUCT are always direct successors of the STRUCT type itself.

• by OSTRUCT are either direct successors of the OSTRUCT type itself or successors of the

OSTRUCT types which are stated by the INHERIT directive.

The hierarchy of types is used in the strongly typed layers of the Wide Spectrum Type System to

determine whether a cast is legal or not. If a type checker can verify that every type cast is an

upcast (a cast from any type to one of its supertypes), it can guarantee, that no type cast causes

loss of data. Examples for an upcast are INTEGER→ COMPLEXor COMPLEX→ STRING. The cast REAL

→ INTEGER, however, would be illegal as it is a downcast which might lose information.

5.6 Dynamic Typed WSL

Supported Data Types: INTEGER, LIST, STRING, HASH TABLE2

Typing Appearance: Implicit

Safety: Unsafe

Type checking: Weak

Casting: Upcasting, Downcasting

Resembling Languages: Assembler

The lowest layer of the Wide Spectrum Type System is the current non-explicit typed definition of

WSL. This version of WSL supports the following implicit data types: INTEGERS, LISTS/AR-

RAY, STRINGS and HASH TABLE. Both, the LIST and the ARRAY type model a sequence of

data in WSL. The difference between them is the implementation which has different time efficiency

depending on the usage. Despite the claim of the author to also support the BOOLEAN data type,

this is only true for return values i.e. a BOOLEAN value cannot be stored in a variable but the

2Information taken from the WSL Programmer’s Reference Manual [WH03]
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BOOLEAN return of a function can be used as a condition in an IF statement. The concrete

definition of the data types are provided by the underlying environment which executes WSL. In

the current release of FermaT this environment is provided by Scheme which uses dynamic typing.

The design of the language is mainly focused on the representation of code rather than the correct

representation of data. The absence of a sophisticated defined type system in this version of WSL

creates several drawbacks:

• Information like length and type of a variable are almost completely missing. The only

statement which involves a concrete length is the initialisation of an ARRAY. As mentioned

in section 2.10 this information is stored within a separate file in its own specific intermediate

data format.

• Though WSL implements operators for SETs, they only operate on ordinary LISTs. The

function @Make_Set() just orders the elements of a LIST variable and deletes multiple entries

to make sure it can be used for SET operations. If a programmer forgets to use this function

prior set operations or accidently introduces a double entry again after calling @Make_Set() ,

the program may produce unexpected results in some situations. A designed SET data type,

as introduced in the strongly typed layers, can prevent such situations effectively.

• The representation of memory pointers is only possible with the introduction of the pseudo

array a[]. The array “a” represents thereby the memory of the computer as an array of

bytes. Each element of a[] is a single byte. The notation a[n..m] represents an “array sub-

segment”; a list of array elements a[n], a[n+1], ..., a[m] (the list has m-n+1 elements). The

notation a[n,m] represents an “array relative segment”; a list of array elements ar[n], ar[n+1],

ar[n+m-1] (the list has m elements). This “workaround” was necessary as WSL does not

support pointers or an extensible type system in its original language definition. Therefore,

the meaning and interpretation of “a” fully depends on the individual case.

• Structures of data (e.g. date.month := 4; date.year := 2008 ) can be used but not de-

clared in the program. The declaration of such structures is stored in the separate data

structure file.

• Hex numbers are represented in Strings. This is a “workaround” to include hex numbers

in WSL. This causes problems with strong typing as the result of an arithmetic operation
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involving strings as operands is ambiguous.

Despite the mentioned flaws, this version of WSL was included into the Wide Spectrum Type

System to be able to enhance existing programs with a sophisticated type system and to integrate

the separately stored data structure information into the WSL code.

5.7 Simple Typed WSL

Supported Data Types: SCALAR, LIST, HASH TABLE, STRUCT

Typing Appearance: Explicit

Safety: Unsafe

Type checking: Weak

Casting: Upcasting, Downcasting

Resembling Languages: Assembler

The purpose of the Simple Typed layer is to explicitly express the implicit typing of program

from the untyped layer. The layer introduces the new requirement that all elements of a LIST

have to be of the same type. Although, on the one hand this requirement constrains a developer,

on the other hand it encourages a clean program design by means of clearly defined data structures.

Conversion functions or type casts may be used if an element of a list is needed in a different type.

The layer has a weak type checking. A variable can still be used as a number and as a string due

to the data type SCALAR which can represent any non-container type. Furthermore, the layer

introduces some features to settle several syntactic inconsistencies.

• It is now possible to transform strings containing hex numbers to standard hex numbers by

writing them with “0x” as a prefix (e.g. x := 0xA9FF ).

• Variable multireferencing (a variable can be addressed by multiple names) can be expressed

through the SYMBOL directive.

• Artificial data types based on intrinsic data types can be introduced via the TYPEDEF

directive.
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• Variables can be grouped with the container data type STRUCT.

• Extern variables or functions can be defined with the EXTERN directive.

If a program has been successfully transferred to this layer, meaning that the program can be

parsed by an appropriate parser and checked by the type checker without errors, it is guaranteed

that the following requirements are satisfied:

1. Every variable is declared (either EXTERN or in the program itself).

2. The type (for this layer) of every variable is known.

3. The parameters of every function are defined.

4. Every call to a particular function must satisfy its interface.

5.8 Weak Unsafe Typed WSL

Supported Data Types: POINTER, LIST, STRING, INTEGER, HASH TABLE, STRUCT, REAL,

FIXED

Typing Appearance: Explicit

Safety: Unsafe

Type checking: Weak

Casting: Upcasting, Downcasting

Resembling Languages: C, COBOL

The diverseness of data types is extended significantly on the Weak Unsafe Typed WSL layer.

The data type POINTER which can reference to any other data type is introduced. The layer re-

sembles the type system of C most closely. Although the type system distinguishes between many

data types, it does not enforce their usage. Through pointers and casts the variables can be used

in any combination. This naturally gives a developer great freedom but, on the other hand, also

a great deal of responsibility. Due to very limited possibilities of automated code inspection and

correctness checking, it is assumed that a developer knows about all the effects and consequences
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of his actions. This becomes more and more unlikely as the size of the system grows during the

development process. Another drawback of casting and pointers is that expressions with extensive

pointer arithmetic are extremely difficult to comprehend as the destination of a pointer reference is

computed at runtime and can hardly be derived from the static source code. If a program has been

successfully transferred to this layer it is guaranteed that the following requirements are satisfied:

1. The SCALAR data type from the previous layer is now split into the data types POINTER,

INTEGER, REAL, FIXED and STRING. The assignment to the more specific data types is

done by the type inferencer and the original source code itself.

2. The usage of pointers is clearly identified by variables which are declared as POINTER or

by LIST<POINTER> which models the whole computer memory.

5.9 Strong Unsafe Typed WSL

Supported Data Types: POINTER, LIST, SET, STRING, INTEGER, BOOLEAN, HASH TABLE,

STRUCT, REAL, FIXED, COMPLEX

Typing Appearance: Explicit

Safety: Unsafe

Type checking: Strong

Casting: Upcasting

Resembling Languages: C, Cobol

The Strong Unsafe Typed layer introduces the three new data types SET, BOOLEAN and COM-

PLEX. It is no longer possible to introduce aliases via the SYMBOL directive. Each alias must

now be renamed to the real variable name or declared as an own variable. Although the layer still

includes the POINTER type with all its casting possibilities, it introduces constraints for casting.

Only upcast according to the hierarchy of types (see section 5.5) are now allowed while every

downcast has to be replaced by an explicitly written conversion function. The main aim of this

layer is to strengthen the type system despite the presence of explicit pointers. This layer can be

used to prepare a given legacy system for the Strong Safe Typed layer by eliminating the usage

of explicit pointers step by step by accessing their target through a variable rather than through
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direct memory access. This is, in fact, a very difficult and challenging task since the values of a

pointer usually change during runtime which makes a statical analysis very difficult. Techniques

to statically determine the possible runtime values of a pointer have a long research history and

are nowadays known as pointer analysis [Hin01]. If a program has been successfully transferred to

this layer it is guaranteed that the following requirements are satisfied:

1. Each variable has its own storage area. The exclusion of the SYMBOL directive prevents

side effects caused by the usage of alias names.

2. No data is lost during type casts as the type check does not allow downcasting.

5.10 Strong Safe Typed WSL

Supported Data Types: LIST, SET, STRING, INTEGER, BOOLEAN, HASH TABLE, STRUCT,

REAL, FIXED, COMPLEX

Typing Appearance: Explicit

Safety: Safe

Type checking: Strong

Casting: Upcasting

Resembling Languages: C, Cobol, FORTRAN 77, FORTRAN 95

This layer has almost the same properties as the Strong Unsafe Typed layer except that the

data type POINTER cannot be used anymore. With the exclusion of explicit pointers, it is no

longer possible to directly access the memory and thus, every program within this layer can be

considered to be as safe typed (see section 2.14.3). The main aim of this layer is to provide a

possibility to represent safe typed programs. Programs which can be represented within this layer

are guaranteed to be free of any pointers. Every memory access is now checked and verified as safe

by the type system.
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5.11 Object Oriented Typed Layer

Supported Data Types: LIST, SET, STRING, INTEGER, BOOLEAN, HASH TABLE, STRUCT,

REAL, FIXED, COMPLEX, OSTRUCT

Typing Appearance: Explicit

Safety: Safe

Type checking: Strong

Casting: Upcasting

Target Languages: Java, C#, C++, FORTRAN 95

Emerged from Simula in the 1960’s the object oriented programming approach was revolution-

ary and remarkable successful. Although, there is still no consensus about what exactly defines

an object oriented approach, certain distinctions can be identified from procedural programming

languages when examining the commercially relevant approaches like Java or C#:

• Procedures and functions become methods and the modules which used to group these con-

structs become now stateful objects.

• A stronger coupling between data and code is encouraged by joining them in classes and

objects.

• Encapsulation helps to develop clean interfaces and reduce side-effects.

• Specific concepts like composition and inheritance are introduced to increase the reusability

and structure of source code.

In recent years it has become a habit for common procedural programming languages to define

object oriented extensions. C/C++, FORTRAN, Perl and PHP are a few examples of languages

which started as procedural languages and have been extended with object oriented facilities. The

idea also to extend WSL in this way is not new and in 2007 Li defined an approach to extend WSL

syntactically and semantically for object orientation [Li07]. Although, the approach adds indeed

object oriented functionality, it turned out that its definition is unnecessarily complex. A careful

investigation revealed that all needed facilities for object oriented features are already encoded in
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the current stack of types within the procedural typed layers of the Wide Spectrum Type System.

The Object Oriented Typed layer introduces the OSTRUCT data type together with the invoke

statement i! which is needed to use the procedure pointers of OSTRUCTs. Section 5.3.14 gives

a more detailed explanation of the constructs and shows that all the functionality of OSTRUCTs

and the invoke commands can be completely rewritten by just using the STRUCT data type and

VAR environments. This in fact means that, in contrast to Li’s approach which introduced a

completely new semantic relation, the approach of the Wide Spectrum Type System is able to

implement object oriented structures by means of introducing new syntactical constructs alone.

5.12 Summary

This chapter presented the concrete types and statements of the Wide Spectrum Type System. It

explained general definitions, the possible data types with their hierarchy, special directives for al-

tering the type system as well as the single layers of the type system in terms of purpose, supported

data types, type checking strategy as well as special features. Within the type definition the only

unusual data types is the OSTRUCT. This data type is only used on the Object Oriented typed

layer and is an enhanced version of the STRUCT data type which adds the possibility to define

procedure pointers. Together with the invoke command !i it adds object oriented functionality

without adding special semantics for object orientation.
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Chapter 6

Derivation, Verification and

Transformation

“You could say that I was too lazy to calculate and

so I invented the computer.”

Konrad Zuse

Objectives

• Explain the requirements and implementation of the type checking algorithm in detail.

• Show how the type checking algorithm can also be used for type inference.

• Present an algorithm for object identification in procedural based programs.

• Discuss the efficiency and validity of the algorithms.

• Present the type transformations with examples.

6.1 Introduction

This chapter presents the main algorithms which are most essential for the discussed research and

explains certain important details. It begins with the algorithm which verifies type correctness for

any given typed WSL program and describes how the same algorithm can also be used to infer

types for untyped WSL programs. It is also shown how object structures can be identified in a

procedural based program using the number of outgoing calls and a maximal allowed call depth.
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The chapter concludes by listing all developed type transformations with an explanation and a

small example.

6.2 Type Checking

A type system is useless without a proper type checker. In fact the type checking is as critical as

the definition of the type system itself. Section 4.5 discussed and demonstrated the basic principle

of type checking with an example program.

The following section will discuss the implementation of the type checking algorithm in detail. The

type checker of the Wide Spectrum Type System has to satisfy the following requirements:

• The type checker must be able to adjust its level of strictness due to the layered type system

approach.

• The range of allowed data types varies from layer to layer. Types have to be added or

removed during every transition between layers.

• The type checks of the type checker have to be as quick and simple as possible because

industrial legacy systems can easily exceed many thousand lines of code.

• The explanation of typing errors must be short and precise to ease the tracing and compre-

hension.

The algorithm itself is implemented in Java and needs only the typed WSL source code in form

of its Abstract Syntax Tree and the typing rules in form of a table. The typing rule tables for

each layer of the Wide Spectrum Type System are implemented as a hash map whose keys are

conclusion nodes while the value or bucket is a list of possible applicable typing rules. These tables

were constructed by listing all expression related BNF symbols from the WSL BNF definition,

writing a conclusion judgement for each of them and creating premise judgments only if the type

of the symbol depends on other nodes (parent or children). Table 6.1 shows an excerpt of the

typing rule table for Strong Safe Typed WSL and how each typing rule would look if it were

written formally.
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Key Premise Conclusion Formal written typing rule

T_Number T_Number:INTEGER Γ ⊢[0-9]+ :INTEGER

T_String T_String:STRING Γ ⊢[0-9,a-z]+ :STRING

T_Equal Child(A):T1 T_Equal:BOOLEAN
Γ ⊢A:T1 ∧ B:T1

Γ ⊢A = B:BOOLEAN

T_Plus Child(A):T1 T_Plus:T1
Γ ⊢A:T1 ∧ B:T1

Γ ⊢A + B:T1

T_Expressions Parent=T_Sequence; T_Expressions:T1
Γ⊢A,B,...:T1

Γ⊢<A,B,...>:T1

Child(A):T1

Table 6.1: Excerpt of Typing Rule Table for Strong Safe TypedWSL

As mentioned before in section 3.5 the conclusion statement must match an evaluated expression

before the typing rule is applicable. With every applicable typing rule the conclusion judgement

must hold if all premise judgments are true [Car04]. In the Wide Spectrum Type System the

premise judgments can contain the following constructs:

• To identify the child nodes it is possible to write Child(<Number>) for a specific child. The

numbering of children always starts with 0 (e.g. Child(0) ,Child(1) , etc.).

• In case all children must be of the same type, it is possible to write Child(A) for all children.

• To identify parent nodes it is sufficient to write Parent as each node in the Abstract Syntax

Tree can only have one parent.

• After the child or parent has been identified its type can be stored in a type variable (e.g.

T1) with the : operator. This variable can be used later in the conclusion judgement to type

the evaluated symbol.

• The identification of parent and children can also be used to constrain the applicability of a

typing rule. If a typing rule is only applicable on nodes which have a certain child or parent

it is possible to state the node names directly with the = operator.
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The conclusion judgement assigns a type to the evaluated symbol with a type variable or with a

specific value. In either way, if an evaluated node has already a specific type which is not VOID

or the conclusion type, a type error has to be announced. For every expression which is found in

a checked program there must be one typing rule whose conclusion judgement is applicable and

whose premise judgment is true. The type checker will conclude a typing error if no such typing

rule can be found or the conclusion statement of the first rule found cannot be verified. On a single

program $P the actual type check / type inference algorithm processes as follows:

Write the correct type into the attr ibute of all nodes in the A bstract

Syntax Tree which represent a variable .

FOR each variable $V in $P DO

Travel through the Abstract Syntax Tree of $P and generate a list of

nodes $N which are the top nodes of an expression where $V is

involved .

FOR every node $X in $N DO

IF CALL inferLocat ion ( $X) = type error THEN RETURN type error

OD

OD

PROC inferLocat ion ( $X)

IF the $X has already a concrete type (not VOID ) OR was visi ted

before THEN RETURN the type .

Mark $X as visi ted .

Get a list of rules $L which are appl icable ( conclusion judgment is

for this node type ) for $X.

IF $L is empty THEN RETURN an error .

FOR every rule $R in $L DO

IF no premise judgment is given THEN RETURN the conclusion type for

$X direct ly .

IF parent or one child must be a specif ic node type AND parent or

child are NOT of this node type THEN RETURN type error .

108



Derivation, Verification and Transformation

IF the premise judgment depends on child nodes AND handleChi ldren (

$X, $R) fails RETURN type error .

IF the premise judgment depends on the parent node AND handleParent

( $X, $R) fails RETURN type error .

$T = Apply conclusion judgment

Check if a child can be inferred more precisely .

OD

CALL inferLocat ion ( parent ( $X) ) but do nothing if it returns a type

error

Check if parent can be inferred more precisely .

IF type of $X is sti l l not inferred RETURN with type error .

RETURN $T

END

Listing 6.1: Pseudo Code for Type Checking Algorithm

See section 4.5 for an example application of the algorithm. A rough first version of this algorithm

was implemented in Java as proof of concept and for performance testing on case studies. It can

be found in appendix A.1

6.3 Type Inference

The type inferencer is used initially if no explicit type system was present before or in a transition

into a type system layer which has higher diversity of types (e.g. Weak Unsafe Typed WSL to

Strong Unsafe Typed WSL). The type inference process uses the same algorithm as the type

checking process with the exception that the types of variables are not written to the nodes in the

Abstract Syntax Tree before the algorithm starts as they are not known (see section 4.5). Another

difference is that the loop of the algorithm is executed several times. Whenever a type of a variable

is inferred at some location of the code its type is stored and the variable is marked as known. All

type information in the Abstract Syntax Tree are then deleted and the new known type together
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with all other known types are written to the corresponding nodes in the tree. With the new

information in the tree the algorithm is executed again. The type inference finishes if the types of

all variables are known or if no new variable types can be inferred. The total number of executions

depends on the source code and is usually not more than three times. The user has to specify the

type manually if the type of a variable cannot be inferred. Such situations do occur but they are

quite rare as most variables are initialised at some point or are used according to their value. If

a variable stores values of different types at different points in the program (e.g. variables which

represent registers in the translation of an assembler program) the inference process would fail too.

In these cases a possible solution might be to transform the program into static single assignment

(SSA) form in which every variable is assigned exactly once or to use type transformations such

as Separate Multi-Typed Scalars (see section 6.5).

6.4 Object Identification in Procedural Based Programs

The object oriented paradigm became very interesting for software comprehension, in recent years,

as object oriented programs tend, in general, to be more structured and concise and hence more

readable. With the help of current state-of-the-art object oriented modelling techniques a developer

is able to create structures which model real world objects very closely, making the produced code

intuitively comprehensible and easily reusable. As described in section 2.11 the discovery and

development of sophisticated approaches for object identification has been the subject of many

scientific investigations since the early 90s. Most of these approaches are either data centric or

code centric oriented. The object identification technique of the proposed approach is a refined

version of a method which was first published by Pidaparthi et. al. in 1998 [PZL98]. The authors

used the view of the software life cycle, in which all software development is considered to be an

evolutionary activity with re-engineering/restructuring as an important process which is applied

repeatedly. However, while this approach favored putting all code and data at first in one so called

“God Class” and then starting to extract smaller classes, the presented approach will already

identify several classes in the first step fully automated. Unlike many data centric approaches the

FermaT approach utilises for this the call graph as starting point for its object identification. After

the first fully automated object identification, a maintainer is able to tweak the restructuring of the

system further by applying Type System Transformations. This approach has several advantages:
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• Experience has shown that the simplification based on the call graph i.e. elimination of inter-

class relations in object oriented systems contribute significantly to the comprehensibility of

software [Mil04].

• The Maintainer has the ability to configure the first automatic stage of the object identifi-

cation process, thus having the choice among several results to use as starting point for the

transformation based restructuring.

• Every migration step is small and traceable. The maintainer has therefore the ability to

influence the migration process in many different ways. Especially this property has proved

to be very useful and has significantly contributed to the success of FermaT in the past.

The fully automatic object identification algorithm for the first steps has four parameters:

• Fan-Out Threshold ($F) is the number of outgoing calls for a procedure to be identified

as the main method of a class.

• Class Cluster Depth ($D) is the possible call depth within one class.

• Class Identification Order ($O) defines which methods are used first for class identifica-

tion. These can either be the methods with the most or smallest amount of outgoing calls.

The size of the single classes is highly depended on this.

The algorithm itself processes as follows (see the case studies in section 8.2 and 8.3 for an example

application):

FOR all procedures $P DO

IF $P has a Fan -Out >= Fan -Out Threshold $F THEN add $P to list $L of

ini t ial class methods .

OD

FOR all methods $M in $L ( i terat ion according Class Ident i f icat ion

Order $O) DO

Create a new class $C with $M as first method .

IF $M is not already part of another class THEN include all

procedures which are not already part of another class and
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reachable within Class Cluster Depth $D steps from $M into class

$C.

Add $C to a list of ident i f ied classes $I.

OD

Declare all methods which are only called from within its cla ss as

private .

Distr ibute all var iables which are accessed only from one cl ass to this

class and declare the new attr ibute as private .

Listing 6.2: Pseudo Code for Object Identification Algorithm

All classes are by default held in public variables and all references to procedures and public

variables in the code are updated1. Once the initial object identification is completed and has

been accepted by the maintainer, the object oriented system can either be directly translated

to the designed target language or refined further by applying transformations. Procedures and

variables which could not be distributed are put into the global scope. When migrated into an

object oriented language, the global scope items become public static methods and attributes of a

single class called global.

6.5 Type System Transformations

The following table lists all transformations which can be used to modify WSL code with a type
system.

# Type System Transformation Available in Layer(s)
1 Insert Variable Declarations Untyped WSL
2 Insert Type Annotations Untyped WSL
3 Hex String to Number Simple Typed WSL
4 Separate Multi-Typed Scalars Simple Typed WSL
5 Insert Type Casts Simple Typed WSL
6 Specify Scalar Variables Simple Typed WSL
7 Declare Pointer variable Simple Typed WSL
8 Rewrite SYMBOL Variables Simple Typed WSL

Weak Unsafe Typed WSL
9 Rewrite Pointer Variables for Arrays and StructuresSimple Typed WSL

Weak Unsafe Typed WSL

1The concrete implementation of this depends on the target language.
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Strong Unsafe Typed WSL
10 Rewrite INTEGER to BOOLEAN Variables Strong Unsafe Typed WSL
11 Rewrite LIST to SET Variables Strong Unsafe Typed WSL
12 Localise Item Object Oriented Typed WSL
13 Globalise Item Object Oriented Typed WSL
14 Insert Public Procedures Object Oriented Typed WSL
15 Localise Procedures Object Oriented Typed WSL
16 Insert Public Variables Object Oriented Typed WSL
17 Localise Variables Object Oriented Typed WSL
18 Merge classes Object Oriented Typed WSL
19 Partition class Object Oriented Typed WSL
20 Reduce inter-class relations Object Oriented Typed WSL
21 Create composition Object Oriented Typed WSL
22 Extract super class Object Oriented Typed WSL
23 Declare Inheritance Object Oriented Typed WSL

Table 6.2: Initial Type System Transformation Bank

The correctness of a transformation result should be verified by a successful type check after every

transformation or a series of transformations to minimise the risk of implementation related errors.

Many transformations for the object oriented layer were inspired by previous work by Pidaparthi,

Zedan and Luker [PZL98]. In the future development this bank will be modified and extended.

6.5.1 Type Transformations For Procedural Typed Layers

The following type transformations are used on the procedural typed layers of the Wide Spectrum

Type System to raise the level of type consistency by refining the declaration of types and usage

of variables.

Transformation Number: 1

Transformation: Insert Variable Declarations

Layers: Untyped WSL

Preconditions: One or more variables are used without being initialised.

Description: On all explicitly typed layers of the Wide Spectrum Type System it is required

that every used variable is declared with its type and initialised with an initial value. This trans-

formation searches for variables in the Untyped WSL and uses the type inferencer to infer their

type. The missing variables are then declared and initialised with their first assignment or with
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standard values (e.g. 0 for SCALARs, empty list for LISTs, etc.). External declared variables can

be marked with the statement EXTERN.

Example:

Before transformation After transformation

j := 4; VAR<j := 4,i := 0>:

... ...

i := j; i := j;

Table 6.3: Example Insert Variable Declarations

Transformation Number: 2

Transformation: Insert Type Annotations

Layers: Untyped WSL

Preconditions: An untyped WSL program where all variables are initialised.

Description: This transformation executes the type inference algorithm and declares all variables

according to their inferred type. The type system layer changes from Untyped to Simple Typed.

Example:

Before transformation After transformation

j := 4; INTEGER*0 :: j := 4,

j := j + 4; ...

j := j + 4;

Table 6.4: Example Insert Type Annotations

Transformation Number: 3

Transformation: Hex String to Number

Layers: Simple Typed WSL

Preconditions: Variables which hold a string with a hex value are never used explicitly as string.

Description: Procedure Due to a lack of expressiveness the current version of WSL has to express

numbers which are initialised in hex format as strings. This is an unclean definition and therefore
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the definition of Simple Typed WSL introduces the standard hex notation 0xnumber (e.g. 0xFF76 )

which makes it possible for this transformation to transform hex strings into numerical numbers.

Example:

Before transformation After transformation

STRING*0 :: i := "", INTEGER*0 :: i := "",

i = "hex 0xFF"; i = 0xFF;

Table 6.5: Example Hex String to Number

Transformation Number: 4

Transformation: Separate Multi-Typed Scalars

Layers: Simple Typed WSL

Preconditions: One or more single scalar variables are used to store different data types.

Description: As the untyped version of WSL uses the dynamic typing of the underlying SCHEME

environment it might happen that a variable holds data of different data types throughout the

program. In these cases it is not possible to assign a single data type to these variables. This

transformation is able to solve this issue by declaring two variables of different types. The names

of the variables are changed in the program according to their type usage.

Example:

Before transformation After transformation

SCALAR :: a := 0, SCALAR :: i_a := 0,

... SCALAR :: s_a := 0,

a := 5**10; ...

... i_a := 5**10;

a := "Some String" ++ a; ...

PRINT(a) s_a := s_i;

... s_a := "Some String" ++ s_a;

a := 4; PRINT(s_a);

a := a * 5; ...

i_a := 4;
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i_a := i_a * 5;

Table 6.6: Example Separate Multi-Typed Scalars

Transformation Number: 5

Transformation: Insert Type Casts

Layers: Simple Typed WSL

Preconditions: The type check fails because variable of different (but compatible) types are used

in a formula without type casts.

Description: The Wide Spectrum Type System puts emphasis on explicit typing and explicit

type casts. Type casts must be inserted whenever variables of different types are used within the

same formula. This transformation can insert such casts into every expression of the program. In

fact the purpose of this transformation is to explicitly write every implicit type cast.

Example:

Before transformation After transformation

INTEGER*4 :: i := 0, INTEGER*4 :: i := 0,

INTEGER*8 :: j := 0, INTEGER*8 :: j := 0,

... ...

j := i; j := {INTEGER*8} i;

Table 6.7: Example Insert Type Casts

Transformation Number: 6

Transformation: Specify Scalar Variables

Layers: Simple Typed WSL

Preconditions: Every variable of the program stores data of only one type. All data types from

Weak Unsafe Typed WSL can be inferred by the typed inferencer.

Description: The transformation introduces new data types with the TYPEDEF command.

These new data types are the same as the new data types in Weak Unsafe Typed WSL except

the POINTER data type. The transformation prepares the transition from Simple Typed WSL to
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Weak Unsafe Typed WSL by retyping variables with the new data types according to their inferred

type for Weak Unsafe Typed WSL.

Example:

Before transformation After transformation

SCALAR*4 :: i := 0, TYPEDEF INTEGER (SCALAR);

SCALAR*20 :: j := "", TYPEDEF INTEGER (STRING);

...

INTEGER*4 :: i := 0,

STRING*20 :: j := "",

Table 6.8: Example Specify Scalar Variables

Transformation Number: 7

Transformation: Declare Pointer variable

Layers: Simple Typed WSL

Preconditions: The program uses the pointer variable a[] .

Description: The transformation introduces the new data type POINTER with the TYPEDEF

command. The transformation declares the variable a as LIST[*:*]<POINTER*1> and inserts all

type casts accordingly.

Example:

Before transformation After transformation

LIST[*:*]<SCALAR*0> :: a := TYPEDEF POINTER (SCALAR);

{LIST[*:*]<SCALAR*0>} < >, ...

... LIST[*:*]<POINTER*1> :: a :=

r11 := a[r1,4]; {LIST[*:*]<POINTER*1} < >,

...

r11 := {SCALAR} a[r1,4];

Table 6.9: Example Declare Pointer variable
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Transformation Number: 8

Transformation: Rewrite SYMBOL Variables

Layers: Simple Typed WSL, Weak Unsafe Typed WSL

Preconditions: The program uses the directive SYMBOL.

Description: The transformation inserts the real name of a variable in every occasion where a

SYMBOL alias is used throughout the SYMBOL context.

Example:

Before transformation After transformation

SYMBOL j i INTEGER*4 :: i := 1,

... ...

INTEGER*4 :: i := 1, IF (i = 1) THEN

... EXIT(1) FI

IF (j = 1) THEN

EXIT(1) FI

Table 6.10: Rewrite SYMBOL Variables

Transformation Number: 9

Transformation: Rewrite Pointer Variables for Arrays and Structures

Layers: Simple Typed WSL, Weak Unsafe Typed WSL, Strong Unsafe Typed WSL

Preconditions: The program uses POINTER variables which can be rewritten through array- or

structure variable access.

Description: The transformation tries to rewrite the access through pointers on array and

STRUCT structures with access through variables.

Example:

Before transformation After transformation

LIST[*:*]<POINTER*1> :: a := IF WTAB1.WDS1F1[1] = 0xFF THEN

{LIST[*:*]<POINTER*1>} < >, EXIT(1)

...
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WDS1 := !XF address_of(WTAB1);

IF a[WDS1].WDS1F1[1] = 0xFF THEN

EXIT(1)

Table 6.11: Rewrite Pointer Variables for Arrays and Structures

Transformation Number: 10

Transformation: Rewrite INTEGER to BOOLEAN Variables

Layers: Strong Unsafe Typed WSL

Preconditions: INTEGER variables are used only in conditions as BOOLEAN and nowhere else.

Description: Because C does not know BOOLEAN variables and uses INT variables instead it is in

many cases possible to rewrite INT variables as BOOLEAN. The C construct if (SWITCH) { break; }

for example would be translated as IF (SWITCH <> 0) THEN EXIT(1) FI . With the introduction of

a BOOLEAN data type in the Strong Unsafe Typed WSL layer these constructs can be rewritten

with this transformation.

Example:

Before transformation After transformation

INTEGER*4 :: SWITCH := 1, BOOLEAN*0 :: SWITCH := TRUE,

... ...

IF (SWITCH <> 0) THEN IF (SWITCH) THEN

EXIT(1) FI EXIT(1) FI

Table 6.12: Rewrite INTEGER to BOOLEAN Variables
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Transformation Number: 11

Transformation: Rewrite LIST to SET Variables

Layers: Strong Unsafe Typed WSL

Preconditions: LIST variables are used as sets.

Description: In the untyped version of WSL a LIST can be “converted” to a set via the @Make_Set

function. However, the internal data type is still a LIST and there is no mechanism which assures

that the variable is not used as a LIST afterwards (e.g. by using the operator ++ instead of \/ ).

This transformation searches for SET variables and declares them correctly as SETs.

Example:

Before transformation After transformation

LIST[1:10]<INTEGER*4> :: x := < >, SET[1:10]<INTEGER*4> :: x := < >,

LIST[1:10]<INTEGER*4> :: y := < >, SET[1:10]<INTEGER*4> :: y := < >,

... ...

x := @Make_Set(<1, 2, 3, 4>); x := @Make_Set(<1, 2, 3, 4>);

y := x \/ <5>; y := x \/ <5>;

Table 6.13: Rewrite LIST Variables to SET Variables

6.5.2 Type Transformations For Object Oriented Typed Layers

The following examples are illustrated with class diagrams. The accessibility of attributes and

methods are denoted with the standard annotations: + for a PUBLIC item and − for a PRIVATE.

PRIVATE items can only be accessed from within the same class while PUBLIC items can be

accessed from everywhere. An access from a procedure to a procedure (a call) or attribute is

shown with an arrow. Many of the following transformations require user interaction. The main

purpose of them is to assist in the further refinement of an object oriented system after the object

identification algorithm has been applied. The usage of such transformations is much safer than
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the manual modification as, for example, references of moved items2 can be automatically updated

throughout the whole program.

Transformation Number: 12

Transformation: Localise Item

Layers: OO Typed WSL

Preconditions: Some procedures or variables are not in the scope of an OSTRUCT (globally de-

fined). Description: A global procedure or variable is moved into an existing or new OSTRUCT

as a public attribute or method. This transformation is used to cluster either procedures or vari-

ables of a procedural system into objects.

Example:

Figure 6.1: Localise Item

Transformation Number: 13

Transformation: Globalise Item

Layers: OO Typed WSL

Preconditions: Some methods or attributes are declared in the scope of an OSTRUCT.

Description: A method or attribute is moved from an existing OSTRUCT scope into the global

scope which is the reverse of “Localise Item”.

Example:

2A moved item in this context for example a public procedure which is “moved” into the scope of an OSTRUCT.
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Figure 6.2: Globalise Item

Transformation Number: 14

Transformation: Insert Public Procedures

Layers: OO Typed WSL

Preconditions: Some procedures are not in the scope of an OSTRUCT (globally defined).

Description: This transformation distributes all global procedures among all existing OSTRUCTs

and declares them as public. It tries to introduce as less new inter-class relations as possible. How-

ever, the introduction of new inter-class relations is sometimes necessary when for example a

distributed procedure is called from methods which are defined in different classes.

Example:

Figure 6.3: Insert Public Procedures
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Transformation Number: 15

Transformation: Localise Procedures

Layers: OO Typed WSL

Preconditions: Some procedures are public inside an OSTRUCT defined or not in the scope of

an OSTRUCT (globally defined). Many variables have been distributed among OSTRUCTs.

Description: This transformation tries to localise (i.e. declare as private) as many procedures

as possible. Procedures which do not introduce new inter-class relations (access requests from

one OSTRUCT procedure to procedures or variables in other OSTRUCTs) are moved into OS-

TRUCTs. Every procedure which is not involved in an inter-class relation is declare as PRIVATE.

A procedure is not changed if methods of multiple OSTRUCTs or global procedures are calling it.

Example:

Figure 6.4: Localise Procedures

Transformation Number: 16

Transformation: Insert Public Variables

Layers: OO Typed WSL

Preconditions: Some variables are not in the scope of an OSTRUCT (globally defined).

Description: This transformation distributes all global variables among all existing OSTRUCTs

and declares them as public. It tries to introduce as less new inter-class relations (access requests
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from one OSTRUCT to a variable of another OSTRUCT) as possible.

Example:

Figure 6.5: Insert Public Variables

Transformation Number: 17

Transformation: Localise Variables

Layers: OO Typed WSL

Preconditions: Some variables are public inside an OSTRUCT defined or not in the scope of an

OSTRUCT (globally defined). Many procedures have been distributed among OSTRUCTs.

Description: This transformation tries to localise (i.e. declare as private) as many variables as

possible. Variables from the global scope which are only accessed from one class are moved into

it. Every variable in a class which only accessed by local methods is declare as PRIVATE.

Example:
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Figure 6.6: Localise Variables

Transformation Number: 18

Transformation: Merge Classes

Layers: OO Typed WSL

Preconditions: The system has at least 2 OSTRUCTs.

Description: Merges all methods and attributes of two OSTRUCTs into one OSTRUCT and

updates all their references.

Example:

Figure 6.7: Merge Classes

Transformation Number: 19

Transformation: Partition Class

Layers: OO Typed WSL
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Preconditions: The system has at least 1 OSTRUCT.

Description: Moves selected methods and attributes from one OSTRUCT into a new OSTRUCT

and updates all references to them. This transformation is the reverse of “Merge classes”.

Example:

Figure 6.8: Partition Class

Transformation Number: 20

Transformation: Reduce Inter-Class Relations

Layers: OO Typed WSL

Preconditions: The system has at least 2 OSTRUCTs.

Description: Reduces the calls between two OSTRUCTs by swapping methods between them.

Public methods are swapped which have more calls by methods from the other OSTRUCT than

by the methods of the current one. All references to the moved methods are updated.

Example:

Figure 6.9: Reduce Inter-Class Relations
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Transformation Number: 21

Transformation: Create composition

Layers: OO Typed WSL

Preconditions: The system has at least 2 OSTRUCTs.

Description: Puts one class into the definition of another class and updates all its references.

Example:

Figure 6.10: Create Composition

Transformation Number: 22

Transformation: Extract super class

Layers: OO Typed WSL

Preconditions: The system has at least one OSTRUCT.

Description: Extracts several specified items and puts them into a super class.

Example:

Figure 6.11: Extract Super Class
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Transformation Number: 23

Transformation: Declare Inheritance

Layers: OO Typed WSL

Preconditions: The system has an inheritance hierarchy and at least one class which has no

super class.

Description: Includes a class into an existing inheritance hierarchy. All methods are kept as they

are while public variables which are used by both classes are declared as static. Public variables

which are only used by both involved classes are declared as private.

Example:

Figure 6.12: Declare Inheritance

6.6 Summary

This chapter presented the main algorithms for the Wide Spectrum Type System and elaborated

certain important details. The first presented algorithm was the type checking algorithm which is

able to adjust its level of strictness and range of allowed data types depending on the used typing

rules. It is able to check large-scale systems within reasonable time and reports found typing errors

as briefly and precisely as possible. The same algorithm can also be used to infer data types if

no explicit typing information are available. The only difference between the two algorithms is

that in case of the type inference algorithm, the types of variables are not written to the nodes

in the Abstract Syntax Tree prior execution of the algorithm. The chapter also presented the

object identification algorithm which can be used to identify object structures in a procedural

128

pics/trans_declare_inheritance.eps


Derivation, Verification and Transformation

based program as well as the type system transformations which provide the facilities to move

a given WSL program among the layers of the Wide Spectrum Type System and, in case of the

transformations for the Object Oriented Layer, to change the architecture paradigm of a legacy

system from procedural oriented to object oriented.
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Chapter 7

Tool Support

“Make it look sexy!”

Hussein Zedan

Objectives

• To review the development history of the FermaT transformation system.

• To describe the architecture and implementation of FermaT Maintenance Environment.

• To describe the architecture and implementation of the FermaT Type System Editor.

• To propose a possible integration of this technology into the FermaT transformation system.

7.1 Introduction

This chapter reviews and describes the tools which have been developed for the implementation and

support of the FermaT transformation theory. The chapter starts by giving a brief review about

the development history of the FermaT transformation system. It then describes the developed

programs for this research called FermaT Maintenance Environment, a graphical user interface for

the FermaT transformation system which was build to understand the internal processing of the

FermaT transformation system, and the FermaT Type System Editor, which is the implementation

of the presented research about the Wide Spectrum Type System. The description of the two tools

includes explanation of all their functions and internal data structures as well as information about

their internal code structure and orgranisation. The chapter finalises by proposing an integration

of a type check to the current FermaT transformation process.
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7.2 Development History

The implementation started by examining the functionality of the FermaT transformation system.

The free version is available for download from the Homepage of Martin Ward1. The only dif-

ference between the free (called fermat3) and the commercial version (called fermat2) of FermaT

is the number of available transformations. The FermaT transformation system is a command

line based tool which can apply transformations to a given WSL program. The tool comes in a

package together with its source code written in WSL and some documentation (mainly the WSL

Programmer’s Reference Manual WSL [WH03]). Although, the documentation is sufficient for an

experienced programmer to be able to use the transformation system, it does not explain much

about the internal processes. Unfortunately, it turned out that such a documentation does not ex-

ist at all. In fact most of the necessary knowledge about the internal functions had to be collected

directly through reverse engineering. The first major goal for the practical development during the

Figure 7.1: FermaT Maintainers Assistant

research investigation was to build a graphical interface to access the functionality of the tool more

easily and to understand how the internal processes work. The idea of building such a graphical

interface was not new. Already in the early days of FermaT in the 1990’s the prototype tool Main-

1http://www.cse.dmu.ac.uk/∼mward/fermat.html
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tainer’s Assistant had a graphical user interface. However, as mentioned in section 2.6, the whole

system lacked time and space efficiency. When the system was reimplemented in METAWSL the

graphical user interface was abolished in favor of a pure command line based interface. This was

a logical step since the development focused on archiving better performance and the automation

of the transformation process. For the control scripts, which are currently steering the transfor-

mation process, a graphical user interface would be useless and only consuming system resources.

However, for testing, learning and program comprehension purposes a graphical user interface is

needed. Also for this research, to be successful, a general understanding of the FermaT software

and its data structures was needed as well as a graphical user interface which provides a more

accessible API than the current METAWSL / Scheme implementation. These considerations lead

to the development of a graphical user interface called FermaT Maintenance Environment (FME).

7.3 FermaT Maintenance Environment

The first step in the implementation of the FME was to identify how the application would be used

and which requirements can be specify the requirements for the such an application. The following

use cases were identified for the FME: The FME’s focus is to assist in the comprehension of WSL

Figure 7.2: FME UML Use Case Diagram

source code and the effect of transformations. The application is not time critical as a human user

acts much slower than for example a script. The goal is to build a small application which is able

to represent WSL source code and to control the most important functions of the FermaT engine.
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Following these considerations, the following requirements can be identified:

• Easy-to-use navigation through WSL programs via source code or Abstract Syntax Tree.

• Selected code statements are highlighted in the source code and the Abstract Syntax Tree.

• Transformations are easy accessible through a transformation catalogue. The application of

a transformation occurs on the current select item in the Abstract Syntax Tree.

• Commands can be directly passed to the engine via a command console.

• Diagrams can be extracted from the source code for better comprehension.

• Multiple WSL files can be incorporated into a project.

For the FME the Java programming language was the implementation language of choice as it has a

huge API with many available extension libraries, mostly developed by the open-source community.

Java is a robust object oriented language with an explicit strong and safe type system. Its virtual

machine concept makes it fully platform independent, allowing to run the FME together with

the FermaT transformation system on Windows and most Unix based platforms. The language

itself has a straight forward syntax with almost no possibility to write unsafe or malicious code as

the functionality of the operating system is fully encapsulated within the virtual machine. Errors

can be efficiently handled through exception management and the integrated logging subsystem

provides an excellent facility for debugging. Furthermore, many advanced development and testing

tools for Java, such as the Eclipse platform2, are freely available.

7.3.1 Using the FermaT Transformation Engine

The next step in the implementation was to gather information of how the FermaT transformation

system can be controlled. FermaT controls and applies its transformations through a special tool

called the transformation engine or FermaT engine. The FermaT engine itself is implemented in

Scheme and runs as a command line based tool. After downloading, extracting from the source

package and compiling the user can command the FermaT engine via an interactive command line

shell by running the file MinGW\scmfmt.exe . The user can now enter commands to control the

2http://www.eclipse.org
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Figure 7.3: FermaT Command Line

transformation process of a WSL program. The first step is to load a WSL file into the engine.

The following command loads the file example.wsl :

(@New_Program (@Parse_File "test.wsl" //T_/Statements) )

Scheme is a LISP derivative and as such requires the writing in brackets. Scheme is case-insensitive

by default which requires that all capital letters in names are preceded by a “/”. Furthermore

all WSL symbols are preceded by “/” (to avoid clashes with Scheme symbols) which makes it

compulsory to write a “// ” before all WSL names which start with a capital letter. After the

command above has been send, the FermaT engine parses the WSL file and creates the Abstract

Syntax Tree of the program in the memory. The tree can be printed to the screen with the

command:

(@Print_WSL (@Program) "")

Every node in the tree has a general type (e.g. T Condition for nodes used in condition statements)

which identifies the node group and a specific type which identifies the node itself (e.g. T True for

the condition statement TRUE). In order to apply a transformation, the FermaT engine has to know

on which specific node in the Abstract Syntax Tree the transformation should be executed. This

is realised through a pointer which points to a single node in the Abstract Systax Tree called the

current item. The position of the current item can be set with the @Goto function and retrieved

with the @Posnfunction. By using the current item a transformation can be applied via the @Trans

function. The following command applies the transformation Reverse If on the current item:

(@Trans //T/R_/Reverse_/If)
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The function has also an optional string parameter which can contain additional data for a transfor-

mation. If the transformation is successful the FermaT engine would acknowledge this by returning

#t . In case of failure the engine would print an error message and return with #f . In order to

avoid the failure of a transformation and sometimes even unpredictable results, it is advisable to

test the applicability of a transformation before use with the @Trans? function. The modified pro-

gram can be written back to the file system after the transformation process has finished using the

WSL Pretty Printer with the @PP_Item function. The Pretty Printer parses the FermaT engine’s

Abstract Syntax Tree and transforms it into source code. The following command would create

the file example_result.wsl from the transformed Abstract Syntax Tree:

(@PP_Item (@Program) 80 "example_result.wsl")

With the knowledge of these commands it is possible to write the FME as a controlling graphi-

cal application for the FermaT engine, navigating through a loaded WSL program and applying

transformations on individual nodes.

7.3.2 Connecting the FME to the FermaT Engine

Since the FermaT engine is a command line based tool it is possible to establish the communication

between the FME and the engine via a communication pipe which is provided by the operating

system. A software pipe chains a process to another process by one or more of its standard I/O

streams. While a normal communication to a process is usually done through the keyboard and the

Figure 7.4: Communication between the FME and the FermaT engine

screen it is possible to redirect these streams of data to another process through a communication

pipe. In this case the application is controlled by another process and not by the user. The output
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of every program is usually divided into two separate streams called input for normal output and

error for error messages while the input to the program is consequently provided through the

output stream3. The FME starts the FermaT engine through the start script (fermat_console )

which sets necessary environment variables before executing the FermaT interpreter (scmfmt). To

create the actual process the FME uses the exec method of Java’s Runtime class:

consoleProc = Runtime . getRuntime ()

. exec ("engine / fermat_console .bat noecho " );

Listing 7.1: Start of FermaT Engine (Windows)

consoleProc = Runtime . getRuntime ()

. exec ("engine / fermat_console . sh noecho " );

Listing 7.2: Start of FermaT Engine (Linux)

The exec method returns an instance of the Process class which can be used to access the streams

of the software pipe:

in = consoleProc . getInputStream ();

err = consoleProc . getErrorStream ();

out = consoleProc . getOutputStream ();

Listing 7.3: Communication Streams of the Pipe

The use of software streams is a useful technique to control console based programs via another

process. The advantage is that the controlling application does not need to interact with internal

processes of the controlled application. However, the disadvantage is that the communication over

a pipe is slow compared to direct memory access. For an user interactive application this is not a

big problem as human controlled input is usually not time critical (e.g. after the user has applied

a transformation he needs time to evaluate the result before he proceeds). The communication

latency only becomes a problem if many interactions are needed in a short time (e.g. if a fully

automated application applies a transformation and needs only a few milliseconds to evaluate the

result before applying the next transformation). In these cases it might be a good solution to either

apply several transformations in a row without evaluating the result in every step or, if evaluation

in every step is needed, to split the program into code chunks and apply the transformations

3The input stream refers, in this context, to the input which comes from the program to the user or other process while the output
stream, on the other hand, refers to the data which comes fromthe user or other process to the program.
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in parallel. This, however, needs a carefully designed algorithm which can decide how a given

code and transformation sequence can be splitted so some transformations of the transformation

sequence can be run in parallel.

7.3.3 Extracting the Transformation Catalogue

Before the FME can effectively use the FermaT engine it is necessary to extract information about

the available code transformations. The bank of transformations is one of the FermaT engine’s core

components. As the engine itself also the transformations are written in METAWSL. The source

code of the transformations comes with the software package and can be found in the src/trans/

directory. Two files exist for every transformation: the source file (e.g. elsif_to_else_if.wsl )

and a description file (e.g. elsif_to_else_if_d.wsl ). The description files in particular is very

useful for extracting information about the available transformations as it contains the name, some

keywords and a description of what the transformation is doing. The keywords can be used to

put the transformations into groups like “Rewrite”, “Move”, “Abstraction”, etc. For the FME the

information of all transformation description files where gathered and combined into a full list (see

appendix C.1 and C.2). This list is used in the FME to generate a catalogue of transformations

which the user can use to either test or apply a transformation or to get its description.

7.3.4 Extracting and Generating Data Structures

As the graphical user interface should show both, the Abstract Syntax Tree and the WSL source

code, the next problem was to connect these two program presentations so the user is able to select

nodes in the Abstract Syntax Tree by clicking on a code statement. Having only the Abstract

Syntax Tree from the engine it is not possible for the FME without further analysis to determine

which WSL code statement from the source file is represented by a particular tree node from the

Abstract Syntax Tree. The solution is to generate the source code directly from the Abstract

Syntax Tree while the actual WSL file is only read by the FermaT engine. This method has the

advantage that transformation results can be shown in source code without writing the result to a

file. The code generation in the FME is currently done in 3 steps:
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1. Read the current representation of the Abstract Syntax Tree from the FermaT engine with

the “(@Print_WSL (@Program) "") ” command.

2. Parse the tree and generate a tree structure of objects which implement Javas TreeNode

interface.

3. Print the tree by calling a special print method in every tree node object.

The code is thereby not constructed as a sequence of characters but as a sequence of lexical tokens.

A lexical token is an abstract object which represents a whole keyword, separator, constant or

identifier in the code (see section 3.4). The advantage is that keywords are always written correctly

and that the task of selecting code segments becomes easier. Another usage for lexical tokens is the

analysis of newly entered source code. If the user for example modifies the program in the WSL

editor and wants to save his changes, the FME can check the syntax for validity by generating a

sequence of lexer tokens form the newly entered source code. If a lexer token can not be generated

for a sequence of characters then the user has made a mistake. For the implementation of these

functionalities it was necessary to build a full list of all possible tree nodes and lexer tokens.

Unfortunately such lists did not exist in the first place and all information had to be directly

extracted from the source code of FermaT.

Lexer Tokens of Source Code

A WSL source code contain up to 195 different lexer tokens. A lexer token can be:

• white space characters (e.g. space, tabulator or new line)

• special characters (e.g. +,* ,; , etc.),

• reserved words (e.g. TRUE,IF ,FOR, etc.) or

• special tokens (e.g. -> ,==,\/ , identifiers etc.).

Tokens can be defined either as a character sequence (used for keywords) or as a sequence of

numbers which represent the ASCII codes of characters (used for all other characters). An ID

number is only assigned to tokens which have a semantic meaning. Tokens like white spaces or
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delimiters which do not have an ID are usually discarded after the lexical analysis is complete. A

full list of all possible lexer tokens can be found in appendix B.4. The list is stored in XML format

and contains the following information:

Fieldname Description Example

LexicalToken The name of the lexical token. S_AND

GroupName The type of the lexical token. ReservedWord

Characters The characters which identify the token. AND

ASCII-Code The ASCII codes which identify the token.

ID The ID number of the lexical token. 31

Table 7.1: Columns of the Lexer Token List

If source code has to be analysed (e.g. if a WSL file is modified in the editor of the FME) and a

list of lexer tokens should be generated from source code the FME uses a special lexer table which

defines certain checking rules for the token identification. The FME lexer analyses the source code

character by character assuming that tokens are normally separated by white space characters

(space, tab or new line). Each rule checks for a certain character and if such character is found

it identifies either the token directly or continues with the evaluation of subrules. The character

checks of the FME lexer can be seen as a tree. Consider for example rule number 18 for identifying

the signs not equal (“<>”), lesser equal (“<=”) or lesser (“<”):

1. If the current read character is a < sign.

1.1. If the next character is a > sign. → Identify token as S_NEQ(not equal).

1.2. If the next character is a = sign. → Identify token as S_LEQ (lesser equal).

1.3. otherwise identify token as S_LANGLE(lesser).

The full rule table (see appendix B.2) has 30 main rules and 72 in total (including subrules). The

list contains the following information:
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Fieldname Description Example

No The main rule number 18

CLevel The checking step (counts upwards) 0.2

mainrules start with 0 subrules with 0.1

and subsubrules with 0.1.1 .

Ident If set to 1 then the rule is always true

(used for the “otherwise” clause).

Char Used to identify a character (as plain text). =

ASCII-Code Used to identify a character (as ascii code).

PassingRegularExpression Used to identify a character (as regular expression).

PassingGroup Used to identify a character

(as a group from the lexer token list).

Identified Identified token when check result is positive. S_LEQ

Value

Table 7.2: Columns of the Lexer Table

With these two tables it was possible to write a highly adaptable WSL lexer, able to parse every

valid WSL file. Through the use of tables which are exchangeable it is also possible to reuse the

written code to check the WSL dialects which are used within the Wide Spectrum Type System.

Nodes of the Abstract Syntax Tree

WSL has 3 types of tree nodes: General type, Group type, Specific type. Each specific type repre-

sents a concrete code statement (e.g. a minus sign “-” is represented by the tree node T Minus).

These nodes are structured into classes according to the places in a program where they can be

used. A general type is a tree node which represents such a classification of normal nodes. Every

specific type which is in their class starts with their ID number e.g. T Minus (No. 221) belongs

to T Expression (No. 2) because it is only used within expressions. This classification is neces-

sary to constrain the possible statements in an expression (e.g. the condition of an IF statement

must be done with nodes which belong to T Condition). There are 9 general types: T Statement,

140



Tool Support

T Expression, T Condition, T Definition, T Lvalue, T Assign, T Guarded, T Action, T Name.

To be able to write sequences of certain statements there are also 7 group types (e.g. most WSL

programs are a sequence of statements in which case the first node in the Abstract Syntax Tree

is T Statements): T Expressions, T Lvalues, T Assigns, T Definitions, T Actions, T Guardeds,

T Statements. The final list of all tree nodes can be found in appendix B.3 and B.4 (continua-

tion). The list is used by the FME to parse, validate and process a generated Abstract Syntax Tree

from the FermaT engine. The information from the list is stored in the tree nodes of the FMEs

internal tree structure. Every tree node of the tree structure contains the following information:

Fieldname Description Example

ID The ID of the node type. 221

Name The name of the node. T_Minus

Syntax Name The Syntax Name of the node. Minus

General Type The general type of the node. 2

Allowed children The allowed child nodes. 2

Has Value If the node can have a value. 0

PrettyPrintTemplate A template for the pretty printer S_LPAREN;(A, #S_MINUS# );S_RPAREN

Table 7.3: Columns of the Tree Node List

If a general node is mentioned in the list “Allowed children” than all nodes which belong to its

class can be a child node. A node can either have children or a value i.e. if “Has value” contains a

1 then no child nodes are allowed. The information of the column PrettyPrintTemplate was added

manually and states special print instructions for translating the Abstract Syntax Tree into source

code. The instructions are separated by semicolons and can be one of the following:

Command Description

SPACE Print a single space character.

I Increase the indention (added spaces at the beginning of each new line).

TOKEN Print a lexical token (e.g. S_Minus would print a minus sign “-”).

CS:TOKEN Print a lexical token only if there is a sequence of child nodes i.e. if the

node has more than one child node.

(V) Print the value of a node.
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C: NUMBER Print an ASCII character (e.g. C:67 would print a “C”.

(A, TOKEN#TOKEN) Call the print method of all children and separate them with specific lexer

tokens separated by a hash “#” (e.g. (A,S_COMMA# ) would separate all

children with a comma and a following space).

\n Print a new line character.

(C0) Call the print method of the first child node ((C1) for the second child

node, and so on).

PARENT(NODE: TOKEN) Print the lexical token under the condition that the parent node is of a

certain type (e.g. PARENT(T_Cond:S_THEN) would print a “THEN” if the

parent node is of type T_Cond).

Table 7.4: Pretty Print Commands

Example

The following example demonstrates the whole process of generating source code from the Abstract

Syntax Tree with all involved processes. For this example the assignment I = (1 + b) was loaded

into the FermaT engine and the following Abstract Syntax Tree was extracted using the @Print_WSL

command:

Figure 7.5: Example Abstract Syntax Tree

The tree is printed by calling the print method of the top node T_Assign . This method uses the

PrettyPrint template of the Tree Node List to generate the source code from the Abstract Syntax

Tree. The following rows of the PrettyPrintTemplate column are involved (taken from appendix

B.4):

Name PrettyPrintTemplate

T_Assign (C0); ;S_BECOMES; ;(C1)

T_Var_Lvalue (V)
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T_Plus S_LPAREN;(A, #S_PLUS# );S_RPAREN

T_Number (V)

T_Variable (V)

Table 7.5: Excerpt from the Tree Node List

For following table shows the order in which the nodes in the Abstract Syntax Tree are traveled

and how the PrettyPrinter generates the source code:

Involved Node PP Command Description Generated Code

T_Assign (C0) Call the print method of the first child

node.

T_Var_Lvalue (V) Print the value. I

T_Assign Print a space. I

T_Assign S_BECOMES Print a lexer token. I :=

T_Assign Print a space. I :=

T_Assign (C1) Call the print method of the second

child node.

I :=

T_Plus S_LPAREN Print a lexer token. I := (

T_Plus (A, #S_PLUS# ) Print all children separated by “ + ”. I := (

T_Number (V) Print a value. I := (1

T_Plus (A, #S_PLUS# ) Print all children separated by “ + ”. I := (1 +

T_Variable (V) Print a value. I := (1 + b

T_Plus S_RPAREN Print a lexer token. I := (1 + b)

Table 7.6: Example Processing of the Pretty Printer

To connect now the tree with the code the FME simply stores the lexer tokens which were generated

by a particular tree node. If the user selects a token in the code, then the AST node is selected

which has generated this token (e.g. a click on the equals sign would select the T_Assign node). If

the user clicks on a tree node, then all token are selected which were generated by this node and

its children (e.g. a click on T_Assign would select the whole assignment).
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Figure 7.6: Example Code with Connected Tree Nodes

7.3.5 Interface of the FermaT Maintenance Environment

With a connection to the FermaT engine via the pipe, the information from the transformation

catalogue and the possibility to extract data structures from a loaded program it is now possible

to build the graphical user interface. The purpose of this environment is to ease the manual

Figure 7.7: FermaT Maintenance Environment

transformation process and to support the development of other advanced tools based on the

FermaT transformation system. Figure 7.7 shows the main window of the FME. It consists of

a text editor which is able to express WSL and a viewer for the Abstract Syntax Tree which

shows the code in the text editor as Abstract Syntax Tree. As described in section 7.3.4 the user
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can click on a statement in the code to highlight a node in the Abstract Syntax Tree and vice

versa. The environment provides furthermore a command console which can be used to directly

enter commands to the FermaT engine through the communication pipe. A transformation can

be chosen from the transformation catalogue and either tested or applied on the current selected

node in the Abstract Syntax Tree. Should a transformation succeed but not result in an intended

outcome, it is always possible to revert this action by using the the UNDO command. It is

furthermore possible to group multiple files in a project if the migration involves more than one

WSL file.

7.3.6 Visual Representation

To ease the task of program comprehension the FME supports the generation of diagrams. The

diagrams are displayed with the STRL Visualisation Engine (SVE) which is a java library to display

graph diagrams using the Zoomable Visual Transformation Machine (ZVTM)4. The SVE is build

from extracted code of a former project [Lad06]. In its current implementation the FME supports

Call Graphs for procedures and action systems (FermaT uses action systems to model GOTO

structures) and a transformation history graph which shows the history of applied transformations

within a project.

Figure 7.8: Example Call Graph (Procedures)
4See http://zvtm.sourceforge.net/ .
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Figure 7.9: Example Call Graph (Action System)

Figure 7.10: Example Transformation History Graph
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7.3.7 Implementation

The implementation design of the FME is strictly modular. While the core part consists of around

10 classes, the whole implementation has more than 130 classes with a total of 4439 lines of code

in 417 methods excluding the parsers for typed WSL and the SVE which are held in packed jar

archives. The core components of the FME include:

• Framework classes:

ComponentRegistry Manages all other sub-components. This includes object reference man-

agement, global event management for events which concern more than one object (e.g.

loading a file, initialisation, etc.).

EventTracker Records all modification events to a WSL file for the undo/redo function.

IOManager Whenever a class wants to interact with the operating system, like reading or

writing to a file, it uses the IO Manager for the actual operation.

MainEventHandler Handles the events when the user interacts with the core components.

It initiates functions like opening a WSL file/project, undo/redo, execute a WSL file,

compiling and presenting diagrams.

ProjectManager Handles the project management. A FME project is a group of WSL files

for which a modification / transformation history is kept.

• Logging classes:

FMELogger The logging system of the FME. All logging messages are handled here using

the Java Logging API.

• Configuration:

CM The configuration manager is the source for all configuration parameters. These param-

eters are stored in a XML configuration file and kept in a hash table during runtime.

All component request their user specifiable parameters from this class.

• Graphical User Interface:

MainFrame The main window of the FME with a menu and tool bar.
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• Datastructures:

AST Can parse the Abstract Syntax Tree from the the FermaT engine and keeps the gen-

erated data structure available for all other components. It uses the Tree Node List

mentioned in section 7.3.4 to check and verify the correctness of its data structure.

WSLLexer Performs the lexical analysis on any WSL file and generates a list of lexer tokens.

It uses the Lexer Token List and the Lexer Table described in section 7.3.4.

All other classes which are not core components belong to so called sub-components. Sub-

components are reusable discreet entities which control single, mostly visual, sub-components of

the FME. All sub-components are sub-classes of GUIComponent which defines the management for

internal frames and several standard access methods for the managing framework classes. The

sub-components include:

• GUI sub-components:

Transformation catalogue The transformation catalogue from which the user can select a

transformation and either apply or test it. It is also possible to test for all possible

transformations on a particular tree node and to get a description of what a particular

transformation does.

Graphical Abstract Syntax Tree The graphical representation of the Abstract Syntax Tree.

This component visualises of what is held in the AST data structure component. The

user can navigate through the tree by expanding or collapsing single branches of the

tree.

Console This component models the connection to the FermaT engine. Its graphical part

shows a console which allows the user to type in command to the engine. However, the

real communication over the pipe is exclusively done in its non-graphical part. This

part handles also the communication with the engine of all other FME components.

Editor The editor handles and displays WSL code. The user is able to edit the displayed

code and to highlight statements or groups of statements by clicking on them. The

editor includes also a search dialog in which the user can search or replace code via

keywords or regular expressions.
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• Visualisation sub-components:

Function call graph This graph visualises a call graph which is a directed graph that repre-

sents calling relationships between functions. Each node represents a function and each

edge indicates that a function calls another function. A cycle in this graph indicates a

recursive procedure call. The user is able to click on a node to see the corresponding

function within the WSL code and on an edge to highlight the call.

Action system call graph Like the call graph this graph visualises calling relationships. But

instead of functions the entities which are represented by the nodes are actions in an

action system. An action system is a collection of mutually recursive parameterless,

usually very small, procedures. The system starts by calling the start action, executing

its body and calling via the “call” command the next action. This is repeated until

the special action call “CALL Z” which will terminate the whole action system. Action

systems are usually used to model GOTO structures. The user is able to click on a node

to highlight the corresponding action.

Transformation history graph This graph is only available within a project. It shows the

transformations which have been applied so far to all containing files whereby each node

is representing a version of a particular file and each edge represents a transformation

or a saving to a different file. The user is able to click on a node to see its code and on

a transition to highlight the node on which the transformation was applied.
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Figure 7.11: UML Diagram of Framework and Logging Classes
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Figure 7.12: UML Diagram of configuration, GUI and Data Structure Classes
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Figure 7.13: UML Diagram of Sub-component Classes
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7.4 FermaT Type System Editor

The FermaT Type System Editor (TSE) is the first program based on the FermaT Maintenance

Environment and the prototype implementation for the described research. Many ideas, design

concepts and experience from the FME were incorporated and integrated into the TSE. The main-

tainer can use the Type System Editor for one of the following:

• to introduce a type system to an untyped program via type inference.

• to convert a type system of a program which had already a type system.

• to verify the type correctness of a program on a certain layer of the Wide Spectrum Type

System.

The following use cases were identified for the TSE:

Figure 7.14: TSE UML Use Case Diagram

A major difference to the FME is that the WSL code is imported into the environment from a file

rather than loaded. This means that the TSE only reads the code from a file and takes full control

over it until it is exported into a file again. This makes sure that the code is only altered through

the TSE and its type transformations which is important because many type transformations have

to assume that a program is correctly typed as a type check after each type transformation would

be too time consuming. However, a user can only do modifications, if the code needs to be changed

due to found errors or inconsistencies, by using a special internal editor which checks the code for
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correctness before allowing any further type transformations to be carried out. Another difference

to the FME is the diversity of code navigation facilities. Especially in case of large-scale software

systems, it is essential to provide several different possibilities for code navigation, to handle their

complexity.

7.4.1 Variable List

The most important entities for a type system within a program are the variables. Therefore, the

TSE features, besides the code navigation functionality of the FME via Abstract Syntax Tree and

Source code, a special view which shows all variables of a program together with their type and

their scope of definition. Such an overview can greatly assist in the task of program comprehension

or when investigating typing errors. Figure 7.15 shows an example of a program and its variable

list. The information needed for such a list can be gathered by parsing the program and recognising

Figure 7.15: Program and Variable List

all used variables and the opening and closing of scopes. In WSL a variable scope is mainly defined

through a VARenvironment or through a sub-routine. In the variable list these scopes are presented

as numbered Var Environments. The indention shows whether an environment is enclosed in

another environment (e.g. Var Environment 3 in Var Environment 2) or if an environment is

completely distinct from another environment (e.g. Var Environment 1 and Var Environment 2).
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7.4.2 Extracting and Generating Data Structures

Hence the Type System Editor supports all typed versions of WSL it is completely separate from

the FermaT engine. It was necessary to rewrite all of the FermaT engine’s code analysing routines

for creating the Abstract Syntax Tree in Java. For the untyped and all typed versions of WSL it

was required to create a separate lexer token list, lexer table and tree node list and also a code

parser which does the actual generation of the Abstract Syntax Tree. Especially the last part is

very critical and requires normally extensive coding5. However, since the parsing of source code

is one of the best researched areas in computer science, there are many supporting tools available

[PP92]. Using java, there is no need to write the actual parser by hand as there exists a powerful

parser generator called JavaCC6 which is able to create a parser by reading a definition file, written

in a special form of BNF. Using this tool, it was sufficient to write such a BNF definition for all

typed WSL versions. With this parser integrated into the Type System Editor, it was possible to

reuse many data structure related algorithms which were originally developed for the FME. An

example JavaCC definition for the Untyped WSL version can be found in appendix B.5.

7.4.3 Interface of the Type System Editor

The interface of the TSE features 3 main windows. As the FME also the TSE has a viewer for the

Abstract Syntax and a code editor for the source code itself. The transformation catalogue and the

console were replaced by a variable list and the views of all three windows were connected. This

means that a click on a variable in the code also highlights the variable in the Abstract Syntax

Tree and in the variable list while a click on a variable in the variable list highlights all occurrences

of this variable in the source code. Searching is available for the Abstract Syntax Tree, the source

code and the variable list. Type transformations, type inference and type checking are available

from a popup catalogue.

5The parser within the FermaT engine has more than 2800 lines of code.
6https://javacc.dev.java.net/
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Figure 7.16: Type System Editor

7.4.4 Implementation

Although the TSE is not as modular as the FME, the design still emphasises the reusability of

important main components. Especially the type checking / inference algorithm and the type

transformations can be easily reused. Many Type System Transformations, which are described

in section 6.5, are already implemented together with the adjustable type checking and type infer-

encing algorithms. The core components of the TSE are:

• Controlling classes:

TypeSystemEditor The main class which initialises and starts all other components.

TypeSystemEditorListener Controls the whole interaction process with the user.

• GUI classes:
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TSEMainFrame The main window which controls all other GUI components. It also displays

the graphical representation of the AST Tree.

TSEVarList The variable list.

TSEEditor The editor.

TSECatalogue Controls the transformations and type checking / inference algorithms.

• Algorithms and Data Structures:

TSEInferencer Implements the type checking / inferencing algorithm described in section

6.2.

TSELexer Reads any valid WSL file (typed or untyped) and creates a sequence of lexer

tokens.

TSEParser An interface to the JavaCC generated parsers for untyped and typed WSL.

TSEAST Holds the Abstract Syntax Tree of the current processed program.

TSELTL Holds the lexer tokens of the current processed program.

TSEVarList Collects and holds all information displayed within the variable list.

Figure 7.18 shows the integration of transformations within the TSE. Although the process of type

checking / inference is distinct from a type transformation, both algorithms can be seen as a trans-

formation on the implementation level. Although the type check or the type inference algorithm

do not change the source code, they do change the data structures i.e. they create additional

information within the Abstract Syntax Tree. In the implementation of the TSE the process of

type inference and type checking are therefore regarded as transformations which do not change

the source code but which change the Abstract Syntax Tree and report an either positive or neg-

ative result. In contrast to the FermaT transformations which are executed on single nodes in the

Abstract Syntax Tree, the TSE transformations are always executed on the whole program. Every

time a transformation is successfully executed a new file is generated and loaded into the TSE. If a

transformation fails or cannot be applied a negative result is returned and the transformation pro-

cess is terminated. All transformations are sub-classes of AbstractTransformation which defines

essential procedures like checkTransformation() or applyTransformation . In this implementa-

tion many complex transformation usually depend on one or more basic transformations which
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builds a hierarchy of transformations. An example for this is the transformation InsertTypeAn-

notations which uses information generated by InferTypes to insert variable declaration with a

suitable type for every variable.

158



Tool Support

Figure 7.17: UML Diagram of Controlling, GUI, Algorithms and Data Structure Classes
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Figure 7.18: UML Diagram of Algorithm Classes (cont.)
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7.4.5 Integration into the FermaT Transformation Process

The type checking facilities of the implementation are designed to integrate seamlessly with the

current migration process. As described in section 2.10 the current implementation of the FermaT

migration process has to store the information about data types in a separate file which causes

several drawbacks. Only some parts of the current migration process can be proven because many

process steps are based on at least a few assumptions. The FermaT migration process uses a

collection of scripts which handle the migration steps. Listing 7.4 shows a standard log file of a

IBM 360 assembler to C migration.

FermaT Migrat ion Assembler to C.

RCS $Revision : 1.5 $ $Date : 2004/09/15 13:02:07 $

Started by root at Sat May 31 01:13:50 2008

Files to process in this run :

FMT001A0 . lst

FMT001A0 . lst (1/1)

-- a2w "FMT001A0 . lst " " FMT001A0 .ws1 "

-- metr ics " FMT001A0 .ws1 " " FMT001A0 .me1"

-- datreorg " FMT001A0 .dat " " FMT001A0 .da2 "

-- dat2ll " FMT001A0 .ws1 " " FMT001A0 .da2 " "FMT001A0 . ll "

-- dat2c " FMT001A0 .da2 " "FMT001A0 .hh"

-- split - headers " FMT001A0 . lst " " FMT001A0 .hh " " FMT001A0 .h"

-- split - headers FMT001A0 . lst " FMT001A0_ini t .hh" " FMT00 1A0_ini t .h"

-- dotrans " FMT001A0 .ws1" " FMT001A0 .ws2 " Find_Dead_Code

-- dotrans " FMT001A0 .ws2" " FMT001A0 .ws3 " Data_Translat i on_A

data =" FMT001A0 . ll "

-- dotrans " FMT001A0 .ws3" " FMT001A0 .ws4 " Fix_Assembler d ata =4000

-- dotrans " FMT001A0 .ws4" " FMT001A0 .ws5 " Delete_Redunda nt_Regs

data =" FMT001A0 . ll "

-- dotrans " FMT001A0 .ws5" " FMT001A0 .ws6 " Data_Translat i on_A

data =" FMT001A0 . ll "

-- dotrans " FMT001A0 .ws6" " FMT001A0 .ws7 " Fix_Parameters

data =" FMT001A0 . ll "

-- metr ics " FMT001A0 .ws7 " " FMT001A0 .me7"

-- wsl2c " FMT001A0 .ws7 " "FMT001A0 . raw"

-- tidy_c " FMT001A0 . raw" " FMT001A0 .c"

-- /usr /bin /gcc -I . - I / fermat2 / config -c " FMT001A0 .c"

... processed FMT001A0 to Level 5 in 4 secs ,

161



Tool Support

Tue September 16 18:24:01

SUMMARY:

1 fi les processed to Level 5

--------- - -- - - -- - -- - -- - - -- - -- - -- -

1 fi les processed altogether

--------- - -- - - -- - -- - -- - - -- - -- - -- -

Listing 7.4: Migration Log

Figure 7.19 shows this process in a graphical form. The FermaT engine accepts assembler listing

files and outputs the C source file with the code, the C header with the declaration of all data types

and a special C source file for initialisation which initialises the data. The initialisation of data in

Figure 7.19: Current Migration Process to C

a separate source file is a necessary workaround as C cannot initialise the contents of a STRUCT

data type upon declaration. The gray circles describe migration steps with the handling script in

the upper left corner. Each script has one or more input file(s) and one or more output file(s). The
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steps “Extract metrics” do not really contribute to the migration result as they only measure the

complexity of the program with certain metrics. However, they are included in the graphic to fully

illustrate the complete process. The dark gray box describes the part of the process which can be

proven to be correct. The purpose of this graphic is to show how many steps within the migration

process are based on assumptions and cannot be proven. Especially the translation of data is

most dangerous as it is directly translated into the target language. The proposed integration of

the type checker for the Wide Spectrum Type System into the migration process is presented in

figure 7.20. Notably the provable parts of the migration process increased as the type checker can

Figure 7.20: Enhanced Migration Process to C

verify that the translated data structures do indeed work with the code in the designed target

language. It is not necessary to rewrite any transformation or to revalidate any of their proofs as

the introduction of types and their verification are carried out after the code has been abstracted.

In this way the approach only adds an additional verification mechanism to correct the flaws of

the migration process. An important fact of this approach is that the new verification mechanism

is done in WSL and not by a compiler in the target language. The reason for this is the fact that

a translation process always introduces at least a few assumptions which can cause the system

to malfunction. A good example for this is presented in the first case study in section 8.2 which

involves a migration from C to FORTRAN. The problem occurs due to an implicit type cast in
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combination with a translated call-by-value to call-by-reference procedure invocation.

7.5 Summary and Conclusion

This chapter reviewed and describes the tools which have been developed during this research in-

vestigation which are mainly the FermaT Maintenance Environment and the FermaT Type System

Editor. These tools are still in the conceptual prototype stage. Although they have been tested

among some case studies, the way before these tools can be considered for an industrial production

environment is still long. Especially errors related to the underlying operating system are still

quite common. Nevertheless, the fundamental conceptual parts of development have been done

and the resulting prototype application is working and useful. So far the development includes the

following:

• Lexer and parsers for all WSL versions.

• A consistency check for WSL Abstract Syntax Trees.

• Pretty Printer for all WSL versions.

• The grammatical definition of all WSL versions.

• Typing rules for all type system layers.

• The implementation of the type checking and type inferencing algorithm.

• An extensive java API to navigate through Abstract Syntax Trees.

• An initial set of type system transformations.

• An initial object identification algorithm.

The development was done in cooperation with the company who funds the research and the

resulting prototype has been successfully tested on Linux and Windows operating systems by

many students during a Master of Engineering course as practical part of a Software Evolution

module.
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Case Studies

“Beware of bugs in the above code; I have only

proved it correct, not tried it.”

Donald Ervin Knuth

Objectives

• To give a small scale case study of an unsafe procedural system which is migrated into a safe

procedural- and object oriented code.

• To give a medium scale case study of an procedural system which is translated into a object

oriented code.

• To demonstrate and evaluate the need and practical applicability of the presented research.

8.1 Introduction

This chapter presents two case studies to illustrate the practical applicability of the presented

research. The first smaller case study migrates code which was taken from a bigger collection

of algorithm for numerical analysis and demonstrates why a migration process must pay special

attention to the correct capturing of typing. The second case study is a migration of a medium

scale software system which demonstrates the robustness and scalability of the approach. Both

case studies includes besides the correct conversion of data types also the identification of objects

and the transformation from procedural into object oriented code1.

1The source code of all translation steps of case study 1 can befound in appendixA.2.
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8.2 Case Study 1

The presented case study is a small excerpt of a bigger software system to demonstrate certain

aspects of the proposed approach in more detail. The case study was chosen because it models

quite complex mathematical functions with only a few lines of code which is written in C with a

particularly interesting usage of data types. The software was utilised for practical demonstration

of algorithms to students during a numerical analysis course to presents iteration based algorithms;

two partial integration algorithms for
∫ x

0 tn ·e−tdt and one square root function. The case study

is fully written in C and consists of four modules. It has the two global variables: debug which

is a switch to toggle the output of debug messages and MAX IT which tweaks the speed and

accuracy of the square root function. During this case study the system will be safely translated

to FORTRAN 77 and migrated to Java. The case study consists of the following modules:

Figure 8.1: Relationship of Modules

• demo

Contains the entry point (main() function) for the whole system.

• analysis

Tests the algorithms and presents the results to the user. ANALYSIS1 does the partial

integration while ANALYSIS2 demonstrates the square root function.
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• part int

The actual partial integration algorithms are implemented in this module.

• lib

All basic functions like
√

x, ex or x! are defined here.

The first step in the migration process is to translate the system into Weak Unsafe Typed WSL.

Because the length of data types in C has never been defined clearly the translator has to know

the exact length of each data type based on the used platform and compiler. Besides the lengths

of data types the translation will also insert explicit type casts in every expression which involves

variables with different types. Listing 8.1 and 8.2 give an example of a translated expression from

C to Weak-Unsafe Typed WSL.

double FPARTINT1 ( double x , int n) {

double a = 0;

double expv = 0;

double xp = 0;

int p = 0;

int i = 0;

double ret1 = 0;

...

a = (a - (p * (pow(x , xp) / expv )));

...

Listing 8.1: Code Snipped from C Source

PROC FPARTINT1 ( REAL *8:: x , INTEGER*4:: n VAR REAL *8:: ret ) ==

...

VAR <REAL *8:: a := f0 , REAL *8:: expv := f0 , INTEGER*4:: xp := f0 ,

INTEGER*4:: p :=0 , INTEGER*4:: i :=0 , REAL *8:: ret1 := f0 >:

...

a := a - {REAL *8} p * x ** {REAL *8} xp / expv ;

Listing 8.2: Code Snipped from Corresponding WSL Source

It is crucially important to explicitly state the conversion operations during the process to highlight

possible flaws. The next step in the migration process is to verify the type correctness of the

translation which is done by the type checker. If a program is free from downcasts it can be
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automatically verified as strongly typed. In this case study, however, the first type check revealed

a flaw within the code. Listing 8.3 and 8.4 show the translation problem. The flaw is actually

a combination of two problems. The first problem occurs when a call passes parameters to a

procedure. FORTRAN uses normally the call-by-reference method while C uses always call-by-

value if no pointer is involved. There are several ways to solve this e.g. to save and store the

parameter value around each call or to declare the parameter variables as internal variable and

initialise them with the actual parameter. In this migration the second alternative was choosen

(x as local variable within the procedure and v_x as actual parameter variable) as it keeps added

code to a minimum.

int f = 0;

...

ret3 = EXP(f );

...

double EXP(double x) {

...

Listing 8.3: Code Snipped from C Source

INTEGER*4 f

...

ret3 = LIB_EXP(f )

...

FUNCTION LIB_EXP(v_x)

REAL*8 v_x , x

x = v_x

...

Listing 8.4: Code Snipped from Corresponding Wrongly Translated FORTRAN Source

Unfortunately, this solution would not fully resolve the code flaw. The second problem is more

subtle and existed because of an implicit type cast. The method EXP has a double parameter

while the parameter in the call is an integer. In C this is not a problem as the compiler implicitly

inserts a type cast which puts the value of the integer into the double parameter of the function.

In FORTRAN, however, this does not happen. Here the address of the integer would be passed

to the procedure and the content would be interpreted as double. The wrong value is then copied

to the local variable and will eventually falsify the whole result. Such errors are very hard to

track because even newer FORTRAN compiler, like the GNU FORTRAN 4.2, do not give a single
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warning in these situations. Fortunately, the FermaT Type System Editor detected this and the

problem was solved by creating a new variable with the appropriate type in the calling procedure

and an assignment to this variable with the required value before the call (see Listing 8.5).

VAR <INTEGER*4 :: f := 0, ... , REAL*8 :: r_f := f0 , ... >:

...

r_f := {REAL*8} f ;

EXP( r_f VAR ret3 );

...

PROC EXP( REAL*8 :: x VAR REAL*8 :: ret ) ==

...

Listing 8.5: Code Snipped from WSL Source

After this modification the code was successfully verified as strong and safe typed which made it

possible to transform the legacy system into an object oriented system which started by cluster-

ing the procedures with the object identification algorithm into classes. As described before the

algorithm utilises for this the call graph. In the case study the Fan-Out threshold for object iden-

tification was set to 2 which identified the methods ANALYSIS, ANALYSIS1 and ANALYSIS2

to be put as main method into an own class (see figure 8.2). The Class Cluster Depth was set

Figure 8.2: Object Identification

to 1 and the classes with the most amount of outgoing calls where selected first for object iden-

tification which caused the algorithm to include PART INT1 and PART INT2 into ANALYSIS1

and FACUL, SQRT and EXP into ANALYSIS2. The class with ANALYSIS, however, did not

get any other procedure as there were no procedures left which were not already assigned to a
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Figure 8.3: Object Identification

class. It should be noted that the chosen values for the parameters is purely based on empirical

experience. The result of the algorithm is shown in figure 8.3. Listing 8.6 shows the resulting WSL

OSTRUCTs which were generated to model the identified objects. Global variables like MAX IT

which were only used in one class (here ANALYSIS2) became local attributes of that class while

global variables which were used in more than one class stayed in the global scope (declared as

a PUBLIC and STATIC). Similar to the localised variables also all procedures which were only

called within a class were declared as PRIVATE.

VAR < INTEGER*4 :: debug := 0,

OSTRUCT :: ANALYSIS := <

PUBLIC PROC ANALYSIS ( )

>,

ANALYSIS :: OANALYSIS := < >,

OSTRUCT :: ANALYSIS1 := <

PUBLIC PROC ANALYSIS1 ( REAL*8 , INTEGER*4 ),

PRIVATE PROC BPARTINT1 ( REAL*8 , INTEGER*4 VAR REAL*8 ),

PRIVATE PROC FPARTINT1 ( REAL*8 , INTEGER*4 VAR REAL*8 ),

>,

ANALYSIS1 :: OANALYSIS1 := < >,

OSTRUCT :: ANALYSIS2 := <

PRIVATE INTEGER*4 :: MAX_IT := 100 ,
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PUBLIC PROC ANALYSIS2 ( INTEGER*4 ),

PRIVATE PROC FACUL (REAL*8 VAR REAL*8 ),

PRIVATE PROC SQRT (REAL*8 VAR REAL*8 )

PUBLIC PROC EXP( REAL*8 VAR REAL*8 )

>,

ANALYSIS2 :: OANALYSIS2 := < >

>:

Listing 8.6: Code Snipped from WSL Source

The last modification was done after the initial object identification by applying the type transfor-

mation “Reduce Inter-Class Relations” which counted the fan-in of every public method to move it

to another class if the reviewed method is more called from an external class than from its current

class. After application, the transformation found that EXP is called twice from ANALYSIS1 but

only once from ANALYSIS2 and, as a result, moved the procedure to ANALYSIS1. The class

diagram2 of the translation result to Java can be seen in figure 8.4.

Figure 8.4: UML Diagram of Case Study 1

2Diagram was generated using eclipse with omondo UML plugin
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8.3 Case Study 2

The second case study is to demonstrates the robustness and scalability of the approach by using

a medium scale software system consisting of about 1600 lines of C code which will be migrated

into Fortran 95. The example is a prototype backtracking program to find “relation-preserving

mappings”, as described in [PW94]. The case study consists of 8 modules with an average of 200

lines per module. The system contains 29 procedures which operate on 43 global variables. The

migration was carried out in five steps:

1. Translation from C to Weak Unsafe Typed WSL.

2. Transformation from Weak Unsafe Typed WSL to Strong Unsafe Typed WSL.

3. Transformation from Strong Unsafe Typed WSL to Strong Safe Typed WSL.

4. Transformation from Strong Safe Typed WSL to Object Oriented Typed WSL.

5. Translation from Object Oriented Typed WSL to Fortran 95.

The first translation step involved besides the pure code to code translation also the insertion of

explicit type casts whenever a type cast was done implicitly. Both translations (during step one

and five) used the following data type conversions:

C Weak Unsafe Typed WSL Strong Unsafe / Safe / OO

Typed WSL

FORTRAN 95

short INTEGER*2 INTEGER*2 integer(2)

int INTEGER*2 INTEGER*4 integer(4)

int3 INTEGER*2 BOOLEAN*0 logical

long INTEGER*2 INTEGER*4 integer(4)

double REAL*8 REAL*8 real(8)

short * LIST[?,?]<INTEGER*2> LIST[?,?]<INTEGER*2> integer(2), dimen-

sion(?:?)

3This translation was only possible if the type inferencer concluded that the INTEGER variable was used as BOOLEAN in the C
code.
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int * LIST[?,?]<INTEGER*4> LIST[?,?]<INTEGER*4> integer(4), dimen-

sion(?:?)

double * LIST[?,?]<REAL*8> LIST[?,?]<REAL*8> real(8), dimen-

sion(?:?)

short *** LIST[?,?]<LIST[?,?]<

LIST[?,?]<INTEGER*2>>>

LIST[?,?]<LIST[?,?]<

LIST[?,?]<INTEGER*2>{>}>

integer(2), dimen-

sion(?:?,?:?,?:?)

Table 8.1: Data Type Conversions of Case Study 2

The transition into Strong Unsafe Typed WSL during the second step of the migration involved

the rewriting of some variables. The type inferencer was used to identify INTEGER variables

which are used as BOOLEANs in C (Fortran 95 is able to express those variables with its data

type logical):

int BUSH ;

...

BUSH = read_num (f );

...

if (BUSH ) {

do_bush ();

}

...

Listing 8.7: Code Snipped from C Source

VAR <

...

BOOLEAN :: BUSH := TRUE

...

>:

...

read_num(f VAR BUSH );

...

IF BUSH THEN

do_bush ()

FI;

...

Listing 8.8: Corresponding Code Snipped from WSL Source
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The manual work during the whole migration process was done during the third step of the mi-

gration. The transition from Strong Unsafe Typed WSL to Strong Safe Typed WSL required that

all C pointers had to be rewritten by other constructs. Fortunately, all pointers in the case study

were used for array fields which could be expressed through the LIST type of WSL. However, their

dimensions had to be gathered from malloc statements and manually inserted into the code. The

following code example shows such a manual translation. The case study uses, among other arrays,

four arrays with three dimensions. Each cell of these arrays allocates 2 bytes. The allocation of

their memory is done in a special routine called “allocate 3D”:

short ***RA , *** rel_to_A , *** rel_A_to , ***RB ;

...

short*** al locate_3D ( int x , int y , int z)

{

int i , j ;

short *** result ;

/* allocate memory for a 3D short array of size 0..x by 0..y

* by 0..z returns pointer to the array:

*/

result = ( short ***) malloc (( unsigned) (( x + 1)

* sizeof (* result )));

for ( i = 0; i <= x; i ++) {

result [ i ] = ( short **) malloc (( unsigned) ((y + 1)

* sizeof (** result )));

for ( j = 0; j <= y; j++) {

result [ i ][ j ] = ( short *) malloc (( unsigned) ((z + 1)

* sizeof ( short)));

}

}

return ( result );

}

...

RA = al locate_3D (R , SA , SA);

rel_to_A = al locate_3D (R, SA , SA);

rel_A_to = al locate_3D (R, SA , SA);

RB = al locate_3D (R , SB , SB);

...

Listing 8.9: Code Snipped from C Source

All these manual allocations can be expressed within WSL with a simple variable declaration:
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VAR <

LIST[0:R]< LIST[0: SA]< LIST[0: SA]< INTEGER*2>>> RA := < >

LIST[0:R]< LIST[0: SA]< LIST[0: SA]< INTEGER*2>>> rel_to_A := < >

LIST[0:R]< LIST[0: SA]< LIST[0: SA]< INTEGER*2>>> rel_A_to := < >

LIST[0:R]< LIST[0: SB]< LIST[0: SB]< INTEGER*2>>> RB := < >

...

> :

Listing 8.10: Corresponding Code Snipped from WSL Source

As FORTRAN supports since version 90 also object oriented structures, it was possible to use

the Object Oriented layer of the Wide Spectrum Type System and change the paradigm from

procedural to object oriented. The object identification algorithm was used to identify potential

classes and possibilities for encapsulation. The call graph with the 29 procedures which was used

for the object identification can be seen in figure 8.5. Procedures which will become the main

method of a class and their outgoing calls are colored and their total number of outgoing calls is

noted above their top right corner. The first fully automatic object identification used the following

parameters:

• Fan-Out Threshold 7

• Class Cluster Depth 2

• Class Identification Order smallest number first

The resulting object oriented system can be seen in figure 8.6. A new class is created for ev-

ery procedure whose total number of outgoing calls is greater or equal 7 (Fan-Out Threshold)

while the procedure itself is placed inside the class as its first method. The Class Identification

Order defines thereby which methods are first used for class identification. In this example the

procedures with the smallest amount of outgoing calls were used first which gives the collection

order: find_good_element , do_bush , find_good_insert , do_pre_analysis , do_analyse , main ,

read_param . In the second step the algorithm follows the call graph and includes also every proce-

dure which is called by the identified procedure within 2 (Class Cluster Depth) steps also as class

methods. Having a small Class Cluster Depth and using the procedures with the smallest amount

of outgoing calls first gives usually a well balanced result since the first used procedures do not

collect too many other procedures (as they have only a small number of outgoing calls) while the
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last used procedures with the highest number of outgoing calls do not have much left to collect

(since only procedures are moved into a class which are not already part of another class). During

the first fully automated object identification step the system was able to identify 7 classes and

distribute 23 procedures (out of 29) among them. The remaining 6 procedures were declared as

public static and were put into a special class called global which models the global scope of the

system. Many class methods (8 out of 23) could be declared as PRIVATE which indicates that the

method is only called from the inside of a defined class. The majority of calls occur now within

the classes which makes it much easier to follow the processing of the whole system. Around 37%

(16 out of 43) of the global variables were localised among the classes which indicates that they

are only affected by the methods of the class. After the object identification was carried out, the

resulting object oriented WSL code was translated into FORTRAN 95. However, it would have

been possible to further restructure the code by applying type transformations or by deleting dead

code (procedures which are not called like new_analyse , print_map or relpres ).
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Figure 8.5: Call Graph of Case Study 2
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Figure 8.6: UML Diagram of Case Study 2

8.4 Summary

This chapter presented two case studies to show some practical issues of software migration and why

a sophisticated type system is of utmost importance. The first case study showed the abilities of the

type checker and explained how a migration can accidentally introduce errors due to implicit type
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casting. Both case studies explained in detail the processing of the object identification algorithm

and how it can be used to construct an object oriented system from a procedural oriented system.

The general principle can be seen in case study 1 while case study 2 shows the application to

a medium application. Having already an organised object oriented system with objects, which

encapsulate already certain procedures and variables, it become significantly easier for a maintainer

to understand and migrate the system successfully. The approach of using type transformations,

which give an error message if they are not applicable, assures also that no new errors are introduced

accidentally during the restructuring process. The second case study in particular demonstrated the

robustness and scalability of the whole approach by migrating a medium scale software from C to

Fortran 95. One of the most important steps in this case study was the correct identification of data

types and their representation in the target language. Especially, the representation of pointers is

critical as most strongly typed programming languages avoid explicit pointers. However, in many

cases, if not a specific memory area has to be addressed, it is indeed possible to replace a pointer

with a safe abstract data structure. The case studies show that WSL with the Wide Spectrum

Type System is well suited for many different software migration tasks as it can precisely capture

the semantics of many common programming languages which are used in current legacy systems.
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Chapter 9

Conclusion and Future Research

“We can only see a short distance ahead, but we

can see plenty there that needs to be done.”

Alan Mathison Turing

Objectives

• To evaluate and summarise the presented work.

• To state the limitation of the approach.

• To draw conclusions.

• To propose future work.

9.1 Summary of the Thesis

The thesis discussed how to augment the safety of program migration through a Wide Spectrum

Type System. The presented approach specifically addresses data structure related issues of soft-

ware migration through an intermediate language. The approach is unique as most of the current

migration approaches use an abstract model (e.g. UML, flowchart, etc.) for intermediate represen-

tation rather than a programming language and a type system with adjustable expressiveness and

strictness would not make sence for any ordinary programming language used for development.

Only for a language like WSL which is used to change the abstraction level of source code, a Wide

Spectrum Type System is useful. The most important key feature of the approach is the lay-

ered structure which enables the type system to adjust its expressiveness. As WSL can represent
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programs at various levels of abstraction also the proposed type system is able to adjust expres-

siveness depending on the individual project requirements. Many features of the Wide Spectrum

Type System have been discussed in the course of this thesis:

• The type system is organised in different layers which differ in expressiveness and strictness.

• The type system is defined through typing rules and attribute grammars which provides a

sound mathematical foundation. This definition supports also the layered structure as only

the typing rules have to be exchanged during a transition between layers.

• Emphasis on explicit typing.

– The type of every variable must be known.

– The storage of a variable is written in its declaration.

– All conversions between data types have to be explicitly stated with a type cast.

• Enforcement of the type system by a flexible and scalable type checking algorithm.

• Introduction of the type system through its type inferencing algorithm.

• A program can be moved between the layers of the type system through type transformations.

• The object oriented layer allows the migration to object oriented languages.

• The object identification facilitates a smooth transition from procedural to object oriented

paradigm.

• The approach can be integrated into the current FermaT migration process.

These features have been carefully chosen during the research investigation to find a good balance

between benefits and “costs” in terms of complexity and constraints. There are two main benefits

which arise from such a definition for the FermaT migration process.

1. Some identified flaws of the migration process could be eliminated.

• Transformations which target abstractions on data structures are now possible.

• Hidden data conversions (implicit type casting) are now revealed. A customer can be

warned if the input data from current business rules are beyond the specification.
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• Pointers can now be expressed and in some cases converted (e.g. to arrays).

• Variables which are in a special data format can now be modelled through the definition

of artificial data types.

2. With the Wide Spectrum Type System also the range of potential source and target languages

has been extended. WSL is now able to target most strongly typed imperative and even some

object oriented programming languages.

These benefits, of course, are not without certain “costs” which are increased complexity for the

WSL definition and the migration process as well as certain constraints:

• The type of every variable must be known.

• The size of non-container variables should be stated in bytes as part of a variable declaration.

• The size of container variables should be stated by a range.

• Container types can only contain content of one type. This type must always be stated in

the declaration.

• Conversions between data types which are not carried out through a conversion function,

have to be explicitly stated by a type cast.

• The operands of any operator must be of the same type.

• The object oriented layer is far less expressive and flexible as other state-of-the-art object

oriented languages.

9.2 Limitations

As mentioned in the previous section, the research investigation had to find a good balance between

benefits and “costs”. This implies that the approach has also limitations and weaknesses:

• Sometimes it is not possible to transform a given typed program onto a higher type system

layer. Especially excessive pointer usage and utilisation of weak typing in terms of dubious

type conversions can make it impossible to proceed.
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• The range of possible source and target languages is limited to procedural programming

languages which use common data types and common typing techniques. Some programming

languages with special features (which mostly involve dynamic typing) are not possible to

migrate with this approach.

• Functional programming languages cannot be used as source or target language at all.

• The implementation of this approach is still in the prototype stage. The type checker may

point out some false typing error due to wrongly formulated typing rules or bugs in the source

code of the type checker.

9.3 Conclusions and Future Directions

The presented discussions and results in this thesis gave insight into problems which occur in

current migration processes. Many of them are type related and can be tackled by the proposed

Wide Spectrum Type System. The prototype tool and the case studies support this statement

with concrete numbers and facts. Besides these concrete outcomes, the following facts have also

become evident during the investigation:

• A sound, not necessarily excessive, formal foundation is essential for any reliable software

engineering and reengineering approach.

• A strong type system and its strict enforcement significantly enhances the reliability of soft-

ware.

• Flexibility, strictness and scalability are not necessarily mutually exclusive. A careful balance

can incorporate all these attributes within a single approach.

The next step in the development of this research is to enhance the FermaT reengineering process

to create a generic program transformation tool which is usable for most procedural languages.

The development will be realised in three successive work packages (WP):

WP1 - Type enhancement
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• Architectural justification of the FermaT reengineering process to use typed WSL.

• Integration of type inference and a type checking into the FermaT transformation system.

• Extending the transformation bank of FermaT with type transformations.

• Integration of the object identification process.

WP2 - Language translator development

• Development of a generic translator from procedural languages to WSL.

• Implementation of translators for C, Cobol and Java.

WP3 - Engineering of the software evolution process

• Integration of the ideas into a reengineering process.

• Evaluation of the process by using various case studies from industry.

• Deployment of the process to SML.

After this the research may be continued in a number of ways. Possible future directions for this

approach are:

• The object identification algorithm can be refined further. The set of transformations for the

object oriented layer can be extended by developing completely new transformations or by

combining existing transformations into compositional transformations. The result will be a

powerful object oriented refactoring system.

• The layered structure of the type system may be enhanced by defining additional layers. For

example layers which target languages such as C++ which are object oriented but with a

weak typing.

• Enriching the type system to do data refinement. Introduction of abstract data types which

can be used to migrate from a concrete data type to an abstract and from abstract to a new

concrete type.
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A.1 Type Checking / Type Inferencing Algorithm

Listing A.1: Type checking / Type Inferencing Algorithm in Java

package fme . components . typesystemeditor . wsl . inferenc er . interfaces ;

import java . util . I terator ;

import java . util . Vector ;

import java . util . logging . Level ;

import java . util . logging . Logger ;

import fme . components . typesystemeditor . wsl . structure s . TSEASTNode ;

import fme . components . typesystemeditor . wsl . structure s . TSETypeRuleTable ;

publ ic class WstsTypeCheckTypeInference {

// The type rule table

private stat ic TSETypeRuleTable rt ;

// Flag to toggle addit ional debug messages

private stat ic boolean debug = false ;

// Flag to indicate that an error occured

private stat ic boolean error ;

// The log output of the algori thm

private stat ic Str ingBuffer log ;

publ ic boolean isError () {

return error ;

}

publ ic Str ing inferLocation ( TSEASTNode node ) {

Str ing p [] , c [] , pre , con , type ;

Vector < Vector < String >> nodeRules ;

boolean cont = false ;

// If node has already a type or has been visi ted before return

if ( debug)

System .out . pr int ln ( node + " Infer >" + node + " type :"

+ node . getInternalValue ());

if ( node . getInternalValue () != null ) {

if ( debug)

System . out . pr int ln ( node + " Node has already type "

+ node . getInternalValue ());
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return node . getInternalValue ();

}

if ( node . getInternalValue () != null

&& node . getInternalValue (). equals (" Pending .. . .")) {

if ( debug)

System . out

. pr int ln (" Node is already part of inference process ..."

+ node . getInternalValue ());

return node . getInternalValue ();

} else {

if ( debug)

System . out . pr int ln ( node + " Going on ...") ;

}

// Mark the node

node . setInternalValue (" Pending .. . .") ;

// Get the rules for the node

nodeRules = rt . getRulesForConclusionNode (node . getSpec if icType ());

if ( nodeRules == null ) {

if ( debug) {

System . out . pr int ln ( node + " No rule can be found for node ");

}

node . setInternalValue ( null );

return null ;

}

// Here beginns now the inference / check algori thm

// ================================================

// Go through all rules

if ( debug)

System .out . pr int ln ( node + " Rules :");

// Go through all rules for this node

for ( int j = 0; j < nodeRules . size (); j++) {

if ( debug)

System . out . pr int ln ( node + " Rule #>" + nodeRules .get ( j ). g et (0)

+ " | " + nodeRules . get ( j ). get (1));

pre = nodeRules . get ( j ). get (0);

con = nodeRules . get ( j ). get (1);

p = pre . spl i t (" ;") ;

c = con . spl i t (" ;") ;
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// Infer the node type direct ly if no premise is given in the ru le

if ( pre . equals ("")) {

if ( debug)

System. out . pr int ln ( node + " No Premises given .. .") ;

type = c [0]. spl i t (" :") [1];

if ( type . equals (" VC0 [VC1 ]")) {

type = (( TSEASTNode ) node . getChi ldAt (0)). getValue ();

if ( node . getChi ldCount () == 2) {

inferLocation (( TSEASTNode ) node . getChi ldAt (1));

type = type

+ "<"

+ (( TSEASTNode ) node . getChi ldAt (1))

. getInternalValue () + " >";

}

setType ( type , node );

} else if ( node . getInternalValue () == null

|| node . getInternalValue (). equals (" Pending .. . .")

|| node . getInternalValue (). equals (" VOID ")) {

if ( type . endsWith (("# V ")))

type = type . replace ("# V", "*" + node . getValue ());

setType ( type , node );

}

}

// Handle the parts of the rule that try to identi fy a node

for ( int i = 0; i < p. length ; i++) {

if (p [ i ]. startsWith (" Parent =")) {

Str ing d [] = p[ i ]. spl i t ("=");

// Check if the partent should be of a certain type

if (! node . getParent (). getSpecif icType (). equals (d [1]) ) {

if ( debug)

System . out . pr int ln ( node + " Parent isn ’ t a "

+ d [1] + " node ...") ;

cont = true ;

break ;

} else {

if ( debug)

System . out . pr int ln ( node + " Parent is a " + d [1]

+ " node ...") ;

}

}

}

if ( cont ) {

cont = false ;
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continue ;

}

// Handle the parts of the rule that mention chi ld nodes

for ( int i = 0; i < p. length ; i++) {

if (p [ i ]. startsWith (" Chi ld ")) {

if ( handleChildren (p[ i ] , c [0] , node ) == null )

return null ;

}

}

// Handle the parts of the rule that mention the parent node

for ( int i = 0; i < p. length ; i++) {

if (p [ i ]. startsWith (" Parent ")) {

if ( node . getParent (). getSpecif icType (). equals (" T_Cas t ")) {

cont = true ;

break ;

} else if ( handleParent (p[ i ] , c [0] , node ) == null )

return null ;

}

}

if ( cont ) {

cont = false ;

continue ;

}

// Handle conclusion

if (c . length > 1)

doConclusion (p , c , node );

if ( debug)

System . out . pr int ln ( node + " Checking Children .. .") ;

// Check if a chi ld can be inferred more precisely

checkChildren (p , c , node );

}

// Try the parent node

if ( node . getParent (). getInternalValue () == null ) {

if ( debug)

System . out . pr int ln ( node + " Now trying parent node of "

+ node + ".. .") ;

inferLocation (node . getParent ());

}
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// Check if the parent needs reval idat ion

if ( debug)

System .out . pr int ln ( node + " Checking Parent .. .") ;

checkParent (node . getParent ());

if ( node . getInternalValue () != null

&& ! node . getInternalValue (). equals (" Pending .. . .")) {

return node . getInternalValue ();

} else {

node . setInternalValue ( null );

return null ;

}

}

// Subroutines for the inference algori thm

// =======================================

private void checkParent ( TSEASTNode node ) {

Str ing pre , p [] , reftype ;

TSEASTNode chi ld ;

Vector < Vector < String >> nodeRules ;

Vector < String > r ;

Iterator < Vector <String >> ir ;

Iterator < TSEASTNode > it ;

nodeRules = rt . getRulesForConclusionNode (node . getSpec if icType ());

if ( nodeRules == null )

return ;

ir = nodeRules . i terator ();

whi le ( ir . hasNext ()) {

r = ir . next ();

pre = r .get (0);

p = pre . spl i t (" ;") ;

// Test if all chi ldren should be the same

if (p [0]. startsWith (" Chi ld (A )")) {

// Test if all chi ldren are the same

it = node . getChi ldren (). i terator ();

reftype = null ;

whi le ( it . hasNext ()) {

chi ld = it . next ();

if ( reftype == null )
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reftype = chi ld . getInternalValue ();

else if ( chi ld . getInternalValue () != null

&& ! typeEquals ( reftype , chi ld . getInternalValue ())

&& ! reftype . equals (" Pending .. . .")) {

if ( debug)

System . out . pr int ln ( node

+ " Reval idat ing Parent .. .") ;

node . setInternalValue ( null );

inferLocation ( node );

}

}

}

}

}

pr ivate void checkChildren ( Str ing [] premise , Str ing [] co nclusion ,

TSEASTNode node ) {

Str ing pre , con , p[] , c [];

Vector < Vector < String >> nodeRules ;

Vector < String > r ;

TSEASTNode chi ld ;

Iterator < TSEASTNode > it ;

Iterator < Vector <String >> ir ;

if ( debug)

System .out . pr int ln ( node + " Checking Node ...") ;

for ( int j = 0; j < premise . length ; j ++) {

// Chi ld must have the Parent in its premise

if ( premise [ j ]. equals (" Parent :T1 ") && conclusion [0]. co ntains (" T1 ")) {

// Check if parent has information that chi ld has not

if (node . getParent (). getInternalValue () != null

&& ! node . getParent (). getInternalValue (). equals (

" Pending .. . .") && node . getInternalValue () != null

&& node . getInternalValue (). contains (" VOID ")) {

// Chi ld must have type VOID inside

if ( node . getInternalValue () != null ) {

if ( conclusion [0]. contains ("[ T1 ]")) {

setType (

conclusion [0]. spl i t (" :") [1]

. replace ("[ T1 ]" , "<"

+ node . getParent (). getInternalValue ()

+ ">") , node );

} else if ( conclusion [0]. contains (" T1 ")) {
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setType ( node . getParent (). getInternalValue () , node );

}

}

}

}

}

if ( debug)

System .out . pr int ln ( node + " Checking Children .. .") ;

it = node . getChi ldren (). i terator ();

whi le ( it . hasNext ()) {

chi ld = it . next ();

nodeRules = rt . getRulesForConclus ionNode ( chi ld . getSpe cif icType ());

if ( nodeRules != null ) {

ir = nodeRules . i terator ();

whi le ( ir . hasNext ()) {

r = ir . next ();

pre = r . get (0);

con = r . get (1);

p = pre . spl i t (" ;") ;

c = con . spl i t (" ;") ;

checkChildren (p , c , chi ld );

}

}

}

}

pr ivate Str ing setType ( Str ing type , TSEASTNode node ) {

if ( debug)

System .out . pr int ln ( node + " *** " + node + " -> " + type );

if ( type != null ) {

type = type . replace ("[" , " <");

type = type . replace ("]" , " >");

}

node . setInternalValue ( type );

return type ;

}

private Str ing setNodeToType ( Str ing type , Str ing premise ,

Str ing conclusion , TSEASTNode node ) {

Str ing p [] , c [];

p = premise . spl i t (" :") ;

c = conclusion . spl i t (" :") ;
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// Set to type VOID if no type was inferred

if ( type == null || ( type != null && type . equals (" Pending .. . ."))) {

// Set content type void if the chi ldren are the contents of

// a container node

if (c [1]. contains ("[ T1 ]"))

type = c [1]. replace ("[ T1 ]" , "[ VOID ]");

// Set the type to void

else

type = " VOID ";

}

if (! c [1]. contains (" T1 ") && !c [1]. contains (" VOID ")) {

setType (c [1] , node );

} else if (c [1]. equals (" T1 ")) {

if (p [1]. contains ("[ T1 ]") && type . contains (" <")) {

setType ( type

. substr ing ( type . indexOf (" <") + 1, type . length () - 1) , nod e );

} else {

setType ( type , node );

}

} else if (p [1]. contains ("[ T1 ]") && c [1]. contains ("[ T1 ]" )) {

setType ( type , node );

} else if (c [1]. contains ("[ T1 ]")) {

setType (c [1]. replace ("[ T1 ]" , "<" + type + ">") , node );

} else {

setType ( type , node );

}

return "";

}

pr ivate Str ing handleParent ( Str ing premise , Str ing concl usion ,

TSEASTNode node ) {

Str ing c [] , type ;

c = conclusion . spl i t (" :") ;

if ( debug)

System .out . pr int ln ( node + " For Parent . . .") ;

type = inferLocation ( node . getParent ());

if ( node . getInternalValue () != null

&& ! node . getInternalValue (). equals (" Pending .. . .")) {

if ( debug)
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System . out . pr int ln ( node + " Parent has inferred the type "

+ node . getInternalValue () + " for node " + node );

} else if ( premise . equals (" Parent :T1 ")) {

if (c [1]. equals (" T1 ")) {

setType ( type , node );

} else {

Logger . getLogger ( this . getClass (). getCanonicalName () ). log (

Level .WARNING ,

" Conclusion type :" + conclusion + " not implemented !");

error = true ;

}

} else {

Logger . getLogger ( this . getClass (). getCanonicalName () ). log (

Level . WARNING ,

" Premise type :" + premise + " not implemented !");

error = true ;

}

return "";

}

pr ivate Str ing handleChildren ( Str ing premise , Str ing con clusion ,

TSEASTNode node ) {

Str ing p [];

p = premise . spl i t (" :") ;

// For all chi lds

if (p [0]. equals (" Chi ld (A )")) {

return handleAl lChi ldren (premise , conclusion , node );

} else {

return handleSingleChild (premise , conclusion , node );

}

}

pr ivate Str ing handleAl lChi ldren ( Str ing premise , Str ing conclusion ,

TSEASTNode node ) {

Str ing p [] , c [] , type , reftype , ctype ;

TSEASTNode chi ld ;

Iterator < TSEASTNode > it ;

p = premise . spl i t (" :") ;

c = conclusion . spl i t (" :") ;
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if ( debug)

System .out . pr int ln ( node + " For all Chi ldren .. .") ;

// The type of the chi ldren is requested

// ( This means the chi ldren must have the same type )

if (p [1]. contains (" T1 ")) {

if ( debug)

System . out . pr int ln ( node + " Infer type from Children ");

it = node . getChi ldren (). i terator ();

reftype = null ;

type = null ;

// Check the types of the chi ldren

while ( it . hasNext ()) {

chi ld = it . next ();

type = inferLocation ( chi ld );

// Set the reference type

if ( reftype == null && type != null

&& ! type . equals (" Pending .. . .")) {

reftype = type ;

}

// Set the reference type new if the type is more

// special ised

if (( reftype != null && type != null

&& reftype . contains (" VOID ") && ! type . contains (" VOID ") & & ! type

. equals (" Pending .. . ."))

|| ( reftype != null && reftype . equals (" VOID "))) {

reftype = type ;

}

// Detect if the chi ldren have dif ferent types

if ( reftype != null && type != null

&& ! typeEquals ( type , reftype ) && ! type . equals (" VOID ")

&& ! type . equals (" Pending .. . .")) {

if ( type . contains ("< VOID ") && reftype . contains (" <")

&& reftype . length () > type . indexOf ("< VOID ")) {

if (! type . subSequence (0 , type . indexOf ("< VOID ")). equal s (

reftype . subSequence (0 , type . indexOf ("< VOID ")))) {

if ( debug)

System. out
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. pr int ln (" Chi ldren have dif ferent types ");

log . append (" Chi ldren of node "

+ node . getSpecif icType () + " ( row :"

+ node . getRow () + ") have dif ferent types !\n ");

error = true ;

return null ;

}

} else {

if ( debug)

System . out

. pr int ln (" Chi ldren have dif ferent types ");

log . append (" Chi ldren of node " + node . getSpecif icType ()

+ " ( row :" + node . getRow ()

+ ") have dif ferent types !\n ");

error = true ;

return null ;

}

}

// Check if chi ld should be of a specif ic container type

if (p [1]. contains ("[")) {

ctype = p [1]. substr ing (0 , p [1]. indexOf ("[")) ;

if ( type != null && ! type . startsWith ( ctype)

&& ! type . equals (" VOID ") && ! type . equals (" Pending .. . .") ) {

if ( debug)

System . out

. pr int ln (" Chi ld should be of container type :"

+ p [1]);

log . append (" Chi ld of node " + node + " ( row :"

+ node . getRow () + ") should be of container type :"

+ p [1] + "\n ");

error = true ;

return null ;

}

}

}

setNodeToType ( reftype , premise , conclusion , node );

// Process all chi ldren

// ====================

// In case no chi ld gave a result set to type VOID

if ( reftype == null

|| ( reftype != null && reftype . equals (" Pending .. . ."))) {
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// Set content type void if the chi ldren are the contents of

// a container node

if (c [1]. contains ("[ T1 ]"))

reftype = c [1]. replace ("[ T1 ]" , "[ VOID ]");

// Set the type to void

else

reftype = " VOID ";

}

// The type in a container was inferred

if (p [1]. contains ("[ T1 ]") && !c [1]. contains ("[ T1 ]")) {

reftype = p [1]. replace ("[ T1 ]" , "[" + reftype + "]");

}

// Set the found type for all chi ldren

if ( debug)

System . out . pr int ln ( node + " All Chi ldren have type :"

+ reftype );

it = node . getChi ldren (). i terator ();

whi le ( it . hasNext ()) {

chi ld = it . next ();

type = chi ld . getInternalValue ();

if ( type == null || type . equals (" Pending .. . .")

|| type . contains (" VOID ")) {

setType ( reftype , chi ld );

}

}

}

// Set type of chi ldren

else {

if ( debug)

System . out . pr int ln ( node + " Set type of Chi ldren ");

it = node . getChi ldren (). i terator ();

whi le ( it . hasNext ()) {

chi ld = it . next ();

// Infer Chi ldren from Child

inferLocation ( chi ld );

if ( debug)

System. out . pr int ln ( node + " Sett ing chi ld " + chi ld

+ " to :" + p [1]);

if ( chi ld . getInternalValue () != null

&& ! chi ld . getInternalValue (). equals (" Pending .. . .")
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&& ! typeEquals ( chi ld . getInternalValue () , p [1])) {

log . append (" Chi ld of node " + node . getSpecif icType ()

+ " ( row :" + node . getRow () + ") has type :"

+ chi ld . getInternalValue () + " but should have type :"

+ p [1] + "\ n ");

}

setType (p [1] , chi ld );

}

setType (c [1] , node );

}

return "";

}

pr ivate Str ing handleSingleChild ( Str ing premise , Str ing conclusion ,

TSEASTNode node ) {

int n;

Str ing p [] , c [] , type ;

TSEASTNode chi ld ;

p = premise . spl i t (" :") ;

c = conclusion . spl i t (" :") ;

// Get the chi lds

n = Integer . parseInt (p [0]. substr ing (6 , p [0]. length () - 1 ));

if ( debug)

System .out . pr int ln ( node + " For Chi ld " + n + ".. .") ;

// Infer type from chi ld

if (p [1]. contains (" T1 ")) {

if ( debug)

System . out . pr int ln ( node + " Infer Type from Child ");

type = inferLocation ( node . getChi ldren (). get (n ));

setNodeToType ( type , premise , conclusion , node );

}

// Set type of chi ld

else {

if ( debug)

System . out . pr int ln ( node + " Set type of Chi ld ");

chi ld = node . getChi ldren (). get (n );

// Infer Chi ldren from Child
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inferLocation ( chi ld );

if ( debug)

System . out . pr int ln ( node + " Sett ing chi ld " + chi ld + " to :"

+ p [1]);

setType (p [1] , chi ld );

if (! c [1]. contains (" T1 "))

setType (c [1] , node );

}

return "";

}

pr ivate Str ing doConclusion ( Str ing [] premise , Str ing [] c onclusion ,

TSEASTNode node ) {

int n;

Str ing c [] , type ;

TSEASTNode chi ld ;

if ( debug)

System .out . pr int ln ( node + " Doing conclusion of node " + nod e

+ " .. .") ;

for ( int i = 0; i < conclusion . length ; i++) {

c = conclusion [ i ]. spl i t (" :") ;

// Set a specif ic Chi ld

if ( conclusion [ i ]. startsWith (" Chi ld ")) {

n = Integer . parseInt (c [0]. substr ing (6 , c [0]. length () - 1 ));

if ( debug)

System. out . pr int ln ( node + " For Chi ld " + n + ".. .") ;

chi ld = node . getChi ldren (). get (n );

// Infer Chi ldren from Child

inferLocation ( chi ld );

type = node . getInternalValue ();

if ( type . equals (" Pending .. . .")) {

type = " VOID ";

}
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if (! c [1]. contains (" T1 ")) {

type = c [1];

} else if ( conclusion [0]. contains ("[ T1 ]")

&& c [1]. contains ("[ T1 ]")) {

type = type . substr ing ( type . indexOf (" <") + 1,

type . length () - 1);

} else if (c [1]. contains ("[ T1 ]")) {

type = c [1]. replace ("[ T1 ]" , "<" + type + " >");

}

// Only set type if chi ld has a more general type

if ( type . contains (" VOID ")) {

if ( chi ld . getInternalValue () == null

|| chi ld . getInternalValue (). equals (" Pending .. . .")

|| chi ld . getInternalValue (). contains (" VOID "))

setType ( type , chi ld );

} else {

setType ( type , chi ld );

}

}

}

return "";

}

/**

* Judges if two types are equal

*

* @param type1

* A type

* @param type2

* Another type

* @return True if the two types are the same

*/

private stat ic boolean typeEquals ( Str ing type1 , Str ing ty pe2) {

boolean ret ;

if ( type1 . equals ( type2 ))

ret = true ;

else if ( type1 . contains ("*") && ! type2 . contains ("*")

&& type1 . replaceFirst (".[0 -9]+" , ""). equals ( type2 ))

ret = true ;

else if ( type2 . contains ("*") && ! type1 . contains ("*")
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&& type2 . replaceFirst (".[0 -9]+" , ""). equals ( type1 ))

ret = true ;

else if ( type1 . replaceFirst (".[0 -9]+" , ""). equals (

type2 . replaceFirst (".[0 -9]+" , ""))

&& ( type1 . contains ("*0") || type2 . contains ("*0"))) {

ret = true ;

} else

ret = false ;

if ( debug)

System .out . pr int ln (" Type Equal? " + type1 + " = " + type2 + " -> "

+ ret + "!");

return ret ;

}

}
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A.2 Case Study 1

A.2.1 Source Code in FORTRAN 77

PROGRAM case_study

IMPLICIT NONE

c Global Variables

INTEGER *4 debug

COMMON debug

INTEGER *4 LIB_MAX_IT

COMMON LIB_MAX_IT

c Main Procedure

REAL *8 x

INTEGER *4 n

c Global ini t ial isat ion

debug = 0

LIB_MAX_IT = 100

x = 1

n = 10

call ANALYSIS_ANALYSIS1 (x,n)

call ANALYSIS_ANALYSIS2 (n)

END PROGRAM case_study

Listing A.2: case_study.for

SUBROUTINE ANALYSIS_ANALYSIS1 (v_x , v_n)

INTEGER *4 debug

COMMON debug

REAL *8 v_x , x

INTEGER *4 v_n , n
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REAL *8 PART_INT_BPARTINT1

REAL *8 PART_INT_FPARTINT1

REAL *8 ret1

x = v_x

n = v_n

ret1 = 0

write (* ,*)"\ nPart ial Integrat ion "

wri te (* ,*)" - - - - - - - - - - - - - - - - - - -"

ret1 = PART_INT_BPARTINT1 (x , n)

wri te (* ,*)" Backward :" , ret1

ret1 = PART_INT_FPARTINT1 (x , n)

wri te (* ,*)" Forward :" , ret1

END

SUBROUTINE ANALYSIS_ANALYSIS2 (v_n )

INTEGER *4 debug

COMMON debug

INTEGER *4 v_n , n

INTEGER *8 LIB_FACUL

REAL *8 LIB_SQRT

REAL *8 LIB_EXP

INTEGER *4 f

REAL *8 n1

REAL *8 n2

INTEGER *8 ret1

REAL *8 ret2

REAL *8 ret3

REAL *8 ret4

REAL *8 r_f

n = v_n

f = 0

r_f = 0

n1 = 0

n2 = 0

ret1 = 0

ret2 = 0

ret3 = 0

ret4 = 0

write (* ,*)"\ nANALYSIS2 ";
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write (* ,*)" - - - - - - - - -";

DO f = 0, n , 1

ret1 = LIB_FACUL (f)

wri te (* ,*)" Facul :" , ret1

n1 = ret1

ret2 = LIB_SQRT (n1)

wri te (* ,*)" Sqrt :" , ret2

r_f = f

ret3 = LIB_EXP ( r_f )

wri te (* ,*)" Exp :" , ret3

n2 = ret3

ret4 = LIB_SQRT (n2)

wri te (* ,*)" Sqrt :" , ret4

ENDDO

END

Listing A.3: analysis.for

c Procedure : BPARTINT1

c ===================

c Part ial Integrat ion ( backward ) of t ˆn * eˆ-t to t

c PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)

c PARAM: n = power of t

c RETURN : ret = Result of Integrat ion

FUNCTION PART_INT_BPARTINT1 (v_x , v_n )

INTEGER *4 debug

COMMON debug

REAL *8 PART_INT_BPARTINT1

REAL *8 v_x , x

INTEGER *4 v_n , n

REAL *8 LIB_EXP

REAL *8 a

REAL *8 expv

REAL *8 xp

INTEGER *4 i

REAL *8 ret1

x = v_x

n = v_n

a = 0
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expv = 0

xp = 0

i = 0

ret1 = 0

ret1 = LIB_EXP (x)

expv = ret1

a = (1 - (1 / expv ))

DO i = 1, n , 1

xp = x** i

a = ((a * i ) - (xp / expv ))

if ( debug .eq . 1) THEN

write (* ,*) " BPARTINT1 :" ,a

ENDIF

END DO

PART_INT_BPARTINT1 = a

END

c Procedure : FPARTINT1

c ===================

c Part ial Integrat ion ( forward ) of t ˆn * eˆ- t to t

c PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)

c PARAM: n = power of t

c RETURN : ret = Result of Integrat ion

FUNCTION PART_INT_FPARTINT1 (v_x , v_n )

INTEGER *4 debug

COMMON debug

REAL *8 PART_INT_FPARTINT1

REAL *8 v_x , x

INTEGER *4 v_n , n

REAL *8 LIB_EXP

REAL *8 a

REAL *8 expv

REAL *8 xp

REAL *8 p

INTEGER *4 i

REAL *8 ret1

x = v_x

n = v_n

213



Appendix

a = 0

expv = 0

xp = 0

p = 0

i = 0

ret1 = 0

ret1 = LIB_EXP (x)

expv = ret1

a = (-x**n / expv )

p = 1

DO i = 0, (n -1) , 1

p = (p * (n - i ))

xp = (n - i - 1)

a = (a - (p * (x** xp / expv )))

if ( debug .eq . 1) THEN

write (* ,*) " FPARTINT1 :" ,a

ENDIF

END DO

a = (a + p)

PART_INT_FPARTINT1 = a

END

Listing A.4: part_int.for

c Procedure : SQRT

c ==============

c A quick square root funct ion

c PARAM: x = Number for square root

c RETURN : ret = Square root of x

FUNCTION LIB_SQRT (v_x )

INTEGER *4 debug

COMMON debug

INTEGER *4 LIB_MAX_IT

COMMON LIB_MAX_IT

REAL *8 LIB_SQRT

REAL *8 v_x , x

REAL *8 n

REAL *8 xnew

INTEGER *4 i

x = v_x
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n = (x / 2)

xnew = 0

i = 0

DO i = 0, LIB_MAX_IT , 1

xnew = (( n + (x / n )) / 2)

IF ( xnew . lt . x) THEN

n = xnew

ELSE

EXIT

ENDIF

if ( debug .eq . 1) THEN

write (* ,*) " SQRT :" , xnew

ENDIF

END DO

LIB_SQRT = xnew

END

c Procedure : EXP

c =============

c Calculates powers of Euler ’s number

c PARAM: x = Power of e to calculate

c RETURN : ret = Euler ’s number to the power of x

FUNCTION LIB_EXP ( v_x)

INTEGER *4 debug

COMMON debug

REAL *8 LIB_EXP

REAL *8 v_x , x

INTEGER *4 i

REAL *8 p

REAL *8 s

REAL *8 t

x = v_x

i = 1

p = 1

s = 1

t = 2

DO WHILE (s .ne . t )

t = s

p = ((p * x) / i );
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s = (s + p);

i = ( i + 1)

if ( debug .eq . 1) THEN

write (* ,*) " EXP :" ,s

ENDIF

END DO

LIB_EXP = s

END

c Procedure : FACUL

c =============

c Calculates the factorial of x

c PARAM: x = Factorial to calculate

c RETURN : ret = Factorial of x

FUNCTION LIB_FACUL (v_x )

INTEGER *4 debug

COMMON debug

INTEGER *8 LIB_FACUL

INTEGER *4 v_x , x

INTEGER *8 i

INTEGER *8 f

x = v_x

i = 1

f = 1

DO i = 1, x , 1

f = ( f * i )

if ( debug .eq . 1) THEN

write (* ,*) " FACUL :" , f

ENDIF

END DO

LIB_FACUL = f

END

Listing A.5: lib.for
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A.2.2 Source Code in Weak Unsafe Typed WSL

C :" Type - Level : WeakUnsafeTypedWSL ";

VAR <

INTEGER *4 :: debug := 0,

INTEGER *4 :: MAX_IT := 100

>:

VAR <

REAL *8:: x := 1,

INTEGER *4 :: n := 10

>:

ANALYSIS1 ( x ,n );

ANALYSIS2 ( n )

ENDVAR

ENDVAR

Listing A.6: case_study.wsl

C :" Type - Level : WeakUnsafeTypedWSL ";

BEGIN

SKIP

WHERE

PROC ANALYSIS1 ( REAL *8 :: x ,

INTEGER *4 :: n) ==

VAR <

REAL *8 :: ret1 := f0

>:

PRINT ("\ nPart ial Integrat ion ");

PRINT ("- - - - - - - - - - - - - - - - - - -");

BPARTINT1 ( x ,n VAR ret1 );

PRINT (" Backward :" ++ { STRING *0} ret1 );

FPARTINT1 ( x ,n VAR ret1 );

PRINT (" Forward :" ++ { STRING *0} ret1 )

ENDVAR

END

PROC ANALYSIS2 ( INTEGER *4 :: n ) ==

VAR <

INTEGER *4 :: f := 0,

REAL *8 :: n1 := f0 ,

REAL *8 :: n2 := f0 ,

INTEGER *8 :: ret1 := 0,

REAL *8 :: ret2 := f0 ,

REAL *8 :: ret3 := f0 ,

REAL *8 :: ret4 := f0 ,

REAL *8 :: r_f := f0
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>:

PRINT ("\ nANALYSIS2 ");

PRINT (" - - - - - - - - -");

FOR f := 0 TO n STEP 1 DO

FACUL( f VAR ret1 );

PRINT (" Facul :" ++ { STRING *0} ret1 );

n1 := { REAL *8} ret1 ;

SQRT ( n1 VAR ret2 );

PRINT (" Sqrt :" ++ { STRING *0} ret2 );

r_f := {REAL *8} f ;

EXP ( r_f VAR ret3 );

PRINT (" Exp :" ++ { STRING *0} ret3 );

n2 := ret3 ;

SQRT ( n2 VAR ret4 );

PRINT (" Sqrt :" ++ { STRING *0} ret4 )

OD

ENDVAR

END

END

Listing A.7: analysis.wsl

C :" Type - Level : WeakUnsafeTypedWSL ";

BEGIN

SKIP

WHERE

PROC BPARTINT1 ( REAL *8 :: x ,

INTEGER *4 :: n VAR

REAL *8 :: ret ) ==

C:" Procedure : BPARTINT1 ";

C :"===================";

C:" Part ial Integrat ion ( backward ) of t ˆn * eˆ- t to t ";

C:" PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)";

C:" PARAM: n = power of t ";

C:" RETURN : ret = Result of integrat ion ";

VAR <

REAL *8 :: a := f0 ,

REAL *8 :: expv := f0 ,

REAL *8 :: xp := f0 ,

INTEGER *4 :: i := 0,

REAL *8 :: ret1 := f0

>:

EXP ( x VAR ret1 );

expv := ret1 ;

a := f1 - f1 / expv ;

FOR i := 1 TO n STEP 1 DO

218



Appendix

xp := x ** { REAL *8} i ;

a := a * { REAL *8} i - xp / expv ;

IF __GLOBAL__debug = 1 THEN

PRINT (" BPARTINT1 :" ++ { STRING *0} a)

FI

OD ;

ret := a

ENDVAR

END

PROC FPARTINT1 ( REAL *8 :: x ,

INTEGER *4 :: n VAR

REAL *8 :: ret ) ==

C:" Procedure : FPARTINT1 ";

C :"===================";

C:" Part ial Integrat ion ( forward ) of t ˆn * eˆ- t to t ";

C:" PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)";

C:" PARAM: n = power of t ";

C:" RETURN : ret = Result of integrat ion ";

VAR <

REAL *8 :: a := f0 ,

REAL *8 :: expv := f0 ,

INTEGER *4 :: xp := f0 ,

INTEGER *4 :: p := 0,

INTEGER *4 :: i := 0,

REAL *8 :: ret1 := f0

>:

EXP ( x VAR ret1 );

expv := ret1 ;

a := -x ** { REAL *8} n / expv ;

p := 1;

FOR i := 0 TO n - 1 STEP 1 DO

p := p * n - i ;

xp := (n - i - 1);

a := a - { REAL *8} p * x ** { REAL *8} xp / expv ;

IF __GLOBAL__debug = 1 THEN

PRINT (" FPARTINT1 :" ++ { STRING *0} a)

FI

OD ;

a := a + { REAL *8} p;

ret := a

ENDVAR

END

END

Listing A.8: part_int.wsl
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C :" Type - Level : WeakUnsafeTypedWSL ";

BEGIN

SKIP

WHERE

PROC SQRT ( REAL *8 :: x VAR

REAL *8 :: ret ) ==

C:" Procedure : SQRT ";

C :"==============";

C :" A quick square root funct ion ";

C :" PARAM: x = Number for square root ";

C :" RETURN : ret = Square root of x ";

VAR <

REAL *8:: n := x / f2 ,

REAL *8 :: xnew := f0 ,

INTEGER *4 :: i := 0

>:

FOR i := 0 TO MAX_IT STEP 1 DO

xnew := n + x / n / f2 ;

IF xnew < x THEN

n := xnew

ELSIF TRUE THEN

EXIT (1)

FI ;

IF debug = 1 THEN

PRINT (" SQRT :" ++ { STRING *0} xnew )

FI

OD;

ret := xnew

ENDVAR

END

PROC EXP ( REAL *8 :: x VAR

REAL *8 :: ret ) ==

C:" Procedure : EXP ";

C :"=============";

C :" Calculates powers of Euler ’s number ";

C :" PARAM: x = Power of e to calculate ";

C :" RETURN : ret = Euler ’s number to the power of x ";

VAR <

INTEGER *4 :: i := 1,

REAL *8 :: p := f1 ,

REAL *8 :: s := f1 ,

REAL *8 :: t := f2

>:

WHILE s <> t DO

t := s;
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p := p * x / { REAL *8} i ;

s := s + p;

i := i + 1;

IF debug = 1 THEN

PRINT (" EXP :" ++ { STRING *0} s)

FI

OD;

ret := s

ENDVAR

END

PROC FACUL( INTEGER *4 :: x VAR

INTEGER *8 :: ret ) ==

C:" Procedure : FACUL ";

C :"=============";

C :" Calculates the factorial of x ";

C :" PARAM: x = Factorial to calculate ";

C :" RETURN : ret = Factorial of x ";

VAR <

INTEGER *4 :: i := 1,

INTEGER *8 :: f := 1

>:

FOR i := 1 TO x STEP 1 DO

f := f * { INTEGER *8} i ;

IF debug = 1 THEN

PRINT (" FACUL :" ++ { STRING *0} f )

FI

OD;

ret := f

ENDVAR

END

END

ENDVAR

Listing A.9: lib.wsl
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A.2.3 Source Code in Object Oriented Typed WSL

C :" Type - Level : OOTypedWSL ";

BEGIN

VAR <

INTEGER *4 :: debug := 0,

OSTRUCT :: ANALYSIS := <

PUBLIC PROC ANALYSIS ( )

>,

ANALYSIS :: OANALYSIS := < >,

OSTRUCT :: ANALYSIS1 := <

PUBLIC PROC ANALYSIS1 ( REAL *8 , INTEGER *4 ) ,

PUBLIC PROC BPARTINT1 ( REAL *8 , INTEGER *4 VAR REAL *8 ) ,

PUBLIC PROC FPARTINT1 ( REAL *8 , INTEGER *4 VAR REAL *8 ) ,

>,

ANALYSIS1 :: OANALYSIS1 := < >,

OSTRUCT :: ANALYSIS2 := <

PUBLIC INTEGER *4 :: MAX_IT := 100 ,

PUBLIC PROC ANALYSIS2 ( INTEGER *4 ) ,

PUBLIC PROC FACUL( REAL *8 VAR REAL *8 ) ,

PUBLIC PROC SQRT ( REAL *8 VAR REAL *8 )

PUBLIC PROC EXP ( REAL *8 VAR REAL *8 )

>,

ANALYSIS2 :: OANALYSIS2 := < >

>:

! i OANALYSIS . ANALYSIS ()

ENDVAR

WHERE

PROC ANALYSIS ( ) ==

VAR <

REAL *8:: x := 1,

INTEGER *4 :: n := 10

>:

ANALYSIS1 ( x ,n );

ANALYSIS2 ( n )

ENDVAR

END
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END

Listing A.10: case_study.wsl

C :" Type - Level : OOTypedWSL ";

BEGIN

SKIP

WHERE

PROC ANALYSIS1 ( REAL *8 :: x ,

INTEGER *4 :: n) ==

VAR <

REAL *8 :: ret1 := f0

>:

PRINT ("\ nPart ial Integrat ion ");

PRINT ("- - - - - - - - - - - - - - - - - - -");

! i ANALYSIS1 . BPARTINT1 ( x ,n VAR ret1 );

PRINT (" Backward :" ++ { STRING *0} ret1 );

! i ANALYSIS1 . FPARTINT1 ( x ,n VAR ret1 );

PRINT (" Forward :" ++ { STRING *0} ret1 )

ENDVAR

END

PROC ANALYSIS2 ( INTEGER *4 :: n) ==

VAR <

INTEGER *4 :: f := 0,

REAL *8 :: n1 := f0 ,

REAL *8 :: n2 := f0 ,

INTEGER *8 :: ret1 := 0,

REAL *8 :: ret2 := f0 ,

REAL *8 :: ret3 := f0 ,

REAL *8 :: ret4 := f0 ,

REAL *8 :: r_f := f0

>:

PRINT ("\ nANALYSIS2 ");

PRINT (" - - - - - - - - -");

FOR f := 0 TO n STEP 1 DO

! i ANALYSIS2 . FACUL( f VAR ret1 );

PRINT (" Facul :" ++ { STRING *0} ret1 );

n1 := { REAL *8} ret1 ;

! i ANALYSIS2 . SQRT ( n1 VAR ret2 );

PRINT (" Sqrt :" ++ { STRING *0} ret2 );

r_f := {REAL *8} f ;

! i ANALYSIS2 .EXP ( r_f VAR ret3 );

PRINT (" Exp :" ++ { STRING *0} ret3 );

n2 := ret3 ;

! i ANALYSIS2 . SQRT ( n2 VAR ret4 );

PRINT (" Sqrt :" ++ { STRING *0} ret4 )
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OD

ENDVAR

END

END

Listing A.11: analysis.wsl

C :" Type - Level : OOTypedWSL ";

BEGIN

SKIP

WHERE

PROC BPARTINT1 ( REAL *8 :: x ,

INTEGER *4 :: n VAR

REAL *8 :: ret ) ==

C:" Procedure : BPARTINT1 ";

C :"===================";

C:" Part ial Integrat ion ( backward ) of t ˆn * eˆ- t to t ";

C:" PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)";

C:" PARAM: n = power of t ";

C:" RETURN : ret = Result of integrat ion ";

VAR <

REAL *8 :: a := f0 ,

REAL *8 :: expv := f0 ,

REAL *8 :: xp := f0 ,

INTEGER *4 :: i := 0,

REAL *8 :: ret1 := f0

>:

! i ANALYSIS1 . EXP ( x VAR ret1 );

expv := ret1 ;

a := f1 - f1 / expv ;

FOR i := 1 TO n STEP 1 DO

xp := x ** { REAL *8} i ;

a := a * { REAL *8} i - xp / expv ;

IF debug = 1 THEN

PRINT (" BPARTINT1 :" ++ { STRING *0} a)

FI

OD ;

ret := a

ENDVAR

END

PROC FPARTINT1 ( REAL *8 :: x ,

INTEGER *4 :: n VAR

REAL *8 :: ret ) ==

C:" Procedure : FPARTINT1 ";

C :"===================";

C:" Part ial Integrat ion ( forward ) of t ˆn * eˆ- t to t ";
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C:" PARAM: x = Upper l imit of Integrat ion ( lower l imit is 0)";

C:" PARAM: n = power of t ";

C:" RETURN : ret = Result of integrat ion ";

VAR <

REAL *8 :: a := f0 ,

REAL *8 :: expv := f0 ,

INTEGER *4 :: xp := f0 ,

INTEGER *4 :: p := 0,

INTEGER *4 :: i := 0,

REAL *8 :: ret1 := f0

>:

! i ANALYSIS1 . EXP ( x VAR ret1 );

expv := ret1 ;

a := -x ** { REAL *8} n / expv ;

p := 1;

FOR i := 0 TO n - 1 STEP 1 DO

p := p * n - i ;

xp := (n - i - 1);

a := a - { REAL *8} p * x ** { REAL *8} xp / expv ;

IF debug = 1 THEN

PRINT (" FPARTINT1 :" ++ { STRING *0} a)

FI

OD ;

a := a + { REAL *8} p;

ret := a

ENDVAR

END

END

Listing A.12: part_int.wsl

C :" Type - Level : OOTypedWSL ";

BEGIN

SKIP

WHERE

PROC SQRT ( REAL *8 :: x VAR

REAL *8 :: ret ) ==

C:" Procedure : SQRT ";

C :"==============";

C :" A quick square root funct ion ";

C :" PARAM: x = Number for square root ";

C :" RETURN : ret = Square root of x ";

VAR <

REAL *8:: n := x / f2 ,

REAL *8 :: xnew := f0 ,

INTEGER *4 :: i := 0
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>:

FOR i := 0 TO MAX_IT STEP 1 DO

xnew := n + x / n / f2 ;

IF xnew < x THEN

n := xnew

ELSIF TRUE THEN

EXIT (1)

FI ;

IF debug = 1 THEN

PRINT (" SQRT :" ++ { STRING *0} xnew )

FI

OD;

ret := xnew

ENDVAR

END

PROC EXP ( REAL *8 :: x VAR

REAL *8 :: ret ) ==

C:" Procedure : EXP ";

C :"=============";

C :" Calculates powers of Euler ’s number ";

C :" PARAM: x = Power of e to calculate ";

C :" RETURN : ret = Euler ’s number to the power of x ";

VAR <

INTEGER *4 :: i := 1,

REAL *8 :: p := f1 ,

REAL *8 :: s := f1 ,

REAL *8 :: t := f2

>:

WHILE s <> t DO

t := s;

p := p * x / { REAL *8} i ;

s := s + p;

i := i + 1;

IF debug = 1 THEN

PRINT (" EXP :" ++ { STRING *0} s)

FI

OD;

ret := s

ENDVAR

END

PROC FACUL( INTEGER *4 :: x VAR

INTEGER *8 :: ret ) ==

C:" Procedure : FACUL ";

C :"=============";

C :" Calculates the factorial of x ";
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C:" PARAM: x = Factorial to calculate ";

C :" RETURN : ret = Factorial of x ";

VAR <

INTEGER *4 :: i := 1,

INTEGER *8 :: f := 1

>:

FOR i := 1 TO x STEP 1 DO

f := f * { INTEGER *8} i ;

IF debug = 1 THEN

PRINT (" FACUL :" ++ { STRING *0} f )

FI

OD;

ret := f

ENDVAR

END

END

Listing A.13: lib.wsl
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A.2.4 Source Code in Java

import java . util . HashMap ;

publ ic class global {

/**

* Global Variables

*/

publ ic stat ic int debug = 0;

/**

* Object registry of the system

*/

private stat ic HashMap <String , Object > obj = new HashMap <S tring , Object >();

/**

* Main Entry Point

*

* @param args

* Command line arguments

*/

publ ic stat ic void main ( Str ing args []) {

// Instant iate Objects

register (" analysis " , new analysis ());

register (" analysis1 " , new analysis1 ());

register (" analysis2 " , new analysis2 ());

// Start

(( analysis ) global . get (" analysis ")). ANALYSIS ();

}

/**

* Register an object

*

* @param name

* Name of object

* @param o

* Object to register

*/

publ ic stat ic void register ( Str ing name , Object o) {

obj .put (name , o);

}

/**
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* Get a registered Object

*

* @param name

* Name of object

* @return The requested object

*/

publ ic stat ic Object get ( Str ing name ) {

return obj . get ( name );

}

}

Listing A.14: global.java

publ ic class analysis {

publ ic void ANALYSIS () {

double x = 1;

int n = 10;

(( analysis1 ) global .get (" analysis1 ")). ANALYSIS1 (x , n ) ;

(( analysis2 ) global .get (" analysis2 ")). ANALYSIS2 (n);

}

}

Listing A.15: analysis.java

publ ic class analysis1 {

publ ic void ANALYSIS1 ( double x , int n) {

double ret1 = 0;

System . out . pr int ln ("\ nPart ial Integrat ion ");

System . out . pr int ln (" - - - - - - - - - - - - - - - - - - -");

ret1 = BPARTINT1 (x , n );

System . out . pr int ln (" Backward :" + ret1 );

ret1 = FPARTINT1 (x , n );

System . out . pr int ln (" Forward :" + ret1 );

}

/**

* Part ial Integrat ion ( backward ) of t ˆn * eˆ- t to t

*

* @param x

* Upper l imit of Integrat ion ( lower l imit is 0)

* @param n

* Power of t

* @return Result of integrat ion

*/
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publ ic double BPARTINT1 ( double x , int n) {

double a = 0;

double expv = 0;

double xp = 0;

int i = 0;

double ret1 = 0;

ret1 = (( analysis2 ) global .get (" analysis2 ")). EXP (x );

expv = ret1 ;

a = (1 - (1 / expv ));

for ( i = 1; i < n + 1; i ++) {

xp = Math . pow(x , i );

a = (( a * i ) - (xp / expv ));

if ( global . debug == 1) {

System. out . pr int ln (" BPARTINT1 :" + a);

}

}

return a;

}

/**

* Part ial Integrat ion ( forward ) of t ˆn * eˆ- t to t

*

* @param x

* Upper l imit of Integrat ion ( lower l imit is 0)

* @param n

* Power of t

* @return Result of integrat ion

*/

publ ic double FPARTINT1 ( double x , int n) {

double a = 0;

double expv = 0;

double xp = 0;

int p = 0;

int i = 0;

double ret1 = 0;

ret1 = (( analysis2 ) global .get (" analysis2 ")). EXP (x );

expv = ret1 ;

a = (- Math . pow (x , n) / expv );

p = 1;

for ( i = 0; i < n; i++) {

p = (p * (n - i ));

xp = (n - i - 1);

a = (a - (p * ( Math . pow (x, xp ) / expv )));

if ( global . debug == 1) {

System. out . pr int ln (" FPARTINT1 :" + a);
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}

}

a = (a + p);

return a;

}

}

Listing A.16: analysis1.java

publ ic class analysis2 {

/**

* Maximum Iterat ions

*/

pr ivate int MAX_IT = 100;

publ ic void ANALYSIS2 ( int n) {

int f = 0;

double n1 = 0;

double n2 = 0;

long ret1 = 0;

double ret2 = 0;

double ret3 = 0;

double ret4 = 0;

System . out . pr int ln ("\ nANALYSIS2 ");

System . out . pr int ln (" - - - - - - - - -");

for ( f = 0; f < n + 1; f ++) {

ret1 = FACUL(f );

System .out . pr int ln (" Facul :" + ret1 );

n1 = ret1 ;

ret2 = SQRT (n1 );

System .out . pr int ln (" Sqrt :" + ret2 );

ret3 = EXP (f );

System .out . pr int ln (" Exp :" + ret3 );

n2 = ret3 ;

ret4 = SQRT (n2 );

System .out . pr int ln (" Sqrt :" + ret4 );

}

}

/**

* Calculates the factorial of x

*

* @param x

* Factorial to calculate

* @return Factorial of x
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*/

publ ic long FACUL( int x) {

int i = 1;

long f = 1;

for ( i = 1; i < x + 1; i ++) {

f = ( f * i );

if ( global . debug == 1) {

System. out . pr int ln (" FACUL :" + f );

}

}

return f ;

}

/**

* A quick square root funct ion ";

*

* @param x

* Number for square root

* @return Square root of x

*/

publ ic double SQRT ( double x) {

double n = (x / 2);

double xnew = 0;

int i = 0;

for ( i = 0; i < MAX_IT + 1; i ++) {

xnew = ((n + (x / n )) / 2);

if ( xnew < x) {

n = xnew ;

} else {

break;

}

if ( global . debug == 1) {

System. out . pr int ln (" SQRT :" + xnew );

}

}

return xnew ;

}

/**

* Calculates powers of Euler ’s number

*

* @param x

* Power of e to calculate

* @return Euler ’s number to the power of x

*/
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publ ic double EXP ( double x) {

int i = 1;

double p = 1;

double s = 1;

double t = 2;

whi le (s != t ) {

t = s;

p = (( p * x) / i );

s = (s + p);

i = ( i + 1);

if ( global . debug == 1) {

System. out . pr int ln (" EXP :" + s);

}

}

return s;

}

}

Listing A.17: analysis.java
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B.1 Lexer Token List

LexicalToken GroupName Characters ASCII-Code ID

WHITESPACE WhiteSpace 32 -1

WHITESPACE WhiteSpace 9 -1

WHITESPACE WhiteSpace 10 -1

SPECIALCHAR SpecialChar 34 -1

SPECIALCHAR SpecialChar 43 -1

SPECIALCHAR SpecialChar 61 -1

SPECIALCHAR SpecialChar 45 -1

SPECIALCHAR SpecialChar 41 -1

SPECIALCHAR SpecialChar 40 -1

SPECIALCHAR SpecialChar 42 -1

SPECIALCHAR SpecialChar 94 -1

SPECIALCHAR SpecialChar 125 -1

SPECIALCHAR SpecialChar 123 -1

SPECIALCHAR SpecialChar 63 -1

SPECIALCHAR SpecialChar 33 -1

SPECIALCHAR SpecialChar 124 -1

SPECIALCHAR SpecialChar 93 -1

SPECIALCHAR SpecialChar 91 -1

SPECIALCHAR SpecialChar 58 -1

SPECIALCHAR SpecialChar 44 -1

SPECIALCHAR SpecialChar 46 -1

SPECIALCHAR SpecialChar 60 -1

SPECIALCHAR SpecialChar 62 -1

SPECIALCHAR SpecialChar 47 -1

SPECIALCHAR SpecialChar 39 -1

SPECIALCHAR SpecialChar 92 -1

SPECIALCHAR SpecialChar 59 -1

S_ABORT ReservedWord ABORT 997

S_ABS ReservedWord ABS 100

S_ACTION ReservedWord Action 536

S_ACTIONS ReservedWord ACTIONS 69

S_AND ReservedWord AND 31

S_ARRAY ReservedWord ARRAY 94

S_ASSIGN ReservedWord Assign 533

S_ASSIGNS ReservedWord Assigns 534

S_ATEACH ReservedWord ATEACH 511

S_BEGIN ReservedWord BEGIN 500

S_BFUNCT ReservedWord BFUNCT 504

S_BUTLAST ReservedWord BUTLAST 111

S_CALL ReservedWord CALL 68
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S_COMMENT ReservedWord Comment 34

S_COMMENT ReservedWord COMMENT 34

S_COND_PLACE ReservedWord $Condition$ 803

S_CONDITION ReservedWord Condition 524

S_D_DO ReservedWord D_DO 47

S_D_IF ReservedWord D_IF 45

S_DEFINITION ReservedWord Definition 527

S_DEFINITIONS ReservedWord Definitions 528

S_DIV ReservedWord DIV 63

S_DO ReservedWord DO 28

S_ELSE ReservedWord ELSE 25

S_ELSIF ReservedWord ELSIF 24

S_EMPTY ReservedWord EMPTY 59

S_END ReservedWord END 75

S_ENDACTIONS ReservedWord ENDACTIONS 70

S_ENDFILL ReservedWord ENDFILL 116

S_ENDJOIN ReservedWord ENDJOIN 86

S_ENDMATCH ReservedWord ENDMATCH 513

S_ENDSPEC ReservedWord ENDSPEC 509

S_ENDVAR ReservedWord ENDVAR 64

S_ERROR ReservedWord ERROR 122

S_EVEN ReservedWord EVEN 57

S_EXISTS ReservedWord EXISTS 61

S_EXIT ReservedWord EXIT 65

S_EXPN_PLACE ReservedWord $Expn$ 801

S_EXPRESSION ReservedWord Expression 522

S_EXPRESSIONS ReservedWord Expressions 523

S_FALSE ReservedWord FALSE 50

S_FI ReservedWord FI 26

S_FILL ReservedWord FILL 115

S_FILL2 ReservedWord FILL2 123

S_FOR ReservedWord FOR 71

S_FORALL ReservedWord FORALL 60

S_FOREACH ReservedWord FOREACH 510

S_FRAC ReservedWord FRAC 102

S_FUNCT ReservedWord FUNCT 503

S_GLOBAL ReservedWord Global 538

S_GUARDED ReservedWord Guarded 535

S_HASH_TABLE ReservedWord HASH_TABLE 804

S_HEAD ReservedWord HEAD 108

S_IF ReservedWord IF 22

S_IFMATCH ReservedWord IFMATCH 512

S_IFMATCH2 ReservedWord IFMATCH2 514

S_IN ReservedWord IN 53
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S_INDEX ReservedWord INDEX 120

S_INT ReservedWord INT 101

S_INTS ReservedWord %Z 91

S_JOIN ReservedWord JOIN 85

S_LAST ReservedWord LAST 110

S_LENGTH ReservedWord LENGTH 114

S_LVALUE ReservedWord Lvalue 529

S_LVALUES ReservedWord Lvalues 530

S_MAP ReservedWord MAP 106

S_MAPHASH ReservedWord MAPHASH 121

S_MAX ReservedWord MAX 105

S_MEMBER ReservedWord MEMBER 55

S_MIN ReservedWord MIN 104

S_MOD ReservedWord MOD 62

S_MW_BFUNCT ReservedWord MW_BFUNCT 507

S_MW_FUNCT ReservedWord MW_FUNCT 506

S_MW_PROC ReservedWord MW_PROC 505

S_NAS ReservedWord NAS 532

S_NATS ReservedWord %N 90

S_NOT ReservedWord NOT 33

S_NOTIN ReservedWord NOTIN 54

S_NUMBERQ ReservedWord NUMBER 97

S_OD ReservedWord OD 29

S_ODD ReservedWord ODD 58

S_OR ReservedWord OR 32

S_POP ReservedWord POP 84

S_POWERSET ReservedWord POWERSET 113

S_PRINFLUSH ReservedWord PRINFLUSH 89

S_PRINT ReservedWord PRINT 88

S_PROC ReservedWord PROC 502

S_PUSH ReservedWord PUSH 83

S_RATS ReservedWord %Q 92

S_REALS ReservedWord %R 93

S_REDUCE ReservedWord REDUCE 107

S_RETURNS ReservedWord RETURNS 81

S_REVERSE ReservedWord REVERSE 112

S_SEQUENCE ReservedWord SEQUENCE 95

S_SGN ReservedWord SGN 103

S_SKIP ReservedWord SKIP 48

S_SLENGTH ReservedWord SLENGTH 118

S_SPEC ReservedWord SPEC 508

S_STAT_PLACE ReservedWord $Statement$ 800

S_STATEMENT ReservedWord Statement 520

S_STATEMENTS ReservedWord Statements 521
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S_STEP ReservedWord STEP 73

S_STRINGBF ReservedWord STRING 96

S_STS ReservedWord STS 531

S_SUBSET ReservedWord SUBSET 56

S_SUBSTR ReservedWord SUBSTR 119

S_TAIL ReservedWord TAIL 109

S_TERMINAL ReservedWord Terminal 537

S_THEN ReservedWord THEN 23

S_TO ReservedWord TO 72

S_TRUE ReservedWord TRUE 49

S_VAR ReservedWord VAR 30

S_VAR_PLACE ReservedWord $Var$ 802

S_VARIABLE ReservedWord Variable 526

S_WHERE ReservedWord WHERE 501

S_WHILE ReservedWord WHILE 27

S_ARROW SpecialToken 45;62 41

S_AT SpecialToken 64 74

S_AT_PAT_ONE SpecialToken 64;126;63 703

S_BACKSLASH SpecialToken 92 44

S_BECOMES SpecialToken 58;61 1

S_BOX SpecialToken 91;93 40

S_CARET SpecialToken 94 117

S_COLON SpecialToken 58 8

S_COMMA SpecialToken 44 12

S_CONCAT SpecialToken 43;43 20

S_DEFINE SpecialToken 61;61 21

S_DOTDOT SpecialToken 46;46 66

S_DOTSPACE SpecialToken 46;32 87

S_EOF SpecialToken 999

S_EQUAL SpecialToken 61 2

S_EXPONENT SpecialToken 42;42 46

S_FULLSTOP SpecialToken 46 52

S_GEQ SpecialToken 62;61 39

S_IDENTIFIER SpecialToken 35

S_INTERSECT SpecialToken 47;92 42

S_INVALID SpecialToken 998

S_LANGLE SpecialToken 60 15

S_LBRACE SpecialToken 123 17

S_LBRACKET SpecialToken 91 13

S_LEQ SpecialToken 60;61 38

S_LPAREN SpecialToken 40 10

S_MINUS SpecialToken 45 4

S_NEQ SpecialToken 60;62 9

S_NUMBER SpecialToken 36
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S_PAT_ANY SpecialToken 126;42 702

S_PAT_MANY SpecialToken 126;43 701

S_PAT_ONE SpecialToken 126;63 700

S_PLINK_P SpecialToken 33;80 77

S_PLINK_XC SpecialToken 33;88;67 80

S_PLINK_XF SpecialToken 33;88;70 79

S_PLINK_XP SpecialToken 33;88;80 78

S_PLUS SpecialToken 43 3

S_PRIME SpecialToken 39 805

S_QUERY SpecialToken 63 51

S_QUOTES SpecialToken 34 19

S_RANGLE SpecialToken 62 16

S_RBRACE SpecialToken 125 18

S_RBRACKET SpecialToken 93 14

S_RPAREN SpecialToken 41 11

S_SCOPAREN SpecialToken 76

S_SEMICOLON SpecialToken 59 7

S_SLASH SpecialToken 47 6

S_STRING SpecialToken 37

S_TIMES SpecialToken 42 5

S_UNION SpecialToken 92;47 43

S_VBAR SpecialToken 124 82
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B.2 Lexer Table

No CLevel Ident Char ASCII RegExp TGroup Token Value

0 0 WhiteSpace

1 0 ? S_QUERY

2 0 , S_COMMA

3 0 ] S_RBRACKET

4 0 { S_LBRACE

5 0 } S_RBRACE

6 0 ( S_LPAREN

7 0 ) S_RPAREN

8 0 | S_VBAR

9 0 ; S_SEMICOLON

10 0 ^ S_CARET

11 0 =

11 0.1 = S_DEFINE

11 0.2 1 S_EQUAL

12 0 :

12 0.1 = S_BECOMES

12 0.2 1 S_COLON

13 0 .

13 0.1 . S_DOTDOT

13 0.2 WhiteSpace S_DOTSPACE

13 0.3 1 S_FULLSTOP

14 0 +

14 0.1 + S_CONCAT

14 0.2 1 S_PLUS

15 0 -

15 0.1 62 S_ARROW

15 0.2 1 S_MINUS

16 0 *

16 0.1 * S_EXPONENT

16 0.2 1 S_TIMES

17 0 [

17 0.1 ] S_BOX

17 0.2 1 S_LBRACKET

18 0 60

18 0.1 62 S_NEQ

18 0.2 = S_LEQ

18 0.3 1 S_LANGLE

19 0 62

19 0.1 = S_GEQ

19 0.2 1 S_RANGLE
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20 0 !

20 0.1 P S_PLINK_P

20 0.2 X

20 0.2.1 P S_PLINK_XP

20 0.2.2 F S_PLINK_XF

20 0.2.3 C S_PLINK_XC

20 0.2.4 1 S_INVALID

20 0.3 1 S_INVALID

21 0 ~

21 0.1 ? S_PAT_ONE

21 0.2 + S_PAT_MANY

21 0.3 * S_PAT_ANY

21 0.4 1 S_INVALID

22 0 @

22 0.1 ~

22 0.1.1 ? S_AT_PAT_ONE SCAN_IDENTIFIER

22 0.1.2 1 S_INVALID SCAN_IDENTIFIER

22 0.2 1 S_AT SCAN_IDENTIFIER

23 0 C

23 0.1 :

23 0.1.1 34 S_COMMENT SCAN_COMMENT

24 0 /

24 0.1 \ S_INTERSECT

24 0.2 1 S_SLASH

25 0 \

25 0.1 / S_UNION

25 0.2 1 S_BACKSLASH

26 0 34 S_STRING SCAN_STRING

27 0 [0-9] S_NUMBER SCAN_NUMBER

28 0 ’ S_PRIME

29 0 ReservedWord SCAN_RESERVED_WORD

30 0 1 S_IDENTIFIER SCAN_IDENTIFIER
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B.3 Tree Node List

ID Name Syntax General Allowed Has

Name Type children value

General Types

1 T_Statement Statement 0 0

2 T_Expression Expression 0 0

3 T_Condition Condition 0 0

4 T_Definition Definition 0 0

5 T_Lvalue Lvalue 0 0

6 T_Assign Assign 0 5;2 0

7 T_Guarded Guarded 0 3;17 0

8 T_Action Action 0 9;17 0

9 T_Name Name 0 1

Group Types

10 T_Expressions Expressions 0 2 0

12 T_Lvalues Lvalues 0 5 0

13 T_Assigns Assigns 0 6 0

14 T_Definitions Definitions 0 4 0

15 T_Actions Actions 0 8 0

16 T_Guardeds Guardeds 0 0

17 T_Statements Statements 0 1 0

Specific Types

101 T_A_Proc_Call A_Proc_Call 1 9;10;12 0

102 T_MW_Proc_Call MW_Proc_Call 1 9;10;12 0

103 T_X_Proc_Call X_Proc_Call 1 9;10 0

104 T_Stat_Place Stat_Place 1 0

105 T_Stat_Pat_One Stat_Pat_One 1 1

106 T_Stat_Pat_Many Stat_Pat_Many 1 1

107 T_Stat_Pat_Any Stat_Pat_Any 1 1

108 T_Abort Abort 1 0

109 T_Assert Assert 1 3 0

110 T_Assignment Assignment 1 6 0

111 T_A_S A_S 1 9;15 0

112 T_Call Call 1 1

113 T_Comment Comment 1 1

114 T_Cond Cond 1 7 0

115 T_D_If D_If 1 7 0

116 T_D_Do D_Do 1 7 0

117 T_Exit Exit 1 1

118 T_For For 1 5;2;2;2;17 0
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119 T_Foreach_Stat Foreach_Stat 1 17 0

120 T_Foreach_Stats Foreach_Stats 1 17 0

121 T_Foreach_TS Foreach_TS 1 17 0

122 T_Foreach_TSs Foreach_TSs 1 17 0

123 T_Foreach_STS Foreach_STS 1 17 0

124 T_Foreach_Expn Foreach_Expn 1 17 0

125 T_Foreach_Cond Foreach_Cond 1 17 0

126 T_Ateach_Stat Ateach_Stat 1 17 0

127 T_Ateach_Stats Ateach_Stats 1 17 0

128 T_Ateach_TS Ateach_TS 1 17 0

129 T_Ateach_TSs Ateach_TSs 1 17 0

130 T_Ateach_STS Ateach_STS 1 17 0

131 T_Ateach_Expn Ateach_Expn 1 17 0

132 T_Ateach_Cond Ateach_Cond 1 17 0

133 T_Floop Floop 1 17 0

134 T_Join Join 1 17;17 0

135 T_Pop Pop 1 5;5 0

136 T_Proc_Call Proc_Call 1 9;10;12 0

137 T_Push Push 1 5;2 0

138 T_Spec Spec 1 12;3 0

139 T_Var Var 1 13;17 0

140 T_Where Where 1 17;14 0

141 T_While While 1 3;17 0

142 T_MW_Proc MW_Proc 1 9;12;12;17 0

143 T_MW_Funct MW_Funct 1 9;12;13;17;2 0

144 T_MW_BFunct MW_BFunct 1 9;12;13;17;3 0

145 T_Skip Skip 1 0

146 T_Foreach_NAS Foreach_NAS 1 17 0

147 T_Ateach_NAS Ateach_NAS 1 17 0

148 T_Foreach_Variable Foreach_Variable 1 17 0

149 T_Foreach_Global_Var Foreach_Global_Var 1 17 0

150 T_Ateach_Variable Ateach_Variable 1 17 0

151 T_Ateach_Global_Var Ateach_Global_Var 1 17 0

152 T_Foreach_Lvalue Foreach_Lvalue 1 17 0

153 T_Ateach_Lvalue Ateach_Lvalue 1 17 0

154 T_For_In For_In 1 5;2;17 0

155 T_Puthash Puthash 1 5;2;2 0

156 T_Print Print 1 10 0

157 T_Prinflush Prinflush 1 10 0

158 T_Maphash Maphash 1 9;2 0

159 T_Error Error 1 10 0

160 T_Stat_Int_One Stat_Int_One 1 2 0

161 T_Stat_Int_Any Stat_Int_Any 1 2 0

162 T_Stat_Val_One Stat_Val_One 1 0
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163 T_Stat_Val_Any Stat_Val_Any 1 0

166 T_Ifmatch2_Stat Ifmatch2_Stat 1 1;17;17 0

167 T_Ifmatch2_Expn Ifmatch2_Expn 1 2;17;17 0

168 T_Ifmatch2_Cond Ifmatch2_Cond 1 3;17;17 0

169 T_Ifmatch2_Defn Ifmatch2_Defn 1 4;17;17 0

170 T_Ifmatch2_Lvalue Ifmatch2_Lvalue 1 5;17;17 0

171 T_Ifmatch2_Assign Ifmatch2_Assign 1 6;17;17 0

172 T_Ifmatch2_Guarded Ifmatch2_Guarded 1 7;17;17 0

173 T_Ifmatch2_Action Ifmatch2_Action 1 8;17;17 0

174 T_Ifmatch2_Stats Ifmatch2_Stats 1 17;17;17 0

175 T_Ifmatch2_Expns Ifmatch2_Expns 1 10;17;17 0

177 T_Ifmatch2_Lvalues Ifmatch2_Lvalues 1 12;17;17 0

178 T_Ifmatch2_Assigns Ifmatch2_Assigns 1 13;17;17 0

179 T_Ifmatch2_Defns Ifmatch2_Defns 1 14;17;17 0

180 T_Ifmatch_Stat Ifmatch_Stat 1 1;17;17 0

181 T_Ifmatch_Expn Ifmatch_Expn 1 2;17;17 0

182 T_Ifmatch_Cond Ifmatch_Cond 1 3;17;17 0

183 T_Ifmatch_Defn Ifmatch_Defn 1 4;17;17 0

184 T_Ifmatch_Lvalue Ifmatch_Lvalue 1 5;17;17 0

185 T_Ifmatch_Assign Ifmatch_Assign 1 6;17;17 0

186 T_Ifmatch_Guarded Ifmatch_Guarded 1 7;17;17 0

187 T_Ifmatch_Action Ifmatch_Action 1 8;17;17 0

188 T_Ifmatch_Stats Ifmatch_Stats 1 17;17;17 0

189 T_Ifmatch_Expns Ifmatch_Expns 1 10;17;17 0

191 T_Ifmatch_Lvalues Ifmatch_Lvalues 1 12;17;17 0

192 T_Ifmatch_Assigns Ifmatch_Assigns 1 13;17;17 0

193 T_Ifmatch_Defns Ifmatch_Defns 1 14;17;17 0

201 T_X_Funct_Call X_Funct_Call 2 9;10 0

202 T_MW_Funct_Call MW_Funct_Call 2 9;10 0

203 T_Expn_Place Expn_Place 2 0

204 T_Var_Place Var_Place 2 0

205 T_Number Number 2 1

206 T_String String 2 1

207 T_Variable Variable 2 1

208 T_Primed_Var Primed_Var 2 1

209 T_Sequence Sequence 2 10 0

210 T_Aref Aref 2 2;10 0

211 T_Sub_Seg Sub_Seg 2 2;2;2 0

212 T_Rel_Seg Rel_Seg 2 2;2;2 0

213 T_Final_Seg Final_Seg 2 2;2 0

214 T_Funct_Call Funct_Call 2 9;10 0

215 T_Map Map 2 9;2 0

216 T_Reduce Reduce 2 9;2 0

217 T_Expn_Pat_One Expn_Pat_One 2 1
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218 T_Expn_Pat_Many Expn_Pat_Many 2 1

219 T_Expn_Pat_Any Expn_Pat_Any 2 1

220 T_Plus Plus 2 2 0

221 T_Minus Minus 2 2 0

222 T_Times Times 2 2 0

223 T_Divide Divide 2 2 0

224 T_Exponent Exponent 2 2 0

225 T_Mod Mod 2 2;2 0

226 T_Div Div 2 2;2 0

227 T_If If 2 3;2;2 0

228 T_Abs Abs 2 2 0

229 T_Frac Frac 2 2 0

230 T_Int Int 2 2 0

231 T_Sgn Sgn 2 2 0

232 T_Max Max 2 2 0

233 T_Min Min 2 2 0

234 T_Intersection Intersection 2 2 0

235 T_Union Union 2 2 0

236 T_Set_Diff Set_Diff 2 2;2 0

237 T_Powerset Powerset 2 2 0

238 T_Set Set 2 2;3 0

239 T_Array Array 2 2;2 0

240 T_Head Head 2 2 0

241 T_Tail Tail 2 2 0

242 T_Last Last 2 2 0

243 T_Butlast Butlast 2 2 0

244 T_Length Length 2 2 0

245 T_Reverse Reverse 2 2 0

246 T_Concat Concat 2 2 0

251 T_Negate Negate 2 2 0

252 T_Invert Invert 2 2 0

253 T_Struct Struct 2 9;2 0

254 T_Get_n Get_n 2 2;2 0

255 T_Get Get 2 2;2 0

256 T_Gethash Gethash 2 2;2 0

257 T_Hash_Table Hash_Table 2 0

258 T_Slength Slength 2 2 0

259 T_Substr Substr 2 10 0

260 T_Index Index 2 10 0

261 T_Expn_Int_One Expn_Int_One 2 2 0

262 T_Expn_Int_Any Expn_Int_Any 2 2 0

263 T_Expn_Val_One Expn_Val_One 2 0

264 T_Expn_Val_Any Expn_Val_Any 2 0

265 T_Fill2_Stat Fill2_Stat 2 1 0
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266 T_Fill2_Expn Fill2_Expn 2 2 0

267 T_Fill2_Cond Fill2_Cond 2 3 0

268 T_Fill2_Defn Fill2_Defn 2 4 0

269 T_Fill2_Lvalue Fill2_Lvalue 2 5 0

270 T_Fill2_Assign Fill2_Assign 2 6 0

271 T_Fill2_Guarded Fill2_Guarded 2 7 0

272 T_Fill2_Action Fill2_Action 2 8 0

273 T_Fill2_Stats Fill2_Stats 2 17 0

274 T_Fill2_Expns Fill2_Expns 2 10 0

276 T_Fill2_Lvalues Fill2_Lvalues 2 12 0

277 T_Fill2_Assigns Fill2_Assigns 2 13 0

278 T_Fill2_Defns Fill2_Defns 2 14 0

281 T_Fill_Stat Fill_Stat 2 1 0

282 T_Fill_Expn Fill_Expn 2 2 0

283 T_Fill_Cond Fill_Cond 2 3 0

284 T_Fill_Defn Fill_Defn 2 4 0

285 T_Fill_Lvalue Fill_Lvalue 2 5 0

286 T_Fill_Assign Fill_Assign 2 6 0

287 T_Fill_Guarded Fill_Guarded 2 7 0

288 T_Fill_Action Fill_Action 2 8 0

289 T_Fill_Stats Fill_Stats 2 17 0

290 T_Fill_Expns Fill_Expns 2 10 0

292 T_Fill_Lvalues Fill_Lvalues 2 12 0

293 T_Fill_Assigns Fill_Assigns 2 13 0

294 T_Fill_Defns Fill_Defns 2 14 0

301 T_X_BFunct_Call X_BFunct_Call 3 9;10 0

302 T_MW_BFunct_Call MW_BFunct_Call 3 9;10 0

303 T_Cond_Place Cond_Place 3 0

304 T_BFunct_Call BFunct_Call 3 9;10 0

305 T_Cond_Pat_One Cond_Pat_One 3 1

306 T_Cond_Pat_Many Cond_Pat_Many 3 1

307 T_Cond_Pat_Any Cond_Pat_Any 3 1

308 T_True True 3 0

309 T_False False 3 0

310 T_And And 3 3 0

311 T_Or Or 3 3 0

312 T_Not Not 3 3 0

313 T_Equal Equal 3 2;2 0

314 T_Less Less 3 2;2 0

315 T_Greater Greater 3 2;2 0

316 T_Less_Eq Less_Eq 3 2;2 0

317 T_Greater_Eq Greater_Eq 3 2;2 0

318 T_Not_Equal Not_Equal 3 2;2 0

319 T_Even Even 3 2 0

246



Appendix

320 T_Odd Odd 3 2 0

321 T_Empty Empty 3 2 0

322 T_Subset Subset 3 2;2 0

323 T_Member Member 3 2;2 0

324 T_Forall Forall 3 12;3 0

325 T_Exists Exists 3 12;3 0

326 T_Implies Implies 3 3;3 0

327 T_Sequenceq Sequenceq 3 2 0

328 T_Numberq Numberq 3 2 0

329 T_Stringq Stringq 3 2 0

330 T_In In 3 2;2 0

331 T_Not_In Not_In 3 2;2 0

332 T_Cond_Int_One Cond_Int_One 3 2 0

333 T_Cond_Int_Any Cond_Int_Any 3 2 0

334 T_Cond_Val_One Cond_Val_One 3 0

335 T_Cond_Val_Any Cond_Val_Any 3 0

401 T_Proc Proc 4 9;12;12;17 0

402 T_Funct Funct 4 9;12;13;2 0

403 T_BFunct BFunct 4 9;12;13;3 0

404 T_Defn_Pat_One Defn_Pat_One 4 1

405 T_Defn_Pat_Many Defn_Pat_Many 4 1

406 T_Defn_Pat_Any Defn_Pat_Any 4 1

407 T_Defn_Int_One Defn_Int_One 4 2 0

408 T_Defn_Int_Any Defn_Int_Any 4 2 0

409 T_Defn_Val_One Defn_Val_One 4 0

410 T_Defn_Val_Any Defn_Val_Any 4 0

501 T_Var_Lvalue Var_Lvalue 5 1

502 T_Aref_Lvalue Aref_Lvalue 5 5;10 0

503 T_Sub_Seg_Lvalue Sub_Seg_Lvalue 5 5;2;2 0

504 T_Rel_Seg_Lvalue Rel_Seg_Lvalue 5 5;2;2 0

505 T_Final_Seg_Lvalue Final_Seg_Lvalue 5 5;2 0

506 T_Lvalue_Pat_One Lvalue_Pat_One 5 1

507 T_Lvalue_Pat_Many Lvalue_Pat_Many 5 1

508 T_Lvalue_Pat_Any Lvalue_Pat_Any 5 1

509 T_Struct_Lvalue Struct_Lvalue 5 9;5 0

510 T_Lvalue_Int_One Lvalue_Int_One 5 2 0

511 T_Lvalue_Int_Any Lvalue_Int_Any 5 2 0

512 T_Lvalue_Val_One Lvalue_Val_One 5 0

513 T_Lvalue_Val_Any Lvalue_Val_Any 5 0

601 T_Assign_Pat_One Assign_Pat_One 6 1

602 T_Assign_Pat_Any Assign_Pat_Any 6 1

603 T_Assign_Pat_Many Assign_Pat_Many 6 1

604 T_Assign_Int_One Assign_Int_One 6 2 0

605 T_Assign_Int_Any Assign_Int_Any 6 2 0
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606 T_Assign_Val_One Assign_Val_One 6 0

607 T_Assign_Val_Any Assign_Val_Any 6 0

701 T_Guarded_Pat_One Guarded_Pat_One 7 1

702 T_Guarded_Pat_Any Guarded_Pat_Any 7 1

703 T_Guarded_Pat_Many Guarded_Pat_Many 7 1

704 T_Guarded_Int_One Guarded_Int_One 7 2 0

705 T_Guarded_Int_Any Guarded_Int_Any 7 2 0

706 T_Guarded_Val_One Guarded_Val_One 7 0

707 T_Guarded_Val_Any Guarded_Val_Any 7 0

801 T_Action_Pat_One Action_Pat_One 8 1

802 T_Action_Pat_Any Action_Pat_Any 8 1

803 T_Action_Pat_Many Action_Pat_Many 8 1

804 T_Action_Int_One Action_Int_One 8 2 0

805 T_Action_Int_Any Action_Int_Any 8 2 0

806 T_Action_Val_One Action_Val_One 8 0

807 T_Action_Val_Any Action_Val_Any 8 0

901 T_Name_Pat_One Name_Pat_One 9 1

902 T_Name_Int_One Name_Int_One 9 2 0

903 T_Name_Val_One Name_Val_One 9 0
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B.4 Tree Node List Continuation (PrettyPrintTemplate Column)

Name PrettyPrintTemplate

General Types

T_Statement

T_Expression

T_Condition

T_Definition

T_Lvalue

T_Assign (C0); ;S_BECOMES; ;(C1)

T_Guarded (C0); ;PARENT(T_Cond:S_THEN);PARENT(T_Ifmat ch_Guarded:S_THEN)

;PARENT(T_Ifmatch2_Guarded:S_THEN);PARENT(T_D_If:S_ ARROW);

PARENT(T_D_Do:S_ARROW);\n;(C1)

T_Action (C0); ;S_DEFINE;\n;(C1);S_END;\n

T_Name (V)

Group Types

T_Expressions (A,S_COMMA)

T_Lvalues (A,S_COMMA)

T_Assigns ;(A,S_COMMA# );

T_Definitions (A,\n);\n

T_Actions (A,)

T_Guardeds (A,)

T_Statements I;(A,S_SEMICOLON#\n);\n

Specific Types

T_A_Proc_Call S_PLINK_P; ;(C0);S_LPAREN;(C1); ;S_VAR; ; (C2);S_RPAREN

T_MW_Proc_Call (C0);S_LPAREN;(C1);S_RPAREN

T_X_Proc_Call S_PLINK_XP; ;(C0);S_LPAREN;(C1);S_RPARE N

T_Stat_Place S_STAT_PLACE

T_Stat_Pat_One S_PAT_ONE;(V)

T_Stat_Pat_Many S_PAT_MANY;(V)

T_Stat_Pat_Any S_PAT_ANY;(V)

T_Abort S_ABORT

T_Assert S_LBRACE;(C0);S_RBRACE

T_Assignment CS:S_LANGLE;(A,S_COMMA# );CS:S_RANGLE

T_A_S S_ACTIONS; ;(C0);S_COLON;\n;(A[1],);S_ENDACTION S

T_Call S_CALL; ;(V)

T_Comment C:67;S_COLON;C:34;(V);C:34

T_Cond S_IF; ;(C0);S_ELSIF; ;(A[1],S_ELSIF# );S_FI

T_D_If S_D_IF; ;(C0);S_BOX; ;(A[1],S_BOX# );S_FI

T_D_Do S_D_DO; ;(C0);S_BOX; ;(A[1],S_BOX# );S_OD

T_Exit S_EXIT;S_LPAREN;(V);S_RPAREN

T_For S_FOR; ;(C0); ;S_BECOMES; ;(C1); ;S_TO; ;(C2); ;S_ST EP; ;

(C3); ;S_DO;\n;(C4);S_OD
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T_Foreach_Stat S_FOREACH; ;S_STATEMENT; ;S_DO;\n;(A,); S_OD

T_Foreach_Stats S_FOREACH; ;S_STATEMENTS; ;S_DO;\n;(A, );S_OD

T_Foreach_TS S_FOREACH; ;S_TERMINAL; ;S_STATEMENT; ;S_D O;\n;(A,);S_OD

T_Foreach_TSs S_FOREACH; ;S_TERMINAL; ;S_STATEMENTS; ;S _DO;\n;(A,);S_OD

T_Foreach_STS S_FOREACH; ;S_STS; ;S_DO;\n;(A,);S_OD

T_Foreach_Expn S_FOREACH; ;S_EXPRESSION; ;S_DO;\n;(A,) ;S_OD

T_Foreach_Cond S_FOREACH; ;S_CONDITION; ;S_DO;\n;(A,); S_OD

T_Ateach_Stat S_ATEACH; ;S_STATEMENT; ;S_DO;\n;(A,);S_ OD

T_Ateach_Stats S_ATEACH; ;S_STATEMENTS; ;S_DO;\n;(A,); S_OD

T_Ateach_TS S_ATEACH; ;S_TERMINAL; ;S_STATEMENT; ;S_DO; \n;(A,);S_OD

T_Ateach_TSs S_ATEACH; ;S_TERMINAL; ;S_STATEMENTS; ;S_D O;\n;(A,);S_OD

T_Ateach_STS S_ATEACH; ;S_STS; ;S_DO;\n;(A,);S_OD

T_Ateach_Expn S_ATEACH; ;S_EXPRESSION; ;S_DO;\n;(A,);S _OD

T_Ateach_Cond S_ATEACH; ;S_CONDITION; ;S_DO;\n;(A,);S_ OD

T_Floop S_DO;\n;(C0);S_OD

T_Join S_JOIN;\n;(C0);S_COMMA;\n;(C1);S_ENDJOIN

T_Pop S_POP;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Proc_Call (C0);S_LPAREN;(C1); ;S_VAR; ;(C2);S_RPAREN

T_Push S_PUSH;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Spec S_SPEC; ;S_LANGLE;(C0);S_RANGLE;S_COLON; ;(C1); ;S_ENDSPEC

T_Var S_VAR; ;S_LANGLE;(C0);S_RANGLE;S_COLON;\n;(C1); S_ENDVAR

T_Where S_BEGIN;\n;(C0);S_WHERE;\n;(C1);S_END

T_While S_WHILE; ;(C0); ;S_DO;\n;(C1);S_OD

T_MW_Proc S_MW_PROC; ;(C0);S_LPAREN;(C1); ;S_VAR; ;(C2) ;

S_RPAREN; ;S_DEFINE;\n;(C3);S_END

T_MW_Funct S_MW_FUNCT; ;(C0);S_LPAREN;(C1);S_RPAREN; ; S_DEFINE;\n;S_VAR; ;

S_LANGLE;(C2);S_RANGLE;S_COLON;\n;(C3);S_SEMICOLON; \n;S_LPAREN;

(C4);S_RPAREN;\n;S_END

T_MW_BFunct S_MW_BFUNCT; ;(C0);S_QUERY;S_LPAREN;(C1); S_RPAREN; ;S_DEFINE;

\n;S_VAR; ;S_LANGLE;(C2);S_RANGLE;S_COLON;\n;(C3);S_ SEMICOLON;\n;

S_LPAREN;(C4);S_RPAREN;\n;S_END

T_Skip S_SKIP

T_Foreach_NAS S_FOREACH; ;S_NAS; ;S_DO;\n;(A,);S_OD

T_Ateach_NAS S_ATEACH; ;S_NAS; ;S_DO;\n;(A,);S_OD

T_Foreach_Variable S_FOREACH; ;S_VARIABLE; ;S_DO;\n;(A ,);S_OD

T_Foreach_Global_Var S_FOREACH; ;S_GLOBAL; ;S_VARIABLE ; ;S_DO;\n;(A,);S_OD

T_Ateach_Variable S_ATEACH; ;S_VARIABLE; ;S_DO;\n;(A,) ;S_OD

T_Ateach_Global_Var S_ATEACH; ;S_GLOBAL; ;S_VARIABLE; ; S_DO;\n;(A,);S_OD

T_Foreach_Lvalue S_FOREACH; ;S_LVALUE; ;S_DO;\n;(A,);S _OD

T_Ateach_Lvalue S_ATEACH; ;S_LVALUE; ;S_DO;\n;(A,);S_O D

T_For_In S_FOR; ;(C0); ;S_IN; ;(C1); ;S_DO;\n;(C2);S_OD

T_Puthash (C0);S_FULLSTOP;S_LPAREN;(C1);S_RPAREN; ;S_ BECOMES; ;(C2)

T_Print S_PRINT;S_LPAREN;(C0);S_RPAREN

T_Prinflush S_PRINFLUSH;S_LPAREN;(C0);S_RPAREN
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T_Maphash S_MAPHASH;S_LPAREN;S_QUOTES;(C0);S_QUOTES;S_COMMA;

(C1);S_RPAREN

T_Error S_ERROR;S_LPAREN;(C0);S_RPAREN

T_Stat_Int_One

T_Stat_Int_Any

T_Stat_Val_One

T_Stat_Val_Any

T_Ifmatch2_Stat S_IFMATCH2; ;S_STATEMENT;\n;(C0);\n;S _THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Expn S_IFMATCH2; ;S_EXPRESSION;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Cond S_IFMATCH2; ;S_CONDITION;\n;(C0);\n;S _THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Defn S_IFMATCH2; ;S_DEFINITION;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Lvalue S_IFMATCH2; ;S_LVALUE;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Assign S_IFMATCH2; ;S_ASSIGN;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Guarded S_IFMATCH2; ;S_GUARDED;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Action S_IFMATCH2; ;S_ACTION;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Stats S_IFMATCH2; ;S_STATEMENTS;\n;(C0);\n ;S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Expns S_IFMATCH2; ;S_EXPRESSIONS;\n;(C0);\ n;S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Lvalues S_IFMATCH2; ;S_LVALUES;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Assigns S_IFMATCH2; ;S_ASSIGNS;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch2_Defns S_IFMATCH2; ;S_DEFINITIONS;\n;(C0);\ n;S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Stat S_IFMATCH; ;S_STATEMENT;\n;(C0);\n;S_T HEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Expn S_IFMATCH; ;S_EXPRESSION;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Cond S_IFMATCH; ;S_CONDITION;\n;(C0);\n;S_T HEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Defn S_IFMATCH; ;S_DEFINITION;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Lvalue S_IFMATCH; ;S_LVALUE;\n;(C0);\n;S_TH EN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Assign S_IFMATCH; ;S_ASSIGN;\n;(C0);\n;S_TH EN;
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\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Guarded S_IFMATCH; ;S_GUARDED;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Action S_IFMATCH; ;S_ACTION;\n;(C0);\n;S_TH EN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Stats S_IFMATCH; ;S_STATEMENTS;\n;(C0);\n;S _THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Expns S_IFMATCH; ;S_EXPRESSIONS;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Lvalues S_IFMATCH; ;S_LVALUES;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Assigns S_IFMATCH; ;S_ASSIGNS;\n;(C0);\n;S_ THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_Ifmatch_Defns S_IFMATCH; ;S_DEFINITIONS;\n;(C0);\n; S_THEN;

\n;(C1);S_ELSE;\n;(C2);S_ENDMATCH

T_X_Funct_Call S_PLINK_XF; ;(C0);S_LPAREN;(C1);S_RPAR EN

T_MW_Funct_Call (C0);S_LPAREN;(C1);S_RPAREN

T_Expn_Place S_EXPN_PLACE

T_Var_Place S_VAR_PLACE

T_Number (V)

T_String C:34;(V);C:34

T_Variable (V)

T_Primed_Var

T_Sequence S_LANGLE; ;(A,); ;S_RANGLE

T_Aref (C0);S_LBRACKET;(C1);S_RBRACKET

T_Sub_Seg (C0);S_LBRACKET;(C1);S_DOTDOT;(C2);S_RBRAC KET

T_Rel_Seg (C0);S_LBRACKET;(C1);S_COMMA;(C2);S_RBRACK ET

T_Final_Seg (C0);S_LBRACKET;(C1);S_DOTDOT;S_RBRACKET

T_Funct_Call (C0);S_LPAREN;(C1);S_RPAREN

T_Map S_MAP;S_LPAREN;C:34;(C0);C:34;S_COMMA;(C1);S_R PAREN

T_Reduce S_REDUCE;S_LPAREN;C:34;(C0);C:34;S_COMMA;(C 1);S_RPAREN

T_Expn_Pat_One S_PAT_ONE;(V)

T_Expn_Pat_Many S_PAT_MANY;(V)

T_Expn_Pat_Any S_PAT_ANY;(V)

T_Plus S_LPAREN;(A, #S_PLUS# );S_RPAREN

T_Minus S_LPAREN;(A, #S_MINUS# );S_RPAREN

T_Times S_LPAREN;(A, #S_TIMES# );S_RPAREN

T_Divide S_LPAREN;(A, #S_SLASH# );S_RPAREN

T_Exponent (C0); ;S_EXPONENT; ;(C1)

T_Mod S_LPAREN;(C0); ;S_MOD; ;(C1);S_RPAREN;

T_Div S_LPAREN;(C0); ;S_DIV; ;(C1);S_RPAREN;

T_If S_IF; ;(C0); ;S_THEN; ;(C1); ;S_ELSE; ;(C2); ;S_FI

T_Abs S_ABS;S_LPAREN;(A,);S_RPAREN

T_Frac S_FRAC;S_LPAREN;(A,);S_RPAREN
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T_Int S_INT;S_LPAREN;(A,);S_RPAREN

T_Sgn S_SGN;S_LPAREN;(A,);S_RPAREN

T_Max S_MAX;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Min S_MIN;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Intersection (C0); ;S_INTERSECT; ;(C1)

T_Union (C0); ;S_UNION; ;(C1)

T_Set_Diff (C0); ;S_BACKSLASH; ;(C1)

T_Powerset S_POWERSET;S_LPAREN;(A,);S_RPAREN

T_Set S_LBRACE;(C0); ;S_VBAR; ;(C1);S_RBRACE

T_Array S_ARRAY;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Head S_HEAD;S_LPAREN;(A,);S_RPAREN

T_Tail S_TAIL;S_LPAREN;(A,);S_RPAREN

T_Last S_LAST;S_LPAREN;(A,);S_RPAREN

T_Butlast S_BUTLAST;S_LPAREN;(A,);S_RPAREN

T_Length S_LENGTH;S_LPAREN;(A,);S_RPAREN

T_Reverse S_REVERSE;S_LPAREN;(A,);S_RPAREN

T_Concat (C0); ;S_CONCAT; ;(C1)

T_Negate S_MINUS;(C0)

T_Invert

T_Struct (C1);S_FULLSTOP;(C0)

T_Get_n (C0);S_CARET;(C1)

T_Get (C0);S_CARET;S_CARET;(C1)

T_Gethash (C0);S_FULLSTOP;S_LPAREN;(C1);S_RPAREN

T_Hash_Table S_HASH_TABLE

T_Slength S_SLENGTH;S_LPAREN;(A,);S_RPAREN

T_Substr S_SUBSTR;S_LPAREN;(A,);S_RPAREN

T_Index S_INDEX;S_LPAREN;(A,);S_RPAREN

T_Expn_Int_One

T_Expn_Int_Any

T_Expn_Val_One

T_Expn_Val_Any

T_Fill2_Stat S_FILL; ;S_STATEMENT;\n;(C0);\n;S_ENDFIL L

T_Fill2_Expn S_FILL; ;S_EXPRESSION;\n;(C0);\n;S_ENDFI LL

T_Fill2_Cond S_FILL; ;S_CONDITION;\n;(C0);\n;S_ENDFIL L

T_Fill2_Defn S_FILL; ;S_DEFINITION;\n;(C0);\n;S_ENDFI LL

T_Fill2_Lvalue S_FILL; ;S_LVALUE;\n;(C0);\n;S_ENDFILL

T_Fill2_Assign S_FILL; ;S_ASSIGN;\n;(C0);\n;S_ENDFILL

T_Fill2_Guarded S_FILL; ;S_GUARDED;\n;(C0);\n;S_ENDFI LL

T_Fill2_Action S_FILL; ;S_ACTION;\n;(C0);\n;S_ENDFILL

T_Fill2_Stats S_FILL; ;S_STATEMENTS;\n;(C0);\n;S_ENDF ILL

T_Fill2_Expns S_FILL; ;S_EXPRESSIONS;\n;(C0);\n;S_END FILL

T_Fill2_Lvalues S_FILL; ;S_LVALUES;\n;(C0);\n;S_ENDFI LL

T_Fill2_Assigns S_FILL; ;S_ASSIGNS;\n;(C0);\n;S_ENDFI LL

T_Fill2_Defns S_FILL; ;S_DEFINITIONS;\n;(C0);\n;S_END FILL
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T_Fill_Stat S_FILL; ;S_STATEMENT;\n;(C0);\n;S_ENDFILL

T_Fill_Expn S_FILL; ;S_EXPRESSION;\n;(C0);\n;S_ENDFIL L

T_Fill_Cond S_FILL; ;S_CONDITION;\n;(C0);\n;S_ENDFILL

T_Fill_Defn S_FILL; ;S_DEFINITION;\n;(C0);\n;S_ENDFIL L

T_Fill_Lvalue S_FILL; ;S_LVALUE;\n;(C0);\n;S_ENDFILL

T_Fill_Assign S_FILL; ;S_ASSIGN;\n;(C0);\n;S_ENDFILL

T_Fill_Guarded S_FILL; ;S_GUARDED;\n;(C0);\n;S_ENDFIL L

T_Fill_Action S_FILL; ;S_ACTION;\n;(C0);\n;S_ENDFILL

T_Fill_Stats S_FILL; ;S_STATEMENTS;\n;(C0);\n;S_ENDFI LL

T_Fill_Expns S_FILL; ;S_EXPRESSIONS;\n;(C0);\n;S_ENDF ILL

T_Fill_Lvalues S_FILL; ;S_LVALUES;\n;(C0);\n;S_ENDFIL L

T_Fill_Assigns S_FILL; ;S_ASSIGNS;\n;(C0);\n;S_ENDFIL L

T_Fill_Defns S_FILL; ;S_DEFINITIONS;\n;(C0);\n;S_ENDF ILL

T_X_BFunct_Call S_PLINK_XC; ;(C0);S_QUERY;S_LPAREN;(C 1);S_RPAREN

T_MW_BFunct_Call (C0);S_QUERY;S_LPAREN;(C1);S_RPAREN

T_Cond_Place S_COND_PLACE

T_BFunct_Call (C0);S_QUERY;S_LPAREN;(C1);S_RPAREN

T_Cond_Pat_One S_PAT_ONE;(V)

T_Cond_Pat_Many S_PAT_MANY;(V)

T_Cond_Pat_Any S_PAT_ANY;(V)

T_True S_TRUE

T_False S_FALSE

T_And (C0); ;S_AND; ;(C1)

T_Or (C0); ;S_OR; ;(C1)

T_Not S_NOT; ;(A,)

T_Equal (C0); ;S_EQUAL; ;(C1)

T_Less (C0); ;S_LANGLE; ;(C1)

T_Greater (C0); ;S_RANGLE; ;(C1)

T_Less_Eq (C0); ;S_LEQ; ;(C1)

T_Greater_Eq (C0); ;S_GEQ; ;(C1)

T_Not_Equal (C0); ;S_NEQ; ;(C1)

T_Even S_EVEN;S_QUERY;S_LPAREN;(A,);S_RPAREN

T_Odd S_ODD;S_QUERY;S_LPAREN;(A,);S_RPAREN

T_Empty S_EMPTY;S_QUERY;S_LPAREN;(A,);S_RPAREN

T_Subset S_SUBSET;S_QUERY;S_LPAREN;(C0);S_COMMA;(C1) ;S_RPAREN

T_Member S_MEMBER;S_QUERY;S_LPAREN;(C0);S_COMMA;(C1);S_RPAREN

T_Forall S_FORALL;S_LANGLE;(C0);S_RANGLE;S_COLON; ;(C 1); ;S_END

T_Exists S_EXISTS;S_LANGLE;(C0);S_RANGLE;S_COLON; ;(C 1); ;S_END

T_Implies S_IMPLIES;S_QUERY;S_LPAREN;(C0);S_COMMA;(C 1);S_RPAREN

T_Sequenceq

T_Numberq

T_Stringq

T_In (C0); ;S_IN; ;(C1)

T_Not_In (C0); ;S_NOTIN; ;(C1)
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T_Cond_Int_One

T_Cond_Int_Any

T_Cond_Val_One

T_Cond_Val_Any

T_Proc S_PROC; ;(C0);S_LPAREN;(C1); ;S_VAR; ;(C2);S_RPA REN; ;S_DEFINE;

\n;(C3);S_END

T_Funct S_FUNCT; ;(C0);S_LPAREN;(C1);S_RPAREN; ;S_DEFI NE;\n;S_VAR; ;

S_LANGLE;(C2);S_RANGLE;S_COLON;\n;S_LPAREN;(C3);S_R PAREN;\n;S_END

T_BFunct S_BFUNCT; ;(C0);S_QUERY;S_LPAREN;(C1);S_RPAR EN; ;S_DEFINE;\n;

S_VAR; ;S_LANGLE;(C2);S_RANGLE;S_COLON;\n;S_LPAREN;( C3);S_RPAREN;

\n;S_END

T_Defn_Pat_One S_PAT_ONE;(V)

T_Defn_Pat_Many S_PAT_MANY;(V)

T_Defn_Pat_Any S_PAT_ANY;(V)

T_Defn_Int_One

T_Defn_Int_Any

T_Defn_Val_One

T_Defn_Val_Any

T_Var_Lvalue (V)

T_Aref_Lvalue (C0);S_LBRACKET;(C1);S_RBRACKET

T_Sub_Seg_Lvalue (C0);S_LBRACKET;(C1);S_DOTDOT;(C2); S_RBRACKET

T_Rel_Seg_Lvalue (C0);S_LBRACKET;(C1);S_COMMA;(C2);S _RBRACKET

T_Final_Seg_Lvalue (C0);S_LBRACKET;(C1);S_DOTDOT;S_R BRACKET

T_Lvalue_Pat_One S_PAT_ONE;(V)

T_Lvalue_Pat_Many S_PAT_MANY;(V)

T_Lvalue_Pat_Any S_PAT_ANY;(V)

T_Struct_Lvalue (C1);S_FULLSTOP;(C0)

T_Lvalue_Int_One

T_Lvalue_Int_Any

T_Lvalue_Val_One

T_Lvalue_Val_Any

T_Assign_Pat_One S_PAT_ONE;(V)

T_Assign_Pat_Any S_PAT_ANY;(V)

T_Assign_Pat_Many S_PAT_MANY;(V)

T_Assign_Int_One

T_Assign_Int_Any

T_Assign_Val_One

T_Assign_Val_Any

T_Guarded_Pat_One S_PAT_ONE;(V)

T_Guarded_Pat_Any S_PAT_ANY;(V)

T_Guarded_Pat_Many S_PAT_MANY;(V)

T_Guarded_Int_One

T_Guarded_Int_Any

T_Guarded_Val_One
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T_Guarded_Val_Any

T_Action_Pat_One S_PAT_ONE;(V)

T_Action_Pat_Any S_PAT_ANY;(V)

T_Action_Pat_Many S_PAT_MANY;(V)

T_Action_Int_One

T_Action_Int_Any

T_Action_Val_One

T_Action_Val_Any

T_Name_Pat_One S_PAT_ONE;(V)

T_Name_Int_One

T_Name_Val_One
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B.5 JavaCC Definition for Untyped WSL

/*

* The WSL defini t ion for JavaCC

*

* by Matthias Ladkau ( matthias@ladkau .de )

*/

opt ions {

MULTI= true ;

LOOKAHEAD =3;

STATIC= false ;

DEBUG_PARSER = false ;

DEBUG_LOOKAHEAD = false ;

DEBUG_TOKEN_MANAGER = false ;

}

PARSER_BEGIN ( WSLParser )

package dynamic_typed_wsl ;

import java . io . InputStream ;

publ ic class WSLParser {

publ ic stat ic void main ( Str ing args []) {

System . out . pr int ln (" Reading from standard input .. .") ;

WSLParser p = new WSLParser ( System. in ) ;

try {

ASTparseWSL n = p. parseWSL () ;

n.dump ("") ;

System .out . pr int ln (" Parsing was successful ") ;

} catch ( Exception e) {

System .out . pr int ln (" Got an error :") ;

System .out . pr int ln (e. getMessage () ) ;

e . pr intStackTrace () ;

}

}

publ ic stat ic ASTparseWSL parseStream ( InputStream strea m ) throws Exception {

WSLParser p = new WSLParser ( stream);

return p. parseWSL () ;

}

}
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PARSER_END ( WSLParser )

/* ========

Lexer Part

========

*/

SKIP : /* Skip WhiteSpace */

{

" "

| "\ t "

| "\ n"

| "\ r "

}

TOKEN : /* KEYWORDS */

{

< S_ABORT : " ABORT" >

| < S_ABS: "ABS " >

| < S_ACTION : " Action" >

| < S_ACTIONS : " ACTIONS " >

| < S_AND: "AND " >

| < S_ARRAY : " ARRAY" >

| < S_ASSIGN : " Assign" >

| < S_ASSIGNS : " Assigns " >

| < S_ATEACH : " ATEACH" >

| < S_BEGIN : " BEGIN" >

| < S_BFUNCT : " BFUNCT" >

| < S_BUTLAST : " BUTLAST " >

| < S_CALL : " CALL " >

| < S_COMMENT : " Comment :" | " COMMENT :" | "C:">

| < S_COND_PLACE : " $Condit ion$ " >

| < S_CONDITION : " Condit ion " >

| < S_D_DO : " D_DO " >

| < S_D_IF : " D_IF " >

| < S_DEFINITION : " Defini t ion " >

| < S_DEFINITIONS : " Defini t ions " >

| < S_DIV: "DIV " >

| < S_DO : "DO " >

| < S_ELSE : " ELSE " >

| < S_ELSIF : " ELSIF" >

| < S_EMPTY : " EMPTY" >

| < S_END: "END " >
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| < S_ENDACTIONS : " ENDACTIONS " >

| < S_ENDFILL : " ENDFILL " >

| < S_ENDJOIN : " ENDJOIN " >

| < S_ENDMATCH : " ENDMATCH " >

| < S_ENDSPEC : " ENDSPEC " >

| < S_ENDVAR : " ENDVAR" >

| < S_ERROR : " ERROR" >

| < S_EVEN : " EVEN " >

| < S_EXISTS : " EXISTS" >

| < S_EXIT : " EXIT " >

| < S_EXPN_PLACE : " $Expn$ " >

| < S_EXPRESSION : " Expression " >

| < S_EXPRESSIONS : " Expressions " >

| < S_FALSE : " FALSE" >

| < S_FI : "FI " >

| < S_FILL : " FILL " >

| < S_FILL2 : " FILL2" >

| < S_FOR: "FOR " >

| < S_FORALL : " FORALL" >

| < S_FOREACH : " FOREACH " >

| < S_FRAC : " FRAC " >

| < S_FUNCT : " FUNCT" >

| < S_GLOBAL : " Global " >

| < S_GUARDED : " Guarded " >

| < S_HASH_TABLE : " HASH_TABLE " >

| < S_HEAD : " HEAD " >

| < S_IF : " IF " >

| < S_IFMATCH : " IFMATCH " >

| < S_IFMATCH2 : " IFMATCH2 " >

| < S_IN : " IN " >

| < S_INDEX : " INDEX" >

| < S_INT: " INT " >

| < S_INTS : "%Z" >

| < S_JOIN : " JOIN " >

| < S_LAST : " LAST " >

| < S_LENGTH : " LENGTH" >

| < S_LVALUE : " Lvalue" >

| < S_LVALUES : " Lvalues " >

| < S_MAP: "MAP " >

| < S_MAPHASH : " MAPHASH " >

| < S_MAX: "MAX " >

| < S_MEMBER : " MEMBER" >

| < S_MIN: "MIN " >

| < S_MOD: "MOD " >

| < S_MW_BFUNCT : " MW_BFUNCT " >
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| < S_MW_FUNCT : " MW_FUNCT " >

| < S_MW_PROC : " MW_PROC " >

| < S_NAS: "NAS " >

| < S_NATS : "%N" >

| < S_NOT: "NOT " >

| < S_NOTIN : " NOTIN" >

| < S_NUMBERQ : " NUMBER " >

| < S_OD : "OD " >

| < S_ODD: "ODD " >

| < S_OR : "OR " >

| < S_POP: "POP " >

| < S_POWERSET : " POWERSET " >

| < S_PRINFLUSH : " PRINFLUSH " >

| < S_PRINT : " PRINT" >

| < S_PROC : " PROC " >

| < S_PUSH : " PUSH " >

| < S_RATS : "%Q" >

| < S_REALS : "%R" >

| < S_REDUCE : " REDUCE" >

| < S_RETURNS : " RETURNS " >

| < S_REVERSE : " REVERSE " >

| < S_SEQUENCE : " SEQUENCE " >

| < S_SGN: "SGN " >

| < S_SKIP : " SKIP " >

| < S_SLENGTH : " SLENGTH " >

| < S_SPEC : " SPEC " >

| < S_STAT_PLACE : " $Statement$ " >

| < S_STATEMENT : " Statement " >

| < S_STATEMENTS : " Statements " >

| < S_STEP : " STEP " >

| < S_STRINGBF : " STRING " >

| < S_STS: "STS " >

| < S_SUBSET : " SUBSET" >

| < S_SUBSTR : " SUBSTR" >

| < S_TAIL : " TAIL " >

| < S_TERMINAL : " Terminal " >

| < S_THEN : " THEN " >

| < S_TO : "TO " >

| < S_TRUE : " TRUE " >

| < S_VAR: "VAR " >

| < S_VAR_PLACE : " $Var$" >

| < S_VARIABLE : " Variable " >

| < S_WHERE : " WHERE" >

| < S_WHILE : " WHILE" >

}
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TOKEN : /* Special Tokens */

{

< S_ARROW : " ->" >

| < S_AT : "@" >

| < S_AT_PAT_ONE : "@˜?" >

| < S_BACKSLASH : "\\" >

| < S_BECOMES : ":=" >

| < S_BOX: "[]" >

| < S_CARET : "ˆ" >

| < S_COLON : ":" >

| < S_COMMA : " ," >

| < S_CONCAT : "++" >

| < S_DEFINE : "==" >

| < S_DOTDOT : ".." >

| < S_DOTSPACE : ". " >

| < S_EQUAL : "=" >

| < S_EXPONENT : "**" >

| < S_FULLSTOP : "." >

| < S_GEQ: " >=" >

| < S_INTERSECT : "/\ \" >

| < S_LANGLE : "<" >

| < S_LBRACE : "{" >

| < S_LBRACKET : "[" >

| < S_LEQ: " <=" >

| < S_LPAREN : "(" >

| < S_MINUS : " -" >

| < S_NEQ: "<>" >

| < S_PAT_ANY : "˜*" >

| < S_PAT_MANY : "˜+" >

| < S_PAT_ONE : "˜?" >

| < S_PLINK_P : "! P" >

| < S_PLINK_XC : "! XC" >

| < S_PLINK_XF : "! XF" >

| < S_PLINK_XP : "! XP" >

| < S_PLUS : "+" >

| < S_PRIME : " ’" >

| < S_QUERY : "?" >

| < S_QUOTES : "\"" >

| < S_RANGLE : ">" >

| < S_RBRACE : "}" >

| < S_RBRACKET : "]" >

| < S_RPAREN : ") " >

| < S_SEMICOLON : ";" >

| < S_SLASH : "/" >
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| < S_TIMES : "*" >

| < S_UNION : "\\ /" >

| < S_VBAR : "|" >

}

TOKEN : /* Values */

{

< S_NUMBER : ["0" -"9"] ( ["0" -"9"]) * >

| < S_IDENTIFIER : <LETTER > (< LETTER >|< DIGIT >)* >

| < # LETTER : [" _" ,"a " -"z" ,"A" -"Z"] >

| < # DIGIT : ["0" -"9"] >

| < S_AMBIGOUS_IDENTIFIER : " @JOIN">

| < S_STRING :

"\""

((˜ [" \""])

| ([" _" ,"a" -"z " ,"A" -"Z"])

| ( ["0" -"9"])

| "\ n"

| "\ r \n"

)*

"\""

>

}

/* ========

Parser Part

========

*/

ASTparseWSL parseWSL () : {}

{

statements () <EOF >

/*

Entry points for general nodes

T_Statements -> statements ()

T_Statement -> statement ()

T_Expression -> expression ()

T_Expressions -> expressions ()

T_Condit ion -> condit ion ()
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T_Defini t ion -> define ()

T_Defini t ions -> defines ()

T_Assign -> assign ()

T_Assigns -> assigns_node ()

T_Action -> act ion ()

T_Guarded -> guarded ()

T_Lvalue -> lvalue ()

T_Lvalues -> lvalues ()

*/

{ return j j tThis ; }

}

/*

* Statements

* =========

*/

void statements () # T_Statements : {}

{

statement () (< S_SEMICOLON > statement () )*

}

void statement () # void : {}

{

stat_if ()

| stat_d_if ()

| stat_d_do ()

| stat_while ()

| stat_do ()

| stat_exit ()

| stat_for ()

| stat_var ()

| stat_comment ()

| stat_assert ()

| stat_assignment ()

| stat_push ()

| stat_pop ()

| stat_join ()

| stat_act ions ()

| stat_cal l ()

| stat_print ()

| stat_mw_func_decl ()
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| stat_begin ()

| stat_foreach ()

| stat_ateach ()

| stat_ifmatch ()

| stat_ifmatch2 ()

| stat_maphash ()

| stat_error ()

| stat_spec ()

/* Assignments */

| stat_single_assign ()

/* Pattern Statements */

| stat_pattern ()

/* Proc Call */

| stat_proc_cal l ()

/* Trivial Statements */

| (< S_SKIP >) # T_Skip

| (< S_ABORT >) # T_Abort

| (< S_STAT_PLACE >) # T_Stat_Place

}

void stat_if () # void : {}

{

(

(<S_IF > condit ion () <S_THEN > statements () )# T_Guarded (2 )

((< S_ELSIF > condit ion () <S_THEN > statements () )# T_Guard ed (2) )*

(

(<S_ELSE ># T_True statements () <S_FI >)# T_Guarded (2)

| pseudo_else () <S_FI >

)

)# T_Cond

}

void stat_d_if () # void : {}

{

(

(<S_D_IF > condit ion () <S_ARROW > statements () )# T_Guarde d (2)

((< S_BOX > condit ion () <S_ARROW > statements () )# T_Guarde d (2) )*

<S_FI >

)# T_D_If

}
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void stat_d_do () # void : {}

{

(

(<S_D_DO > condit ion () <S_ARROW > statements () )# T_Guarde d (2)

((< S_BOX > condit ion () <S_ARROW > statements () )# T_Guarde d (2) )*

<S_OD >

)# T_D_Do

}

void stat_while () # void : {}

{

(< S_WHILE > condit ion () <S_DO > statements () <S_OD >) # T_Wh ile

}

void stat_do () # void : {}

{

(<S_DO > statements () <S_OD >) # T_Floop

}

void stat_exit () # void : {}

{

T_Exit ()

}

void stat_for () # void : {}

{

(

<S_FOR > T_Var_Lvalue () <S_BECOMES > expression ()

<S_TO > expression ()

<S_STEP > expression ()

<S_DO > statements () <S_OD >

)# T_For

| (

<S_FOR > T_Var_Lvalue ()

<S_IN > s_expression ()

<S_DO > statements () <S_OD >

)# T_For_In

}

void stat_var () # void : {}

{

(<S_VAR > <S_LANGLE > assigns ()# T_Assigns <S_RANGLE > <S_C OLON > statements () <

S_ENDVAR >) # T_Var

}
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void stat_comment () # void : {}

{

T_Comment ()

}

void stat_assert () #void : {}

{

(< S_LBRACE > condit ion () <S_RBRACE >)# T_Assert

}

void stat_assignment () # void : {}

{

(< S_LANGLE > assigns () <S_RANGLE >) # T_Assignment

}

void stat_push () # void : {}

{

(< S_PUSH > <S_LPAREN > T_Var_Lvalue () <S_COMMA > s_express ion () <S_RPAREN >)#

T_Push

}

void stat_pop () # void : {}

{

(<S_POP > <S_LPAREN > T_Var_Lvalue () <S_COMMA > T_Var_Lval ue () <S_RPAREN >)#

T_Pop

}

void stat_join () # void : {}

{

(< S_JOIN > statements () <S_COMMA > statements () <S_ENDJOI N >)# T_Join

}

void stat_act ions () # void : {}

{

(< S_ACTIONS > T_Identi f ierName () <S_COLON > actions () <S_ ENDACTIONS >)# T_A_S

}

void stat_cal l () # void : {}

{

T_Call ()

}

void stat_print () # void : {}

{
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(< S_PRINT > <S_LPAREN > expressions () <S_RPAREN >)# T_Prin t

| (< S_PRINFLUSH > <S_LPAREN > expressions () <S_RPAREN >) # T _Prinf lush

}

void stat_mw_func_decl () #void : {}

{

(< S_MW_PROC > T_AtName () <S_LPAREN > (( lvalue () (< S_COMMA > lvalue () ) *) *)#

T_Lvalues var_lvalues () <S_RPAREN >

<S_DEFINE > statements ()

(<S_END > | <S_FULLSTOP >) )# T_MW_Proc

| (< S_MW_FUNCT > T_AtName () <S_LPAREN > (( lvalue () (< S_COM MA > lvalue () ) *) *)#

T_Lvalues <S_RPAREN >

<S_DEFINE >

(

(<S_VAR > <S_LANGLE > assigns ()# T_Assigns <S_RANGLE > <S_C OLON >

statements () <S_SEMICOLON >

<S_LPAREN > expression () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

|

(< S_COLON ># T_Assigns statements () <S_SEMICOLON >

<S_LPAREN > expression () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

)

)# T_MW_Funct

| (< S_MW_BFUNCT > T_AtName () <S_QUERY > <S_LPAREN > (( lvalu e () (< S_COMMA > lvalue

() ) *) *) # T_Lvalues <S_RPAREN >

<S_DEFINE >

(

(<S_VAR > <S_LANGLE > assigns () # T_Assigns <S_RANGLE > <S_C OLON >

statements () <S_SEMICOLON >

<S_LPAREN > condit ion () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

|

(<S_COLON ># T_Assigns statements () <S_SEMICOLON >

<S_LPAREN > condit ion () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

)

)# T_MW_BFunct

}

void stat_begin () # void : {}
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{

(< S_BEGIN >

statements ()

<S_WHERE >

defines ()

<S_END >) # T_Where

}

void stat_foreach () # void : {}

{

<S_FOREACH >

(

(< S_STATEMENT > <S_DO > statements () <S_OD >) # T_Foreach_S tat

| (< S_STATEMENTS > <S_DO > statements () <S_OD >) # T_Foreach _Stats

| (< S_VARIABLE > <S_DO > statements () <S_OD >)# T_Foreach_V ariable

| (< S_GLOBAL > <S_VARIABLE > <S_DO > statements () <S_OD >)# T _Foreach_Global_Var

| (< S_LVALUE > <S_DO > statements () <S_OD >)# T_Foreach_Lva lue

| (<S_STS > <S_DO > statements () <S_OD >) # T_Foreach_STS

| (<S_NAS > <S_DO > statements () <S_OD >) # T_Foreach_NAS

| (< S_EXPRESSION > <S_DO > statements () <S_OD >) # T_Foreach _Expn

| (< S_CONDITION > <S_DO > statements () <S_OD >) # T_Foreach_ Cond

| (< S_TERMINAL >

(

(< S_STATEMENT > <S_DO > statements () <S_OD >)# T_Foreach_T S

| (< S_STATEMENTS > <S_DO > statements () <S_OD >) # T_Foreach _TSs

)

)

)

}

void stat_ateach () #void : {}

{

<S_ATEACH >

(

(< S_STATEMENT > <S_DO > statements () <S_OD >) # T_Ateach_St at

| (< S_STATEMENTS > <S_DO > statements () <S_OD >) # T_Ateach_ Stats

| (< S_VARIABLE > <S_DO > statements () <S_OD >)# T_Ateach_Va riable

| (< S_GLOBAL > <S_VARIABLE > <S_DO > statements () <S_OD >)# T _Ateach_Global_Var

| (< S_LVALUE > <S_DO > statements () <S_OD >)# T_Ateach_Lval ue

| (<S_STS > <S_DO > statements () <S_OD >) # T_Ateach_STS

| (<S_NAS > <S_DO > statements () <S_OD >) # T_Ateach_NAS

| (< S_EXPRESSION > <S_DO > statements () <S_OD >) # T_Ateach_ Expn

| (< S_CONDITION > <S_DO > statements () <S_OD >) # T_Ateach_C ond

| (< S_TERMINAL >

(
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(< S_STATEMENT > <S_DO > statements () <S_OD >)# T_Ateach_TS

| (< S_STATEMENTS > <S_DO > statements () <S_OD >) # T_Ateach_ TSs

)

)

)

}

void stat_ifmatch () # void : {}

{

<S_IFMATCH >

(

(< S_STATEMENTS > statements () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )

# T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T_Ifmatch_Stats

| (< S_STATEMENT > statement () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Stat

| (< S_EXPRESSION > expression () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )

# T_Statements | (<S_ELSE > statements () <S_ENDMATCH >) )) # T_Ifmatch_Expn

| (< S_EXPRESSIONS > expressions () <S_THEN > statements () ( (( < S_ENDMATCH >)#

T_Skip )# T_Statements | (<S_ELSE > statements () <S_ENDMAT CH >) )) #

T_Ifmatch_Expns

| (< S_CONDITION > condit ion () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Cond

| (< S_DEFINITION > define () <S_THEN > statements () ((( < S_E NDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Defn

| (< S_DEFINITIONS > defines () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Defns

| (< S_ASSIGN > assign () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Assign

| (< S_ASSIGNS > assigns_node () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Assigns

| (< S_ACTION > action () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Action

| (< S_GUARDED > guarded () <S_THEN > statements () ((( < S_END MATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Guarded

| (< S_LVALUE > lvalue () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Lvalue

| (< S_LVALUES > lvalues () <S_THEN > statements () ((( < S_END MATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch_Lvalues

)

}

void stat_ifmatch2 () # void : {}

{

<S_IFMATCH2 >

(
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(< S_STATEMENTS > statements () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )

# T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) #

T_Ifmatch2_Stats

| (< S_STATEMENT > statement () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Stat

| (< S_EXPRESSION > expression () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )

# T_Statements | (<S_ELSE > statements () <S_ENDMATCH >) )) # T_Ifmatch2_Expn

| (< S_EXPRESSIONS > expressions () <S_THEN > statements () ( (( < S_ENDMATCH >)#

T_Skip )# T_Statements | (<S_ELSE > statements () <S_ENDMAT CH >) )) #

T_Ifmatch2_Expns

| (< S_CONDITION > condit ion () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Cond

| (< S_DEFINITION > define () <S_THEN > statements () ((( < S_E NDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Defn

| (< S_DEFINITIONS > defines () <S_THEN > statements () ((( < S _ENDMATCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Defns

| (< S_ASSIGN > assign () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Assign

| (< S_ASSIGNS > assigns_node () <S_THEN > statements () ((( < S_ENDMATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Assigns

| (< S_ACTION > action () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Action

| (< S_GUARDED > guarded () <S_THEN > statements () ((( < S_END MATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Guarded

| (< S_LVALUE > lvalue () <S_THEN > statements () ((( < S_ENDMA TCH >)# T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Lvalue

| (< S_LVALUES > lvalues () <S_THEN > statements () ((( < S_END MATCH >) # T_Skip )#

T_Statements | (< S_ELSE > statements () <S_ENDMATCH >) )) # T _Ifmatch2_Lvalues

)

}

void stat_maphash () # void : {}

{

(< S_MAPHASH > <S_LPAREN > T_Name () <S_COMMA > expression () <S_RPAREN >)# T_Maphash

}

void stat_error () # void : {}

{

(< S_ERROR > <S_LPAREN > expressions () <S_RPAREN >)# T_Erro r

}

void stat_spec () # void : {}

{
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(< S_SPEC > <S_LANGLE > lvalues () <S_RANGLE > <S_COLON > cond it ion () <S_ENDSPEC >) #

T_Spec

}

void stat_proc_cal l () # void : {}

{

( T_Identi f ierName () <S_LPAREN > (( expression () (< S_COMM A > expression () ) *) *)#

T_Expressions var_lvalues () <S_RPAREN >)# T_Proc_Call

| (< S_PLINK_P > T_Identi f ierName () <S_LPAREN > (( expressi on () (<S_COMMA >

expression () ) *) *) # T_Expressions var_lvalues () <S_RPAR EN >)# T_A_Proc_Call

| ( T_AtName () (< S_LPAREN >)* (( expression () (< S_COMMA > ex pression () ) *) *) #

T_Expressions var_lvalues () (< S_RPAREN >) *) # T_MW_Proc_ Call

| ( T_AtPatOneName () (< S_LPAREN >)* (( expression () (< S_CO MMA > expression () ) *) *) #

T_Expressions var_lvalues () (< S_RPAREN >) *) # T_MW_Proc_ Call

| (< S_PLINK_XP > T_Identi f ierName () <S_LPAREN > (( express ion () (< S_COMMA >

expression () ) *) *) # T_Expressions <S_RPAREN >) # T_X_Proc _Call

}

void stat_pattern () # void : {}

{

T_Stat_Pat_One ()

| T_Stat_Pat_Many ()

| T_Stat_Pat_Any ()

}

void stat_single_assign () # void : {}

{

(( lvalue () <S_BECOMES > expression () )# T_Assign )# T_Assi gnment

| ( lvalue () <S_FULLSTOP > <S_LPAREN > expression () <S_RPAR EN > <S_BECOMES >

expression () )# T_Puthash

}

/*

* Guarded

* ======

*/

void guarded () # void : {}

{

( condit ion () (< S_THEN > | <S_ARROW >) statements () )# T_Gua rded (2)

| (

(

/* Pattern Expressions */
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T_Cond_Pat_One ()

| T_Cond_Pat_Many ()

| T_Cond_Pat_Any ()

)

(<S_THEN > | <S_ARROW >) statements ()

)# T_Guarded (2)

}

/*

* Defines

* ======

*/

void defines () # void : {}

{

( def ine ()

(

( def ine () )

| (< S_COMMA > define () )

)*

)# T_Defini t ions

}

void define () # void : {}

{

stat_func_decl ()

/* Pattern Expressions */

| T_Defn_Pat_One ()

| T_Defn_Pat_Many ()

| T_Defn_Pat_Any ()

}

void stat_func_decl () # void : {}

{

(< S_PROC > T_Identi f ierName () <S_LPAREN > (( lvalue () (<S_ COMMA > lvalue () ) *) *) #

T_Lvalues var_lvalues () <S_RPAREN >

<S_DEFINE > statements ()

(<S_END > | <S_FULLSTOP >) )# T_Proc

| (< S_FUNCT > T_Identi f ierName () <S_LPAREN > (( lvalue () (< S_COMMA > lvalue () ) *) *)

# T_Lvalues <S_RPAREN >

<S_DEFINE >

(
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(<S_VAR > <S_LANGLE > (( assigns () ) *) # T_Assigns <S_RANGLE > <S_COLON >

<S_LPAREN > expression () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

|

(<S_COLON ># T_Assigns <S_LPAREN > expression () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

)

)# T_Funct

| (< S_BFUNCT > T_Identi f ierName () <S_QUERY > <S_LPAREN > (( lvalue () (<S_COMMA >

lvalue () ) *) *) # T_Lvalues <S_RPAREN >

<S_DEFINE >

(

(<S_VAR > <S_LANGLE > (( assigns () ) *) # T_Assigns <S_RANGLE > <S_COLON >

<S_LPAREN > condit ion () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

|

(<S_COLON ># T_Assigns <S_LPAREN > condit ion () <S_RPAREN >

(<S_END > | <S_FULLSTOP >) )

)

)# T_BFunct

}

/*

* Act ion System

* ===========

*/

void act ions () # void : {}

{

( act ion () ( act ion () ) *) # T_Actions

}

void act ion () # void : {}

{

(

(

T_Identi f ierName ()

/* Pattern Expressions */

| T_Action_Pat_One ()

| T_Action_Pat_Many ()

| T_Action_Pat_Any ()

)

<S_DEFINE > statements () (<S_END > | <S_DOTSPACE >) )# T_Act ion
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}

/*

* Assignments

* =========

*/

void assigns_node () # void : {}

{

( assign () (<S_COMMA > assign () ) *) # T_Assigns

}

void assigns () # void : {}

{

assign () (<S_COMMA > assign () )*

}

void assign () # void : {}

{

( lvalue () <S_BECOMES > expression () )# T_Assign

/* Pattern Expressions */

| T_Assign_Pat_One ()

| T_Assign_Pat_Many ()

| T_Assign_Pat_Any ()

}

/*

* Lvalues

* ======

*/

void var_lvalues () #void : {}

{

((< S_VAR > ( lvalue () (< S_COMMA > lvalue () ) *) *) *) # T_Lvalu es

}

void lvalues () # void : {}

{

( lvalue () (<S_COMMA > lvalue () ) *) # T_Lvalues

}

void lvalue () # void : {}
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{

(

T_Var_Lvalue ()

/* Pattern Expressions */

| T_Lvalue_Pat_One ()

| T_Lvalue_Pat_Many ()

| T_Lvalue_Pat_Any ()

)

(

/* Array ref */

<S_LBRACKET > a_expressions () (

<S_RBRACKET ># T_Aref_Lvalue (2)

| <S_DOTDOT > (

<S_RBRACKET ># T_Final_Seg_Lvalue (2)

| a_expression () <S_RBRACKET ># T_Sub_Seg_Lvalue (3)

)

| <S_COMMA > a_expression () <S_RBRACKET ># T_Rel_Seg_Lval ue (3)

)

/* Struct Lvalue */

| ( T_Struct_Lvalue () )

)*

}

/*

* Condit ions

* ========

*/

void condit ion () # void : {}

{

( b_term () (<S_OR > b_term () ) *)# T_Or ( >1)

}

void b_term () # void : {}

{

( b_factor () (<S_AND > b_factor () ) *) # T_And ( >1)

}

void b_factor () # void : {}
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{

(<S_NOT > b_factor () )# T_Not

| cond_pref ix ()

| b_atom ()

}

void b_atom () # void : {}

{

(<S_TRUE >) # T_True

| (< S_FALSE >) # T_False

| (< S_COND_PLACE >) # T_Cond_Place

| cond_pat ()

| rel_exp ()

}

void cond_pat () # void : {}

{

/* Expression Pattern */

(

T_Expn_Pat_One ()

| T_Expn_Pat_Many ()

| T_Expn_Pat_Any ()

)

(

<S_EXPONENT > factor () # T_Exponent (2)

| <S_TIMES > factor () # T_Times (2)

| <S_SLASH > factor () # T_Divide (2)

| <S_MOD > factor ()# T_Mod (2)

| <S_DIV > factor ()# T_Div (2)

/* Set Op */

| <S_BACKSLASH > factor ()# T_Set_Diff (2)

| <S_PLUS > term () # T_Plus (2)

| <S_MINUS > term ()# T_Minus (2)

/* Set Op */

| <S_CONCAT > term ()# T_Concat (2)

| <S_UNION > term ()# T_Union (2)

| <S_INTERSECT > term () # T_Intersect ion (2)

| <S_EQUAL > expression ()# T_Equal (2)

| <S_NEQ > expression () # T_Not_Equal (2)

| <S_LANGLE > expression ()# T_Less (2)

| <S_RANGLE > expression ()# T_Greater (2)

| <S_LEQ > expression () # T_Less_Eq (2)
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| <S_GEQ > expression () # T_Greater_Eq (2)

| <S_IN > expression () # T_In (2)

| <S_NOTIN > expression ()# T_Not_In (2)

)+

| T_Cond_Pat_One ()

| T_Cond_Pat_Many ()

| T_Cond_Pat_Any ()

}

void rel_exp () # void : {}

{

expression () (

<S_EQUAL > expression ()# T_Equal (2)

| <S_NEQ > expression () # T_Not_Equal (2)

| <S_LANGLE > expression ()# T_Less (2)

| <S_RANGLE > expression ()# T_Greater (2)

| <S_LEQ > expression () # T_Less_Eq (2)

| <S_GEQ > expression () # T_Greater_Eq (2)

| <S_IN > expression () # T_In (2)

| <S_NOTIN > expression ()# T_Not_In (2)

)*

}

void cond_pref ix () #void : {}

{

(< S_EVEN > <S_QUERY > <S_LPAREN > expression () <S_RPAREN >) # T_Even

| (<S_ODD > <S_QUERY > <S_LPAREN > expression () <S_RPAREN >) # T_Odd

| (< S_SEQUENCE > <S_QUERY > <S_LPAREN > expression () <S_RPA REN >)# T_Sequenceq

| (< S_NUMBERQ > <S_QUERY > <S_LPAREN > expression () <S_RPAR EN >) # T_Numberq

| (< S_STRINGBF > <S_QUERY > <S_LPAREN > expression () <S_RPA REN >)# T_Str ingq

| (< S_EMPTY > <S_QUERY > <S_LPAREN > expression () <S_RPAREN >) # T_Empty

| (< S_SUBSET > <S_QUERY > <S_LPAREN > s_expression () <S_COM MA > s_expression () <

S_RPAREN >)# T_Subset

| (< S_MEMBER > <S_QUERY > <S_LPAREN > expression () <S_COMMA> s_expression () <

S_RPAREN >)# T_Member

| (< S_FORALL > <S_LANGLE > lvalues () <S_RANGLE > <S_COLON > c ondit ion () <S_END >) #

T_Foral l

| (< S_EXISTS > <S_LANGLE > lvalues () <S_RANGLE > <S_COLON > c ondit ion () <S_END >) #

T_Exists

| ( T_Identi f ierName () <S_QUERY > <S_LPAREN > (( expression () (< S_COMMA > expression

() ) *) *) # T_Expressions <S_RPAREN >)# T_BFunct_Call

| ( T_AtName () <S_QUERY > ((< S_LPAREN > expression () (< S_CO MMA > expression () )* <

S_RPAREN >) *) # T_Expressions )# T_MW_BFunct_Cal l

| (< S_PLINK_XC > T_Identi f ierName () (
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(< S_QUERY > <S_LPAREN >)

| (< S_LPAREN >)

)

(( expression () (<S_COMMA > expression () ) *) *)# T_Express ions <S_RPAREN >) #

T_X_BFunct_Call

}

/*

* Expressions

* =========

*/

void expressions () #void : {}

{

( expression () (< S_COMMA > expression () ) *) # T_Expression s

}

void expression () # void : {}

{

a_expression ()

| f i l l_expression ()

| f i l l2_expression ()

| < S_HASH_TABLE ># T_Hash_Table

}

/* If expression */

void i f_expression () # void : {}

{

(<S_IF > condit ion () <S_THEN > expression () <S_ELSE > expre ssion () <S_FI >)# T_If

}

/* Fil l / Fi l l2 expressions */

void f i l l_expression () # void : {}

{

(< S_FILL > <S_STATEMENTS > statements () <S_ENDFILL >) # T_F il l_Stats

| (< S_FILL > <S_STATEMENT > statement () <S_ENDFILL >)# T_Fi l l_Stat

| (< S_FILL > <S_EXPRESSION > expression () <S_ENDFILL >) # T_ Fil l_Expn

| (< S_FILL > <S_EXPRESSIONS > expressions () <S_ENDFILL >) # T_Fil l_Expns

| (< S_FILL > <S_CONDITION > condit ion () <S_ENDFILL >)# T_Fi l l_Cond
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| (< S_FILL > <S_DEFINITION > define () <S_ENDFILL >) # T_Fil l _Defn

| (< S_FILL > <S_DEFINITIONS > defines () <S_ENDFILL >)# T_Fi l l_Defns

| (< S_FILL > <S_ASSIGN > assign () <S_ENDFILL >)# T_Fil l_Ass ign

| (< S_FILL > <S_ASSIGNS > assigns_node () <S_ENDFILL >)# T_F il l_Assigns

| (< S_FILL > <S_ACTION > action () <S_ENDFILL >)# T_Fil l_Act ion

| (< S_FILL > <S_GUARDED > guarded () <S_ENDFILL >) # T_Fil l_G uarded

| (< S_FILL > <S_LVALUE > lvalue () <S_ENDFILL >)# T_Fil l_Lva lue

| (< S_FILL > <S_LVALUES > lvalues () <S_ENDFILL >) # T_Fil l_L values

}

void f i l l2_expression () # void : {}

{

(< S_FILL2 > <S_STATEMENTS > statements () <S_ENDFILL >) # T_ Fil l2_Stats

| (< S_FILL2 > <S_STATEMENT > statement () <S_ENDFILL >)# T_F il l2_Stat

| (< S_FILL2 > <S_EXPRESSION > expression () <S_ENDFILL >) # T _Fil l2_Expn

| (< S_FILL2 > <S_EXPRESSIONS > expressions () <S_ENDFILL >) # T_Fil l2_Expns

| (< S_FILL2 > <S_CONDITION > condit ion () <S_ENDFILL >)# T_F il l2_Cond

| (< S_FILL2 > <S_DEFINITION > defines () <S_ENDFILL >)# T_Fi l l2_Defn

| (< S_FILL2 > <S_DEFINITIONS > defines () <S_ENDFILL >)# T_F il l2_Defns

| (< S_FILL2 > <S_ASSIGN > assign () <S_ENDFILL >)# T_Fil l2_A ssign

| (< S_FILL2 > <S_ASSIGNS > assigns_node () <S_ENDFILL >) # T_ Fil l2_Assigns

| (< S_FILL2 > <S_ACTION > action () <S_ENDFILL >)# T_Fil l2_A ction

| (< S_FILL2 > <S_GUARDED > guarded () <S_ENDFILL >) # T_Fil l2 _Guarded

| (< S_FILL2 > <S_LVALUE > lvalue () <S_ENDFILL >)# T_Fil l2_L value

| (< S_FILL2 > <S_LVALUES > lvalues () <S_ENDFILL >) # T_Fil l2 _Lvalues

}

/* Simple expressions */

void s_expression () # void : {}

{

a_expression ()

}

void a_expressions () # void : {}

{

a_expression () # T_Expressions

}

void a_expression () # void : {}

{

term () (

<S_PLUS > term () # T_Plus (2)

| <S_MINUS > term ()# T_Minus (2)
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/* Set Op */

| <S_CONCAT > term ()# T_Concat (2)

| <S_UNION > term ()# T_Union (2)

| <S_INTERSECT > term () # T_Intersect ion (2)

) *

}

void term () # void : {}

{

factor () (

<S_TIMES > factor () # T_Times (2)

| <S_SLASH > factor () # T_Divide (2)

| <S_MOD > factor ()# T_Mod (2)

| <S_DIV > factor ()# T_Div (2)

/* Set Op */

| <S_BACKSLASH > factor ()# T_Set_Diff (2)

)*

}

void factor () # void : {}

{

( true_factor ()

| (< S_MINUS > factor () )# T_Negate )

(

/* Get expressions */

<S_CARET > a_expression ()# T_Get_n (2)

| <S_CARET >< S_CARET > s_expression () # T_Get (2)

/* Array ref */

| <S_LBRACKET > a_expressions () (

<S_RBRACKET ># T_Aref (2)

| <S_DOTDOT > (

<S_RBRACKET ># T_Final_Seg (2)

| a_expression () <S_RBRACKET ># T_Sub_Seg (3)

)

| <S_COMMA > a_expression () <S_RBRACKET ># T_Rel_Seg (3)

)

/* Struct */

| ( T_Struct () )

/* Gethash */

| <S_FULLSTOP > <S_LPAREN > expression () <S_RPAREN ># T_Get hash (2)
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) *

}

void true_factor () #void : {}

{

exp_atom () (<S_EXPONENT > factor () # T_Exponent (2) )*

}

void exp_atom () # void : {}

{

<S_LPAREN > condit ion () <S_RPAREN >

| T_Number ()

| a_pref ix_op ()

/* Funct Call */

| ( T_Identi f ierName () <S_LPAREN > (( expression () (<S_COM MA > expression () ) *) *) #

T_Expressions <S_RPAREN >) # T_Funct_Call

| ( T_AtName () ((< S_LPAREN > ( expression () (<S_COMMA > expr ession () ) *) * <S_RPAREN

>) *)# T_Expressions )# T_MW_Funct_Call

| (< S_PLINK_XF > T_Identi f ierName () <S_LPAREN > (( express ion () (< S_COMMA >

expression () ) *) *) # T_Expressions <S_RPAREN >) # T_X_Func t_Call

/* Place Expressions */

| < S_EXPN_PLACE ># T_Expn_Place

| < S_VAR_PLACE ># T_Var_Place

/* Pattern Expressions */

| T_Expn_Pat_One ()

| T_Expn_Pat_Many ()

| T_Expn_Pat_Any ()

| T_Variable ()

| i f_expression ()

/* Set constructs */

| T_Str ing ()

| T_Set ()

| T_Sequence ()

| numb_type ()

| s_pref ix_op ()

}

void a_pref ix_op () #void : {}

{
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(<S_ABS > <S_LPAREN > a_expression () <S_RPAREN >) # T_Abs

| (< S_FRAC > <S_LPAREN > a_expression () <S_RPAREN >)# T_Fra c

| (<S_INT > <S_LPAREN > a_expression () <S_RPAREN >) # T_Int

| (<S_SGN > <S_LPAREN > a_expression () <S_RPAREN >) # T_Sgn

| (< S_ARRAY > <S_LPAREN > a_expression () <S_COMMA > a_expre ssion () <S_RPAREN >)#

T_Array

| (<S_MAX > <S_LPAREN > a_expression () <S_COMMA > a_express ion () <S_RPAREN >)# T_Max

| (<S_MIN > <S_LPAREN > a_expression () <S_COMMA > a_express ion () <S_RPAREN >)# T_Min

| (< S_LENGTH > <S_LPAREN > s_expression () <S_RPAREN >)# T_L ength

| (< S_REVERSE > <S_LPAREN > s_expression () <S_RPAREN >) # T_ Reverse

| (< S_REDUCE > <S_LPAREN > T_Name () <S_COMMA > s_expression () <S_RPAREN >) # T_Reduce

| (< S_HEAD > <S_LPAREN > s_expression () <S_RPAREN >)# T_Hea d

| (< S_LAST > <S_LPAREN > s_expression () <S_RPAREN >)# T_Las t

}

/* Set / str ing / sequence expressions */

void T_Set () #void : {}

{

(< S_LBRACE > expression () <S_VBAR > condit ion () <S_RBRACE >) # T_Set

}

void T_Sequence () # void : {}

{

(< S_LANGLE > (( expression () (<S_COMMA > expression () ) *) * )# T_Expressions <

S_RANGLE >) # T_Sequence

}

void numb_type () # void : {}

{

<S_RATS ># T_0

| <S_REALS ># T_0

| <S_NATS ># T_0

| <S_INTS ># T_0

}

void s_pref ix_op () #void : {}

{

(<S_MAP > <S_LPAREN > T_Name () <S_COMMA > s_expression () <S _RPAREN >)# T_Map

| (< S_POWERSET > <S_LPAREN > s_expression () <S_RPAREN >) # T _Powerset

| (< S_TAIL > <S_LPAREN > s_expression () <S_RPAREN >)# T_Tai l

| (< S_BUTLAST > <S_LPAREN > s_expression () <S_RPAREN >) # T_ Butlast

| (< S_SLENGTH > <S_LPAREN > s_expression () <S_RPAREN >) # T_ Slength

| (< S_SUBSTR > <S_LPAREN > expressions () <S_RPAREN >)# T_Su bstr
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| (< S_INDEX > <S_LPAREN > expressions () <S_RPAREN >)# T_Ind ex

| (< S_REDUCE > <S_LPAREN > T_Name () <S_COMMA > s_expression () <S_RPAREN >) # T_Reduce

| (< S_HEAD > <S_LPAREN > s_expression () <S_RPAREN >)# T_Hea d

| (< S_LAST > <S_LPAREN > s_expression () <S_RPAREN >)# T_Las t

}

/*

* Terminals with values

* ================

*/

void T_Cond_Pat_One () # T_Cond_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Cond_Pat_Many () # T_Cond_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Cond_Pat_Any () # T_Cond_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Assign_Pat_One () # T_Assign_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Assign_Pat_Many () # T_Assign_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Assign_Pat_Any () # T_Assign_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Expn_Pat_One () # T_Expn_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Expn_Pat_Many () # T_Expn_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Expn_Pat_Any () # T_Expn_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Lvalue_Pat_One () # T_Lvalue_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Lvalue_Pat_Many () # T_Lvalue_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}
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void T_Lvalue_Pat_Any () # T_Lvalue_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Stat_Pat_One () # T_Stat_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Stat_Pat_Many () # T_Stat_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Stat_Pat_Any () # T_Stat_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Action_Pat_One () # T_Action_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Action_Pat_Many () # T_Action_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Action_Pat_Any () # T_Action_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Defn_Pat_One () # T_Defn_Pat_One :

{ Token t ;}{ < S_PAT_ONE > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Defn_Pat_Many () # T_Defn_Pat_Many :

{ Token t ;}{ < S_PAT_MANY > t=< S_IDENTIFIER >{ j j tThis . setV alue ( t . image) ;}}

void T_Defn_Pat_Any () # T_Defn_Pat_Any :

{ Token t ;}{ < S_PAT_ANY > t=< S_IDENTIFIER >{ j j tThis . setVa lue ( t . image) ;}}

void T_Str ing () # T_Str ing :

{ Token t ;}{ t=<S_STRING >{ j j tThis . setValue ( t . image. sub str ing (1 , t . image. length ()

-1) ) ;}}

void T_Number () # T_Number :

{ Token t ;}{ t=<S_NUMBER >{ j j tThis . setValue ( t . image) ;}}

void T_Variable () # T_Variable :

{ Token t ;}{ t=< S_IDENTIFIER >{ j j tThis . setValue ( t . image ) ;}}

void T_Name () # T_Name :

{ Token t ;}{ t=<S_STRING >{ j j tThis . setValue ( t . image. sub str ing (1 , t . image. length ()

-1) ) ;}}

void T_Identi f ierName () # T_Name :
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{ Token t ;}{ t=< S_IDENTIFIER >{ j j tThis . setValue ( t . image ) ;}}

void T_AtName () # T_Name :

{ Token t ;}{ < S_AT > (t=< S_IDENTIFIER > | t=< S_AMBIGOUS_IDE NTIFIER >) { if ( t . image.

startsWith (" @") ) j j tThis . setValue ( t . image) ; else j j tTh is . setValue (" @"+t .

image) ;}}

void T_AtPatOneName () # T_Name :

{ Token t ;}{ < S_AT_PAT_ONE > (t=< S_IDENTIFIER > | t=< S_AMBI GOUS_IDENTIFIER >) { if ( t

. image. startsWith (" @") ) j j tThis . setValue ( t . image) ;el se j j tThis . setValue ("@

"+t . image) ;}}

void T_Var_Lvalue () # T_Var_Lvalue :

{ Token t ;}{ t=< S_IDENTIFIER >{ j j tThis . setValue ( t . image ) ;}}

void T_Exit () # T_Exit :

{ Token t ;}{ < S_EXIT > <S_LPAREN > t=< S_NUMBER > <S_RPAREN >{ j j tThis . setValue ( t. image

) ;}}

void T_Comment () # T_Comment :

{ Token t ;}{ < S_COMMENT > t=<S_STRING >{ j j tThis . setValue ( t . image. substr ing (1 , t .

image. length () -1) ) ;}}

void T_Call () # T_Call :

{ Token t ;}{ < S_CALL > t=< S_IDENTIFIER >{ j j tThis . setValue ( t. image) ;}}

void T_Struct_Lvalue () # T_Struct_Lvalue (2) :

{ Token t ;}{ < S_FULLSTOP > T_Identi f ierName ()

{ Node n = j j tThis . j j tGetChi ld (1) ; j j tThis . j j tSetChi ld (1 , j j tThis . j j tGetChi ld (0) )

; j j tThis . j j tSetChi ld (0 ,n) ;}}

void T_Struct () # T_Struct (2) :

{ Token t ;}{ < S_FULLSTOP > T_Identi f ierName ()

{ Node n = j j tThis . j j tGetChi ld (1) ; j j tThis . j j tSetChi ld (1 , j j tThis . j j tGetChi ld (0) ) ;

j j tThis . j j tSetChi ld (0 ,n) ;}}

/*

* Tree manipulat ion routines

* ====================

*/

/*

* This rout ine creates an pseudo else with a skip

*/

void pseudo_else () # T_Guarded :
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{

}

{

{

ASTT_Statements statements = new ASTT_Statements ( WSLPar serTreeConstants .

JJTT_STATEMENTS );

statements . j j tAddChild ( new ASTT_Skip ( WSLParserTreeCo nstants . JJTT_SKIP ) ,0) ;

j j tThis . j j tAddChild (new ASTT_True ( WSLParserTreeConst ants . JJTT_TRUE ) ,0) ;

j j tThis . j j tAddChild ( statements ,1) ;

}

}

Listing B.1: Parser Definition for Untyped WSL
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C.1 Transformation Catalogue of fermat3 (Open Source Version)

Name Description Keywords

Abort Processing Simplify statement sequences containing an ABORT. Simplify

Absorb Left This transformation will absorb into the selected state-

ment the one that precedes it.

Join

Absorb Right This transformation will absorb into the selected state-

ment the one that follows it.

Join

Actions to Where Convert an Action System to a Where clause Rewrite,Simplify

Add Assertion This transformation will add an assertion after the cur-

rent item, if some suitable information can be ascer-

tained.

Insert

Add Left This transformation will add the selected statement (or

sequence of statements) into the statement that precedes

it without doing further simplification.

Join

Align Nested Statements This transformation takes a guarded clause whose first

statement is a If and integrates it with the outer condition

by absorbing the other guarded statements into the inner

If, and then modifying its conditions appropriately. This

is the converse of Partially Join Cases.

Rewrite,L to R,R to L

Apply To Right This transformation will apply the current program item

to the one to its immediate right. For example, if the

current item is an assertion and the next item is an IF

statement, then the transformation will attempt to sim-

plify the conditions using the assertions.

UseApply

Collapse Action System Collapse action system will use simplifications and sub-

stitution to transform an action system into a sequence

of statements, possibly inside a DO loop.

Rewrite

Collapse All Action Systems Collapse All Action Systems will attempt to collapse the

action systems within a program which is a WHERE

structure.

Rewrite

Combine Where Structures Combine Where Structures will combine two nested

WHERE structures into one structure which will con-

tain the definitions from each of the original WHERE

structures.

Rewrite

Constant Propagation Constant Propagation finds assignments of constants Simplify

D Do To Floop Convert any D Do loop to a DO...OD loop Rewrite

Delete All Assertions This transformation will delete all the ASSERT state-

ments within the selected code. If the resulting code is

not syntactically correct, the program will be tidied up

which may well result in the re-instatement of ASSERT

or SKIP statements.

Simplify,L to R,R to L
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Delete All Comments This transformation will delete all the COMMENT state-

ments within the selected code. If the resulting code is

not syntactically correct, the program will be tidied up

which may well result in the insertion of SKIP state-

ments.

Simplify,L to R,R to L

Delete All Redundant Delete All Redundant searches for redundant statements Delete

Delete All Skips This transformation will delete all the SKIP statements

within the selected code. If the resulting code is not

syntactically correct, the program will be tidied up which

may well result in the re-instatement of SKIP statements.

Simplify,L to R,R to L

Delete Item This transformation will delete a program item that is

redundant or unreachable

Delete

Delete Redundant Registers Delete Redundant Registers uses dataflow analysis Delete

Delete Redundant Statement Delete Redundant Statement checks whether Delete

Delete Unreachable Code Delete Unreachable Code will remove unreachable state-

ments in the selected object. It will also remove unreach-

able cases in an IF statement, e.g those which follow a

TRUE guard

Simplify

Delete What Follows Delete What Follows will delete the code which follows

the selected item if it can never be executed

UseApply

Double to Single Loop Double to Single Loop will convert a double nested loop

to a single loop, if this can be done without significantly

increasing the size of the program.

Rewrite

Else If To Elsif This transformation will replace an Else clause which

contains an If statement with an Elsif clause. The trans-

formation can be selected with either the outer If state-

ment, or the Else clause selected.

Rewrite

Elsif To Else If This transformation will replace an Elsif clause in an If

statement with an Else clause which itself contains an If

statement.

Rewrite

Expand And Separate All Expand And Separate All will attempt to apply the

transformation Expand and Separate to the first state-

ment in each action in an action system. This will be

useful for dealing with the skip flag in WSL derived from

Herma

Simplify

Expand And Separate Expand And Separate will expand the selected IF state-

ment to include all the following statements, then sepa-

rate all possible statements from the resulting IF. This

is probably only useful if the IF includes a CALL, EXIT

etc. which is duplicated in the following statements, oth-

erwise it will probably achieve nothing.

Reorder

Expand Call Expand Call will replace a call to an action, procedure

or function with the corresponding definition.

Rewrite
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Expand Forward Expand Forward will copy the following statement into

the end of each branch of the selected IF or D IF state-

ment. It differs from Absorb Right in that the statement

is only absorbed into the top level of the selected IF

Join

Find Terminals Find and mark the terminal statements in the selected

statement.

Rewrite

Fix Dispatch This transformation will search for simple Complex,Rewrite

Floop To While Convert a suitable DO...OD loop to a While loop Rewrite

For To While Convert any FOR loop to a VAR plus WHILE loop Rewrite

Force Double - Single Loop Force Double - Single Loop will convert a double nested

loop to a single loop, regardless of any increase in pro-

gram size which this causes

Rewrite

Fully Absorb Right This transformation will absorb into the selected state-

ment all the statements that follow it.

Join

Fully Expand Forward Apply Expand Forward as often as possible Join

Globals To Pars Convert global variables in procs to extra VAR parame-

ters.

Rewrite

Insert Assertion(s) This transformation will add an assertion inside the cur-

rent item, if some suitable information can be ascer-

tained.

Insert

Join All Cases This transformation will join any guards in an If state-

ment which contain the same sequence of statements

(thus reducing their number) by changing the conditions

of all the guards as appropriate.

Rewrite,Join

Make Procedure Make Procedure will make a procedure from the body of

an action or from a list of statements.

Rewrite

Merge Calls in Action Merge Calls in Action will attempt to merge calls which

call the same action, in the selected action

Simplify

Merge Calls Use absorption to reduce the number of calls in an action

system.

Simplify

Merge Cond Right Merge a binary Cond with a subsequent Cond which uses

the same

Simplify

Merge Left This transformation will merge the selected statement (or

sequence of statements) into the statement that precedes

it.

Join

Merge Right This transformation will merge the selected statement

into the statement that precedes it.

Join

Meta Trans Convert a FOREACH with a long sequence of IFMATCH

commands to a more efficient form

Simplify

Move Comment Left Moves the selected Comment Left. Move

Move Comment Right Moves the selected Comment Right. Move
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Move Comments Move Comments will move any comments which appear

at the end of actions within an action system and which

follow a call. The comments will be moved in front of

the call. This will help tidy up the output of the Herma

translator.

Rewrite

Move To Left This transformation will move the selected item to the

left so that it is exchanged with the item that precedes

it.

Move

Move To Right This transformation will move the selected item to the

right so that it is exchanged with the item that follows

it.

Move

Partially Join Cases This transformation will join any guards in an If state-

ment which contain almost the same sequence of state-

ments (thus reducing their number) by introducing a

nested If and changing the conditions of all the guards

as appropriate.

Rewrite,Join

Prog To Spec Convert given program to an equivalent specification

statement.

Abstraction

Prune Dispatch Simplify the dispatch action by removing references Simplify

Push Pop Look for a statement sequence with a PUSH of a var

followed by a POP

Rewrite

Remove Recursion in Action Remove Recursion in Action will replace the body of a

recursive action if possible by an equivalent loop struc-

ture.

Rewrite

Reduce Loop Automatically make the body of a DO...OD reducible

(by introducing new procedures as necessary) and either

remove the loop (if it is a dummy loop) or convert the

loop to a WHILE loop (if the loop is a proper sequence).

Simplify

Reduce Multiple Loops This transformation will reduce the number of multiply

nested loops to a minimum.

Simplify

Refine Spec Refine a specification statement into something closer to

an implementation

Refinement

Remove All Redundant Vars Remove All Redundant Vars applys Remove Redundant

Vars

Delete

Remove Galileo Comments Removes Galileo comments without a sequence number

(SSL or SSE).

Delete

Remove Dummy Loop Remove Dummy Loop will remove a DO loop which is

redundant

Simplify

Remove Redundant Vars Remove Redundant Vars takes out as many local vari-

ables

Delete

Rename Defns Rename PROC definitions to avoid name clashes. Rewrite

Rename Local Vars Remove all local VAR statements by renaming the vari-

ables.

Rewrite

Rename Proc Rename a PROC to given new name Rewrite
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Replace Accs With Value This transformation will apply Replace With Value Rewrite

Replace With Value This transformation will replace a variable Rewrite

Restore Local Vars Try to restore the local var clauses Rewrite

Reverse Order This transformation will reverse the order of most two-

component items; in particular expressions, conditions

and Ifs which have two branches.

Reorder

– Separate – – Separate – will take code out to the right and the left

of the selected structure.

Reorder

– Separate – Separate will take code out to the left of the selected

structure. As much code As possible will be taken out;

if all the statements are taken out then the original con-

taining structure will be removed

Reorder

Separate – Separate – will take code out to the right of the selected

structure.

Reorder

Simple Slice Perform Simple Slicing on a subset of WSL. Enter the

list of variables to slice on as the data parameter.

Simplify

Simplify Action System Simplify action system will attempt to remove actions

and calls from an action system by successively applying

simplifying transformations. As many of the actions as

possible will be eliminated without making the program

significantly larger.

Simplify

Simplify This transformation will simplify any component as fully

as possible.

Simplify,L to R,R to L

Simplify If Simplify If will remove false cases from an IF statement,

and any cases whose conditions imply earlier conditions.

Any repeated statements which can be taken outside the

if will be, and the conditions will be simplified if possible.

Simplify

Simplify Item This transformation will simplify an item, but not recur-

sively simplify the components inside it. In particular,

the transformation will simplify expressions, conditions

and degenerate conditional, local variable and loop state-

ments.

Simplify,L to R,R to L

Static Single Assignment Convert WSL code to Static Single Assignment form Rewrite

Substitute and Delete Substitute and Delete will replace all calls to an action,

procedure or function with the corresponding definition,

and delete the definition

Rewrite

Substitute and Delete List Substitute and Delete List will replace all calls to any

action

Rewrite

Syntactic Slice Perform Syntactic Slicing using SSA and control depen-

dencies. Enter the list of variables to slice on as the data

parameter.

Simplify

Take Out Left This transformation will take the selected item out of the

enclosing structure towards the left.

Move
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Take Out Of Loop This transformation will take the selected item out of an

appropriate enclosing loop towards the right.

Move

Take Out Right This transformation will take the selected item out of the

enclosing structure towards the right.

Move

Unfold Proc Call Unfold the selected procedure call, replacing it with a

copy of the procedure body.

Rewrite

Unfold Proc Calls Unfold Proc Calls searches for procedures which are only

called once, unfolds the call and removes the procedure.

Simplify

Use Assertion Use the currently selected assertion to simplify code. Simplify

Var Pars To Val Pars Add all VAR pars as extra value pars where needed. Rewrite

While To Abort This transformation replaces a non-terminating while

loop with a conditional abort

Simplify,L to R,R to L

While To Floop Convert any WHILE loop to a DO...OD loop Rewrite
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C.2 Transformation Catalogue of fermat2 (Commercial Version)

Abort Processing Simplify statement sequences containing an ABORT. Simplify

Absorb Left This transformation will absorb into the selected state-

ment the one that precedes it.

Join

Absorb Right This transformation will absorb into the selected state-

ment the one that follows it.

Join

Actions to Procs Search for actions which call one other action and make

them into procs.

Rewrite,Simplify

Actions to Where Convert an Action System to a Where clause Rewrite,Simplify

Add Assertion This transformation will add an assertion after the cur-

rent item, if some suitable information can be ascer-

tained.

Insert

Add Left This transformation will add the selected statement (or

sequence of statements) into the statement that precedes

it without doing further simplification.

Join

Add Loop To Action If an action is only called by one other action, Simplify

Align Nested Statements This transformation will apply the current program item

to the one to its immediate right. For example, if the

current item is an assertion and the next item is an IF

statement, then the transformation will attempt to sim-

plify the conditions using the assertions.

Rewrite

Apply To Right This transformation will apply the current program item

to the one to its immediate right. For example, if the

current item is an assertion and the next item is an IF

statement, then the transformation will attempt to sim-

plify the conditions using the assertions.

Use/Apply

Collapse Action System Collapse action system will use simplifications and sub-

stitution to transform an action system into a sequence

of statements, possibly inside a DO loop.

Rewrite

Collapse All Action Systems Collapse All Action Systems will attempt to collapse the

action systems within a program which is a WHERE

structure.

Rewrite

Combine Where Structures Combine Where Structures will combine two nested

WHERE structures into one structure which will con-

tain the definitions from each of the original WHERE

structures.

Rewrite

Constant Propagation Constant Propagation finds assignments of constants Simplify

D Do To Floop Convert any D Do loop to a DO...OD loop Rewrite

Data Translation A Data Translation translates array references Rewrite

Date Find Find direct and indirect references to dates for Y2000

analysis.

Simplify

Decompile This transformation will apply some basic Simplify
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Delete All Assertions This transformation will delete all the ASSERT state-

ments within the selected code. If the resulting code is

not syntactically correct, the program will be tidied up

which may well result in the re-instatement of ASSERT

or SKIP statements.

Simplify

Delete All Comments This transformation will delete all the COMMENT state-

ments within the selected code. If the resulting code is

not syntactically correct, the program will be tidied up

which may well result in the insertion of SKIP state-

ments.

Simplify

Delete All Redundant Delete All Redundant searches for redundant statements Delete

Delete All Skips This transformation will delete all the SKIP statements

within the selected code. If the resulting code is not

syntactically correct, the program will be tidied up which

may well result in the re-instatement of SKIP statements.

Simplify

Delete Item This transformation will delete a program item that is

redundant or unreachable

Delete

Delete Redundant Registers Delete Redundant Registers uses dataflow analysis Delete

Delete Redundant Statement Delete Redundant Statement checks whether Delete

Delete Savearea Delete code from assembler translations that looks Simplify

Delete Unreachable Code Delete Unreachable Code will remove unreachable state-

ments in the selected object. It will also remove unreach-

able cases in an IF statement, e.g those which follow a

TRUE guard

Simplify

Delete What Follows Delete What Follows will delete the code which follows

the selected item if it can never be executed

Use/Apply

Double to Single Loop Double to Single Loop will convert a double nested loop

to a single loop, if this can be done without significantly

increasing the size of the program.

Rewrite

Else If To Elsif This transformation will replace an Else clause which

contains an If statement with an Elsif clause. The trans-

formation can be selected with either the outer If state-

ment, or the Else clause selected.

Rewrite

Elsif To Else If This transformation will replace an Elsif clause in an If

statement with an Else clause which itself contains an If

statement.

Rewrite

Error Processing Replace ERROR proc bodies by ABORTs. Simplify

Expand And Separate All Expand And Separate All will attempt to apply the

transformation Expand and Separate to the first state-

ment in each action in an action system. This will be

useful for dealing with the skip flag in WSL derived from

Herma

Simplify
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Expand And Separate Expand And Separate will expand the selected IF state-

ment to include all the following statements, then sepa-

rate all possible statements from the resulting IF. This

is probably only useful if the IF includes a CALL, EXIT

etc. which is duplicated in the following statements, oth-

erwise it will probably achieve nothing.

Reorder

Expand Call Expand Call will replace a call to an action, procedure

or function with the corresponding definition.

Rewrite

Expand Forward Expand Forward will copy the following statement into

the end of each branch of the selected IF or D IF state-

ment. It differs from Absorb Right in that the statement

is only absorbed into the top level of the selected IF

Join

F2K 1 Apply the initial sequence of F2K transformations Hidden

F2K 2 Apply the final sequence of F2K transformations Hidden

Find Dead Code Find dead code in the action system Rewrite

Find Edits Searches for !P ed(...) calls and then searches back Simplify

Find Entry Points Find possible entry points in the action system Rewrite

Find Parameters Find Parameters looks for !P calls Rewrite

Find Terminals Find and mark the terminal statements in the selected

statement.

Rewrite

Fix Assembler (370) This transformation will apply some basic Simplify

Fix Assembler (Fast) Faster version of Fix Assembler – for Y2000 Simplify

Fix Assembler (Slice) Version of Fix Assembler for slicing Simplify

Fix Assembler (x86) This transformation will apply some basic Simplify

Fix Calls Fix Calls looks for !P calls Rewrite

Fix Decimal Fix Decimal converts simple p lit calls to Rewrite

Fix Dispatch This transformation will search for simple Complex,Rewrite

Fix Endian Fix Endian looks for integers which have part of their Rewrite

Fix For Slicing Apply transformations to fix a WSL file before generating

a df file for assembler slicing

Rewrite

Fix Init Delete assignments from rX init and push regs /

pop regs

Simplify

Fix Parameters Fix Parameters looks for !P calls Rewrite

Flag Removal Attempt to remove references to flag variables Simplify

Floop To While Convert a suitable DO...OD loop to a While loop Rewrite

For To While Convert any FOR loop to a VAR plus WHILE loop Rewrite

Force Double - Single Loop Force Double - Single Loop will convert a double nested

loop to a single loop, regardless of any increase in pro-

gram size which this causes

Rewrite

Fully Absorb Right This transformation will absorb into the selected state-

ment all the statements that follow it.

Join

Fully Expand Forward Apply Expand Forward as often as possible Join

Globals To Pars Convert global variables in procs to extra VAR parame-

ters.

Rewrite

296



Appendix

If To Case Convert nested IF statements which test a variable

against constant

Simplify

Insert Assertion(s) This transformation will add an assertion inside the cur-

rent item, if some suitable information can be ascer-

tained.

Insert

Join All Cases This transformation will join any guards in an If state-

ment which contain the same sequence of statements

(thus reducing their number) by changing the conditions

of all the guards as appropriate.

Rewrite,Join

Loop To Move Convert a suitable DO...OD or WHILE loop to assign-

ments.

Rewrite

Make Procedure Make Procedure will make a procedure from the body of

an action or from a list of statements.

Rewrite

Make Reducible Use absorption if necessary to make the selected item Rewrite

Merge Calls in Action Merge Calls in Action will attempt to merge calls which

call the same action, in the selected action

Simplify

Merge Calls Use absorption to reduce the number of calls in an action

system.

Simplify

Merge Cond Right Merge a binary Cond with a subsequent Cond which uses

the same

Simplify

Merge Left This transformation will merge the selected statement (or

sequence of statements) into the statement that precedes

it.

Join

Merge Right This transformation will merge the selected statement

into the statement that precedes it.

Join

Meta Trans Convert a FOREACH with a long sequence of IFMATCH

commands to a more efficient form

Simplify

Move Comment Left Moves the selected Comment Left. Move

Move Comment Right Moves the selected Comment Right. Move

Move Comments Move Comments will move any comments which appear

at the end of actions within an action system and which

follow a call. The comments will be moved in front of

the call. This will help tidy up the output of the Herma

translator.

Rewrite

Move To Left This transformation will move the selected item to the

left so that it is exchanged with the item that precedes

it.

Move

Move To Right This transformation will move the selected item to the

right so that it is exchanged with the item that follows

it.

Move
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Partially Join Cases This transformation will join any guards in an If state-

ment which contain almost the same sequence of state-

ments (thus reducing their number) by introducing a

nested If and changing the conditions of all the guards

as appropriate.

Rewrite,Join

Prog To Spec Convert given program to an equivalent specification

statement.

Abstraction

Prune Dispatch Simplify the dispatch action by removing references Simplify

Push Pop Look for a statement sequence with a PUSH of a var

followed by a POP

Rewrite

Raise Abstraction Raise the level of abstraction of a WSL program. Simplify

Remove Recursion in Action Remove Recursion in Action will replace the body of a

recursive action if possible by an equivalent loop struc-

ture.

Rewrite

Reduce Loop Automatically make the body of a DO...OD reducible

(by introducing new procedures as necessary) and either

remove the loop (if it is a dummy loop) or convert the

loop to a WHILE loop (if the loop is a proper sequence).

Simplify

Reduce Multiple Loops This transformation will reduce the number of multiply

nested loops to a minimum.

Simplify

Reduce Nots Reduce the number of negations (T Not and

T Not Equal types) in the conditions in an IF statement

by switching the order of the guards.

Simplify,Rewrite

Refine Spec Refine a specification statement into something closer to

an implementation

Refinement

Remove All Redundant Vars Remove All Redundant Vars applys Remove Redundant

Vars

Delete

Remove Galileo Comments Removes Galileo comments without a sequence number

(SSL or SSE).

Delete

Remove Dummy Loop Remove Dummy Loop will remove a DO loop which is

redundant

Simplify

Remove Redundant Vars Remove Redundant Vars takes out as many local vari-

ables

Delete

Rename Defns Rename PROC definitions to avoid name clashes. Rewrite

Rename Local Vars Remove all local VAR statements by renaming the vari-

ables.

Rewrite

Rename Proc Rename a PROC to given new name Rewrite

Replace Accs With Value This transformation will apply Replace With Value Rewrite

Replace With Value This transformation will replace a variable Rewrite

Replace With Variable This transformation will search for a variable Rewrite

Restore Local Vars Try to restore the local var clauses Rewrite

Reverse Order This transformation will reverse the order of most two-

component items; in particular expressions, conditions

and Ifs which have two branches.

Reorder
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Roll Loop Roll the first step of a WHILE loop. Rewrite

Semantic Slice Perform Semantic Slicing on a subset of WSL. Enter the

list of variables to slice on as the data parameter.

Simplify

– Separate – – Separate – will take code out to the right and the left

of the selected structure.

Reorder

Separate Exit Code Separate Exit Code will take exit code (code which must

lead to termination of the loop) out of the loop, using a

flag if necessary that indicates which exit from the loop

was taken.

Reorder

– Separate – Separate will take code out to the left of the selected

structure. As much code as possible will be taken out;

if all the statements are taken out then the original con-

taining structure will be removed

Reorder

Separate – Separate – will take code out to the right of the selected

structure.

Reorder

Simple Slice Perform Simple Slicing on a subset of WSL. Enter the

list of variables to slice on as the data parameter.

Simplify

Simplify Action System Simplify action system will attempt to remove actions

and calls from an action system by successively applying

simplifying transformations. As many of the actions as

possible will be eliminated without making the program

significantly larger.

Simplify

Simplify This transformation will simplify any component as fully

as possible.

Simplify

Simplify If Simplify If will remove false cases from an IF statement,

and any cases whose conditions imply earlier conditions.

Any repeated statements which can be taken outside the

if will be, and the conditions will be simplified if possible.

Simplify

Simplify Item This transformation will simplify an item, but not recur-

sively simplify the components inside it. In particular,

the transformation will simplify expressions, conditions

and degenerate conditional, local variable and loop state-

ments.

Simplify

Sort If Sort the branches of IF statements depending on Rewrite

Sort Procs Sort the order of procs in a WHERE so that: Rewrite

Sort Tests Sort tests so that all other tests come *before* Rewrite

Static Single Assignment Convert WSL code to Static Single Assignment form Rewrite

Substitute and Delete Substitute and Delete will replace all calls to an action,

procedure or function with the corresponding definition,

and delete the definition

Rewrite

Substitute and Delete List Substitute and Delete List will replace all calls to any

action

Rewrite
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Syntactic Slice Perform Syntactic Slicing using SSA and control depen-

dencies. Enter the list of variables to slice on as the data

parameter.

Simplify

Tail Calls Find !P calls from an entry point to itself Rewrite

Take Out Left This transformation will take the selected item out of the

enclosing structure towards the left.

Move

Take Out Of Loop This transformation will take the selected item out of an

appropriate enclosing loop towards the right.

Move

Take Out Right This transformation will take the selected item out of the

enclosing structure towards the right.

Move

Unfold Dynamic Calls Look for small procedures which contain a !P

call via ptr(rx) and unfold them everywhere

Rewrite

Unfold Proc Call Unfold the selected procedure call, replacing it with a

copy of the procedure body.

Rewrite

Unfold Proc Calls Unfold Proc Calls searches for procedures which are only

called once, unfolds the call and removes the procedure.

Simplify

Unroll Loop Unroll the first step of a WHILE loop. Rewrite

Use Assertion Use the currently selected assertion to simplify code. Simplify

Var Pars To Val Pars Add all VAR pars as extra value pars where needed. Rewrite

While To Abort This transformation replaces a non-terminating while

loop with a conditional abort

Simplify

While To Floop Convert any WHILE loop to a DO...OD loop Rewrite

While To Reduce Replace a WHILE loop with an equivalent REDUCE or

MAP

Simplify

x86 Fix Fixes for code translated from x86 assembler. Rewrite

X86 Proc Convert an entry point with !P calls into a local PROC. Rewrite
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FermaT Maintenance Environment Tutorial

Matthias Ladkau (matthias@ladkau.de)

Abstract

This document gives a brief practical oriented introduction to the FermaT
Maintenance Environment (FME). It covers the installation and usage of the
program via practical examples.
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1 Installation of the FermaT Maintenance Environ-

ment

This chapter gives a guidance through the installation process of the FermaT
Maintenance Environment. The installation is explained for Unix/Linux and
Windows operating systems.

1.1 Installation on Unix / Linux

1.1.1 Requirements

• Perl (version >= 5.6.1)
http://www.cpan.org/

• Bit::Vector (A perl module for efficient sets of integers by Steffen Beyer)
http://search.cpan.org/search?module=Bit::Vector

• Set::IntRange (Perl module based on Bit::Vector for sets of integers in
a given range by Steffen Beyer)
http://search.cpan.org/search?module=Set::IntRange

• gcc or a compatible C compiler
http://www.gnu.org/software/gcc/gcc.html

• A working JAVA environment (version >= 6)
http://java.sun.com/

• The “make” command
http://java.sun.com/

1.1.2 Install of Perl and gcc

Perl and gcc are included in every current linux distribution. See the in-
stall instructions of your distributions if these components are not already
installed in the standard installation.

1.1.3 Installation of a JAVA environment

On order for the FME to work correctly the Java environment of SUN should
be used. The environment can directly optained from the SUN Microsystems
as a cost-free download.

• Download the Java JDK for Unix/Linux from
http://java.sun.com/javase/downloads/index.jsp
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• Install it according to the provided instructions

• A quick solution is to download the self extracting version (without
“-rpm” in the filename) and install it into your /opt directory. Cre-
ate symbolic links in your /usr/bin directory to the java and javac

executables in the /bin directory of the extracted java distribution.

1.1.4 Installation of Bit::Vector for perl

• Download Bit::Vector from CPAN
http://search.cpan.org/search?module=Bit::Vector

• Unpack the archive:

tar zxvf Bit-Vector-6.4.tar.gz

• Change directory to the unpacked files:

cd Bit-Vector-6.4

• Make and install the binaries:

perl Makefile.PL

make

make install

1.1.5 Installation of Set-IntRange for perl

• Download Set::IntRange from CPAN Beyer)
http://search.cpan.org/search?module=Set::IntRange

• Unpack the archive:

tar zxvf Set-IntRange-5.1.tar

• Change directory to the unpacked files:

cd Set-IntRange-5.1

• Make and install the binaries:

perl Makefile.PL

make
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make install

1.1.6 Installation of FermaT Maintenance Environment

• Unpack the archive (note the directory path must not contain any
space characters) :

tar zxvf fme.tar.gz

• Change directory to the unpacked files:

cd fme

• The program should run now by executing the fme.sh script

1.2 Installation on Windows

1.2.1 Requirements

• Active Perl (version >= 5.6)
http://www.activestate.com/ActivePerl/

• Bit::Vector (A perl module for efficient sets of integers by Steffen Beyer)
http://search.cpan.org/search?module=Bit::Vector

• Set::IntRange (Perl module based on Bit::Vector for sets of integers in
a given range by Steffen Beyer)
http://search.cpan.org/search?module=Set::IntRange

• MinGW package
http://www.mingw.org/

• Windows Installer >2.0 (if using older versions of windows e.g. Win9x/WinME)
http://downloads.activestate.com/contrib/Microsoft/MSI2.0/

• A working JAVA 6.0 environment
http://java.sun.com/

1.2.2 Install Windows Installer (for older versions of windows)

• Install InstMsiA.exe when using Win9x/WinME or InstMsiW.exe for
WinNT. The setup binaries can be found on the ActiveState website:
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1.2.3 Installation of a JAVA environment

• Download the Java JDK for Windows from
http://java.sun.com/javase/downloads/index.jsp

• Install it according to the provided instructions

1.2.4 Install active perl

• Download Active Perl (version >= 5.6)
http://www.activestate.com/ActivePerl/

• Install ActivePerl with the installer.
NOTE: The command "perl" should now work in a DOS box (Start-
>Run->cmd). To end perl press CTRL+C.

1.2.5 Install of Bit::Vector and Set-IntRange for perl

• Download and Install Bit::Vector and Set::IntRange through the ppm
program from ActiveState. Open a DOS box and type at the prompt:

ppm: install Bit-Vector

ppm: install Set-IntRange

ppm: quit

If this doesn’t work then the names might have changed. Try to search
the "Set" and Bit" modules to get the right name:

ppm: search Bit

or
ppm: search Set

1.2.6 Install gcc

• Install the MinGW (e.g. MinGW-6.0.2.exe)

• Extent the path variable for the gcc compiler

In Windows XP and Vista:
Start->Settings->Control Panel->System

Pick Advanced tab

6

http://downloads.activestate.com/contrib/Microsoft/MSI2.0/
http://java.sun.com/javase/downloads/index.jsp
http://www.activestate.com/ActivePerl/


Click on "Environment Variables"

Search for "Path" variable in the system variables list

Click on edit

Append to the Variable value string the path of the gcc.exe

(e.g. when MinGW was installed to "C:\Program Files\MinGW" then
append "C:\Program Files\MinGW\bin")

• The command "gcc" should now work in a DOS box

1.2.7 Installation of FermaT Maintenance Environment

• Unpack the archive (with WinZIP or WinRAR) into any directory
(note the directory path must not contain any space characters)

• The program should run now by executing the fme.bat script
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2 Applied Software Evolution With The FermaT

toolset

2.1 FermaT Transformation System

The objective of the FermaT transformation system is to enable the migra-
tion of large, highly complex legacy systems from Assembler to higher-level
language such as C or COBOL. The FermaT transformation system is built
on the transformation theory that has the following objectives.

1. Improving the maintainability (in particular, flexibility and reliability,
and

2. hence extending the lifetime) of existing mission-critical software sys-
tems;

3. Translating programs to modern programming languages;

4. Developing and maintaining safety-critical applications;

5. Extracting reusable components from current systems, deriving their
specifications, and storing the specification, implementation, and de-
velopment strategy in a repository for subsequent reuse;

6. Reverse engineering from existing systems to high-level specifications,
followed by subsequent reengineering and evolutionary development;

Once migrated, these systems are substantially easier to maintain and can
evolve faster to meet the changing needs of the business they support. Unlike
simple line by line language migration technologies, the FermaT transforma-
tion’s unique semantics preserving code transformations enable the original
application to be automatically cleaned-up, simplified and restructured to its
optimum state for migration to the chosen new language [4]. This ensures
that only functional code is migrated to the new language, helping to ensure
that the migrated code is significantly easier to maintain and adapt than the
original.

Because of FermaT’s use of a unique and formally defined high-level lan-
guage, Wide Spectrum Language (WSL), and its specifically designed code
transformations, the migration process can be automated [6]. The migration
process of the FermaT transformation system can be divided into three basic
steps:

1. Translation of the assembler to WSL;

2. Translate and restructure data declarations;
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3. Apply semantics-preserving WSL to WSL transformations;

4. Translate the high-level WSL to the target language.

2.2 The Wide-Spectrum Language

The core of the FermaT transformation system is the WSL language. It is
based on a wide spectrum language, using Morgan’s specification statement
[2] and Dijkstra’s guarded commands [1]. The intention is to form a language
which acts as an intermediate language when processing a legacy system [3].

WSL was designed for reengineering tasks and covers:

• Simple, regular and formally defined semantics

• Simple, clear and unambiguous syntax

• A wide range of transformations with simple, mechanically-checkable
correctness conditions

• The ability to express low-level programs and high-level abstract spec-
ifications

The heart of the WSL language is a very small and mathematically tractable
kernel language. This language supports already all necessary operations
needed for a programming and specification language. In the context of
this tiny kernel language it is relatively easy to prove the correctness of a
transformation, but the language is not very expressive for programming.
For that reason the language is extended into an expressive programming
language by defining new constructs in terms of the kernel. This extension
is carried out in a series of layers with each layer building on the previous
language level (see [3] for details).

2.3 FermaT Maintenance Environment

The FME is written entirely in the Java language. The choice for the Java
language was made because it is a very safe (strong typed) and flexible lan-
guage with an extensive API and a vast amount of open-source libraries for
almost every possible computer task. Primary the FME is a graphical in-
terface to the FermaT transformation engine. It consists of a text editor
which is able to express WSL together with an Abstract Syntax Tree (AST)
viewer. A maintainer can navigate through the code via the source code or
via the AST. The environment provides a console to the FermaT transfor-
mation engine which can be used to directly command the engine. The core
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Figure 1: The FermaT Maintenance Environment

of the transformation engine is a set of mathematical proven program trans-
formation to simplify the source code. The transformations can be selected
from a transformation catalogue and performed on a chunk of WSL code.
The transformations will either produce a semantically equivalent or refined
version of the source program construct [3]. The communication between
the FermaT Maintenance Environment and the FermaT transformation en-
gine is provided through a communication pipe provided by the underlying
operation system.

Figure 2: Communication between the Engine and the FME
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3 Interface

Following sections give a brief explanation of the main functions of the FME.

3.1 Project

WSL files which are to be used with the FME must be organised in a project.
An own directory should be reserved for the project and WSL files. A project
can be created or modified with the Project Manager (Project→Show Project
Manager). The Project Manager provides the following functions:

• New Project
Create a new project.

• Open project
Opens an existing project.

• Save project
Saves the changes which have been done to the project.

• Close project
Closes a project

• Open file from project
Open a file from the project in the FME.

• Create empty file in project
Creates an empty file and adds it to the project.

• Add file to project
Add an existing file to the project. The file should be in the same
directory as the project file.

• Remove file from project
Removes a file from the project.

• Show Modification History
Shows a graph with all applied transformations and saved intermediate
WSL files.

• Delete History
Resets the modification history record.

3.2 File

Every correct WSL file can be interpreted and executed by the underlying
Scheme interpreter (File→Run WSL file). If a WSL file was loaded into
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the FME and modified, it can safed as an intermediate version. In this
case, the filename is extended with a version number e.g. <file>-1.wsl.
Intermediate versions should be used throughout the whole transformation
process. Every applieed transformation creates a new intermediate version.
When the transformation process has finished the final WSL version can
be saved wiht File as the original filename whereby all intermediate WSL
files are deleted (File→Save code and delete intermediate version). If the
intermediate versions should be kept it is also possible to save a WSL file to
a different file with (File→Save code as WSL file).

3.3 Other functionalities

Apart from the main file handling functions the FME has many other func-
tionalities:

• UNDO/REDO functions which can undo or redo any edit on a WSL
file.

• The calls of Actions or Procedures within WSL files can be visualised
in Diagrams.

• Find / Replace which can search or replace text patterns in WSL file.

• The editor has the standard copy, paste and cut abilities.

• Selected items in the Abstract Syntax Tree can be highlighted in the
code and visa versa.

12



4 Getting Started

4.1 First experience

The followings are two examples written in WSL. First Example: Hello world
in WSL

PRINT("Hello World!")

The output should look something like this when it is directly executed with
the “wsl.pl” script of the engine:

Writing: C:\DOKUME~1\TheUser\LOKALE~1\Temp\t11436.scm

Starting Execution...

Hello World!

Execution time: 0

To get this result in the FME we create a new project and add an empty
file. We then type the statement from above into the editor and save it by
selecting “File”→”Save code as intermediate version”. Note that the Abstract
Syntax Tree in the FME is only updated after the file has been saved. When
we now select “File”→”Run WSL File” the following window should appear:

Figure 3: Execution of Hello World

The first line tells the interested reader that a temporary file “t11436.scm”
has been written to the temporary directory of the current user (here under
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the windows operating system). This is because the FermaT transformation
engine converts a WSL program before execution into Scheme. The Scheme
interpreter is than used to execute the program. This technique has a serious
drawback: The runtime errors detected be Scheme will refer to lines in the
Scheme programm. So the user isn’t able to trace the error according to
line numbers unless he knows exactly which WSL statement of his program
is mapped to particular Scheme statement(s) in the executed program. For
development language this would be a serious problem but as mentioned
before the WSL language is intended to be an intermediate language for
migration and analysing tasks rather than for software development tasks.

The second Example should demonstrate an interactive program - A simple
guessing game in WSL:

VAR <num:=0,guess:=0>:

num := @Random(100);

PRINT("I have thought of a number between 1 and 100");

DO PRINFLUSH("What is your guess? ");

guess := @String_To_Num(@Read_Line(Standard_Input_Port));

IF guess = num THEN PRINT("Correct!"); EXIT(1) FI;

IF guess < num

THEN PRINT("Too low.")

ELSE PRINT("Too high.") FI OD;

PRINT("Goodbye.")

ENDVAR

The output should look something like this:

Figure 4: Execution of the guessing game

A more in-depth reference of all possible WSL statements can be found in
[5].
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4.2 Transformation Example

To demonstrate the transformation facility of FermaT we introduce a small
program. The execution will just output “Hello World”. The reader is en-
couraged to save the following chunk of code in a file within a project of his
choice.

VAR < x := 0, y := 0 >:

DO DO IF x = 0 THEN PRINT("Hello World")

ELSIF x > (2 + x) - 1

THEN PRINT("Goodby cruel world")

ELSE EXIT(2) FI;

x := x + 1 OD OD ENDVAR

A click onto the first DO statement should highlight the whole loop:

Figure 5: Transformation Example

We can test now for the available transformations on this node with a click
on the “Test All Transformations” symbol in the transformation catalogue.

Figure 6: Transformation Catalogue Toolbar

Now some transformations should be highlighted in green. These transfor-
mations can be applied on the current selected program item (Of course some
of them may have no effect).
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Figure 7: Transformation Example

Now we select the transformation “Double to Single Loop”. A click on “Apply
Transformation” should result in the following code:

VAR < x := 0, y := 0 >:

DO IF x = 0

THEN PRINT("Hello World")

ELSIF x > (2 + x) - 1

THEN PRINT("Goodby cruel world")

ELSE EXIT(1) FI;

x := x + 1 OD ENDVAR

The double loop has been eliminated and the exit statement inside the loop
have been decreased by one. After the transformation has been applied the
attentive reader may have recognised that the filename contains now a "-0".
Everytime the source code is modiefied and saved the FME will generate
an new file (called “intermediate version”). This includes the case when a
transformation is applied. If all modifications of the file have been finished
the user may select the “Save (final) WSL File and all intermediate versions
of the file will be deleted and the last version will replace now the original file.
The benefit of this technique is that a maintainer can access in the process
of migration all past intermediate versions of the processed program. If he
did something wrong or applied the transformations in a wrong order he can
easily go back to an older version.

If the file is not saved than all modifications can be undone/redone with the
“undo” and “redo” options of the “Edit” menu entry.

Through the “Simplify If” Transformation the program can be simplified to1:

1The interested readers may do this on their own.
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VAR < x := 0, y := 0 >:

DO IF x <> 0 THEN EXIT(1) FI;

PRINT("Hello World");

x := x + 1 OD ENDVAR

4.3 Working with the console

As mentioned before the FME is directly tied to the transformation engine.
The engine itself can be accessed via the console. The current program and
the current item2 is changed when a node in the FME’s Abstract Syntax
Tree Window has been selected. To demonstrate this the reader may open a
WSL program of his choice and select a node in the tree. This node is now
the current item in the transformation engine. If now the command

(@Print_WSL (@I) "")

is entered in the Console the engine should output a subtree of the AST with
the current item as the root.

Figure 8: Console to the transformation engine

For all possible commands please see the WSL manual [5].

2See [5] for details on these concepts
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4.4 Other functionalities of the FME

The FME includes some more functionalities for comfortable usage:

The graphical user interface of the FME consists of internal windows which
may be minimised, maximised or closed. The “Window” menu entry gives
some options to automatically align these windows.

The “ActionSystem CallGraph” is a very useful feature when analysing action
systems.

Figure 9: ActionSystem CallGraph

The dialog can be activated within the “Analyse” menu entry if an WSL Ac-
tion System is present in the current program. It shows the calls in the action
system in a call graph. The user can automatically zoom-in ,hide/collapse
several nodes, print the graphic and export the graphic to a vector/bitmap
file format.
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[web1] The FermaT Engine
http://www.cse.dmu.ac.uk/˜mward/fermat.html

[web2] The Software Technology Research Laboratory (DeMontfort Uni-
versity, Leicester)
http://www.cse.dmu.ac.uk/STRL/index.html

[web3] Software Migration Ltd.
http://www.smltd.com

[web4] Teach Yourself Scheme in Fixnum Days
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
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