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ABSTRACT 

This research encompasses a comprehensive study and analysis of adaptive computing 

techniques and fractal geometry in digital signal processing and pattern recognition. After 

starting with an introduction to the subject areas, links between artificial neural networks and 
fractal geometry are covered, followed by practical work. Using a pattern recognition 

problem, the whole process of applying artificial neural networks to a bio-chemical 

application has been practically analysed. By developing a robust weight set their robustness 

to noisy data were examined. 

Since the 1990s digital signal communication has been the focus of considerable attention, 

resulting in a rapidly developing field. Using a digital communication system designed for 

secure data transmission, adaptive neuro-models were developed to optimise the system's 

performance in the presence of various types of noise, overcoming the system's error rates 

generated with low signal/noise ratios (SNRs). 

The most significant finding was that random noise improves model performance in terms of 

generalisation abilities, making adaptive neuro-models particularly valuable in dealing with 

transmission noise, and unwanted signals in digital communication systems. 
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NOTATION AND GLOSSARY 

ANN Artificial Neural Networks 

BP Back-propagation 

DC Direct Current. 

DFT Discrete Fourier Transform 

FBm Fractional Brownian motion 

FDS Fractional Dimension Segmentation. 

FT Fourier Transform 

FFT Fast Fourier Transform 

EFS Iterated Function System. 

PDF Probability Density Function. 

PSDF Power Spectrum Distribution Function. 

RSF Random Scaling Fractal 

SFD Stochastic Fractional Differentiation 

SNR Signal to Noise Ratio 

Convolution function f0gff (x)g(x x) dx 

Correlation fE) gff (x) g (x - x)dx 

Expected or mean value of ... 

Value ... rounded down. 

infl-I The infimum or minimum 

supf -I The supremum or minimum 

CY, CY 
2 Standard Deviation, Variance. 

RX) The Gamma Function ft X-1 e-'dt. 
0 
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P0, p -1 0 Forward and Inverse Fourier Transform 

IMO Imaginary part of a Complex Number. 

Pd] Probability Density Function of ... 

Re(. ) Real part of a Complex Number. 

Sinc(x) sin(x)/x. 

D Fractal Dimension 

DB Box-counting Dimension 

Dc Correlation Dimension 

DF Fourier Dimension 

DH Hausdorff-Besicovitch Dimension . 

Dp Pointwise Dimension 

D, Similarity dimension 

P(k) Fourier Power Spectra 

P(k) Least Squared Fit to P(k). 
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I INTRODUCTION 

1.1 FRACTAL GEOMETRY 

The geometric interpretations of fractional partial differential equations can be explored in 
terms of fractal geometry. Fractal geometry is suitable for describing natural objects. It deals 

with shapes of infinite detail and allows defining and measuring the properties of such objects 
(Mandelbrot, 1983). This measure is compounded in a metric called the 'Fractal Dimension' 

or the 'Similarity Dimension'. 

The concept of self-similarity is central to fractal geometry. It means that some types of 
mainly naturally occurring objects look similar at different scales. There are two distinct 

types of fractals, which exhibit this property: deterministic fractals, which are objects that 
look identical at all scales, and random fractals, which do not generally posses such 
deterministic self- similarity. 

Dynamical systems theory provides the framework for the generation of fractals as well as 
discussing chaos (Weeks and Burgess, 1997). This is an important point to highlight in 

regard of ANNs as the dynamics of all types of neural network can be analysed and explained 
by using the fixed point theory in the traditional discrete dynamical system (Rabinovich, 

1996). 

1.2 SOFT COMPUTING 

Soft computing methodologies form the basis of an emerging approach to constructing 

computationally intelligent systems. The term "soft computing" encompasses Artificial 

Neural Networks (ANNs), Fuzzy Logic (FL), and Probabilistic Reasoning (PR) with the latter 

subsuming simulated annealing, generic algorithms and chaotic systems. 

Professor (Lotfi Zadeh, 1992), who introduced the concept of fuzzy sets in 1965 in a 

publication - Fuzzy Sets, Information and Control, 8,338-353, defines soft computing as 

follows: 

'Soft computing is an emerging approach to computing in an environment of uncertainty and 

imprecision. The essence of soft computing is that unlike Lhe traditional, hard computing, 
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soft computing is aimed at an accommodation with the pervasive imprecision of the real 
world. Thus, the guiding principle of soft computing is to exploit the tolerance for 
imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solution 
cost, and better rapport with reality'. 

Soft computing techniques may be applied in real world applications where conventional 

computing systems are currently unable to cope, e. g. adaptability to or immunity to noise. 
The role model for soft computing is the mammalian brain, with the artificial neural networks 

providing a central contribution in learning and adaptation. 

ANNs can be described as parallel distributed informati on-proces sing structures made up of 

processing elements; the elements being simplified versions of biological neurones. Because 

they are not based on rigid algorithms, neural networks are naturally fault tolerant. They can 

process many inputs and produce many outputs, hence they are applicable to multivariable 

systems and potentially offer fast processing. 

The strength of fuzzy logic is knowledge representation using fuzzy if-then rules, and that of 

simulated annealing and generic algorithms is systematic random search and optimisation. 

1.3 SOFT COMPUTING IN SIGNAL PROCESSING AND 

PATTERN RECOGNITION 

Since the 1970's, many mathematically optimal solutions have been developed for specific 

tasks in signal processing and identification of objects from observed patterns or images. 

These solutions break down however, when adapted for similar problems or when the 

underlying assumptions that may be unreasonable in practice are violated. For example, the 

common assumption that noise follows a particular distribution is known to play a 

detrimental role in many experimental situations. As a result, engineers and scientists active 

in signal processing and pattern recognition have been showing a growing interest in soft 

computing methodologies. Numerous publications, conference sessions, as well as many 

applications are indicative of this expanding process. 

Unlike the traditional approaches, artificial neural networks in partnership with 

complementary methodologies, which form the basis of soft computing, can tolerate the 

imprecision and uncertainty of the real world. They have been used successfully for many 
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recognition and classification, chaotic time series prediction, texture recognition and image 

understanding-types of problems (Caudill and Butler, 1992). 

1.4 AIMS AND OBJECTIVES 

The principal aims of this research were to investigate and practically analyse the suitability 

of neural networks and fractal geometry for digital signal communication, in particular in the 

areas of neuro-modelling and filtering of unwanted signals. To achieve this the following 

objectives were set: 

A review of digital signal processing techniques, fractal geometry, and the fundamental 

concepts of neural network technology. 

An investigation of any links between artificial neural networks and fractal geometry, and 

suitability of neuro-fractal models for noisy pattern recognition and signal processing tasks. 

Using pattern recognition problems to address issues regarding noise, incorporation of 

approximate models, mapping, and generalisation attributes of suitable paradigms. 

Developing a robust neuro-model for a digital communication system that employs fractal 

modulation for secure transmission, to: 

o overcome the system's error rates generated with low signal/noise ratios, and 

9 optimise the decoding process in terms of speed, and robustness of technique in 

presence of various noise fields. 

In particular it was considered that the benchmark experiments would provide a number of 

main contributions to this work. These included: an analysis of neural networks robustness to 

noisy data that occurs in industrial applications (employing fractal noise convolution), a study 

of the practical issues involved in the development of static/dynamic models (e. g. the stability 

problem), and an analysis of the issues concerned with the quality, representativeness and 

pre-processing of the training/testing data. 
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1.5 THESIS OVERVIEW AND OUTLINE 

1.5.1 Overview 

In 1996, when I started my PhD, I was already familiar with artificial neural networks 

(ANNs) and their potential of being used for many real world applications in a noisy 

environment. As a consultant at Fisher Controls International, Leicester, in the previous year, 

I had carried out suitability studies of ANNs in process control and published two internal 

papers. The material included in Appendix B, which covers preliminary unifying information 

on ANNs, form part of one of the publications which was concerned with ANNs in process 

control. The second paper, looked at ANNs from a practitioners viewpoint, categorising 

them into either static or dynamic networks. 

In 1997/8, after completing an induction course in digital signal processing and fractals, I 

carried out work on fractal modulation and looked for any links between ANNs and fractal 

geometry. At the same time, I carried out practical work on a benchmark process control 

problem, addressing issues regarding noise, and incorporation of approximate models. The 

practical work indicated robustness of neuro models to noisy data, both in term of training 

and generalisation abilities. 

The question, then became how such robustness to noisy data can be used to solve problems 

where conventional solutions have proved inadequate, if not impossible. As a result, I then 

considered developing neuro-models using data with the following transformation: 

e Fourier type transform - (Data compression) 

9 Wavelet transfonn - (Multi-resolution analysis) 

* Fractal transforrn - (Self similarity of input pattern) 

Utilising my practical findings on robust neuro models and using fractal analysis, based on 

d 
d 

n (t) - White noise 

(t) - Fractal time series 

q(t) - Fractal dimension signature 

1 q(t) <2 Vt 
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models were developed for a digital signal communication system that uses fractal 
modulation to: 

* overcome its error rates associated with low signal/noise ratios (SNRs), and 

* optimise robustness of technique in presence of various noise fields. 

For this application networks were also trained on q(t), because of its following behaviour: 

-independent of size of problem 

-self similar at all scales 

Figure 1.1 shows an overview of the research work carried out and the original contributions. 

1.5.2 Outline 

This thesis is organised as follows. Chapters 2 and 3 cover basics of digital signal processing 
techniques and fractal geometry. The bulk of information presented in these Chapters are 

mainly from lecture notes by Professor Blackledge on the MSc 'Digital Signal and Image 

Processing', which the author was required to attend all its modules as part of an induction 

course to the PhD. 

Chapters 4 and 5 cover an introduction to various aspects of artificial neural networks. 

Chapter 6 starts with an introduction to iterated function systems. Then using some general 

mathematical principles any link between fractals and artificial neural networks are explored. 

In Chapter 7, employing a pattern recognition problem from a bio-chemical rig, important 

considerations in dealing with noise, incorporation of approximate models and ensuring 

optimum results are experimentally analysed Joint publication based on this work, is 

included in Appendix C. 

The practical work carried out in Chapter 8 and Chapter 9, investigate the applicability of 

artificial neural networks to a digital communication system which employs fractal 

modulation for secure transmission. Integrating neuro-filters with the digital communication 

system enables the system to operate consistently at lower signal/noise ratios (SNRs), making 

it commercially viable. 
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A summary of this research work and what it has revealed are provided in Chapter 10. The 

summary includes the conclusion of the work carried out and its main contributions. Further 

research directions are then discussed. 

ANNs 

Original 

Contributipp 

Fractal 

Demodulation 

New 

Training 

with Noise 

FRACTALS 

Fractal 

Modulation 

Systems ---opp. 

Development 

Covert Digital 

Communication 

Figure 1.1 
Overview of thesis with original contributions 

Original 

Contribution 
, qq 
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2 SIGNAL PROCESSING TECHNIQUES 

2.1 OVERVIEW 

2.2 THE FOURIER TRANSFORM 

The Fourier transform is just one of a variety of integral transforms but it has certain 

properties which make it particularly versatile and easy to work with. As a result, it is used 

extensively in many branches of science and engineering. Physically, the Fourier transform 

of a function provides a quantitative picture of the frequency content of the function. This is 

important in a wide range of physical problems and is fundamental to the processing and 

analysis of signals and images. For notation, the Fourier transform of a function f is usually 

denoted by the upper case F. If the function in question is already upper case F, then the 

transform is denoted by writing a tilde above this function. The transform is then given by T. 

To specify the forward or inverse Fourier transforms in full, the symbolic form 

f (x) ý(--> F(k) is used which means that F is the Fourier transform of f and f is the inverse 

Fourier transform of F. Mathematical operations on f are referred to as operations in real, x- 

space or image space, and operations on F are referred to as operations in Fourier space or k- 

space. 

* Derivation of the Fourier transform pair from the complex Fourier series 

Let =FI Cn 
n 
/21 

then 

1 inx)T 

f (x) Fe 
21 n 

-inxir 

Fff (x)e ' dx n 

If kn = wr1l and Akn = 7r1l 

then 
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Iýe ik�x Ak n 17 
n 

I 

Fff (x)e ik,, x dx n 

In the limit as 1 ---> oo, 

f (x) = 27r 
f F(k)e"dx 

F(k) =Ff (x)e ^, lf w] =- "' A 

Where F, denotes 1D Fourier operator. F(k) is the Fourier transform of f(X) where f(x) is a 

non-periodic function. The variable k has dimensions that are reciprocal to those of the 

variable x. There are two important cases which arise in imaging science: 

1. x- time in seconds; k- temporal frequency in cycles per second (Hertz). Here, k is 

referred to as the angular frequency which is given by 21rtimes frequency. 

distance in meters; k- spatial frequency in cycles per meter. Here k is known as the 

wave number and is given by k= 27r 1A where A is the wavelength. x- distance in 

meters; k- spatial frequency in cycles per meter. Here k is known as the wave number 

and is given by k= 21rlA where A is the wavelength. 

The sufficient condition for the existence of the transform is thatf is square integrable, i. e., 

f If (X)l 2 
dx < oo 

2.3 THE SPECTRUM 

The Fourier transform of a function is called its 'spectrum'. It is a complex function that can 

be written in the form 

F, (k) + iFi (k) 

Alternatively, using an Argand diagram representation 
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F(k) = A(k)e'o(k) 

where A= IFI = 
VFr2 + F, ' 

and 0= tan-' 
Fi 
Fr 

The functions F, and Fj are the real and imaginary parts of the Fourier transform respectively. 
If f(x) is a real valued function, then 

F, (k) =ff (x) cos(kx)dx 

and Fi (k) ff (x) sin(kx)dx 

The functions F, A and 0 are defined as follows: 

F- complex spectrum 

A- amplitude spectrum 

0- phase spectrum 

In addition, the function A2= JF12, 
S known as the Power spectrum. 

At k=0, the value of the spectrum is called the DC level and is given by the integral off, i. e. 

DC level = F(O) ff (x)dx 

2.4 THE INVERSE TRANSFORM 

The function f (x) can be recovered from F(K) by employing the inverse Fourier transform 

which is given by 

^1 

F, - F( 

f F(k)exp(iks)dk 
2n 
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Where Fl-' is the inverse Fourier operator and -1 is used to denote that this operator is an 
A 

inverse operator and does not mean I/ FI 

* Alternative definitions and representations 

It should be noted that some authorities define the forward and inverse Fourier transforms as 

F(k) = -jIý- 
ff (x) exp(-ikx)dx 2n 

F (k) exp (ikx) A 

or 

F(k) = 1� ff (x) exp(-ikx)dx ,f2 

, 27[ F(k)exp(ikx)dk (x) =, 

It is a matter of convention that F is called the Fourier transform of f when -i occurs in the 

exponential and thatf is the inverse Fourier transform of F when i appears in the exponential. 

The exact form of the forward and inverse Fourier transforms that are used does not matter. 

What does matter is that consistency with a given definition is maintained throughout a 

calculation. Here, the following Fourier transform pairs are used throughout 

F(k) =ff (x) exp(-ikx)dx 

(X) = -2L7r f F(k)exp(ikx)dk 

2.5 THE DISCRETE FOURIER TRANSFORM 

The forward and inverse Fourier transforms are not practical when dealing with values of f (x) 

experimentally measured at discrete time intervals. In that case, the discrete Fourier transform (DFT) 

is required. 
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2.5.1 Derivation of the discrete Fourier transform from the complex 
Fourier series 

The Complex Fourier Series over the range [-1,1] can be written as 

I inX7r 

f(x)= Ife 
21 nn 

-inxir 

Fff (x)e ' dx n 

Consider the case where f(x) is uniformly sampled at points xo, xj, x2, ... xN-1 giving the 
discrete function or vector 

f,,, -= f (x,,, ); 0,1,2,... N-I 

with sampling interval Ax. 

Now, x,, = mAx and with N= I/Ax 

i27znm 

IFe N fm 
Nn 

-i2 nm 

En f. eN 
m 

The crucial concept here is that the dot product of the data vector with sine and cosine waves 

at each of the frequencies under consideration is being computed. Also, with the forward and 

reverse transformations differing only in the sign in the exponent and in the division by the 

sample size for the inverse transform, only one subroutine is sufficient to do both operations. 

2.5.2 Relationship between the DFT and the Fourier transform 

*Fourier Transform Pair 

F(k) ff (x)e-"'dx and f (x) f F(k)e'kxdk 
2; r , 
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9 DFIF pair 

-i2 nm 
En -N 

, 
fme 

m 

I i2nnm 

and fm =-IFne 
N 

Nn 

Consider the following discretization of the Fourier Transform pair where Ax and Ak are sampling 

intervals 

j (x. )e-ik� x F(kn ) :: -- 
1. 

Ax and f (x. ) =11 
F(kn)eik� x. Ak 

m2n 

Writing k, = nAk and xn = mAx and comparing the results above with Discrete Fourier 

Transform pair, it can be seen that 

AkAx = 
21r 
N 

-i27znmIN 

., 
fm e 

m 

=I EFe i27inmIN fm 
Nn 

The interval Ak between the numbers F,, is related to the interval Ax between the numbers f,, 

by 

A 
21r 

NAx 

2.6 THE FAST FOURIER TRANSFORM 

The Fast Fourier Transform (FFT is an algorithm for computing the DFT with less 

multiplication and additions. 

The standard form of DFIF of an N-point vector is given by 
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Em -I ., 
fi, exp(-2 inm / N) 

n 

where 
N-I 

D Cleve 1 (zero frequency component)occu rsatFo -firstvalueof F.. 
n n=O 

(N/2)-l 

I =- I ortheopticalformof DFT- DCleveloccursatcentreof arrayFm. fi 
n n=-N12 

Writing WN= exp(-21dIN) then F,, =I ., 
Wý' 

n 

Computing the DFIF in this form requires something on the order of N2 operations. That is, 

multiplying an N-point vectorf, by a matrix of coefficients given by a complex constant WN 

to the power of nm. This can be written in the form 

Fo WNO 0 

Fi WNI 0 

(N-1)0 FN-i WN 

wol O(N-1) ') K fo 
N 

Wý 

WI l(N-1) 
NI 

Wý f, 

N-I)l (N-1)(N-1) k fN-1 WN WN 
A 

I/ 

However, computing time could be halved by writing an N-point DFT in terms of two N12- 

point DFTs. The Fast Fourier Transform Algorithm (FFT) is based on repeating this 

operation again and again until a single point DFIF is obtained. 

9 Basic Idea 

N-1 
1 

-2 inmIN fn e 

n=O 
(N12)-l (N12)-l 

1 
-2 i(2n)mlN + f2n+ie-2 i(2n+l)mlN 

.. 

f2ne I 

n=O n=O 

(N12)-l (N / 2)-l 
1 

-2 inml(N12) + e-2 imIN) 1 
-2 inml(N12) f2ne 

_, 

f2n+ie 

n=O n=O 

(N12)-l (N12)-l 
nm f2nWým f2n+IWN12 

/2 
+ WNM12 

n=O n=O 
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0 DFT of N-point array = DFT of even components + WNm x DFT of odd components. 

This can be written in the form F,,, = Fe, + Wjý Ro, where e and o represent even and 

odd respectively 

0 The important thing to note here, is that the evaluation of F, ' 
, and F,, ' 

, 
is over N/2-points 

- the N12 even components and the N12 odd components of the original N-point array. 

0 computing F. ' and F,, ' 
, requires only half the number of multiplication that are needed to 

compute 

0 Because the fonn of the expressions for F,, and F,, ' are identical to the form of the 

original N-point DFT, one repeat the idea and decompose F. ' and F,,, ' into even and odd 

parts producing a total four N/4-point DFIFs and so on. 

pn 

e 
m F+ Wý' Fmo 

Fee eo + WM X (Foe 
m+ 

Km 
m+Wm /2Fm NZ 2FOO) 

9 

0 

0 

Subdividing the data into odd and even components can continue until it gets down to the 

DFr of a single point. 

Because the data is subdivided into odd end even components of equal length an initial 

array of size N= 2' is required, where k is positive integer number. 

Computing the DFIF in this way reduces the number of multiplications needed to 
2 

N1092N, a considerable improvement over N 

2.7 THE SHORT-TIME FOURIER TRANSFORM AND THE 

GABOR TRANSFORM 

Mapping a time series vector to a time-frequency matrix, exposes the time-frequency 

structure of the series. Methods for performing such transforms include, the short time 

Fourier transform (STFT) and its special form, the Gabor transform. 
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2.7.1 The continuous STFT 

The FT of a time domain signal, x(t), can be written as 

F(k) f 
x(t) e- 

iktdt 

Consider the case where the frequency content of x(t) is not constant. The FT can be 

modified to include time windowing g(t). 

F(T, k) f 
x(t) e-ikt g(t - T) dt 

Under reasonable conditions, F(, r, k), the STFT within a continuous domain having a time 

dimension (r) and a frequency dimension (k), captures all the information in x(t). 

2.7.2 The discrete STFT 

The discrete short time Fourier transform (DSTFT) is simply the continuous STFT evaluated 

at discrete points, usually laid out on a equi-spaced lattice, in the time/frequency plane. 

The DSTF17 of a signal x(t) with a family of functions, gpq(t), where 

p and q, represent the time and frequency dimension co-ordinates and 

1'0 and ko represent the spacing in the time and frequency dimensions respectively, is 

given by 

w 
(p, q) 

f 
X(t) g pq 

(t) dt 

where 

gpq (t) = g(t _ Pro )-ikotq 

producing equal lattice spacing 
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9 The inverse problem 

e In the continuous case, having F(T, k), it is possible to fully capture x(t) [Daubechies, 

1990]. 

9 In the discrete case, F(p, q), information lost about x(t) depends on how small are zo 

and ko. To accurately reconstruct discrete STFIF, the concept of 'frames' is used. 

If gpq(t)constitute a frame, then all of the information in x(t) is captured. 

,* Necessary conditions to have a frame 

0 ro . ko < i. 

As t --,, \ oo the windows must rapidly decay. Y 

* Windows must overlap, or the quality of the frame deteriorates. 

Also there is the issue of aliasing. To avoid aliasing, for x(t), sampled at time intervals to, the 

highest frequency handled is 1/(2 to) cycles per time unit. 

2.7.3 The Gabor transform 

9 The STFT and its special form the Gabor transform are influenced by the data window, 

g(t). 

9 They make use of constant-shape resolution rectangles. Using the center and radius of 

the time and frequency domain windows, resolution rectangles can be visualised. 

e The shape of the resolution rectangles can be controlled using the shape of g(t). 

* By letting g(t) in the STFIF be the Gaussian function, an optimal resolution product is 

produced. A STFIF employing the Gaussian weight function is defined as the Gabor 

transform. 
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e Influence by the position of the data window 

The position of the data window along the time axis defines a range of influence in the time 
domain. 

* The centre of the area of influence, mt, is 

f- 
tlg(t)12dt 

mt = -- 
f-I 

g(t)12 dt 

9 The distance from the centre over which the influence extends, the windows radius, At, is 

FL; 

I)21g(t)12dt 
f (t-m 

__Ig 
t)12 dt t 

g(t 
-Ig 

* Influence by the frequency content of x(t) 

The STFT is also influenced by the frequency content of x(t) within the data window. The 

frequency domain window of a time domain window is the FT of the time domain window. 
With G(l) defined as the Fourier transform of g(t) 

Mf 
fIG(f )12df 

JG(f )12df 

(f_Mf)2 JG(f )12df 
Af 

-mf )12df 

-mf 
:- 

F-f 

III G (if 

9 The Heisenberg uncertainty principle 

The Heisenberg uncertainty principle places a lower limit on the area of the resolution 

rectangle. 

At Af ý! I/ 4n 

At is the windows radius, i. e. the distance from the centre over which the influence extends, in 

the time domain and Af is the windows radius in the frequency domain. 
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* Optimal resolution 

An optimal resolution of the Gabor transform, up to the Heisenberg limit is achieved by 
letting g(t) in the STFIF be the normalised and scaled Gaussian function given by 

12 

g, (t) e 

[--2c, 

2 

TCY4 
FCy 

and it's Fr is 

G, (f vr2a 7ry4e 
-27t2Cy2f2 

where the scale factor a is 

cr 

2.8 WAVELET TRANSFORMS 

2.8.1 Foundation 

* Using the DSTRT, the time/frequency structure of a signal x(t) is exposed by convolving 

x(t) with g(t) 

(p, q) 
f 

X(t) g pq 
(t) dt 

g(t) producing equal lattice spacing is defined as 

gpq M= 9(t - PTO )-ikotq 

where 

p and q determine discrete lattice points within a domain having time andfrequency 

dimensions z- and k respectively 

e Many practical problems require closer time-domain lattice-point spacing, i. e. finer time 

resolution, for higher frequencies. 

* To locate higher frequency events more accurately in time, alternative tools, which unlike 

the STFIF and the Gabor transform, can deal with the concept of 'scale', are required. 
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Rather than using frequency, k, as in the STFT and the Gabor transform, wavelets mostly use 
a scale dimension, ý. 

2.8.2 The continuous wavelet transform 

The continuous wavelet transform (CWT) of a signal x(t) within a domain having, a time 

dimension, r and a scale dimension ý is given by 

CWT(r, ý) = f, ýx(t) h r, ý (t) dt 

Each family member h"ý is given by shifting in time by T and scaling by ý 

T, ý 

(t) = ýý h 

where 

J 
is to maintain the energy of the wavelet costant 

* Traditionally, wavelets are normalised according to 

2 

lh(t ), dt =1 

9 Also it is vital for wavelets to have a mean of zero 

h(t)dt =0 

2.8.3 The discrete wavelet transform 

For the discrete wavelet transform (DWT), in a similar manner to the STFT in which each 

family membergpq(t)was defined as 

gpq (t) = g(t - pTO)e- 
ikotq 
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each wavelet function corresponding to a point in the time/scale lattice, is given by 

- PT 
hpq (0 

= 
ql2h 

tq 

ýo ýo 0 

2.8.4 Quality of representation 

* If hpq W constitute a frame, then all of the information in x(t) is captured, but due to the 

time/scale lattice not being equally spaced, finding out if there is a frame and knowing its 
quality is relatively difficult. As a result, it is best to use mother wavelets whose frame 

quality associated with various values of To are known. 

,* Useful necessary conditions analogous to that in the DSTFT, e. g. ro ko < 1, do not exist. 

Despite this, the basic principles concerning a frame are similar to that in the DSTFIF, and 

it is possible to construct a frame for anyTo and ýo. 

* It is convenient, with regard to sampling, to choose ýo = 2. But for some mother wavelets, 

ýo =2 is too large to generate a good frame, as ro would have to be impracticably small. 

As a result more than one mother wavelet is required. The general form of voices is 

given by 

2 -j/Nh(2-j/N t), j=0, ..., N-1 

This gives N lattices, lining up in time and shifted in frequency dimension. 

2.8.5 The Morlet wavelet 

* This is a family of variable width frame functions that is nothing but scaled versions of 

one 'mother' shape. 

9 This complex-valued wavelet can be considered as a modified Gabor function. The 

Gabor function was given as 

V1 
=el 

2cY2 

TC/ 4 
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The Morlet wavelet is expressed by 

--L (e 2nikt 

-e 
-k 

Y2 

) el- 
I, I h(t) = 7t 42 

This is practically the same as the Gabor function with cy =1 and with a mean of zero. 
The term that centres the function is given by 

(e 
27cikt 

- e- 
k Y2 

) 

* In practice, when applied to discrete sampled data, a value of k>0.7 is used to avoid 

significant distortion of the shape of the mother wavelet. Additionally, at all scales, the 

normalisations of zero-centre and of unit energy are preserved. Therefore, as long as the 

sampling rate does not violate the Nyquist limit, there would be no trouble in regards to 

interactions between the oscillation of the wavelets and the spacing of samples. 

0 2.8.6 The mexican hat wavelet 

* This wavelet is not a complex valued wavelet like the Morlet wavelet. Rather, the 

Mexican hat wavelet as well as most other commonly used wavelets, are real-valued 

functions. 

9 It is one of the most used wavelets as it could provide a decent frame. It has a relatively 

wide window width in the frequency domain. Hence, for ýO = 2, and the time domain 

spacing allowing overlaps, multiple voices are not necessary. 

* It is the second derivative of the Gaussian function, with the sign reversed. 

o The Mexican hat wavelet is given by 

12 

h(t) t2 )e 2 

and its Fl' is 

2 
4f2 H(f) e2 3 

This Chapter presented basics of digital signal processing transfer techniques. The following 

Chapter presents fractal geometry. 
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3 FRACTAL GEOMETRY 

3.1 INTRODUCTION TO FRACTALS 

In the 17 th century, Issac Newton explained the elliptical orbits of the planets around the Sun, 

discovered by Johannes Kepler, as following from the law of gravity. Associating the 
dynamics of a system with simplistic geometrical shapes implies that the system's future can 
be predicted from its past. The nature is full of systems that obey deterministic laws but 

behave unpredictably. Modelling deterministic chaos and describing natural objects such as 

the shapes of mountains and clouds require non-Euclidean structures, in particular fractal 

geometry. Fractal geometry plays two roles. It is the geometry of deterministic chaos and it 

can also describe the geometry of natural objects (Mandelbrot, 1977). 

The term fractal was introduced in the 1970s by Mandelbrot. It is from the Latin 'fractus', 

which describes a broken up and irregular stone. Fractals are geometrical shapes that, unlike 

Euclidean shapes, are irregular all over, with the same degree of irregularity on all scales. A 

fractal object is (exactly, approximately, or statistically) self-similar. That is it looks the 

same when examined from far away or nearby. As one approaches it, the small pieces of the 

whole become well-defined objects whose shape is roughly that of the previously examined 

whole. 

Examples of mathematical models of the way fractals work, includes the Sierpinski gasket 

and the Koch snowflake: 

The Sierpinski gasket, produces a simple fractal by breaking up a triangle into 

successively smaller ones. 

The Koch snowflake, or the Koch Island, was invented by Helge Von Koch in 1904 

as an example of a 'nowhere smooth' curve. It is a fractal evolving from a simple 

triangle. It is produced by repeatedly replacing each side by 4 sides of length 1/3. As 

the number of repetitions approaches infinity, the curve will be infinitely long with an 

infinite number of discontinuities, with a notion of self-similarity at each level. 

However, the area enclosed is finite and very well defined (Blackledge J M, Turner M 

J, Andrews P R, 1998). 
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Consider the area enclosed by each level of the Island. 

Defining the area of the original triangle as AO =A 

at level n 
n-I 

An = A(I + 1/ 31 

., 

(4 / 9)i) 

i=O 

as n -> oo 
A. =A(1+1/3(1-4/9))=8/5A 

3.2 THE FRACTAL DIMENSION 

Euclidean geometry uses the notions of 0,1,2 or 3 dimensions for a point, a line, a square or 

a cube respectively. For fractals, the counterparts of these dimensions are known as fractal 

dimensions, but, usually, their values are not whole numbers. 

Self-similar objects are compounded by a parameter called the 'Fractal Dimension', or the' 

Similarity Dimension', D, Applied to a point, a line, a square or a cube, D, simply gives 0, 

11 2,3 respectively. In the case of a curve that is linearly self-similar fractal, ranging from 

being an almost smooth, one dimensional line to nearly plain filling and almost two 

dimensional, the corresponding value of D, will range between I<D, < 2. The value of D, 

characterises the fractal type (Table 3.1): 

Fractal Type Dimension 

Dust 0 <Ds <I 

Signal 1 <Ds <2 

Image/Surface 2 <Ds< 3 

Volume 3 <Ds<4 

ýable 3. 

D, is defined as 

NrDs =1 

or 
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In N 
In r 

In (Number of self - similar pieces) 
In (Magnification factor) 

N is the number of distinct copies of an object which has been scaled down by a ratio r in all 

co-ordinates. 

There are two distinct types of fractals which exhibit this property: 

1. Deterministic Fractals; 

2. Random Fractals. 

Deterministic fractals are objects which look identical at all scales. Each magnification 

reveals an ever finer structure which is an exact replication of the whole, i. e. they are exactly 

self similar. Random fractals do not, in general, posses such deterministic self-similarity; 

such fractal sets are composed of N distinct subsets, each of which is scaled down by a ratio r 

from the original and is identical in all statistical respects to the scaled original - they are 

statistically self-similar. Certain fractal sets are composed of the union of N distinct subsets, 

each of which is scaled down by ratio ri < 1,1 :! ý i :! ý N from the original in all co-ordinates. 

The similarity dimension is given by a generalisation of Nr Ds = 1, namely 

N 

rDs i 

A further generalisation leads to self-affain fractal sets which are scaled by different ratios in 

the different co-ordinates. The equation 

f (XX) = 
ÄH f (X) V, ý, >0 

where A is a scaling factor and H is the scaling exponent implies that a scaling of the x- 

coordinate by A gives a scaling of the f co-ordinate by a factor AýI. A special case occurs 

when H=1; in which case, a scaling of x by A produces a scaling of f by A, i. e. f(x) is self- 

similar. 

Naturally occurring fractals differ from strictly mathematically defined fractals in that they do 

not display statistical or exact self-similarity over all scales but exhibit fractal properties over 

a limited range of scales. 
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3.3 BROWNIAN MOTION 

* There are many examples in the field of physics, chemistry and biology of random 

processes. 

9 Brownian motion is a relevant mathematical model for many such physical processes. 

9 These processes display properties which are best described as fractal processes. 

In Brownian motion, the position of a particle at one time is not independent of the particles 

motion at a previous time. It is the increments of the position that are independent. 

Brownian motion in ID is seen as a particle moving backwards and forwards on the x-axis 

for example. If the particle's position is recorded on the x-axis at equally spaced time 

intervals, then we end up with a set of points on a line. Such a point-set is self-similar. On 

the other hand, if the time is included as an extra co-ordinate and plot the particles position 

against time - (called the record of the motion) -a point- set is obtained that is 'self-affine'. 

3.3.1 Diffusion as an example of Brownian motion 

In this Section, an example of a physical process that has been modelled by Brownian motion 

is given. For a particle moving in 1D (along the x-axis), consider the following model for its 

motion. At time interval ra displacement (or increment) ý is chosen at random from a 

Gaussian probability distribution given by 

P(ý,, r) =, exp 
(_ ý2 

) 

44 7-1 p-T 4pr 

where p is the diffusion coefficient. The probability of finding ý in the range ý to ý to ý+dý 

is P(ý, r) and the sequence of the increments I ýj I is a set of independent Gaussian random 

variables. The variance of the process is 

2pr 

where 

() denotes the expectation. 

The position of the particle at time t is then 
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X(t) 

Normally, for convenience, x(O) =0 is imposed. 

3.3.2 Scaling properties 

Suppose that we observe the motion not at intervals r, but at intervals Xr where X is some 

arbitrary number. For example, if X=2, the increment ý during time interval t to t+2, r will be 

given by ý=ýI+ý2where ý, is the increment in time interval t to t+, r and 
ý2 is the increment in 

time interval t+T to t+2, r. ýi and 
ý2 

are independent increments and hence the joint 

probability P(ýi : ý2, O, that the first increment is in the range ýi to ý1+42 and the second 

increment is in the range 
ý2 to ý2+dý2 iSgiven by 

MI : ý2, T) = Ml, T) P(ý2, T) 

Hence the probability density for ý is given by integrating over all possible combinations of 

increments ý, and 
ý2 

such that ý= ýI + ý2, i. e. 

P(ý, 2T) f P(ý - T) dýj 

-1 exp 
(_ ý2 ý 

T47cp2, 
r 4p2T 

Therefore, if the particle is viewed with half the time resolution, the increments are still a 

random Gaussian process with (ý) :: -- 0, but with variance now given by 

(ý') =2x 2pr 

i. e. twice the value obtained when the process is viewed at intervals r 

In general, for observations at time interval X 

XT) =I- exp - 
ý2 ý 

44TEpX, r 4pXr 

where (ý) =0 and ýV) =Xx 2pr. 

Note, that withr=Xr and 
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I W2ý 

X2 X2 

which is the scaling relation for the probability density. 

The above equation shows that the Brownian process is invariant in its statistical distribution 

under a transformation that changes the time scaled by a factor X and the length scale by a 

factor X 1/2 
. The name given to such transformations is affine and the curves or records that 

reproduce themselves in some sense under transformations of this type are called self-affine. 

Finding the probability distribution for the particle position x(t), 

note that: 

[X(t) - x(t,, )] =P IX(t) - X(Q, t- t" 

gives 

[X(t) - X(t exp 
[X(t)_X(to)]2 

A= 
4plt-tol 

, vF4TCPI 
t-tol 

and satisfies the scaling relation 

1 2P [X(t) 
- X(t 

x(Äto)i = x- 0)1 

x(to) is the particle's position at some arbitrary reference time. 

Finally expressions for the mean, mean absolute and the variance of the particle's position 

can be derived and are given respectively by 

(x(t) - X(to)) =0 
(IX(t) 

X())I) =jP 
It 

t( 
IT 

_ 
t012 

([X(t) 
X( to )]2) 

= 2pl t- tol 

For ýa normalised independent Gaussian random process 

I 
X(t) _ X(tj) 

) 
CýC 

ýj t_t0 
12 

This result can be generalised to the fonn 

X(t) _ X(to ) oc 
ýj t_ tolH, O<H<l 
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which provides the basis for Fractional Brownian Motion. Fractional Brownian Motion is an 
example of statistical fractal geometry and is the basis for the experiments Chapters 8 and 9. 

3.3.3 White noise and fractal noise 

The relationship between white noise and fractal noise can be considered in terms of 
fractional differentiation and fractional integration 

Fractional integration 

Fractional differentiation 

0 

of white noise 

offractal noise 

givesfractal noise 

gives white noise 

Note that the normal interpretation of integration being a 'smoothing' process, and 
differentiation be a 'roughening' process, for integer order, continues to hold for 

fractional order. 

Fractal noise and white noise, as well as fractional differential equations, and random 

scaling fractal signals are discussed in Section 8.4 (Modeling and computing noise). 

The following two Chapters briefly cover various aspects of ANNs. Links between Fractals 

and ANNs are then covered in Chapter 6. 
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4 MODELS AND ALGORITHMS 

4.1 THE BIOLOGICAL MODEL 

The Processing Element for most neural models is based on a simplified view of a neural cell; 

a slow but complex analogue device with many functions including some which take place 

outside the cell. The signals produced by neural cells or neurones are virtually 

indistinguishable, regardless of the species producing them. There are of the order of 

10" neurones in the human nerve system. 

. ynapticjunctions: Inputs ff om other 
heurones/sensors Output 

branches 
'to other 
neufones 

-Soma: 

. ..... ....... 
3 

........ .. 

Figure 4.1 
A simplified biological neurone 

A typical neurone consists of the following sections, see Figure 4.1 for a simplified scheme: 

9 Soma is the cell body. It provides aggregation, thresholding, and non-linear activation to 

inputs. Soma has two types of extensions: dendrites and the axon. Dendrites are the 

input lines of the neurone. Each soma receives, on the average 10,000 signals from other 

neurones. The overall role of the soma is to perform a spatio-temporal weighted 

aggregation, often a summation, of all these inputs. If this weighted aggregation exceeds 

a certain threshold then the neurone will fire. The output signal undergoes a non-linear 

transformation prior to transmission along the axon to the other neurones. The axon, 

usually divides up into branches along which a common output is sent to other neurones 

or muscle cells. Each neurone requires 2 ms in order to fire, i. e., a bandwidth of the order 

of 500 Hz, and the firing or response of a neurone is largely a random variable. The only 

way to achieve fast and efficient information processing using such slow and 

unpredictable processors, is to employ large numbers of them. 
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The synapse is the contact terminal between the end of an axon branch and another 
neurone. It converts electrical charges into chemicals that pass messages to the neurones. 
A neurone can receive several thousand inputs through the synapses from other neurones, 
and transmit modified, weighted, versions of these signals to the soma via the dendrites. 
Each synapse is a storage element that contains some attribute of the past experience. 
Synapses learn by continuously adapting their strength, or weights, to the new inputs. 

In summary, the processing of information within the biological neurone involves two 
distinct operations: 

1. a somatic operation, providing aggregation, thresholding, and non-linear activation, to 

produce an output signal if the weighted aggregation of the inputs exceeds a certain 
threshold, and 

2. a synaptic operation, assigning a relative weight, or significance, to each incoming signal 

according to the past experience stored in the synapse. 

The study and modelling of the biological functions come under the general heading of neural 

science; for more details on neurones see texts on neuro-physiology (Diamond, 1985). 

4.2 THE ARTIFICIAL MODEL 

In comparison to the biological model an artificial neurone or processing element (PE) is a 

simple device. In a similar manner to biological neurones they use many different methods 

of input signal combining techniques. The processing element maps an input pattern of 

signals to an output pattern. In a typical artificial model, a weighted sum of the inputs 

constitutes the argument of a non-linear 'activation function'. Figure 4.2 shows the 

functional model of the processing element, which consists of the weighted input 

connections, the summation function, and a non-linear activation function with wo threshold 

which generates the processing element's output. Linear activation functions are only used in 

the output processing elements of a network, since a sequence of linear functions can be 

reduced to a single linear function. 
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xw 
------------ 

N eural Synaptic 
inputs operation 

Aggregation 
operation 

Figure 4.2 
The functional model of the processing element 

Output branches 
to other neurone s 

The function of the processing element for most models is generally expressed in the form: 

Out -- F[ý wixi + Wo 
] 

where 

Out = F[Net] 

Net = W. X in vector notation 

Out = is the neuro- output, 

X =[X,,..., xj = represents the n inputs, 

W =[wl,..., wj = are the synaptic weights, 

some non-linear activation function with wo threshold. wo may be 

introduced by employing an additional input xo equal to + 1, so 

Out = F[ 
i=o 

wixi 
1 

Somatic operation: 
aggre gation, thresholding; and non-line ar activation 

----------------------------------------- I 

wo. Thre shold 1 

iunction 

----------------------------------------- 
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4.3 MATHEMATICAL REPRESENTATION 

From a signal-processing viewpoint, to perform computational tasks, such as pattern 

recognition, learning, and storage of past experience, the two distinct operations of the 

biological neurone can be interpreted as the following key operations: 

1. a confluence operation between new inputs and stored knowledge (past experience), and 

2. a non-linear bounded mapping to the aggregated signal, as shown in Figure 4.3. 

Neural 
inputs 
(vector) 

X(t) G 

Comparing 
new 
information 
with the 
past 
experience 

an n- di men si on al i npu t vec to r 

Non-linear 
activation 
function 

MQpping; Me 

Figure 4.3 

A (PE) receives an n-dimensional input vector 

[XI (t), 
X2 

(t), 
X3 

(t) 
...... I 

Xi 
(t), 

...... Xn 
(t)f 

E qjn 

Neural 
outputs 
(scalar) 

y(t) E91 

a single output 

and > yields a scalar output 

-(transmission to many other PEs) 

The information processing ability of a processing element (PE) can be represented 

by the non-linear mappingfunction N, 

non-linear mapping function Ne 

X(t) E Rn y (t) E 9? 1 
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i. e. The output at time t 
is Ne [X(t) C gfn], q? l 

X (t) and y(t) should be viewed in terms of digital graphs or vectors in n and ID 
space 

Representation of multi input/output systems taking the above form, with, and X(t) 
representing the input, and y (t) representing the output at time t is currently well 
established. 

Mathematically, the neuronal non-linear mapping function can be divided into two parts: (1) 

confluence, @, and (2) non-linear activation. 

In order to accountfor thresholding in the confluence operation, the vectors of inputs 

and weights can be defined as follows: 

[XO (t)i 
Xl 

(t), 
X2 

(t) 
...... 9 xi 

(t) 
....... Xn 

(t)f 
G gin+l 

and 

Wa (t) 
: -- 

[WO (t), 
WI 

(t), 
W2 

(t) 
....... wi 

(t) 
....... Wn 

(t)f 
EI gin+l 

where 

wo (t) introduces a thresholding, bias, term in the confluence operation which 
is a similarity measure between X,, (t) and W,, (t) 

The two basic mathematical operations of a PE, i. e. the confluence operation which provides 

a measure of similarity, and the non-linear activation operation which performs a non-linear 

mapping on the similarity measure, are further described in the following sections. 

4.4 MEASURE OF SIMILARITY 

* Biologically, the confluence operation, @, or measure of similarity, provides the 

weighting, aggregating, and thresholding operations to the neural inputs. It represents the 

weighting of Xa (t), =- gin+ 1 with the accumulated knowledge stored at the synapses, Wa(t), 

and the spatio-temporal aggregation of these weighted inputs, as performed by the soma. 

The synaptic weighting assigns a relative weight to each incoming signal component xi(t) 
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according to an attribute of the past experience (knowledge or memory) stored in synaptic 
weight wi(t). 

9 Mathematically, this operation can be viewed as a linear weighted mapping 

from the (n+1) - dimensional neural input space 

Xa(t)C qjn+l 

to the one-dimensional space 

U(t) EE 91'. 

* The synaptic (weighting) and somatic (aggregation and thresholding) linear mapping can 

be modelled as 

Wa (t) @ Xa (t) 

This represents a measure of the similarity between input vector, X,, (t), and synaptic 

weight vector, W,, (t). 

* The two types of similarity measures, used by most processing elements, are: 

the scalar (inner) product of the vectors X, (t) and W, (t), and 

(2) the Euclidean distance between vectors X,, (t) and W,, (t). 

4.4.1 Inner product 

The inner product of X,, (t) and W, (t) is the most common measure of similarity used. 

Geometrically, this is defined as the projection of the input vector X, (t) (new information) 

onto the weight vector W,, (t)) (the accumulated knowledge), as illustrated in Figure 4.4; i. e., 

U(t) = ,' 
(t), xý, (t) 

n 
I 

wixi 

i=O 
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Y-W 
(New information) 

In the vector space: 
If a7-0 then U(t) is maximum 
If w--90 then the similarity measure U(t)=O, and 
the two vectors are orthogonal 

a 

U(t): 
Similarity between new 

information and past knowledge 

W-W 
(past experience stored 
in the synaptic weights) 

Figure 4.4 
A measure of similarity based on projection (inner-product) 

4.4.2 The Euclidean distance 

9 The processing elements of some networks, e. g. the radial basis function, employ the 

distance measure for describing the confluence between the inputs X, (t) and weights 

W,, (t), as shown in Figure 4.5. The Euclidean distance between the new neural 

information X,, (t) and the accumulated knowledge WJO is given by 

,'(, ) - x. (t)f [w (t) - xý, wie gl, ßý[W 

where 8 is a normalisation constant such that 0 . 5- D -5'1 

The measure of similarity may then be defined as 

u(t) = [1 - 

i. e. if D=0, then u(t) =I and 

if D=1, then u(t) = 
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ition ) 

tance between X,, (t) and W,, (t) 
then Xý(t) and W,, (t) have a lot in common 
then Xý(t) and W,, (t) have no commonality 

W-W 
(past experience stored 
in the synaptic weights) 

Figure 4.5 
Euclidean distance measure of similarity between the new 
information and the previously accumulated synaptic 

4.5 THE NON-LINEAR ACTIVATION FUNCTION 

The somatic non-linear activation function F [-] maps the confluence value u(t) to a bounded 

output. In general, the output is in the range of (0,1) for unipolar signals and (-1,1) for 

bipolar signals. The activation operator transforms the aggregated u(t) into a bounded output 

y(t); that is, 

y(t) =F [u(t)] 

y(t) =F [Wa(t) OXa(t)ll E 911 

Many different forms of mathematical functions can be used to model the activation function. 

Early artificial neurones used a simple activation function with an output of one for firing and 

zero for not reaching a predefined threshold. This was then improved by making the function 

continuous to give an output equal to the net input minus the thresold. If the threshold was 

not reached, the processing element would not fire. Figure 4.6 shows some of the possible 

geometrical shapes: (1) Linear; (2) Piecewise linear; (3) Threshold (or hard limiter); (4) 
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Unipolar Sigmoidal; (5) Bipolar Sigmoidal; (6) Unipolar multimode Sigmoidal; (7) Radial 
basis function (RBF). 

The sigmoid function, which squashes the output to values between 0 and I and the 
hyperbolic tangent, which squashes the output between -1 or 1, are frequently called the 
logistic activation function. The logistic activation function is a widely used activation 
function, and is generally regarded as the most effective. Using the logistic function, the 

same network may handle both small input signals (requiring high gain) and large input 

signals (requiring smaller gain) and enables processing elements to perform over a wide 

range of input levels. A main reason for the widespread use of this continuously 
differentiable function is that it has the advantage of having a simple derivative. Algorithms, 

such as back-propagation require a simple derivative of the function, and with an S-shed 

function mathematically approximated for example as 

f(x) = (iýx) 

the simple derivative fulfils this requirement, i. e., 

f '(x) =f (x)(' -f (x» 
It may also be noted that the logistic function is used in many electronic circuits (called the 

Schmitt Trigger). The Schmitt Trigger's linear behaviour over most of its operating range is 

an important characteristic of this device. 
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Figure 4.6 
Examples of typical activation operators F 
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4.6 NETWORK TOPOLOGY 

It is generally assumed that the complexity of an artificial neural system stems from the way 
in which the processing elements can interact and the number and type of processing 

elements used. The processing elements are usually arranged in groups or layers. In single 
layer networks, a group of processing elements is connected to itself, i. e. the output is 

connected to the input. Such systems are referred to as auto associative systems. Generally if 

there is feedback from the outputs of the network to the inputs, the network is said to be a 
"recurrent network" (or non-recurrent if there is no feedback). Although there are many 
disadvantages with single layer networks, they have been used extensively in research and 
development as the basic core of modem neural networks. 

Multi-layer networks consist of a number of single layers connected to each other, fully or 

selectively. In its simplest form, the output of the first layer is the input to the second layer 

and so on. Sometimes all of the layers between the input and output are referred to as hidden 

layers. 

Since the 1960's many algorithms have been developed to train such networks. The flow of 
information is usually from the input to the output and is referred to as feed forward. A 

multiple feed forward network may receive weighted inputs from all the input units of the 

previous layer and send its Output to all units of the next layer. 

Sometimes, the training and learning procedures are improved by feeding back the results 
from a succeeding layer to a previous layer. The network in this case is referred to as a 
feedback network. There is also a concept referred to as "Locally Interconnected Network", 

such as that used in the Mead Silicon Retina System, in which the processing elements 

connect only to their nearest neighbours. 

Among the algorithms developed for multi layer systems, back propagation has had a 

significant effect on the field. Although the training process is slow and uncertain, as a 

general purpose systematic method, it has allowed the development of a range of neural 

network applications. 

Statistical methods (e. g. Boltzmann Training) have also been used extensively for training 

networks. They are generally thought of as being straight forward methods to use in practice. 
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4.7 ALGORITHMS 

The weighting and spatio-temporal aggregation operations performed by the synapses and 
soma, respectively, provide a similarity measure between the input vector X"(t) (new neural 
information) and the synaptic weight vector Wjt) (accumulated knowledge base). When a 
new input pattern that is significantly different from the previously learned patterns, is 

presented to the network, the similarity between this input and the existing knowledge base is 

small. As the neural network learns this new pattern (by changing the strength of the 

synaptic weights) the distance between the new information and accumulated knowledge 

decreases 

Most neuro-based soft computing structures undergo a learning procedure during which the 

synaptic weights are adapted. Algorithms for varying these connection strengths such that 

learning ensues are called leaming rules, each cycle of presentation of all cases is usually 

referred to as a learning epoch. The objective of leaming rules depends on the application. 
For example, the objective in pattern classification from sample data is to classify and predict 

successfully on new data. 

In the application of soft computing techniques, with artificial neural networks as a base, the 

main algorithms may be broadly categorised as error based or output based. 

4.7.1 Error based algorithms 

Error-based learning algorithms need desired responses or data labelled with target results. If 

desired (target) results are unknown, then error based learning algorithms are useless. In an 

error based scheme, schematically shown in Figure 4.7, an external reference is compared 

with the obtained response. The error is then used for modification, in order to improve the 

system performance. Examples of error based algorithms include error correction (e. g. least 

mean square LMS', back-propagation), and Stochastic (e. g. simulated annealing). 



51 

Adaptive weights 
AW, Q) 

Input 

49 Wa 

71 

F [u(t)] 

Desired output 
Y(Od 

output 

Y. We9il 

Error signal 
e(t) 

Effor-based 
Learning 
Algorithm 

Figure 4.7 
An error based (supervised) learning scheme 

A general equation for the error-based learning algorithm is 

Wi(t + 1) = Wi(t) +A Wi(t) 

where 

A Wi 
(t) 

ý' Xi 
(t) [ 

Yd 
(t) 

-y 
(t) I 

and 

wi is the synaptic weight corresponding to 

xi(t), the input. The parameter 

Awi(t) is the change in 

wi(t) synaptic connection over an instant in time, 

y is the learning rate, 

Yd (t) is the desired neural output, and 

y(t) is the actual neural response. 
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The proper selection of U is of critical importance in these learning rules. A very small value 

of p will result in extremely slow learning. On the other hand, a large value of p will make 
learning faster, but it may also result in oscillations or make the system unstable. 

Stochastic error based learning algorithms make random changes to the weights. A resultant 
'energy' created by this change is then determined. The weight changes are retained if the 
'energy' is lowered. A pre-defined probability distribution may be used to keep the weight 

change, even if energy is not lowered. 

4.7.2 Output based algorithms 

If desired, or target, results are unknown, then error based learning algorithms cannot be used 

and output based learning algorithms become useful. Such algorithms don't employ any 

external reference signal. Self organisation principles and internal control mechanisms are 

generally used to classify the input data and to discover collective properties. The two 

important forms of output based, or unsupervised, learning algorithms are Hebbian learning 

and competitive learning. 

Hebbian learning, Figure 4.8, is guided by the neural output rather than output error as in a 

supervised learning scheme. A large number of variations of the Hebbian learning rule are 

described in the literature (Caudill and Butler, 1992). They are all guided by the neural 

output. A simple Hebbian learning rule used to describe the correlation of the input xi(t) with 

the neurone output y(t) is 

A wi (t) = ýt xi (t) y (t) 

where 

Awi(t) represents the temporal change of wi(t), the synaptic weight and 

,u 
is the leaming rate. 
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Inpi 

Figure 4.8 
An output-based (unsupervised) learning scheme, called 

Hebbian learning 

ji 

Competitive learning algorithms are applied to neural layers that contain extensive inter- 

neurone connections. Competitive learning is based on the notion of "winner take all. " In its 

simplest form, when an input pattern is presented to the neural layer, each neurone competes 

with all others by transmitting a positive signal to itself using self-excitatory recurrent 

connections, and sending negative signals to all its neighbouring neurones via lateral 

inhibitory (competitive) connections. After a period of time, the neurone with the greatest 

activation state will remain active, called the winner, and all others will be nullified. 

Adaptive weights 

w., (t) = px, (t) y (t) 
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5 ARTIFICIAL NEURAL NETWORK PARADIGMS 

5.1 MULTI-LAYER FEED-FORWARD MODELS 

A single neurone can perform certain simple pattern -detection functions, but, the power of 

neural computation comes from the number of processing elements connected in a network 

structure. Larger networks, with their processing elements arranged in layers, generally offer 

greater computational capabilities. The multi-layer feed-forward model, is one of the most 

popular artificial neural network architecture. It consists of an input layer, a number of 

hidden layers (typically one or two) and an output layer. Data flows through the network in 

one direction only, from input to output. This network can approximate non-linear functions 

to any desired degree of accuracy. A simplified block-diagram representation of a typical 

multi-layer static neural networks (NINN) consisting of an input layer, an output layer, and 

one hidden layer of artificial neurones, with the input vector X(t)E=-91' and output vector 

Y(t)E=-91m is given in Figure 5.1. Such structures are inherently stable because they have no 

feedback. During learning, however, externally imposed feedback interaction takes place. 

Once trained, each application of a given input set always produces the same output set. 

Examples of MNN include the multi layer perceptron and radial basis function RBF' 

network. 

X(t) EE gin nt)EEqjrn 

ob- PP- 

Input layer Hidden layer Output layer 

Figure 5.1 

* The multi-layer neural network (MNN) with an error back-propagation (BP) algorithm is 

the most commonly used artificial neural network paradigm in pattern recognition and 

classification, signal processing, as well as image processing and vision. However, they 

suffer from many limitations (Hopfield, 1990) including: 

the very slow learning rate- attempts to accelerate the learning process by increasing the 

values of the learning algorithms' gains [constants], generally result in unstable systems, 



55 

9 having no dynamic memory- their response depends solely on the current inputs and the 
values of the weights, many practical questions remain unanswered- for example the 

number of middle layer processing elements, or the relationship between the accuracy of 
the function being approximated with the number of hidden layers. 

9 RBF, Radial basis function networks, have non of back-propagation training problems. 
Training is usually orders of magnitude faster than back-propagation. RBF feed-forward 

multi-layer structures are universal approximators (Girosi et al., 1991). They can 

approximate any continuous function with arbitrary accuracy. 

Their main disadvantages are requiring all, or a substantial portion, of the training set to 

be involved in their operation, and slow operation after completion of the rapid, reliable 
training. This is due to the large number of variables involved. 

Similar and closely related networks are referred to as: 'Gaussian potential function'(Lee 

and Kil, 1991); 'localised receptive fields'(Moody and Darken, 1988); 'regularisation 

networks'(Poggio and Girosi, 1990); and 'locally tuned processing units'(Moody and 

Darken, 1989). 

5.1.1 Mathematical representation 

Mathematically, the input-output mapping of the NINN shown in Figure 5.1, can be 

represented by 

N3 [N2 [Nl[ X (t) E qjn ]]]. 91m 

In terms of the confluence and non-linear activation operators, this can be rewritten 

as 

y FL3[W 3(t) gF, 2 [W2 (t) gFl [W I (t) gX (t) aaaa 

Where 

is tile non-linear activation operator, 

0 is the confluence operator (scalar product or distance measure), and 

Wa' (t)9 

Wa 2 (t) and 
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wa3(t) are the augmented synaptic weight vectors for the input, hidden, and 
output layers, respectively. 

During the learning process, the elements of the synaptic matrices W,, ' (t), W23 
a (t) and Wa 

are continuously updated to the new information. Supervised learning algorithms based on 
I (t), 

'AW 
23 an error-correction procedure are often used to determine AWa a (t) and AWa (t). One 

method to adapt the feed-forward weights of the processing elements in a static neural 
network is to minimize the least-mean square (LMS) error (Widrow and Lehr, 1990) between 

the computed and desired outputs for each neuron in the network. The feed-forward 

connection of static networks can also be updated using a gradient descent error correction 
algorithm that is commonly called 'back-propagation' (Hammerstrom, 1993 a and 1993 b). 

5.1.2 Back-propagation 

For multi-layer static networks, the most popular learning rule in use is the back-propagation 

algorithm. Back-propagation is a generalisation of the least-squares rule for a multi-layer 

neural network. It attempts to reduce the error at each neural node in such a way that it 

minimises the distribution of the weights and improves the information content previously 

encoded in the weights. The error at each output node is easily determined knowing the 

target output for each neural node. However, for the hidden layers where outputs are internal 

to the network and have no explicit target output, the error calculation is much more difficult. 

The error at a hidden node is literally defined as the amount that its own output is responsible 
for the error in each neurone in the adjacent layer. It is these hidden layers that serve as 

abstract domains, into which inputs are mapped. These hidden layers emphasise the 

differences and de-emphasise similarities between inputs to allow the network to differentiate 

between trajectories with only subtle differences. Back-propagation can be applied to 

networks with any numbers of hidden layers by first calculating output, determining the 

output error, then recursively propagating the error backwards to each layer and adapting the 

weights to minimise the error. The principle of the back-propagation learning algorithm may 

be summarised as follows (Hammerstrom, 1993 a and 1993 b). 

1. A typical BP nn structure consists of input, hidden, and output layers. I-Edden layers may 

have more than one layer. It is not very clear in the neural network paradigm how many 

hidden layers are necessary for a particular application. There is not much computation 

taking place at the input layer. The number of neurones in the input layer equals the 
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number of input vector components. During learning (training), the input layer sends 
input information to all hidden nodes. 

2. The hidden neurones broadcast their results to all output neurones. Each output neurone 

calculates a weighted sum and subtracts its actual results (actual response) from its 

desired, results (targeted output) to produce the error vector (output error). 

3. The output nodes calculate the partial derivatives of error-vector components with respect 
to the weights, and pass these derivatives back to the hidden layer. This computation 

during learning gives the algorithm its name: the back-propagation. Each hidden neurone 

calculates the sum of the error derivatives to find its contribution to the output error. 

Each neurone in the hidden and output layers changes its weight according to a 

predetermined rule as described by 

wi(t+1) = wi(t)+ A Wi(t) 

where 

A Wi 
(t) 

:- ý' Xi 
(t) [ 

Yd 
(t) 

- 

and 

wi is the synaptic weight corresponding to 

xi(t), the input. The parameter 

Awi(t) is the change in 

wi(t) synaptic connection over an instant in time, 

,u is the leaming rate, 

Yd (t) is the desired neural output, and 

y(t) is the actual neural response. 

In summary, the back-propagation algorithm requires a desired response during learning to 

compute the error signal, by subtracting the actual outputs (signals obtained from the output 

neurones) from the desired signals, and then adjusts the weights. After this initial learning, 

the network could be presented with a new set of data that was not used during the learning 
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process. The network's accuracy with data outside the learning set gives the generalisation 
ability to the neural network, id this indicates reliability of the network. 

5.1.3 Function approximation 

It is well established that feed-forward neural networks can approximate non-linear functions 

to any degree of accuracy. This ability to approximate non-linear functions is one of the most 
important attributes of neural networks. The study of function approximation is of primary 
importance in the neural network paradigm. The intent of this section is to provide the basic 

concepts of the theory of functional approximation, and to briefly explain the approximation 

theorems that are normally used to prove that multi-layer static, feed-forward, networks can 

approximate arbitrary continuous functions to the desired degree of accuracy. 

9A function f (x) is defined by real numbers x on a set X if a law prescribed according to 

which a real number y, y=f (x), is associated with every number x of the set X. 

The aim of function approximation theory is to find a sequence of either algebraic 

polynomials that converge uniformly to functions continuous in the interval [a, b], or 

trigonometric polynomials that converge uniformly to a periodic (with period 27r) 

continuous function. The terms functional and function are used interchangeably in the 

literature. 

Definition of functional approximation problem 

Given a point g and a set M in a normal linear space S, a point of M of minimum distance 

from g is called a 'best approximation', and the problem of determining such a point is 

called a 'best approximation problem 

To measure the quality of the approximation, using a distance function d (F, f) to 

determine the distance of an approximation function F (W, x) from the difference 

function f (x), where W,, (t) is the augmented vector of Synaptic weights. The 

approximation problem can then be stated as follows. 

If f (x) is a continuous function defined on a set S, and F (W,,, x) is an approximating 

function that depends continuously on x, the approximation problem is to determine the 

parameter W, such that 

dlF[Wa, X1, f(X)1: 5 d(F[W�, xl, f(x)1 
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A solution to this problem, if it exists, is said to be a best approximation. The following 
points are of primary importance in a functional approximation problem (Watson, 1980): 

9 The existence of the best approximation 

9 The uniqueness of the best approximation 

e The characterisation of the best approximation 

9 The construction of methods for determining the best approximations 

* Basic theorems of functional approximation 

In the 1980s and 1990s, many researchers proved that multi-layer static (feed-forward) neural 

networks can approximate arbitrary continuous functions (Poggio and Girosi, 1990) to the 
desired degree of accuracy. Either the Stone-Weierstrass theorem or the Kolmogorov 

theorem has been employed for the theoretical development of functional approximation 

capabilities of neural networks. 

5.2 FEEDBACK MODELS 

In the preceding section, a description of multi-layer feed-forward network structures, the 

structures without any feedback, was presented. This class of neural networks is called static, 
feed-forward, or non-recurrent networks. Such networks have no dynamic memory as the 

response of the network depends on its current inputs and the values of synaptic weights. 
Such networks, since they do not have any feedback, are inherently stable. 

In this Section, structures with feedback connections are described. Such networks are 

known as feedback, dynamic, or recurrent structures. The feedback causes the network to 

have local memory characteristics. These networks provide some robust computing 

characteristics, and their dynamics provide greater insights into biological structures. 

Recurrent networks are particularly appropriate for modelling [identification] and filtering 

applications. However, their general theory with regard to architecture and learning 

algorithms has yet to be developed. The development of better feedback models could result 

in significant progress in neural network applications. 
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Because feedback neural networks have feedback paths from their outputs to the inputs, the 

response of such networks is 'dynamic' or 'recursive '. That is, after applying a new input, 

the output is calculated and fed back to modify the input. The output is then recalculated, and 
the process is repeated. For a stable network, successive iterations produce smaller and 

smaller output changes until eventually the outputs become constant. Under some situations, 

the process may never end., and such networks are said to be unstable. Unstable networks 
have interesting properties, and one example of such a network is the 'chaotic system'. 

Neural networks with feedback offer great computational advantages over feed-forward 

networks. For example, it is well known that an infinite-order FIR (finite impulse response) 
filter, which is only a feed-forward network, is equivalent to a single-pole IIR (infinite 

impulse response) filter, shown in Figure 5.2. 

x (k) 

x(k- 1) 

x(k- 2) 

x(k-n) 

(a) 

v 

z-i 

--e u- 

(b) 

Figure 5.2 
(a) An infinite-order feed-forward (FIR) structure -k denotes discrete time index. 
(b) An equivalent feedback structure with a single pole 

From Figure 5.2 (a), the response of a FIR filter with n delay lines may be written as 
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v(k) = x(k) + x(k - 1) + x(k - 2) 
n 

+ x(k - n) =I x(k - 0, n oo 
i=O 

(k denotes discrete time index) 

or alternatively, in transferfunction form 

V(Z) 
=I+ Z-1 + Z-2 +... + z-nn -> oo X(Z) , 

lzl<l 

The difference, or recursive, equation that describes the behaviour of a first-order FIR 

structure, shown in Figure 5.2(b), may be written as 

v(k + 1) = x(k) + v(k) 

or alternatively, in transfer function fonn 

+Z+Z+... + Z, n ----> oo, 1z1<1 

From the two transfer function forms, it is clear that the two structures are functionally 

equivalent. From a computational viewpoint, a network with feedback is equivalent to a 

large, or possibly an infinite, feed-forward structure. 

5.2.1 Processing time series data 

It is possible to use a static network to process time series data by simply converting the 

temporal sequence pattern by unfolding the sequence over time. That is, time is treated as 

another dimension in the problem. From a practical viewpoint, it is possible to unfold the 

sequence over a finite period of time. This can be accomplished by feeding the input 

sequence into a tapped delay line and then into a static neural network architecture. An 

architecture like this is often referred to as a time-delay neural network (TDNN) (Waibel, et 

al., 1989). This neural structure is basically a feed-forward network with dynamic (delay) 

elements. Because of the delay operators, the TDNN is categorised under dynamic networks. 

This is equivalent to a FIR filter whose output forms an argument to a non-linear function 

(Figure 5.3). 
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Figure 5.3 

The basic time-delay neural unit shown in Figure 5.3 can function as an adaptive filter by 

computing the scalar product of the augmented input vector X,, (k) and augmented synaptic 

weight vector W,, (k). The elements of the synaptic weight vector W, (k) are modified by the 

least-mean square (LMS) learning algorithm. 

The dynamics of a time-delay neural unit are described by the following equations: 

n 

v(k) =I wix(k-i) 

y(k) =F[v (k)] 
i=o 

This neural structure has been used in many applications e. g., text-to-speech conversion 

(Sejnowski and Rosenberg, 1986); phoneme recognition (Waibel et al., 1989). 
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5.3 NEURO-FUZZY STRUCTURES 

5.3.1 Introduction 

9 Fuzzy logic is a relatively fast and cheap way to map an input space to an output space. 
The primary mechanism for doing this is a list of if-then statements called rules. 

9 Fuzzy logic is useful where a problem can be described linguistically or, where there is 

data and one is looking for relationships or patterns within that data. A fuzzy logic 

system that accepts imprecise data and vague statements, such as 'good', 'excellent', 

6 poor', 'generous', and provides decisions is depicted in Figure 5.4. 

Imprecise Data, Fuzzy 
PP, 

Logic Decisions 
Mb- PP- Vague statements System 

II 

Figure 5.4 

* Artificial neural network structures can deal with imprecise data and ill defined activities. 

However, the subjective phenomena such as reasoning and perceptions are often regarded 

as being in the domain of fuzzy logic theory. Fuzzy logic provides an inference 

morphology that enables approximate biological reasoning capabilities. 

9 Fuzzy inference is a method that interprets the values in the input vector and, based on 

some set of if-then rules, assigns values to the output vector. 

9 Reasoning in fuzzy logic is just a matter of generalising the yes-no Boolean, logic. 

e The neural network approach blends well with fuzzy logic (Jang et al., 1997) and some 

research endeavours have given birth to 'fuzzy neurones' and 'fuzzy-neural systems9. 

9A fuzzy neurone has the ability to cope with fuzzy infonnation. Inputs to the fuzzy 

processing elements are fuzzy sets 

(xl, x2,. .., xN) in the universe of discourse 

(XI, X2, 
..., 

XN) respectively. 
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These fuzzy sets may be labelled by such linguistic terms as 'high', 'large', 'warm', 

'medium', etc. The inputs are then 'weighted' in much different ways from those used in 

a non-fuzzy case. The weighted inputs are then aggregated not by the summation but by 

the fuzzy aggregation operations (fuzzy union, weighted mean, or intersection). 

9 In its simplest form', a fuzzy neurone is designed to function in much the same way as a 

non-fuzzy neurone. The mathematical operations involved in a non-fuzzy computational 

processing element, as described earlier, are: 

the scalar product between the neural inputs and the synaptic weights, and 

(ii) the summation of these products. 

n 

y(t)=F lwix 

i=O 

where 

[XI, ..., xn] represent neural inputs, 

[w], ..., wj the synaptic weights, 

y(t) the neural output and 

is some non-linear activation function. 

Modifying the scalar product by fuzzy multiplication and the summation operation by 

fuzzy addition, lead to a fuzzy-neurone based on fuzzy arithmetic operations. The 

function of such a fuzzy processing element can be modelled by the following equation 

n 

y(t)=F + wi (. ) xi 
i=O 

where 

(+) and (-) are fuzzy addition andfuzzy multiplication operators respectively. 

Fuzzy-neural systems, still in their infancy, but have already made an impact in the areas 

of pattern recognition, control systems, system modelling and expert systems (Lawrence 

and Harris, 1993). 
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e The computational process envisioned for advanced neuro-fuzzy computational systems 
is as follows. It starts with the development of a 'fuzzy processing element' based on the 

understanding of biological neuronal morphologies, followed by learning mechanisms. 
This leads to the following three steps in a neuro-fuzzy computational process: 

development of fuzzy neural models motivated by biological neurones, 

(ii) models of synaptic connections that incorporates "fuzziness" into artificial neural 

network, and 

(iii) development of learning algorithms (i. e., the method of adjusting the synaptic 

weights). 

5.3.2 Fuzzy sets 

e In fuzzy logic the truth of any statement becomes a matter of degree. Fuzzy logic is 

based on fuzzy sets. The concept of fuzzy sets was introduced by Lotfi Zadeh in 1965 

(Lotfi-Zadeh, 1992) in order to represent and manipulate data that were not precise, but 

were, instead, "fuzzy". The fuzzy set theory provides a mechanism for representing 

linguistic constructs and vague concepts. 

9A fuzzy set can be defined as a set without a crisp, clearly defined boundary. It can 

contain elements with only a partial degree of membership. The degree an object belongs 

to a fuzzy set is denoted by a membership value (0 to 1). 

9A membership function associated with a given fuzzy set maps an input value to its 

appropriate membership value. 

9 Derinition 

If X is the universe of discourse, a space of points (or objects), with its elements denoted by x, 

then for a classical set, say of real numbers >6 

xcX I x>61 

If x>6, then x belongs to the set A, otherwise x does not belong to the set A 
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A fuzzy set is an extension of a classical set. A fuzzy set A is a subset of the universe of 
discourse X that admits partial membership. It is characterised by a membership 
(characteristic) function ýtA(x). The fuzzy set A in X is defined as an ordered pair 

A=I Xi gA(X) 1X EX 1 

Where 

: 5' 9A (X) <1- 

ýtA(x), the membership function, describes the degree to which the object x belongs to 

the set A. ýtA (x) is also referred to as the 'characteristic function' or 'graded 

membership'ofx in A. If 

ýtA(x)=O then it is certain that x is not in A, and 

ýLA (x)= 1 then it is certain that x is in A. 

Forx with 0< gA(x) < 1, there is an uncertainty associated with x, that is, x belongs 

to A with the possibility gA (x). 

o Architectures 

Artificial neural networks and fuzzy logic integrate very well and architectures based upon 

this integration are believed to have considerable potential in the areas of pattern recognition, 

system modelling, control systems, and expert systems medical diagnosis. Two possible 

models of fuzzy neural systems are schematically shown in Figures 5.5 (a) and 5.5 (b). 
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Figure 5.5 

The area of neural structures in general, and fuzzy neural structures in particular, is a fertile 

area of theoretical and applied research. This Chapter presented a brief description of various 

structures. In the next Chapter, links between artificial neural networks and fractals are 

investigated. 
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6 ARTIFICIAL NEURAL NETWORKS AND DYNAMIC 

SYSTEMS THEORY 

6.1 OVERVIEW 

The theory of neural networks is not yet sufficiently matured to allow an artificial neural 

network application, using fractal noise, to be precisely designed and developed. The process 
involves trial-and-error as well as research and planning. Carefully controlled 

experimentation alone may be sufficient in some cases, but, general mathematical principles 

or new mathematical theories are required to support experimental discoveries. Using some 

general mathematical principles and results developed by Felix Hausdorff and Stefan Banach, 

the purpose of this Chapter is to explore any links between ANNs and fractals. After an 
introduction to iterated function systems, the connection between ANNs, fixed point theory, 

and chaos is covered 

6.2 DYNAMICAL SYSTEMS 

A good metaphor for a dynamical system with one attractor is the ball in the bowl experiment 

in which a small metal ball put into different positions of a bowl and then let loose, always 

comes to rest at the bottom of the bowl. If the ball is put at the bottom, nothing happens. In a 

situation with two or more attractors, the final development depends on other issues. The 

field of dynamical systems theory addresses such issues and provides the framework for 

discussing chaos and the generation of fractals. Chaos resides in the realm of non-linear 
dynamical systems. They involve a non-linear process and feedback. 

e. g. 

a discrete dynamical system 

Xn+ I: --: 
f (Xn) 

generates a trajectory, or orbit, of the. form 

Xo, XI, X2, X3, 
... 
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where 

-the output of one operation is the inputfor the next iteration 

nn is a non-linear function mapping, e. g., R -> R, 

dimension for input and output variables. 

-xO is some arbitrary starting point 

System behaviour is characterised in terms of the trajectory 

1. x�' s ---> oo 

x,, 's, after some value of n, all equal the same point x*, 

i. e. a fixed point off. 

i. e., with the same 

3. In the case of a periodic P orbit, for any positive integer P, e. g. in a period two 

orbit, two points repeat: 

x 
'y 

x 
'y 

X* =f (y *) and y* =f (x *) 

4. x,, remains bounded, but never repeat, i. e., once an xn repeats a previous value, the 

orbit is locked into periodicity. The orbit points lie on a bounded attracting set 

called a strange attractor - i. e. the signature of chaos. 

An example of dynamical systems producing strange attractors is Henon mapping, 

generated by the mapping 

f,, R2 -ý R2 defined by 

fa, b(Xn, Yn) --: (I +Y-aX 2, bx) 

The dynamical system is given by 

( -V- kAn+l 5 Yn+l) ý-- fa, b(X, Y) 

This represents a family of dynamical systems on R2 parameterised by real 

parameters a and b, the value of which determine the nature of the dynamical system. 

The values a=1.4 and b=0.3 produce a strange attractor and 
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different values of a and b, produce a variety of different behaviours, including fixed 
points, periodic orbits, and other strange attractors. 

6.3 ITERATED FUNCTION SYSTEMS 

6.3.1 A metaphor to describe an IFS 

The ball in the bowl experiment, also, corresponds to a common metaphor to describe an 
iterated function system (IFS): the multiple reduction contractive photocopier. Using a 

number of lens systems, to reduce the size of an input image independently, the 

photocopier paste together reduced copies of the original image to form the output. The 

output is then fed back as its new input repeatedly. Regardless of the initial input, the 

output sequences of images always tends towards the same final result, called the 
invariant attractor of the machine. Invariant because using the photocopier the output is 

equal to the input. 

In comparison to the ball in the bowl experiment, the copy machine here corresponds to 

the bowl, and the output sequences of images toward the invariant attractor corresponds 

to observing the path of the ball to the rest point. Using results developed by Felix 

Hausdorff and Stefan Banach, it has been shown that (Hutchinson, 1981) any multiple 

reduced photocopier, in which the number and the design of the lens system may change 

and each lens system contracts images, always has a unique final attractor. 

An EFS consists of a collection of contractive transformations which maps the plane R2 to 

itself. 

fwi: R2 -> R21i=1,..., nl 

For a given initial set S, with a set of affine transformations (i. e. the lens systems of the 

photocopier) 

WI, W2, W3,... 

small affine copies wi(S) are produced for each I 

The collection of transformations, or the assembly of the reduced copies', defines a map W 

that is applied to sets and a new set W(S) is obtained which is the equivalent of the output of 

the photocopier. 
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WO wi 

W is called the Hutchinson operator. Running the photocopier in feedback mode thus 

corresponds to iterating the operator W. The Hutchinson's operator turns the repeated 

application of the metaphoric photocopier into a dynamical system. This is the essence of a 
deterministic iterated function system (EFS). 

9 Hutchinson (Hutchinson, 1981) showed that the operator W, which describes the collage 
is a contraction with respect to the Hausdorff distance. 

i. e., there is a constant c, with 0 :ýc<1, such that 

h(W(A), W(B)):! ý c. h(A, B) 

for all (compact) sets A and B in the plane. 

In establishing this fundamental property, Hutchinson brought into consideration The 

Contraction Mapping principles. which owes its final formulation to Stefan Banach (1892- 

1945) (Hutchinson, 1981). 

6.3.2 The contractive mapping fixed point theorem 

Given a contractive map W on a space of images, there is a special image x* with the 

following properties: 

1) x* is the fixed point of W. This corresponds to the output of the photocopier being equal 

to its input. 

W(x*) = x* 

= WI (X) U W2 (X) U*** Wn (X*) 

2) x* is the limit set, and it is not dependent on the choice of initial image 

Starting with some initial image Soý 

Si 
= W(So), 

= 
'2 (SO), i. e. the output of the second iteration S2-= W(Sl): --W(W(SO)) W 
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where - indicates iteration 

An EFS generates a sequence which tends towards a final set S., or the attractor of the EFS, 

and which is not dependent on the choice of So. 

x S. = lim W" (SO) 
n->oo 

3) x* is unique. In terms of S and W this means that if any set S satisfies 

W (S) 

then S is the attractor of W 

S= x* i. e. only one set will satisfy the fixed point equation 

(X) 
--2 X* --2 WI(X*) U W2(X*) U... Wn(X*) 

6.3.3 The Hausdorff metric 

The Hausdorff metric determines the distance between points of a space X, measured by a 

function d: XxX -> R, where R denotes the real numbers. To find the Hausdorff distance 

h(A, B) between two subsets of the plane, A and B, for each point x in A, the closest point y in 

B is found. These minimal distances are measured and the largest one is the Hausdorff 

distance. 

Mathematically, given a complete metric space (X, d), the Hausdorff metric h, is defined as 

follows: 

h(A, B)=maxld(A, B), d(B, A)I, AandBcH(X), 

where 

H (X) is the Hausdorff space whose points are the compact subsets of X 

d(A, B) = max I d(x, B) : xE AI 

d(x, B) = min ld(x, y): ye BI 

is the standard distance function 



73 

The function d must have the properties that 

1) d(x, y) >0 

2) d(x, y) =0 

3) 

4) 

if and only if x=y 

d(x, y) = d(y, x) 

d(x, y): 5 d(x, z) + d(z, y) 

Y, EX 

Examples of a metric space are 

1) For real numbers x and y 

d(x, y)= Ix-yl 

triangle inequality, holdfor all 

2) For points P= (x, y), Q= (u, v) in the plane it can be defined 

d2(P, Q) = ((X_U)2 + (Y_V)2)112 
-the Euclidean metric 

6.3.4 The inverse problem 

Given a set S, find an IIFS whose attractor is S. No satisfying solutions exist, to this problem, 
but, some insight can be found in the equations of the fixed point and the collage. 

The fixed point equation states that the fixed point x* is constructed out of transformed copies 

of itself: 

W(x *)= 
WI(X*) U WAX) U... Wn(X*) 

That is, given the set S, transform it by contractive transformation and paste these together to 

reconstruct S. The uniqueness of x* is important because, 

if given either S or W, the other can befound respectively, satisfying 

W (S), 

Then S is the attractor of W 

S=X 
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The collage theorem declare that even if the pieces can't be pasted to fit exactly, the better 

the fit between the original set S and the pasted 'collage' W (S), the closer x* will be to S 
(using transformations that are barely contractive). 

d(S, x*)! 5 
1 

d(S, W(S)) 
I-S 

s close to I for barely contractive transformations 

6.4 ARTIFICIAL NEURAL NETWORKS AND FIXED POINTS 

An artificial neural network has many forms. However, mathematically, the dynamics of all 

types of neural network can be summarised as discovery of fixed points in the system and 

contraction toward the established fixed point. This section summarises the link between 

artificial neural network and fixed points. 

Considering the typical multi-layer hierarchical neural network previously shown in Figure 

5.11, the output function of individual processing elements which have several input and 

output can be expressed as 

f (X) = Cy 
(WO + W1X1 + 0)2X2 +--+ WnXn) 

EY(U) = 1+exp(-u) 

(xo, 
..., x,, ) are n input values of the sequence of real number. 

x is within in the open interval (0,1) 

a, ý ) another sequence of real number and constitutes the weights of processing 

elements. 

For the hidden layer processing elements j=1, ..., m. each processing element has 

several input values. Their respective output value 

yi = fi (X) 
= CY 

(Woj 
+ ColjXlj + (02jX2i +--+ WnjXnj) 

become the input of the next layer. Thus. of neurone k is also determined. 

'::: Cy(VOk + VlkXlk + V2kX2k ++ VnkXnk) gk 
(X) 

Zk '" 

This input-output relationship can be rewritten into a general combined equation 
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m(x» 
h(x) = g(fl (x) 

....... f 

So far, given the elements x of the training pattern of the finite set S c- X and given the value 
d of the objective function d(x), the training of hierarchical neural network is actually a 
function interpolation, solving h: X -> (0,1). 

Normally, after solving function h of the training pattern and function d of the objective 

model, the weights Nj andVjkcan be determined when there is a minimal solution of 

TIII: 
[h(x)-d(X)]2 

TS-1 
xc-S 

which is the mean square error. 

The solution of the minimum value of such non-linear function normally uses a gradient 

method. When Ni, Vik is a function of time t, the gradient system of error E is expressed in 

the following: 

do) ij aE dvk aE 

dt a (j) ii dt aVjk 

If Nji Vik is the solution to the above differential equation, then 

dE(Co 
ij 

(t) 
Vik 

(t)) 

<0 

dt 

The condition that satisfies this is 

aE 
a0)ii 

aE 
aVik 

Thus, assuming 8 is a very small positive constant number, 

the sequenceNj(S8), Vik(S6) (s =1,2,3,.... ) created by the slope function 

wij(t + 
aE 

acoij 

vj, (t+6) vj, 
aE 

aVik 

which starts from the appropriate initial valueNj(tO), Vjk(tO) will enable error E to contract 

toward the minimal point in the system (normally the relative minimum point). 
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If error E is also viewed as a function of oj, the training process of 

Wii(t + coij -6 
aE 

awii 

aE 
Vik 

(t +V 
ik -8 aVik 

is actually a self-mapping in the N dimensional vector space. 

Many repetitions of the above can obtain 

dE 
(( (grad 2, E)(co) = 0),..., 

dE 
((0) - dxj d XN 

if 

ü9 -> w-8 (grad E)(w) 

satisfies the complete conditions of fixed point contraction 

(Xn+l)= kXn 
- S(Xn)g(Xn)- h(Xn ) 

it can be rewritten as 

Con+l --,: 
kWn 

- S(O)n)g (w,, )- h(69n )' 

Here, 

k=1, s(w)=8, h(w)=O. 

From the above we know that the weight w obtained as a result of training is actually the 

fixed point in the map F, i. e. the process of training or self-organisation is actually a 
dynamics which increasingly moves toward the set fixed point through constantly upgrading 
itself. 

Mathematically, the dynamics of all types of neural network can be surnmarised as 

exploration of fixed points in the system and contraction toward the established fixed point. 
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6.5 SUMMARY 

A copy machine was considered, which was essentially an arrangement of lens systems 
which contract images, generating a dynamical system (an IFS). Running the machine in a 
feedback environment leads to a sequence of images A0, A,, A2, A., where AO is an 

arbitrary initial image. The final image, A., is independent of A0. If we chose A. as the 

initial image, then nothing happens. That is, the IFS leaves A. invariant. It is said that A. is 

a fixed point of the EFS, or that A. is an attractor for the dynamical system. In this sense, the 

resulting attractor can be identified with IFS. 

With regards to artificial neural networks, as mentioned above, 

9 Mathematically, the dynamics of all types of neural network can be summarised as 

exploration of fixed points in the system and contraction toward the established fixed 

point. 

9 In discrete dynamical system, neural network and chaos are closely and extensively 

linked because of the fixed point. 

* The existence of such a link makes it possible to introduce chaos into neural network 

based on the fixed point theory. 
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7 PRACTICAL WORK 

7.1 OVERVIEW 

Since the 1970s many mathematically optimal solutions have been developed for specific 

tasks in signal processing and identification of objects from observed patterns or images. 

These solutions break down however, when adapted for similar problems or when the 

underlying assumptions that may be unreasonable in practice are violated. For example, the 

common assumption that noise (typically thought of as the enemy of order), follows a 

particular distribution is known to play a detrimental rule in many experimental situations. 

The practical work carried out in this and the following Chapters investigates the 

applicability of artificial neural networks to real world signal processing and pattem 

recognition tasks, addressing issues with regard to noise, mapping, and generalisation. 

In this Chapter, employing a pattern recognition problem in biochemical process control, 

important considerations in dealing with noise, incorporation of approximate models and 

ensuring optimum results are experimentally analysed. Joint publications based on this work, 

by Professor J. M. Blackledge and the author were presented at the 3 rd ISC'97 Rzesow 

University of Technology, Poland, and in Recent Advances in Soft Computing'98, DNIU, 

respectively. A modified version of these papers are included in Appendix C. 

7.2 PROBLEMS 

In chemical and biochemical processes a key goal is to manage transitions from one flow 

state to another in an efficient manner so as to maximise profit over time. Even a half of a 

percent improvement in efficiency could save the industry in the order of millions of dollars 

(Ungar, 1990). To address such issues, one must address problems regarding noise, 

incorporation of appropriate models, lag times, 'credit assignment' (what action was 

responsible for an observed effect), optimisation over time, and non-linear processes. 

A key goal of such strongly non-linear processes is to manage transitions from one flow state 

to another in an efficient manner so as to maximise profit over time. Although for most of 

these processes extensive data is available from past runs, it is difficult to formulate precise 

models. Noise in the form of fluctuations that do not carry information is present in such 

applications. Many controllers for non-linear systems make the unrealistic assumption that 
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exact non-linear models of the process being controlled are known. Even those controllers 
that can include arbitrary non-linear functions of the output and old inputs are typically 
limited to single input single output systems (Agrawal and Seborg 1987). 

7.2.1 A prime example 

The bio-reactor is a prime example of a challenging non-linear problem. Improvements in 

bio-reactor control techniques can result in significant savings to the biochemical industries. 

Apart from noise, the issues that make it difficult to control include time delay, i. e. lag times 

between the time a control action is taken and the time a response is observed, non-linearity, 

and instability. The simplest version of the bio-reactor is a continuous flow stirred tank 

reactor (CFSTR) containing water, nutrients ('substrate') and biological cells (e. g. bacteria). 

The state of the process is characterised by the number of cells and the amount of nutrients. 

In this simple form cell growth depends only on the nutrients being fed to the system. The 

volume in the tank is maintained at a constant level by removing tank contents at a flow rate 

equal to the incoming flow rate. The objective is to achieve and maintain a desired cell 

amount by altering the flow rate. Significant delays exist between changes in flow rate and 

the response in cell concentrations. Additionally, the problem exhibits multiplicity, i. e. two 

different values of flow rate can lead to the same desired set-point in cell mass yield. 

Utilising its equation form developed by Agrawal et al. (1982) for such a bio-reactor, it was 

shown that small changes in parameter values can cause the bio-reactor to become unstable 

(Ungar 1990). It should be noted that these tests unrealistically assume that there is no noise 

in the measurements (e. g. of amount of cells) and that the control parameter (the flow rate) 

actually takes on the exact value that the controller requires. 

To cope with uncertainties regarding plant dynamics and its environment, networks that can 

learn to compensate for deficiencies in performance of conventional controllers may prove 

useful. In the following Section, employing a benchmark problem, important considerations 

with regard to noise and incorporation of approximate models, ensuring optimum results, are 

experimentally analysed. 
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7.3 BENCHMARK 

7.3.1 Objectives 

Using a bio-chemical. pattern recognition problem, the objectives of the benchmark were: - 

To address issues regarding noise and incorporation of approximate models. 

To investigate and evaluate mapping and generalising attributes of various neural paradigms 
for pattern recognition. 

To experimentally analyse the robustness of artificial neural networks to noisy data such as 
that which occurs in real world applications. 

7.3.2 Details 

Many of the limitations of conventional solutions arise on relying on poorly modelled non- 
linear systems, e. g. unrealistically assuming that there is no noise in the measurements and 

that the variable (e. g. flow rate) takes on the exact value that the controller requires are 

typical in conventional testing. Using a pattern recognition problem, such issues were 

practically investigated. 

In the benchmark, a large number of patterns consisting of fluid flow readings from a 
biochemical rig were gathered. Each input training pattern consisted of the fluid flow 

readings in litres taken at five second intervals over a period of one minute. The patterns 

could be divided into three broad categories representing the state of the system output, i. e. 

stable or unstable fluid flow and transition from one flow level to another. The changes to 

the fluid flow were set both manually and automatically. Various neural paradigms were 

constructed and used to recognise the three categories of patterns. The outputs of such 

networks can be used as inputs to a multi input neural controller, enabling the controller to 

take account of the exact state of the flow rate. The learning and generalising ability of these 

networks, particularly in a noisy environment, in which conventional systems perform poorly, 

were systematically examined and compared. 

Many processes are dynamic non-linear systems. Recurrent neural networks appear to be 

ideally suited for modelling non-linear systems. The response of such networks is dynamic 

or recursive. For a stable network, successive iterations produce smaller and smaller output 

changes until eventually the outputs become constant. For an unstable network, the process 
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may never end. Unstable networks have interesting properties, and one example of such a 
network is the chaotic system. As part of the experiments a number of recurrent back 

propagation networks were designed and applied to the problem. Their contributions in 
pattern recognition were then evaluated. 

7.3.3 The development environment 

Most network designers, rather than becoming involved in sequential programming, 

prefer focusing exclusively on the building, training and testing process, using a software 
development environment with the appropriate tools. They only become involved in 

sequential programming in the latter stages of a project for fine tuning and optimisation 

purposes. The approach is necessary, because, for example, in comparison to a hard 

computing program in which a list of all the variables or instructions can be readily 

printed and analysed, a list of all the weights and connections in a neuro-computing is not 

easily understood. However, such development tools have many limitations and tailor- 

made environments may be required in the latter stages of a project. 

For this research project a combination of CIC" was used to develop the neural 

paradigms. Ready made networks were also downloaded from the internet. The main 

tool used for fractal modulation/demodulation was Matlab. 

7.3.4 Network design 

One way of finding the most appropriate network for the application is to decide upon the 

training procedure required. In 'the benchmark problem', because the exact output for every 

input is defined, supervised training is the most suitable. Hence, networks such as multi- 

layer feed-forward nets using BP are likely candidates. Counter propagation is also a likely 

candidate because it may use both supervised and unsupervised training. 

Various aspects of network design, e. g. deciding upon the number of processing elements or 

the number of layers, were determined experimentally. That is a large number of networks 

were built, trained and tested to determine the most successful configuration. This is the 

most common method used in practice. Details of the experiments are covered in the 

implementation section. 
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7.4 DATA 

7.4.1 The source 

* The sources of training/testing data may include: test data, simulated and hypothesised 

results, statistical and historical records. 

e Training data sets for the benchmark were collected from a bio-chemical process control 

rig., consisting of :- 

1. Sump, 2. Pump, 3. Analogue/digital controlled diverter valve, 4. Cooler, 5. Process 
Tank, and 6. Analogue/digital controlled drain valve. 

9 All features on the unit can be controlled in an analogue or a digital mode. The fluid can 
be pumped at a flow rate of 0-2 litres / minutes from the pump flowing either directly to 

the process tank, or first to the cooler and then to the process tank. The fluid cycle is 

completed by either an overflow or drainage, using either of the two valves provided. 
Being based around a fluid flow process to control flow and temperature, the rig presents 

a relatively small but typical operation, analogous to that in the industry. 

7.4.2 Training 

9A large number of training sets were developed using a maximum of 120 patterns. As 

will be seen later in the implementation section, with a supervised model such as back 

propagation, more training examples generally results in a better network response. Each 

training input pattern represents the fluid flow readings (in litre/minute) taken at 5 second 

intervals over a period of 1 minute. The input patterns could be divided into three 

categories representing the output flow states of the system. That is a steady fluid flow 

(e. g. 1.5 litre/minute), an unstable flow, or a transition from one flow rate to another. The 

change in the fluid flow was generally set manually, but sometimes also automatically. 

The sets were then pre-processed before being fed to the system. 

* Pre-processing mostly involves scaling down and normalising the data. Scaling down is 

used to avoid fluctuations in one input with much larger range swamping any importance 

in a second input with a relatively small range. Normalisation is required when the 

numeric input data has a natural range that is sometimes other than the processing 

element's operating range. 



83 

Noise was superimposed on some of the data. Noise in the form of fluctuations that do 

not carry information is present in real world applications. Hence, superimposing noise 

on data sets from the rig. accustoms the networks to the noise typically found in an 
industrial environment. In addition, it provides the network with enhanced data sets. As 

will be seen in the implementation chapter, another application of noise in neural 

networks is to help to provide the solution. This is used during training when problems 

such as stabilising in a local minima may occur. Injecting a small amount of noise helps 

to provide the solution and can avoid the use of more elaborate techniques such as 

reinitialising the weights and restarting training or changing the learning parameters. 

Each training output pattern simply consisted of three numbers representing a state (e. g. 

steady, unstable or changing state). Such outputs could be used as input signals for a 

multi input plant controller, enabling it to take account of the state of the flow rate. The 

values for the training output patterns were chosen on the basis of being simple to map to 

their corresponding input fluid flow patterns. 

Appendix Al provides sample fluid flow patterns of a full training set containing 55 vectors 

in their digitised as well as the normalised and scaled down versions. 

7.4.3 Testing 

Networks were tested to evaluate the training process. Important issues for investigation 

were as follows: - 

Presenting the network with training cases first and then with new cases that were 

similar but different from the training cases. This is necessary in order to establish 

that the network has not simply memorised the training input patterns. A well trained 

network should be able to use its knowledge to recognise new but similar patterns. 

e Superimposing noise on data sets and testing the networks on them. Superimposing 

noise on training data sets accustoms the networks to the noise typically found in an 

industrial environment, and provides the network with enhanced data sets. Once 

trained, such a network should be able to correctly identify such patterns. 

Testing on different network configurations (e. g. in terms of variables and processing 

elements). Because of the lack of theory, the most common method to train a network 

for a specific application involves many choices and experiments. That is a number 
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of networks are built, trained and evaluated to deten-nine the most successful 
configuration. 

* Evaluating similar networks trained on a variety of training files. The character of a 

network is not only determined by its architecture but also by the quality and quantity 
of the data used. Hence, in order to get the best results a network requires assistance 
in the form of proper gathering and preparation of its input data. It was found that 

generally gathering more training data resulted in a more accurate performance by the 

network, when using a supervised model. With an unsupervised model, too many 

examples may interfere with each other, resulting in the network's recall ability 
diminishing. 

9 The role played by the middle layer processing elements, is another important 

consideration. When the test set patterns are presented, some processing elements 

strongly react to a particular pattern. If the same processing element does not react 

strongly to any other training or testing pattern, then there is a possibility that this 

processing element is the feature detector for that feature. In practice, however, it was 

found that the features detected are not the clear-cut features that one might predict. 

Instead they are usually a combination of obvious and obscure features. An 

inspection of the weights for the connections coming into a middle layer processing 

element, for the fairly strong positive values, can assist the developer to guess for the 

correct features that the processing element scans for. Input connections having 

strong negative weights are also considered as a feature detector that may be checking 

the absence of a signal at a position. 

This section discussed various considerations for training and testing networks for a 

benchmark pattern recognition problem. The next section discusses the experiments and their 

corresponding results. 

7.5 EXPERIMENTAL RESULTS 

7.5.1 Overview 

The theory of neural networks is not yet sufficiently matured to allow a network application 

to be precisely designed and developed. The process involves trial-and-error as well as 

research and planning. It starts with determining the most appropriate network to implement. 
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It is then followed by different aspects of network design such as deciding upon the network 
architecture and the learning algorithm parameters. 

In the benchmark, the precise values for the network architecture and the learning algorithm 
parameters were all determined experimentally. Using demonstrative samples, this section 
discusses experimental results and some of the main points in the process of deciding upon a 
suitable configuration for the application. 

7.5.2 The most appropriate neural network 

Presently there are no hard rules available for choosing the right network for a given 

application. One way of finding the most appropriate network is to decide upon the training 

procedure required for the application. In the benchmark, because the exact output for every 
input in the training set was defined, supervised training was decided to be the most suitable. 
Hence networks such as the multi-layer feed-forward network with back-propagation (also 

referred to as the back-propagation network) and the Boltzmann machine (and its 

refinements) were likely candidates capable of mapping and producing new outputs. Counter 

propagation, was also a likely candidate because in training, the network receives the input 

and the target vector. The network of choice, as it is for most pattern recognition 

applications, was eventually decided to be a multi-layered fully connected feed-forward 

network with back-propagation (commonly known as a back-propagation network). As with 

all the practical work carried out, a large number of experiments, displaying the various 

aspects of the process were saved on hard disk for any further analysis. 

7.5.3 Implementing back-propagation 

* Network architecture 

Simple two layered (i. e. input and output) networks, can represent the mapping with all 

representation already present in the input data because of the direct mapping of inputs to 

outputs. But they fail to learn the mapping if the data's innate representation is non-linearly 

separable such as the case for'exclusive OR'function. 

By adding intermediate layers, usually referred to as hidden layers, learning such arbitrary 

mappings is possible. The intermediate layer allows the network to develop its own internal 
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representation of the input patterns. The internal representation and the learning of features 

not explicitly obvious in the input data is constituted by the activations of the intermediate 
layers processing elements. They provide the network with an internal representation 
capability allowing it to decide upon whatever is important in representing the mapping. This 
is in contrast to relying on intrinsic relationships already built into the training data in two 
layer networks. 

The first set of experiments, (see, Table 7.1), were concerned with seeking to apply back- 

propagation techniques to the experimental data. They involved many important changes 

within the network to find the most suitable configuration. These included varying the 

number of layers, the number of processing elements in the intermediate layer(s), and the 
learning parameters. Several networks were developed and then trained on data obtained 
from the rig. The generalised delta rule was used for the networks to learn to develop the 

required features to perform the desired mappings. The objective of the experiments was to 
find the most successful configuration to reach a minimum value for the average RMS error 
in the shortest number of training cycles. Testing results are compared and analysed in the 

performance section. 

Sample experimental results demonstrating the various aspects of the process are included in 

Table 7.1. Except network number 6, which has two middle layers, they all have only one 

middle layer containing six processing elements. Deciding upon this configuration was 

achieved experimentally by varying the number of layers and the number of processing 

elements in the intermediate layer(s), while keeping all the other elements constant. All the 

networks were trained on a training file containing 63 patterns collected from the rig. To 

help the networks in their pattern recognition task, the 63 input patterns consisted of similar 

versions of 12 input training patterns. 

At the start of training, weights for all of the 8 networks were initialised to random values 

between +1.0 and -1.0. Although with such a small range learning takes longer, this was 

thought necessary as the goal was to keep the activations close to 0 at the start of training. 

With larger values it was found that learning was generally shorter but the average RMS. 

error as well as the maximum output unit error tended to be higher. 

Training was halted for networks 1,2 and 3, after 120,000 cycles, as they were clearly stuck 

in a local minima. Training for the rest of the networks were terminated when their total 

RMS. error reached less than 0.05. 
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o Varying the parameters 

9 Noise 

Noise in the form of fluctuations that do not carry inforniation is present in real world 
applications. It was thought that superimposing noise on data sets from the rig would 
accustom the networks to the environmental noise. Most networks in the experiments 
were trained using a significant amount of noise (up to 0.2, which makes it even difficult 
for a person to recognise the patterns). 

The noise used in this set of experiments was calculated as a pseudo random number from 

a flat distribution with a maximum amplitude equal to the number entered. This meant 

that, say for a noise value of 0.1, each element of each input vector had a random value 
between -/+ 0.1 added to it independently. In the experiments, a multiplicative decay rate 
(e. g. 0.0001) was set for the noise to reduce gradually. 
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Table 7.1 Results applying backpropagation 
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9 Leaming rate 

True gradient descent in the total RMS error requires that, changes are made to the weights 

only in infinitesimal steps and only after the entire training set has been processed. (In 

order to use less RAM, some implementations of the BP algorithm make weight changes 

after each pattern). The proportion of the dictated weight changes may be set as a leaming 

rate. The job of the leaming rate constant is to set the speed of convergence of the weight 

vector to the ideal value at the bottom of the surface, or a more complex error function in 

multidimensional space. The larger the leaming rate, the larger the weight changes and 

the faster the learning. The idea is to set the leaming rate as high as possible, without 

causing the RMS. error to oscillate significantly. Generally, the optimum value of 
leaming rate depends on the shape of the error function in weight space. 

Mathematically, the leaming rate constant must be less than 2.0, or the network cannot be 

stabilised, (Caudill and Butler, 1992). The leaming constant must also be positive. If 

negative, the direction of the delta vector will be away from the ideal weight vector. 

In practice, it was found that it was best to reduce the value of learning rate until the total 

RMS error showed a general decreasing value with time. Once it was close to the ideal 

position on the surface, even small differences between similar training samples when 

combined with a large learning constant, could cause the weight vector to move 

excessively and be slow to find the correct point. 

9 The momentum term 

One way to increase the learning rate without making the error oscillate is to add a 

momentum term to the weight change equation. Training proceeds much faster with this 

term. The term is a variable that determines the proportion of the last weight change that 

is added into the new weight change. It has the effect of preventing thrashing due to 

ripples in the error surface. 

Experimentally, (as it can be seen from network number 4), it was found that, a small 

value for the momentum term (e. g. 0.1) together with a small learning rate causes the 

network to converge very slowly. It was eventually concluded that a momentum value a 

lot higher (e. g. 0.9) together with a learning rate value (e. g. 0.1), so that they add up to 

1.0, provide the best effect to the weight changes (see network number 8). 
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7.5.4 Further experiments to consider the more extreme cases 

All the networks in Table 7.1 were trained on a training file containing 63 patterns which 
were normalised and scaled between -/+ 0.5. This was considered necessary as networks 
trained on raw data tended to end up in a local minimum. The networks in Table 9.1 were 
also assisted in their pattern recognition task by using input training patterns which consisted 
of similar versions of only a limited number (12) of input training patterns. As a result, one 
of the networks (number 8, Table 7.1) managed to learn in only 176 training cycles. 

To consider the more extreme cases further experiments were undertaken. A main condition 
for a network to perfonn accurately is the quality and representativeness of the training cases. 
For training the networks in the following Table 9.2 a number of data sets were gathered. 
They consisted of 55 patterns for networks 9 and 10,110 patterns for 11,12 & 13 and 120 

patterns representing the breadth of the problem, covering unusual and boundary cases for 

networks 14,15 and 16. Network performance and test results presented in Table 7.2 are 
discussed in the performance section. 
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Table 7-2: Applying back-propagation to data covering more extreme cases 
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7.6 ANALYSIS OF DEVELOPED MODELS ON TEST DATA 

7.6.1 Training patterns 

Neural networks learn relatively better when their inputs are simplified. This is demonstrated 

by networks in Table 7.1. Training files for all these networks were normalised and scaled 
between -/+ 0.5. Networks such as number 9 in Table 7.2 which were trained on data not 

normalised, mostly failed to train. Others (e. g. network number 10) trained on data which 

were only scaled within a certain range, still had difficulty in learning. 

Networks I to 8, in Table 7.1 were additionally assisted in their 'pattern recognition' learning 

task by using input training patterns which consisted of similar versions of only a dozen input 

training patterns. As a result, one of the networks (number 8) managed to learn in only 176 

training cycles. However, when tested on unseen data they all performed poorly. For 

example, in the case of network number 8, it failed to recognise 4 out of 18 test patterns. 
This is because an adequate number of training patterns was not available to allow the 

networks to cover the problem domain. 

To find the least number of inputs to adequately represent the problem, some networks were 

trained on sequentially larger numbers of different input patterns. As can be seen from the 

results in Table 7.2, training took longer but performance on testing was improved. 

Networks 14,15 and 16 which were trained on 120 different patterns representing the breadth 

of the problem, performed relatively well. Networks 15 and 16 managed to correctly 

recognise all of the test patterns, from a test file containing 18 unseen patterns. 

7.6.2 Architecture 

Choosing the right number of hidden processing elements and layers for the application was 

carried out through a process of trial-and-error. The process was time consuming, tedious 

and at times contradictory. For example, increasing the number of hidden processing 

elements generally resulted in longer learning. Sometimes, however, increasing the numbers 

slightly actually resulted in decreasing learning time. But generally, too many processing 

elements resulted in poor generalisation. That is the networks tended to memorise the 

training set rather than learn it. Defining too few hidden processing elements mostly resulted 

in incorrect classification. Experimentation eventually lead to decide upon 6 hidden 

processing elements for networks with one hidden layer presented in Tables I and 2. All the 
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networks with two hidden layers (e. g. 15 and 16) have 6 processing elements in the first 
hidden layer and 4 in the second. 

Only a few networks with more than two hidden layers were constructed. It has been proved 
by many researchers (e. g. Blum and Li, 1991) that a continuous function can be well 

approximated by a static neural network with a single hidden layer, where each processing 

element in the middle layer has a continuous sigmoidal non-linearity. That is, there is no need 

to build networks with very many middle layers. Despite such results, further work needs to 

be done to investigate the relationship between accuracy of the function being approximated 

with the number of hidden layers. Chester (1990) has pointed out that neural networks with 

two hidden layers appear to provide higher accuracy and better generalisation than a network 

with a single hidden layer. For the benchmark, this has actually been confirmed. That is 

networks with two hidden layers (e. g. 15 and 16 in Table 7.2) performed much better than 

networks with a single hidden layer. 

To accustom such networks, to the noise typically present in a process control environment, a 

random noise value between -/+ 0.1 was added to each element of each of their input vectors 

independently. Network 16, managed to train in only 618 cycles. For testing, a file containing 

18 unseen new patterns was used. Both networks 15 and 16 managed to correctly recognise 

all the test Patterns. 

7.7 OTHER IMPLEMENTATIONS 

7.7.1 Implementing and testing recurrent back-propagation 

Networks developed in the preceding section are static, feed-forward, or non-recurrent 

networks. They are able to approximate non-linear functions to a desired degree of accuracy. 

As a result they have been used to model dynamic systems. However, the use of dynamic, 

feedback, or recurrent networks to represent dynamic systems may be more appropriate. A 

recurrent network may be able to do a lot more than a back-propagation network with the 

same number of weights (Hecht-Nielsen 1987). No theorem confirming this yet exists. The 

feedback in recurrent networks implies local memory characteristics (Siac, 1989). But, it 

may cause instability. In a stable network, successive iterations produce smaller and smaller 

output changes until eventually the outputs become constant. In an unstable network, the 

process may never end. Chaotic systems, which have interesting properties of their own, are 

one example of an unstable network. 
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In the recurrent back-propagation architecture used for the application, in addition to the 
feed-forward connections from the input layer to the hidden layer and from hidden layer to 
the output layer, feedback connections were made between hidden units and between output 
units. That is, all the processing elements in these layers have feedback connections to 
themselves and to every other processing element in that layer. As a result, the generated 
outputs depend not only on the current inputs but also on the current state of the units in 
layers with feedback connections. The feedback loops in the output layer are really there to 

allow the network to learn relationships between successive output vectors in a sequence (as 

potentially such a relationship can exist in the benchmark). More importantly, however, are 
the feedback loops in the hidden layer which allow the network to form a "memory trace" of 
the input sequence. Such architectures with feedback are ideally suited for control and 

modelling (identification) of the forward or inverse dynamics of a chemical process control 

system.. This is so because, such real world systems requiring to be modelled, are 
themselves non-linear dynamical systems. 

The experiments in Table 7.3 are concerned with seeking to apply the recurrent back- 

propagation network to the experimental data within a noisy environment. Networks 17 and 

18 were trained on data consisting of 110 patterns representing the problem. As can be seen 

from the results, network no. 17 did not do well on testing. Network 18, with a more suitable 

configuration for the application, performed slightly better. Networks 19,20 and 22 which 

were trained on a data file containing 120 patterns, representing the breath of the problem, 

performed much better. 
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Table 7.3: Applying recurrent backpropagation to the experimental data 

Using a testing file containing 18 unseen patterns, network 19 managed to correctly recognise 

16 patterns. Networks 20 and 22 have the same configuration as 19. They were trained on 

the same training file as 19, but in a much noisier environment (started at 0.1 rather than 

0.01). As a result they managed to correctly recognise all the test patterns. Network 20 

managed the training in 1988 cycles. To improve upon this noise was reduced in bigger 

chunks for network 22. That is, a decay rate of 0.02 rather than 0.01 was used. As a result 

the number of training cycles for network 22 was reduced to 832. The stopping criteria for 

training the networks 20 and 22 was for the value of 'the maximum output unit error' to reach 
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0.1 or less. By increasing this value to 0.2, these networks managed to recognise the patterns 
satisfactorily, after training for a much reduced number of cycles. These results are presented 
in 21 and 23 respectively. As can be seen from the results in Table 7.3, network 23 correctly 
recognised all the unseen test patterns after training for only 205 cycles. 

By applying noise randomly to each input pattern just before it was presented to the network 
(each time), the network only saw a series of approximations of that input. Such a technique 
forces the network to generalise, one of the key goals. As Table 7.3 demonstrates, using 
slightly noisy data effectively improved the training time and the learning. 

The above results demonstrate the importance of noise in training. This is in sharp contrast to 

conventional systems, and demonstrates the neural network's potential in dealing with the 

noisy data that occurs in process control applications. 

7.7.2 Implementing Boltzmann machine and counter-propagation 

9 Boltzmann machine 

The architecture of the Boltzmann machine used was the same as the back-propagation 

networks used earlier, except that the processing elements had bistate values (0 or 1). The 

hidden units, like those of a multi-layer back-propagation network, act as feature detectors. 

They learn using an energy state optimisation method called simulated annealing. This 

approach to learning allows them to perform optimisation as well as pattern recognition tasks. 

The version of the Boltzmann machine used was a modification by Hinton and Sejnowski 

(1986). Unlike the original Boltzmann Machine, where the weights between units are 

calculated directly from the set of patterns, the weights in this version were slowly modified 

by a statistical process. Using data gathered from the Bytronic rig. several networks were 

trained. Their operation after training was similar to the back-propagation networks 

developed earlier. However, convergence generally took orders of magnitude (at least two) 

more than the back-propagation network. 
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9 Counter-propagation 

The Counter Propagation Network (CPN), developed by Hecht-Nielsen (1987), combines 
Kohonen learning and Grossberg learning. The resulting network functions as a statistically 

optimal self-programming lookup table. 

For the benchmark problem, CPN did not perform as well as backpropagation, but converged 

more rapidly. Figure 7.1 presents a sample counter propagation network trained on a data file 

containing 120 patterns collected from the rig. It consists of five layers: [11 the input vector 
4x% [21 the associated target vector 'y', [31 the Kohonen middle layer, [4 ] and [5] the output 

vectors from the network. During training [11 and [2] receive the input and target vectors. 

Using the connection weights [1] to [3] and [2] to [31 (see 'Kohonen I to 3' and 'Kohonen 2 

to 3' in Fig. 7.1 respectively), these are connected to [31 the middle (Kohonen) which maps 

these input vectors into a topological space where nearest neighbour relationships are 

preserved (see Kohonen, 1984 for detail). Once the topology preserving map is formed, the 

winning unit is passed through sets of Grossberg weights to form the network output [4] and 

[ 51. Grossberg weights employ the outstar learning paradigm developed by Grossberg 

(1982). As with the backpropagation tests, the introduction of noise actually assisted the 

network during training. After training, the network performed well but not as good as that 

of BP networks presented earlier. However, it was able to recall patterns in both directions. 

Figure 7.1: ApPlYing a counter propagation network to the training data 
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7.8 SUMMARY 

Experimental results and some of the main considerations in the process of deciding upon a 

suitable configuration for the benchmark, have now been discussed. Applying a small 

amount of noise randomly to each input pattern actually forced the networks to generalise 

more readily. In process control applications such robustness to noisy data is a main issue. 

The network of choice for our pattern recognition application was considered to be a multi- 
layered fully connected feed-forward network trained with back-propagation. Networks with 

two intermediate layers particularly performed well. 

However, to represent dynamic systems, it was suggested that using feed-forward networks 

extended with feedback connections may be more appropriate. Such dynamic models were 

developed by adding feedback connections between hidden units and between output units of 

the feed-forward networks. Dynamic networks are able to do a lot more than a back- 

propagation network with the same number of weights (Hecht-Nielsen 1987). 

Using the knowledge on the networks, which performed well, artificial neural networks were 

applied to a digital communication application, details of which are included in the following 

Chapters. Comments on all the experimental work carried, as well as general conclusions are 

presented in the final Chapter. 
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8 APPLICATION TO DIGITAL SIGNAL COMMUNICATION 

8.1 OVERVIEW 

Using a pattern recognition problem, the previous Chapter addressed issues regarding noise, 
generalisation, and incorporation of approximate neuro-models. It was found that careful use 
of noisy data, may effectively improve model performance. The experimental results in 
Chapter 9 are used in developing a neuro interface engine for a digital signal communication 
system. This Chapter, introduces the digital signal communication system considered. The 

system employs fractal modulation to code data into a format that can securely be transmitted 
(Blackledge et al., 1996). Integrating neuro-filters with the digital communication system 
enables the system to operate consistently at lower signal/noise ratios, making it 

commercially viable. Following an introduction to the system, noise in communication 
systems, noise modelling and computing, and details of computing fractal noise, utilised to 

produce neuro-filters, are presented. 

8.2 DIGITAL COMMUNICATION EMPLOYING FRACTAL 

MODULATION 

Digital communication using fractal modulation rather than conventional modulation 
techniques, such as amplitude, frequency or phase, is a hot topic of research. Using fractal 

modulation, a technique of coding binary data in a form indistinguishable from the 

background noise, for digital transmission and reception of sensitive information is 

considered (Blackledge et al., 1996). In their work, random scaling fractal. signals were used 

to model background noise in which the main characteristic of fractal signals, the fractal 

dimension, was used to describe the texture of the fractal. Figure 8.1 (a) shows an example of 

a fractal coded binary signal with 3 fractals per bit, each with 64 samples with a fractal 

dimension of 1.1 for bit 0 and 1.9 for bit 1. In the case shown in Figure 8.1 (b), the change in 

signal texture between 0 and I is reduced by reducing the difference in fractal dimension. 
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High-1 
-9 

Low 

Figure 8.1 (a) 
A fractal coded binary signal with 3 fractals per bit, with 

a fractal dimension of 1.1 for bit 0 and 1.9 for bit 1. 

High-I -6 

Low -1.1 

I 

0 

Figure 8.1 (b) 
A fractal coded binary signal with 3 fractals per bit, with 

a fractal dimension of 1.4 for bit 0 and 1.6 for bit 1. 



99 

8.2.1 System performance 

The performance of any system based on transmitting and receiving bit streams, or binary 

sequences, is ultimately effected by transmission noise. That is, the information is 
transmitted in binary form, but on reception the binary sequence is convolved with 
transmission noise. Additionally, the performance of the system is subjected to changes in 

the fractal generating parameters. 

9 Examples of output 

Examples of the output produced by the system, using 64 samples per fractal, are shown in 
Figure 8.2 (a) and Figure 8.2 (b). The examples show the fractal signal and the reconstructed 
fractal dimension superimposed on the original code, top dotted line. The original and 

estimated binary sequences are displayed on the right hand side. In the first example, Figure 

8.2 (a), with I fractal per bit, and lower and upper fractal dimensions of 1.10 and 1.90, two 

errors have occurred out of a total of 100 bits. In the second example, Figure 8.2 (b), with 5 

fractals per bit, and lower and upper fractal dimensions of 1.60 and 1.90, there is only one 

error . 

I 
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Figure 8.2 (a) 
An example with I fractal per bit, and lower and upper 

fractal dimensions of 1.10 and 1.90 
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Figure 8.2 (b) 
An example with 5 fractals per bit, and lower and upper 

fractal dimensions of 1.6 and 1.9 

The results of the system's numerical performance, subject to changes in fractal generating 

parameters and signal/noise ratio, show that a combination of wide intervals between the two 

fractal dimensions with a large number of fractals per bit achieve greater accuracy 

(Blackledge et al., 1996). 

8.3 NOISE 

8.3.1 Digital communication 

In any system in which the transmission of data is the main consideration, noise is a major 

issue. Transmission noise affects both digital and analogue systems and designers are always 

trying to find new methods to reduce it. There are two classes of transmission noise, internal 

and external. 
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o Internal noise 

Internal noise affects the signal as it propagates through the system and circuits. This noise 
cannot be eliminated but can be controlled through circuit design. Internal noise can be 

classified as component noise and system noise. 

Component noise - The types of noise that cause component noise, e. g. thermal noise 
caused by agitation of electrons, or noise caused by fluctuations in the conductivity of 
the semiconductor material, have the same amplitude for all frequencies across the 

whole frequency spectrum, i. e. white noise. 

System or equipment noise - This is caused by the non-linear characteristics of 

electronic components and by circuits such as filters. This type of noise produces 
frequencies in the output signal that were not present at the input. 

9 External noise 

Once a signal is transmitted, it comes under the influences of external sources of noise that 

cannot be controlled, e. g. radiation, or static interference such as volcanic activity, dust 

storms and sand storms. Instead, this should be taken into account when designing the 

receiver. 

8.3.2 Ilf phenomena in physical and biological processes 

The inverse relationship between frequency (/) and squared amplitude or power in the Fourier 

spectrum, '11f " power spectra'where the exponent 'cCis a value between 0.5 and 1.5, is one 

of the most common fractals found in nature (Voss, 1979). 

In electronics systems 11f noise is also referred to as flicker noise or pink noise. In such 

systems, this intermittent bursting behaviour in a time series, is one of the most common 

fon-ns of noise. 

Mathematical properties: 

0 In general, 11f noise is fractal with respect to time. 

Ilf spectra have the largest values of dependency or correlation with the past of any of 

the random scaling noises, e. g. white or brown. This dependency structure of a Ilf 
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spectrum, or memory, implying correlation over all past times is based on the 
processes of fractional integration of noise. 

e Fractional integrals are additive, e. g. applying the 1/2 integral twice gives a full 
integral. In terms of spectral analysis, quantifying the 1/2 integral involves adding up 
all components from the past. For example, llf can be generated using half-order 

integration of Gaussian white noise. The power spectrum of this noise is a constant 

and the current value of a Gaussian white noise at one point in time is totally 
independent of a past value. 

e Full order integration of a Gaussian white noise, or the summation of random steps, 
j/ 2 

gives a Brownian motion, or f noise in the power spectrum. 

e Half order integration consists of linear convolution with a kernel, or Green's function 

0 11f processes have underlying LFvy stable distributions which have the same additive 

properties as Gaussian distributions, i. e. the some of two Ilf processes gives a Ilf 

process of a higher order (Takayasu, 1990). 

* The product of llf processes is also a 11f process (Kawai, et al., 1993). 

Using fractal noise, robust neuro models were developed to identify noisy outputs from the 

communication system described in this Chapter. 

8.4 MODELLING AND COMPUTING NOISE 

8.4.1 Models and characteristics 

e Models 

The ideal approach for developing a model is to: 

(a) analyse physics of the system, 

(b) establish appropriate set of differential equations, 

(c) solve equations, 

(d) compare solution with experimental results, and 

(e) back to (a) to refine model. 
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But the physical origins of many noise types are not well understood. Secondly, conventional 

approaches for modelling noise fields usually fail to accurately predict their characteristics. 

9 Characteristics 

Defining the characteristics of noise, the principal approaches: 

(a) Probability Distribution Function (PDF)- shape of distribution of amplitudes of 

noise sequence 

(b) power spectrum of noise - shape of Power Spectral Density Function (PSDF) 

Based on this, noise has two principal characteristics: 

(a) power spectrum characterised by irrational power laws, and 

(b) exhibits statistical self affinity. 

8.4.2 Phenomenological approach 

9 Examples of PSDFs for different stochastic processes 

These include: 

Bermann process 

P(W) = 

2g 

2 

(ii) Omstein-Uhlenbeck process 

AIWI 
2 +CO 2) «00 

(iii) Fractional Brownian Motion 

A 
(3) 

2q 
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9 Finding a PSDF which provides a general model for different types of noise. 

Following M-Sc. notes by Professor Blackledge, a PSDF of the following fon-n is considered. 

P(W) = 

where 

A(02g 

2+w2 )q 
0 

co - angular frequency 

wo - characteristic frequency, 

A -constant (a scaling factor), 

q> 0 and g> 0 

8.4.3 Computing noise 

Complex spectrum of noise can be written as 

N (co) = Hgq (0» W (m) 

B(iw)g 
(WO 

+ iw 

where 

g and q are positive floating point numbers, 

Hgq is the transferfunction given by (B = ýA), 

A is a scalingfactor, 

W (w) is the complex spectrum of 'White Noise' (i. e. noise with a zero mean 

Gaussian distribution whose PSDF is a constant. ), 

The noise field n(t), 

as a function of time t, 

is given by the inverse Fourier transform of N((9) 

i. 
w 

nfN (w) exp(i(ot) do) 27c 
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A 

=Re F -'[N(w)] 
A 

where F- Fourier operator 
A 

F Inverse Fourier Transform 

For W>0 and q>g, the maximum value of P(w) occurs when 

(0 = (0 (q 
7g) 

The value of P(co) at this point is 

02(g-q) 
gg 

- gy P(w) = Aw 
q, 

(q -g 

Beyond this point, the PSDF decays and its asymptotic is dominated by a6 2q power 

law which is consistent with conventional random firactal signals. At low frequencies, 

the PSDF is characterised by the term (1)2g . 

8.4.4 Fractional differential equations 

The noise n(t) has been expressed in terms of the inverse Fourier transform of N ((0) 

Given 

_ 
B(iw)g_ 

W(W) N(W) 
iw )q 

Fourier inversion leads to (casual case) 

t 
d9 

dT9 dr 

where 

f W(w) exp(i(ot) A) 2TE 

A 

This result is based on the following definition for a fractional differential of a 

function flt) 
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d9 

dt 9ff F((3))(i(i))g exp(i(ot) do) 271 

where 

F(w) is the Fourier trans nn of f (t). Ifo 

8.4.5 Random scaling fractal signals 

Given the power spectral density function 

P(W) = 

AO)2g 

(0 
2 +CO 2)q (0 

a random scaling fractal signal is obtained when g=0 and wo = 0. 

It can then be written 

A- 

co 
2q 

where q is defined in terms of the Fractal Dimension D (1 <D< 2) (the Minkowski of Box 

Counting Dimension) by 

5-2D 
2 

This result is consistent with the spectral noise model, ignoring scaling constant A. 

W(W) 
(iw)' 

or 

At 

R [n(t)] f dT 
F (q) 

- 

Riemann-Liouville (fractional) integral 

9 Remarks 

0n (t) can be considered to be a solution to the fractional differential equation 
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d9 (t) 
tq 

(t); 
-L q< d22 

The Riernann-Liouville (fractional) integral has the following fundamental 

property 

AI 

n -n(Xt) 
(t) 

Xq 

or 

Pr[n-'(t)] =_I Pr[n(Xt)] 
ý, q 

describes, statistical self affinity, and where 

Pr []- denotes the PDF. 

8.5 FRACTAL NOISE FOR DEVELOPING NEURO-FILTERS 

qj/ q Using f power spectra'where the exponent 'q'is a value between 0.0 and 1.5, noise with 
the following description was produced (Table 8.1). 

Order of intejzrodifferentiatiojj-(qý 

q=0 

0<q<0.5 

q=0.5 

0.5 <q< 

q=I 

l< q<1.5 

Description 

Ilf 0- Gaussian white noise 

Non-specific coloured noise 

llf fractional noise -Pink 

Anti-persistent fractional Brown process 

Non-persistent Brown process 

Persistent fractional Brown process 

Table 8.1 Noise description 

The generated noise was then used to develop neuro-filters to correctly identify noisy signals 

received by the digital communication system. 

Algorithm for developing neuro-filters using fractal noise 

Step 1. Compute White Noise wi ;i=1,2, ..., N 
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Step 2. Compute DFT of wi giving Wi using FFT algorithm. 

jl(ý)iq Step I Filter Wi with 

Step 4. Inverse DFT result using FFT giving ni. 

Step 5. Convolve fractal noise with training data 

Step 6. Develop neuro paradigms using convolved train ing/testing data 

8.5.1 Examples 

Figure 8.3 (a) shows examples of white (q = 0), pink (q = 0.5), and brown noise (q = 1) 

produced for developing robust neural networks, where q is the order of integro- 

differentiation with respect to white noise. Power spectrums of white, pink and brown noise 

are included in Figure 8.3 (b). Power spectrum is useful in verifying the type of noise 

produced. For example, a log-log plot of 'power spectrum verses frequency of white noise 

(Figure 8.4) gives a gradient of zero. A different gradient, e. g. -1, indicates a different noise, 

e. g. pink noise. 
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Figure 8.3 (a) 
Examples of white, pink and brown noise produced 
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Figure 8.4 
log (power) verses log (frequency) 

gradient =0 (white noise) 

This Chapter introduced a digital communication system that employs fractal modulation for 

secure transmission. Various aspects of modelling noise, and details of computing fractal 

noise were then discussed. In the following Chapter, fractal noise is used to develop adaptive 

neuro models to optimise the digital signal communication system's performance 
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9A NEURO-INTERFACE ENGINE FOR A DIGITAL 
COMMUNICATION PROBLEM 

9.1 OBJECTIVES 

To develop a robust neuro-model for a digital communication system that encodes bit streams 
into a format that is characteristic of transmission noise, to: 

1. overcome the system's error rates generated with low signal/noise ratios, and 

2. optimise the decoding process in terms of speed through reduced computation, and 

robustness of technique in presence of various types of unwanted signals. 

9.2 DETAILS 

A digital communication system that codes binary data in a form indistinguishable from the 

background noise is considered (see Chapter 8). The system, uses fractal modulation for 

digital transmission and reception of sensitive information. That is, instead of transmitting a 
frequency modulated signal, in which Os and Is are allocated different frequencies, a fractal 

signal is transmitted in which Os and Is are allocated different fractal. dimensions. Basic steps 

include: 

(a) Given a binary sequence, dimensions D., j. and Dm.,, are allocated to bit 0 and bit I 

respectively. 

(b) Computing fractal signal of length N for each bit in sequence. 

(c) Concatenating results to produce a continuous stream of fractal noise ni. 

On receiving the composed fractal signal (Figure 9.1): 

(d) Fractal. demodulation takes place - this process gives the array of D values that 

describe how the fractal dimension changes over the input signal. 

(e) The encoded binary information is recovered from the array of D values. 
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IR eceived fractal signal 

Practal dem od 

Determining: beginning and end points & 

the num ber of encoded bits 

- IR ecovery of bit sequence by thresKo ld: in fý ýj] 

Figure 9.1 
On receiving the composed fractal signal 

Implementation of (e) leads to: 

9 determining the beginning and end points of transmission, and the number of bits 

9 recovery of bit stream using the following algorithm: 

Given 

A=Dmin + 
Dmax-Drrýn 

2 

if 
Di :! ý A then bit 0 

D, >A then bit I 

The reconstruction algorithm, yields low error rates with a relatively high level of noise 

provided that: 

the difference in fractal dimension is not too small and 

many fractals per bit are used. 
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9.3 A NIEURO-MODEL 

Based on (i) and (ii) being observed, a relatively flexible and efficient neuro-filter is 
proposed to replace the thresholding approach of recovering the binary infon-nation. 
Combined with the decoding technique, adequately trained networks can optimise recovery 
of the encoded binary information from the array of D values. Additionally, such models can 
optimise the overall decoding process in terms of : 

(a) speed, through reduced computation (once training is complete), and 

(b) robustness of technique in presence of various types of unwanted signals. 

9.3.1 Data 

92 Fractal noise convolution 

* Fractal noise is a good model for most types of noise found in nature (Mandelbrot, 

1977 and 1983). This includes the types of noise encountered in transmission. 

Most types of transmission noise are 'statistically self-affine'. This term refers to 

random processes that have similar probability density functions at different scales. 
Thus when zooming into a random fractal signal, although the pattern of amplitude 

fluctuations changes across the field of view, the distribution of these amplitudes 

remains the same. 

9 It was thought that convolution of fractal noise with bit streams would provide 

adequate infonnation for developing a robust neuro-model 

,, / q Using f power spectra with the value of exponent 'q' between 0.0 and 1.5, noise 

with the following description was produced: 

(a) white noise, 

(b) non-specific coloured noise, 

(c) Ilf fractional - Pink noise, 

anti-persistent fractional Brown function, 

(e) non-persistent fractional Brown function - Brown noise, and 

(f) persistent fractional Brown function. 
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Remark - random number used: an N by N matrix, with random entries chosen 
from a normal distribution with mean zero and variance one. 

Data sets for the paradigms were then developed through convolution of binary sequences, up 
to 1000 bits, with the noise produced (sample data files are included with the accompanying 
disk). Figures 9.2 (a) and 9.2 (b) display examples of a variety of noises generated for 

convolution. They also show the following binary sequence (Table 9.1) convoluted with pink 
9.2 (a), brown and white noise 9.2 (b). 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 9.1 Sample data 

noise-normally distnbuted-mean 0 variance 1 
5 

0 

-5 100 200 300 400 pink 500 noise 600 700 800 900 10 00 
0.5 

0 

1 

-0.5 non 0 100 200 300 400PPecific5oocoloredooonoise 700 800 900 10 00 
5 

0 

0 100 200 300 400 binary500 data 600 700 800 900 10 00 

0.5 - 

0 
50 pink 100 1 50 

0 

-1 

2 
50 binary data & pink noise 100 1 50 

0 

L 
-2 0 50 100 150 

Figure 9.2 (a) 
Sample of a variety of noise generated, binary data, and binary data convolved with pink noise 
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Figure 9.2 (b) 
Sample noise, binary data, and data convolved with brown and whit noise 

9.3.2 Training/testing sets 

0 

0 

9 

Rather than determining what bit was encoded in every part of signal using a predefined 

thresholding technique, models were developed using training sets made-up of bit streams 

convoluted with noise of various descriptions, and of varying degrees, e. g. 20% pink 

noise. 

To accommodate for the number of fractal signals representing one bit, or fractals per bit, 

training sets were developed, with their inputs consisting of each bit being repeated at 

least once, and then convoluted with fractal noise. For example, if repeated 7 times, then 

Wand 'I'in a training set, prior to noise convolution, would be represented by '00000000' 

and I 1111111' respectively. Based on this, input training patterns consisting of bit 

streams of varying length, e. g. eight bits, to represent Wand 'I'were developed. 

Input patterns were then extended for broadly representing the following three 

categones: 

(i) fractal bits representing bit 0 

(ii) fractal bits representing bit 1 

(Iii) combinations of bits representing code determined by the transmission 

protocol, e. g. to find beginning and end of transmission. 
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9.3.3 Paradigm 

Considering, the data, the training procedure most appropriate to the application and software 
development issues a large number of networks were developed. The objective was to find 
the most successful configuration to reach a minimum value for the average RMS error, and 
to do so in the shortest number of training cycles. Based on a large number of experiments, 
the generalised delta rule together with the following most efficient structures were adapted: 

9 multi-layered fully connected feed-forward 

* multi-layered fully connected feed-forward with extended feedback of middle and 
output units to themselves and to other units within the same layer. 

Table 9.2 presents examples of these paradigms producing no errors, when tested on unseen 
data. The networks were trained on binary data convoluted with fractal noise. Random noise 
of up to 20% (with a set decay rate) was additionally applied to each input, every time it was 
presented to the network. The noise was calculated as a pseudo random from a flat 

distribution with its maximum amplitude equal to the value chosen. For example for a noise 

value of 20%, each input bit had a value between -/+ 0.2 added to it independently. This 

causes the network to generalise, as it only sees a series of approximations of the input. 

The results in Table 9.2 show that training took longer in the fully connected feed-forward 

network with no feedback. Networks with feedback, because of their instability problem, are 

generally more difficult to train. In an stable network, successive iterations produces smaller 

and smaller output changes until eventually the outputs become constant. In an unstable 

network, the process may never end. Chaotic systems are one example of unstable networks. 

For further comparison, artificial neural networks outputs displaying the testing results of the 

networks in Table 9.2 are presented in Figure 9.3. They show: 

* the feedforward networks outputs (a) and (b), after reaching a 'max output unit error' of 

<o. 2 after 281 cycles in (a), and < 0.1 after 541 cycles in (b), as well as 

9 the feedback networks outputs (c) and (d), after reaching a 'max output unit error'of <o. 2 

after only 59 cycles in (c), and < 0.1 after 105 cycles in (d) respectively. 
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Networks Multi-layered Multi-layered fully-connected feedforward with 

fully-connected feedforward extended feedback of middle and output units to 

themselves and to others within the same layer 
Specifications with backpropagation 

with backpropagation 

Hidden Layers 2 1 

Connections 32 19 

Dimensions input 4- middle 3&2- output 3 PEs input 4 middle 2- output 3 PEs 

Initialise ± 1% ± 1% 

Learning rate 0.1 0.1 

Momentum term 0.9 0.9 

Maximum output achieved after 281 cycles of training achieved after 59 cycles of training 

unit error of < 0.2 

Maximum output achieved after 541 cycles of training achieved after 105 cycles of training 

unit error of < 0.1 

Training (on unseen on binary data with each bit repeated on binary data with each bit repeated before 

binary data convolved before convolution with fractal noise convolution with fractal noise (-to represent 

with fractal noise) (-to represent fractals/bit) fractalsibit) 

Extra training noise 20% 20% 

added 

Decay 0.0005 0.0002 adjusted to 0.02 after 59 training cycles 

Testing (on unseen No error No error 

binary data convolved (if each training bit was repeated a (if each training bit was repeated a minimum of 
with fractal noise) 

nunimurn of 3 times 3 times 

Table 9.2 
Examples of paradigms producing no errors 
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Status 

Network File: 01 ff3bp. net 
CQcles trained: 281 
Noise = +/- 0.17378 
Total RMS error = 0.109523 
Max output unit error = 0.192969 
Dimensions: (1,4) (113) (192) (1,3) 

132 connections 

Yý 

(Q) 

output -a ITotal RMS error output 

Max output unit error 

Ocw 
Status 

Network File: Olrbpff2. net 
Cucles trained: 59 
Noise = +/- 0.06073 
Total RMS error = 0.082616 
Max outout unit error = 0.192140 
Dimensions: (1,4) (1,2) (1,3) 
19 connections 
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Status 
Network File: 011 ff3b. net 
Cucles trained: 541 
Noise = +/- 0.15259 
Total RMS error = 0.064962 
Max output unit error = 0.098672 
Dimensions: (1,4) (113) (112) (193) 
32 connections 

. . . ... .... .. 

t ýTotal RMS error output 
I cco 

D= 
Max output unit error 

I coo 

&CCO 
Status 

Network FileAllrboff net 
Cucles trained: 105 
Noise = +/- 0.06948 
Total RMS error = 0.045701 
Max output unit error = 0.097526 
Dimensions: (1,4) (1,2) (1,3) 
19 connections 

milli 

Figure 9.3 Sample networks: (a) and (b) - feedforward backpropagation, 
and (c) and (d) - feedback networks 
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0 In the experiments, back-propagation networks, i. e. feed-forward networks with back- 
propagation algorithm, with two middle layers generally provided better generalisation 
than those with a single layer. 

0 

0 

The network of choice, as highlighted in the sample experiments shown in Table 9.2 and 
Figure 9.3, is the feedback or recurrent back-propagation network. As can be seen in 
Figure 9.3, the feedback network has only 19 connections, and it only takes 59 training 

cycles to achieve a slightly better level of training accuracy than the feed-forward 

network in 9.3 (b) with 541 cycles. 

Both networks, managed to fully recognise test data which consisted of unseen bit 

streams convoluted with fractal noise. Additionally, an extra noise level of up to +/- 0.2 

was superimposed on them at random. 

0 The above results demonstrate the efficiency of robust feedback models with experience 

of fractal noise. 

* Used as a neuro filter, they may replace the thresholding function in the data 

communication system discussed, recovering the original bit sequence from the 

composed fractal signal more efficiently. 

0 

0 

Considering the transmission protocol when developing the network, such a model not 

only may optimise recovery of binary sequences in terms of efficiency and speed, but it 

may also be used to recognise sequences of bits, making it easier for to identify various 

aspects of the signal, e. g. the start and stop points. 

To demonstrate this, consider transmitting a choice of 8 bits sequence, using the 8-bit 

ASCH code for all 95 printable characters. It was thought that using the ASCH code 

would make it easier to identify errors in the testing stage. 

0 This is a difficult neural task, even when there is no noise, particularly when input 

patterns differ only by one bit. However, if in the protocol of transmission a minimum 

number of fractals per bit is specified, e. g. 4, on reception, the neuro-model can utilise 

that information to fully extract the binary sequence. 
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i. 

the input: 8-bit ASCII repeated 4 times. 

the output: 8-bit ASCII. 

0 This is demonstrated by the neuro-model shown in Figure 9.4. The model took only 46 

cycles to produce a total RMS error of < 0.06 with a maximum output unit error of = 0.2. 

ITARGE 

;; INPUT mommoomm 
1111112 HIDDEN 0 UTPU lowlsom ... ... 
11MONNO I sofflumaN 
Network File: 09 orbp2. net 
Cucles trained: 46 
Noise = +/- L15790 
Total RMS error = OA5542 
Max output unit error = L21979 
Dimensions: (8,4), (1811)ý (811) 

Figure 9.4 
A back-propagation recurrent neuro-model 

These results together with all the experimental results presented in this research work are 

further discussed in the following Section. 
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9.4 REFLECTING ON ALL EXPERIMENTAL RESULTS 

The theory of neural networks is not yet sufficiently matured to allow a network application 
to be precisely designed and developed. The process involves trial-and-error as well as 
research and planning. It starts with determining the most appropriate network to implement. 
It is then followed by different aspects of network design such as deciding upon the network 
architecture and the learning algorithm parameters. 

In the practical work carried out, the precise values for the network architecture and the 
learning algorithm parameters were all determined experimentally. Using demonstrative 

samples, this section reflects upon the experimental results, the most significant findings, and 
some of the main points in the process of deciding upon a suitable configuration for such 
applications. 

9.4.1 The most appropriate neural network 

Presently there are no hard rules available for choosing the right network for a given 

application. One way of finding the most appropriate network is to decide upon the training 

procedure required for the application. In the practical work carried out, because I was 
defining the exact output for every input in the training set, supervised training was the most 

suitable. Hence networks such as the multi-layer feed-forward network with back- 

propagation (also referred to as the back-propagation network) and the Boltzmann machine 
(and its refinements) were likely candidates capable of mapping and producing new outputs. 
Counter propagation (subsection 7.7.2) was also a likely candidate because in training the 

network receives the input and the target vector. 

The general steps taken in the development of the neuro models were as follows: 

9 creating various network structures, 

9 performing training on data with/without noise superimposed on it (noise was used in 

order to accustom the networks to noisy data sets), 

9 halting the training process when the total RMS error reached less than 0.05, and the 

maximum output error reached less than 0.1, 

comparing networks in terms of efficiency and performance, 

preparing new data for testing, 

using unseen new data to perform testing in terms of recognition and generalisation, 
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9 analysing and applying the results. 

A large number of experiments, displaying the various aspects of the process were saved on 
hard disk for further analysis. 

9.4.2 On using back-propagation 

* The paradigm of choice, as it is for most pattern recognition applications, was eventually 
decided to be a multi-layered fully connected feed-forward network with back- 

propagation. Sample experimental results of the developed networks are provided in 

Table 7.2 and Table 9.2. 

e As can be seen from Table 9.3, which is a reduced version of Table 7.2, back-propagation 

networks with two middle layers generally appeared to provide higher accuracy and better 

generalisation than those with a single middle layer. Network number 16, which has two 

hidden layers with similar specifications, managed to correctly recognise all the test 

patterns after only 618 cycles of training. When tested on unseen data sets with noise 

levels of 0.1,0.15 and 0.2 added to them, the network managed to recognise 18/18,17/18 

and 16/18 respectively, suggesting a gradual deterioration in performance. 

Networls 12 13 14 16 

Sp ecialecationc, 
Hidden Layers 1 2 [Simil u] 1 2 [Simll u] 
Training 110[nof- 110 [Mf- 120 [nof - 120 [nof - 
Patterns mallsed& mallsed& mallsed & mallsed& 

scale scale scale scale 
Cycles Trained 1139 358 1192 618 
Testing[pattef ns 14 out of 15 out of 15 out of 18 out of 
recoEPsed] 18 18 18 18 

Table 9.3 Applying back-propagation to boundary cases. See also Table 7.2 

* All the networks with 2 hidden layers used 6 processing elements in the first middle layer 

and 4 in the second. More middle (or hidden) layer processing elements generally 
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resulted in poor generalisation. That is the networks tended to memorise the training set 
rather than learn it. Defining too few hidden processing elements mostly resulted in 
incorrect classification. 

9.4.3 Extending the back-propagation feed-forward with feedback 

0 For the multi-layered feed-forward networks in Table 9.3,1 used The Generalised Delta 

Rule to perform static mappings of input data to output data. This class of networks have 

no dynamic memory as the response of the network depends on its current inputs and the 

values of synaptic weights. By allowing extensions in the form of feed-backs of hidden 

and output units to themselves and to other units in the same layer (see Figure 9.5) 

dynamic networks were developed. In such networks, the generated output depends both 

on the current inputs and on the current state of the units in layers with feedback 

connections. As discussed earlier in section 5.2, feedback networks can offer greater 

computational advantages over purely static neural networks. However, the theory of 

dynamic neural networks in general, is not well developed as compared to static 

networks. 

FEdden layer Input layer 

0 

Figure 9.5 

Output layer 

To train the feedback network shown in Figure 9.5, 1 used Rumelhart's method 

(Rumelhart et al., 1986) to produce an equivalent static network. I then applied the 
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Generalised Delta Rule to train the network. The main drawback with unwinding a 
recurrent network in time to create an equivalent feedforward network is the memory 

resources required. For a further discussion on such networks, see Almedia (1987). 

* By applying noise randomly to each input training pattern just before presenting it (each 

time), the network only saw a series of approximation of that input. The technique forces 

the network to generalise. 

Sample experiments applying the recurrent back-propagation networks to the 

experimental data within a noisy environment are included in Table 9.4. All the networks 
have the same configurations, but were trained using different noise levels. At the start of 

training, weights for the networks were initialised to values between -0.1 and +0.1. 

its 
Networks 

L p eci ia, Sp ecifk atio fts 
19 20 22 23 24 25 

Trainimg Data 1 20 1 20 120 120 120 120 
Noise [+/. ] 0.0 1 0.1 0.1 0.1 0,2 0.2 

Decay 0.001 0.001 0.002 0.002 0.05 0.05 
Cycles 
Trained 

1962 1988 832 205 stopp ed 100 000 
I Ocal minmum 

340 

Tefig[ with 0.0 noise] 1 611 8 1811 8 1 811 8 1 8/ 18 nd 1 611 8 
- [ W11 . /+ 0.1 ] 1 13118 18118 18118 1 18118 apolcable 15118 

Table 9.4 Applying recurrent back-propagation. See also Table 7.3 

0 Using a testing file containing 18 unseen patterns with no noise added, network 19 

managed to correctly recognise 16 patterns. Network 20 which was trained in a much 

noisier environment than 19 (level of noise started at 0.1 rather than 0.01) correctly 

recognised all the test patterns. In other words, network 20 actually used the additional 

noise to improve its performance. 

0 To reduce the number of training cycles of network 20, the added noise was reduced in 

bigger chunks in network 22, which is otherwise similar to 20. That is a decay rate of 

0.02 rather than 0.01 was used for 22. As a result the number of training cycles for 22 

was reduced to less than half of that of 20 (from 1988 to 832). By increasing the stopping 

criteria (i. e. the maximum output unit error value) from 0.1 to 0.2, network 23 which is 

otherwise the same as 22, managed to correctly recognise all the test patterns after only 
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205 cycles of training. Network 25 started training with a significant amount of noise 
(0.2), which makes patterns difficult to recognise for anybody. Noise was then reduced in 
much larger quantities than that of 23 (i. e. 0.05 rather than 0.002). The network 
managed to recognise 16 patterns after 340 cycles of training. 

* It was generally experienced that a large amount of noise (e. g. more than 0.15) and/or 
reduction of noise in huge chunks caused instability. That is training in such an 
environment did not necessarily produced smaller and smaller output changes. For 

example, training for network 24 which is exactly the same as 25 was halted after 
100,000 cycles, as it was clearly stuck in a local minimum. 

* When tested on unseen patterns with a noise value between -0.1 and +0.1 superimposed 

on them at random, correctly trained networks (e. g. 23) could recognise all the patterns. 
However, networks generally showed a degradation in performance with any increase in 

the noise level. For example, network 25 which recognised 16 out of 18 patterns with no 

noise added, only recognised 15 patterns, when a random noise between -0.1 and +0.1 

was added to the test patterns. On increasing the amount of noise to -/+ 0.15, the network 

only managed to recognise 14 patterns. 

9 Overall, adding random noise greatly improved the performance of the networks both in 

terms of training and generalisation abilities. The technique forced the model to train on 

a series of approximations of the input, resulting in greatly improved performance in 

tenns of training and generalisation abilities. 

9.4.4 A neuro fractal model 

9 Based on a large number of experiments, the main findings in 9.4.1,9.4.2, and 9.4.3 were 

adapted in the development of a neuro interface engine for the digital communication 

application. 

9 The most significant findings were: 

1. Dynamic networks were particularly appropriate for such applications. 

2. The performance of the neuro fractal models greatly improved when random noise 

was used. 

* To accustom the networks with transmission noise, fractal noise was used in training. 

Additionally random noise was added to data sets, and then gradually reduced. 
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Fractal noise is a good model for most types of noise, including transnussion noise. 

Most types of transmission noise are "statistically self-affine', i. e. random with sirnilar 
probability density functions at different scales. 

Fractal noise superimposed on binary sequences provided the training data. Figure 9.5 
Shows an example of a data set with added 

25% noise with normal distribution, mean 0, and variance 1. 

Pink noise, and 

Brown noise. 

Figure 9.5 
Noise convolution for develop training data sets 
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* To accommodate for the number of fractal signals representing one bit, training sets 
consisted of each bit being repeated at least once, prior to noise convolution. 

9 The paradigm of choice was the recurrent back-propagation model. It had only 19 

connections, and took 59 cycles to be able to fully recognise unseen bit streams with 
fractal noise. 

e Using the 8-bit ASCII code for all 95 printable characters, the developed model was then 

considered for recognition of sequences of bits. Such a scheme is a difficult task even 

when there is no noise. 

* However, it was demonstrated that the model can be utilised to recognise sequences of 

bits. Provided that in the protocol of transmission, a minimum number of fractals per bit 

is specified, e. g. 4, on reception the neuro-model can use that information to fully extract 

the binary sequence. 

The following Chapter provides a summary and discussion of the work carried out, and 

the literature considered. 
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10 CONCLUSIONS AND FURTHER RESEARCH 

10.1 OVERVIEW 

Artificial neural networks and fractal geometry promise great suitability for digital signal 

communication particularly in dealing with unwanted signals. This project aimed at 
investigating and practically analysing such promise. 

To accomplish this the following objectives were set: 

To review signal processing techniques (Chapter 2), fractal geometry (Chapter 3), and the 
fundamental concepts of artificial neural network technology (Chapters 4 and 5). 

2. To investigate any link between artificial neural networks and fractal geometry (Chapter 

6). 

3. To employ a pattern recognition problem to explore the issues regarding incorporation of 

approximate models, mapping, and generalisation attributes of neuro-paradigms in 

presence of noise (Chapter 7). 

4. To develop a robust neuro-model for a digital communication system that employs fractal 

modulation for secure transmission (Chapters 8 and 9), to 

e overcome the system's error rates generated with low signal/noise ratios, and 

o optimise the decoding process in terms of speed through reduced computation, and 

robustness of technique in presence of various types of unwanted signals. 

These objectives have been achieved. 

10.2 MAIN FINDINGS OF THIS PROJECT 

The main revelations and contributions of this work are as follows: 

The whole process of applying static models to a real world pattern recognition task, in a 

noisy environment has been experimentally analysed. (Chapter 7, Table 7.1). Such 

models are inherently stable as no information is fed back during operation. 
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2. By extending the static networks in Table 7.1 with feedback connections, the utility of 
dynamic networks in neuro-control applications were practically examined (see, Chapter 
7, Table 7.2). When conducting these experiments, it was found that training the 

networks with feedback is more problematic (e. g. in terms of stability) than those 

presented in Table 7.1. As discussed earlier in 5.2, and 9.4.3, recurrent networks have 

dynamic memory and offer great potential for further research efforts, particularly in the 

area of developing neuro models to learn relationships between successive vectors, if 

such relationships exist. 

3. In the process control benchmark, to accustom the neuro models to noisy data present in 

many experimental situations, noise was applied to each input training pattern just before 

presenting it (each time). The performance of the developed models, were then measured 

on the basis of their ability to respond to previously unseen data. On testing, it was 

generally found that: 

A large amount of noise (e. g. 0.2) and/or reduction of noise in huge chunks may cause 

instability, that is training did not necessarily produce decreasingly smaller output 

changes (see Table 7.3 network 24). 

Networks developed on the basis of their training set only (i. e. with no noise added) 

generally did not give satisfactory results when tested on new data. 

Careful use of noisy data effectively improved the network's performance in terms of 

generalisation and learning as well as causing a significant reduction in the number of 

training cycles (see Table 7.2and Table 9.2). In other words, the added noise actually 

helped the networks in their pattern recognition task. 

o Why 

Applying a significant amount of noise, to each element of all the input training 

vectors independently, and reducing the amount gradually, forced the networks to 

train on a series of approximations of the input patterns. This drove the networks to 

generalise. 

The performance of the models developed, were then measured on the basis of their 

generalisation ability or their ability to respond to previously unseen data. 

0 Because the networks were in effect trained on an unlimited source of training 

samples (provided by adding random noise to the available training vectors), the 

method was effective in improving model performance for both applications. 
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A different approach to study the effects of adding noise to the inputs is to look at the 
models determined on the basis of their training sets with no random noise 
superimposed on them. Those networks often suffered from the problem of 
generalisation. That is they often did not give satisfactory results when tested on new 
data. This problem is similar to that of model selection in the context of data 
modelling. 

* The common approach to solve the problem is to make sure that the training set is 
large and fully representative, covering boundary cases. Another approach is 

regularisation, but this method is problem dependent, and it may not be clear what 
type of regularisation to use prior (Poggio and Girosi, 1990). 

4. Using the practical findings on robust neuro, models and using fractal analysis, based on 

d q(t) 

tki) 

n (t) - White noise 

f(t) = n(t) 

(t) - Fractal time series 

q(t) - Fractal dimension signature 

1 q(t) <2 Vt 

models were developed for a digital signal communication system that uses fractal 

modulation for secure transmission. The practical work carried out demonstrated the 

efficiency of robust neuro models with experience of fractal noise, in the recovery of the 

original bit sequences. To accustom the networks with transmission noise, fractal noise was 

used in training because of its following behaviour: 

-independent of size of problem 

-self similar at all scales. 

Additionally, random noise was added to data sets, and then gradually reduced to force the 

networks to train on a series of approximations of the input patterns. This drove the networks 

to generalise, resulting in an improvement in their performance. 

A reasonable conclusion to be drawn from the experimental work carried out, as well as the 

literature surveyed, would recommend fractal noise, and digital signal communication using 

fractal modulation as a promising area for further analysis and development of robust neural 

systems. With most types of transmission noise being 'statistically self-affine', using fractal 
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noise, neuro models can be developed that perform better than conventional approaches in 
dealing with noise fields. Conventional approaches don't perform well, as the physical 
origins of many noise types are not well understood. 

10.3 DISCUSSION AND FUTURE RESEARCH 

The general focus of this research was to analyse the suitability of fractal geometry and 
adaptive neuro-models to deal with unwanted signals in signal communication applications, 
optimising conventional algorithms. It was concluded that a robust neuro-model can 
overcome error rates generated with low signal/noise ratios. Using fractal noise convolution, 
the two main models developed were feed-forward and feedback networks. 

10.3.1 Static models 

It is well established that multi-layer feed-forward networks can approximate non-linear 
functions to any desired degree of accuracy. They have been applied successfully in 

modelling, but they suffer from many limitations including: - 

* the very slow learning rate- attempts to accelerate the learning process by increasing the 

values of the learning algorithms' gains (constants), generally result in unstable systems, 

9 having no dynamic memory- their response depends solely on the current inputs and the 

values of the weights, 

* many practical questions remain unanswered- for example the number of middle layer 

processing elements, or the relationship between the accuracy of the function being 

approximated with the number of hidden layers. 

10.3.2 Dynamic models 

Feedback or dynamic neural networks are networks with feedback connections. The 

feedback causes the network to have local memory characteristics. Like many of the real 

world control systems requiring to be modelled (e. g. the forward or inverse dynamic of a 

process) these networks are non-linear dynamical systems. They offer great computational 
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advantages over feed-forward networks. But the general theory with regard to architecture 
and learning algorithms has yet to be developed. 

Neural networks with feedback are particularly appropriate for system modelling and 
identification. The development of better feedback models could result in significant 
progress in adaptive modelling applications. 

10.3.3 Other structures 

It is impossible to address all potentially applicable models, however, a review of the 
literature suggests the following models as currently popular with researchers. 

* Adaptive fuzzy systems or fuzzy-neural networks - these systems (Section 5.3), are 
believed to have considerable potential in pattern recognition (Lawrence and Harris, 

1993). 

* The Cerebellar Model Articulation Controller (CMAC) Miller et al., 1990; Kraft and 
Campagna, 1990, Albus (1975) - this is a memory management technique in which fast 

computing is achieved by referring to a table rather than by solution of analytic equations. 

* Professor Jerry M. Mendel, of Signal and Image Processing Institute, University of 

Southern California, in 'Uncertainty in fuzzy logic systems (to be published in Autumn 

2000), reports on Fuzzy Logic 11 systems. Such systems, unlike conventional fuzzy logic 

systems claim effective modelling and handling of uncertainty. The system has been 

applied to chaotic time series when measurements are corrupted by additive noise, but 

they have not yet compared their results with neural models. 
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APPENDIX A: SAMPLE DATA SETS 

This Appendix provides sample training / testing data sets for the work reported in Chapter 7. 
it consists of two sections: 

* Section A provides sample fluid flow patterns of a full training set containing 55 vectors 
in their original digitised form (Al), as well as pre-processed, i. e. normalised and scaled 
down versions (A2). 

9 Section B provides sample data for the experiments in Chapters 8 and 9. Data sets 
include: a binary sequence used in the experiments (Section B 1), noise (Section B2), pink 

noise (Section B3), brown noise (Section B4). 

SECTION A- SAMPLE DATA USED IN CHAPTER 7 

Section Al 'Training file containing input/ output patterns' 

A training file containing 55 input/output patterns used for the experiments in Chapter 7. 

TRAIN 13,1,3,1 

/* 55 1/0 VECTORS 

/* Input vector I: */ 

1.100000,1.440000,1.480000,1.450000,1.460000,1.450000,1.450000,1.490000,1.470000,1.490000,1.460000,1.480000,1.480000, 

/* Output vector I: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 2: */ 

0.610000,1.220000,1.190000,1.290000,1.280000,1.300000,1.290000,1.300000,1.320000,1.300000,1.330000,1.320000,1.300000, 

/* Output vector 2: */ 

0.500000, -0.500000, -0.500000, 

/* hiput vector 3: */ 

0.000000,1.520000,1.220000,1.420000,1.410000,1.420000,1.420000,1.450000,1.450000,1.440000,1.420000,1.450000,1.470000, 

/* Output vector 3: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 4: */ 

0.060000,1.250000,1.470000,1.470000,1.490000,1.460000,1.330000,1.280000,1.260000,1.390000,1.440000,1.470000,1.440000, 

/* Output vector 4: */ 

0.500000, -0.500000, -0.500000, 
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/*Input vector 5: */ 

0.000000,1.250000,0.100000,0.780000,0.600000,0.820000,1.100000,1.190000,1.520000,0.660000,0.000000,1.1o0000,0.870000, 

/*Output vector 5: */ 

-0.500000,0.500000, -0.500000, 

/*Input vector 6: */ 

0.000000,0.140000,0.620000,0.550000,0.560000,0.570000,0.580000,0.590000,0.580000,0.580000,0.570000,0.602000,0.600000, 

/*Output vector 6: */ 

0.500000, -0-500000, -0.500000, 

/* Input vector 7: */ 

0.200000,0.430000,0.380000,0.340000,0.380000,0.410000,0.410000,0.390000,0.390000,0.380000,0.390000,0.390000,0.390000, 

/* Output vector 7: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 8: */ 

0.400000,1.230000,1.180000,1.140000,1.180000,1.210000,1.210000,1.190000,1.190000,1.180000,1.190000,1.190000,1.190000, 

/* Output vector 8: */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 9: */ 

0.200000,1.430000,1.380000,1.340000,1.380000,1.410000,1.410000,1.390000,1,390000,1.380000,1.390000,0.620000,0.300000, 

/*Output vector 9: */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 10 : */ 

0.000000,0.070000,0.500000,0.570000,0.540000,0.590000,0.610000,0.580000,0.590000,0.580000,0.630000,0.610000,0.590000, 

/*Output vector 10 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector II: */ 

0.200000,0.130000,0.300000,0.370000,1.440000,1.570000,0.410000,0.280000,1.390000,1.180000,1.430000,0.410000,1.390000, 

/*Output vector II: */ 

-0.500000,0.500000, -0.500000, 

/*Input vector 12 : */ 

0.000000,0.080000,0.530000,0.580000,0.590000,0.550000,0.530000,0.630000,0.600000,0.590000,0.600000,0.620000,0.630000, 

/*Output vector 12 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 13 : */ 

0.200000,1.320000,1.420000,1.220000,1.210000,1.220000,1.220000,1.250000,1.250000,1.240000,0.620000,0.750000,0.690000, 

/* Output vector 13 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 14 : */ 

0.200000,1.320000,1.020000,1.220000,1.210000,1.220000,1.250000,1.250000,1.240000' 
1.220000,0.450000,0.490000,0.470000, 
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/* Output vector 14 : */ 

-0.500000, -0-500000,0.500000, 

/*Input vector 15 : */ 

0.400000,1.520000,1.220000,1.420000,1.410000,1.420000,1.420000,1.450000,1.450000,1.440000,0.820000,0.360000,0.390000, 

/*Output vector 15 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 16 : */ 

0.200000,1.450000,1.100000,0.980000,0.800000,0.120000,1.310000,1.390000,1.320000,0.860000,0.200000,1.300000,0.970000, 

/*Output vector 16 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 17 : */ 

0.200000,1.050000,0.100000,0.580000,0.400000,0.620000,0.910000,0.990000,1.320000,0.460000,0.200000,0.900000,0.670000, 

/* Output vector 17 : */ 

-0-500000,0.500000, -0.500000, 

/* Input vector 18 : */ 

0.400000,1.250000,1.300000,1.180000,1.000000,0.320000,1.510000,1.520000,1.520000,1.060000,0.400000,1.500000,1.170000, 

/* Output vector 18 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 19 : */ 

0.260000,1.450000,1.270000,1.270000,1.290000,1.260000,1.530000,1.480000,1.460000,1.490000,1.240000,1.270000,1.240000, 

/* Output vector 19 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 20 : */ 

0.140000,1.050000,0.270000,1.260000,1.290000,1.060000,0.130000,0.800000,1.060000,1.190000,0.240000,1.300000,0.240000, 

/* Output vector 20 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 21 : */ 

0.100000,0.400000,0.420000,0.400000,0.450000,0.440000,0.460000,0.480000,0.480000,0.490000,0.460000,0.470000,0.470000, 

/* Output vector 21 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 22 : */ 

0.830000,1.030000,1.080000,1.070000,1.090000,1.100000,1.080000,1.090000,1.080000,1.070000,1.090000,1.100000,1.110000, 

/* Output vector 22 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 23 : */ 

0.050000,1.42000o, 1.110000,1.320000,1.330000,1.330000,1.320000,1.340000,1.350000,1.310000,1.320000,1.350000,1.370000, 

/* Output vector 23 : */ 

0.500000, -0.500000, -0.500000, 
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/*Input vector 24 : */ 

0.180000,1.250000,1.480000,1470000,1.490000,1.460000,1.430000,1.480000,1.460000,1.490000,1.540000,1.570000,1.540000, 

/* Output vector 24 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 25 : */ 

0.000000,0.250000,1-100000,1.380000,0.600000,0.820000,0.100000,1.190000,0.520000,0.680000,0-130000,1.140000,0.940000, 

/*Output vector 25 : */ 

-0.500000,0.500000, -0-500000, 

/*Input vector 26 : */ 

0.000000,0.240000,0.720000,1.450000,1.460000,1.470000,1.480000,1.490000,1.490000,1.450000,1.470000,1.520000,1.550000, 

/*Output vector 26 : */ 

0.500000, -0-500000, -0.500000, 

/* Input vector 27 : */ 

0.100000,0.490000,0.290000,0.270000,0.290000,0.310000,0.310000,0.270000,0.270000,0.280000,0.280000,0.280000,0.280000, 

/* Output vector 27 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 28 : */ 

0.630000,0.930000,0.980000,0.940000,0,980000,0.940000,0.910000,0.950000,0.950000,0.980000,0.960000,0.960000,0.960000, 

/* Output vector 28 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 29 : */ 

0.330000,1.210000,1.250000,1.250000,1.290000,1.300000,1.300000,1.270000,1.280000,1.280000,1.280000,0.530000,0.500000, 

/*Output vector 29 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 30 : */ 

0.000000,0.040000,0.600000,0.570000,0.550000,0.570000,0.620000,0.590000,0.590000,0.580000,0.600000,0.600000,0.580000, 

/*Output vector 30 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 31 : */ 

0.000000,0.790000,0.300000,0.470000,1.430000,1.880000,1.410000,0.380000,1.240000,1.450000,0.430000,1.410000,1.390000, 

/*Output vector 31 : */ 

-0.500000,0.500000, -0.500000, 

/*Input vector 32 : */ 

0.060000,0.180000,0.620000,0.600000,0.570000,0.560000,0.530000,0.640000,0.630000,0.580000,0.610000,0.630000,0.610000, 

/*Output vector 32 : */ 

0.500000, -0.500000, -0-500000, 

/* Input vector 33 : */ 

0.360000,1.160000,1.320000,1.720000,1.530000,1.490000,1.540000,1.480000,1.560000,1.550000,0.720000,0.730000,0.690000, 
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/* Output vector 33 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 34 : */ 

0.220000,1.220000,1.320000,1.520000,1.510000,1.520000,1.550000,1.550000,1.540000,1.520000,0.350000,0.360000,0.330000, 

/* Output vector 34 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 35 : */ 

0.400000,1.020000,0.620000,0.820000,0.810000,0.820000,0.820000,0.850000,0.850000,0.840000,1.520000,1.560000,1.540000, 

/*Output vector 35 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 36 : */ 

0.200000,0.940000,1.200000,0.600000,0.790000,0.430000,1.510000,0.390000,1.5 80000,1.560000,0.500000,0.200000,0.970000, 

/*Output vector 36 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 37 : */ 

0.330000,1.060000,0.110000,0.460000,0.500000,0.890000,0.810000,0.690000,1.520000,1.460000,0.520000,0.290000,0.970000, 

/* Output vector 37 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 38 : */ 

0.400000,0.670000,1.290000,1.170000,1.150000,1.310000,1.520000,1.190000,1.530000,1.160000,0.450000,1.160000,1.590000, 

/* Output vector 38 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 39 : */ 

0.650000,0.950000,0.640000,0.630000,0.610000,0.560000,0.530000,0.580000,0.560000,0.570000,0.640000,0.660000,0.620000, 

/* Output vector 39 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 40 : */ 

0.400000,1.040000,0.270000,1.270000,0.790000,1.170000,0.240000,0.800000,1.000000,1.230000,1.440000,0.700000,0.980000, 

/* Output vector 40 : */ 

-0-500000,0.500000, -0-500000, 

/* Input vector 41 : */ 

0.000000,0.070000,0.500000,0.570000,0.540000,0.590000,0.610000,0.580000,0.590000,0.580000,0.630000,0.610000,0.590000, 

/*Output vector 41 : */ 

0.500000, -0-500000, -0.500000, 

/*Input vector 42 : */ 

0.000000,0.069000,0,630000,1.480000,1.490000,1.500000,1.500000,1.410000,1.480000,1.490000,1.410000,1.420000,1.430000, 

/*Output vector 42 : */ 

0.500000, -0.500000, -0.500000, 
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/* Input vector 43 : */ 

0.070000,0.920000,1.520000,1.420000,1.790000,1.720000,1.520000,1.550000,1.550000,1.540000,0.320000,0.350000,0.380000, 

/* Output vector 43 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 44 : */ 

0.090000,0.200000,1.030000,1.320000,1.310000,1.320000,1.330000,1.360000,1.310000,1.310000,0.850000,0.870000,0.860000, 

/* Output vector 44 : */ 

-0.500000, -0.500000,0.500000, 

/*Input vector 45 : */ 

0.000000,1.020000,1.420000,0.890000,0.880000,0.870000,0.870000,0.870000,0.860000,0.890000,0.830000,0.220000,0.200000, 

/*Output vector 45 : */ 

-0.500000, -0-500000,0.500000, 

/* Input vector 46 : */ 

0.900000,1.280000,1.200000,1.280000,0.290000,0.600000,0.810000,1.450000,1.310000,0.930000,0.400000,0.300000,1.220000, 

/*Output vector 46 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 47 : */ 

0- 100000,0.050000,1.100000,1.040000,0.540000,0.820000,1.100000,0.730000,0.520000,1.090000,0.160000,0.760000,1.170000, 

/* Output vector 47 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 48 : */ 

0.070000,1.070000,0.980000,1.340000,1.100000,1.650000,0.490000,1.490000,0.780000,0.460000,1.340000,0.970000,1.570000, 

/* Output vector 48 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 49 : */ 

0.030000,0.670000,1.580000,1.580000,1.590000,1.590000,1.530000,1.580000,1.560000,1.570000,1.550000,1.570000,1.580000, 

/* Output vector 49 : */ 

0.500000, -0-500000, -0.500000, 

/*Input vector 50 : */ 

0.070000,1.140000,0.430000,0.860000,1.290000,1.060000,0.320000,0,660000,1.500000,0.550000,1.370000,1.500000,0.790000, 

/* Output vector 50 : */ 

-0-500000,0.500000, -0.500000, 

/* Input vector 51 : */ 

0,000000,0.090000,0.670000,0.650000,0.650000,0.650000,0.660000'0.640000,0.660000,0.680000,0.650000,0.680000,0.680000, 

/* Output vector 51 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 52 : */ 

0.600000,1.220000,1.130000,1.120000,1.190000,1.180000,1.180000,1.180000,1.180000,1.160000,1.180000,1.180000,1.110000, 
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/* Output vector 52 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 53 : */ 

0.540000,1.520000,1.090000,1.060000,1.030000,1.050000,1.030000,1.040000,1.030000,1.030000,1.020000,1.030000,1.070000, 

/* Output vector 53 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 54 : */ 

0.430000,1.080000,0.590000,0.570000,0.570000,0.530000,0.580000,0.580000,0.520000,0.590000,0.590000,0.580000,0.590000, 

/* Output vector 54 : */ 

0.500000, -0.500000, -0.500000, 

/*Input vector 55 : */ 

0.550000,0.850000,0.300000,0.980000,1.450000,0.920000,1.200000,0.320000,0.860000,0.390000,1.350000,1.050000,0.740000, 

/*Output vector 55 : */ 

-0.500000,0.500000, -0.500000, 

END 

Section A2 'Training file normalised and scaled down' 

This sub section contains the normalised and scaled down (between -0.5 to +0.5) version of 

the training set provided in Al. This is done to remove the mean [i. e. offset the mean to zero] 

and to scale data within a specific range. Such an action was applied to all training and 

testing files to ensure compatibility with the computational methodology of the software 

package used. 

TRAIN 13,1,3,1 

/* Input vector I: */ 

-0.500000,0.371795,0.474359,0.397436,0.423077,0.397436,0.397436,0.500000,0.448718,0.500000,0.423077,0.474359, 

0.474359, 

/* Output vector I: */ 
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0.500000, -0.500000, -0.500000, 

/* Input vector 2: */ 

-0.500000,0.347222,0.305556,0.444444,0.430555,0.458333,0.444444,0.458333,0.486111,0.458333,0.500000,0.486111, 

0.458333, 

/* Output vector 2: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 3: */ 

-0.500000,0.500000,0.302632,0.434211,0.427632,0.434211,0.434211,0.453947,0.453947,0.447368,0.434211,0.453947, 

0.467105, 

/* Output vector 3: */ 

0.500000, -0-500000, -0,500000, 

/* Input vector 4: */ 

-0.500000,0.332168,0.486014,0.486014,0.500000,0.479021,0.388112,0.353147,0,339161,0.430070,0.465035,0.486014, 

0.465035, 

/* Output vector 4 

0.500000, -0.500000, -0.500000, 

/* Input vector 5: */ 

-0.500000,0.322368, -0.434211,0.013158, -0.105263,0.039474,0.223684,0.282895,0.500000, -0.065789, -0.500000,0.223684, 

0.072368, 

/* Output vector 5 

-0.500000,0.500000, -0.500000, 

/* Input vector 6: */ 

-0.500000, -0.274194,0.500000,0.387097,0.403226,0.419355,0.435484,0.451613,0.435484,0.435484,0.419355,0.470968, 

0.467742, 

/* Output vector 6: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 7: */ 

-0.500000,0.500000,0.282609,0.108696,0.282609,0.413043,0.413043,0.326087,0.326087,0.282609,0.326087,0.326087, 

0.326087, 

/* Output vector 7: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 8: */ 

-0.500000,0.500000,0.439759,0.391566,0.439759,0.475904,0.475904,0.451807,0.451807,0.439759,0.451807,0.451807, 

0.451807, 

/* Output vector 8: */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 9: */ 

-0.500000,0.500000,0.459350,0.426829,0.459350,0.483740,0.483740,0.467480,0.467480' 
0.459350,0.467480, -0.158537, 

-0.418699, 
/* Output vector 9: */ 
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-0.500000, -0.500000,0.500000, 

/* Input vector 10 : */ 

-0.500000, -0.388889,0.293651,0.404762,0.357143,0.436508,0.468254,0.420635,0.436508,0.420635,0.500000,0.468254, 
0.436508, 

/* Output vector 10 : */ 

0.5 00000, -0.5 00000, -0.5 00000, 

/* Input vector II: */ 

-0.451389, -0.500000, -0-381944, -0.333333,0.409722,0.500000, -0-305556, -0.395833,0.375000,0.229167,0.402778, -0.305556, 
0.375000, 

/* Output vector II: */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 12 : */ 

-0.500000, -0.373016,0.341270,0.420635,0.436508,0.373016,0.341270,0.500000,0.452381,0.436508,0.452381,0.484127, 

0.500000, 

/* Output vector 12 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 13 : */ 

-0.500000,0.418033,0.500000,0.336066,0.327869,0.336066,0.336066,0.360656,0.360656,0.352459, -0.155738, -0.049180, 

-0.098361, 

/* Output vector 13 : */ 

-0-500000, -0.500000,0.500000, 

/* Input vector 14 : */ 

-0.500000,0.500000,0.232143,0,410714,0.401786,0.410714,0.437500,0.437500,0.428571,0.410714, -0.276786, -0.24107 1, 

-0.258929, 

/* Output vector 14 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 15 : */ 

-0.465517,0.500000,0.241379,0.413793,0.405172,0.413793,0.413793,0.439655,0.439655,0.431035, -0.103448, -0.500000, 

-0.474138, 

/* Output vector 15 

-0.500000, -0.500000,0.500000, 

/* Input vector 16 : */ 

-0.439850,0.500000,0.236842,0.146617,0.011278, -0.500000,0.394737,0.454887,0.402256,0.056391, -0.439850,0.387218, 

0.139098, 

/* Output vector 16 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 17 : */ 

-0.418033,0.278688, -0.500000, -0.106557, -0.254098, -0.073771,0.163934,0.229508,0.500000, -0.204918, -0.418033,0.155738, 

-0.032787, 
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/* Output vector 17 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 18 : */ 

-0.433333,0.275000,0.316667,0.216667,0.066667, -0.500000,0.491667,0.500000,0.500000,0.116667, -0.433333,0.483333, 
0.208333, 

/* Output vector 18 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 19 : */ 

-0.500000,0.437008,0.295276,0.295276,0.311024,0.287402,0.500000,0.460630,0.444882,0.468504,0.271654,0.295276, 
0.271654, 

/* Output vector 19 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 20 : */ 

-0.491453,0.286325, -0.380342,0.465812,0.491453,0.294872, -0.500000,0.072650,0.294872,0.405983, -0.405983,0.500000, 

-0.405983, 

/* Output vector 20 : */ 

-0-500000,0.500000, -0.500000, 

/* Input vector 21 : */ 

-0.500000,0.269231,0.320513,0.269231,0.397436,0.371795,0.423077,0.474359,0.474359,0.500000,0.423077,0.448718, 

0.448718, 

/* Output vector 21 : */ 

0.500000, -0-500000, -0.500000, 

/* Input vector 22 : */ 

-0.500000,0.214286,0.392857,0.357143,0.428571,0.464286,0.392857,0.428571,0.392857,0.357143,0.428571,0.464286, 

0.500000, 

/* Output vector 22 

0.500000, -0.500000, -0.500000, 

/* Input vector 23 : */ 

-0.500000,0.500000,0.273723,0.427007,0.434307,0.434307,0.427007,0.441606,0.448905,0.419708,0.427007,0.448905, 

0.463504, 

/* Output vector 23 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 24 : */ 

-0.500000,0.269784,0.435252,0.428058,0.442446,0.420863,0.399280,0.435252,0.420863,0.442446,0.478417,0.500000, 

0.478417, 

/* Output vector 24 

0.500000, -0.500000, -0.500000, 

/* Input vector 25 : */ 

-0-500000, -0.318841,0.297101,0.500000, -0.065217,0.094203, -0.427536,0.362319, -0.123188, -0.007246, -0.405797,0.326087, 

0.181159, 
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/* Output vector 25 : */ 

-0.500000,0.500000, -0.500000 

/* Input vector 26 : */ 

-0.500000, -0.345161, -0.035484,0.435484,0.441936,0.448387,0.454839,0.461290,0.461290,0.435484,0.448387,0.480645, 

0.500000, 

/* Output vector 26 

0.500000, -0.500000, -0.500000, 

/* Input vector 27 : */ 

-0.500000,0.500000, -0.012821, -0.064103, -0.012821,0.038462,0.038462, -0.064103, -0.064103, -0.038462, -0.038462, -0-038462, 

-0.038462, 

/* Output vector 27 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 28 : */ 

-0.500000,0.357143,0.500000,0.385714,0.500000,0.385714,0.300000,0.414286,0.414286,0.500000,0.442857,0.442857, 

0.442857, 

/* Output vector 28 : */ 

0.500000, -0-500000, -0.500000, 

/* Input vector 29 : */ 

-0.500000,0.407217,0.448454,0.448454,0.489691,0.500000,0.500000,0.469072,0.479381,0.479381,0.479381, -0.293814, 

-0.324742, 

/* Output vector 29 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 30 : */ 

-0.500000, -0.435484,0.467742,0.419355,0.387097,0.419355,0.500000,0.451613,0.451613,0.435484,0.467742,0.467742, 

0.435484, 

/* Output vector 30 

0.500000, -0.500000, -0.500000, 

/* Input vector 31 : */ 

-0.500000, -0-079787, -0.340426, -0.250000,0.260638,0.500000,0.250000, -0.297872,0.159574,0.271277, -0.271277,0.250000, 

0.239362, 

/* Output vector 31 

-0.500000,0.500000, -0.500000, 

/* Input vector 32 : */ 

-0.500000, -0.293103,0.465517,0.431035,0.379310,0.362069,0.310345,0.500000,0.482759,0.396552,0.448276,0.482759, 

0.448276, 

/* Output vector 32 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 33 : */ 

-0.500000,0.088235,0.205882,0.500000,0.360294,0.330882,0.367647,0.323529,0.382353,0.375000, 
-0.235294, -0.227941, 

-0.257353, 
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/* Output vector 33 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 34 : */ 

-0.500000,0.251880,0.327068,0.477444,0.469925,0.477444,0.500000,0.500000,0.492481,0.477444, 
-0.402256, -0.394737, 

-0.417293, 

/* Output vector 34 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 35 : */ 

-0.500000,0.034483, -0.310345, -0.137931, -0.146552, -0.137931, -0-137931, -0.112069, -0.112069, -0.120690,0.465517,0.500000, 
0.482759, 

/* Output vector 35 : */ 

-0.500000, -0-500000,0.500000, 

/* Input vector 36 : */ 

-0-500000,0.036232,0.224638, -0.210145, -0.072464, -0.333333,0.449275, -0.362319,0.500000,0.485507, -0.282609, -0.500000, 
0.057971, 

/* Output vector 36 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 37 : */ 

-0.343972,0.173759, -0.500000, -0.251773, -0.223404,0.053191, -0.003546, -0.088652,0.500000,0.457447, -0.209220, -0.372340, 
0.109929, 

/* Output vector 37 : */ 

-0-500000,0.500000, -0.500000, 

/* Input vector 38 : */ 

-0.500000, -0.273109,0.247899,0.147059,0.130252,0.264706,0.441176,0.163866,0.449580,0.138655, -0.457983,0.138655, 
0.500000, 

/* Output vector 38 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 39 : */ 

-0.214286,0.500000, -0.238095, -0.261905, -0.309524, -0.428571, -0.500000, -0.380952, -0.428571, -0.404762, -0.238095, -0.190476, 

-0.285714, 

/* Output vector 39 

0.500000, -0.500000, -0.500000, 

/* Input vector 40 : */ 

-0.366667,0.166667, -0.475000,0.358333, -0.041667,0.275000, -0.500000, -0.033333,0.133333,0.325000,0.500000, -0.116667, 

0.116667, 

/* Output vector 40 : */ 

-0-500000,0.500000, -0.500000, 

/* Input vector 41 : */ 

-0-500000, -0.388889,0.293651,0.404762,0.357143,0.436508,0.468254,0.420635,0.436508,0.420635,0.500000,0.468254, 

0.436508, 
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/* Output vector 41 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 42 : */ 

-0.500000, -0.454000, -0-080000,0.486667,0.493333,0.500000,0.500000,0.440000,0.486667,0.493333,0.440000,0.446667, 

0.453333, 

/* Output vector 42 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 43 : */ 

-0.500000, -0-005814,0.343023,0.284884,0.500000,0.459302,0.343023,0.360465,0.360465,0.354651, -0-354651, -0.337209, 

-0.319767, 

/* Output vector 43 

-0.500000, -0.500000,0.500000, 

/* hiput vector 44 : */ 

-0.500000, -0.413386,0.240157,0.468504,0.460630,0.468504,0.476378,0.500000,0.460630,0.460630,0.098425,0.114173, 

0.106299, 

/* Output vector 44 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 45 : */ 

-0.500000,0.218310,0.500000,0,126761,0.119718,0.112676,0.112676,0.112676,0.105634,0.126761,0.084507, -0.345070, 

-0.359155, 
/* Output vector 45 : */ 

-0.500000, -0.500000,0.500000, 

/* Input vector 46 : */ 

0.025862,0.353448,0.284483,0.353448, -0.500000, -0.232759, -0.051724,0.500000,0.379310,0.051724, -0.405172, -0.491379, 

0.301724, 

/* Output vector 46 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 47 : */ 

-0.455357, -0.500000,0.437500,0.383929, -0.062500,0.187500,0.437500,0.107143, -0.080357,0.428572, -0.401786,0.133929, 

0.500000, 

/* Output vector 47 : */ 

-0.500000,0.500000, -0.500000, 

/* Input vector 48 : */ 

-0-500000,0.132911,0.075949,0.303797,0.151899,0.500000, -0.234177,0.398734, -0.050633, -0.253165,0.303797,0.069620, 

0.449367, 

/* Output vector 48 

-0.500000,0.500000, -0.500000, 

/* Input vector 49 : */ 

-0.500000, -0.089744,0.493590,0.493590,0.500000,0.500000,0.461538,0.493590,0.480769,0.487179,0.474359,0.487179, 
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0.493590, 

/* Output vector 49 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 50 : */ 

-0.500000,0.248252, -0.248252,0.052448,0.353147,0.192308, -0.325175, -0.087413,0.500000, -0.164336,0.409091,0.500000, 
0.003497, 

/* Output vector 50 : */ 

-0.500000,0.500000, -0-500000, 

/* Input vector 51 : */ 

-0-500000, -0.367647,0.485294,0.455882,0.455882,0.455882,0.470588,0.441176,0.470588,0.500000,0.455882,0.500000, 

0.500000, 

/* Output vector 51 : */ 

0.500000, -0.500000, -0-500000, 

/* Input vector 52 : */ 

-0.500000,0.500000,0.354839,0.338710,0.451613,0.435484,0.435484,0.435484,0.435484,0.403226,0,435484,0.435484, 
0.322581, 

/* Output vector 52 : */ 

0.500000, -0.500000, -0-500000, 

/* Input vector 53 : */ 

-0.500000,0.500000,0.061224,0.030612, -0.000000,0.020408, -0.000000,0.010204, -0-000000, -0.000000, -0.010204, -0.000000, 

0.040816, 

/* Output vector 53 

0.500000, -0.500000, -0.500000, 

/* Input vector 54 : */ 

-0.500000,0.500000, -0.253846, -0.284615, -0.284615, -0.346154, -0.269231, -0.269231, -0.361538, -0.253846, -0.253846, -0.26923 1, 

-0.253846, 

/* Output vector 54 : */ 

0.500000, -0.500000, -0.500000, 

/* Input vector 55 : */ 

-0.282609, -0.021739, -0.500000,0.091304,0.500000,0.039130,0.282609, -0.482609, -0.013043, -0.421739,0.413043,0.152174, 

-0.117391, 

/* Output vector 55 : */ 

-0.500000,0.500000, -0.500000, 

END 
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SECTION B- SAMPLE DATA USED IN CHAPTER 9 

Section BI 'Binary sequence' 

Data for Chapter 9 

ans = 

Columns 1 through 12 

000011110000 

Columns 13 through 24 

000000000000 

Columns 25 through 36 

000000001111 

Columns 37 through 48 

000000000000 

Colu=s 49 through 60 

000011110000 

Colimns 61 through 72 

1111 

Colums 73 through 84 

000011110000 

Columns 85 through 96 

000011110000 
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Columns 97 through 108 

000000001111 

Columns 109 through 120 

1111 

Columns 121 through 132 

000000001111 

Coluims 133 through 144 

000000000000 

Columns 145 through 156 

1111 

Columns 157 through 168 

1111 

Columns 169 through 180 

000011110000 

Columns 181 through 192 

000011111111 

Columns 193 through 204 

000000001111 

Columns 205 through 216 
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000000001111 

Columns 217 through 228 

11111111 

Columns 229 through 240 

1111 

Section B2 'Noise -normal distribution -mean 0 variance F 

noise = 

Columns 1 through 7 

-1.2266 -0.1897 -0.3017 0.9570 -0.5334 -0.9011 -0.8926 

Colu=s 8 through 14 

0.2787 -0.7458 1.6035 0.5743 0.3207 -0.1514 0.3158 

Columns 15 through 21 

1.3437 -2.2378 1.2929 -0.3785 0.0025 0.8846 0.5825 

Columns 22 through 28 

-1.6142 -1.5037 0.5736 -0.9105 -1.6313 -0.3591 -0.3976 

Columns 29 through 35 

-1.1613 -1.1098 
0.2907 -1.9102 1.3148 0.6653 -0.2751 
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Columns 36 through 42 

-0.0230 -0-9080 -1.0437 0.3735 0.9015 1.2785 -0.1285 

Columns 43 through 49 

0.6128 1.9565 2.2663 -0.3740 2.2380 -0.1596 -0.7033 

Columns 50 through 56 

0.5635 -0.0503 1.1636 0.6588 -1.5501 -3.0291 0.5406 

Columns 57 through 63 

-1.0090 0.9080 1.5823 -0.9791 1.0079 0.1585 -0.5869 

Coltunns 64 through 70 

1.5741 -0.5166 1.2278 1.5839 -2.0890 2.9495 1.3561 

Columns 71 through 77 

1.0501 -0.7672 -0.2577 -1.3718 -1.2677 -0.8949 0.5891 

Columns 78 through 84 

1.8426 1.3480 -0.4913 -2.1776 0.2370 -0.7354 -1.7794 

Columns 85 through 91 

0.4480 0.5812 0.8566 -0.2663 -0.4175 -0.2058 -0.1743 

Columns 92 through 98 

0.2176 1.6843 0.1195 0.6507 2.0801 -0.3392 0.7301 

Columns 99 through 105 
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0.2940 -0.8491 -2.5339 -2.3789 -0.3463 -0.6109 -0.4082 

Columns 106 through 112 

-1.4156 0.2271 0.2080 -0.7197 0.7578 -1.6431 -1-0568 

Columns 113 through 119 

-0.2517 -1.2984 1.2333 1.4946 0.2359 -1.4044 0.6588 

Coluims 120 through 126 

-2.5566 -0.5349 3.2025 0.4392 -1.1499 0.8868 -0.2834 

Columns 127 through 133 

1.0353 -0.3649 1.3420 1.0089 0.2139 -0.2993 0.2558 

Columns 134 through 140 

-0.1908 -0.0791 0.6999 -0.7965 -0.8013 -0.0076 -0.7268 

Columns 141 through 147 

-1.4909 0.8703 -0.2657 -1.5667 -0.3946 -0.1439 -2.3342 

Columns 148 through 154 

-1.3575 -1.8157 1.1084 -0.1421 1.1128 0.5593 0.4784 

Columns 155 through 161 

-0.6794 0.2850 -1.3329 -0.7240 -0.6636 0.1984 -1.7949 

Columns 162 through 168 

-1.3877 0.1978 1.4693 0.3665 -0.4428 -0.0486 0.0777 
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Columns 169 through 175 

1.9579 -0.0728 0.9388 -0.0796 -0.8010 0.3094 1.0518 

Colurms 176 through 182 

-1.6642 -1-0908 -0-1917 0.4634 -0.9241 -0.6497 0.6229 

Columns 183 through 189 

-1.3351 1.0477 0.8633 -0.6424 0.6600 1.2941 0.3146 

Columns 190 through 196 

0.8596 0.1287 0.0166 -0.0728 -0.9943 -0.7474 -0-0308 

Columns 197 through 203 

0.9884 -0-5990 1.4766 -0-8138 0.6450 -1.3099 -0.8674 

Columns 204 through 210 

-0.4742 0.2224 1.8713 0.1100 -0.4113 0.5112 -1.1991 

Columns 211 through 217 

-0-0964 0.4458 -0.2958 -0.1680 0.1795 0.4211 1.6777 

Columns 218 through 224 

1.9969 0.6970 -1.3664 0.3630 -0.5670 -1.0442 0.6971 

Columns 225 through 231 

0.4840 -0.1938 -0.3781 -0.8864 -1.8402 -1.6282 -1.1738 

Columns 232 through 238 
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-0.4154 0.1751 0.2294 -1.2409 

Columns 239 through 240 

-0.5102 -0.0067 

0.7000 0.4269 1.4548 

Section B3 'Binary sequence (Bl) convoluted with noise (B2) ' 

>> [dnoisel I 

Columns 1 through 7 

-1.2266 -0.1897 -0.3017 0.9570 0.4666 0.0989 0.1074 

Columns 8 through 14 

1.2787 -0.7458 1.6035 0.5743 0.3207 -0,1514 0.3158 

Columns 15 through 21 

1.3437 -2.2378 1.2929 -0.3785 0.0025 0.8846 0.5825 

Columns 22 through 28 

-1.6142 -1.5037 0.5736 -0.9105 A. 6313 -0.3591 -0.3976 

Columns 29 through 35 

-1.1613 -1.1098 0.2907 -1.9102 2.3148 1.6653 0.7249 

Columns 36 through 42 

0.9770 -0.9080 -1.0437 0.3735 0.9015 1.2785 -0.1285 

Coluffns 43 through 49 
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0.6128 1.9565 2.2663 -0.3740 2.2380 -0-1596 -0.7033 

Columns 50 through 56 

0.5635 -0-0503 1.1636 1.6588 -0.5501 -2-0291 1.5406 

Columns 57 through 63 

-1.0090 0.9080 1.5823 -0.9791 2.0079 1.1585 0.4131 

Columns 64 through 70 

2.5741 -0.5166 1.2278 1.5839 -2.0890 2.9495 1.3561 

Columns 71 through 77 

1.0501 -0.7672 -0.2577 -1.3718 -1.2677 -0.8949 1.5891 

Columns 78 through 84 

2.8426 2.3480 0.5087 -2.1776 0.2370 -0.7354 -1.7794 

Columns 85 through 91 

0.4480 0.5812 0.8566 -0.2663 0.5825 0.7942 0.8257 

Columns 92 through 98 

1.2176 1.6843 0.1195 0.6507 2.0801 -0.3392 0.7301 

Columns 99 through 105 

0.2940 -0.8491 -2.5339 -2.3789 -0.3463 -0.6109 0.5918 

Columns 106 through 112 

-0.4156 1.2271 1.2080 0.2803 1.7578 -0.6431 -0.0568 
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Columns 113 through 119 

-0.2517 -1.2984 1.2333 1.4946 1.2359 -0-4044 1.6588 

Columns 120 through 126 

-1-5566 -0-5349 3.2025 0.4392 -1.1499 0.8868 -0.2834 

Columns 127 through 133 

1.0353 -0.3649 2.3420 2.0089 1.2139 0.7007 0.2558 

Columns 134 through 140 

-0.1908 -0.0791 0.6999 -0.7965 -0.8013 -0.0076 -0.7268 

Columns 141 through 147 

-1.4909 0.8703 -0.2657 -1-5667 0.6054 0.8561 -1.3342 

Columns 148 through 154 

-0.3575 -1.8157 1.1084 -0.1421 1.1128 0.5593 0.4784 

Colu=s 155 through 161 

-0.6794 0.2850 -0.3329 0.2760 0.3364 1.1984 -1.7949 

Colu=s 162 through 168 

-1-3877 0.1978 1.4693 1.3665 0.5572 0.9514 1.0777 

Columns 169 through 175 

1.9579 -0.0728 0.9388 -0.0796 0.1990 1.3094 2.0518 

Colu=s 176 through 182 
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-0.6642 -1-0908 -0-1917 0.4634 -0.9241 -0.6497 0.6229 

Coluinns 183 through 189 

-1.3351 1.0477 1.8633 0.3576 1.6600 2.2941 1.3146 

Columns 190 through 196 

1.8596 1.1287 1.0166 -0.0728 -0-9943 -0.7474 -0-0308 

Columns 197 through 203 

0.9884 -0.5990 1.4766 -0.8138 1.6450 -0.3099 0.1326 

Columns 204 through 210 

0.5258 0.2224 1.8713 0.1100 -0.4113 0.5112 -1.1991 

Colunms 211 through 217 

-0-0964 0.4458 0.7042 0.8320 1.1795 1.4211 2.6777 

Columns 218 through 224 

2.9969 1.6970 -0.3664 1.3630 0.4330 -0.0442 1.6971 

Columns 225 through 231 

0.4840 -0.1938 -0.3781 -0.8864 -0.8402 -0.6282 -0.1738 

Columns 232 through 238 

0.5846 0.1751 0.2294 -1.2409 0.7000 1.4269 2.4548 

Columns 239 through 240 

0.4898 0.9933 
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Section B4 'Binary sequence convoluted with 20 % noise (B2)1 

d20noise = 

Columns 1 through 7 

-0.2453 -0.0379 -0.0603 0.1914 0.8933 v 8198 0.8215 

Columns 8 through 14 

1.0557 -0.1492 0.3207 0.1149 0.0641 -0.0303 0.0632 

Columns 15 through 21 

0.2687 -0.4476 0.2586 -0.0757 0.0005 0.1769 0.1165 

Columns 22 through 28 

-0-3228 -0.3007 0.1147 -0.1821 -0.3263 -0.0718 -0.0795 

Columns 29 through 35 

-0.2323 -0.2220 0.0581 -0.3820 1.2630 1.1331 0.9450 

Columns 36 through 42 

0.9954 -0.1816 -0.2087 0.0747 0.1803 0.2557 -0.0257 

Columns 43 through 49 

0.1226 0.3913 0.4533 -0.0748 0.4476 -0.0319 -0.1407 

Columns 50 through 56 

0.1127 -0.0101 0.2327 1.1318 0.6900 0.3942 1.1081 
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Columns 57 through 63 

-0.2018 0.1816 0.3165 -0-1958 1.2016 1.0317 0.8826 

Columns 64 through 70 

1.3148 -0-1033 0.2456 0.3168 -0.4178 0.5899 0.2712 

Coluims 71 through 77 

0.2100 -0.1534 -0-0515 -0.2744 -0.2535 -0.1790 1.1178 

Columns 78 through 84 

1.3685 1.2696 0.9017 -0.4355 0.0474 -0.1471 -0.3559 

Columns 85 through 91 

0.0896 0.1162 0.1713 -0.0533 0.9165 0.9588 0.9651 

Columns 92 through 98 

1.0435 0.3369 0.0239 0.1301 0.4160 -0.0678 0.1460 

Columns 99 through 105 

0.0588 -0.1698 -0.5068 -0.4758 -0.0693 -0.1222 0.9184 

Columns 106 through 112 

0.7169 1.0454 1.0416 0.8561 1.1516 0.6714 0.7886 

Columns 113 through 119 

-0.0503 -0.2597 0.2467 0.2989 1.0472 0.7191 1.1318 

Columns 120 through 126 
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0.4887 -0-1070 0.6405 0.0878 -0-2300 0.1774 -0-0567 

Columns 127 through 133 

0.2071 -0.0730 1.2684 1.2018 1.0428 0.9401 0.0512 

Columns 134 through 140 

-0.0382 -0-0158 0.1400 -0-1593 -0.1603 -0-0015 -0.1454 

Columns 141 through 147 

-0.2982 0.1741 -0-0531 -0.3133 0.9211 0.9712 0.5332 

Columns 148 through 154 

0.7285 -0-3631 0.2217 -0.0284 0.2226 0.1119 0.0957 

ColLunns 155 through 161 

-0.1359 0.0570 0.7334 0.8552 0.8673 1.0397 -0.3590 

Col-L=s 162 through 168 

-0.2775 0.0396 0.2939 1.0733 0.9114 0.9903 1.0155 

Columns 169 through 175 

0.3916 -0.0146 0.1878 -0.0159 0.8398 1.0619 1.2104 

Colwnns 176 through 182 

0.6672 -0.2182 -0.0383 0.0927 -0.1848 -0.1299 0.1246 

Colu=s 183 through 189 

-0.2670 0.2095 1.1727 0.8715 1.1320 1.2588 1.0629 
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Columns 190 through 196 

1.1719 1.0257 1.0033 -0-0146 -0-1989 -0.1495 -0-0062 

Colu=s 197 through 203 

0.1977 -0.1198 0.2953 -0.1628 1.1290 0.7380 0.8265 

Columns 204 through 210 

0.9052 0.0445 0.3743 0.0220 -0.0823 0.1022 -0.2398 

Columns 211 through 217 

-0.0193 0.0892 0.9408 0.9664 1.0359 1.0842 1.3355 

Columns 218 through 224 

1.3994 1.1394 0.7267 1.0726 0.8866 0.7912 1.1394 

Columns 225 through 231 

0.0968 -0.0388 -0.0756 -0.1773 0.6320 0.6744 0.7652 

Columns 232 through 238 

0.9169 0.0350 0.0459 -0.2482 0.1400 1.0854 1.2910 

Columns 239 through 240 

0.8980 0.9987 
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Section B5 'Pink noise' 

pink = 

Columns 1 through 7 

-0.1507 -0.1705 -0-1370 -0.0022 -0.0230 -0.1956 -0.2489 

Columns 8 through 14 

-0.1627 -0.1940 -0.0219 0.1566 0.0305 0.0853 -0.0280 

Columns 15 through 21 

0.2957 -0.1569 0.0371 0.0628 -0.0189 0.1299 0.2009 

Columns 22 through 28 

-0.0447 -0.2781 -0.0941 -0.1107 -0.3633 -0.2861 -0.2655 

Colu=s 29 through 35 

-0.3211 -0.4691 -0.2553 -0.4894 -0.2710 -0.0536 -0.1737 

ColL=s 36 through 42 

-0.1568 -0.2504 -0.3838 -0.2553 -0.1022 0.0753 -0.0055 

Columns 43 through 49 

0.0095 0.2265 0.4981 0.2677 0.4315 0.4230 0.1099 

Columns 50 through 56 

0.2522 0.1766 0.3212 0.3663 0.1450 -0.3375 -0.1271 

Columns 57 through 63 
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-0.1130 -0-0588 0.2974 0.0380 0.1394 0.2042 0.0296 

Columns 64 through 70 

0.2491 0.2046 0.1918 0.5445 0.0339 0.4168 0.6190 

Columns 71 through 77 

0.5702 0.3959 0.2646 0.1423 -0.0501 -0.0536 0.0425 

Columns 78 through 84 

0.3644 0.4682 0.3566 -0.0437 0.0400 0.0715 -0.2005 

Columns 85 through 91 

-0.0490 0.1053 0.2046 0.1592 0.0525 0.0585 0.0474 

Columns 92 through 98 

0.0795 0.3055 0.3169 0.2462 0.5601 0.3961 0.3825 

Columns 99 through 105 

0.4254 0.2483 -0.0609 -0.3490 -0.2029 -0.1650 -0.1381 

Coluims 106 through 112 

-0.2623 -0.1900 -0.0274 -0.1616 Q. 0018 -0.1609 -0.3468 

Columns 113 through 119 

-0.1962 -0.3629 -0.1201 0.1255 0.1394 -0.1556 -0.0162 

Columns 120 through 126 

-0.2761 -0.4202 
0.1986 0.2597 -0.0729 0.0753 0.0440 



164 

ColLunns 127 through 133 

0.1419 0.1061 0.1818 0.3670 0.2522 0.1996 0.1575 

Columns 134 through 140 

0.1899 0.0856 0.2534 0.0928 -0.0038 0.0055 0.0161 

Colurnns 141 through 147 

-0.2358 -0.0048 0.0175 -0.1866 -0.2355 -0.0785 -0.4094 

Columns 148 through 154 

-0.4512 -0.6001 -0.2930 -0.2222 -0.0951 0.0050 0.0210 

Columns 155 through 161 

-0.0961 -0.0667 -0.1918 -0.3001 -0.2795 -0.2113 -0.3445 

Columns 162 through 168 

-0.5499 -0.3542 -0.1250 -0.0093 -0.1913 -0.1262 -0.1821 

Columns 169 through 175 

0.1518 0.0676 0.1164 0.0998 -0.0686 -0.0444 0.1607 

Columns 176 through 182 

-0.0942 -0.2725 -0.1942 -0.0817 -0.1504 -0.2837 -0.0765 

Columns 183 through 189 

-0.2550 -0.1300 0.0920 -0.0900 -0.0187 0.1678 0.1568 

Columns 190 through 196 
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0.1821 0.1950 0.0937 0.1237 -0.0652 -0-1034 -0-1196 

Columns 197 through 203 

0.1268 -0.0346 0.1847 0.0567 0.0831 -0.0243 -0.2050 

Columns 204 through 210 

-0.1351 -0.1221 0.1988 0.1832 0.0225 0.1130 -0.0430 

Columns 211 through 217 

-0.0932 0.0602 -0.0025 -0.0219 0.0123 0.0677 0.2550 

Columns 218 through 224 

0.4783 0.4690 0.1587 0.1497 0.1652 -0.0591 0.1141 

Colu=s 225 through 231 

0.1883 0.1521 0.0605 0.0006 -0.2374 -0.3402 -0.4013 

Columns 232 through 238 

-0.3031 -0.2325 -0.0848 -0.2949 -0.1335 -0.0558 0.1430 

Colu=s 239 through 240 

0.323 -0.0162 
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Section B6 'Binary sequence' convoluted with pink noise' 

dpink = 

Columns 1 through 7 

-0.1507 -0.1705 -0.1370 -0.0022 0.9770 0.8044 0.7511 

Columns 8 through 14 

0.8373 -0.1940 -0.0219 0.1566 0.0305 0.0853 -0.0280 

Columns 15 through 21 

0.2957 -0.1569 0.0371 0.0628 -0.0189 0.1299 0.2009 

Columns 22 through 28 

-0.0447 -0.2781 -0.0941 -0.1107 -0.3633 -0.2861 -0.2655 

Columns 29 through 35 

-0.3211 -0.4691 -0.2553 -0.4894 0.7290 0.9464 0.8263 

Colu=s 36 through 42 

0.8432 -0.2504 -0.3838 -0.2553 -0.1022 0.0753 -0.0055 

Columns 43 through 49 

0.0095 0.2265 0.4981 0.2677 0.4315 0.4230 0.1099 

Columns 50 through 56 

0.2522 0.1766 0.3212 1.3663 1.1450 0.6625 0.8729 

Columns 57 through 63 

-0.1130 -0.0588 0.2974 0.0380 1.1394 1.2042 1.0296 
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Columns 64 through 70 

1.2491 0.2046 0.1918 0.5445 0.0339 0.4168 0.6190 

Columns 71 through 77 

0.5702 0.3959 0.2646 0.1423 -0-0501 -0-0536 1.0425 

Columns 78 through 84 

1.3644 1.4682 1.3566 -0-0437 0.0400 0.0715 -0.2005 

Columns 85 through 91 

-0.0490 0.1053 0.2046 0.1592 1.0525 1.0585 1.0474 

Columns 92 through 98 

1.0795 0.3055 0.3169 0.2462 0.5601 0.3961 0.3825 

Columns 99 through 105 

0.4254 0.2483 -0.0609 -0.3490 -0.2029 -0.1650 0.8619 

Columns 106 through 112 

0.7377 0.8100 0.9726 0.8384 0.9982 0.8391 0.6532 

Columns 113 through 119 

-0.1962 -0.3629 -0.1201 0.1255 1.1394 0.8444 0.9838 

Colu=s 120 through 126 

0.7239 -0.4202 0.1986 0.2597 -0.0729 0.0753 0.0440 

Columns 127 through 133 
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0.1419 0.1061 1.1818 1.3670 1.2522 1.1996 0.1575 

Colwnns 134 through 140 

0.1899 0.0856 0.2534 0.0928 -0-0038 0.0055 0.0161 

Columns 141 through 147 

-0.2358 -0.0048 0.0175 -0.1866 0.7645 0.9215 0.5906 

Colu=s 148 through 154 

0.5488 -0.6001 -0.2930 -0.2222 -0.0951 0.0050 0.0210 

Columns 155 through 161 

-0.0961 -0.0667 0.8082 0.6999 0.7205 0.7887 -0.3445 

Columns 162 through 168 

-0.5499 -0.3542 -0.1250 0.9907 0.8087 0.8738 0.8179 

Colu=s 169 through 175 

0.1518 0.0676 0.1164 0.0998 0.9314 0.9556 1.1607 

Columns 176 through 182 

0.9058 -0.2725 -0.1942 -0.0817 -0.1504 -0.2837 -0.0765 

Colurms 183 through 189 

-0.2550 -0.1300 1.0920 0.9100 0.9813 1.1678 1.1568 

Columns 190 through 196 

1.1821 1.1950 1.0937 0.1237 -0.0652 -0.1034 -0.1196 
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Columns 197 through 203 

0.1268 -0.0346 0.1847 0.0567 1.0831 0.9757 0.7950 

Columns 204 through 210 

0.8649 -0.1221 0.1988 0.1832 0.0225 0.1130 -0.0430 

Columns 211 through 217 

-0.0932 0.0602 0.9975 0.9781 1.0123 1.0677 1.2550 

Columns 218 through 224 

1.4783 1.4690 1.1587 1.1497 1.1652 0.9409 1.1141 

Columns 225 through 231 

0.1883 0.1521 0.0605 0.0006 0.7626 0.6598 0.5987 

Col-ums 232 through 238 

0.6969 -0.2325 -0.0848 -0.2949 -0.1335 0.9442 1.1430 

Columns 239 through 240 

1.0323 0.9838 
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APPENDIX B- SOFT COMPUTING: DEVELOPMENT AND 
METHODOLOGIES 

As a consultant at Fisher Controls International, Leicester, in 1995/1996,1 carried out 
suitability studies of ANNs in process control and published two internal papers. The 

material included in this Appendix, which covers preliminary unifying definitions and 
introductory information on neuro-computing, form part of one of those publications. 

Historical 

An understanding of the human mind, its construction and where it is placed in the body was extensively sought by the 

philosophers of ancient civilisations. The arrangement of the blood vessels led the Sumerians and Asyrians to the conclusion 
that the liver and later the heart was the animator ["anima" Latin for soul] or mover of body. 

A great deal of research in neurobiology and psychology has been carried out in this century. As far as computer scientists 

are concerned, the pioneering investigation in soft computing paradigms was started by Warren S. McCulloch and Walter 

Pitts [McCulloch and Pitts, 1943]. This influential study proposed an artificial neuron or processing element acting as a 

simple threshold logic device. They concluded that a network of these processing elements, connected to one another, may 

achieve significant computational power. 

Since 1943, many researchers have investigated the fundamental concepts of such networks. In 1949, Donald Hebb's 

'Organisation of Behaviour' [Hebb, 19611 had a great impact in the scientific community. In 1958, F. Rosenblatt proposed 

his learning machine the perceptron [Rosenblatt, 1958]. This lead to the first era of wide spread interest in neural 

computing. He also wrote Principles of Neurodynamics' [Rosenblatt, 1961], one of the first books on neurocomputing. Of 

other major works in the early 1960's, Bernard Widrow's processing element, 'the adaline' which was equipped with a 

powerful learning law, is still in use. In 1965, L. A. Zadeh introduced the concept of fuzzy sets, but despite this, by the end 

of the 1960's neural computing's first era of success was drawn to a close. A campaign led by Marvin Minsky and Seymour 

Papert managed to divert almost all of the research funding in this field to the field of 'artificial intelligence' [Hecht-Nielsen, 

1987]. In the publication Perceptrons [Minsky and Papert, 1969], the limitations of Perceptrons, a restricted class of neural 

systems, were discussed, implying that neurocomputing research is a proven dead end. Following this, throughout the 

1970's, serious neural network researchers [e. g. Teuvo Kohonen, Stephen Grossberg, James A. Anderson and Leon 

N-Cooper] managed to attract research funds by describing their work under the headings of 'adaptive signal processing', 

'pattern recognition', and biological modelling'. 

Recent 

In 1983, the American defence advanced research project agency [DARPA], began funding neuro-computing research. This 

action opened the floodgates [Hecht-Nielson, 19871. During the 1980's greater attention was also paid to Generic 

Algorithms (G. A. ), first developed in 1975 (Holland, 75], and other derivative free stochastic optimisation methods e. g. 

simulated annealing. 

The following work, during the 1980's, re-stimulated research interests in neural networks and helped to bring about the 

modem era of spectacular developments: 
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The work of J. J. Hopfield [Hopfield, 82; Hopfield, 84] brought together a number of separate earlier neural network ideas. 

The development of the back propagation algorithm by several investigators. 

The publication of parallel distributed processing, edited by D. Rumelhart, J. McClelland [Rumelhart and McClelland, 1986] 

in 1987 the American Institute of Electrical and Electronic Engineering held its first international conference on neural 
networks. The International Neural Network Society [INNS] was formed in 1988. Many neural network journals began 
publishing in the late 1980's and early 1990's; e. g. the INNS journal 'Neural Networks', 1988; the IEEE Transaction on 
Neural Networks, 1990; Neural Computing and Applications, 1993. During the late 1990's, the concept of soft computing 
and their applications to real world problems has rapidly become a reality. 

Unifying definitions and concepts 

0 Learning and Training 

Leaming is defined as a permanent change in behaviour. Training is the process by which leaning occurs. In artificial 
neural networks training is referred to a systematic method of modifying the weights in a network to improve the response of 
the network to a collection of training examples. 

In a network of distributed processing elements, modification of the connection strength is performed by the processing 
elements using a leaning law. Learning laws [or rules] are the algorithms for varying the weights such that learning occurs. 
In order to understand learning law equations, the information environment where they operate, the weight modification 

process, and the training method should be considered. 

0 Information environment 

In a distributed information processing structure each processing element responds separately and in isolation to the 

incoming signals of one or more input classes. The response is in accordance with a learning law equation. 

To understand the learning process, the information environment in which the entire network operates should be envisaged. 
Information environments are usually described in terms of probability density functions. For most learning laws, 

constraints are placed on the information environment used. 

0 Weight modification process 

In a network of n processing elements with adaptive weights, a network weight vector W can be formed by combining all 

the weights of all the processing elements. The idea is that if the information processing performance required is to be 

realised by this network, it will be found at some value of the vector W. 

Learning laws should efficiently guide the weight vector W to a location that yields the desired network performance. 

Learning law objectives are application dependent. For example, in pattern classification the objective is to classify and 

predict successfully on new data. In control applications it can be to approximate non-linear functions and to make unknown 

systems follow the desired response. 

Energy 

The energy concept is an important tool for analysing and explaining some of the properties of neural models. The concept 

is best described by [Hopfield and Tank, 1986]. Energy is defined by an explicit mathematical formula that depends on the 

characteristics of the network [e. g. the interconnection strength]. The computational energy of a network can be pictured as 

a landscape of hills and valleys. 
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Using the energy concept, every possible pattern of firing and non firing of a network can be defined. With every change in 

the firing pattern, the energy reduces accordingly or stays the same. Eventually the last state Is reached. This stable state 

represents the minimum energy state. A stable state is the equivalent of being at the bottom of some valley or energy well. 
Mathematically, a function called Liapunov function'works in a similar manner. Further explanation on the computational 

energy concept is provided in working paper number 44 [Osanlou, 1992b]. 

Dynamic and adaptive structures 

There are numerous neural network based soft computing paradigms. Despite appearances they all perform the same 
function. They accept an input vector and produce a corresponding output vector, and may be viewed as vector mappers. 

Likewise all neural network applications may be viewed as special cases of vector mapping [Wasserman, 1993]. If the 

output vector is identical to the input vector, the network is said to be an auto- as soci ative mapper. If the output vector 

produced is different from the input vector on which it was trained, the network is referred to as a hetero-associative mapper. 

In the categorisation of the various soft computing paradigms, with the biological and artificial neuronal model as the basis, 

the mapping relationship is usually used to classify various structures. They may be either 'static', 'dynamic', or 

alternatively 'fuzzy systems'or unconventional approaches [e. g. 'CMAC and 'neurone with hysteresis'] 

Differences: between neural networks and conventional computers 

The main contributions of ANNs is in their ability to: 

leam by example, 

generalise to process [possibly incomplete] new data that the network has not seen before, 

operate on noisy data that occurs in real world applications, and 

approximate arbitrary non-linear functions, making them useful to model non-linear systems. 

Neural Network Conventional Computers 

Structure. Inherently parallel, leading to the possibility of Structure Linear design approach. 

fast hardware implementations. 

Processing method. Processing occurs as a distributed Processing method. Processing occurs in the form of 

pattern in response to an input pattern, controlled by the fetch, execute, and store. 

learning law, processing element interconnections, and 

transferfunctions. 

Programming method. Networks are trained rather than Programming method. A programme of sequential 

programmed, i. e. they learn by example. The learning instructions. Superior in well defined applications, with a 

process I. s conducted by rules which often govern large amount of numerical operations and accurately 

modifications of the weights. of the processing elements. specified repeatable steps. 

Once trained, a network is capable of generalising when 

presented with new inputs not used in the training set. 

Memory. Memory and processing elements are the same. Memory. Memory and processing elements are separate. 

Data is stored as pattems represented by variable weights of 



173 

the network's processing elements. 

Fault tolerant. Also called "graceful degradation" 

Performance drops gradually in response to defects. 

Not fault tolerant. 

Robustness. Networks can operate on noisy data that occurs 

in real world applications. 

Configurations most applicable to pattern recognition 

No robustness to noisy or incomplete data. 

Artificial neural network architectures described so far, have all been used extensively in signal analysis and applications 

such as identification of objects from observed patterns or images. Of those architectures, the multilayer neural network 

with an error backpropagation algorithm is the most commonly used. Other common architectures in signal processing and 

pattern recognition which have not been mentioned yet, are briefly covered here. 

0 Hoprield 

The Hopfield model belongs to a class of associative memory known as crossbar nets, because of their resemblance to the prinfifive operator 

controlled telephone systems in which every input and output telephone line could be connected through a single intersection 

switch. General architectural characteristics of such networks, which includes Bidirectional Associative Memory [BAM] 

and Brain State in a Box, are as follows: 1] all the processing elements are fully interconnected, i. e. any input and output is 

connected through a variable weight, 2] nets consist of either 'a single layer'or 'an input layer and an output layer'. 

Each node in the input layer of a Hopfield model is directly connected to only one node in the Hopfield layer. The 

processing elements in the second layer may have hard limiter or sigmoidal activation functions. Their weighted outputs are 

fed back to the input of the rest of the processing elements. 

Prior to operation, weights are adjusted in a way that the input and output of the network are the same. Then an input 

pattern is applied and the outputs are continually fed back through the weights until a convergence criterion is met [Page et 

al., 1993]. 

If in the convergence process a local minima is reached, Hopfield provides no way of reaching the global minima from there. 

Hinton and Sejnowski, provide a solution to this problem with the Boltzmann machine [Hinton and Sejnowski, 19861. 

Kohonen 

The Kohonen network has self organising properties and is capable of pattern categorisation. It is constructed from a fully 

interconnected array of processing elements. The output of each processing element is the input to all processing elements 

including itself. Each processing element receives the input pattern which consists of a set of continuous valued data. 

There are two sets of weights: an adaptive set, to compute the weighted sum of the external inputs, and a fixed set between 

neurones, that controls neurone interactions in the network. 

Training involves applying an input pattern to the network and computing each processing element's output. After 

interacting with each other, only the processing element with the largest output and neighbouring processing elements are 

allowed to adjust their weights. 

0 Counter propagation networks 

Counter-propagation networks are multi layer hybrid dynamic [feedback] structures. They perform continuous 

mappings by first feeding data into a Kohonen network using unsupervised training and then feeding the output to a 

Grossberg outstar with supervised training [Wasserman, 1989]. They are fast but lack the generality of backpropagation. 
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Radial basis-function networks (RBF) 

Radial basis function structures, are feed forward multi layer networks. In a similar manner to all feed forward networks 

with a hidden layer of non-linear processing elements, they are universal approximators [Girosi et al., 1991 and Hartman et 

al,, 1990]. They can approximate any continuous function with arbitrary accuracy. The non-linearity need not be sigmoidal 
[Stinchcome and White, 19891. 

Training is usually orders of magnitude faster than backpropagation. None of backpropagation's training problems, 

previously discussed in publication number 44, [see Osanlou, 1992b], are experienced with RBF. 

Their main disadvantages are requiring all, or a substantial portion, of the training set to be involved in their operation, and 

slow operation after completion of the rapid, reliable training. This is due to the large number of variables involved. 

Similar and closely related networks are referred to as: 'Gaussian potential function' [Lee and Kil, 19911; localised receptive 

fields' [Moody and Darken, 1988]; Tegularisation networks' [Poggio and Girosi, 19901; and locally tuned processing units' 

[Moody and Darken, 19891. 



175 

APPENDIX C- PUBLICATION 

Modified versions of the paper presented here, have appeared in: 

* Recent Advances in Soft Computing'98 

July 2d and 3 rd 1998 

DMU, Leicester. 

9 Technical Monograph 27 

Science and Engineering Research Centre 

DMU, Leicester. 



CAE 

3rd Intemational $cientific Colloquium 

AQV SL, 
Proceeding,, s of the 3rd International Scientiflic Colloquium 

RzeszOw University of Technology, Poland 
September 24-27,1997 

edited by 
KAZIMIERZ E. OCZOS 

.. &A WYDAWN, 

CJ-INIK1 gzESiO" 



3rd Int. Scientific Colloquium CAE TECHNIQUES Rzesz6w, 1997 

Pattern recognition using artificial neural networks t5 tD 
with white noise for process control engineering 
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Abstract: This paper discusses the most significant findings of a comprehensive study on 
the use and suitability of Artificial Neural Networks (ANNs) for process modelling and 
control. Using a pattern recognition problem associated with afluidflow process control 
unit analogous to those used in the petrochemicals industries, this study has shown that 
care needs to be exercised in the choice of network structure and training and that 
attributes, such as robustness in the presence of noise may actually enable'ANNs to 
improve process control engineering in many ways. By developing a robust weight set, 
their robustness to noisy data has been examined It has been observed that adding white 
noise greatly improves the performance of the networks both in terms of training and 
application. In other words the added noise actually helps the networks in their pattern 
recognition task Since noise is a major problem for real world applications, this is a 
particularly important result which isfUrther analysed and discussed in this paper. 

Keywords: pattern recognition, Artificial Neural Networks, process control engineering, 
white noise. 

1. Introduction 

Artificial Neural Networks (ANNs) are often applied to complex problems in 

which conventional computer algorithms are not appropriate or difficult to design. They 
have many attributes and characteristics which make them fundamentally different from 

conventional Von Neumann type systems and are based on algorithms derived from 

biological models with the aim of producing similar characteristics, e., cr. immunity to noise 

or adaptability to new circumstances. 
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Neural networks can be described as parallel distributed information processing 
structures made up of processing elements; the elements being simplified versions' of biological neurons. Because they are not based on rigid algorithms, ANNs. are naturally fault tolerant. They can process many inputs and produce many outputs; hence, they are 
applicable to multivariable systems and potentially offer fast processing. Other major 
attributes of ANNs include their ability to learn by example, their generalising, ability to 
process (possibly incomplete) new data that the network has not seen before and the ability 
to operate on noisy data that occur in real world applications. 

Many different ANN paradigms are available, but basically they all perform the 
same function (i. e. they accept a set of inputs and produce a set of outputs) and have many 
features in common. Likewise all ANN applications are special cases of vector mappings. 
If the output vector is identical to the input vector, the network is said to be an auto- 
associative mapper. If the output vector produced is different from the input vector on 
which it was trained, the network is referred to as a hetero-associative mapper. 

The mapping relationship is usually used to classify various neural structures. 
They may be either static or dynamic, or based on a variety of alternatives such as "Rizzy 
systems" and unconventional approaches such as the "Cerebellar Model Articulation 
Controller" (CMAC) and the "Neurone with Hysteresis" paradigm. 

1.1. Static structures 

Statistic structures have no feed-back and are inherently stable. The network 
response depends on its current inputs and the weight values. During the learning process, 
externally imposed feed-back interaction takes place. Once trained, each application of a 
given input set always produces the same output set. Static structures are also refbrred to as 
feed-forward, or non-recurrent systems. Examples include the "single layer"' and "multi 
layer" perceptron and "Radial Basis Function" networks. 

1.2. Dynamic structures 

Dynamic structures employ feed-back between the processing elements, which 
allows them to produce dynamic mappings. Referred to as recurrent networks, they have 
local memory characteristics. One of the advantages they offer over purely static networks 
is that their output depends upon previous, as well as current inputs and/or outputs. 
Examples of dynamic structures include the "Hopfield-Tank" model and the "Learning 
Vector Quantization" model (for single layer networks); Multi-Layer Feed-Forward Feed- 

4D 
back networks; cellular, time delay, and Counter Propagation models (for multi-layer 

I 
hybrid structures); first order dynamics and second order dynamics (for multi-layer 

excitatory and inhibitory systems). 

1.3. Learning and training 

Learning is defined as a permanent change in behaviour. Training is the process 
by which leaning occurs. In ANNs, training is referred to as a systematic method of 
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modifýffigr the weights (or the connection strength) in a network to improve the response of 
the network to a collection of training examples. In a network of distributed processing 
elements, modification of the weights is performed by the processing elements using a 
leaning law. Learning laws (or rules) are the algorithms for varying the weights such that 
learning occurs. 

To understand the learning process, the information environment in which the 
entire network operates should be envisaged. Information environments are usually 
described in terms of probability density functions. For most learning laws, constraints are 
placed on the information environment used. In a network of n processing elements with 
adaptive weights, a network weight vector w can be formed by combining all the weiahts 
of all the processing elements. If the information processing performance required is to be 
realised by this network, it will be found at some value of the vector w. Learning laws 
should efficiently guide the weight vector w to a location that yields -the desired network 
performance. Learning law objectives are application dependent. Learning algorithms may 

gd as error based or output based. be broadly categorise 

Error based learning algorithms e) t5 

In this scheme, an external reference signal is compared with the obtained 
response. The error signal is then used to modify the weights to improve the system 
performance. Error based (or supervised) learning can be divided into two important 

categories: error correction (e. g. least mean square and back-propagation) and stochastic 
[7]. Stochastic learning algorithms make random changes to the weights. The resulta t" =1 Mn 
energy" created by the changes is then determined. The weight changes are retained if the 

., 
y is lowered and re-defined probability distribution function can be used to keep "energ ap 

the weight change, even if the energy is not lowered. 
I= - 

Output based learning algorithms 

If the desired (target) results are unknown, then error based leaming alaorithms 

cannot be used and output based learning algorithms become useful. Such algorithms do 

not employ any external reference signal. Self organisation principles and internal control 

mechanisms are generally used to classify the input data and to discover collective 

properties. Important examples of output based (or unsupervised) learning algorithms 
include hebbian learning and competitive learning,. 

I 

1.4. Significant characteristic of ANNs 

One of the most significant characteristics of ANNs is their ability to approximate 

arbitrary non-linear functions. This ability makes them useful in modelling non-linear 

systems and means that neural technology is of growing importance in industrial 

applications, e. g. process control systems with multiple inputs and outputs. For example, 

many of the limitations of conventional control solutions arise in trying to control poorly 
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modelled non-linear systems; unrealistically assuming that there is no noise in the 
measurements. 

By utilising the Weierstrass theorem, it can be shown that a feed-forward network 
with only one hidden layer, where each processing element in the hidden layer has a 
continuous sigmoidal non-linearity, can approximate a continuous function [1]. However, 
networks with two hidden layers tend to provide better creneralisations and higher accuracy 
than networks with a single hidden layer [3]. Gallant and White [5] demonstrated that a feed-forward network with a single hidden layer using a cosine activation function, is 
capable of embedding a Fourier network. The network possesses all the approximation 
properties of a Fourier series representation. 

. Application of the Kolmogorov theorem has demonstrated the function 
approximation capabilities of feed-forward networks [6]. However, Poggio and Girosi [8] 
have pointed out that Kolmogorov's theorem requires a different non-linear processing 
function for each unit in the network, and that functions in the second hidden layer depend 
on the function being approximated. For multi-layer static neural networks, the most 
commonly used learning rule is a generalisation of the least squares rule, known as the 
Back-Propagation (BP) algorithm. Its main objective is to improve the information content 
encoded in the weights, by reducing the error at each node. The multi-layer neural network 
with a BP alcrorithm has been used extensively in many control applications, many of 
which encounter problems such as larcre error or slow adaptation. Algebraic and 
trigonometric polynomials, share the multi-layer feed-forward network property of 
approximating arbitrarily well a continuous function. However, from an approximation 
theory viewpoint of characterising good approximation schemes, the property of best 
approximation is more critical than the property of approximating, continuous functions 
arbitrarily well. An approximation scheme is said to have the best approximation property 
if, in the set of approximating functions, there is one that has minimum distance from any 
given function of a larger set (a precise mathematical formulation is given by Pogcrio and I ZD Girosi [8]; see also Watson [101). Poggio and Girosi [8] have shown that multi-layer 
perceptron networks, used with BP, do not have the best approximation property. For 
regularisation networks (in particular, Radial Basis Function networks) they show the 
existence and uniqueness of best approximation. 

One of the most widely used static neural networks is the Radial Basis Function 
(RBF) network in which it can be shown [8] that networks derived from regularisation 
theory have a similar property to multi-layer perceptrons, i. e. they can approximate 
arbitrarily well continuous funt-tions. CMAC is another popular static neural network. 
From a mathematical viewpoint, the CMAC learning rule, when applied to the CMAC 
functional form, is equivalent to BP. Both RBF and CMAC have a key advantage over 
multi-layer perceptrons in real-time leaming because they adapt different sets of weights 
for different regions of the input-space. Least squares methods (e. g. BP), have greater I 01 
potential in real time learning when applied to such networks. For example, using BP with 

a rates [4]. networks similar to RBF for pattern recognition can increase leamin'. 
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2. A problem in process control eng-pneering ZýO 
The real worth of neural computing technology must be' measured in its 

application to real world problems. Employin2g) a benchmark neuro-control problem yields important considerations for developing neuro-control solutions (e. g. noise, non-linear 
processes and the incorporation of approximate models) and ensuring that optimum results 
are analysed experimentally. 

In this section, a problem in process control engineering is described and the 
approaches to solving the problem using ANNs discussed. Details of the experiments and 
their evaluation are given in Section 3. 

The objectives of this benchmark pattern recognition problem were as follows: 
" to address control issues regarding noise and non-linear processes, 
" to experimentally analyse the robustness of neural networks to noisy data such 

as those that occur in real world process control applications. 

2.1. A benchmark neuro-control problem 

Many of the limitations of conventional solutions arise in trying to control poorly 
modelled non-linear systems, e. g. unrealistically assuming that there is no noise in the 
measurements and that the control variables (e. g. flow rate) takes on the exact value that 
the controller requires. Using a pattern recognition problem, a neural networks capability in 
dealing with such control issues has been practically investigated. 

0 In the benchmark discussed in this section, a large number of patterns consisting 
of fluid flow readings from a relatively simple process control rig developed by-Bytronic 
Ltd (UK) have been recorded. Each input training pattern consists of the fluid flow 
readings in litres taken at five second intervals over a period of one minute. The pattems 
can be divided into three broad categories representing the state of the system output: 

" stable fluid flow, 
" unstable fluid flow, 
" transition from one flow level to another. 
Various networks were constructed and used to recognise the three categories of 

patterns using an ANN system supplied by Science Applications International Corporation 
(USA) which was run on a 486 microprocessor. The outputs of such networks were used as 
inputs to a multi-input neural controller, enabling the controller to take account of the exact 
state of the flow rate. The learfling and generalising ability of these networks, particularly 
in a noisy environment (in which conventional systems perform poorly), were 
systematically examined and compared. 

Many real world processes are dynamic non-linear systems. Recurrent neural 

networks appear to be ideally suited for modelling non-linear systems. As part of the 

experiments discussed in this paper, a number of recurrent BP networks were designed and 

applied to the problem. Their contributions in process control applications were then 

evaluated. 
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2.2. Appropriate network 

There are at present no fixed rules available for choosing the right network for a 
given application. One way of finding the most appropriate network is to decide upon the 
training procedure required for the application. Since in the application discussed here, we define the. exact output for every input in the training set, supervised training is the most 
suitable. Hence, networks such as the multi-layer feed-forward network with back- 
propagation (also referred to as the back-propagation network) and the Boltzmann machine 
(and its refinements) were likely candidates capable of mapping and produC anew 0 in, 
outputs. Counter propagation was also a likely candidate because in training, the network 
receives the input and the target vector. 

As part of the original study [7], a large number of experiments, working on the 
various aspects of applying the most suitable paradigms were carried out. As a result, the 
network considered most suitable was a multi-layered fully connected feed-forward 
network with back-propagation. This publication concentrates on the experimental results 
derived from such networks. 

Various aspects of network design (e. g. deciding upon the number of processing 
elements or the number of layers) were determined experimentally. In other words, a large 
number of networks were built, trained and tested to determine the most successful 
configuration. This is the most common method used in practice. Details of the 
experiments are covered in Section 2.6. 

2.3. Data 

There are many aspects to consider when developing an optimum netw6rk. They 
include the source, training and testing. 

The source 

Training data sets for the benchmark were collected from the Process Control ric, 0 
illustrated in fig. 1. This unit consisted of. (i) A sump; (ii) A pump; (iii) An analogue-to- 
digital controlled diverter valve; (iv) A cooler; (v) A process tank; (vi) An analogue-to- 
digital controlled drain valve. 

All features on the unit can be controlled in an analogue or a digital mode. The 

fluid can be pumped at a flow Zate of 0-2 litres per minute from the pump flowing either 
directly to the process tank, or first to the cooler and then to the process tank. The fluid 

cycle is completed by either an overflow or drainage, using either of the two valves 

provided. Based on a fluid flow process to control flow and temperature, the rig presents a 

relatively small but typical process control operation, analogous to those used in the 

petrochemical industries. 
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Fig. 1. Schematic diagram of the process control unit used to obtain data 
on flow rates for training the ANNs 

Training 

A large number of training sets were developed using a maximum of 120 patterns. 
As discussed in Section 2.4, with a supervised model such as back propagation, more 1= 
training examples generally result in a better network response. Each training input pattern 

I-P 
represents the fluid flow readings (in litres per minute) taken at 5 second intervals over a 
period of I minute. An example of a flow rate pattern (for manual flow control) is given in 

I= 
fig. 2 together with a digitised data set taken from the flow signal at 5 second intervals. 

11; zD 
This sampling interval was considered to be an acceptable rate for the process monitoring 
problem considered. The input patterns can be divided into three categories representing 1: 1 11: 1 
the output flow states of the system, i. e. a steady fluid flow (e. g. 1.5 litres per minute), an 
unstable flow, or a transition from one flow rate to another. 
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Example of a flow rate signal (above) and the data (below) used for training 

In general, the change in the fluid flow was set manually, but in some cases set 
automatically. The sets were then pre-processed before being fed to the system. Pre- 
processing mostly involves scaling down and normalising the data. Scaling down is used to tp 

avoid fluctuations in one input with a much larger range swamping any importance in a 
second input with. a relatively small range. Normalisation is required when the numeric 
input data has a natural range that is sometimes other than the processing elements 
operating range. 

White noise was added to some of the data. Noise in the form of fluctuations that 
do not carry information is Present in real world applications. Adding white noise to data 
sets from the process control rig accustoms the networks to the noise typically found in an 
industrial environment and in addition, provides the network with enhanced data sets. In 
the experiments conducted for this work, noise was calculated as a pseudo random number 
from a flat distribution with a maximum -amplitude equal to the number entered. This 
means that, for a noise value of 0.1 for example, each element of each input vector has a 
random value between ±0. I added to it independently. 

-I189a8aaaa60a0a0a6049.000a060aaaa60.90a.. a,. I1611616a0. w. 0aI. 51.140. I. 1662666 
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Each training output pattern consists of three numbers representing a steady, 0 unstable or changing state. Such outputs can be used as input signals for a multi-input 
process controller, enabling it to take account of the state of the flow rate. The values for 
the training output patterns were chosen on the basis of them being simple to map to their 
corresponding input fluid flow patterns. 

Testing t9 

Networks were tested to evaluate the training process. The most important issues 
for investigation were as follows: 

9 Presenting the network with training cases which were slightly different from 
each other. A well trained network should be able to use its knowledge to recognise new 
but similar patterns. 

Adding white noise to training data sets to accustom the network to the noise 
typically found in an industrial environment, and to provide the network with enhanced 
data sets. Once trained, such a network should be able to correctly identify patterns of this 
type. 

a Testing different network configurations in terms of variables and processing, 
elements. Because of the lack of rigorous theory, a large number of networks were built, 
trained and evaluated to determine the most successful configuration. 

* Evaluating similar networks trained on a variety of training files. The 
performance of a network is determined by its architecture as well'as the quality and 
quantity of the data used. Thus, to optimise the network, proper recordings and preparation 
of input data is of utmost importance. In general, it was found that more training data 
resulted in a more accurate performance by the network when using a supervised model. 
With an unsupervised model, too many examples can interfere with each other. 

Another important consideration is the role of feature detectors. Identification of 
strong positive or negative weight values operating on a middle layer processing element 
can help the designer to differentiate between features and detectors. 

2.4. Implementation 

Architecture 

Simple two layered networks can map all representations present in the input data 
because of the direct mapping of inputs to outputs. However, they fail to learn if the 
intrinsic representation of the data is non-linearly separable, e. g. the exclusive OR function. 
By adding intermediate layers, learning such arbitrary mappings is possible. The 
intermediate layer allows the network to develop its own internal representation of the 
input patterns. The internal representation and the learning of features not explicitly 
pbvious in the input data is constituted by the activations of the intermediate layers 

processing; elements. They provide the network with an internal representation capability 

allowing it to decide upon whatever is important in representing the mapping. This is in 
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contrast to relying on intrinsic relationships already built into the training data in two layer 
networks. 

The first set of experiments given in tab. I were concerned with seeking to apply back-propagation techniques to the experimental data. This involved many important 
changes within the network to find the most suitable configuration. These included varying the number of layers, the number of processing elements in the intermediate layer(s), and the learning parameters. Several networks were developed and then trained on data 
obtained from the process control rig. The generalised delta rule was used for the networks to learn to develop the required features to perform the desired mappings. The objective of the experiments was to find the most successful configuration to reach a minimum value for the average Root Mean Square (RMS) error in the shortest number of training cycles or rz 0 iterations. 

Sample experimental results demonstrating the various aspects of the process are included in tab. 1. With the exception of network number 5, which has two middle layers 
containing 6 and 4 processing elements, they all have only one middle layer containing six 
processing elements. The decision for this configuration was achieved experimentally by 
varying the number of layers and the number of processing, elements in the intermediate 
layer(s), while keeping all the other elements constant. All the networks were trained on a 
training file containing 63 patterns collected from the process control ricr. To help the 
networks in their pattern recognition task, the 63 input patterns consisted of similar 
versions of 12 input-training patterns. 

At the start of training, weights for all of the 8 networks were initialised to random 
values between + 1.0 and - 1.0. Although with such a small range, leamina., takes longer, this 
range was considered necessary because the goal was to keep the activations close to 0 at 
the start of training. With larger values it was found that leaming, was generally shorter but 
the average RMS error as well as the maximum output unit error tended to be higher. 

Z Training was halted for networks 1,2 and 3 after 120000 iterations, as they had 
clearly established a local minima. Training for the rest of the networks was terminated 
when their total RMS error reached less than 0.05. 

Varying the parameters: 
9 Noise. Noise in the form of fluctuations that do not carry deterministic 

information is present in nearly all real world applications. In this work, noise was added to 
the data sets from the process control rig in an attempt accustomise the networks to the 
noise typically found in a process control environment. Most networks in the experiment 
were trained using a sigonificaný amount of noise (up to 20%) which makes it difficult for a 
human to recognise the patterns. In experiments conducted to date, a consecutive decay rate 
(usually around 0.0001) has been set for the noise to reduce gradually (i. e. the noise is 
reduced by a factor of 0.000 1 from each element of each input vector). For example, for a 
noise value of 0.1, each element of each input vector has a random value between ±0.1 
added to it independently; the noise is then reduced gradually by a decay factor (e. g. 
0.0001). 

*Learning rate. True gradient descent in the total RMS error requires that 
changes are made to the weights only in infinitesimal steps and only after the entire 
trainingset has been processed. (In order to use less RAM, some implementations of the BP 
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Table 1. Application of the back-propacration algorithm 
to find the most suitable network cOnfiguration 

BP net spec. 1 2 3 4 5 -j -6 -7 8 8 
Training Train. halted after 120000 Train. halted when max. output unit error <1 
criteria 
Number of I 1 1 1 2 with 1 1 1 
hidden similar 
layers spec. 
Learning 
rate (input 0.9 0.9 0.7 0.1 0.5 0.5 0.3 0.1 
to next 
layer) 
Learning 
rate (hidden 0.9 0.9 0.7 0.1 0.5 0.5 0.7 0.1 
to output 
layer) 
Learnina 
rate (input 0.9 0.5 0.7 0.1 0.5 0.5 0.2 0.9 
to next 
layer) I 
Momentum 
term (hidden 0.9 0.5 0.7 0.1 0.5 0.5 0.2 -. 0-9 
to next 
layer) 
Momentum 
term (hidden 0.9 0.9 0.7 0.1 0.5 0.5 0.7 0.9 
to next 
layer) 
Noise 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 

Decay 0.0001 0.0001 0-0001 0.0001 0.0001 0.0001 0-001 0.0001 
Total RMS 
error 0.37 0.25 0.28 0.04 0.03 0.04 0.02, 0.02 

Maximum 
output error 0.99 0.99 0.99 0.16 0.09 0.09 0.09 0.09 

Iterations 12000 12000 12000 1643 374 257 397 176 

Testing* No No No 12/18 14/18 12/18 1-3/18 1ý/18 

testing testing testing I- I 
* No. of patterns correctly recognisea on a testmg nie con-Laining 10 PULLUI 11a. 

algorithm make weight changes after each pattern. ) The proportion of the dictated weight 

changes may be set as a learning rate. The job of the learning rate constant. is to set the 

speed of convergence of t he weight vector to the ideal value or a more complex error 

251 



function in multidimensional space. The larger the'learnincy rate, the larger the weight changes and the faster the learning. The idea is to set the learning rate as high as possible, 
without causing the RMS error to oscillate significantly. Generally, the optimum value of the learning rate depends on the shape of the error function in weight space. The learning 7 

rate constant must be less than 2.0, or the network cannot be stabilised (2]. The learning 
constant must also be positive. If negative, the direction of the delta vector will be away from the ideal weight vector. In practice, it has been found in this study that it is best to 
reduce the value of learning rate until the total, RMS error shows a general decrease in 
value with time. Once it is close to the ideal position, even small differences between 
similar training samples when combined with a large learning constant, can cause the 
weight vector to move excessively. 

* The momentum term. One way to increase the learning rate without making 
the error oscillate is to add a momentum term to the weight change equation. Training 
proceeds much faster with this term. The term is a variable that determines the proportion 
of the last weight change that is added into the new weight change. It has the effect of 
preventing thrashing due to small oscillations in the error. IM 

Experimentally (as can be seen from network number 4), it has been found that a 
small value for the momentum term (e. g. 0.1) together with a small learning rate causes the C' 0 
network to converge very slowly. In this study, it was eventually concluded that a 
momentum value Significantly higher (e. g. 0.9) together with a learning rate value (e. g. 0.1) 1; ZP 

provides the best effect to the weight changes (see network number 8). 

2.5. Further experiments to consider the more extreme cases 

All the networks in tab. I were trained on a training file containing 6' ) patterns 
which were normalised ("normed") and scaled between ±0.5. This was considered ne- 
cessary as networks trained on raw data tend to end up in a local minimum. The networks 
in tab. I were also assisted in their pattern recognition task by using input training patterns 
which consisted of similar versions of only a limited number of input training patterns. As 
a result, one of the networks (tab. 1, number 8) managed to learn in only 176 iterations. 

To consider the more extreme cases, ftu-ther experiments were undertaken. A 
principal condition for a network to perform accurately is the quality and proper 
representation of the training cases. For training the networks considered in tab. 2, a 
number of data sets covering unusual and boundary cases were recorded. They consisted of 
55 patterns for networks 9 and 10,110 patterns for networks 11,12 and 13, and 120 

patterns, representing the breadth of the problem, for networks 14,15 and 16. Network 

performance and test results presented in tab. 2 are discussed in the following section. 

2.6. Performance and analysis of BP models on test data 

Training patterns 

Neural networks learn relatively better when their inputs are simplified. This is 

demonstrated by the networks in tab. 1. Training files for all these networks were 
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Table 2. Application of the back-propagation algorithm 
to data covering more extreme cases 

BP t ne Spec. 9 10 11 12 13 14 15 16 Number of 2 with 2 with 2 with 12 with 12 with 2 with hidden similar similar similar hidden similar hidden similar similar layers Spec. Spec. Spec. layer I Spec. layer I Spec. Spec. Training Raw 55 110 patterns normed & 120 patterns normed & 
data train. * patt. ** scaled (ý-, -)0.5 scaled (±)0.5 
Learning 
rate (input 0.5 0.5 0.5 0.1 0.1 0.1 0.5 0.1 
to next 
layer) 
Learning 
rate (hidden 0.5 0.5 0.5 0.1 0.1 0.1 0.5 0.1 
to output 
layer) 
Momentum 
term (input 0.5 0.5 0.5 0.9 0.9 0.9 0.5 0.9 
to next 
layer) 
Momentum 
term 
(hidden to 0.5 0.5 0.5 0.9 0.9 0.9 0.5 0.9 
output 
layer) 
Total RMS 
error 0.4 0.04 0.04 0.04 0.05 0.02 0.03 0.03 
Maximum 
output error 0.69 0.09 0.09 0.09 0.1 0.09 0.09 0.09 
Iterations 120000 708 545 11-39 358 1192 960 618 
Testing*** Halted 12/18 15/18 14/18 15118 15/18 18/18 18/18 

* Raw training data with 55 patterns. **55 patterns scaled (±)O -5. *** No. of patterns 
correctly recognised on a testing file containing 18 patterns. **** Halted after 120000 iter. 

normalised and scaled between (-±)0.5. Networks such as number 9 in tab. 2 which were 
trained on non-normalised data mostly failed to train. Others (e. cr. network number 10) 1= 

trained on data which were only scaled within a certain range, still had difficulty in 
learning. Networks I to 8 in tab. 1 were additionally assisted in their "pattern recognition" C' - learning task by using input training patterns which consisted of similar versions of only a 
dozen input training patterns. As a result, one of the networks (number 8) managed to learn 
in only 176 iterations. However, when tested on unseen data they all performed poorly. For 
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example, in the case of network number 8, it failed to recognise 4 out of 18 test pattems. This is because an adequate number of training patterns was not available to allow the networks to cover the problem domain. 
To find the least number of inputs to adequately represent the problem, the 

networks in tab. 2 were trained on sequentially larger numbers of different input patterns. As can be seen from the results in tab. 2, training took longer, but performance on testing 
was improved. Networks 14,15 and 16 which were trained on 120 different patterns 
performed relatively well-Networks 15 and 16 managed to correctly recognise all of the 
test patterns, from a test file containing 18 unseen patterns. 

Architecture 

Choosing the right number of hidden processing elements and layers for the 0 :D 
application has been carried out through a process of trial-and-error. The process was time 
consuming tedious and at times contradictory. For example, increasing the number of tP hidden processing elements generally resulted in longer learning. Sometimes however 
increasing the numbers slightly actually resulted in decreasing learning time. In general, 
too many processing elements resulted in poor generalisation, i. e. the networks tended to 
memorise the training set rather than learn it. Defining too few hidden processing elements t7 

mostly resulted in. incorrect classification. Experimentation eventually lead to an 
architecture consisting of 6 hidden processing elements for networks with one hidden layer 
presented in tabs I and 2. All the networks with two hidden layers (e. g. networks 15 and 
16) have 6 processing elements in the first hidden layer and 4 in the second. 

Only a few networks with more than two hidden layers were constructed. It has 
been shown by many researchers (e. g. Blum and Li, 1991 [1]) that a continuous function 
can be well approximated by a static neural network with a single hidden layer, where each 
processing element in the middle layer has a continuous sigmoidal non-linearity. In other 
words, there is no need to build networks with very many middle layers. Despite such 
results, ' 

ffirther work needs to be done to investigate the relationship between accuracy of 
the function being approximated with the number of hidden layers. Chester [3] has pointed 
out that neural networks with two hidden layers appear to provide higher accuracy and 
better generalisation than a network with a single hidden layer. For the benchmark 

considered here, this has actually been confirmed, i. e. networks with two hidden layers 
(e. g. networks 15 and 16 in tab. 2) performed much better than networks with a single 
hidden layer. To accustom such networks to the noise typically present in a process control 
environment, a random noise value between ±0.1 was added to each element of each of 
their input vectors independently. Network 16, managed to train in only 618 iterations. For 

testing, a file containing 18 unseen new patterns was used. Both networks 15 and 16 

managed to correctly recognise all the test patterns. 

2.7. Implementing and testing recurrent back-propagation 

The networks developed in the previous section are static, feed-forward, or non- 

recurrent networks. They are able to approximate non-linear functions to a desired degree 
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of accuracy. As a result, they have been used to model dynamic systems. However, the use 
of dynamic, feed-back, or recurrent networks to represent dynamic systems may be mbre 
appropriate. A recurrent network may be able to do a lot more than a back-propagation 
network with the same number of weights [6]. No theorem confirming this yet exists. The 
feed-back in recurrent networks implies local memory characteristics and may cause instability. In a stable network, successive iterations produce smaller and smaller output 
changes until eventually the outputs become constant. In an unstable network, the process 
may never end. Chaotic systems, which have interesting properties of their own, are one 
example of unstable networks. 

In the recurrent back-propagation architecture used for this application, in addition 
to the feed-forward connections from the input layer to the hidden layer and from hidden 
layer to the output layer, feed-back connections were made between hidden units and 
between output units. All the processing elements in these layers have feed-back 
connections to themselves and to every other processing element in that layer. As a resultý 
the generated outputs depend not only on the current inputs but also on the current state of 
the units in layers with feed-back connections. The feed-back loops in the output layer are 
only there to allow the network to learn relationships between successive output vectors in 
a sequence (as potentially such a relationship can exist in the benchmark). More 
importantly, however, are the feed-back loops in the hidden layer which allow the network 
to form a "memory trace" of the input sequence. Such architectures are ideally suited for 
control and modelling of the forward or inverse dynamics of a chemical process control 
system. This is because such systems are themselves non-linear dynamicil systems. 

The experiments compounded in tab. 3 are concerned with seeking to apply the 
recurrent back-propagation network to the experimental data within a noisy enviTonment. 
Networks 17 and 18 were trained on data consisting of 110 patterns representing the 
problem. As can be seen from the results, network number 17 did not do well on testing. 
Network 18, with a more suitable configuration for the application, performed slightly 
better. Networks 19,20 and 22 which were trained on a data file containing 120 patterns 
performed much better. 

Using a testing file containing 18 unseen patterns, network 19 managed to 
correctly recognise 16 patterns. Networks 20 and 22 have the same configuration as 19. I 

They were trained on the same training file as 19, but in a much noisier environment 
(starting with 10% noise rather than 1% noise). As a result, they managed to correctly 
recognise all the test patterns. Network 20 managed the training in 1988 iterations. To 
improve upon this noise was reduced in larger steps for network 22, i. e. a decay rate of 
0.02 was used rather than 0.01. As a result, the number of iterations for network 22 was 

reduced to 8232. The stopping criteria for training the networks 20 and 22 was for the value 

of "the maximum output unit error" to reach 0.1 or less. By increasing this value to 0.2, 

these networks managed to recopise the patterns satisfactorily after training for a 

significantly reduced number of iterations. These results are presented in columns tab. 3. 

From the results given in tab. 3, it is clear that network 23 correctly recopised all the 

unseen test patterns after training for only 205 cycles. 
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Table 3. Application of recurrent back-propagation to data 0 
BP recurrent 17 18 19 20 21* 22 23** 
networks 
Noise 0.01 0.01 0.01 0.1 0.1 0.1 0.1 
Decay 0.001 0.001 0.001 T 6-561-1 -6.661 1 0.002 1 0.002 

110 patterns 
Training data normed & scaled 120 patterns normed & scaled (±0.5) 

(±0.5) 
Learning rate 
constant (input 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
to next layer) 
Learning rate 
constant 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
(hidden to 
output layer) 
Momentum 
term constant 0.8 0.9 0.9 0.9 0.9 0.9 0.9 
(input to next 
layer) 
Momentum 
term constant 0.8 0.9 0.9 0.9 0.9 0.9 0.9 
(hidden to 
output layer) 
Total RMS 0.05 0.04 0.04 0.03 0.04 0.03) 0.04 
error 
Max. output 0.1 0.09 0.1 0.09 0.19 0.09 0.19 
unit error 
Iterations 1231 1381 1962 1988 461 832 205 

9 *** 
1 13/18 14/18 16/18 18/18 18/18 18/18 18/18 

The same as net 20 but train. halted earlier. 
The same as net 22 but train. halted earlier. 

*** No. of patterns correctly recognised on a testing file containing 18 patterns. 

By applying noise randomly to each input pattern just before it is presented to the 

network, the network operates on a series of approximations to the input. Such a technique 
forces the network to generalise; this is one of the key goals in the applications of neural 
networks. As tab. 3 demonstrates, using slightly noisy data effectively improves the 
training time and leaming. This result demonstrates the importance of noise in training, 

which is in sharp contrast to conventional systems, and demonstrates the neural networks 
potential in dealing with noisy data that occurs in process control encrineering. 
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Discussion 

This section has discussed experimental results and some of the main considerations in the process of deciding upon a suitable configuration for the benchmark. Applying a small amount of noise randomly to each input pattern actually forces the 
networks to generalise more readily. In process control applications such robustness to 
noisy data is a principal issue. Networks with two intermediate layers perform particularly 
well. To represent dynamic systems, feed-forward networks can be extended to include 
feed-back connections. Such dynamic models have been developed by adding feed-back 
connections between hidden units and between output units of the feed-forward networks. Dynamic networks are able to do a lot more than a back-propagation network with the 
same number of weights [6]. Discussions on the networks which performed well, and some 
general conclusions for all the experiments undertaken in this study are presented in the 
followino, section. MI 

I Analysis of experimental results 

Section 2 described a benchmark in which, using data collected from a process 
control rig, neural networks modelled the underlying relationships of the training set in a t; 
noisy environment. Such characteristics are of enormous importance in process control and 
possibly show their greatest area of promise. This section further discusses the benchmark 
network performance and the experimental results presented in Section 2. 

3.1. The benchmark 

In the benchmark described in Section 2, patterns consisting of fluid flow readings 
from a process control rig were gathered. The patterns could be divided into three broad 
categ ories representing the state of the system output. Various neural paradigms were 
applied to the patterns to recognise the categories. The outputs of such networks could be 
used as inputs to a multi input neural controller, enabling the controller to take account of 
the exact state of the flow rate. The general steps taken in the development of the networks 
for the process control application were as follows: 

* creating various network structures, tP 

" gathering and preparing training data, 
" performing training, 
" comparing performances, 
" gathering and preparing new data for testing, 

performing testing, 
analysing and applying the results. 

On completion of these stages, the networks could be embedded in stand-alone 
process control applications. 
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3.2. On using the back-propagation learning rule - 

During training, a learning rule is required for systematically updating the weights of a network in response to input signals and the values supplied by the transfer function. The objective of learning depends on the application. In the benchmark considered here, 
the primary objective was pattern recognition and the learning rule was required to classify sample data and predict successfully using new data in a noisy environment. When 

Z controlling a largely unknown system, the objective of learning is to approximate non- linear functions and/or to make the system follow the desired response. Learning rules are broadly categorised into to two types: 
"Supervised" learning rules such as error based approaches including stochastic Boltzmann machines and error corrections, i. e. back-propagation and least mean square 

paradigms. 
* "Unsupervised" or output-based paradigms such as the Hebbian and competitive learnin rules. In the supervised learning paradigms, training data files contain sets or 90 

sequences of vector pairs used for training a network. Each vector pair is composed of an input vector and a target vector. In the application considered for this paper and since we 
have defined the exact output for every input in the training set, supervised networks were 
suitable candidates and a number of them were applied to the experimental data as 
discussed in Section 2. 

The network of choice was a multi-layered fully connected feed-forward network 
trained with back-propagation. Sample results applying back-propagation techniques to 
data sets covering unusual and boundary cases are highlighted in tab. 4. To accustom the 
networks to the noise typically found in a process control environment, random noise in the 
range ±0. I was added to the training data sets. MZ 

Table 4. Application of the back-propagation algorithm to experimental data. 
This table is a reduced version of tab. 2. 

Networks 12 13 14 16 
Hidden layers 1 2 (similar) 1 2 (similar) 
Training patterns I 

I 10 normed & scaled 120 normed & scaled 
Iterations 1139 358 1192 618 
Testing (patterns 
recognised) 14/19 15/18 15/18 18/18 

Training for all the networks was terminated when the total RMS error reached 
less than 0.05 and the maximum output error reached less than 0.1. At the start of training 
weights for all the networks were initialised to a range between -1.0 and +1.0. With larger 

values it was found that learning was generally shorter but the averacre RMS error as well 
as the maximum output unit error tended to be higher. To find the least number of inputs to 

adequately represent the problem, networks were trained on sequentially larger numbers of 
different input patterns; the final training data consisting of 120 different patterns. 
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As shown in tab. 4, networks with two hidden layers generally appeared to 
provide higher accuracy and better generalisation than those with a single layer. Network 11 0 ID number 16, which has two hidden layers with similar specifications, managed to correctly 
recoprise all the test patterns after only 618 iterations. When tested on unseen data sets 
with noise levels of 0.1,0.15 and 0.2 added to them, the network managed to recopise 
18/18,17/18 and 16/18 respectively. All the networks with 2 hidden layers have 6 
processing elements in the first hidden layer and 4 in the second. More hidden process a in 
elements generally resulted in poor generalisation, i. e. the networks tended to memorise the 
training set rather than learn it. Definina too few hidden processing elements mostly 
resulted in incorrect classification. 

3.3. Extending the BP feed-forward networks with feed-back 

The multi-layered feed-forward networks in tab. 4 used the Generalised Delta 
Rule to perform static mappings of input data to output data. By allowing extensions in the 
form of feed-backs of hidden and output units to themselves and to other units in the same 
layer as illustrated in fig. 3, networks may exhibited sequential behaviour. In other words, 
their generated output depends both on the current inputs and on the current state of the 
units in layers with feed-back connections. However, there is no well established learning 

rule currently known for such a recurrent network. In fact the theory of dynamic neural 
networks (compare 

*d 
with static networks) is in general, not well developed. Hence, 

Rumelhart's method [9] was first used to produce an equivalent static network. The 
Generalised Delta Rule was then applied to train the network. The main drawback with 
unwinding a recurrent network in time to create an equivalent feed-forward network is the 

memory resources required. 

Input layer Hidden layer output layer 

Fig. 3. A three layer recurrent network 

259 



Sample experiments seeking to apply the recurrent back-propagation network to the experimental data within a noisy environment are included in tab. 5. This table highlights some of the dynamic networks presented in tab. 3 which in addition, includes the 
various learning parameter values used. 

Table 5. Application of recurrent back-propagation to data 
This table is a reduced version of tab. 3 

Networks 19 20 22 23 24 25 
Training data 120 120 120 120 120 120 
Noise 0.01 0.1 0.1 0.1 0.2 0.2 
Decay 0.001 

1 
0.001 0.002 0.002 0.05 0.05 

Iterations 1962 1988 T3 2 205 stopped 1000 local min. 340 
Testina with 
0.0 noise 

16/18 18/18 18/18 18/18 not applicable 16/18 

Testing with 
±0.1 noise 

13/18 18/18 18/18 18/18 !i not applicable 15/18 i 

The stopping criterion for training networks 19,20 and 22 was based on the 
networks reaching a maximum output error value of 0.1 or less. This value for networks 23, 
24 and 25 was increased to an acceptable value of 0.2. All the networks have the same 
configurations, but were trained using different noise levels. At the start of training, 
weights for the networks were initialised to values between -0.1 and +0.1. 

Using a testing file containing 18 unseen patterns with no noise added, network 19 
managed to correctly recognise 16 patterns. Network 20, which was trained in a much 
noisier environment than 19 (the level of noise starting at 0.1 rather than 0.01) correctly 
recognised all the test patterns. Thus, network 20 actually used the additional noise to 
improve its performance. 

To reduce the number of iterations of network 20, the added noise was reduced in 
larger steps in network 22, which is otherwise similar to 20, i. e. a decay rate of 0.02 rather 
than 0.0 1 was used for network 22. As a result, the number of iterations for 22 was reduced 
to less than half of that of 20 (from 1988 to 8332). 

By increasing the stopping criteria (i. e. the maximum output unit error value) from 
0.1 to 0.2, network 23, which is otherwise the same as 22, managed to correctly recognise 
all the test patterns after only 205 iterations. Network 25 started training with a significant 
amount of noise (0.2). Noise was then reduced in much larger steps than in the case of 

network 23 (i. e. 0.05 compared with 0.002). The network managed to recognise 16 patterns 

after 340 iterations. It is clear, that in general, a large amount of noise (e. g. more than 0.15) 

and/or a reduction of noise in large steps causes instability, i. e. training in such an 

environment does not necessarily produced smaller and smaller output changes. For 

example, training for network 24 which is exactly the same as 25 was halted after 1000 

cycles, as it had clearly reached a local minimum. 
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When tested on unseen patterns with a noise value between -0.1 and +0.1 added at 
random, correctly trained networks (e. g. network 23) could recopise all the patterns. However, networks generally showed a degradation in performance with any increase in 
the noise level. For example, network 25 which recopised 16 out of 18 patterns with no 
noise added, only recognised 15 patterns, when a random noise between -0.1 and +0.1 was 
added to the test patterns. On increasing the amount of noise to ±0.15, the network only 
managed to recognise 14 patterns. 

In general, training these networks proved to be more problematic than that of the 
static networks presented in tab. 1. Using slightly noisy data effectively improved the 
leaming and the training cycles. With specific reference to their application in control 
systems, such dynamic networks are particularly appropriate for system modelling, 
identification and control. However, the general theory with regard to leaming rules and 
architecture needs to be further developed. 

4. Conclusions and discussion 

The study reported in this paper has shown that ANNs may be suitable for solving 
many process control engineering problems particularly in modelling control applications 
in a noisy environment. They have already been used successfully as non-linear filters to 
extract signals from noise. In contrast, conventional approaches suffer from sharp increases 
in computation and implementation costs with non-linearity. As a result, such approaches 
(e. g. the general lest-mean-square method extended on the basis of a truncated Wiener 
series) have only been used in weak non-linear cases. Rather than filtering the noise as a 
pre-processing operation, this work has investigated and analysed the effect of adding 
noise. To accomplish this, two principal objectives were set, namely, to address process 
control issues regarding noise and to investigate and evaluate mapping and generalising 
attributes of various paradigms for neuro-control solutions. 

These objectives have been achieved and in doing so have provided the following 
important conclusions: 

e The whole process of applying feed-forward neural networks to a process 
control application, particularly in a noisy environment, has been experimentally analysed. 
Such networks are inherently stable as no information is fed back during operation. 

* By extending the static networks with feed-back connections, the utility of 
dynamic networks in neuro-gontrol applications were practically examined. When 

conducting the experiments, it was found that training these networks with feed-back is 

more problematic (e. g. in terms of stability). However, such recurrent networks offer a 

great potential for further research in process control applications. 
9 Neural networks robustness to noisy data has been analysed. By adding a 

significant amount of noise to each element of all the input training vectors independently, 

a robust weight set was -developed. On testing, it was found that careful use of slightly 

noisy data effectively improved the networks performance in terms of generalisation and 
learning as well as causing a reduction in the number of training cycles. Adding a small 

261 



amount of noise randomly, forced the networks to train on a series of approximations to the 
input patterns. This drove. the netwoTks to generalise, resulting in an improvement in týeir 
performance. In other words, the added noise actually helped the networks in their pattern 
recognition task. 

From the neuro-control viewpoint, such robustness to noisy data that occurs in real 
world applications is an important attribute. It indicates the neural networks potential in 
solving problems where conventional solutions have proved inadequate, if not impossible. 
A reasonable conclusion to be drawn from the literature surveyed, as well as the 
experimental work carried out for this paper is that process control as a promising area for CP ftirther analysis and development of neuro-control systems. 
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