
Security for Mobile Grid Systems

Tariq Falah Alwada’n

Software Technology Research Laboratory

Faculty of Technology

De Montfort University

United Kingdom, England

A thesis submitted for the degree of Doctor of Philosophy

2012

Abstract

Grid computing technology is used as inexpensive systems to gather and utilize compu-
tational capability. This technology enhances applications services by arranging ma-
chines and distributed resources in a single huge computational entity. A Grid is a
system that has the ability to organize resources which are not under the subject of
centralized domain, utilize protocols and interfaces, and supply high quality of service.
The Grid should have the ability to enhance not only the systems performance and job
throughput of the applications participated but also increase the utilization scale of re-
sources by employing effective resource management methods to the huge amount of
its resources. Grid mobility appears as a technology to facilitate the accomplishment
of requirements for Grid jobs as well as Grid users. This idea depends on migrating
or relocating jobs, data and application software among Grid nodes. However, making
use of mobility technology leads to data confidentiality problems within the Grid. Data
confidentiality is the protection of data from intruders’ attacks. The data confidentiality
can be addressed by limiting the mobility to trusted parts of the Grid, but this solution
leads to the notion of Virtual Organizations (VOs). Also as a result of mobility technol-
ogy the need for a tool to organize and enforce policies while applying the mobility has
been increased. To date, not enough attention has been paid to policies that deal with
data movements within the Grid. Most existing Grid systems have support only limited
types of policies (e.g. CPU resources). A few designs consider enforcing data policies
in their architecture. Therefore, we propose a policy-managed Grid environment that
addresses these issues (user-submitted policy, data policy, and multiple VOs).
In this research, a new policy management tool has been introduced to solve the mobil-
ity limitation and data confidentiality especially in the case of mobile sharing and data
movements within the Grid. We present a dynamic and heterogeneous policy manage-
ment framework that can give a clear policy definition about the ability to move jobs,
data and application software from nodes to nodes during jobs’ execution in the Grid
environment. This framework supports a multi-organization environment with differ-
ent domains, supports the external Grid user preferences along with enforces policies
for data movements and the mobility feature within different domains.
The results of our research have been evaluated using Jade simulator, which is a soft-
ware framework fully implemented in Java language and allows agents to execute tasks
defined according to the agent policy. The simulation results have verified that the re-
search aims enhance the security and performance in the Grid environments. They
also show enhanced control over data and services distribution and usage and present
practical evidence in the form of scenario test-bed data as to the effectiveness of our
architecture.

i

Acknowledgements

I would first like to thank my God, without whom none of this work would have been

possible.

My sincere thanks and deep gratitude go to my supervisor Dr Helge Janicke who

provides me with supervision, guidance, research input, and patience in the completion

of this research. It has been a pleasure to have the opportunity to work with you all

during the course of this research. Also I would like to thank my second supervisor Dr

Omer Aldabbas for his advice, encouragement and guidance on many aspects relating

to my research. He constantly encouraged me to remain open-minded and always to

explore beyond accepted boundaries.

My father’s inexhaustible store of knowledge and experience proved invaluable

during my studies, and he imparted it as to a friend and equal rather than as to a son.

His critical approach to the world inspired in me a similar attitude which has served

me well, in my life as for this study. My mother’s loving care saw me through many

difficult times as this work progressed. I thank them both from the bottom of my heart.

I am thankful to my brothers Mohammed and Firas as well as my sisters Tagreed,

for their unfailing encouragement and support in everything I have tried to do through-

out my life. They have been a tower of strength without whom I could not have

achieved what I have done, and who have made me the person I am.

I wish to express my thanks to all my colleagues in the STRL Group for their

support, especially Hamza Aldabbas for his help and support. I am exceedingly for-

tunate in having such warm and generous friends in Jordan (Abd Alsalam, Thair, Be-

lal, Fawaz, Hazem and their families) and in the UK (Naser, Ahmed, Mhmoud, Mo-

ii

hammed Alhelali and Mazen Barkat). Because of the pressures of my study, I proved a

very bad correspondent, but they did not give up on me. To them I say, “Thank you for

your persistence in keeping in touch with me when I did not reciprocate on so many

occasions. Your perseverance is hugely appreciated.”

Also I would like to say thanks to my best friends Anne and Mohammed for the

outstanding job they did on proofreading my thesis. Thank you so much for your

diligence in getting my thesis edited in such a short time.

Finally, I would like to deeply thank my cousin Mohammed Alwadan for his sup-

port and guidance through my master and PhD degree and all of my uncles and aunts

for their supports.

iii

Declaration

The thesis presented here is my own and original. It is submitted for the degree of Doc-

tor of Philosophy at the Software Technology Research Laboratory (STRL), Faculty of

Technology, De Montfort University, United Kingdom.

iv

Publications

1. Tariq Alwada’n, Hamza Aldabbas, Helge Janicke, Thair Khdour and Omar Ald-

abbas. “Dynamic Policy Management in Mobile Grid Environments”. Interna-

tional Journal of Computer Networks and Communications (IJCNC), Vol. 4, No.

2, March 2012 .

2. Tariq Alwada’n, Helge Janicke, Omer Aldabbas and Mai Alfawair. “New Frame-

work for Policy Support for Mobile Grid Services”. Risk and Security of Internet

and Systems (CRiSIS), IEEE Computer Society. Timisoara, Romania 2011.

3. Tariq Alwada’n, Helge Janicke, Omer Aldabbas and Hamza Aldabbas. “New

Framework for Dynamic Policy Management in Grid Environments”. In Pro-

ceedings of CoNeCo2011 in Communications in Computer and Information Sci-

ence, Volume 162, Part 2, pp. 297-304, Ankara, Turkey (LNCS, Springer) 2011.

4. Hamza Aldabbas, Tariq Alwada’n, Helge Janicke and Ali Al-Bayatti. “Data

Confidentiality in Mobile Ad hoc Networks”. International Journal of Wireless

and Mobile Networks (IJWMN) Vol. 4, No. 1, February 2012.

5. Hamza Aldabbas, Helge Janicke , Radwan AbuJassar and Tariq Alwada’n. “En-

suring Data Confidentiality And Privacy In Mobile Ad hoc Networks”. The 3rd

International Conference on Wireless and Mobile Networks (WiMoNe-2011),

(LNICST, Springer),Bangalore, India, January 2012.

v

Contents

Abstract i

Acknowledgement ii

Declaration iv

Publications v

1 Introduction 2

1.1 Research Motivation . 3

1.2 Research Methodology . 5

1.3 Research Questions . 6

1.4 Research Contributions . 6

1.5 Thesis Outline . 9

2 Literature Review 12

2.1 Introduction . 12

2.2 Distributed System . 13

2.2.1 Distributed Systems Architectures 14

2.2.1.1 Grid Computing 14

2.3 Grid Categories . 16

2.3.1 Solution Category . 16

2.3.1.1 Computational Grid 17

2.3.1.2 Data Grid . 18

vi

2.3.1.3 Service Grid . 18

2.3.2 Scale Category . 18

2.3.2.1 Cluster Grids . 18

2.3.2.2 Intra-grids . 19

2.3.2.3 Extra-grids . 19

2.3.2.4 Inter-grid . 19

2.4 Grid Architecture . 19

2.4.1 Grid Architecture Layers . 20

2.4.2 How a Grid Works . 21

2.4.3 Information Service . 22

2.4.4 Replica Catalogue . 22

2.5 Resource Broker (Scheduler) . 23

2.5.1 Resource Broker Tasks . 23

2.5.2 Resource Broker Schemes 24

2.5.2.1 Centralized Scheme 24

2.5.2.2 Hierarchical Scheme 24

2.5.2.3 Distributed Schemes 25

2.6 Policy . 26

2.6.1 User Policy . 26

2.6.2 Grid Policy . 27

2.6.3 Resource Policy . 27

2.7 Mobility . 27

2.7.1 Weak Mobility . 28

2.7.2 Strong Mobility . 29

2.7.3 Grid Mobility . 29

2.7.3.1 Job Mobility . 30

2.7.3.2 Data/Application Software Mobility 30

2.8 Security . 30

2.8.1 System Soultions . 31

2.8.2 Behavioural Solutions . 31

vii

2.9 Policies . 33

2.9.1 Policy Categories . 33

2.9.1.1 User Policy . 33

2.9.1.2 Grid Policy . 34

2.9.1.3 Resource Policy 34

2.10 Grid Technology Infrastructure . 34

2.10.1 Open Grid Forum . 34

2.10.1.1 Job Submission Description Language 35

2.10.1.2 GridFTP . 35

2.10.2 Globus Alliance . 36

2.10.2.1 Security . 36

2.10.2.2 Data Management 37

2.10.2.3 Execution Management 37

2.10.2.4 Information Services 37

2.10.3 The Grid and Industry (GridPP) 38

2.11 Languages for Describing Grid Jobs 38

2.11.1 Job Description Language (JDL) 38

2.11.2 Globus Resource Specification Language (RSL) 39

2.12 Dynamic Policy Management Framework 39

2.12.1 Account Mapping . 40

2.12.2 Policy Mapping . 41

2.12.3 Partial Policy Information 43

2.13 Active Network for Grid Management 46

2.14 Policies for Data Movement . 47

2.15 Grid Computing Challenges . 49

2.15.1 Security Challenges . 49

2.15.2 Accounting . 51

2.15.3 Resource Brokering . 51

2.15.4 Job Description . 52

2.16 Summary . 52

viii

3 The Architectural Model 53

3.1 Introduction . 53

3.2 Framework for Policy Management 54

3.2.1 A Single Virtual Organization 55

3.2.1.1 Policy Tools . 57

3.2.1.2 The Policy Repository 57

3.2.1.3 Policy Decision Point (PDP) 58

3.2.1.4 Policy Enforcement Point (PEP) 58

3.2.2 Multiple Virtual Organizations 58

3.3 Architecture Structure and Components 60

3.4 Grid Portal . 61

3.4.1 Grid Application Requirements 61

3.4.2 Job Requirements . 62

3.5 Grid Node . 62

3.6 Resource Broker . 63

3.6.1 Resource Broker Architecture 63

3.6.1.1 Information Service 63

3.6.1.2 Replica Catalogue 64

3.6.2 Grid Policy Agent . 64

3.6.2.1 Data/Application Software Agent 66

3.6.2.2 Job Agent . 67

3.6.2.3 Resource Agent 68

3.6.2.4 Resource Checker 68

3.6.3 Resource Broker and Grid Policy Agent Functionality 69

3.6.3.1 Job Start Time (JST) establishment 69

3.6.3.2 Resource Discovery 69

3.6.3.3 Mobility . 72

3.6.3.4 Resource Reservation 77

3.6.3.5 Monitoring and Job Live Time Organizing 78

3.7 Summary . 79

ix

4 A Computational Model 80

4.1 Introduction . 80

4.2 Objects . 80

4.2.1 Node . 81

4.2.1.1 Computation Nodes 81

4.2.1.2 Storage Nodes . 82

4.2.1.3 Special Nodes . 82

4.2.2 Data . 82

4.2.3 Policy . 82

4.2.4 Application Software . 83

4.2.5 Grid Job . 83

4.2.6 Grid Application . 84

4.3 Mechanisms . 85

4.3.1 Timing Mechanism . 85

4.3.2 Communication Mechanism 86

4.3.3 Termination Mechanism . 87

4.3.4 Failure Mechanism . 87

4.3.5 Mobility Mechanisms . 88

4.4 Summary . 93

5 Grid And Job Description Language 94

5.1 Introduction . 94

5.2 Language overview . 95

5.3 Structure of the language . 96

5.3.1 Grid Structure Language . 96

5.3.1.1 Grid Name . 97

5.3.1.2 Nodes . 97

5.3.2 Policy . 97

5.3.3 Node Structure Language 99

5.3.3.1 Node Hardware Specification 100

x

5.3.3.2 Node Application 100

5.3.3.3 Node Data . 101

5.3.3.4 Policy . 102

5.4 External-JSDL Overview . 104

5.5 External-JSDL Structure . 105

5.5.1 Job Identification . 106

5.5.2 Application . 107

5.5.3 Hardware Specification . 108

5.5.4 Data . 109

5.5.5 Job Data . 109

5.5.6 Policy . 110

5.6 Summary . 112

6 Mobility And Grid Components Language 114

6.1 Introduction . 114

6.2 Internal-JSDL Structure Components 116

6.2.1 Structure . 116

6.2.2 XML Encoding for Internal-JSDL Components 117

6.2.2.1 The main Component (MJob) 117

6.2.2.2 Job Element . 117

6.3 Job Identification (JobId) . 118

6.3.1 Job Name . 118

6.4 Data . 118

6.4.1 Source . 119

6.4.1.1 URI . 119

6.5 Mobility . 119

6.5.1 Application Software . 120

6.5.1.1 The Application Name (ASName) 121

6.5.1.2 Source Node . 122

6.5.2 Data . 122

xi

6.5.2.1 Data Name (DName) 122

6.5.2.2 Source Node . 123

6.5.3 Running Job . 123

6.5.3.1 Job Name . 124

6.5.3.2 Current Job Status 124

6.5.3.3 Source Node . 125

6.5.3.4 Destiniation Node 125

6.6 Policy . 125

6.6.1 Hosts and Domains . 126

6.6.1.1 Candidate Hosts 127

6.6.1.2 Restricted Domains 127

6.6.2 Exclusive Execution . 128

6.6.3 Resource Mobility . 128

6.7 Application Software . 129

6.7.1 Application Software Name 129

6.8 Output . 130

6.8.1 Destination . 130

6.8.1.1 URI . 131

6.9 Summary . 131

7 Simulation 132

7.1 Introduction . 132

7.2 Simulation . 132

7.2.1 Simulation Description . 133

7.3 Grid Configuration . 133

7.4 Node Configuration . 134

7.4.1 Node Hardware Specification 135

7.4.2 Node Data Specification . 135

7.4.3 Node Application Software Specification 137

7.4.4 Node Policy Specification 138

xii

7.5 Job Configuration . 139

7.5.1 Job Hardware Specification 140

7.5.2 Job Data Specification . 140

7.5.3 Job Application Software Specification 140

7.5.4 Job Policy Specification . 141

7.6 Summary . 142

8 Simulation Validation and Evaluation 143

8.1 Introduction . 143

8.2 Simulation Validation . 144

8.2.1 First Scenario: Grid Configuration 144

8.2.2 Second Scenario: Node Configuration 144

8.2.3 Third Scenario: Job Configuration 145

8.3 Evaluation . 147

8.3.1 Rejected jobs . 152

8.3.2 Overall Nodes Usage . 152

8.4 Summary . 153

9 Conclusions and Future Work 155

9.1 Summary . 155

9.2 Contributions . 157

9.3 Future Work . 159

xiii

List of Figures

2.1 The Layers of Grid Architecture [54] 20

2.2 How Grid Works . 22

2.3 Centralized Scheme . 25

2.4 Hierarchical Scheme . 25

2.5 Distributed Schemes . 26

2.6 Globus Toolkit Architecture [13] . 36

2.7 Dynamic Policy Management Framework 39

2.8 Account Mapping . 41

2.9 Policy Schema Map . 42

2.10 Inter-Schema Maps generation . 43

2.11 Grid System Architecture [119] . 46

2.12 Data Movements over the Grid System [44] 48

3.1 Single Vrtuial Organization Policy Management Framework 56

3.2 Multiple Vrtuial Organization Policy Management Framework 59

3.3 Grid Architecture . 61

3.4 Grid Portal . 61

3.5 Mobile Agent Architecture . 65

3.6 Policy Levels . 66

3.7 Resource Discovery and Mobile Policy Algorithm 70

3.8 Resource Discovery Step (4) . 72

3.9 Application software Mobility Steps (5 and 9) 73

xiv

3.10 Data Checking Step (6) . 73

3.11 Job Migration Steps (7 and 8) . 75

3.12 Data Migration (Move) Step (9) . 76

3.13 Data Migration (copy) Step (9) . 77

4.1 Grid Resources (Infrastructure) . 92

4.2 Grid Resources after Mobility . 93

5.1 A Grid Structure Schema . 96

5.2 Grid Policy Schema . 97

5.3 Node Structure Schema . 99

5.4 Node Application Software Schema 101

5.5 Node Data Schema . 102

5.6 Node Policy Schema . 102

5.7 External-JSDL Structure Schema . 106

5.8 Job Identification Schema . 107

5.9 Application Software Schema . 107

5.10 Resource Schema . 108

5.11 Data Schema . 109

5.12 Job Data Schema . 109

5.13 Policy Schema . 110

6.1 External-JSDL and Internal-JSDL 115

6.2 Internal-JSDL Schema . 116

6.3 Data Schema . 118

6.4 Mobility Schema . 120

6.5 Policy Schema . 126

6.6 Application Software Schema . 129

6.7 Output Schema . 130

7.1 Main Simulation Interface . 134

7.2 Node Configuration Interface . 135

xv

7.3 Data Configuration Interface for a Single Node 136

7.4 Application Software Configuration Interface for a Single Node . . . 137

7.5 Policy Configuration Interface for a Single Node 138

7.6 Job Configuration Interface . 139

7.7 Application Software Configuration Interface for Single Job 141

7.8 Policy Configuration Interface for a Single Job 142

8.1 Screen-Shot of Test-1 Grid Environment 145

8.2 Screen-Shot of XML File for Test-1 Grid Policy 145

8.3 Screen-Shot of Test-1 Grid Environment showing four Nodes 146

8.4 Screen-Shot of XML Files for Test-1 Node Policies 146

8.5 Screen-Shot of XML Files for Test-1 Job Policies 147

8.6 Rejected Jobs with Job Mobility . 148

8.7 Rejected Jobs with Data Mobility . 148

8.8 Rejected Jobs with Application Software Mobility 149

8.9 Rejected Jobs with Job, Data and Application Software Mobility . . . 149

8.10 Overall Used Nodes with Job Mobility 150

8.11 Overall Used Nodes with Data Mobility 150

8.12 Overall Used Nodes with Application Software Mobility 150

8.13 The overall Used Nodes with Job,Data and Application Software Mo-

bility . 151

xvi

List of Tables

2.1 Grid Computing vs. other Distributed Systems 17

2.2 Globus Services . 36

4.1 Grid Nodes Hardware Specification 90

4.2 Grid Nodes Application/Data Specification 90

4.3 Grid Nodes Policy Specifications and Running Jobs 91

4.4 Job Specification and Application Software Requirements 91

4.5 Job Domain/Policy . 91

1

Chapter 1

Introduction

Due to the advances in communication technology and global system of interconnected

computer networks (internet), Grid computing appear as a result of a combination of

multi-network computer system to develop a wide range and heterogeneous system

used to solve scientific or industrial problems [50]. A grid is a system that should have

the ability to organize resources (resources here refer to the management of computing

resources. For example: computer, software applications, etc.) which are not subject to

a centralized domain, utilize protocols and interfaces and supply high quality of service

[58]. Thus, the major advantage of Grid computing is the capability to organize and

share resources [25], [90]. As a result of such technology many challenges need to be

overcome to develop this technology, such as finding suitable resources and reducing

the number of rejected jobs. There are a lot of contributions to solve some of these

challenges such as grid mobility.

Mobility is the ability to migrate or relocate jobs, data and application software among

grid nodes. These migrations depend on the grid’s users and the grid’s nodes policies.

Mobility facilitates the accomplishment of requirements for grid jobs as well as grid

users. It also assists grid evolution, improves performance of operating applications by

relocating data to the target host, therefore reducing the communication consumption

and reducing load balancing issues. David G. Rosado et.al [117] described the mobility

as “In the purview of Grid and Mobile Computing, Mobile Grid is an heir of the Grid,

2

which addresses mobility issues, with the added elements of supporting mobile users

and resources in a seamless, transparent, secure and efficient way [112], [116], [17]”.

Computational mobility may also be known as a control migration, data migration, link

and object migration [28]. This type of migration allows the data and codes to migrate

and execute on various systems across the network. Also it offers movable execution

control and the ability to connect software elements at runtime whilst migrating from

one system to another and back to the original system again. Sze-Wing Wong et.al

[63] have introduced a new mobile grid services that can enhance the fixed grid service

with migration capability, but they did not give enough attention to the policy aspects

of their design.

Policies are groups of regulations, standards and practices written by the administrators

of resources about how their resources or jobs can be handled and used. Every resource

applies its own security policy that may result in the refusal of requests for utilizing its

resources. Security has become a critical aspect in checking the subject trying to use a

service (authentication), and in verifying whether it is allowed or not, to use the service

(authorization). Policies specify the way that a specific job should be accomplished,

how security is applied in a domain and how an organization organizes, secures and

distributes their resources.

1.1 Research Motivation

Any secure grid environment should provide mechanisms to secure authentication, re-

source protection, authorization, communication, data transfer and encryption [77].

One of the most important security challenges that face the grid environment is co-

ordinating users’ identities among local and wide networks and dealing with the variety

of local security techniques and trust relationships between resources and users.

It is important to be able to locate and detect the available resources within the grid

environment, and to map jobs to these resources later with respect to the policies of

each entities. The problem begins when policy checking for the resources and jobs

takes place in computational grids. The heterogeneity of policies and attributes leads

3

to a need for policy management tools which can handle both diversity and heterogene-

ity in these policies. In the Globus Toolkit [13], before the job submission, there are

many steps for authenticating users who request resources [45],[118]. However, after

the authentication, there are no further resource access restrictions on how to use the

resources. This is known as “all or nothing”.

Before the users can submit their jobs or run their applications on a certain source or

system they need to assert that this source or system has not been compromised which

could result in their own application or data being stolen.

Currently, there has been much research that focuses on policy management in the Grid

environment [29],[75],[80],[113],[115]. The aim of policy management is “to apply an

integrated management system so that system management, network management, and

application management can co-operate in grid computing” [119].

Each job has different requirements and specifications in order to be executed in the

grid. The grid is a multi-organization environment with different institutes. Each in-

stitute might want to apply some boundaries on how its resources are being utilized

by other institutes. A disagreement between multi-Virtual Organizations (VOs) might

happen in the security aspect for the policy framework. Mobile grid services offer the

ability to move jobs, data and application software from nodes to nodes during jobs’

execution in the grid environment. It has also solved some problem in finding suit-

able resources for the jobs. To facilitate the ability to improve mobile resource sharing

between multiple heterogeneous VOs, a policy management framework is needed to

support the heterogeneity in the policy frameworks in different domains under differ-

ent administrators.

Such a system should take into account user preferences. Few methods consider user

preferences into their policy management frameworks. To date, not enough attention

has been paid to policies that deal with such concerns. Most existing grid systems only

support limited types of policies (e.g. CPU resources). A few frameworks consider en-

forcing data policies in their architecture [44], [60],[81]. We propose a policy-managed

grid environment that addresses the user-submitted policy, data policy, multiple VOs,

as well as the specifications and enforcement of user preferences and resource policies

4

in a grid environment spanning over multiple VOs.

In this research new policy management tools have been introduced that address mo-

bile resource sharing and data movements within the grid. We present a dynamic and

heterogeneous policy management framework that gives a clear policy definition about

the ability to move jobs, data and application software from node to node during jobs

execution.

1.2 Research Methodology

The research method applied in this research is a standard scientific research system,

which comprises the following stages:

1. Literature Review

The research literature stage expressed the research question by arranging the

data and then examining and studying this information.

2. Modelling

Modelling stage is to evaluate and analyse the problem articulated in the research

questions. This model consists of the architectural and computational grid de-

sign.

3. Algorithmic Development

In this stage, a new way with its algorithm, has been created to deal with the

different concerns involved.

4. Prototyping and Evaluation

In this stage, the prototype related to the model has been created. The experi-

mentation progress has been performed and the results have been gathered and

evaluated.

5

1.3 Research Questions

Traditional authorization policy management frameworks work well for a single VO

where the contributing hosts grant the permission to follow a global authorization sys-

tem. However most policy management tools do not provide support for sharing mobile

resources between multiple heterogeneous VOs. Therefore; the research question is:

∙ How does the grid interact with policies for different domains and organi-

zations in the case of Mobile resource sharing and data movements?

This question is divided into a number of subquestions. These are:

1. How to introduce a policy framework that supports a multi-organization environ-

ment over different domains?

2. How to introduce policy management tools that provides support for sharing

mobile resources between multiple heterogeneous VOs?

3. How to design a policy framework that can support the user policy in its final

decision?

4. How to enforce data policies within such a framework designs?

1.4 Research Contributions

The major contribution of this thesis is our new framework for Policy management that

support the following features:

1. Supports a multi-organization environment with different domains.

Grid infrastructure allows contribution and sharing resources at the level of a

Virtual Resource (VR). The VR can be one device, a group of devices or a vir-

tual partition on the correspondent device. Each grid institute has many VRs that

are invited to participate with other contributors in the Virtual Organization (VO)

[113]. Our framework uses well-established concepts from [121] that deal with

multiple VOs (as explained in chapter two). Our contribution in this section is

6

proposing extension to the framework in [121]. The framework in [121] does

not take the mobility technology in its design. Also the user preferences and

data policy enforcement in the finial policy decisions have not been considered

in its construct. Our framework added features for supporting grid user prefer-

ences, along with enforcing policies for data movements and resource mobility

feature within different domains under different administrators. This extension

is introduced in chapter three and has been published in the Communications in

Computer and Information Science Conference (CoNeCo2011) [15] and the In-

ternational Journal of Computer Networks and Communications (IJCNC), 2012

[110].

2. Provide clear support for sharing mobile resources between multiple het-

erogeneous VOs.

Mobility is the ability to move physical or virtual computational resources (soft-

ware code, data, running objects and mobile agents) from one site to another

through a local or wide network. The advantages of such technology are in-

creased resource utilization, enhanced organization between services and re-

sources [17] and improved grid service flexibility [117]. Using the resource mo-

bility feature, services can move across the grid to obtain data from grid nodes,

implement their jobs on those nodes and pass the results back to their original

nodes. The requirements of privacy and security apply to the mobility in secure

grid environment are one of the important demands for both grid user and grid

resources. Our contribution related to this section is introducing our new policy

framework that provides resource mobility by using mobile policy agents that or-

ganizes the mobility for data, jobs, and application software within the grid. This

framework is introduced in chapter three and has been published in the Risk and

Security of Internet and Systems Conference (CRiSIS), IEEE Computer Society,

2011 [14] and the International Journal of Computer Networks and Communi-

cations (IJCNC), 2012 [110].

7

3. Enforce user preferences in its final decision.

Before the users can submit their jobs or run their applications on a certain source

or system they may need a guarantee that this source or system has not been

compromised, which could subject their own application or data to being stolen.

Or they may ask for certain users to be allowed to access the service or their

data. These security issues should be taken into consideration when designing

such a Grid system [65]. Our contribution in this section has been introduced

in chapter three, where we propose an extension to a framework in [121] so as

to be able to provide the features of supporting the grid user preferences in the

final decision before applying the resource mobility feature. This framework has

been published in Communications in Computer and Information Science Con-

ference (CoNeCo2011), Risk and Security of Internet and Systems Conferenc

(CRiSIS2011) and the International Journal of Computer Networks and Com-

munications (IJCNC).

4. Designing Enforcement Mechanisms for Data Policies.

Data is a part of information saved in a grid node, and is utilized by application

software to accomplish specific jobs. The application software can then reach

data whether on a local node or remotely. The data may have been kept on one

or more nodes, or it may arrive with the user job. Not a lot of researches have

given enough attentions to enforcing policies and handling data within the grid

environments. Our contribution in this section is introduced in chapter three,

where we propose an extension to the framework in [121] so as to be able to

enforce policies for data movements before applying the resource mobility fea-

ture. This framework has been published in Communications in Computer and

Information Science Conference (CoNeCo2011), the Risk and Security of In-

ternet and Systems Conference (CRiSIS2011) and the International Journal of

Computer Networks and Communications (IJCNC), 2012 [110].

8

5. Present a new language that supports and expresses the new policy frame-

work.

Our grid system has been simulated using the Jade, which is a software frame-

work implemented in Java language that allows agents to execute tasks defined

according to the agent policy. In order to build the proposed grid system we de-

signed interfaces that help the grid administrators to build their grid with all of

it’s resources. These interfaces give the user the ability to describe and send their

jobs to the grid. These are been introduced in chapter five and six. The language

that is used to design these interfaces is Java language. When grid administrators

or grid users submit their requirements by using the previous interfaces to be sim-

ulated by Jade, our system converts these requirements to an External-JSDL that

express the users’ jobs requirements and can be understood by the grid environ-

ment no matter in what domain the resources lie. The External-JSDL language

is introduced in chapter five. The proposed system converts the External-JSDL

requirements to an Internal-JSDL; as a language that is used to communicate

between the resource broker and the grid nodes, and as between the grid nodes

themselves in different organizations and across domains. The system then stores

these language expressions as an XML schema in order to be retrieved later and

sends them to Jade. The reason behind using XML as a language for grid and

job requirements expression is that XML has many attractive attributes such as

the simplicity in reading, understanding and processing by users and computers.

The Internal-JSDL language has been introduced in chapter six.

6. Introducing the Jade simulation environment for modelling the policy frame-

work and evaluating the performance of the grid in the case of mobile shar-

ing and data movements.

1.5 Thesis Outline

The following is a summary of the study’s organization:

9

∙ Chapter 2: Introduces related work to all main research matters presented in

this thesis. It illustrates distributed systems features and architecture, including

a short discussion of grid computing types and challenges. Mobility and policies

are then outlined including their relationship with grid resource brokers. Finally

we present the most obvious challenges that stand in the front of developing the

grid environment.

∙ Chapter 3: Introduces our new framework for policy management, and presents

the differences between our framework for policy management and other ap-

proaches in this field. It presents our architecture together with each of its com-

ponents and their special functions. Finally, it describes how a single institute

policy agent can connect to the main grid policy agent in order to fitful jobs. This

chapter shows our contributions in supporting a multi-organization environment

with different domains, providing clear support for sharing mobile resources be-

tween multiple heterogeneous VOs, thus supporting user preferences in its final

decision and enforcing data policies in its designs.

∙ Chapter 4: This chapter presents our computational model and procedures by

giving a description of its components and the interactions between them. It de-

scribes how the involved application software and/or data migrate from one grid

resource to another depending on the policies. Finally describing the method that

allows users to manage and monitor their jobs during run time through events.

∙ Chapter 5: Gives an overview of a language which is used to build our grid

system and an overview of the External-JSDL language which is used to de-

scribe users grid jobs. This chapter shows our contributions in presenting the

new language that supports and expresses the new policy framework along with

introducing our External-JSDL.

∙ Chapter 6: Presents an overview for the Internal-JSDL, which is used to de-

scribe the interactions between the grid resource broker and the grid resources

and between the resources themselves. This chapter shows our contributions by

10

presenting a new language that supports and expresses the new policy framework

along with introducing our Internal-JSDL.

∙ Chapter 7: To introduce our simulation for mobile grid environment and to

show its components and the way to launch and deal with the simulation.

∙ Chapter 8: To show the validation of this simulation and to evaluate our outputs

and discuss the results.

∙ Chapter 9: Concludes the thesis and outlines future work.

11

Chapter 2

Literature Review

2.1 Introduction

A grid is a system that should have the ability to organize resources which are not un-

der the subject of centralized domain, utilize protocols and interfaces, and supply high

quality of service [58]. Grimshaw and others in [61] define grid computing as “co-

ordinated resource sharing and problem solving in dynamic, multi-institution virtual

organizations.” These resources are various from a single machine, a group of ma-

chines or a virtual partition on the same machine [113]. Thus, the major advantage of

Grid computing is the capability to organize and share resources [25, 90]. As a result

of such technology many challenges stand in front of developing and make use of its

resources. There are a lot of contributions to solve some of these challenges, one of

these contributions is the resource mobility which has solved some of the lack in find-

ing the suitable resources for the job, but not a lot of attention was given to the policy

(aspect of security and privacy) in this solution. This chapter provides a background

and an essential overeview of the existing state of grid computing, including research

efforts to the mobility solution and the policy feild related to this issue.

This chapter is structured as follows:

∙ Section two introduces Distributed Systems and its Architectures

12

∙ Section three reviews the definition, forms and objectives of grid computing.

∙ Section four presents the structural design of grid computing.

∙ Section five presents grid resource broker (Scheduler) including tasks and schemes.

∙ Section six reviews mobility in grid computing.

∙ Section seven reviews type of security solutions in grid computing.

∙ Section eight presents policy definition and category.

∙ Section nine describes grid technology infrastructure.

∙ Section ten introduces languages for describing grid jobs.

∙ Section eleven reviews the dynamic policy management framework that has been

introduced by Globus toolkits.

∙ Section twelve present active network technology used to support grid system

management.

∙ Section thirteen describes the recent used policies for data movements.

∙ The finial Section reviews the grid computing challenges.

2.2 Distributed System

H. Attiya and J. Welch [18] describe a distributed system as “a collection of individual

computing devices that can communicate whith each other.” They describe many ad-

vantages of utilizing the distributed systems such as increased reliability, information

exchange, resource sharing, and increased performance.

Distributed systems are classified into two category according to number of nodes in

the system. The first one is the static distributed systems which can be defined as sys-

tems with a fixed number of nodes. As the number of nodes in the system is constantly

changing dynamic distributed systems appears as a second category of distributed sys-

tems. In the last part processes can join and leave the ongoing computation at any

13

time. Therefore, the set of processes in the system may change from one moment to

another. Peer-to-peer computing is a clear paradigm of dynamic distributed systems.

In spite of the different architectures between the existing distributed systems, almost

all of them sharing the same unique characteristics which make them ubiquitous to-

day through business, academia, government and home. Some of these characterstics

include; separate address spaces, communication latency, coarse-grained concurrency,

partial failure and variable configuration.

2.2.1 Distributed Systems Architectures

Researchers have become significantly interested in dynamic distributed systems be-

cause of the ability to solve large-scale problems requiring enormous computational

power. Many methods of distributed computing such as client-server architecture, peer

to peer computing, cloud computing and grid computing have been proposed. The ar-

chitectural model is a way to describe the elements in a system and to describe how

these elements co-operate and act with one another in such a system [36].

2.2.1.1 Grid Computing

Grid computing is defined in literature as “systems and applications that integrate and

manage resources 1 and services distributed across multiple control domains” [82]. A

grid is a system that has the ability to organize resources that are not under the subject

of a centralized domain that utilizes protocols and interfaces, and supply high quality

of service [50]. A. Grimshaw and others in [61] define grid computing as “coordinated

resource sharing and problem solving in dynamic, multi-institution virtual organiza-

tions.” The term ‘Grid’ obtains its name from the expression ‘power grid’, referred to

a grid electrical power. The structure of an electrical power grid and grid computing

generally make it possible for an user to use electricity (data) by simply plugging into

a wall socket (network), without being worried about where and how the electricity

(data) being used is generated [21, 79]. The grid should have the ability to enhance

not only the systems performance and job throughput of the applications but also to

1Resources refere to computing and management resources such as computer, software applications, etc.

14

increase the utilization scale of resources used by employing effective resource man-

agement methods to the huge amount of its resources [7, 100]. Ian Foster [52] defines

a grid by three main features:

∙ It organizes resources that are not dependent on centralized management. A grid

combines and organizes resources and clients that exist within various control

domains. The grid model allows the management and sharing of a huge number

of geographically discrete heterogeneous resources.

∙ It employs “standard, open, general-purpose protocols and interfaces”. A grid

is constructed from various functional protocols and interfaces that can be em-

ployed in the grid’s architecture.

∙ It shoud have the ability to provide various qualities of service, such as qualities

security and response time.

Grid Aims and Features

Grid computing generally has the following objectives [51, 21]:

∙ Sharing of heterogeneous and distributed computing resources which are

owned by various domains.

Grid computing is the collection and accumulation of a set of shared resources

such as storage systems, data sources, super-computers and management schemes

that act like a network of computation [8, 84]. It supports and coordinates the

sharing of heterogeneous resources that are distributed across multi-organizations.

∙ Utilization of unexploited resources.

In most Organization there are large numbers of unexploited computing resources.

Nearly all of these resources are active not less than 5% of the time. In addition,

in some associations these resources are relatively inactive. Grid computing is

built to take advantage of these unexploited resources and improve resource us-

age. Besides that, clients can rent the resources that exist in the grid to perform

their computational jobs rather than buying their own expensive resources.

15

∙ Simplify the cooperation between various organizations.

Another feature of grid computing is preparing the required environment to make

it easier for different heterogeneous organizations to share and collobrate. This

can be done by granting a direct access to computers, software and data storage.

∙ Single login service.

One of the important features of the grid system is the ability to use a single

login service for secure access to grid resources. This allows secure access to

any information anywhere over any type of network. This is accomplished by

presenting access control methods which controls these resources.

∙ It is constructed to resolve vast problems.

Grids are designed to utilize unexploited resources, by employing a large num-

ber of these resources; grid is able to solve a huge problem such as weather

forecasting, university experiments, etc .

∙ More efficiently in getting and delivering results.

The other feature of grid computing is obtaining a result quickly and more ef-

ficiently. That’s because of using parallel processing or having high capability

devices.

Table (2.1) explains the differences between the three types of distributed networks

[33].

2.3 Grid Categories

As grid computing becomes widespread, in many areas, grids have generally been

classified from the viewpoint of application as well as their topology [73]. Grids are

classified into solution and scale categories.

2.3.1 Solution Category

Grids are categorized into three groups according to the solutions they aim to present

[76]: Computational grid, to support access to heterogeneous resources, Data grid, to

16

Table 2.1: Grid Computing vs. other Distributed Systems
Distributed
Computing
Environment

Control/management
structure

Security policy struc-
ture

Typical users

Grid computing 1. Some central-
ization (because the
present of resource
broker/schedulers).
2. Some standard-
ization be presented
(such as the Global
Grid Forum stan-
dards)

Complete security
policies can and do
present.

Users/resource own-
ers are parts of many
groups or organiza-
tions, or may be pri-
vate owners.

Centralized net-
work computing

1. Steady archi-
tecture 2. Several
topologies exist (bus,
token ring, star, etc.)
3. Administered and
managed by a single
entity.

High-level security
policies

Members of a sin-
gle group or organi-
zation; network ad-
ministrator has con-
trol to all of them

Peer-to-Peer
(P2P) computing

No centralized man-
agement structure

No centralized se-
curity policies; on
the other hand single
users/resource holder
may have local secu-
rity policies.

Part of many groups
or organizations,
or may be private
owners.

supply data services such as data management, data access and storage, and finally

Service grid, to provide services not supported by any single resource. An explanation

of the functions of each follows.

2.3.1.1 Computational Grid

A computational grid is a group of computing resources that can be represented by

computers over multiple domains and locations with different administrative domains

and owners. The aim of this grid is to carry out large scale of applications using high

performance servers. Jobs involved in this category of grid are those that present huge

problems. The main features of these grids are the speed and reliability of networks,

as well as the use of multi-distribution protocols which enable grid users to remotely

17

exploit resources owned by different suppliers.

2.3.1.2 Data Grid

In this kind of grid, a huge amount of data is spread, or in some cases duplicated, to

remote sites. Generally, a data grid stands for a system providing services for storage,

discovery, handling data and offering way to approach groups authorized to share it.

That is, data grid offers the basic infrastructure for creating repositories for data that

are spread over multi heterogeneous networks [76]. The aim of data grids as mentioned

in [40] is to combine heterogeneous data archives into a distributed data management

“Grid”, with the purpose of identifying services for high throughput, distributed, data-

intensive computing, and to allow users to obtain related data from the distributed

databases. Data grids are consistent with computational grids and can combine storage

and computation processes.

2.3.1.3 Service Grid

This type represents and allows a collection of services to be offered from a group of re-

sources. Service grids can be divided into three categories: “On-demand” Service grids

allows real time interaction, “Collaborative Service” grids combine multi-resources to

supply new services, and “Multimedia Service” grids provide the infrastructure for

real-time multi- media applications.

This research is considering and concerned with both computational grid and data

grids.

2.3.2 Scale Category

Along with the former categorization, grid computing can also be categorized into four

different applications according to scale (scope) and size [54]:

2.3.2.1 Cluster Grids

This type of the grid can be considered as the smallest grid in size and range. It aims to

increase user job throughput by combining data and services so as to maximise the use

18

of computing resources. The grids which are designed to resolve problems for specific

groups of people within the same department is considered as an example of a cluster

grid. So, cluster grids can work within heterogeneous systems involving mixed server

types, different operating systems and different work loads.

2.3.2.2 Intra-grids

Intra-grids consist of inter-connected clusters. Linking clusters allows the establish-

ment of enterprise grids. Intra-grids allows sharing a set of resources subjected to

common policies without essentially having to consider the security and global policy

management issues for the whole grids.

2.3.2.3 Extra-grids

Interconnected cluster grids along with /or intra-grids, create another type of grids

called extra-grids, which is geographically distributed between enterprise organisa-

tions. Therefore, these types of grids have several security domains; every domain has

its own access policies. In this grid implementation, Virtual Private Networks (VPN)

is used to make resources available to grids users.

2.3.2.4 Inter-grid

Sometimes it is called Global Grids. They are sets of Intra-grids and cluster grids

connected by the internet. It can be used in the academia sector, where team groups

may be a member of collaborating but geographically distributed systems.

2.4 Grid Architecture

The usual distributed methods do not provide an integrated method to access the large

range of necessary services and resources in the grid, and they do not have the flexibility

and management needed to allow the type of resource sharing required. In [54, 66,

62], the grid gives priority to interoperability, as it is critical to guarantee that virtual

organization users can dynamically share varied and unutilized resources. The grid

19

infrastructure is built on a standard open architecture which simplifies interoperability,

extensibility, portability and code sharing.

2.4.1 Grid Architecture Layers

This architecture manages elements into layers, as shown below in Fig (2.1) Elements

within each layer share general attributes, based on the capabilities and activities of any

lower layer.

Figure 2.1: The Layers of Grid Architecture [54]

∙ Fabric Layer

The fabric layer contains the resources in the grid. The resource varies from

a single machine, a group of machines or a virtual partition on the same ma-

chine and can be either a logical resources like a computer cluster, distributed

file system or distributed computer pool, or a physical resources such as net-

work resources, sensors and storage systems. This layer is built on the actual

resources and grants the access to it. Moreover, it applies the basic mechanisms

that let those resources to be contacted and used.

∙ Connectivity layer

The connectivity layer offers the basis communication and authentication pro-

tocols needed for network transactions over a specific grid. These protocols

supply cryptographically protected mechanisms for validating the grid users and

resources. A lot of communication protocols in the this layer are derived from

20

TCP/IP protocols model such as IP [69], TCP [68], UDP [94] , ICMP [95] and

DNS [88].

∙ Resource Layer

This layer is based on the connectivity layer, that executes protocols, that allows

the utilization and sharing of a single resource like the Grid Resource Access and

Management protocol (GRAM) which is used to assign and control resources.

There are two basic protocols in this layer: Information Protocols which are used

to query the situation of a resource by request fabric layer functions to control

and access resources, and Management Protocols to negotiate gain access to a

resource.

∙ Collective Layer

This layer allows protocols to interact across sets of resources. More specifi-

cally, it concentrates on the managing of various resources. It consists of di-

rectory, scheduling, co-allocation, monitoring and diagnostics, brokerage, data

replication, community accounting, software discovery and payment services.

∙ Application Layer

This is the top layer in the architecture, and includes the user applications that

run in a grid environment. It contains the languages and frameworks. These

frameworks can describe protocols like services, Simple Workflow Access Pro-

tocol (SWAP) [107], or in some cases an Application Program Interface (API).

2.4.2 How a Grid Works

Grids depend on middleware, which is enhanced software and/ or hardware that guar-

antees smooth communication between distributed resources. Grids employ effective

discovery services that determine unutilized resources in the grid so as to utilize them.

Users should have the sufficient authorization to use the grid through software inter-

faces working on their personal machines. After authentication, the user will be able

to express the job to the grid resource broker (scheduler), which is the core of the grid.

21

The resource broker will locate free resources that can best match the user’s require-

ments and job (or users’ applications) conditions by contacting both the information

service (IS), to retrieve information about software and hardware presently available,

and the replica catalogue (RC), to find out the location of needed data. Once the appli-

cation has chosen the suitable resources for the job, or has made advance reservations

on the chosen resources, the job is sent to those resources for implementation. After

the resource broker submits the results back to the user as shown in Fig. (2.2) below.

All of these processes are ca trried out ransparently of the user, who sees the grid as a

single large and powerful computer [76, 91].

Figure 2.2: How Grid Works

2.4.3 Information Service

Information service is a crucial element in grid computing. It is a directory service

that holds information about the resources in the grid and the entire grid activated jobs

running on those resources. This information can be static or dynamic information re-

lated to the resources available time, disk space, the job presently running, application

software, and policies.

2.4.4 Replica Catalogue

This is also an important component for the grid, because it presents information and

helps in accessing the stored data in the grid. It determines the places of data in the

22

grid, updates data resources and maps logical file names to the actual physical places

on grid resources. A resource broker communicates with a replica catalogue to ask for

information about data location and the access control needed to use this data.

2.5 Resource Broker (Scheduler)

Some people called it a “Scheduler”. The resource broker is one of the major grid

elements. It performs significant functions in building a valuable grid environment by

scheduling user jobs onto grid resources to reach a specific targets such as cutting the

execution times and communication delays, raising the resource exploitation and reli-

ability, distributing jobs across resources without depending on a particular resource,

and loading balancing. The main jobs for the broker are to discover and choose suitable

resources for jobs by sending jobs input files to the resources, monitor jobs and send

job outputs back to users. The following section explains these tasks.

2.5.1 Resource Broker Tasks

∙ Resource Discovery

The task of discovery is that of choosing a set of authenticated free resources

in the grid. This set is usually acquired by exploring its database including data

about the resources. Resource discovery methods employ a single database (the

centralized approach), or a group of databases (the distributed approach); the

main job for these database is to retrieve information about logical units such

as application software, policies, operating systems and data and physical units

such as CPU speed and architecture, current loads, and networks, to choose the

resources that can fit the application conditions. Monitoring and Discovery Ser-

vice (MDS) in Globus is an example of this database [47, 67, 27, 32, 85].

∙ Resource Selection

When the resource set has been collected, the best resources that fit the user’s

conditions, like cost, are then chosen.

23

∙ Application Execution

After the job and resources have been chosen, job input files are sent to and exe-

cuted on the resources. Unexpected situations that need addressing may happen

at some point in job runtime, therefore the job monitoring job is to verify the job

execution and spot failures or unpredictable clashes. As soon as the job is done,

the broker notifies the user. Network Weather Service (NWS) is an example of

such monitoring [64].

2.5.2 Resource Broker Schemes

In grid environments, three types of resource broker schemes can be applied: central-

ized, hierarchical and distributed scheme. The following illustrates each one of these

types.

2.5.2.1 Centralized Scheme

In this category the resource broker is a main machine (a server) holds data about all the

resources in each domain. All requests are sent to the resource broker, which sends it

to the appropriate resources according to the information available. Figure (2.3) below

illustrates the architecture of centralized schemes. With a centralized resource broker

the decision making becomes faster and better, since they have all the needed and the

latest information about the resources. As a result the execution in this schema should

be faster than other schemas. Alternatively, this kind of schema does not consider

scalability because of the growing size of the environment that they handle, which

means all the requests are being submitted to the same broker. Thus, applications

in some situations are affected from long access delays. For the same reason, if the

resource broker fails, the communications between the users and resource providers

break off [83, 55, 10, 42, 89, 96].

2.5.2.2 Hierarchical Scheme

In hierarchical schemes the central resource broker communicates with local resource

brokers, as shown in Figure (2.4) below. All jobs are sent to a central resource broker

24

Figure 2.3: Centralized Scheme

who submits them to the domains that can fit their conditions. At this moment, the

central broker has no direct power over those jobs. A feature of such schemes is that

each local domain can use its own resource broker policy. On the other hand, the job

cannot be moved or reallocated to another resource at different domains, even when a

better resource is found [34, 123].

Figure 2.4: Hierarchical Scheme

2.5.2.3 Distributed Schemes

In this schema there is no central resource. As an alternative, each local domain has its

own resource broker, as shown in Figure (2.5). Each domain inquires of other domains

periodically or when an event occurs, to get information about the status of resources

exist in other domains. When a job is to be executed, it is sent to the local resource

broker which exist in the same domain and then to an appropriate local resource or

to another more fitting resource in other domains. The features of this scheme are:

reliability, scalability, smoothness of implementation and the problem of a single point

25

of failure, but in some situations the allocation can be instable and take a long time

[89, 43, 109, 106, 26].

Figure 2.5: Distributed Schemes

2.6 Policy

Policies are groups of regulations, standards and practices written by one or more own-

ers of jobs or administrators of resources, about how their resources or jobs can be

handled and used. It decides how a job should be done, how security is applied in

a domain and how an organization organizes, secures and distributes their resources.

Policy can be static or dynamic; in the static policy data is ‘read only’, while in the

dynamic policy data can be migrated, written, read and copied. Policies can be divided

into user, grid and resource policies.

2.6.1 User Policy

Before the users can submit their jobs or run their applications on a certain source or

system they may need a guarantee that this source or system has not been compromised,

which could subject their own application or data to being stolen. Or they may ask for

certain users to be allowed to access the service. These security issues should be taken

into consideration when designing such a Grid system [65]. These security issues

should be taken into consideration when designing such a Grid system [65].

26

2.6.2 Grid Policy

This is a grid management approach that describes how to select the grid resources. It

is used by resource brokers who impose it. One example would be the order to select

the lowest load resource from the appropriate resources set in order to perform the job.

2.6.3 Resource Policy

This describes how grid resources are utilized. Resource owners have the privilege to

decide the policies for control of their resources. Resource policies are saved in the

information service (IS) and are imposed by resource brokers; they can be static or

dynamic. In static policy the node can only obtain jobs with their associated data (i.e.

user data) in order to perform it in that node; it does not let this data or application

software to migrate to other nodes in the grid system. To be more specific, the node

data is just read only. While the dynamic policy grants resource owners more choices to

choose their own polices for all node elements by deciding the policy for each element

separately. The node has many elements including data and application software.

2.7 Mobility

Mobility, is the ability to move physical or virtual computational resources (software

code, data, portable notebook PC’s, running objects and mobile agents) from one site

to another through a local or wide network. Mobility is a wide idea used in distributed

computing. With the assist of the mobility, the services can move all over the grid

to obtain data from grid nodes, implement on those nodes and carry the results back

to their original nodes. This can enhance the utilization and grid services flexibility

[117]. Mobility may be divided into personal, computer and computational mobility.

In personal mobility; the grid users can do the job at sites remote from actual physical

hardware, without having to move jobs around with them. They can launch a job in

one site and move it to another place in the world no matter the machine type, such as

web-based email accounts. The second type of mobility is Computer mobility, which is

the transfer of an actual part of computer hardware such as PCs notebook and Personal

27

Digital Assistants (PDAs) from one site to another.

The last one, in which this thesis is interested, is the Computational mobility, which

deals with the movement of software [108, 48]. Computational mobility can also be

called a control migration, data migration, link and object migration [28]. Control

migration offers moving execution control such as Remote Method Invocation (RMI)

and Remote Procedure Call (RPC) from one system to another and back again. Data

migration lets the data requested by the job to be sent on through the network. As

an example of such mobility is Java RMI call methods. Link migration, is referred to

the ability to move objects (codes) between multiple servers. Code migration (mobile

computation) affords the ability to connect software elements at runtime. In other

words, software elements can move around and execute on various servers across the

network. From the aspect of execution state, code mobility (migration) can be divided

into two categories, weak and strong mobility [30].

2.7.1 Weak Mobility

Weak mobility allows code to move through networks. In some cases the codes have

initial data assigned but without execution states (for example the first state of the com-

putation at the first node has not been moved). An example of a weak mobility system

is Code-on Demand (CoD) and Remote Execution Evaluation (REE) [48, 104]. Re-

mote evaluation developed originally from the client-server and virtual machine styles

[56]. A user element knows how to control and manage the remote job; the user sub-

mits the command to a server element at the remote site, which in turn implements the

code using the resources offered there. The user then obtains the result from the server.

The remote evaluation method presumes that the code offered will be implemented in

a secure environment so that it will not disturb other users operate on the same server

outside the capability of the resources being used [46]. One of the main features of

remote evaluation is the capability to modify the services as server elements, which

enhance extensibility and customizability and improve efficiency when the code can

change its actions to the environment within the server. Grid computing provides a

good example of REE. Code-on-Demand style schemes are used when a user element

28

has access to a group of resources but does not know how to process them. For that

reason it sends a request to remote server to obtain the code of ”know-how”. When the

code is arrived, the user executes it locally. A famous example of Code-on-Demand is

Java applets.

2.7.2 Strong Mobility

Strong mobility is the ability of a computational environment to mobile the code and

execution state (the context of execution) to start again at a new resource. The execu-

tion state comprises of running code, saved processor registers, program counter, local

variables and return addresses. A set of organizing execution controls operates on the

user’s node and then accesses the remote resource by the invocation of a remote pro-

cess. One of the most important features of strong mobility is that jobs can choose to

migrate between sites while it is processing information. The reliability challenge of

partial failure is decreased because the job state is only in one site at a time.

During the mobility, if the policy of the target node allows resuming the job from the

point of frailer or from the last point of operating before the migration then the policy

in this case does support the strong mobility and it is called a strong policy. Otherwise

this policy is considered a weak policy as it supports only the weak mobility (staring

the job from beginning).

2.7.3 Grid Mobility

In some situations the resource broker has to reject some jobs because one or more of

the following situation:

∙ The resource required to match the job conditions is occupied at this time.

∙ The resource that matches the job hardware conditions does not have the required

application software.

∙ The resource that matches the job hardware and application software conditions

does not have the needed data.

29

As a result, the Mobility has created a new environment that can solve these rejected

job cases. The grid mobility allows jobs, application software and/or data to migrate

from one node to another in the grid environment so as to adapt the resources needed

to fit the job requirements. The following explain each one of these motilities.

2.7.3.1 Job Mobility

The grid mobility technology allows the job and its execution state (i.e. the context of

execution) to migrate from one resource to another and restart on the new one in order

to fit the job conditions and requirements.

2.7.3.2 Data/Application Software Mobility

In this stage the data and/or application software are allowed to to migrate from one

node to another in the grid environment so as to adapt the resources needed to fit the job

requirements. These data or application software can be copied or moved depending

on the policies of the resources that own them.

2.8 Security

Any secure grid environment should provide mechanisms to secure authentication, re-

source protection, authorization, secure communication, data transfer and encryption

[77]. Grid security has several security challenges, involving coordinating user iden-

tities among local and wide networks, dealing with the variety of local security tech-

niques for either resource or user, trust relationships between resources and users, end-

user key, credential organization, and supporting security to resources in opposition

to unsafe actions from grid users [53]. In [33], Erin Coday and others mention two

different types of solutions that may be used for grid security: System solutions and

Behavioral solutions.

30

2.8.1 System Soultions

This part of the classification handles solutions which focus on employing the hardware

and software of a grid system directly to solve security problems. It can be divided into:

system security for grid resources and intrusion detection systems (IDS). Security for

grid resources depends on using technology, rather than policies. This can be done by

separating the portion of the resource that is contributed in the grid from the portion

of the resource that the owner wants to keep private. As an example of this solution is

the sandbox, which stores applications files and data files encrypted on disk, so nobody

can reach or use the application who does not have authorization to access it. (IDS)

depends on monitoring resources and detecting any intrusion that may take place on one

node and inform other nodes about possible misuse of resources by an intruder. The

problem with this solution is the detection and reporting of an incident is dependent

upon the relationship between nodes. Some nodes can share information with each

other because of their relationship, but might not do it due to the cost of sharing.

2.8.2 Behavioural Solutions

These solutions depend on security by policy and human action in place of security

using some hardware or software products. Such an examples of these solutions are:

Accountability, group management and trust. The following are three types of Behav-

ioral solutions; the first one is the Comprehensive Policy Controls which depends on

the policy definitions, which this thesis is interested in, and the other one is the Trust-

based security solutions which applies the trustworthy theory and the last one is the

Hybrid solutions.

Comprehensive Policy Controls

This part achieves the security through policy definition. These policies mange all

aspects of grid computing, involving sign-on procedures and access control, authorized

user selection, and local/wide security settings. Comprehensive policy uses policy-

driven access control to support groups that are geographically spread [39]. That can

be achieved by the following steps:

31

1. For each group there is an administrator that control access to this group by

issuing certificates proposed for this issue.

2. Policies are deployed to various groups in the domain by policy objects. Apply-

ing this policy is left up to the individual entities, allowing policies to be enforced

over heterogeneous systems.

3. All groups swap and update policy information with one another, producing a

wide global policy system that covers the whole grid.

4. This integration and collaboration of policies used by one node or group of nodes

with policies inherent to the whole grid achieves the essential global grid secu-

rity, while keeping the autonomy of grid systems.

There are many advantages and disadvantages related to this aspect of grid security.

It allows for the use of rules and policies to achieve the aim of a secure grid network

[53, 102]. This support performance and heterogeneous nature of the grid. But authen-

tication from global to local nodes cause the need for a mapping table from global grid

to local IDs which could also become prohibitively large as the grid grows in range.

Trust-Based Security Solutions

A user or resource of the system can make better judgments about dealing with

other entities if they know the reputation of those entities in the system. The trust

level between entities in the grid can be made up from many different factors including

reputation, direct experience and time since the last participation with the entity in the

grid [20]. Direct trust (trust-based on relationship between entities) is asymmetric, so

each entity (resource or client) make a decisions how trustworthy the other should be.

A trust agent estimates the level of trust based on the straight trust relationship, and on

the recommendations from other nodes in the grid. Each resource has its required Trust

level, or the least amount of trust level a user should have to utilize a resource. Grid

users also set required trust levels for resources they want to use. Each local resource

has a trust penalty levels suitable to the causes the offense had on its system [33]. Trust

levels can be easily updated, and nodes/users can inherit these levels when joining a

32

system. Furthermore the domain can increase its required trust level to maximum in

order to enforce improved security 100% of the time [19].

Hybrid Solutions

In some cases, it is better to use both system-based solutions and behaviour-based

solutions to solve security issues in the grid. Therefore, it is more suitable to create a

Hybrid Solution sub-category to address this issue, since it falls equally under System

and Behavioural grid security solutions [33].

2.9 Policies

Policies are groups of regulations, standards and practices written by one or more own-

ers of jobs or administrators of resources about how their resources or jobs can be

handled and used. They decide how a job should be done, how security is applied in a

domain and how an organization organizes, secures and distributes their resources.

Depending on the Globus Toolkit [13], before the job submission there should be many

steps to authenticate the users who are asking to use resources [45, 118]. But after

the authentication there are no further resource access restrictions on how to use the

resources. This is known as “all or nothing”.

2.9.1 Policy Categories

2.9.1.1 User Policy

Before the users can submit their jobs or run their applications (a group of jobs) on a

certain source or system they may need a guarantee that this source or system has not

been compromised, which could subject their own application or data to being stolen.

Or they may ask for certain users to be allowed to access the service. These security

issues should be taken into consideration when designing such a Grid system [65].

33

2.9.1.2 Grid Policy

This is a grid management approach that describes how to select the grid resources. It is

used by resource brokers who impose it. One example would be the order to select the

lowest load resource from the appropriate resources set in order to perform the job(s).

2.9.1.3 Resource Policy

This describes how grid resources are being utilized. Resource owners have the priv-

ilege to decide the policies for control of their resources. Resource policies are saved

in the information service (IS) and are imposed by resource brokers; they can be static

or dynamic. In static policies the node can only obtain jobs with their associated data

(i.e. user data) in order to perform it in that node; it does not let this data or application

software to mobile to other nodes in the grid system. To be more specific, the node

data is ‘read only’. While the dynamic policy grants resource owners more choices to

choose their own polices for all node elements by deciding the policy for each element

separately. The node has many elements including data and application software.

2.10 Grid Technology Infrastructure

The standardized architecture of the grid makes procedures and exchange parts easier

between different organizations. Because grid tools and equipments are from multi-

vendors, interoperability becomes important and high standards must be identified.

For standardizing grid requirements, protocols and interfaces, the Globus alliance and

Open Grid Forum (OGF) were launched, as described below.

2.10.1 Open Grid Forum

Open Grid Forum (OGF) [49] is a public society forum for discussing grid technology

matters. The aims of OGF involve designing of open procedures for the improvement

of grid agreements and specifications and create grid architecture documents and the

most suitable guidelines. Many research groups within OGF have established various

standards such as Open Grid Service Architecture (OGSA) to offer a service-oriented

34

view of the shared physical resources or services provided for theses resources, Open

Grid Services Infrastructure (OGSI) to describe methods for establishing and organiz-

ing grid services, GridFTP and JSDL [6, 9]; a lot of other subjects are at present being

worked on.

2.10.1.1 Job Submission Description Language

The Job Submission Description Language (JSDL) [6] is an XML-based description

language proposed by (OGF) as a standard language. This aims to express conditions

of computational jobs to be ready to transmit later to resources, more specific in grid

environments. The design of this language makes it easy to be mixed with other lan-

guages to accomplish a bigger functionality. To smooth the progress of the illustration

job conditions as a group of XML parts, JSDL includes a vocabulary and normative

XML Schema. The motivation behind JSDL was the various job management systems

used by diverse organisations; each system has its own private language for expressing

job requirements and conditions. As a result, it became hard for a system to man-

age jobs and at the same time deal with other systems in different organisations. One

example of such projects that uses JSDL in its systems is the Globus toolkit [13].

2.10.1.2 GridFTP

GridFTP [114, 12] is an extension of the standard FTP protocol used for grid comput-

ing. It is designed to supply effective and protected access and transport large amounts

of data between multi-distributed resources in the grid. The FTP protocol was selected

because it is one of the most widespread data transfer protocols and because it contains

a lot of characteristics like; it is widely implemented, has a clear architecture, trans-

parency, and its support for third party transfers. GridFTP offers a lot of advantages

such as parallel and partial data and file transfer and enhance Grid Security Infrastruc-

ture (GSI).

35

2.10.2 Globus Alliance

Globus Alliance [13] is an international association of establishments conducting re-

search for the enhancement of elemental grid technologies. Globus Alliance presents

open source software named Globus Toolkit for creating grid environments and appli-

cations. The Globus toolkit supports a group of essential services required for grid

computing. For examples: security, data management, execution managers and infor-

mation services. These are illustrated in Table (2.2) and shown in Figure (2.6).

Figure 2.6: Globus Toolkit Architecture [13]

Table 2.2: Globus Services
Name Service Description

GSI Security Remote Authentication Services
GRAM Resource Management high Grid Resource Management
Data management Transfer data Manage data using GridFTP
MDS Information Grid Meta Directory Service
GEM Executable Management Managing location if executables

2.10.2.1 Security

Security is an essential element for grid computing. For any grid environment there

should be methods to offer security, involving authentication, authorisation and data

encryption. The Globus Toolkit provides strong security mechanisms by using Grid

Security Infrastructure (GSI) component. GSI supplies a public key infrastructure for

authenticated and private communication, in addition to authenticate users and guaran-

tee that they are allowed to utilize the resources in a specific domain.

36

2.10.2.2 Data Management

Relocating data to a number of nodes within the grid requires secure and trustwor-

thy mechanisms. The Globus toolkit has a data management element that offers such

services. This component employs GridFTP [114, 12].

2.10.2.3 Execution Management

This is the centre of Globus Toolkit facilities. The Grid Resource Allocation Manager

(GRAM) is an essential library service that supports remote implementation along with

its status management. It can change a user demand for resources into commands that

local computers can handle. In other words, it supports secure and trustworthy services

to start jobs on specific resources, checks their status and recovers the results when

they are done [73].

2.10.2.4 Information Services

Grid resources need services like Monitoring and Discovery Service (MDS) for locat-

ing and publishing their status and configuration information. MDS [73, 72] facilitate

grid information services by supporting access to static and dynamic information re-

lated to resources. These locates the resources that fit the job conditions, as well as

getting the state of those resources by using MDS components. These components can

be summarized as following:

∙ Information Provider (IP) which translates the characteristics and status of lo-

cal resources to the configuration described in the schema and configuration files.

It consider an interface for any data gathering service that collects data about a

specific part of a resource like RAM memory, disk capacity or CPU load.

∙ Grid Resource Information Service (GRIS) is a distributed information ser-

vice that can respond to questions about a specific resource by pointing the

queries to the underlying IP. GRIS stores and shows the information as entries.

∙ Grid Index Information Service (GIIS) is a warehouse that includes indexes

of resource information registered by GRIS and other GIISs.

37

∙ MDS client, which is based on the Lightweight Directory Access Protocol (LDAP),

is a client instruction to find resource information in grid environments.

2.10.3 The Grid and Industry (GridPP)

GridPP is a group of Particle Physicists and Computing Scientists compromise of 19

UK universities, Rutherford Appleton Laboratory and CERN (Conseil Europeen pour

la Recherche Nucleaire) [4]. They have constructed a distributed computing grid cross-

wise the UK for particle physicists. The vision of this project is to establish and orga-

nize a computing resources for UK particle physicists using applications, open source

software and middleware.

The idea behind created such a system is to share data, computing power and appli-

cations software, make use of resources at many institutes, conect main and small

computer centres, ensure all data are reachable at anytime and anywhere and to be able

to handle with varous management policies of varous centres [3].

2.11 Languages for Describing Grid Jobs

2.11.1 Job Description Language (JDL)

JDL [92] was presented by the European Data Grid [1] and is described by the Con-

dor project [5]. It is a high-level, user-oriented language depending on the Classified

Advertisement (ClassAd) language [97], an expression language permitting the user to

show the resource conditions and job specifications. These specifications let fast and

easy fit between requests and resources to implement the job on the right resource(s).

JDL allows the user state the job elements (attributes) to help determine the suitable

resource(s) to perform the request. These are job attributes such as job type, data

attributes (like input data) and resource attributes (such as the number of requested

CPUs).

38

2.11.2 Globus Resource Specification Language (RSL)

RSL is an XML based language used to express grid jobs which are going to be imple-

mented on grid nodes. RSL specification has its private structure and includes a group

of attributes and a group of operations that are merged to state the grid job. In RSL,

the attributes can be used to express both job factors, like directory and name, and re-

source conditions, like number of nodes and machine categorize.

2.12 Dynamic Policy Management Framework

The Dynamic Policy Management Framework (DPMF) consists of three agents; Pol-

icy Agent (PA), Policy Management Agent (PMA) and Grid Information Agent (GIA).

Figure 2.7 shows the hierarchical architecture of these agents.

Figure 2.7: Dynamic Policy Management Framework

Each Virtual Organization (VO) should have at least one policy agent that has the abil-

ity to access the policy repository for that organization. Policy control between VO

irrespective of the concrete organisation. For PAs of the same virtual cluster (the same

policy frameworks) there should be a PA leader that coordinates other PAs in the cluster

and at the same time performs a homogenous and a heterogeneous policy management

across different policy frameworks, this agent is called (PMA). The (GIA) owned by

the Grid administrator is responsible for providing PMAs with the necessary informa-

39

tion that is needed to perform the heterogeneous policy management across different

policy frameworks.

When the PMA receives a request from one of the PAs asking for a service that is

situated in multiple virtual clusters, a heterogeneous policy management mechanism

takes place. This mechanism depends on converting the target service’s policies into

the policy model of the PMA. The PMA asks the GIA for the account maps and the

policy schema maps for the target services. At the same time, the PMA asks the ser-

vice requester for its authorization policies through the service’s PA. When the PMA

receives this information, it starts the policies conversion to the PMA policy Model.

First it applies the Account Mapping; which is to make it possible for users, whether

trusted or not, to access services on a remote VO. In this case a map mechanism should

be applied to map those users to local accounts, and later perform the Policy Mapping

to generate a inter-schema map, which maps the schema of policy model of the ser-

vice’s VO to that of the requester’s VO. Or in other words; to convert policies between

heterogeneous policy models to one that can be understood by the PMA. The PMA

applies the conflict analysis mechanism on the policies of all target services to find

suitable permissions for the service requester[121].

It can be seen that policy management is catergorized into inter-cluster heterogeneous

policy management, and intra-cluster homogeneous policy management. To solve the

conflicts between the same policy frameworks the intra-cluster hemogeneous policy

management takes place, while the intre-cluster heterogenous policy management takes

place in the case of the conflicts, between different policy frameworks.

2.12.1 Account Mapping

To make it possible for users, whether trusted or not, to access services on a remote

VO a map mechanism should be applied to map those users to local accounts. If a

VO decides to grant external users a permission to access it resources, it is necessary to

initiate or assign local accounts for them so that they can only utilize permitted services

[121].

Each VO initiates some accounts that can be used by external users or allocate some

40

active accounts to them. There are two types of these accounts; the first one for users

from trusted VOs or trusted users. The second one is for users from un-trusted VOs or

un-trusted users. As a result, if a remote user asks for a specific service from a VO,

in this case the external user account is mapped to a local account which is initially

created for this propose. The types of accounts are determined according to the trust

relationships between the two VOs [122].

It is necessary for each PA who wants to join the Grid environment to provide the GIA

with the mapping account information about its VO [121, 122]. The GIA then stores

this information in its repository waiting to be retrieved from PMA(s). As shown in

Figure (2.8) the account map information contains VO identity and the local account.

When a PMA executes a policy decisions using the Heterogeneous Policy Management

mechanism, it retrieves the account maps information from the GIA. By using the

account maps, the PMA can choose the policies that are suitable for both the requester

and the service provider for both different VOs in relation to the trust relationship

between them. Figure (2.8) shows the generation of Account Maps.

Figure 2.8: Account Mapping

2.12.2 Policy Mapping

Policy Mapping mechanism is used to convert policies between heterogeneous policy

models to one that can be understood by the PMA. The Local Policy Schema (LPS)

stands for the policy model for each VO. LPS describes the structure and components

of the policy model [122].

41

The GIA gathers policy schema elements from VOs in the grid and sorts them into

groups. Each group has meta-schema elements which contain policy scheme elements

of equivalent or much related meaning. GIA collect these meta-schema elements and

stores them as a Meta-Schema Taxonomy. Figure (2.9) illustrates the generation of Pol-

icy Schema Map which comes as a result from sending the PA its local Policy schema

during the registration or after a change of policy model [121].

Figure 2.9: Policy Schema Map

When a PMA executes a policy decisions using the Heterogeneous Policy Manage-

ment mechanism the policy mapping is taken place after the Account Mapping. PMA

retrieves the Policy Schema Map from the GIA and then it produces Inter-Schema

Maps for the purpose of conversion policies in heterogeneous policy models. From the

Figure (2.9) each Local Policy Schema is mapped to Meta-Schema Taxonomy. The re-

sults show that PMA can produce Inter-Schema Maps by comparing the Meta-Schema

Taxonomy for the policies that need the manipulation process. If there are two ele-

ments of the different local policy schema that are mapped to the same meta-schema

element, then these two elements form a single mapping entry. Figure (2.10) shows the

Inter-Schema Maps generation [121, 122].

Full mapping takes place if the all of elements of the source policy model is a sub-

set of that of the target policy model. In the case of partial mapping, the un-matched

elements will be hold. The PMA takes into account these elements as unrecognized

elements. Once the permission condition for the authorization request is produced, the

42

Figure 2.10: Inter-Schema Maps generation

unrecognized elements will be intersected to the permission condition. This is because

the elements can change the permission condition [121].

2.12.3 Partial Policy Information

Each Virtual Organization (VO) should have at least one policy agent that has the abil-

ity to access the policy repository. For PAs of the same virtual cluster, there need to

be a PA leader that coordinates other PAs in the cluster and at the same time performs

a homogenous and a heterogeneous policy management across different policy frame-

works. In an ideal grid system each Policy Management Agent (PMA) is being trusted

from all the PAs in the virtual cluster; that makes the conflict analysis between the user

policy and the service provider’s policy very clear to the PMA. In reality, not all PAs

43

do trust the PMA; in this case PMA has to do a conflict analysis with partial policy in-

formation. In other words PMA executes conflict analysis with the identified security

policies, produces replacements for unidentified policies.

Chiu-Man and Kam-Wing Ng in [120] have mentioned ways of generating substitu-

tions for unknown policies. This way depends on discovering a group of conditions

which may generate conflicts. After that, these probable conditions are transmitted to

the un-trustful VO (PA) for its examination. The conditions discovering is taking place

in the policy template database which was created originally when the PMA was firstly

created. This database includes a group of “common policy templates”. These tem-

plates are produced by scanning policies of VOs (which trust the PMA) in the same

virtual clusters. PMA should have the ability to swap policy template group informa-

tion between trusting PAs.

The Policy Template model consists of Evaluation Set, Priority set and the normal pol-

icy components. Each policy consists of four components; Condition Set, Action Set,

Extension Element(s) and Target Identity. The Condition Set is a group of conditions

with (AND) or (OR) relationship(s). Each condition is a Boolean syntax which means

the result are either true or false. The Action Set is a group of actions that take place as

a result for the condition with an (AND) relationship; these actions can be performed

concurrently or in one-by-one order. The Extension Element(s) is used to register ele-

ments which cannot be represented by previous elements. These extra rooms support

the compatibility with various policy types, but to activate this component, all elements

that are responsible for a conflict analysis task (for example: PMA, GIA, PA) have to

be able to identify the extension element(s). The Target Identity is a credential to au-

thorize a user, or just a login name in the local domain. The Evaluation Element Set

keeps evaluation elements which are characteristics of the policy holder. These charac-

teristics are described by the PMA. They possibly contain the type of service providers,

the type of VOs, security levels, etc. The Priority Set keeps the order of priority of the

evaluation elements.

The conflict between policies occurs when two or more policies have the same set of

conditions but have opposite set of Actions. To be more specific have an opposite set

44

of authorization action. This is called a modality conflict [41]. The conflict detection

can be classified into two types; the first one is related to the detection task including

service providers on VOs which all trust the PMA. In this case the related PAs support

the PMA with the necessary policies information connected to the requester identity.

These policies information include a group of service providers and the VO domain.

PMA looks at this information trying to select ones whose resource field is the target

resource. Then PMA tries to detect any conflict in these policies by checking both the

authorization signs and the condition sets. If the PMA discovers any intersections be-

tween these policies then a conflict is detected.

The second type of detection is the conflict detection with Partial Information. This

type of detection takes place when some PA(s) do not trust the PMA. In this case,

PMA gets the policies information related to the requester identity form the trustful

PA(s). For un-trustful PA(s), PMA employs policy templates to produce substitution

policies. The production goes into three levels; the first one is choosing the policies

from the policy template database. This can be done depending on the Evaluation and

Priority sets. First; PMA searches the database looking for the policies with the same

priority sets for the evaluation sets and then does the second search. The second search

has two search parameters; the evaluation sets plus the results of the first search.

The second level is executing a conflict analysis for all related polices (the selected

policies from level one and the policies from the trustful PAs). The results of this level

are policies that could cause conflicts to the service request. These policies may be

stored in the Conflicts Policy Set (CPS).

The third level is sending the CPS to the un-trustful PA(s), this is done by the PMA, to

see if the PA’s VO domain and its respective service provider(s) have any one of these

policies. If the answer is ’no’ that’s mean no conflict is found. If yes the conflict is

found. If the PA doesn’t reply to the PMA that’s mean the information that has been

sent to the PA is not enough for the conflict analysis.

45

2.13 Active Network for Grid Management

Active network changes the store-and-forward network into store-compute-and-forward

[58]. The improvement in such a network allows that the packets can hold executable

code along with their data payload. In other words, it can be programmed. Possible

advantages of such a feature include faster expansion of further services, the capability

to adapt services for different applications and a capability to automate services and

management configurations.

As a result, the advantages for both policy management and active network technology

are equal. “On one hand, active network is a kind of enabling technology for policy

enforcement; on the other hand, policy Management also provides the management

of active networks themselves”[119]. After presenting an active network approach

into grid management, a modern active grid management architecture appears offer-

ing methods that will dynamically fit grid network parts to different grid applications

and helps to organize the grid system itself. Figure (2.11) shows the overall policy

active grid management architecture. The approach to add programmability to grid

Figure 2.11: Grid System Architecture [119]

management is to expand the broadly used grid supporting tool (Globus) by the means

46

of middleware. Together active network middleware and policy grid management mid-

dleware may be used by grid supporting environment to ease the operational so as to

obtain better handling and management of multi grid resources such as, computing re-

sources, massive storage resources and special scientific instruments [119]. The core of

the active network is the active node, which is based on the ABLE. ABLE is “an active

network architecture that primarily addresses the network management challenges. It’s

main component is the active engine that is attached to any IP router or massive storage

or computational resources to form an active node” [78]. Another definition for ABLE

is “a complete software environment dedicated to deploy active routers and services

inside the network. It provides persistent active routers, which are able to handle dif-

ferent applications and various data stream (audio, video...) at the same time” [57].

Policy Enforcement Points (PEP) represents the end point, where the policy is finally

applied. To achieve this application, a transport protocol should be presented for the

purpose of communication between Policy Decision Point (PDP) and PEP, so that the

user can send policy regulations or configuration data to the end point(s), or read con-

figuration and get information from the device. Active network technology has become

the most popular way to achieve policy enforcement [119].

2.14 Policies for Data Movement

Feng, Cui, Wasson and Humphrey in [44] mentione a new system that deals with poli-

cies that control data movements. This system is divided into two parts; the first one is

called the MyPolMan which is responsible for organizing, uploading and distributing

policies over the PEPs. The second part is called the .NETGridFTP a data transfer ap-

plication protocol that enforces these policies. Figure 2.12 shows how such a system

organizes the data movements over the grid.

MyPolMan is concerned with policy management in grid environments. This allows

administrators (or users) to distribute policies to a repository that can then be recouped

by other system entities as required. As MyPolMan is used to handle many kinds of

policy (not only data policies), many policy construction tools may be used to build up

47

Figure 2.12: Data Movements over the Grid System [44]

the policies that are available in MyPolMan. The resulting policy from the MyPolMan,

expressed in XML According to the WS-Policy [22], which has a unique identifier (Pol-

icyName) and a group of policy attributes. These attributes include the policy author,

applicable scope, valid time and current status, in addition to other parameters. After

the policies have been uploaded to MyPolMan service, services called policy agents are

used to assist policy distribution between the policy service and policy consumers. As

the Application Scope field is used to indicate the services to which agent this policy

applies, the policy can then be moved to the policy agent who caches it on the local

repository system. This caching enhances performance and enables many co-located

PEPs to make use of the same policy agent. Any changes made by the administrator to

the policy will cause these steps to be repeated.

Although the GridFTP protocol offers security for Grid data movements, there is no

clear policy support to apply resource employment policies that are saved in the policy

server. The .NET GridFTP, which is an implementation of GridFTP on the Microsoft

.NET platform executes Grid data transfers bidirectional between Windows machines

and enforce resource employment policies that are saved in MyPolMan.

48

2.15 Grid Computing Challenges

2.15.1 Security Challenges

One of the important issues that most researches try to solve it is how to keep dis-

tributed recourses from being access by unauthorized users and at the same time allow

the sharing of resources and accountability for resource handling. David G. Rosado

and others define grid systems in relate to security aspects as following: “Systems

based on Grid Computing are a type of systems that have clear differentiating features

of which security is an extremely important aspect” [99]. Grid environments have ex-

traordinary characteristics that cause them to be distinguished from other systems, such

as resources pool, user population, and the fact that the sets of processes running on

multi and various sites are possibly huge and dynamic. All of these characteristic must

be taken into consideration all through the overall development lifecycle. In addition,

we should consider that processes may communicate by a range of methods such as

multicast or unicast, and several authentication and authorization methods can exist in

an individual job in relation to the local security policies of the sites involved. Indi-

vidual users may be belong to various local name spaces, accounts and credentials on

various sites [53, 98]. Every resource applies a local security policy that may result in

the refusal of requests for utilizing of its resources. This presents problems for both

resource requestors and providers who want to share resources in the lack of global se-

curity policies in grid systems. Because of the fact that there are a lot of elements like

users and resources contributing on the grid, security has become a critical aspect in

checking the element trying to use a service (authentication), and verifying either this

element is allowed or not to use the service (authorization). Securing the grid is vital

to give confidence to both resource providers and users to join the grid. Globus GSI

(Grid Security Infrastructure) is an environment that cares about the elements security

in the grid by using public keys for authentication [24]. Security in distributed systems

can be subdivided as following:

∙ Identity and Authentication

Public Key Infrastructure (PKI) [24] along with the Transport Layer Protocol

49

(TLS) [23] is a common way to resolve problems including overall identity and

authentication in grid systems. Internet2 sites [23] use either a user’s authenti-

cation process among multiple systems or organizations (federated identity) or

attribute server solutions. In Kerberos identities [103] sites try to combine these

identities with grid ones, which makes user credential organizing more manage-

able. As authentication is the first action to utilize and access resources, grid

authentication should act with both user and resource site authentication condi-

tions.

∙ Secure Communication

Secure connections are typically managed by TLS [38]. The Globus Toolkit GSI

library based on top of SSL controls the communication in distributed comput-

ing. These protocols must be expanded to handle all secure group communica-

tion aspects for grid applications.

∙ Authorization

Authorization demands vary with each application [111]. The complication oc-

curs from the naming of the users and resources who organize the authorization

policy. David G. Rosado and others in [37] describe the authorization in grid sys-

tems as ”The core problem with authorization in a grid setting is how to handle

the overlay of policies and other assertions from multiple administrative domains

(user policy, VO specific policy, operational procedures, and site-local policy)”.

A high-quality access policy should have the transparency feature to grid users

and be simple for administrators to organize and keep up. For any site provides

resources, the authorization requirements should have registration for resource

use, accountability and quality service assurance. One more essential thing is to

name users in a meaningful way for both the resource site and throughout the

grid.

∙ Privacy

As a result of shared resources in grid distributed systems, insecurity and privacy

abuse are the main barrier to growth of distributed systems applications. Most of

50

recent research is working on this matter to protect the grid community and offer

assurance of privacy.

As an example of the grid privacy, let’s assume there are two domains in the

United Kingdom (UK), one domain in the USA and one in China. The domains

in the UK are allowed to share their data and application software’s with the

USA domain but not with the China one. In the other side, the USA domain is

allowed to share its data with all domains. As we can see, there is a need for

a tool to control the moving of data and application software’s between these

domains preventing the UK data and application software’s from being used in

the China domain.

2.15.2 Accounting

Accounting is a fundamental necessity of businesses. Many ways have been presented

to solve this issue but they are yet in the early stages. One idea is to sign users at a local

site which is checked or treated as it would be for any user. This makes users’ use of

several resources across the grid easier, because the cost for such use will go back to

the local sites where users were signed in the beginning. But this idea and many more

ides are still an area for basic research, as many efforts are ongoing to develop these

ideas.

2.15.3 Resource Brokering

Grid resources originally are heterogeneous in architectures, operating systems, speed,

polices, data and application software, along with the geographically distributed at-

tribute. For these reasons, there is a need to locate the available and suitable resources

on the grid. Another problem of resource allocation is the lack of prober information

about the status of resources [59], because of the dynamically nature of grid resources.

According to that resources, information should be updated frequently to give accurate

information about their status.

51

2.15.4 Job Description

The accurate description for grid jobs considers an essential requirement for resource

management and scheduling within a grid environment. Various languages such as

Globus Resource Specification Language, European Data Grid JDL and Job Submis-

sion Description Language (JSDL) have been introduced for job description. But none

of these languages can deal with applications or events.

2.16 Summary

This chapter surveyed the background and related work on all the major research issues

covered in this thesis. It has illustrated distributed systems’ attributes and architectures.

This was followed by a survey of grid computing, as well as the categories into which

it is divided. The following section described the structural design of grid comput-

ing followed by a review of the mobility in grid computing. Section four presented

grid resource broker, including tasks and schemes. Section five described mobility

in grid computing. Section seven introduced type of security solutions introduced in

grid computing. Section eight presented policy definition and category. Section nine

described grid technology infrastructure. Section ten introduced languages for describ-

ing grid jobs. Section eleven illustrated the dynamic policy management framework

that has been introduced by Globus toolkits . Section twelve presented active network

technology used to support grid system management. Section thirteen described the

recent used policies for data movements. And the final section, fourteen, presented the

grid computing challenges. The reader needs to bear in mind the following sections:

Resource broker, Mobility, grid policy, Active network and Job description language.

52

Chapter 3

The Architectural Model

3.1 Introduction

Grids depend on enhanced software that guarantees seamless communication between

node components. It uses an effective mechanism which determines the suitable pol-

icy(s) that should be applied to achieve the best way to utilize resources in a way that

guarantee privacy and security for both grid users and grid resources.

The grid infrastructure allows contribution and sharing at the level of a Virtual Re-

source (VR). The VR varies from a single machine, a group of machines or a virtual

partition on the same machine. Each grid institute has many VRs can participate with

other contributors in Virtual Organizations (VO) [113]. A virtual Organization (VO)

seeks to supply authorization methods in which policies are specially described to that

specific VO. In addition to VO special policies, local site special policies also exist

[31]. Due to the heterogeneous nature of grids, a conflict between these (VOs) might

take place in the security policy framework [66].

The problem with most of these traditional policy frameworks is that concentrating at

the policy management inside the VO rather than the management between multiple

VOs [105],[112],[116]. External users, who want to utilize resources in the grid need

guarantees for their jobs and data, most recent policy frameworks do not take that into

consideration. To data, not enough attention has been paid to policies that deal with

53

its movement within the grid; most existing grid systems support only limited types

of policies (e.g. CPU resources). A few frameworks consider enforcing data policies

in their architecture [44], [60],[81]. Our new framework is different from other policy

management frameworks in that it takes into the account the external user preferences

along with enforcing policies for data movements within the grid.

This chapter presents an overview of our new architecture, and considers one of our

major contributions in this thesis. It is proposes an extension to the framework in [121]

to be able to provide the features of supporting the grid user preferences along with

enforcing policies for data movements and resource mobility feature for a single vir-

tual organization and multiple virtual organizations; within different domains under

different administrators. The framework in the second section has been published in

the Communications in Computer and Information Science Conference (CoNeCo2011)

[15] and the International Journal of Computer Networks and Communications (IJCNC),

2012 [110]. The next section will present the components of our grid architecture.

Section four and five detail the interaction between user and grid environments, which

constitutes the grid portal, and the interactions between the institute policy agents and

the grid main policy agent in section six. The framework which will be introduced

in the last section has been published in the Risk and Security of Internet and Systems

Conference (CRiSIS), IEEE Computer Society, 2011 [14] and the International Journal

of Computer Networks and Communications (IJCNC), 2012 [110].

3.2 Framework for Policy Management

Our new framework is different from other policy management frameworks in that it

takes into the account the external User Policy (UP) along with enforcing policies for

data movements within the Grid. The following two subsections describe how our

framework within a single VO institute and also Multiple VO institutes.

54

3.2.1 A Single Virtual Organization

Our framework consists of three agents: a Policy Agent (PA), a Policy Management

Agent (PMA) and a Grid Information Agent (GIA). Figure (3.1) shows the framework

for a single VO. Each Virtual Organization (VO) should have at least one policy agent

that has the ability to access the policy repository. For PAs of the same security pol-

icy framework, there should be a PA leader that coordinates other PAs in the cluster

and at the same time performs a homogenous and a heterogeneous policy management

across different policy frameworks. This agent is called (PMA). The administrator of

the institute specifies and stores policies at the Policy Management Agent (PMA). The

(PMA) can be considered as a combination of the policy management tool and pol-

icy repository. The (GIA) which is owned by the grid administrator is responsible for

providing PMAs with the necessary information that is needed to perform the hetero-

geneous policy management, if it is necessary, across different policy frameworks.

Grid services are a field of web-services and for this reason the (PMA) would be a web

service that publishes the set of services that can provide for an institute into the grid

registry. For remote access, the (PMA) supports a SOAP/HTTP protocol binding in

order to swap documents easily over SOAP. The policy documents conforming to the

specification of the common information model are encoded in XML [113].

From Figure (3.1), it can be seen that three main features have been added to the policy

management framework mentioned in [121]; First, it enforces the data policies man-

agement by using NETGridFTP protocol [44]. Although the GridFTP protocol offers

security for grid data movements, there is no clear policy support to apply the resource

employment policies that are saved in the policy management agent. The NETGridFTP,

which is an implementation of GridFTP on the Microsoft. NET framework, can exe-

cute grid data transfers bidirectional between windows machines and can enforce the

resource employment policies that are saved in the PMA.

The second feature is using the Active Network Middleware to connect the Policy De-

cision Points (PDPs) with the Policy Enforcement Points (PEPs). The advantages for

both policy management and active network technology are equal. “On one hand, ac-

tive network is a kind of enabling technology for policy enforcement; on the other

55

Figure 3.1: Single Vrtuial Organization Policy Management Framework

hand, policy Management also provides the manage-ment of active networks them-

selves” [119]. This approach to add programmability to grid management is to expand

the broadly used grid supporting tool (Globus) by means of suitable middleware. To-

gether, active network middleware and policy grid management middleware may be

used by the grid supporting environment to ease the operation so that they can obtain

better handling and management of multi-grid resources such as computing resources,

massive storage resources and special scientific instruments [119].The core of the ac-

tive network is the active node, which is based on ABLE (defined before in chapter 2

on page 47).

Policy Enforcement Points (PEP) represent the end points where the policy is finally

applied. To achieve this application, a transport protocol is presented for the purpose of

56

communication between Policy Decision Point (PDP) and PEP so that the user can send

policy regulations or configuration data to the end point(s), or can read configuration

and get information from the device. Active network technology has become the most

popular way to achieve policy enforcement [119]. Another advantage in our architec-

ture is taking the external User Policy (UP) into the account when making the final

conflict decisions. When the users have completed describing their jobs and adding

their own policies to that description, they send the descriptions along with the poli-

cies to the resource broker who forwards the policies to the policy management agent.

Later, the (PMA) enforces these policies by its turn in its final discussions along with

other policies (grid and resources policies).

3.2.1.1 Policy Tools

Policy tools offer methods so as to take policies from other management stations. These

tools help administrator to create new policies for the environment or view or edit any

existing policies in the policy repository. The policies can be written using different

level languages. In this case the tools have to do a translation from these languages to

ones that can be understood by PDP.

Policy tools primarily consist of Policy Receiving Module and Policy Editor (GUI).

The Policy Receiving Module is represented by a fixed representatives or agents. This

agent is responsible for receiving XML policies transferred from higher management

stations. The Policy Editor GUI supplies an easy way for administrator to input some

simple information to produce XML based policy automatically and save it into the

policy repository [119].

3.2.1.2 The Policy Repository

The policy repository is a place where the policies are stored. After describing and

authorizing them by the policy management tool, polices are stored in this place waiting

to be retrieved either from the policy decision point or the policy tools.

57

3.2.1.3 Policy Decision Point (PDP)

PDP is the entity that is responsible for retrieving policies from the repository. After

that the PDP reads policies and pase them with the help of XML parser, i.e. it verifies

the authority of user policy to examine the privileges for services approved to any grid

user. If the PDP decides that the user has the right to use these services, PDP looks

at the conditions of the policy and asks if there are sufficient resources to apply this

policy, then it decides when this policy should be applied [119].

3.2.1.4 Policy Enforcement Point (PEP)

This point represents the end point, where the policy is finally enforced. To achieve

this enforcement, a transport protocol is presented for the purpose of communication

between PDP and PEP, so that the user can transmit policy conditions or configurations

data to the target, or retrieve these configurations and information from the device.

Besides COPS and SOAP protocols, active network technology has become the most

popular way in use used for policy enforcement [119].

3.2.2 Multiple Virtual Organizations

Virtual organisation (VO) can be defined as a short-term network of organizations and

entities that get together fast to make use of fast shifting and sharing chances for the

period of the chance exists. It provides organizations the flexibility to exploit and co-

operation with partners [71].

Trust can be refers to “mechanisms to verify that the source of information is really who

the source claims to be” [16], and how secure to share resources (application software

and CPU process) and private data without any concern form being stolen or compro-

mised.

Figure (3.2) shows our framework for Multiple VO. Allowing PEPs (e.g: external

users) to obtain policy instructions from subjects outside their physical institute ex-

poses them to security defencelessness. To avoid this issue, each PEP should be re-

maining only under the administrative control of the policy management agent (PMA)

58

in its physical institute. Our framework deploys PAs to divide VOs into virtual clusters

according to their security policy framework.

Figure 3.2: Multiple Vrtuial Organization Policy Management Framework

When authorized grid users send their jobs to the resource broker, the later retrieves in-

formation about the available resources in the grid from the Grid Information Services

(GIS). Later, the resource broker sends this information along with the related policies

(Users policies) to the grid policy agent or to the VO policy agent to make the policy

decisions. The VO policy agent forwards the users’ policies along with the VO policy

to the PMA which is responsible for the target resource to make the final decisions.

PMA checks if the requests are situated in a single virtual cluster or multiple virtual

cluster. If the requests are situated in the same virtual cluster, a homogenous conflict

analysis takes place without any need to retrieve any information from the GIA.

Where PMA receives a request from one of the PAs asking for a service that is situ-

ated in multiple virtual clusters, a heterogeneous policy management mechanism takes

place. The heterogeneous conflict analysis can take place in two cases; either the PMA

59

receives a request from one of the PAs that has a framework different from that in the

PMA or if the User Policy framework is different from that in the PMA. The hetero-

geneous conflict analysis mechanism depends on converting the policies of the target

service into the policy model of the PMA. The PMA asks the GIA for the account maps

and the policy schema maps of the target services. At the same time, the PMA asks

the service requester for its authorization policies through the PA of the service. When

the PMA receives this information, it starts the policies conversion to the PMA pol-

icy model. First it applies the Account Mapping (as explained in the literature review

chapter) to make it possible for users, whether trusted or not, to access services in a

remote VO. Here, a map mechanism should be applied to map those users to local ac-

counts and later to perform the policy mapping to generate an inter-schema map which

maps the schema of the policy model of the service’s VO to that of the requester’s VO.

In other words, a map mechanism is used to convert policies between heterogeneous

policy models to a one that can be understood by the PMA. Finally, the PMA applies

the conflict analysis mechanism on the policies of all target services to find suitable

permissions for the requester of service.

3.3 Architecture Structure and Components

Figure (3.3) shows our proposed architecture, it applies Client/Server architecture be-

cause it is the most favorable type in distributed systems and heterogeneous environ-

ments [35]. Client/Server is a network computational architecture and includes clients

and servers that operate on the proper software and hardware for their jobs. There are

two forms of client/server architecture: two-tier and three- or multitier. Our architec-

ture employs the three-tier model which consists of the client (grid portal) as the first

tier, the resource broker as second tier and grid nodes as third tier.

Our grid architecture composes of a grid portal, a resource broker with its units and

nodes. The following describes the functions for each one of them.

60

Figure 3.3: Grid Architecture

3.4 Grid Portal

A grid portal or grid interface is a virtual computing resource performing an interface

on behalf of grid users to approach the grid; the portal is the efficient gateway to the

grid, as shown in Figure (3.4). A portal has many features such a simple interface by

which facilitates the description of grid applications and job necessities. Web and grid

portals support identical services to users: for example, web browsers offer a single

interface that can be used to access internet resources, where grid portals are used to

illustrate and send job or applications (or both) to be accomplished by grid resources.

Figure 3.4: Grid Portal

3.4.1 Grid Application Requirements

A grid application is a group of jobs require being executed by using grid resources.

These applications have requirements like the names of all integrated jobs, the relations

61

between these jobs and the single job requirements. These application requirements

must be taken into account by the resource broker, which must then choose the best

resources that fit those requirements so as to accomplish the job. This stage is essen-

tial, as it will affect the stages that specify the nodes on which the application will be

implemented and how events will be treated.

3.4.2 Job Requirements

Users need to specify their job’s requirements. These comprise of job’s (ID) or identi-

fication, resource specifications (CPU architecture, physical memory and disk space),

data staging, software applications and policy. This stage is as vital as the previous

one, for the same reasons.

3.5 Grid Node

Node is a shared unit offering particular facilities. These units are the essential ele-

ments in any grid. Every node has to communicate with a broker in addition to other

nodes in the grid system to enable other nodes to perform their jobs that were requested

by resource broker to decrease the resource broker bottleneck problem.

To achieve this communication, each node has to include middleware application soft-

ware. This communication should be made by the use of network resources. In our

model the resource broker does not organize this network. Each node has the ability to

execute a job, because each one of them has its own application software, policy and

data.

Every node transmits its heartbeat to the resource broker at regular intervals. This

heartbeat “pulse” includes a timestamp, node name or ID and other optional informa-

tion. The node allows the resource broker to inquire its resources and grid jobs status

and control the grid jobs (for example: stopping the job). It also transmits any event

for handling to the resource broker throughout the execution.

62

3.6 Resource Broker

The resource broker presented in this research is a modified one from that mentioned

in Section 2.5. Our resource broker is based on the mobility framework and isolate the

user from the grid’s middleware. All of this helps in automating the operation from

the point of receiving user’s resource through the job (or application) execution on the

appropriate resources till the submission of results. In other words, the resource broker

is connected to all grid elements.

3.6.1 Resource Broker Architecture

The resource broker accepts a job or application requirements from the portal and looks

for appropriate resources that can fulfill these requirements. First it asks for all infor-

mation about the available resources from the information service and about the data

information held in the replica catalogue. It chooses the resources that can meet the

job (or application) requirements and asks the grid policy agent about the policies for

those resources. According to findings, the resource broker’s architecture consists of

three indices: the information service, the replica catalogue and the grid policy agent.

These may configure by the grid administrator, either to gather all information about

the resources, or to include only the addresses of information services sited on the

resource.

3.6.1.1 Information Service

Information service is a crucial element in grid computing. It is a directory service

holding information about all the resources in the grid and the entire grid activated jobs

running on those resources. This information can be static for the hardware conditions

and the operating system, or dynamic information related to the resources available

time, disk space, the job presently running, application software, and policies. The

resource broker communicates both the information service to ask for this information

and the resources in order to advertise their information.

63

3.6.1.2 Replica Catalogue

It is also an important component for the grid, because it presents information which

helps in accessing the stored data in the grid. It determines the place of data in the

grid, updates data resources and maps logical file names to the actual physical places

on grid resources. A resource broker communicates with a replica catalogue to ask for

information about data location and the access control needed to use this data.

3.6.2 Grid Policy Agent

Our grid policy agent contains all the policies information about all resources in the

grid. Each institute should have at least one policy agent that has the ability to access

the policy repository or policy information for that institute. All policy agents (PA) in

all domains in the grid are registered with the grid policy agent, and should send their

policy information (e.g. policy framework) or any changes or updated data about their

policies to the grid policy agent. Grid services are an area of web-services; for this

reason the policy agent is a web-service that issues the group of services that it can

support for an institute into the grid registry. For remote access, the policy agent sup-

ports the SOAP/HTTP protocol so as to exchange documents easily over SOAP. Policy

documents meeting the requirements of the specification of the common information

model are encoded in XML [113].

The grid administrator can specify the policies for units participated in the grid, but

it does not have any policy agents that can directly use it. As an alternative, a grid

policy agent operates as a proxy for the policy agents that run at each of the different

institutes.

Figure (3.5) shows the architecture of a single institute policy agent. Each grid institute

has many Virtual Resources (VRs) that are accepted to participate with other contrib-

utors in the grid. The grid administrator defines policies using various management

tools in the policy agent and stores those policies in the policy repository. As a result,

the institite policy agent can be considered as a combination of the policy management

tools and policy repository [113].

64

The main job for the institute policy agent is to combine the policies from the institute

administrator, the policies from the global grid and grid user’s policies in order to ob-

tain the efficient set of policies for resources belonging to that institute. The efficient

set of policies is the one applied by the policy agents attached to each resource assigned

to that institute in the grid.

Figure 3.5: Mobile Agent Architecture

In many cases resource broker find itself in a situation that has to reject some jobs be-

cause the required resources may not be found. These are some of these situations, in

short:

∙ The resource needed to fit the job requirements is busy at this time.

∙ Resource that fits the job hardware requirement does not own the needed appli-

cation software.

∙ The resource that fits the job hardware and application software requirement does

not have the required data.

As a result, the Mobility has created a new environment that can solve these rejected

job cases. The requirements of privacy and security to apply the mobility in secure grid

environment are one of the important demands for both grid user and grid resources. In

our model mobile policy agent play a significant role in achieving these requirements.

Figure (3.5) shows the architecture of our mobile policy agent and its components. The

65

following describe each of one of them.

In order to apply the mobility, the policies for the elements in Figure (3.6) are checked

before any dynamic migration can take place. In our model mobile policy agent plays

(Figure (3.5)) a significant role to achieve these requirements. The mobile policy agent

checks the policies for each element in the three levels (Figure 3.6). Each element in

these levels is consider as a Policy Decision Point (PDP) where the policy decision is

taken place and forward this decision to its related agent. If the policies at (level 1)

have given the green light for the migration, the mobile policy agent checks the policy

for the target domain (Level 2) to see if that domain is allowed to have all (or any) of

the elements in (Level 1). If so, the next step should be checking the node which is

going to be the new host for the elements in (Level 1). By checking the policies for

both elements in (Level 1) and node’s policy in (Level 3) mobile policy agent takes the

decision if that node is allowed to have the immigrant element in (Level 1) or not.

Figure 3.6: Policy Levels

3.6.2.1 Data/Application Software Agent

This agent is responsible for the data and application software migration. Our grid ar-

chitecture allows application software and/or data to migrate from one node to another

in the grid environment so as to adapt the resources needed to fit the job requirements.

If the resource fits the job hardware conditions and the availability time, but does not

have the application software or data needed for the job(s), the resource broker will

search the grid for the nodes that have this data/application software, by inquiring the

information service and replica catalogue and put these nodes in a new list. Then it

66

will check each one of these nodes, one by one, by asking the mobile policy agent

to determine whether or not the data/application’s software policy in these nodes al-

lows their movements (or having a copy from this data or application software). The

Data/Application Software Agent will check the policies for the nodes that contain the

required data or application software and return the results to the resource broker. If

one of the nodes does support the mobility feature for data/application software, the re-

source broker will migrate or copy appropriately and send it to the resource that meets

the job hardware and time requirements along with its policy. If all the nodes’ policies

do not support the data/application software mobility, the broker will tell the user that

the grid cannot execute the job.

3.6.2.2 Job Agent

This agent is responsible for checking the grid users’ policies. Our grid architecture

in Figure (3.5) allows the job and its execution state (i.e. the context of execution) to

migrate from one resource to another and restart on the new one in order to fit the job

conditions and requirements. If the resource that fits the job hardware requirements

is busy at the time needed, our resource broker will vacate this resource by migrating

the currently running job in that resource to other resources (if they are presented and

have the job requirements). This can be done by looking for jobs running on this

required resource and obtain details of their requirements from the information service

and the replica catalogue. If the job requirements can be satisfied using other resources,

the resource broker will ask the mobile policy agent if the currently running job(s) is

allowed to be migrated to another resources. The Job Agent and the Resource Agent

in the mobile policy agent will check whether or not the grid user’s policy and the new

resource(s) policies allow migrating the running job to the new resources and returning

the results to the resource broker. If the policy allows this kind of migration, then the

resource broker will migrate these jobs to the new resource(s) and send the new job to

the vacated resource which will fulfill its requirements.

67

3.6.2.3 Resource Agent

This agent checks whether or not the resources’ policies allow the migration for jobs,

data and application software between various resources. Our grid architecture allows

jobs, data and application software to migrate from one node to another in the grid

environment in order to adapt the resources required to meet the job requirements. In

the case the resource that meets the job requirements is currently busy and there is a

need to migrate the currently running job(s) to other resource that can meet the running

job requirements, or there is a need for a data or application software migration. In both

cases, the resource broker will ask the mobile policy agent to check the policy aspect

in these situations. The Resource Agent in the mobile policy server will determine

whether or not the current resource’s policy allows the job migration from its node to

the destination resource, or if the destination resource can accept jobs from the original

resource. In both cases, it will inform the resource broker about the results. In the case

of data/software migration the resource agent in the mobile policy agent will determine

if the addition or migrating of data/application software policies are allowed in the

current resource and the destination resources. If they do not, the broker will tell the

user that the grid cannot execute the job. If they do, the broker will apply the migration

between those resources.

3.6.2.4 Resource Checker

As soon as the mobile policy agent makes its decisions about any possible migration(s)

either for jobs, data or application’s software, it stores indexes for these decisions using

the resource checker and stores these indexes in the policy repository prior to submit-

ting the decision’s results to the resource broker. The aim of these indexes is to track

any changes or updates in the target policy(s) and inform the resource broker about

them. Also it helps in enhancing the mobile policy agent performance and throughputs

by returning to these indexes for any new requests from the resource broker instead of

going for the whole checking operation again.

68

3.6.3 Resource Broker and Grid Policy Agent Functionality

The main tasks for the resource broker is establish job start times, discovering re-

sources, choosing the best resource(s) that can meet the job requirements, using the

migration features (if required for jobs, data and application software), booking re-

sources, sending jobs input files to the resources, monitoring and handling jobs and

transferring results back to user. Resource brokers acquire information about all the

needed grid resources from replica catalogues, information services and grid policy

agent. All these progressions are hidden to the user, who sees the grid as a single large

and powerful computer.

In the case of grid application, the resource broker will verify the requirements for each

job in this application and locate the resources that can perform each of them. If there

is an unavailability in one of these resources, the resource broker will tell the user that

the grid will not be able to execute this application.

3.6.3.1 Job Start Time (JST) establishment

As soon as the resource broker accepts a job from a portal it will determine the job’s

start time using the algorithm in Figure (3.7).

1. Start and initialization. The first action is to rest all the variables inside this al-

gorithm to zero. For single Job the resource broker will reset the JST to 0, which

will launch the job execution right away, and will then discover the resources.

3.6.3.2 Resource Discovery

After the resource broker starts the job execution task, it will contact the informa-

tion service to ask about available resources’ information (hardware and software), the

replica catalogue to inquiry about data that can meet the jobs requirements and the

grid policy agent to query about the allowed actions for both the grid user and grid

resources. The following describes the algorithm for resource discovery.

2. Checking Hardware Specification. The resource broker will be given some or

all of the hardware specifications, that include; CPU speed, memory and disk

69

Figure 3.7: Resource Discovery and Mobile Policy Algorithm

space.

The resource broker will evaluate if the given hardware specifications from the

grid user are equivalent or larger than that saved in the information service and

70

place the result into a new list in order to locate the suitable resources for the job.

If one or more of the required hardware specifications is not defined or identi-

fied from the user side, the resource broker will put any value. If the resource

broker does not locate any of the needed hardware specifications, it will transmit

a message to the user saying that the grid does not have the needed resource.

Otherwise the resource broker will execute the next step.

3. Checking Time. The resource broker will have the following times:

∙ Worse Case (WorseCase) which is the maximum time that the job can be

held until it is executed. Several issues such as heterogeneous environ-

ments, communication delays and data transfer speeds cause difficulties

for the determination of job execution times.

∙ Job Start Time (JST) (generated from the system).

4. Choosing Suitable Resources. The resource broker will check the policy for

both the resource and the user. If the resource allows executing this job(s) using

its resources and the user policy does not prevent executing the user job(s) on

this resource, the resource broker will perform the next step. If it does, the

resource broker will look for another resource(s) to execute this job(s). Figure

(3.8) illustrates this step.

5. Application Software. If the user’s job needs specific application software to

fulfil the job requirement, the user will provide the resource broker possibly will

be given Application Software Name. Then the resource broker will compare the

needed application software. If the resource broker does not locate the needed

application software, it will execute to the application software migration step.

Otherwise the resource broker will go to the following step (Step 6). Figure (3.9)

illustrates this step.

6. Data. If the user’s job needs specific data to fulfil the job requirement, the user

will provide the resource broker with a possible data name. The resource broker

will compare the needed data name with one on the listed resource; if it does not

71

Figure 3.8: Resource Discovery Step (4)

find the needed data name, it will perform the data migration step; otherwise it

will execute the resource reservation step. Figure (3.10) explains this step.

3.6.3.3 Mobility

Mobility is the ability to move or migrate jobs, data and application software among

grid resources according to their policies. Mobility facilitates the accomplishment of

requirements for grid applications, as well as grid users. It also assists grid evolution,

improves performance of operating applications by migrating data to the execution host

and therefore reduces the communication consumption, solves the load balancing and

reduces latency and bandwidth consumption when applications are migrated to locally

interact with remote data [87].

72

Figure 3.9: Application software Mobility Steps (5 and 9)

Figure 3.10: Data Checking Step (6)

73

7. Job Migration

Our grid architecture allows the job and its execution state (i.e. the context of

execution) to migrate from one resource to another and restart on the new one

in order to fit the job conditions and requirement. As illustrated in the follow-

ing algorithm, if the resource that fits the job hardware requirements is busy at

the time needed, our resource broker will vacate this resource by migrating the

currently running job to other resources (if they are present and have the job re-

quirements). The resource broker will ask the mobile policy agent if the user

of currently running job(s) allows migrating this job to another resource(s) and

asks if the policy of the target node is willing to accept the migrated job and con-

tinue using its resources. The Job Agent in the mobile policy Agent will check

whether or not the grid user’s policy allows migrating the running job to the new

resource(s) and returning the results to the resource broker. If the policy allows

this kind of migration, then the resource broker will go to the next step. If not,

the resource broker will check the possibility to migrate the following jobs in the

resource broker list. Figure (3.11) illustrates this process.

8. Resource migration

In this case the user policy allows the migration of the user’s job from one node to

another, the next step is to check whether the resource which hosts the currently

running job allows migrating the running jobs to another resource. The resource

broker will ask the resource agent in the grid mobile agent to determine whether

or not the current resource’s policy allows the job migration from its node to

the destination resource. If it does, the resource broker will calculate the rest

of the execution time and check the job hardware requirement and apply the

migration to the suitable resource. If it does not, the resource broker will check

the possibility to migrate the following jobs in the resource broker list. Figure

(3.11) shows this process.

9. Data/Application Software Migration

If the resource and the user allow the migration of their jobs from one node to

74

Figure 3.11: Job Migration Steps (7 and 8)

another, and the destination resource that fits the job hardware conditions and

the availability time does not have the application software or data needed for

the job(s), the resource broker will search the grid for the nodes that have this

data/application software. This is can be done by requesting the information

service and replica catalogue about the nodes that have these data or application

75

software’s. Then it will ask the mobile policy agent to determine whether or not

the data/application’s software policy in these nodes allows their movements or

copying from them. The Data/Application Software agent will check the policies

for the nodes that contain the required data or application software and at the

same time it will check the target resource to see if it allows moving or copying

from the source node, and then return the results to the resource broker. If one

of the nodes does support the mobility feature for data/application software, the

resource broker will migrate or copy appropriately and send it to the resource

that meets the job hardware and time requirements along with its policy. If all

the nodes’ policies do not support the data/application software mobility, the

broker will tell the user that the grid cannot execute the job. Figure 3.9) shows

the application software migiration, while Figures (3.12 and 3.13) shows the data

migiration process (move or copy).

Figure 3.12: Data Migration (Move) Step (9)

76

Figure 3.13: Data Migration (copy) Step (9)

3.6.3.4 Resource Reservation

Once resources that will accomplish the job’s requirements have been found, the next

step is to preserve these resources to run the job. If the application is parallel, the

resource broker will co-allocate the needed resources to perform the jobs in parallel at

the same application start time. But if the application is serial or network, the broker

will preserve the needed resources with the needed time for every job determined by

the JST for all jobs.

77

3.6.3.5 Monitoring and Job Live Time Organizing

Grid computing works in a dynamic environment in which resources are heterogeneous

in nature and owned by various organizations and managerial domains. This problem

has been dealt in our grid model by making every node in the grid able to transmit a pe-

riodic heartbeat to the resource broker. The heartbeat contains a timestamp, node name

or ID and other optional information. If the resource broker does not sense a predictable

heartbeat from a node, it makes that node in a SUSPECTED state and transmits it an

Are-You-Alive message. If it replies, the resource broker makes it back in the ALIVE

state and resumes as normal, otherwise the resource broker makes it in a FAILED state.

This message assists the resource broker to determine the failure and monitoring grid

resources.

An event is a message to point out that something has occurred at run time in a system.

The event could be produced by resource broker, grid users, or grid nodes. Resource

broker events are messages directed any modifications in job execution for the period

of run time; they involve system performance deterioration, process and network fail-

ure and new nodes. User events allowing users to manage and control job execution for

the duration of run time involve terminating job and reducing time. These messages are

being transmitted from users to resource brokers. Resource events point out that some-

thing such as software and/or hardware failure has happened; therefore the resource has

become unavailable. Also, these messages are sent from resources to resource broker.

Our resource broker deals with the event by user and/or grid policies. Users can de-

scribe events and how to handle the event, if they wish, at the job requirement descrip-

tion step. This can be done by identified message events, conditions and the event

handler. This lets users manage job execution for the period of run time till terminating

the job. They can also enforce conditions and handling events that respond to specific

events with their related conditions. If users do not describe events, conditions and

handlers, resource broker will use, by default, the grid policy.

78

3.7 Summary

This chapter described our new framework for policy management used for a single

virtual organization and multiple virtual organizations; including design, forms and

objectives. The former has been introduced in section two and there. The architec-

ture presented in this chapter introduced the Grid Policy Agent, which enables the

enforcement of mobility policies in the context of multiple VOs. This contribution

is fundamental to the (how does the grid interact with policies for different domains

and organizations in the case of mobile sharing and data movements?) and in partic-

ular the research aim one: Supports a multi-organization environment with different

domains, combined with supporting the user preferences in its final decision and en-

forcing data policies in its designs (research aims three and four). This architecture

has been published in Communications in the Computer and Information Science Con-

ference (CoNeCo2011) [15] and the International Journal of Computer Networks and

Communications (IJCNC), 2012 [110]. Section four and five gives an illustration that

helps in highlighting the complicated operation a user would usually be subjected to

when sending a job to the grid, and therefore the necessity for a grid resource broker to

separate the user from such kinds of problems. Section six describes the architecture

and functionality of the resource broker and the grid mobile policy agent that we built.

How it locates appropriate resources for grid jobs using mobility feature to ensure the

best achievement for these jobs and how the grid mobile policy agent plays a role in

supporting the mobility feature. The framework that was introduced in the last section

has been published in Risk and Security of Internet and Systems Conference (CRiSIS),

IEEE Computer Society, 2011 [14] and the International Journal of Computer Net-

works and Communications (IJCNC), 2012 [110].

The most important concepts that have been described in this section are the job sub-

mission description language, as it will be extended to include policy statements in

chapters 5 and 6, and the concept of mobility, as this work mainly considers policies

associated with data jobs and resources that move inside and between Virtual organi-

zations.

79

Chapter 4

A Computational Model

4.1 Introduction

This model is an outline of a computation executed on a specific architecture. As per-

ceived by object-oriented paradigm the units in our computational model are objects

that communicate and collaborate with each other. This model consists of objects and

mechanisms. Section two presents these objects including node, data, policy, appli-

cation software, grid job and grid application. While the mechanisms include timing,

communication, termination, failure and mobility mechanisms is presented in section

three. We will present a scenario to explain the advantage of mobility mechanism and

the role of policy in it within grid systems in the same section.

4.2 Objects

This part will talk about the core of our computational grid. The objects of our com-

putational model comprise node, data, policy, application software, grid job and grid

application. The following, explains each one of them.

80

4.2.1 Node

A node is the most fundamental element in grid computing. It is a set of work units

that can be shared and offer some facilities to the grid users. The main attribute of the

grid nodes is the heterogeneity in capacity, speed, architecture and operating systems.

Communication between nodes is accomplished using network resources like LAN and

WAN. The main tasks for nodes are receiving, implementing and sending job’s results.

The user’s requirements are different from one another; in order to execute the user’s

jobs every node may have its own application software and data to match these require-

ments. In our model we presume that all grid nodes have the ability to communicate

with each other in grid environments to facilitate exchanging jobs, application software

and data migration between nodes. Each node in the grid launches a regular heartbeat

to the monitor which is in charge for managing and controlling grid nodes. This heart-

beat includes a node name, job status (if the node is operating a job), timestamp and

other optional data. Node can be either logical or physical node; a physical node may

have one or more logical nodes. The logical nodes are designed to perform manage-

ment roles for grid components and their relationships; such as Distributed File System

(DFS) or distributed computer pool [54]. Physical nodes are classified according to

their job in the grid. The two most familiar types of physical nodes are computation

and storage nodes.

4.2.1.1 Computation Nodes

Computational nodes are devices that are utilized in relation to their hardware and

processing abilities. The node could be a mainframe, cluster, high efficiency computer

or a desktop. These abilities are primarily presented by the different types of processor

models in which every computation node uses its own processor model and its own

hardware designs and features such as speed, internal memory and software platform

compatibility. Computation nodes can be utilized in many various techniques. A grid

application can be implemented on one of the grid nodes rather than executing on a

local node outside the grid. Parallel applications can be run on many processors; either

they are situated on the same grid node or on many.

81

4.2.1.2 Storage Nodes

While the function of the computation node is handling jobs and applications, other

devices have the ability for storing and offering data to other nodes inside the grid

environment. These devices are called storage nodes. The most general storage type

is secondary storage using hard disk drives or other storage media like tape drives.

Applying secondary storage in a grid results in an enhancement in the performance,

capacity, sharing and reliability of data swap within that grid. There are many types of

file systems which deal with the storage and managing processes for the data among the

nodes of the grid network. Such an example of these file systems are Distributed File

System (DFS), Network File System (NFS) and General Parallel File System (GPFS).

4.2.1.3 Special Nodes

Grid computing has a range of implementations such as military, medicine and many

different areas. These implementations asked for various architectures, equipment de-

vices, capacities and special nodes to accomplish their jobs.

4.2.2 Data

Data is a part of information saved in a grid node, and is utilized by application software

to accomplish specific jobs. The application software can then reach data whether on

a local node or remotely. The data may previously be kept on one or more nodes, or it

may arrive with the user job. In our model, we presume that every stored data owns its

unique name to facilitate describing it by the users. One of the features of this data is

the ability to mobile from one node to another according to the policy enforced by the

resource broker. The owners of the data have the privilege to decide the policy for their

data; this policy can be static or dynamic.

4.2.3 Policy

Policies are groups of rules and regulations created by one or more of jobs owners or

administrators of nodes, describing how their jobs or resources can be dealt with and

82

used, how a work should be done, how security is employed in a domain and how an

organization arranges and distributes their resources. Policies can be divided into user,

grid and resource policies.

4.2.4 Application Software

Application software is one, or a group, of software programs that are located on grid

nodes and can be used by grid users. This software is a set of instructions expressing

a job, or group of jobs, to be performed by a node; it is moved into the node’s RAM

(Random Access Memory) and is carried out in the CPU (Central Processing Unit).

The main task for application software is to execute and run the user job. It allows

the end user to achieve one or more particular jobs by utilizing the resources of a

computer in performing the conditions of a job that the user wants to achieve. Each one

of these application software(s) has requirements and conditions; for example: CPU

speed, disk space and operating system. In our model, application software should

have the ability to accept the executable file (job), execute it and generate the result.

Also it may have the ability to migrate between grid nodes according to the policy

enforced by the resource broker in order to enable the needed node to achieve the user

conditions for job execution. This feature helps in reducing the number of rejected

jobs. The owners of the application software have the right to specify the policy for

their application software. This policy can be static or dynamic. A static policy implies

that the application software does not have the ability to migrate to other nodes in

the grid. In a dynamic policy, application software has the ability to migrate there by

moving or by copying itself.

4.2.5 Grid Job

A grid job is an individual element of work implemented by a suitable node in the

grid. This job could be executing one or more system commands, operating machinery,

moving or collecting data or simply calculating something. IBM [73] describes the

job as “a single unit of work within a grid application. It is typically submitted for

execution on the grid, has defined input and output data and execution requirements

83

in order to complete its task. A single job can launch one or many processes on a

specified node. It can perform complex calculations on large amounts of data or might

be relatively simple in nature.” In our system, users need clearly to define their job

requirements. These definitions may include job identification, resource specifications

(CPU speed, physical memory), data staging, software applications and policy. This

definition is essential, since it will determine where the job will be executed and how

data is handled. The later is a very important issue; as it allows users to control their

jobs during job execution. In our system, jobs can migrate from one node to another in

the grid in any of the following situations:

∙ To clear the needed node from the existing job and make it available for another

job.

∙ To accomplish the job if failure happens.

∙ To accomplish the job on a high performance node.

4.2.6 Grid Application

An application is a group of single jobs that work together to accomplish a mission.

The expression “application” is used at the highest stage of work on the grid. IBM

[73] describes the grid application as “a collection of work items to solve a certain

problem or to achieve desired results using a grid infrastructure. For example, a grid

application can be the simulation of business scenarios, like stock market development,

that require a large amount of data as well as a high demand for computing resources in

order to calculate and handle the large number of variables and their effects. For each

set of parameters a complex calculation can be executed. The simulation of a large

scale scenario then consists of a larger number of such steps. In other words, a grid

application may consist of a number of jobs that together fulfill the whole task”. There

are five types of grid application:

∙ Grid applications that are used to solve very large problems (e.g.: the need for

several CPUs and large memory). This type is called distributed supercomputing.

84

∙ Grid applications that are used in exploiting many suitable resources in order to

improve aggregate throughput. This is a high throughput type.

∙ On demand grid Application. In this type remote resources are integrated for a

particular amount of time.

∙ Data intensiveness. In this type grid applications are used to combine new infor-

mation from large data sources.

∙ Grid applications which are used for Collaboration. Including supporting of

communication between many participants.

Each one of these applications has requirements such as the names of all integrated

jobs, the application flow (relations between these jobs) and the requirements of each

single job. These application requirements are very important issues for the resource

broker; as it helps in selecting the suitable resources that can meet applications require-

ments.

Application flow denote the links between jobs that meet the general requirements of

the application. The three types of application flow are parallel, serial and network

applications. Parallel applications include several jobs that can be implemented simul-

taneously. One of the advantages of such applications for grid computing is increasing

scalability. Serial application flow is a single sequence of job execution where every

job has to wait for its predecessor to be completed and deliver output data as input to

the next job. Network application includes a number of jobs, some of which are exe-

cuted in parallel whilst others are interdependent. In other words, an application that

includes combined parallel and serial applications.

4.3 Mechanisms

4.3.1 Timing Mechanism

Time is crucial issue in grid computing, its aim is to utilize underutilized resources to

reach faster job execution times. Every node in our structural design has its own inter-

nal clock. Each node must then regularly synchronies its clock with that of resource

85

broker by using network time protocol. Also they have to state their availability time

when they participate in the grid. The main tasks of the timing mode is to maintain and

control system time, and that would prevent jobs from operating longer than they are

permitted to. In addition, it assists in the case of handling failure. To implement a job,

a certain period of time is needed; the majority of resources apply time as a charging

unit because it is easily quantifiable. For that reason it is easy for jobs to have Worse

Case (WorseCase).

Worse Case is the maximum time that the job can be on hold until it is executed.

Several issues such as heterogeneous environments, communication delays and data

transfer speeds cause difficulties for the determination of job execution times.

4.3.2 Communication Mechanism

Communication is responsible for linking objects in the grid environment with each

other to perform their actions with the aim of flexibility. This communication is for the

purpose of swapping and the transmitting of information and data between these ob-

jects. Moreover, Information transmission is essential when dependencies exist. Also

communication assists in determining failures. Communication between objects is ac-

complished using Remote Procedure Calls (RPC). This communication can be either

synchronous or asynchronous. Our model uses asynchronous communication, which

leads to a non-blocking send.

Asynchronous communication is a substitute form that may be helpful in cases when

an allowance is made for an object to recover replies later. Communication presents

the method of organization and management between objects. Because our model is

client/server architecture, the client sends requests to a grid service by using a remote

procedure call. When the request has been completed, notification is returned to the

client, who can at the same time generate a new remote procedure call to the similar

service.

86

4.3.3 Termination Mechanism

Once a job has been submitted, it starts processing on the nodes till finish. Usually a

job finishes as a result of circumstances such as normal, user termination or failure.

Our model uses a termination that reserves time and lets objects operating in parallel to

accomplish one task; when any object has completed its job, it does not wait or go on

hold for others to complete their jobs. This type of termination is called conventional

termination (being opposed to distributed termination).

4.3.4 Failure Mechanism

Failures in distributed systems can be irregular in that they can dump the job in one

of many failed cases. In the grid system the possibility of failure is strong, for the

following reasons:

∙ Grid environments are heterogeneous. That includes entities, hardware and soft-

ware components. All of that can lead to failure when they interact.

∙ Grid environments are very dynamic, with objects regularly joining and leaving

the system.

∙ The difficulty in detecting failures in a dynamic and heterogeneous system.

The failure can happen because of many reasons such as, software or hardware failure,

communication delays, process failure and network failures. Failures in grid comput-

ing are partial, that means particular components fail while others still function. When

hardware or software faults happen, jobs may generate wrong results or hold before

they are finished. Our model presumes that all system components, either hardware or

software, may fail at any time.

Fault tolerance is a vital attribute and an essential function for grid environments so as

to prevent losing the computation time. Two process support a fault tolerance mech-

anism: failure detection and failure handling. Detection is connected to the heartbeat

that is sent from the nodes to the resource broker at a regular basis. Each heartbeat in-

cludes a timestamp, job status (if the node still processing a job), node name and other

87

optional information. If resource broker does not sense an expected heartbeat from any

node, it places that node in a SUSPECTED state, and transmits an are-you-alive mes-

sage to the node. If the node replies with a message, in that case the resource broker

puts the node back in the ALIVE state and carries on as normal. Otherwise, the broker

puts the node in a FAILED state. This message assists the broker to detect the failure

and recover it. When the node transmits a heartbeat to the resource broker, the latter

will match the existing state of the job with the most recent state; if it is the same, the

broker will presume that the job has failed.

If failure happens, the resource brokers will response by moving or migrating the job

with its current status to another appropriate resource on the list as found by the re-

source broker at the resource discovery level, to restart processing the job from the

point of failure. If only the failed resources exist in that list, or if all the listed re-

sources are presently not free, the user will be informed by the resource broker that

the grid is unable to execute your job because of failure. Check-pointing schemes let a

job resume from the point of failure, avoiding the need of rerunning the whole job. By

returning to a previous checkpoint, a system can reload the earlier state and continue

computation from the point of failure. In our architecture, the system can detect and

handle, and thereby recover from the failure state.

4.3.5 Mobility Mechanisms

Mobility is the ability of physical or logical (virtual) computational resources (software

code, running object, portable notebook PC’s, data and mobile agent) to migrate from

one site to another through local or global networks. David G. Rosado and others in

[101] described the mobility as “In the purview of Grid and Mobile Computing, Mobile

Grid is an heir of the Grid, which addresses mobility issues, with the added elements of

supporting mobile users and resources in a seamless, transparent, secure and efficient

way [[63]; [74]; [93]]”.

In our module we have utilized weak and strong mobility. Weak mobility allows code

to move through the networks. In some cases the codes have initial data assigned

but without execution states (for example the state of the computation is lost at the

88

first node). Strong mobility is the ability of a computational environment to mobile the

code and execution state (the context of execution) to start again at a new resource. The

execution state comprises of running code, saved processor registers, program counter,

local variables and return addresses. A set of organizing execution controls operates in

a process on the user machine, and then accesses the remote resource by the invocation

of a remote process. One of the most important features of strong mobility is that jobs

can choose to migrate between sites while it is processing information, most likely

decreasing the distance between it and the next group of data it intends to process. The

reliability challenge of partial failure is decreased because the job state is only in one

site at a time.

To explain the advantage of mobility mechanism and the role of policy in it within grid

systems, we will consider the following scenario, which is divided into three sections.

∙ First section: Grid Resources Specifications

The grid contains five nodes; each node has a different specification. These

specifications are: hardware, domain, application software, data and policies.

Also it contains the running jobs, if presented, as shown in Tables (4.1), (4.2)

and (4.3).

∙ The second section: Jobs Requirements

Three jobs need to be executed by the grid resources. The requirements needed

to accomplish each job include hardware, software, input, output, dmoanin and

policies, as shown in Tables (4.4) and (4.5).

∙ The third section: Fits the Jobs Requirement to Grid Resources

As mentioned before, the resource broker is responsible for locating the optimal

resource that can meet the job requirements and scheduling the jobs into grid

resources. This is complex issue since job requirements are various and com-

plicated and there is a shortness of resources, especially for data and application

software, in addition to the diversity of resource policies. All these reasons will

raise the number of rejected jobs.

Mobility is an effective approach to resolve this problem, because it will develop

89

the node in order to have the ability to fit the job requirements. This is can be

done by moving (migrating) the needed data or application software to the re-

quired node to be able to accomplish the job. Or migrating the job itself from

one node to another empty one, with respect to the policies, to make the required

node available for another job. All of these issues are illustrated in the following

Figures (4.1) and (4.2).

Table 4.1: Grid Nodes Hardware Specification

Node Name
Hardware

DomainCPU Memory
Speed(GHz) Count RAM(Mega) Shared or

Disturbuted
Node 1 1 1 1024 - USA
Node 2 1 1 2048 - Japan
Node 3 2 2 2048 D UK
Node 4 1 1 2048 - China
Node 5 1 1 2048 S UK

Table 4.2: Grid Nodes Application/Data Specification

Node Name
Application Data

Requirement
File Version CPU

Speed(GHz)
Disk
Space(Mega)

FileName Size(Mega)

Node 1 S1 9.2 0.5 200 D2 1000S2 1.0 0.5 700
Node 2 S5 2 1.0 300 D1/D2 900
Node 3 S4 1.0 1.0 500 D3 700

Node 4 S3 1.0 1.0 900 - D1S4 5.0 1.0 250
Node 5 S3 1.0 1.0 500 D1 700

∙ Job Migration

From Tables (4.1, 4.2, 4.3, 4.4 and 4.5) it can be seen that Job1 requirements fit

the Node1 specification, but Node1’s policy is to allow only single job to run at

any time (exclusive execution), so there is a need to migrate the existing job (Job

2) on Node1 to another node that fits Job2 requirements. The resource broker

looks for this substitute node and finds Node4 and Node5; but Node4 domain is

90

Table 4.3: Grid Nodes Policy Specifications and Running Jobs
Policy

Node
Name

Exclusive
Execution

Move
Data

Move Ap-
plication

Move
Job

Restricted
(Do-
main/User/Job)

Jobs Run-
ning

N1 Yes Yes Yes Yes China/U4 Job2
N2 No No Yes Yes China -
N3 Yes Yes No Yes None -
N4 Yes Yes Yes Yes None -
N5 Yes Yes Yes Yes None -

Table 4.4: Job Specification and Application Software Requirements

User
Name

Job
Name

Node Specification Application Software
DataCPU Memory Name VersionSpeed(GHz) Count RAM(Mega) S/D

U1 Job 1 1 1 1024 - S2 1 -
U2 Job 2 1 1 2048 - S3 1 D1
U3 Job 3 2 2 2048 - S4 1 D2
U4 Job 4 1 1 2048 - S4 5 D2
U5 Job 5 2 2 2048 - S5 1.1 D3

Table 4.5: Job Domain/Policy
Policy

User
Name

Job Name Exclusive
Execution

Move
Job

Restricted (Do-
main/User)

Domain

U1 Job 1 No Yes None China
U2 Job 2 No Yes China UK
U3 Job 3 No No None USA
U4 Job 4 No No None USA
U5 Job 5 No No None UK

in China which is against the policy of Job2 and Node1 policy. Therefore, the

resource broker sends job1 to Node1 that says “send Job2 together with its status

(memory image) to Node5 for execution”.

∙ Data Migration (case 1)

As shown in Tables (4.1, 4.2, 4.3, 4.4 and 4.5), Job3’s requirements fit Node3’s

specifications, but Node3 does not contain data (D2); this data is available in

Node1 and Node2, Node1 policy is to allow movement of this data as well as

Node3’s data requirements, while Node2 is not. The resource broker will there-

91

fore send a message to Node3 telling it to take data (D2) along with its policy

from Node1 and execute Job3.

∙ Data Migration (case 2)

As shown in Tables (4.1, 4.2, 4.3, 4.4 and 4.5), Job4’s requirements fit Node4’s

specifications, but Node4 does not contain data (D2); this data is available in

Node2 and Node3(after migration). Node2 policy is not to allow movement of

data to china domain, but the policy in Node3 allows this kind of movements, but

the data in Node3 was moved originally from Node1 which its policy does not

allow to move data to China domain. Therefore, the resource broker will send

a message to User4 saying that the grid is unable to execute Job4, because the

needed data is unavailable.

∙ Application Software Migration

Tables (4.1, 4.2, 4.3, 4.4 and 4.5), show that Job5’s requirements fit Node3’s

specifications. But Node3 does not have application software (S5). Node2 does,

however, and its policy is to allow this application software as well as node3’s

application software requirements. The resource broker will therefore send Job5

with a message to Node3 telling it to take application software (S5) from Node2

and execute Job5.

Figure 4.1: Grid Resources (Infrastructure)

92

Figure 4.2: Grid Resources after Mobility

4.4 Summary

This chapter explained the activities of the system which composes of computational

model objects and mechanisms. Objects are nodes, data, policy, application software,

grid jobs and grid applications as illustrated in section two. Whereas mechanism man-

ages and controls system elements to accomplish all the aims of our grid structure, it

includes: timing mechanism, which is to utilize underutilized resources to reach faster

job execution times. Communication mechanism which is responsible for linkingob-

jects in the grid environment with each other to perform their actions with the aim of

flexibility. Termination mechanism which is the way to terminate the job after fulfils

its requirements. Fault tolerance mechanism which is a vital attribute and an essen-

tial function for grid environments so as to prevent losing the computation time. And

finally, mobility mechanism mainly considers policies associated with data jobs and re-

sources that move inside and between Virtual organizations. All of former mechanisms

are illustrated in section three.

93

Chapter 5

Grid And Job Description

Language

5.1 Introduction

Grid computing supports and coordinates the sharing of heterogeneous resources that

are distributed across multi-organizations. Many languages have been presented for

this propose such as Globus European Data Grid JDL [92] and Resource Specification

Language (RSL) [2]. The Job Submission Description Language (JSDL) [11] is con-

sidered one of the modern languages that is created for grid description issue.

Our system converts user preferences and conditions requirements to an External-JSDL

that expresses users’ jobs requirements and is understood by the grid environment no

matter what domain the resources are. Also the proposed system converts the External-

JSDL requirements to an Internal-JSDL; as a language that is used to communicate be-

tween the resource broker and the grid nodes, and between the grid nodes themselves

in different organizations and domains. The system stores these language expressions

as an XML schema in order to be retrieved later and sends the expressions to Jade to be

simulated. The reason behind using XML as a language for grid and job requirement

expression is that XML has many attractive attributes such as simplicity in reading,

94

understanding and processing by users and computers. The External-JSDL language

is introduced in this chapter, whilst the Internal-JSDL language has been introduced in

the following chapter.

This chapter is organized as follow: the second section gives an overview of our lan-

guage which is considered one of the contributions in this thesis. The third section

presents the structure of this language. Section four presents the External-JSDL lan-

guage which is considered a language to express the grid users’ preferences to the grid,

followed by a section that illustrates its structure.

5.2 Language overview

Our grid system has been simulated by using Jade simulator, which is a software frame-

work fully implemented in Java language that allows agents to execute tasks defined

according to pre-defined policies. We designed interfaces that help grid administrators

build their grid with all of it resources. At the same time these interfaces give the grids’

users the ability to describe and send their jobs to the grid. When the grid administra-

tors or grids’ users submit their requirements by using the previous interfaces in order

to be simulated by Jade, our system converts these requirements to an XML language

and then sends them to Jade. At the same time, the system stores these XML files

to help in retrieving the created grid later. Our system converts the user preferences

and conditions requirements to an External-JSDL that expresses the users’ jobs re-

quirements and can be understood by the grid environment no matter what domain the

resources are. Also the proposed system converts the External-JSDL requirements to

an Internal-JSDL; a language that is used to communicate between the resource broker

and the grid nodes, and between the grid nodes themselves in different organizations

and domains.

95

5.3 Structure of the language

5.3.1 Grid Structure Language

When creating a grid, we need to define its name, nodes, the polices that control their

action and define the relations between its components. Figure (5.1) shows these com-

ponents.

Figure 5.1: A Grid Structure Schema

The grid elements are written as XML schema applying the BNF-style standard for

elements and attributes. According to this style the character ‘?’ symbolizes the exis-

tence of zero or one. The character ‘+’ symbolizes the existence of one or more and

‘*’ is a symbol referring to existence of zero or more. There are many normative XML

schema modes such as normalisedString, string, any##other .. etc. The following is the

description of the pseudo schema:

<G r i d>

<G r i d D e s c r i p t i o n>

<N a m e . . . />?

<N o d e s . . . />+

<P o l i c y . . . />?

</ G r i d D e s c r i p t i o n>

<x s d : a n y##o t h e r />?

</ G r i d >

96

5.3.1.1 Grid Name

The name of the grid has to be unique, and this component is a string one with a multi-

divergence of zero or one.

5.3.1.2 Nodes

After determining the grid name, the grid administrator defines the grid nodes. These

nodes are responsible for hosting the users’ jobs and fulfilling their requirements. Each

node may have at least single application software and/or data (or more). The reg-

ulations that control the relations between the node resources (hardware, application

software and data) and user’s jobs are created by the grid administrator.

5.3.2 Policy

A compound component with a multiplicity of zero or one; it is used to describe the

grid’s policies. It supports the following elements, shown in Figure (5.2):

Figure 5.2: Grid Policy Schema

∙ Pseudo Schema

<Policy>

<UsersandDomains/>

<RestrictedUsers>?

<RestrictedDomains/>?

</UsersandDomains/>?

</Policy>?

97

1. Users and Domains refers to a compound component with a multiplicity of zero

or more. It states the name of the users and/or domains that are not allowed to

execute or mobile their jobs in the grid. It should have the ability to support the

following components.

(a) Restricted Users represents a compound component with a multiplicity of

zero or more. This states the name of the users that are not allowed to execute

or mobile their job in the grid. It has to support the User Name component.

∙ User Name is a string with a multi-divergence of one or more. It states

the User names. It can be either a node name or logical set of users

(cluster).

∙ Pseudo Schema

<RestrictedUsers>

<UserName></UserName>

</RestrictedUsers>?

(b) Restricted Domains refer to a compound component with a multiplicity of

zero or one. This states the name of the domains that are not allowed to

execute or mobile their jobs in the grid. It has to support the Domain Name

component.

∙ Domain Name is a string with a multi-divergence of zero or more. It

states the domains’ names. It can be either a domain name or logical set

of domains (cluster).

∙ Pseudo Schema

<RestrictedDomains>

<DomainName></DomainName>

</RestrictedDomains>?

98

5.3.3 Node Structure Language

In this section we have configured our Java interfaces so that they can be easily handled

by the grid administrators in order to create their grid nodes. The creation is divided

into four parts; the first one deals with the node hardware specification. The second

part deals with the application software(s) that is available on that node. The third part

deals with data that are owned by that node and the final one deals with the policies and

regulations for the previous elements. As soon as the grid administrators submit their

node requirements to the Jade through the Java interfaces, these requirements are stored

as XML schema to be used by our system to retrieve the created grid later. Figure (5.3)

shows node components followed by an explanation of the language used for each one

of them.

Figure 5.3: Node Structure Schema

∙ Pseudo Schema

<Node>

<Hardwarespecification/>?

<Application/>?

<Date/>?

<Policy/>?

</Node>+

99

5.3.3.1 Node Hardware Specification

Hardware specification elements are a compound element with a multi-divergence of

zero or one; it is used to define the hardware available in the node. Figure (5.3) shows

these elements.

∙ CPU Speed is a variety value with a multi-divergence of zero or one that deter-

mines the speed of CPU available in the node. It is demonstrated in Hertz.

∙ Physical Memory is a variety values with a multi-divergence of zero or one that

states the amount of physical memory available in the node. Physical Memory

is given in bytes.

∙ Disk Space is a variety value with a multi-divergence of zero or one that specifies

the amount of disk space available in the node. It is given in bytes.

∙ Pseudo Schema

<HardwareSpecification>

<CPUSpeed/>?

<Memory/>?

<DiskSpace/>?

</HardwareSpecification>?

5.3.3.2 Node Application

A string component with a multi-divergence of zero or more; this is used to determine

the application’s name available in the node along with its policy as shown in Figure

(5.4). In the policy part the administrator can choose if the application software can

be moved or copied within the grid environment in respect to the restricted users and

domains field.

100

Figure 5.4: Node Application Software Schema

∙ Pseudo Schema

<NodeApplication>

<NodeApplicationName.../>

<ApplicationName.../>*

</NodeApplicationName.../>?

<Policy>

<Move.../>?

<Copy.../>?

</Policy>?

</NodeApplication>?

5.3.3.3 Node Data

This section is related to data that should be available in the node that is going to exe-

cute the job. It contains two elements called Data Name which is a string component

with a multi-divergence of zero or more that describes the local name of the file or

directory on the node that is holding data as shown in Figure (5.5). In the policy part

the administrator can choose if the data has the ability to be moved or copied within

the grid environment in respect to the restricted users and domains

101

Figure 5.5: Node Data Schema

∙ Pseudo Schema

<NodeData>

<DataName.../>

<Name.../>*

</DataName.../>?

<Policy>

<Move.../>?

<Copy.../>?

</Policy>?

</NodeData>?

5.3.3.4 Policy

It is a compound component with a multiplicity of zero or one; it is used to describe

the node’s policies. It supports the following elements, as shown in Figure (5.6):

Figure 5.6: Node Policy Schema

102

∙ Pseudo Schema

<Policy>

<UsersandDomains/>

<RestrictedUsers>?

<RestrictedDomains/>?

</UsersandDomains/>?

<ExclusiveExecution/>?

</Policy>?

1. Users and Domains is a compound component with a multiplicity of zero or

one. This states the name of the users and/or domains that are not allowed to

execute or mobile their jobs in the node. It should have the ability to support the

following components.

(a) Restricted Users is a compound component with a multiplicity of zero or

one. It states the name of the users that are not allowed to execute or mobile

their job in the node. It has to support the User Name component.

∙ User Name is a string with a multi-divergence of zero or more. It states

the User names. It can be either a node name or logical set of users

(cluster).

∙ Pseudo Schema

<RestrictedUsers>

<UserName></UserName>*

</RestrictedUsers>?

(b) Restricted Domains is a compound component with a multiplicity of zero

or one. It states the name of the domains that are not allowed to execute or

mobile their jobs in the node. It has to support the Domain Name component.

103

∙ Domain Name is a string with a multi-divergence of zero or more. It

states the domains’ names. It can be either a domain name or logical set

of domains (cluster).

∙ Pseudo Schema

<RestrictedDomains>

<DomainName></DomainName>*

</RestrictedDomains>?

2. Exclusive Execution is a Boolean with a multi-divergence of zero or one that

determines if the job allows only itself to run at any times on the allocated re-

sources or not. In the true option, the job should be executed on the chosen

resource exclusively.

∙ Pseudo Schema

<ExclusiveExecution>xsd:boolean</ExclusiveExecution>?

5.4 External-JSDL Overview

Before submitting a job to the grid resources for a computational process, a job needs to

be described by a language that can be understood by different machines and domains.

External-JSDL expresses the requirements of computational jobs particularly in grid

environments. It is based on XML description language created by the Open Grid Fo-

rum (OGF). External-JSDL does not only describe the requirements of computational

jobs, but can also describe requirements that are not essential to grid computing. In

other words, External-JSDL is not limited to grid computing.

The design of this language makes it easy to be merged with other languages to solve

complex jobs. The motivations behind creating External-JSDL as one of the well

104

known description languages in grid environment are the fact that there are many dif-

ferent organizations which have different job management systems. Each system uses

its own description language for describing job requirements. This makes it difficult

to co-ordinate between these multi organizations systems. Also for purpose of finding

the suitable resources to accomplish the grid user’s job, the job description may have

to pass between different systems to find the best resource requirements for the job.

External-JSDL is created as a proposed solution to solve these problems because of its

features of mapping between different systems.

5.5 External-JSDL Structure

There are five major External-JSDL components shown in the architecture in Figure

(5.7). The External-JSDL XML schema comprises of the core element (JobDefini-

tion), which includes only one compulsory child element labeled JobDescription. The

latter includes: JobIdentification which is used to distinguishe the job from others; Ap-

plication which is used to define the application software; Hardware Specifications to

define the hardware requirements for the job to be executed on a specific resource(s);

Data which is used to describe the data that should be existed in the execution host to

accomplish the job execution; Policy to decide how security is applied in a domain and

defines the user job limitation and regulations conditions and Job Data for describing

the data that is being sent along with the job description from the user side.

The External-JSDL elements are also written in XML schema and apply BNF-style

standard for elements and attributes. The following is the description of the pseudo

schema:

105

Figure 5.7: External-JSDL Structure Schema

<J o b D e f i n i t i o n>

<J o b D e s c r i p t i o n>

< J o b I d e n t i f i c a t i o n . . . />?

<A p p l i c a t i o n . . . />?

<H a r d w a r e S p e c i f i c a t i o n . . . />?

<D a t a . . . />?

<P o l i c y . . . />?

<J o b D a t a . . . />?

</ J o b D e s c r i p t i o n>

<x s d : a n y##o t h e r />?

</ J o b D e f i n i t i o n>

5.5.1 Job Identification

This is a string component used by the user to define the job name. It has not to be

unique, and has a multi-divergence of zero or one. It includes Job Name as shown in

Figure (5.8).

106

Figure 5.8: Job Identification Schema

∙ Pseudo Schema

<JobIdentification>

<JobName></JobName>?

</JobIdentification>

5.5.2 Application

To execute a job on a specific resource, this resource should have the appropriate soft-

ware. If the user is not specified, the External-JSDL document identifies it as a null job.

To identify a software application, it is essential to specify the application’s software

name.

Application Name is a string component with a multi-divergence of zero or more, used

to determine the application’s name as shown in Figure (5.9).

Figure 5.9: Application Software Schema

∙ Pseudo Schema

<Application>

<ApplicationName.../>*

</Application>?

107

5.5.3 Hardware Specification

To achieve successful job execution, grid resources have to be “well” described by the

grid users. Hardware specification elements are a compound element with a multi-

divergence of zero or one; it is used to define the hardware requirements for the job.

Figure (5.10) shows these elements followed by a short description for each one.

Figure 5.10: Resource Schema

∙ CPU Speed is a variety value with a multi-divergence of zero or one that deter-

mines the speed of CPU needed for the job. It is given in Hertz.

∙ Physical Memory is a variety values with a multi-divergence of zero or one that

states the amount of physical memory needed by the job. Physical Memory is

given in bytes.

∙ Disk Space is a variety values with a multi-divergence of zero or one that speci-

fies the amount of disk space needed by the job. It is given in bytes.

∙ Pseudo Schema

<HardwareSpecification>

<CPUSpeed/>?

<Memory/>?

<DiskSpace/>?

</HardwareSpecification>?

108

5.5.4 Data

For each job submitted to the grid for execution, data may be required or should be

available in the host that is going to execute the job. This data should be described

carefully by the user prior to the job’s execution starts. It contains one element called

Data Name which is a string component with a multi-divergence of zero or more. This

element describes the local name of the file or directory on the host that is holding the

execution as shown in Figure (5.11):

Figure 5.11: Data Schema

∙ Pseudo Schema

<Data>

<DataName.../>*

</Data>?

5.5.5 Job Data

This component describes the data that have been sent from the user side to the grid

along with the job description elements. These data are needed to accomplish the job.

This component contains one element (Data Name) which is a string component with

a multi-divergence of zero or more. Figure (5.12) shows this element.

Figure 5.12: Job Data Schema

109

∙ Pseudo Schema

<JobData>

<JobDataName.../>*

</JobData>?

5.5.6 Policy

Policies are groups of regulations, standards and practices written by grid users about

how their jobs can be handled and used. They decide how a job should be done, how

security is applied in a domain and how an organization organizes, secures and dis-

tributes its resources.

Policy is a compound component with a multiplicity of zero or one; it is used to de-

scribe the user’s policy for the job. It supports the following elements, as shown in

Figure (5.13):

Figure 5.13: Policy Schema

110

∙ Pseudo Schema

<Policy>

<UsersandDomains/>?

<ExclusiveExecution>?

<Mobility/>?

</Policy>?

1. Users and Domains refer to a compound component with a multiplicity of zero

or one. It states the name of the users and/or domains that are not allowed to

execute or mobile the user’s job in it. It should have the ability to support the

following components.

(a) Restricted Users is a compound component with a multiplicity of zero or

one. It states the name of the users that are not allowed to execute or mobile

the user’s job in it. It has to support the User Name component.

∙ User Name is a string with a multi-divergence of zero or more. It states

the User names. It can be either a node name or logical set of users

(cluster).

∙ Pseudo Schema

<RestrictedUsers>

<UserName></UserName>*

</RestrictedUsers>?

(b) Restricted Domains is a compound component with a multiplicity of zero

or one. It states the name of the domains that are not allowed to execute or

mobile the user’s job in it. It has to support the Domain Name component.

∙ Domain Name is a string with a multi-divergence of zero or more. It

states the domains’ names. It can be either a domain name or logical set

111

of domains (cluster).

∙ Pseudo Schema

<RestrictedDomains>

<DomainName></DomainName>*

</RestrictedDomains>?

2. Exclusive Execution is a Boolean with a multi-divergence of zero or one that de-

termines if the job allows only itself to run at any time on the allocated resources

or not. In the true option, the job should be executed on the chosen resource

exclusively.

∙ Pseudo Schema

<ExclusiveExecution>xsd:boolean</ExclusiveExecution>?

3. Mobility is a Boolean with a multi-divergence of zero or one that determines if

the job and the job data allow moving (mobile) between hosts. In the true choice,

the job and job data should have the ability to mobile between hosts according

to the User and Domain Name components.

∙ Pseudo Schema

<Mobility>xsd:boolean</Mobility>?

5.6 Summary

This chapter presents an overview of how grid administrators and users have the flex-

ibility to configure their grid environment. Through this chapter we introduced our

language to configure the grid system using the XML language as in section two and

three. This language is considered one of our contributions in this research. Also we

112

introduced the External-JSDL, which is used to define users grid jobs and preferences

by presenting their identifications, application software, resource specifications, data,

user data and policies that are needed to accomplish the user’s job, as presented in sec-

tion four.

The reader needs to bear in mind the following terms: External-Job Submission De-

scription Language (JSDL) and Job Mobility as a language that expresses the users’

jobs requirements and can be understood by the grid environment no matter what do-

main the resources are. In the next chapter we will propose the Internal-JSDL; as a

language that is used to communicate between the resource broker and the grid nodes,

and between the grid nodes themselves in different organizations and domain. Then the

system stores these language expressions as an XML schema in order to be retrieved

later and sent to Jade to be simulated. The reason behind using XML as a language for

grid and job requirements expression is that XML has many attractive attributes such

as the simplicity in reading, understanding and processing by users and computers.

113

Chapter 6

Mobility And Grid Components

Language

6.1 Introduction

In the previous chapter (Chapter 5) we have discussed the language that is used to

create and configure the grid environment and the External-JSDL (job description) as a

language that enables the grid users to express their jobs and preferences to the resource

broker. But there is a need for a language to support the communications between the

resource brokers and grid resources, and between the resources themselves. We have

presented in this chapter a new language that can support this communication; it is

called Internal-JSDL. It is based on an XML language which defines how a job must

operate on the resources. It defines the conditions and requirements for this job such

as data, application software, mobility and the policies related to each one of them.

Internal-JSDL language is different from other languages in that it supports the mobil-

ity feature including Job, data and application software. The resource broker receives

External-JSDL specifications described by the grid user and translates them into a clear

specifications language used to find available resources to fit those requirements. These

specifications are coded in Internal-JSDL as shown in Figure (6.1).

114

The Internal-JSDL is subjecte to the External-JSDL. Also it is subject to resource/grid

policies and resource availability. Internal-JSDL components crack into the following

categories:

∙ Job identification specifications

∙ Data specifications

∙ Mobility modes and conditions

∙ Policy

∙ Software specifications

∙ Output specifications

Figure 6.1: External-JSDL and Internal-JSDL

This chapter is considered one of our contributions in this thesis and it is organized as

follows; Section two presents an overview for our language that can enable communi-

cation between the scheduler (resource broker) and grid nodes and between the nodes

themselves. In the next sections we will discuss the language that is used to express

the (jobs, data, mobility, policy and application software) in this new language. Each

one of them is discussed in separate section. And finally the last section introduces the

115

output which is responsible for determining the files that should be transferred (stag

out) from the host that is holding the job execution.

6.2 Internal-JSDL Structure Components

6.2.1 Structure

The Internal-JSDL main components are organized as follows: The main component

MJob includes one or more compulsory child components named job. The job compo-

nent has attributes that state the name of the node (grid resource), JobId, Data, Mobility,

Policy, ApplicationSoftware and Output. Figure (6.2) shows the schema of Internal-

JSDL.

Figure 6.2: Internal-JSDL Schema

116

6.2.2 XML Encoding for Internal-JSDL Components

6.2.2.1 The main Component (MJob)

This is the main component of Internal-JSDL. The multi-divergence of this component

is one. It includes Job components that have one or more job(s), every one of them has

its own dedicated node.

6.2.2.2 Job Element

This component defines the requirements that are needed by the job to be operated on

a grid resource(s). The multi-divergence of this component is one or more. It includes

the JobId, Data, Mobility, Policy, Application Software and Output components.

∙ Attributes

NodeName defines the node’s name dedicated by the broker to operate the job.

Its category is xsd:NCName.

∙ Pseudo Schema

<Job NodeName =‘xsd:ID”?/>

<JobId.../>?

<Data.../>+

<Mobility.../>?

<Policy.../>?

<Application Software.../>+

<Output.../>*

</Job>+

117

6.3 Job Identification (JobId)

In grid environments several jobs are required to accomplish the maximum utilization

of grid resources. Therefore, each job should have a described name or identification

to make it easy for the grid to manipulate each one of them.

6.3.1 Job Name

This component is a string that states the job name determined by the resource broker.

The multi-divergence of this component is one.

∙ Pseudo Schema

<JobId>

<JobName></JobName>

</JobId>

6.4 Data

It is a component that describes the data that should be available in the host that is

going to execute the job prior to the job’s execution starts. As shown in Figure (6.3).

The multi-divergence of this component is one or more.

Figure 6.3: Data Schema

∙ Pseudo Schema

<Data>

<Source>

</Data>*

118

6.4.1 Source

It includes the site location on the remote system of the directory or file that should be

made available to the host that is holding the execution from the location described by

the URI (Uniform Resource Identifiers) before starting the job. The multi-divergence

of this component is zero or one.

∙ Pseudo Schema

<Source>

<URI></URI>

</Source>?

6.4.1.1 URI

Uniform Resource Identifier describs the site location of the file or directory that should

be made avalible for the job execution. The multi-divergence of this component is zero

or one.

∙ Pseudo Schema

<Source>

<URI>xsd:anyURI</URI>?

</Source>?

6.5 Mobility

This component is compromised of three elements, Application Software, Data and

Running Job. The multi-divergence of the mobility component is zero or one. Figure

(6.4) shows Mobilty components.

119

Figure 6.4: Mobility Schema

∙ Pseudo Schema

<Mobility>

<ApplicationSoftware.../>?

<Data...>*

<RunningJob.../>*

</Mobility>?

6.5.1 Application Software

The application software component develops the node to have the ability to fit the

job specifications if the node does not have the needed application software. This

120

component defines the mobility and its conditions for application software by having

all components needed to mobile the application software between grid nodes. If this

element is not defined, there is no migration for the application software and the node

possibly has the needed application software. The multi-divergence of this component

is zero or one.

∙ Pseudo Schema

<ApplicationSoftware>

<ASName/>

<SourceNode/>

</ApplicationSoftware>?

6.5.1.1 The Application Name (ASName)

This component is a string that states the name of the needed application software. If

this element is not defined, there is no migration for application software and the node

possibly has the needed application software. The multi-divergence of this component

is one.

∙ Attributes

(MobilityType) is an attribute that defines the mobility type. Application soft-

ware mobility is divided into two types: copy or move. “Copy” means to obtain

the application software and remain a copy of this application software on the re-

source. “Move” means to obtain the application software without saving a copy

in the resource. The resource broker decides this attribute according to node

policy.

∙ Pseudo Schema

<ASName MobilityType=“copy”∣“move”>xsd:string</ASName>

121

6.5.1.2 Source Node

This component is a string that states the name of the node that owns the needed ap-

plication software and its permits mobility. The resource broker decides this compo-

nent according to node policy and availability of the needed application software. The

multi-divergence of this component is one.

∙ Pseudo Schema

<SourceNode> xsd:string </SourceNode>

6.5.2 Data

This component includes all the components required to mobile data between grid

nodes. If this element is not defined, there is no migration for data because either the

job does not need the data or the node already owns it. The multi-divergence of this

component is zero or more.

∙ Pseudo Schema

<Data>

<DName/>

<SourceNode/>

</Data>*

6.5.2.1 Data Name (DName)

This component is a string that determines the name of the needed data with amulti-

divergence of one.

∙ Attributes

Data mobility is divided into two types: copy or move. “Copy” means to obtain

122

the data and remain a copy of it on the resource. “Move” means to obtain the data

without saving a copy in the resource. The resource broker decides this attribute

according to node policy.

∙ Pseudo Schema

<DName MobilityType=“copy”∣“move”>xsd:string</DNamee>

6.5.2.2 Source Node

This component is a string that states the name of the node that owns the needed data

and permits its mobility. The resource broker decides this component according to

node policy (by asking the mobile policy agent) and availability of the needed data (by

asking the replica catalogue). The multi-divergence of this component is one.

∙ Pseudo Schema

<SourceNode> xsd:string </SourceNode>

6.5.3 Running Job

This component includes all the needed components to mobile the job from the needed

node to other nodes that fulfill the running job conditions in a grid system. If this com-

ponent is not defined, there is no mobility for the current job. The multi-divergence of

this component is zero or more.

123

∙ Pseudo Schema

<RunningJob>

<JobName/>

<CurrentJobStatus>?

<SourceNode/>

<DestinationNode/>

</RunningJob>*

6.5.3.1 Job Name

This component is a string that defines the job name determined by a resource broker

with a multi-divergence of one.

∙ Pseudo Schema

<JobName>xsd:string</JobName>

6.5.3.2 Current Job Status

This component is defined as a string including the status of job execution in order to

start on a new node. The execution state comprises of program counter, running code,

stored processor registers, local variables and return addresses. The reasons behind

moving the current job between grid resources are partial or full failure or load balance.

The resource broker defines this component for node failure, but in the evolution’s

case, the grid nodes are responsible for this definition. The multi-divergence of this

component is zero or one .

∙ Pseudo Schema

<CurrentJobStatus>xsd:string</CurrentJobStatus>

124

6.5.3.3 Source Node

This element is a string that states the name of the node that is running the job and has

the ability to migrate it. The resource broker decides this component according to node

policy and availability of the needed data. The multi-divergence of this component is

one.

∙ Pseudo Schema

<SourceNode>xsd:string</SourceNode>

6.5.3.4 Destiniation Node

This element is a string that states the name of the node that can accept the running job

and resume it. The resource broker decides this component according to node policy

and availability of the needed data. The multi-divergence of this component is one.

∙ Pseudo Schema

<DestiniationNode>xsd:string</DestiniationNode>

6.6 Policy

This decides how a job should be done, how security is applied in a domain and how

an organization organizes, secures and distributes its resources. The multi-divergence

of this component is zero or one. It has manay components as shown in Figure (6.5)

followed by an explanation for each one of these components.

125

Figure 6.5: Policy Schema

∙ Pseudo Schema

<Policy>

<HostsandDomains/>?

<ExclusiveExecution>?

<ResourceMobility/>?

</Policy>?

6.6.1 Hosts and Domains

It states the name of the hosts that may be chosen to execute the user’s job and the

name of the domains that are not allowed to execute or mobile the user’s job in it. The

multi-divergence of this component is zero or one .

∙ Pseudo Schema

<HostsandDomains>

<CandidateHosts/>

<RestrictedDomains/>

</HostsandDomains>?

126

6.6.1.1 Candidate Hosts

This states the name of the hosts that may be chosen to execute the user’s job. It has to

support the HostName component. The multi-divergence of this component is zero or

one.

∙ Pseudo Schema

<CandidateHosts>

<HostName></HostName>

</CandidateHosts>

* HostName is a string with a multi-divergence of one or more. It states the host

names. It can be either a node name or logical set of hosts(cluster). The multi-

divergence of this component is one.

∙ Pseudo Schema

<HostName>xsd:string</HostName>

6.6.1.2 Restricted Domains

This is a compound component with a multiplicity of zero or one. It states the name

of the domains that are not allowed to execute or mobile the user’s job in it. It has to

support the DomainName component. The multi-divergence of this component is zero

or one.

∙ Pseudo Schema

<RestrictedDomains>

<DomainName></DomainName>

</RestrictedDomains>

127

* DomainName is a string with a multi-divergence of one or more. It states the do-

mains’ names. It can be either a domain name or logical set of domains (cluster).

The multi-divergence of this component is one.

∙ Pseudo Schema

<RestrictedDomains>xsd:string</RestrictedDomains>

6.6.2 Exclusive Execution

This component is a Boolean type with a multi-divergence of zero or one that deter-

mines if the job allows only itself to run at any times on the allocated resources or not.

In the “True” option, the job should be executed on the chosen resource exclusively.

The multi-divergence of this component is zero or one.

∙ Pseudo Schema

<ExclusiveExecution>xsd:boolean</ExclusiveExecution>?

6.6.3 Resource Mobility

This component is a Boolean with a multi-divergence of zero or one that determines if

the resource that is executing the job allows moving (mobile) this job to other resources.

In the true choice, the job should have the ability to mobile between hosts according

to the CandidateHosts and DomainName components. The multi-divergence of this

component is zero or one.

∙ Pseudo Schema

<ResourceMobility>xsd:boolean</ResourceMobility>?

128

6.7 Application Software

To execute a job on a specific resource, this resource should have the appropriate ap-

plication software. If the user has not specified that application, the Internal-JSDL

document identifies it as a null job. To identify a software application, it is essential to

specify the application’s software name and its version. In some cases the difference

versions of software applications does not affect the job’s execution. This element has

a multi-divergence of zero or one defining the application and its conditions. It includes

two components as shown in Figure (6.6).

Figure 6.6: Application Software Schema

∙ Pseudo Schema

<CurrentApplicationSoftware>

<ApplicationSoftwareName.../>

</CurrentApplicationSoftware>?

6.7.1 Application Software Name

This is a string component with a multi-divergence of one; it is used to determine the

application’s name.

∙ Pseudo Schema

<ApplicationSoftwareName>xsd:string</ApplicationSoftwareName>?

129

6.8 Output

This component is responsible for determining the files that should be transferred

(staged out) from the host that is holding the job execution. As shown in Figure (6.7).

The multi-divergence of this component is one or more. Files are staged out after the

job terminates.

Figure 6.7: Output Schema

∙ Pseudo Schema

<Output>

<Destination>

</put>*

6.8.1 Destination

This component is a compound component with a multi-divergence of one; it includes

the location of the directory or file that should be staged out to from the location de-

scribed by the URI when the job finishes.

∙ Pseudo Schema

<Destination>

<URI></URI>

</Destination>?

130

6.8.1.1 URI

Uniform Resource Identifier describs the site location of the file or directory that should

be made avalible to stage out a resulted file from the job execution. The multi-divergence

of this component is zero or one.

∙ Pseudo Schema

<Source>

<URI>xsd:anyURI</URI>?

</Source>?

6.9 Summary

The language that has been introduced in this chapter and in the previous chapter can

be considered one of our major contributions in this thesis. In this chapter we have

defined an Internal-JSDL language that has been modified to be a suitable language for

communication between resource brokers and resources, as well as communications

between resources themselves. The advantages of this language are supporting the

mobility feature for jobs, data and application software and policy feature which give

both the grid users and grid resource the ability to control and protect their jobs and

resources in the grid environment. In this chapter we discussed the components of

this language along with the XML code. We introduced in section two an overview

of our language followed by five sections for expressing (jobs, data, mobility, policy

and application software) in this new language. Finally the last section introduced the

output that is responsible for determining the files that should be transferred (staged

out) from the host that is holding the job execution.

131

Chapter 7

Simulation

7.1 Introduction

This chapter provides the simulation for mobile grid environment to evaluate our frame-

work algorithm. This chapter is organized as follow: The first section introduces the

description of the simulation followed by a description of how to configure grid envi-

ronment. Section Three describes the node configurations; these configurations include

hardware specifications, data, application software and policies. And the last section

describes the job configurations including hardware specifications, data, application

software and policies.

7.2 Simulation

In our simulation design we built a heterogeneous grid environment which has an un-

limited number of resources in a fully connected topology. These nodes have the ability

to migrate data, application software and jobs between them. The migration depends

on the grid, resources policies and grid users’ policies. We have developed a Java user

interface that can simplify our work by creating a grid environment, configuring its

nodes by each with its own application software, data, policies, hardware specifica-

tions, node names and finally creating an interface that can help the grid users to send

132

their jobs to the grid system.

The grid system has been simulated by using Jade simulator, which is a software frame-

work fully implemented in Java language and allows agents to execute tasks defined

according to the agent policy.

7.2.1 Simulation Description

When running the simulation, the main portal interface turns up. It composes all the

functions needed to configure a new grid with all of its elements as shown in Figure

(7.1). In this interface, the grid administrator is able to create a new grid environment

by choosing grid name, configuring grid nodes, and sending jobs to the grid system.

The interface will then directly pass all this information to the Jade simulator to create

them.

The interfaces allows the grid, nodes and jobs requirements to be described simply, at

which point the system will convert these requirements into Internal and External JSDL

language and send them it to the Jade system, at the same time our system produces

an XML file that describes the actions needed by the grid administrator and users in

order to retrieve the system later. Once the Jade receives these files, it performs all the

necessary grid functions. These functions include sending jobs to the suitable resources

and migrate Jobs, application software’s and/or data if required.

7.3 Grid Configuration

Using the Interface shown in Figure (7.1) the grid administrator can create a new grid

environment by choosing the grid name and any domains and/or users who are not

allowed to work under this grid. This can be done by entering the names of these

domains and/or users in the Restricted Domain and Names field. This field will be

translated into XML file once the administrator clicks on the create botton, and to be

sent later to Jade simulator to create the grid environment under this policy.

133

Figure 7.1: Main Simulation Interface

7.4 Node Configuration

Our interface can simulate nodes by configuring their specifications. This is done by

specifying their names, grid names, domain name, number of jobs that can be processed

at the same time, hardware specifications, application software, data and policies, as

shown in Figure (7.2).

After determining the node’s name, the administrator chooses the domain name for

each node. This domain name helps in sorting out the nodes into groups, which in turn

helps in making later the policy decisions. The administrator also has the ability to

determine how many jobs each node can handle at the same time. The other fields are

described as follow:

134

Figure 7.2: Node Configuration Interface

7.4.1 Node Hardware Specification

In this step the administrator determines the node’s hardware specifications. These

specifications include CPU speed, memory size and hard disk space as shown in Figure

(7.2). By choosing these specifications the system represents these choices by an agent

which is understood by the Jade simulator and at the same time store them into the

hardware section in an XML file which represents the overall node’s specification.

7.4.2 Node Data Specification

The interface shown in Figure (7.3) helps the administrator to configure the data in the

node by determining the data name and policy. If the administrator chooses a “Moving”

135

feature when creating a new data, the policy for this single data will allow this data to

be moved wherever it is allowed to be moved. Otherwise it will prevent it from moving

from its original node. The “Copy” feature has the same job but it will perform a copy

action for the data instead of moving.

Figure 7.3: Data Configuration Interface for a Single Node

After finishing creating the node‘s data, the system represents each single data item by

an agent which can be understood by the Jade simulator and at the same time store the

policy for this single data into the data section in the XML file which represents the

overall node’s specification.

136

7.4.3 Node Application Software Specification

The interface shown in Figure (7.4) helps the administrator to configure the Applica-

tion software’s in each node by determining the application name and the policy for

this application. If the administrator chooses a “Moving” feature when creating new

application software, the policy for this single application will allow this application to

be moved wherever it is allowed to be moved. Otherwise it will prevent it from moving

from its original node. The “Copy” feature has the same job but it will perform a copy

action for the application instead of moving.

Figure 7.4: Application Software Configuration Interface for a Single Node

After finishing from creating node‘s application software, the system represents each

single application by an agent which can be understood by the Jade simulator and at

137

the same time stores the policy for this single application in the application software

section in the XML file which represents the overall node’s specification.

7.4.4 Node Policy Specification

The interface shown in Figure (7.5) helps the administrator to configure the policy of

ech node by determining any restricted domain(s) or user(s) with whom they are not

allowed to work under this node. The administrator can determine whether this node

is allowed to execute two jobs (or more) at the same time or not. This feature can be

applied using the “Exclusive” choice in the policy. By choosing this option, the node

is not allowed to execute more than one job at the same time.

Figure 7.5: Policy Configuration Interface for a Single Node

138

After creating node‘s policy, the system will store the policy for this node into the

policy section in the XML file which represents the overall node’s specification.

7.5 Job Configuration

Figure (7.6) shows interface that helps users describe their jobs requirements in a sim-

ple way. These requirements are then be converted by the system to a language that

can be understood by the Jade simulator, and at the same time it is going to be stored

in an XML file that describes the jobs with their policies.

Figure 7.6: Job Configuration Interface

Our interface can accept jobs by configuring their requirements. This is can be done

by specifying their names, grid names, domain name, any data attached with the job,

139

hardware specifications, application software, data and policies, as shown in Figure

(7.6).

After determining the job’s name, the administrator can choose the domain name for

that job. This domain name helps in sorting out the jobs into groups, which will help in

sending the jobs to the appropriate domain later. The administrator also has the ability

to attach a specific data along with the job to be processed during the execution time to

complete the job. The other fields are described as follow:

7.5.1 Job Hardware Specification

In this step the administrator can determine the job’s hardware specifications. These

specifications include CPU speed, memory size and hard disk space. By choosing

these specifications the Interface will represent these choices by an agent which can be

understood by the Jade simulator and at the same time store them into the hardware

section in an XML file which represents the overall job’s specification. As shown in

Figure (7.6).

7.5.2 Job Data Specification

The interface shown in Figure (7.6) helps the administrator to configure the data needed

to process the job by the grid nodes. By determining this name the system will add this

data to the job requirements which will be sent later to the Jade simulator to find the

suitable node(s) that owns this data. At the same time the system will store the name

of this data in the XML file that describes the job requirements.

7.5.3 Job Application Software Specification

The interface shown in Figure (7.7) assists the administrator to choice the application

software(s) required to handle the job by the grid nodes. By choosing this name(s)

the system will attach it to the job requirements which will be posted later to the Jade

simulator to locate the suitable node(s) that have this application(s). At the same time

the system will save the name of this application(s) in XML file that expresses the job

140

requirements.

Figure 7.7: Application Software Configuration Interface for Single Job

7.5.4 Job Policy Specification

The interface shown in Figure (7.8) helps the administrator to configure the job’s pol-

icy before submitting it to the grid environment. The administrator or the grid users

can determine any restricted domain(s) or user(s) whith whom they are not allowed to

handle their jobs. Also in this section the administrator determines whether this job is

allowed to be executed with other jobs at the same time or not. This feature can be

applied using the Exclusive choice in the policy. By choosing this option, the job is

not allowed to execute with other jobs. The Moving feature allows the job to be moved

141

wherever it is allowed to be moved. Otherwise it will prevent it from moving from one

node to another. By choosing this feature the system will store the mobility feature in

the policy section in the XML file that presents the job’s specifications.

Figure 7.8: Policy Configuration Interface for a Single Job

After creating job’s policy, the system will store the policy for this job into the policy

section in the XML file which represents the overall job’s specification.

7.6 Summary

We presented our simulation for the grid environment in the case of applying policies

over mobility. It illustrated how the simulation is constructed and worked as in section

three. And how to configure nodes and jobs as in sections four and five.

142

Chapter 8

Simulation Validation and

Evaluation

8.1 Introduction

In the previous chapter we introduced our simulation and the way to help the grid ad-

ministrators to configure the grid environment along with it nodes. Also we introduced

our interfaces that help the grid users to configure and describe their jobs. In this chap-

ter we are going to validate our simulation. Section two introduces three scenarios the

first one describes the way to configure grid environment. The second and third scenar-

ios describe nodes and jobs configurations. In our scenarios we have configured grid

nodes in different domains under different administrators, and then we applied the re-

source sharing mobility and finally we evaluate the ability of our framework policies to

control these mobility according to the users and node administrators rules. The second

section shows the evaluation and the results of the simulation depending on number of

rejected jobs and the overall used nodes in the system without applying the policies

over mobility as a first case then applying the policies over mobility in the grid system

as a second case.

We are going to proof that applying the policy rules on the top of mobility gives the

143

grid, grid’s nodes and grid’s users the ability and the privacy to control over their data,

application software’s and jobs and at the same time distributing jobs to most of the

grid’s nodes instead of utilizing just partial of grids nodes. Also we are going to proof

our research contributions including supporting a multi-organization environment with

different domains, providing a clear support for sharing mobile resources between mul-

tiple heterogeneous VOs, support the user preferences in its final decision and enforcing

data policies in its designs.

8.2 Simulation Validation

The aim of this part is to validate the output of the user interfaces matches the input

of the Jade Simulator and the XML files that are responsible for retrieving the grid

environment later. Three scenarios are used to judge the simulation.

8.2.1 First Scenario: Grid Configuration

In the first scenario we created a grid environment called Test-1 by using the interface

shown in Figure (7.1). This interface is divided into two parts: the first part creates the

grid environment in Jade simulator as shown in Figure (8.1) and the XML file related to

the grid policy which contains the restricted domain(s) and user(s) as shown in Figure

(8.2).

8.2.2 Second Scenario: Node Configuration

In the second scenario we created four nodes in the Test-1 grid environment by using

the interfaces in Figures (7.2- 7.5). The nodes have been named as following UK-A1,

UK-A2, USA-A3 and Chian-A4 related to their domain names. The results of these

interfaces are divided into two parts: the first one adding the new nodes to Test-1 grid

environment in Jade simulator as shown in Figure (8.3) and the XML files related to

policy for each node as shown in Figure (8.4).

144

Figure 8.1: Screen-Shot of Test-1 Grid Environment

Figure 8.2: Screen-Shot of XML File for Test-1 Grid Policy

8.2.3 Third Scenario: Job Configuration

In the third scenario we submitted four jobs to the Test-1 grid environment by using

the interfaces in Figures (7.6- 7.8). The jobs have been named as following J1, J2, J3

145

Figure 8.3: Screen-Shot of Test-1 Grid Environment showing four Nodes

Figure 8.4: Screen-Shot of XML Files for Test-1 Node Policies

and J4. The results of these interfaces are divided into two parts: the first one adding

the new jobs to Test-1 grid environment in Jade simulator as shown in Figure (8.3) and

the XML files related to the policies for each job as shown in Figure (8.5).

146

Figure 8.5: Screen-Shot of XML Files for Test-1 Job Policies

8.3 Evaluation

We applied specific grid environments in our simulation with specific nodes and jobs.

Each one of them with different hardware specifications, data, application software

and polices. Our aim is to simulate and analyze the effect of the policy on the resource

mobility (jobs, data and application software) in the grid environment.

Our program lets job, data and application software migrate from one node to another in

the grid environment. The aim of the simulation is to present the effect of the policies

on the number of rejected jobs and number of nodes used in the grid during these

migrations. To accomplish these aims, we constructed a grid environment that contains

20 nodes; each node has distinctive (or similar) hardware, application software and data

specifications from others. Afterward we sent 30 jobs sequentially to this environment.

The reason behind choosing these numbers is to build a simple system to obtain straight

results that can be understood by the reader and to show the impact of the policies on

the system. After building the system we applied the job and resource mobility within

the grid according to the following scenarios and configurations:

∙ Case 1: No mobility. We configured the policies for all of the jobs, data and

147

application software not to be allowed to migrate within the grid along with pre-

venting grid’s nodes to accept migration resources between them. We then sent

30 jobs sequentially to the grid with distinctive (or similar) hardware, applica-

tion software and data needed to accomplish these jobs. The Figures from (8.6

to 8.13) show the effect of polices on number of rejected jobs and number of the

overall nodes used in the grid in the case of no mobility.

Figure 8.6: Rejected Jobs with Job Mobility

Figure 8.7: Rejected Jobs with Data Mobility

∙ Case 2: Partial Mobility (%25). We configured quarter of the policies for the

jobs, nodes, data and application software to be allowed to migrate within the

grid. Also we configured quarter of the grid’s nodes polices to accept resource

migration between them. We then sent 30 jobs sequentially to the grid with

distinctive (or similar) hardware, application software and data needed to ac-

148

complish these jobs. The Figures from (8.6 to 8.13) show the effects of polices

on number of rejected jobs and number of the overall nodes used in the grid in

the case of Partial Mobility (%25).

Figure 8.8: Rejected Jobs with Application Software Mobility

∙ Case 3: Partial Mobility (%50). We configured half of the policies for the jobs,

nodes, data and application software to be allowed to migrate within the grid. We

configured half of the grid’s nodes polices to accept resource migration between

them. We then sent 30 jobs sequentially to the grid with distinctive (or similar)

hardware, application software and data needed to accomplish these jobs.

Figure 8.9: Rejected Jobs with Job, Data and Application Software Mobility

∙ Case 4: Partial Mobility (%75). We configured (%75) of the policies for the

jobs, nodes, data and application software to be allowed to migrate within the

grid. We configured (%75) of the grid’s nodes polices to accept resource migra-

149

Figure 8.10: Overall Used Nodes with Job Mobility

Figure 8.11: Overall Used Nodes with Data Mobility

tion between them. We then sent 30 jobs sequentially to the grid with distinctive

(or similar) hardware, application software and data needed to accomplish these

jobs. Figures from (8.6 to 8.13) show the effect of polices on number of re-

jected jobs and number of the overall nodes used in the grid in the case of Partial

Mobility (%75).

Figure 8.12: Overall Used Nodes with Application Software Mobility

150

∙ Case 5: Full Mobility. We configured all of the policies for the jobs, nodes, data

and application software to be allowed to migrate within the grid. We configured

all of the grid’s nodes polices to accept resource migration between them. We

then sent 30 jobs sequentially to the grid with distinctive (or similar) hardware,

application software and data needed to accomplish these jobs. Figures from (8.6

to 8.13) show the effect of polices on number of rejected jobs and number of the

overall nodes used in the grid in the case of full Mobility.

Figure 8.13: The overall Used Nodes with Job,Data and Application Software Mobility

The previous figures show that applying the mobility solution has solved the lack of

finding suitable resources to fulfil grid users jobs. As it can be seen clearly when the

percentage of the mobility increased, number of rejected jobs is decreased and at the

same time distributing jobs to most of the grid’s nodes instead of utilizing just partial

of grids nodes has increased too. The figures show that in the case of applying the

mobility policies rules; the number of rejected jobs is more than without applying the

policies rules; as each administrator and users applying their own policies and prefer-

ences. Nevertheless, applying the policy rules on the top of mobility gives the grid,

grid’s nodes and grid’s users the ability and the privacy to control over their data, ap-

plication software’s and jobs.

From the previous experiments, we have answered our research question that says

“How does the grid interact with policies for different domains and organizations in

the case of mobile sharing and data movements?” and at the same time, we answered

the other research questions that asks “How to introduce policy management tools that

151

provides support for sharing mobile resources between multiple heterogeneous VOs?”

and “How to design a policy framework that can support the user policy in its final

decision?”

8.3.1 Rejected jobs

Once the grid is not able to accept a job due to the short of available resources, amount

of rejected jobs rises. Mobility has solves this problem by migrating data or applica-

tion software needed by the new jobs or even evacuated the required node by moving

the running job to fit the new jobs if necessary. Our results show the effect of the mo-

bility on number of rejected jobs when it’s applied. This means that the grid can fit a

resource to execute the job, consequently; the number of rejected jobs in the grid will

be reduced. Nevertheless; that reducing is affected by the grid, node and job policies.

When applying these policies, the number of rejected jobs is less than the situation

when the policies are not applied (mobility by itself).

To make it clear, we applied our experiments into stages. In the first stage we applied

only the job migrations to see the effects on number of rejected jobs as in Figure (8.6).

In the second stage only data migrations were applied as in Figure (8.7). The next stage

the application software migrations were applied as show in the results in Figure (8.8).

And finally, all types of migrations were applied as in Figure (8.9).

It can be seen clearly that number of rejected jobs when applying the policies is less

than without polices, but applying the policies over mobility gives the grid, grid’s nodes

and grid’s user’s the ability and the privacy to control over their data, application soft-

ware’s and jobs.

8.3.2 Overall Nodes Usage

In the normal case, not all the grid’s nodes own data or application software needed

by all the users’ jobs. In this case that some nodes are not utilized due to the short in

these resources, and most of the jobs are sent to a specific nodes because of the fact

that these nodes own the needed resources required by most of the jobs than the other

nodes, or in some cases the level of security and the policy conditions for some jobs

152

or nodes are higher than others. In these cases the gird finds itself in a situation not to

accept a job, at some point, due to the short of the available resources. Mobility solves

this problem by migrating data or application software needed by the new jobs, or even

evacuated the required node to fit the new jobs if necessary. In this case the mobility

helps in distributing user’s jobs to most of the grid’s nodes, and that’s will help in load

balancing and reducing number of rejected jobs. Our results show the effect of the

mobility on number of nodes used by the grid to fulfill the grid user’s jobs. In the first

stage we applied only the job migrations to see how many number of nodes had been

used to execute jobs sent to the grid as in Figure (8.10). In the second stage only data

migrations were applied as in Figure (8.11). The next stage the application software

migrations were applied as show in the results in Figure (8.12). And finally, all types

of migrations were applied as in Figure (8.13).

As a result, when applying the mobility solution, more nodes had been used than the

situation without mobility. Moreover, applying the policy rules on the top of that gives

the grid, grid’s nodes and grid’s user’s the ability and the privacy to control over their

data, application software’s and jobs, and at the same time distributing jobs to most of

the grid’s nodes.

8.4 Summary

In this chapter we presented the validation for our simulation. We applied three sce-

narios to configure grid environment, grid nodes and grid jobs as in sections two. In

section three we evaluated our scenarios by simulating number of rejected jobs and the

overall used nodes in the system without applying the policies over mobility as a first

case then applying the policies over mobility in the grid system as a second case.

The evaluation and case studies show that applying the mobility solution has solved

the lack of finding suitable resources to fulfil grid users’ jobs. When the percentage

of the mobility increased, number of rejected jobs is decreased and at the same time

distributing jobs to most of the grid’s nodes instead of utilizing just partial of grids’

nodes has increased too.

153

Also, the evaluation shows that in the case of applying the mobility policies rules;

the number of rejected jobs is more than without applying the policies rules; as each

administrator and users applying their own policies and preferences. Nevertheless, ap-

plying the policy rules on the top of mobility gives the grid, grid’s nodes and grid’s

users the ability and the privacy to control over their data, application software’s and

jobs.

Furthermore, we have used the External-JSDL to define users grid jobs and prefer-

ences by presenting their identifications, application software, resource specifications,

data, user data and policies that are needed to accomplish the user’s job. And later the

Internal-JSDL has been used as a language that is used to communicate between the

resource broker and the grid nodes, and between the grid nodes themselves in different

organizations and domain.

As a result, we have answered our research question that says “How does the grid inter-

act with policies for different domains and organizations in the case of mobile sharing

and data movements?” and at the same time, we answered the other research questions

that asks “How to introduce policy management tools that provides support for sharing

mobile resources between multiple heterogeneous VOs?” and “How to design a policy

framework that can support the user policy in its final decision?”

Based on the evaluation and case studies all research questions have been answered.

We have proofed our research contributions including supporting a multi-organization

environment with different domains, providing a clear support for sharing mobile re-

sources between multiple heterogeneous VOs, support the user preferences in its final

decision and enforcing data policies in its designs.

154

Chapter 9

Conclusions and Future Work

9.1 Summary

Grid computing appears as a result of a combination of multi-network computer system

to develop a wide range and heterogeneous system used to solve scientific or industrial

problems. It should have the ability to organize resources, which are not under the

subject of centralized domain, utilize protocols and interfaces and supply high quality

of service. As a result of such technology many challenges such as finding suitable

resources, reducing number of rejected jobs and providing privacy and security stand

in front of developing such technology.

Grid computing technologies is used as low-cost systems to congregate and utilize

computational resources together. Grids was initially created on the idea that resources

infrastructure are dynamic and heterogeneous in their nature. That’s mean different

organization with different administrative domains. That’s also mean that security was

considered from the beginning when the grid system initially built.

Mobility is the ability to migrate or relocate jobs, data and application software among

grid nodes. It facilitates the accomplishment of requirements for grid jobs as well

as grid users. It also assists grid evolution, improves performance of operating ap-

plications by relocating data to the target host, therefore reducing the communication

consumption and solving the load balancing issues. These Mobility (or migrations)

155

depend on the grid’s users and the grid’s nodes policies.

Policies are groups of regulations, standards and practices written by the administra-

tors of resources about how their resources or jobs can be handled and used. Every

resource applies its own security policy that may result in the refusal of requests for

utilizing of its resources. Grid computing has solved a lot of large and complex prob-

lems that require interaction and cooperation between different resources and jobs, but

these resources belong to different domains and administrators. Each job has differ-

ent requirements and specification in order to be executed in the grid. To facilitate

the ability to improve mobile resource sharing between multiple heterogeneous VOs,

a policy management framework is needed to support the heterogeneity in the policy

frameworks in different domains under different administrators.

Another aspect that should be taken into account is the user preferences, before users

can submit their jobs or run their applications on a certain source or system they may

need to guarantee that this source or system has not been compromised which could

result in their own application or data being stolen. To date, not enough attention has

been paid to policies that deal with such concerns. Most existing grid systems support

only limited types of policies (e.g. CPU resources) [44], [60],[81].

Grid security tools has several security challenges, one of them is the data confidential-

ity, which is the security of data movement within the network from intruders’ attacks

[86]. Data confidentiality can be addressed by limiting the mobility to trusted parts of

the grid, but this solution leads to the notion of Virtual Organizations (VOs). So we

have proposed a way to limit mobility by using policies. But when policy checking for

the resources and jobs takes place in computational grids, the heterogeneity, diversity

of policies and attributes leads to a need for policy management tools that can handle

these heterogeneity and diversity.

In this research, a new policy management tools have been introduced to solve the

mobility limitation and data confidentiality especially in the case of mobile sharing

and data movements within the grid. We presented a dynamic and heterogeneous pol-

icy management framework that can give a clear policy definition about the ability to

move jobs, data and application software from nodes to nodes during jobs’ execution

156

in the grid environment. This framework supports a multi-organization environment

with different domains, supports the external grid user preferences along with enforces

policies for data movements and the mobility feature within different domains.

The results of our research have been implemented using the Jade simulator, which is

a software framework fully implemented in Java language and allows agents to exe-

cute tasks defined according to the agent policy. The simulation results have verified

that the research aims enhance the security and privacy performance in the grid envi-

ronments, enhance control over data and services distribution and usage and present

practical evidence in the form of scenario test-bed data as to the effectiveness of our

architecture.

9.2 Contributions

Traditional authorization policy management frameworks act well in authorization pol-

icy for a single Virtual Organization (VO) where the contributing hosts grant the per-

mission to follow a global authorization system. We have presented a dynamic and

heterogeneous policy management framework that can supports moving jobs, data and

application software from node to node during dynamic jobs’ execution in multi VOs

in grid environments.

This new framework for policy management has the ability to supports a multi-organization

environment with different domains. Our contribution in this section is proposing an

extension to that framework in [121] to be able to provide the features of supporting the

grid user preferences along with enforcing policies for data movements and resource

mobility feature within different domains under different administrators. This exten-

sion has been published in Communications in the Computer and Information Science

Conference (CoNeCo2011) [15] and the International Journal of Computer Networks

and Communications (IJCNC), 2012 [110]. The extension provides the new features of

supporting the external grid users’ preferences along with enforcing policies for data

movements within different domains. The framework also provides a clear support for

sharing mobile resources between multiple heterogeneous VOs. With the assist of the

157

mobility, the services can move over the grid so as to obtain data from grid nodes, im-

plement their jobs on those nodes and carry the results back to their original nodes. Our

framework provides privacy and security to support the mobility by using the mobile

policy agent which plays a significant role to achieve this privacy and security. This

contribution has been introduced in chapters three and four and has been published

in Risk and Security of Internet and Systems Conference (CRiSIS), IEEE Computer

Society, 2011 [14] and the International Journal of Computer Networks and Commu-

nications (IJCNC), 2012 [110].

This research also supports user preferences in the final policy decisions. Our frame-

work provides a guarantee that the user jobs or data are not going to be compromised,

by preventing their own application or data from being stolen. Our contribution in this

section where proposed as an extension to that framework in [121] so as to be able to

provide the features of supporting the grid user preferences in the final decision be-

fore applying the resource mobility feature. This contribution has been introduced in

chapters three and four and has been presently published in the Communications in

Computer and Information Science Conference (CoNeCo2011), the Risk and Secu-

rity of Internet and Systems Conference (CRiSIS2011) and the International Journal of

Computer Networks and Communications (IJCNC), 2012 [110].

Data policy has a role within our framework. Our framework enforces data policies

within grid environments. Therefore, the grid administrator and the grid users have

more control over their data movements within the grid, especially during the mobility

operation itself. The administrators or the users can determine the domains and users

who are allowed to access and use their data. Handling and store this data are also

being controlled by our system. This and has been presently published in the Commu-

nications in Computer and Information Science Conference (CoNeCo2011), the Risk

and Security of Internet and Systems Conference (CRiSIS2011) and the International

Journal of Computer Networks and Communications (IJCNC), 2012 [110].

We presented our new language that supports and expresses new policy framework.

Our grid system has been simulated by using Jade simulator, which is a software frame-

work fully implemented in the Java language that allows agents to execute tasks defined

158

according to the agent policy. In order to build the proposed grid system we designed

interfaces that help grid administrators build their grid. At the same time these inter-

faces give grid users the ability to describe and send their jobs to the grid. The language

that is used to design these interfaces is the Java language. When grid administrators

or grid users submit their requirements by using the previous interfaces to be simulated

by Jade, our system converts these requirements to an External-JSDL that expresses

the jobs requirements and this is understood by the grid environment no matter what

domain the resources are. Our tool converts these requirements to an Internal-JSDL; as

a language that is used to communicate between the resource broker and the grid nodes,

and between the grid nodes themselves in different organizations and domains. Then

the system stores these language expressions as an XML schema in order to be retrieve

later and sends them to Jade to be simulated. The reason for XML as a language for

grid and job requirements expression is that XML has many attractive attributes such as

the simplicity in reading, understanding and processing by users and computers. The

External-JSDL language has been introduced in chapter five and the Internal-JSDL lan-

guage has been introduced in chapter six.

All of our contributions have been tested, simulated and fully evaluated in a pure grid

environment that supports the mobile sharing and data movements.

9.3 Future Work

This thesis has introduced a new framework represents a step in ongoing research ef-

forts to reach an efficient grid environment. Many issues still need investigation. The

most clear are as follows:

∙ The framework can be use to support a market models by allowing the grid to use

the cheapest domains and resources available. The fast growing in grid and cloud

computing has put them as next generation computing platforms. They enable

the foundation of virtual organization for sharing resources that is distributed

across the world. The resource holder of each of these resources has several

usage, policies and cost paradigm. However, different cost and method in each

159

domain and organization make it difficult for the grid users to choose the best

and cheapest resource so as to accomplish their jobs. We aim to develop our

framework so as to have the ability to identify the ideal domains that can support

the users jobs and at the same time keep the privacy of the users and the resource

owners data and resources.

∙ We have introduced a modern XML based language to express our framework.

Our target is to develop our ideas towards mapping languages for grid and or

integration of our policy language and combine it with other modern languages.

In our thesis we have introduce a new language that can support the grid users’

jobs (External-JSDL) and the communications between the resource broker and

grid nodes and between nodes themselves (Internal-JSDL) whatever their do-

mains or administrators. The feature of this language can be combined with

features of other languages that support the grid services such as Language Re-

sources which talk about using and sharing language resources, Language Grid

for Communication which is interested in using the language for intercultural

collaboration and Language Grid for Translation which is using the language for

Wikipedia translation and localization [70].

Developing our language gives the opportunity to take advantage of services of-

fered by other technology in grid environment and the opportunity to make our

applications available to others as a solution to express the policy in grid sys-

tems. Also to make this language easy to use and learn, allow complicated tasks

to be executed in relatively few stages and make the editing and operating of the

code faster than what we have.

∙ The addition of authorisation and authentication to our system would provide a

more complete security and privacy level. We mentioned in our architecture that

authorisation and authentication are not offered in our framework at this level

as it is not a key part of the simulation carried out to test the efficiency of our

architectures. An execution approach to include these to the framework is of

interest.

160

Bibliography

[1] The datagrid project, http://eu-datagrid.web.cern.ch/

eu-datagrid/

[2] The globus resource specification language rsl v1.0, http://www.globus.

org/toolkit/docs/2.4/gram/rsl_spec1.html

[3] Gridpp, the grid and industry, www.gridpp.ac.uk/posters/

superseded/GridPP.ppt

[4] Gridpp, uk computing for particle physicists, http://www.gridpp.ac.

uk/

[5] Job scheduling hierachically (josh). Website, http://gridengine.

sunsource.net/josh.html

[6] A. Anjomshoaa, F.B., Michel Drescher, D.F., An Ly, S. McGough, D.P.,

Savva, A.: Job submission description language (jsdl) specification, ver-

sion 1.0 (November 2005), http://www.gridforum.org/documents/

GFD.56.pdf

[7] A. Litke, D. Skoutas, T.V.: Mobile grid computing: changes and challenges

of resourse management in a mobile grid environment. In: 5th International

Conference on Practical Aspects of Knowledge Management (2004)

[8] Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid com-

puting and its implementation in the nimrod-g resource broker. Future Gener.

161

Comput. Syst. 18, 1061–1074 (October 2002), http://portal.acm.org/

citation.cfm?id=765837.765844

[9] Aldabbas, O.: A framework for mobility and temporal dimensions of grid sys-

tem. Ph.D. thesis, School of Computing, De Montfort University, UK (2008)

[10] Alhusaini, A.H., Prasanna, V.K., Raghavendra, C.S.: A unified resource

scheduling framework for heterogeneous computing environments. In: Proceed-

ings of the Eighth Heterogeneous Computing Workshop. p. 156. HCW ’99,

IEEE Computer Society, Washington, DC, USA (1999), http://portal.

acm.org/citation.cfm?id=795690.797903

[11] Ali Anjomshoaa, Fred Brisard, M.D.D.F.A.L.S.M.D.P., Savva, A.: Job sub-

mission description language (jsdl) specification, version 1.0 (November 2005),

http://www.gridforum.org/documents/GFD.56.pdf

[12] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu,

I., Foster, I.: The globus striped gridftp framework and server. In: Proceedings

of the 2005 ACM/IEEE conference on Supercomputing. p. 54. SC ’05, IEEE

Computer Society, Washington, DC, USA (2005), http://dx.doi.org/

10.1109/SC.2005.72

[13] Alliance, G.: Globus toolkits, http://www.globus.org

[14] Alwada’n, T., Janicke, H., Aldabbas, O., Alfawair, M.: New frame-

work for policy support for mobile grid services. In: Cuppens, F., Fo-

ley, S., Groza, B., Minea, M. (eds.) CRiSIS. pp. 88–93. IEEE (2011),

http://dblp.uni-trier.de/db/conf/crisis/crisis2011.

html#AlwadanJAA11

[15] Alwada’n, T., Janicke, H., Aldabbas, O., Hamza, A.: New framework for

dynamic policy management in grid environments. In: Abdulkadir Ozcan,

Jan Zizka, D.N. (ed.) Recent Trends in Wireless and Mobile Networks. pp. 297–

304. Springer Berlin Heidelberg (2011)

162

[16] Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.

Web Semant. 5(2), 58–71 (Jun 2007), http://dx.doi.org/10.1016/j.

websem.2007.03.002

[17] Athanaileas, T.E., Tselikas, N.D., Tsoulos, G.V., Kaklamani, D.I.: An agent-

based framework for integrating mobility into grid services. In: Proceedings

of the 1st International Conference on Mobile Wireless MiddleWARE, Operat-

ing Systems, and Applications. pp. 31:1–31:6. MOBILWARE ’08, ICST (Insti-

tute for Computer Sciences, Social-Informatics and Telecommunications Engi-

neering), ICST, Brussels, Belgium, Belgium (2007), http://portal.acm.

org/citation.cfm?id=1361492.1361531

[18] Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and

advanced topics. John Wiley and Sons, Inc., Hoboken, New Jersey, USA, second

edn. (2004)

[19] Azzedin, F., Maheswaran, M.: Integrating trust into grid resource man-

agement systems. In: Proceedings of the 2002 International Conference on

Parallel Processing. p. 47. ICPP ’02, IEEE Computer Society, Washing-

ton, DC, USA (2002), http://portal.acm.org/citation.cfm?id=

850943.853031

[20] Azzedin, F. Maheswaran, M.: Evolving and managing trust in grid comput-

ing systems. Electrical and Computer Engineering, IEEE CCECE 2002 3, 1424

(August 2002)

[21] B. Jacob, M. Brown, K.F., Trivedi, N.: Introduction to grid computing. IBM

Corp., Riverton, NJ, USA (2005)

[22] Bajaj, S., et al.: Web services policy framework (ws-policy). In: BEA, IBM,

Microsoft and SAP (2004)

[23] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., Wright, T.: Trans-

port layer security (tls) extensions (2003)

163

[24] Boozallen, INC, H.: Federal public key infrastructure x.509 certificate and

crl extensions profile (October 2005), http://www.idmanagement.gov/

fpkipa/documents/fpki_certificate_profile.pdf

[25] Buyya, R., Abramson, D., Giddy, J.: A case for economy grid architecture

for service-oriented grid computing. In: Proceedings of the 15th International

Parallel & Distributed Processing Symposium. p. 83. IPDPS ’01, IEEE Com-

puter Society, Washington, DC, USA (2001), http://portal.acm.org/

citation.cfm?id=645609.662300

[26] Buyya, R., Vazhkudai, S.: Compute power market: Towards a market-oriented

grid. Cluster Computing and the Grid, IEEE International Symposium p. 574

(2001)

[27] Cao, J., Jarvis, S.A., Spooner, D.P., Turner, J.D., Kerbyson, D.J., Nudd, G.R.:

Performance prediction technology for agent-based resource management in

grid environments. In: Proceedings of the 16th International Parallel and Dis-

tributed Processing Symposium. p. 265. IPDPS ’02, IEEE Computer Society,

Washington, DC, USA (2002), http://portal.acm.org/citation.

cfm?id=645610.661728

[28] Cardelli, L.: Secure internet programming. chap. Abstractions for mobile

computations, pp. 51–94. Springer-Verlag, London, UK (1999), http://

portal.acm.org/citation.cfm?id=380171.380179

[29] Carpenter, B.E., Janson, P.A.: Abstract interdomain security assertions: a basis

for extra-grid virtual organizations. IBM Syst. J. 43, 689–701 (October 2004),

http://dx.doi.org/10.1147/sj.434.0689

[30] Carzaniga, A., Picco, G.P., Vigna, G.: Designing distributed applications with

mobile code paradigms. In: Proceedings of the 19th international conference on

Software engineering. pp. 22–32. ICSE ’97, ACM, New York, NY, USA (1997),

http://doi.acm.org/10.1145/253228.253236

164

[31] Chakrabarti, A., Damodaran, A., Sengupta, S.: Grid computing security: A

taxonomy. IEEE Security and Privacy 6, 44–51 (January 2008), http://

portal.acm.org/citation.cfm?id=1344235.1344299

[32] Chunlin, L., Layuan, L.: An agent-based approach for grid computing. In: Par-

allel and Distributed Computing, Applications and Technologies, PDCAT’2003.

Proceedings of the Fourth International Conference on. p. 608. IEEE Computer

Society, Washington, DC, USA (2003)

[33] Cody, E., Sharman, R., Rao, R.H., Upadhyaya, S.: Security in grid computing:

A review and synthesis. Decis. Support Syst. 44, 749–764 (March 2008), http:

//dx.doi.org/10.1016/j.dss.2007.09.007

[34] Computing, I.G., Subramoniam, K., Maheswaran, M., Toulouse, M.: Towards a

micro-economic model for resource allocation. In: In IEEE canadian conference

on electrical and computer engineering. pp. 782–785. IEEE Press (2002)

[35] Coulouris, Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and De-

sign (4th Edition) (International Computer Science). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (2005)

[36] Coulouris, G.F., Dollimore, J.: Distributed systems: concepts and design.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1988)

[37] David G. Rosado, E.F.M., Lopez, J.: Security services architecture for secure

mobile grid systems. Systems Architecture (June 2010)

[38] Dierks, T., Rescorla, E.:

[39] Dimitrakos, T., Djordjevic, I., Matthews, B., Bicarregui, J., Phillips, C.: Policy-

driven access control over a distributed firewall architecture. In: Proceedings

of the 3rd International Workshop on Policies for Distributed Systems and Net-

works (POLICY’02). pp. 228–. POLICY ’02, IEEE Computer Society, Wash-

ington, DC, USA (2002), http://portal.acm.org/citation.cfm?

id=863632.883510

165

[40] Düllmann, D., Segal, B.: Models for replica synchronisation and consistency in

a data grid. In: Proceedings of the 10th IEEE International Symposium on High

Performance Distributed Computing. p. 67. IEEE Computer Society, Washing-

ton, DC, USA (2001), http://portal.acm.org/citation.cfm?id=

874077.876514

[41] Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in

policy-based management systems. In: Proceedings of the 7th International

Conference on Enterprise Distributed Object Computing. p. 98. EDOC ’03,

IEEE Computer Society, Washington, DC, USA (2003), http://portal.

acm.org/citation.cfm?id=942793.943139

[42] Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On

advantages of grid computing for parallel job scheduling. In: Proceedings of the

2nd IEEE/ACM International Symposium on Cluster Computing and the Grid.

p. 39. CCGRID ’02, IEEE Computer Society, Washington, DC, USA (2002),

http://portal.acm.org/citation.cfm?id=872748.873249

[43] Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid com-

puting. In: Revised Papers from the 8th International Workshop on Job Schedul-

ing Strategies for Parallel Processing. pp. 128–152. JSSPP ’02, Springer-Verlag,

London, UK (2002), http://portal.acm.org/citation.cfm?id=

646383.689702

[44] Feng, J., Cui, L., Wasson, G., Humphrey, M.: Policy-directed data movement

in grids. In: Proceedings of the 12th International Conference on Parallel and

Distributed Systems - Volume 1. pp. 319–326. ICPADS ’06, IEEE Computer

Society, Washington, DC, USA (2006), http://dx.doi.org/10.1109/

ICPADS.2006.82

[45] Ferreira, L., Berstis, V., Armstrong, J., Kendzierski, M., Neukoetter, A.,

MasanobuTakagi, Bing, R., Amir, A., Murakawa, R., Hernandez, O., Magowan,

166

J., Bieberstein, N.: Introduction to grid computing with globus. IBM Corp.,

Riverton, NJ, USA, first edn. (2003)

[46] Fielding, R.T.: Architectural styles and the design of network-based software

architectures. Ph.D. thesis, University of California, Irvine (2000)

[47] Fitzgerald, S.: Grid information services grid information services for dis-

tributed resource sharing. In: Proceedings of the 10th IEEE International Sym-

posium on High Performance Distributed Computing. p. 181. IEEE Com-

puter Society, Washington, DC, USA (2001), http://portal.acm.org/

citation.cfm?id=874077.876489

[48] Fong, P.W.: Viewer’s discretion: Host security in mobile code systems (1998),

school of Computing Science, Simon Fraser University

[49] Forum, O.G.: Open grid forum, http://www.gridforum.org/

[50] Foster, I., Kesselman, K.: The grid: Blueprint for a future computing infrastruc-

ture. In: Morgan Kaufmann in Computer Architecture and Design (1999)

[51] Foster, I., Kesselman, K.: The Grid2: Blueprint for a Future Computing Infras-

tructure. Morgan Kaufmann, second edn. (2003)

[52] Foster, I.: What is the grid? a three point checklist (June 2002), http:

//www-fp.mcs.anl.gov/˜foster/Articles/WhatIsTheGrid.

pdf

[53] Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for

computational grids. In: Proceedings of the 5th ACM conference on Computer

and communications security. pp. 83–92. CCS ’98, ACM, New York, NY, USA

(1998), http://doi.acm.org/10.1145/288090.288111

[54] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scal-

able virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222

(2001)

167

[55] Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hens-

gen, D., Keith, E., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L.,

Rust, B., Siegel, H.J.: Scheduling resources in multi-user, heterogeneous, com-

puting environments with smartnet. In: Proceedings of the Seventh Heteroge-

neous Computing Workshop. p. 3. HCW ’98, IEEE Computer Society, Wash-

ington, DC, USA (1998), http://portal.acm.org/citation.cfm?

id=795689.797878

[56] Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans.

Softw. Eng. 24, 342–361 (May 1998), http://dx.doi.org/10.1109/

32.685258

[57] Galis, A., Gelas, J.P., Lefèvre, L., Yang, K.: Active network approach to

grid management. In: Proceedings of the 2003 international conference on

Computational science: PartIII. pp. 1103–1112. ICCS’03, Springer-Verlag,

Berlin, Heidelberg (2003), http://portal.acm.org/citation.cfm?

id=1762418.1762540

[58] Galis, A., Plattner, B., Smith, J.M., Denazis, S.G., Moeller, E., Guo, H., Klein,

C., Serrat, J., Laarhuis, J., Karetsos, G.T., Todd, C.: A flexible ip active networks

architecture. In: Proceedings of the Second International Working Conference

on Active Networks. pp. 1–15. Springer-Verlag, London, UK (2000), http:

//portal.acm.org/citation.cfm?id=645638.663873

[59] Galstyan, A., Czajkowski, K., Lerman, K.: Resource allocation in the grid using

reinforcement learning. In: Proceedings of the Third International Joint Confer-

ence on Autonomous Agents and Multiagent Systems - Volume 3. pp. 1314–

1315. AAMAS ’04, IEEE Computer Society, Washington, DC, USA (2004),

http://dx.doi.org/10.1109/AAMAS.2004.232

[60] Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M.: Legion: An operating

system for wide-area computing. Tech. rep., Charlottesville, USA (1999)

168

[61] Grimshaw, A.S., Humphrey, M.A., Natrajan, A.: A philosophical and technical

comparison of legion and globus. IBM J. Res. Dev. 48, 233–254 (March 2004),

http://dx.doi.org/10.1147/rd.482.0233

[62] Grimshaw, A.S., Humphrey, M.A., Natrajan, A.: A philosophical and technical

comparison of legion and globus. IBM J. Res. Dev. 48, 233–254 (March 2004),

http://dx.doi.org/10.1147/rd.482.0233

[63] Guan, T., Zaluska, E., De Roure, D.: A grid service infrastructure for mobile

devices. In: Proceedings of the First International Conference on Semantics,

Knowledge and Grid. pp. 42–. SKG ’05, IEEE Computer Society, Washington,

DC, USA (2005), http://dx.doi.org/10.1109/SKG.2005.10

[64] Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for

master-worker applications on the computational grid. In: Proceedings of the

First IEEE/ACM International Workshop on Grid Computing. pp. 214–227.

GRID ’00, Springer-Verlag, London, UK (2000), http://portal.acm.

org/citation.cfm?id=645440.652833

[65] Humphrey, M., Thompson, M.R.: Security implications of typical grid com-

puting usage scenarios. Cluster Computing 5, 257–264 (July 2002), http:

//portal.acm.org/citation.cfm?id=592899.593008

[66] I. Foster, C. Kesselman, J.M.N., Tuecke, S.: The physiology of the grid: An open

grid services architecture for distributed systems integration (2002), http://

www.globus.org/alliance/publications/papers/ogsa.pdf

[67] Iamnitchi, A., Foster, I.T.: On fully decentralized resource discovery in grid

environments. In: Proceedings of the Second International Workshop on Grid

Computing. pp. 51–62. GRID ’01, Springer-Verlag, London, UK (2001),

http://portal.acm.org/citation.cfm?id=645441.652838

[68] Institute, I.S.: RFC 793-transmission control protocol (1981), http://

rfc.sunsite.dk/rfc/rfc793.html, edited by Jon Postel. Available at

http://rfc.sunsite.dk/rfc/rfc793.html

169

[69] Internet Engineering Task Force: RFC 791 Internet Protocol - DARPA Iner-

net Programm, Protocol Specification (September 1981), http://tools.

ietf.org/html/rfc791

[70] Ishida, T.: The Language Grid: Service-Oriented Collective Intelligence for

Language Resource Interoperability. Cognitive Technologies, Springer (2011),

http://books.google.co.uk/books?id=VpUSjkk--0kC

[71] J., J.: Enablers for agile virtual enterprise integration. Agility and Global Com-

petition (1(3)) (1997)

[72] Jacob, B.: Grid computing: What are the key components? In: ITSO Redbooks

Project Leader, IBM (June 2003)

[73] Jacob, B., Ferreira, L., Bieberstein, N., Gilzean, C., Girard, J.Y., Strachowski,

R., Yu, S.S.: Enabling applications for grid computing with globus. IBM Corp.,

Riverton, NJ, USA, first edn. (2003)

[74] Jameel, H., Kalim, U., Sajjad, A., Lee, S., Jeon, T.: Mobile-to-grid middleware:

Bridging the gap between mobile and grid environments. In: EGC’05. pp. 932–

941 (2005)

[75] Joshi, J.: Access-control language for multidomain environments. Internet Com-

puting, IEEE 8(6), 40 – 50 (2004)

[76] K. Krauter, R.B., Maheswaran, M.: A taxonomy and survey of grid resource

management systems for distributed computing. Softw. Pract. Exper. 32, 135–

164 (February 2002), http://portal.acm.org/citation.cfm?id=

565293.565296

[77] Kaneda, K., Taura, K., Yonezawa, A.: Virtual private grid: a command shell for

utilizing hundreds of machines efficiently. Future Gener. Comput. Syst. 19, 563–

573 (May 2003), http://dx.doi.org/10.1016/S0167-739X(03)

00036-0

170

[78] Kornblum, J.A., Raz, D., Shavitt, Y.: The active process interaction with its

environment. Comput. Netw. 36, 21–34 (June 2001), http://portal.acm.

org/citation.cfm?id=376733.376735

[79] Laszewski, G.V.: Grid computing: Enabling a vision for collaborative research.

In: In Conference on Applied Parallel Computing, 3rd CSC Scientific Meeting,

Lecture Notes. pp. 1–8. Springer (2002)

[80] Lorch, M., Adams, D.B., Kafura, D., Koneni, M.S.R., Rathi, A., Shah,

S.: The prima system for privilege management, authorization and enforce-

ment in grid environments. In: Proceedings of the 4th International Workshop

on Grid Computing. p. 109. GRID ’03, IEEE Computer Society, Washing-

ton, DC, USA (2003), http://portal.acm.org/citation.cfm?id=

951948.952044

[81] Lorch, M., Kafura, D., Fisk, I., Keahey, K., Carcassi, G., Freeman, T., Peremu-

tov, T., Rana, A.S.: Authorization and account management in the open science

grid. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid

Computing. pp. 17–24. GRID ’05, IEEE Computer Society, Washington, DC,

USA (2005), http://dx.doi.org/10.1109/GRID.2005.1542719

[82] M. Humphrey, M.R. Thompson, K.J.: Security for grid. In: Proceedings of IEEE

(3). vol. 93, p. 644 (March 2005)

[83] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dy-

namic matching and scheduling of a class of independent tasks onto hetero-

geneous computing systems. In: Proceedings of the Eighth Heterogeneous

Computing Workshop. p. 30. HCW ’99, IEEE Computer Society, Washing-

ton, DC, USA (1999), http://portal.acm.org/citation.cfm?id=

795690.797893

[84] Maheswaran, M., Krauter, K.: A parameter-based approach to resource discov-

ery in grid computing system. In: Proceedings of the First IEEE/ACM Interna-

tional Workshop on Grid Computing. pp. 181–190. GRID ’00, Springer-Verlag,

171

London, UK (2000), http://portal.acm.org/citation.cfm?id=

645440.652826

[85] Maheswaran, M., Krauter, K.: A parameter-based approach to resource discov-

ery in grid computing system. In: Proceedings of the First IEEE/ACM Interna-

tional Workshop on Grid Computing. pp. 181–190. GRID ’00, Springer-Verlag,

London, UK (2000), http://portal.acm.org/citation.cfm?id=

645440.652826

[86] Malempati, S., Mogalla, S.: Article: Grid based approach for data confiden-

tiality. International Journal of Computer Applications 25(9), 1–5 (July 2011),

published by Foundation of Computer Science, New York, USA

[87] Mateos, C., Zunino, A., Campo, M.: m-jgrim: a novel middleware for gridifying

java applications into mobile grid services. Softw. Pract. Exper. 40, 331–362

(April 2010), http://dx.doi.org/10.1002/spe.v40:4

[88] Mockapetris, P.V.: Domain names - concepts and facilities (1987)

[89] Nakai, J.: Pricing computing resources: Reading between the lines and beyond

(2002)

[90] Németh, Z.N., Sunderam, V.: A formal framework for defining grid systems. In:

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid. p. 202. CCGRID ’02, IEEE Computer Society, Washing-

ton, DC, USA (2002), http://portal.acm.org/citation.cfm?id=

872748.873260

[91] Németh, Z.N., Sunderam, V.: A formal framework for defining grid systems. In:

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid. p. 202. CCGRID ’02, IEEE Computer Society, Washing-

ton, DC, USA (2002), http://portal.acm.org/citation.cfm?id=

872748.873260

172

[92] Pacini, F.: Job description language how to (December 2001), http://www.

grid.org.tr/servisler/dokumanlar/DataGrid-JDL-HowTo.

pdf

[93] Park, J.: Usf-pas: Study on core security technologies for ubiquitous security

framework. Journal of Universal Computer Science 15(5), 1065–1080 (2009)

[94] Postel, J.: User datagram protocol. RFC 768, Internet Engineering Task Force

(August 1980), http://www.rfc-editor.org/rfc/rfc768.txt

[95] Postel, J.: Internet Control Message Protocol. RFC 777 (April 1981), http:

//www.ietf.org/rfc/rfc777.txt, obsoleted by RFC 792

[96] R. Wolski, J. Brevik, J.S.P., Bryan, T.: Grid resource allocation and control using

computational economies. In: Grid Computing: Making the Global Infrastruc-

ture a Reality. pp. 747–772. John Wiley and Sons (2003)

[97] Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource man-

agement for high throughput computing. High-Performance Distributed Com-

puting, International Symposium on 0, 140 (1998)

[98] Rosado, D.G., Fernandez-Medina, E., Lopez, J.: Reusable security use cases for

mobile grid environments. In: Proceedings of the 2009 ICSE Workshop on Soft-

ware Engineering for Secure Systems. pp. 1–8. IWSESS ’09, IEEE Computer

Society, Washington, DC, USA (2009), http://dx.doi.org/10.1109/

IWSESS.2009.5068452

[99] Rosado, D.G., Fernández-Medina, E., López, J.: Applying a uml extension to

build use cases diagrams in a secure mobile grid application. In: Proceedings of

the ER 2009 Workshops (CoMoL, ETheCoM, FP-UML, MOST-ONISW, QoIS,

RIGiM, SeCoGIS) on Advances in Conceptual Modeling - Challenging Per-

spectives. pp. 126–136. ER ’09, Springer-Verlag, Berlin, Heidelberg (2009),

http://dx.doi.org/10.1007/978-3-642-04947-7_16

173

[100] Rosado, D.G., Fernández-Medina, E., López, J., Piattini, M.: Analysis of se-

cure mobile grid systems: A systematic approach. Inf. Softw. Technol. 52, 517–

536 (May 2010), http://dx.doi.org/10.1016/j.infsof.2010.

01.002

[101] Rosado, D., Fernandez-Medina, E., Lopez, J., Piattini, M.: Developing a secure

mobile grid system through a uml extension. Journal of Universal Computer

Science 16(17), 2333–2352 (2010)

[102] S. Tuecke, V.Welch, D.E.L.P.M.T.: Rfc 3820: internet x.509 public key infras-

tructure proxy certificate profile (2004)

[103] Sirbu, M.A., Chuang, J.C.I.: Distributed authentication in kerberos using public

key cryptography. Network and Distributed System Security, Symposium on 0,

134 (1997)

[104] Stamos, J.W., Gifford, D.K.: Remote evaluation (1990)

[105] Stone, G.N. Lundy, B.X.G.: Network policy languages: a survey and a new

approach. In: IEEE Network. p. 10. IEEE Communications Society, US Dept.

of Defence, Fort Meade, MD (2001)

[106] Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed job

scheduling on computational grids using multiple simultaneous requests. In:

Proceedings of the 11th IEEE International Symposium on High Performance

Distributed Computing. p. 359. HPDC ’02, IEEE Computer Society, Washing-

ton, DC, USA (2002), http://portal.acm.org/citation.cfm?id=

822086.823345

[107] Swenson, Keith (San Jose, C.: Simple workflow access protocol (June 2003),

http://www.freepatentsonline.com/6574675.html

[108] T. Walsh, P.N., Dobson, S.: Review of mobility systems. In: TCD Computer

Science Technical Report (2000)

174

[109] Takefusa, A., Matsuoka, S., Casanova, H., Berman, F.: A study of deadline

scheduling for client-server systems on the computational grid. In: Proceedings

of the 10th IEEE International Symposium on High Performance Distributed

Computing. p. 406. IEEE Computer Society, Washington, DC, USA (2001),

http://portal.acm.org/citation.cfm?id=874077.876538

[110] Tariq Alwada’n, Hamza Aldabbas, H.J.T.K., Aldabbas, O.: Dynamic policy

management in mobile grid environments. International Journal of Computer

Networks and Communications (IJCNC) 4(2) (2012)

[111] Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-based authorization

policy in a pki environment. ACM Trans. Inf. Syst. Secur. 6, 566–588 (Novem-

ber 2003), http://doi.acm.org/10.1145/950191.950196

[112] Verma, D.C., Sahu, S., Calo, S.B., Beigi, M., Chang, I.: A policy service for

grid computing. In: Proceedings of the Third International Workshop on Grid

Computing. pp. 243–255. GRID ’02, Springer-Verlag, London, UK (2002),

http://portal.acm.org/citation.cfm?id=645442.652675

[113] Verma, D.C., Sahu, S., Calo, S.B., Beigi, M., Chang, I.: A policy service for

grid computing. In: Proceedings of the Third International Workshop on Grid

Computing. pp. 243–255. GRID ’02, Springer-Verlag, London, UK (2002),

http://portal.acm.org/citation.cfm?id=645442.652675

[114] W. Allcock, J. Bester, J.B.A.C.L.L., Tuecke, S.: Gridftp: Protocol extensions

to ftp for the grid (April 2003), http://www.ggf.org/documents/

GWD-R/GFD-R.020.pdf

[115] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,

Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.: Security for grid services.

In: High Performance Distributed Computing, 2003. Proceedings. 12th IEEE

International Symposium on. pp. 48 – 57 (2003)

[116] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,

Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.: Security for grid ser-

175

vices. In: Proceedings of the 12th IEEE International Symposium on High Per-

formance Distributed Computing. p. 48. HPDC ’03, IEEE Computer Society,

Washington, DC, USA (2003), http://portal.acm.org/citation.

cfm?id=822087.823401

[117] Wong, S.W., Ng, K.W.: Performance evaluation of mobile grid services. In:

Proceedings of the 2nd KES International conference on Agent and multi-

agent systems: technologies and applications. pp. 557–566. KES-AMSTA’08,

Springer-Verlag, Berlin, Heidelberg (2008), http://portal.acm.org/

citation.cfm?id=1787839.1787903

[118] Wu. Jin, Leangsuksun. Chokchai Box, R.V., Hong, O.: Policy-based access

control framework for grid computing. In: Proceedings of the Sixth IEEE In-

ternational Symposium on Cluster Computing and the Grid. pp. 391–394. CC-

GRID ’06, IEEE Computer Society, Washington, DC, USA (2006), http:

//dx.doi.org/10.1109/CCGRID.2006.80

[119] Yang, K., Galis, A., Todd, C.: Policy-based active grid management architec-

ture. In: Networks, 2002. ICON 2002. 10th IEEE International Conference on.

pp. 243 – 248 (2002)

[120] Yu, C.M., Kam-Wing: Dynamic policy management framework for partial pol-

icy information. In: Advances in Grid Computing - EGC 2005 European Grid

Conference - Volume 1 / 1973 - Volume 6473 / 2011. Springer Berlin / Heidel-

berg, Amsterdam, The Netherlands (2005)

[121] Yu, C.M., Ng, K.W.: A heterogeneous authorization policy management mech-

anism for grid environments. In: International Conference on Multimedia and

Ubiquitous Engineering, 2007. pp. 381 –386 (2007)

[122] Yu, C.M., Ng, K.W.: Dpmf: A policy management framework for heterogeneous

authorization systems in grid environments. Multiagent Grid Syst. 5, 235–263

(April 2009)

176

[123] Zhuk, S., Chernykh, A., Avetisyan, A., Gaissaryan, S., Grushin, D., Kuzjurin,

N., Pospelov, A., Shokurov, A.: Comparison of scheduling heuristics for grid

resource broker. In: Proceedings of the Fifth Mexican International Conference

in Computer Science. pp. 388–392. IEEE Computer Society, Washington, DC,

USA (2004)

177

