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Abstract Type-2 fuzzy sets and complex fuzzy sets are both three dimensional
extensions of type-1 fuzzy sets.
Complex fuzzy sets come in two forms, the standard form, postulated in 2002

by Ramot et al., and the 2011 innovation of pure complex fuzzy sets, proposed by
Tamir et al.. In this paper we compare and contrast both forms of complex fuzzy
set with type-2 fuzzy sets, as regards their rationales, applications, definitions,
and structures. In addition, pure complex fuzzy sets are compared with type-2
fuzzy sets in relation to their inferencing operations.
Complex fuzzy sets and type-2 fuzzy sets differ in their roles and applications;

complex fuzzy sets are pertinent to inferencing where there is seasonality, and
type-2 fuzzy sets are applicable to reasoning under uncertainty. Their definitions
differ also, though there is equivalence between those of a pure complex fuzzy
set and a type-2 fuzzy set. Structural similarity is evident between these three-
dimensional sets. Complex fuzzy sets are represented by a 3–D line, and type-
2 fuzzy sets by a 3–D surface, but a surface is simply a generalisation of a line.
This similarity is particularly apparent between pure complex fuzzy sets and type-
2 fuzzy sets, which are both mappings from the domain onto the unit square.
However type-2 fuzzy sets were found not to be isomorphic to pure complex fuzzy
sets.
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The mechanisms by which complex fuzzy sets model and quantify periodicity,
and type-2 fuzzy sets model and quantify uncertainty are discussed.
A type-2 fuzzy set can be represented as the union of its type-2 embedded

set. An embedded type-2 fuzzy set is a type-2 fuzzy set in itself, whose geomet-
rical representation is a 3-D line. Thus, geometrically an embedded type-2 fuzzy
set can be seen as equivalent to a pure complex fuzzy set and therefore a type-2
fuzzy set can be represented as the union of a collection pure complex fuzzy sets,
which in turn can be regarded as embedded complex fuzzy sets of a type-2 fuzzy
set. This relationship is exploited to provide a complex definition of a type-2 fuzzy
set.
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1 Introduction
It is 50 years since Zadeh [1] introduced the concept of a type-1 fuzzy set. In
1975, he went on to define the type-2 fuzzy set [2–4]. Complex fuzzy sets, ap-
plicable to the modelling of periodic phenomena, are a relatively recent de-
velopment in fuzzy set theory, proposed by Ramot et al. in 2002 [5]. A natural
extension of real-valued, or type-1 fuzzy sets, they differ from them in so far as
their membership grades are complex numbers (of modulus  1) [6]. A strik-
ing feature that type-2 fuzzy sets and complex fuzzy sets have in common is
that they are three-dimensional.

Pure complex fuzzy sets are a very recent variation on complex fuzzy sets
proposed by Tamir et al. in 2011. Using Cartesian coordinates, both the real
and imaginary components of themembership grademay take any valuewithin
the interval [0, 1] [7, page 293]. Pure complex fuzzy sets may also be repre-
sented using polar coordinates [7, page 294] in a formalisation that is super-
ficially similar to that of complex fuzzy sets as defined by Ramot et al., but in
which the phase and modulus terms are interpreted differently.

In this paper, in order to distinguish between pure complex fuzzy sets and
the original complex fuzzy sets proposed by Ramot et al.,we shall refer to com-
plex fuzzy sets as first postulated as standard complex fuzzy sets. The phrase
‘complex fuzzy set’ will refer to either form.

Type-2 fuzzy sets [2–4] are an extension of type-1 fuzzy sets in which the
sets’ membership grades are themselves type-1 fuzzy sets. They respond to a
major shortcoming of type-1 fuzzy sets by offering a conceptual schemewithin
which the effects of uncertainties in fuzzy inferencing may be modelled and
minimised [8, page 117].

The purpose of this paper is to establish similarities and differences firstly
between complex fuzzy sets and type-2 fuzzy sets, and secondly between com-
plex fuzzy inferencing systems and type-2 fuzzy inferencing systems. The re-
port is structured as follows: After the introduction of this section, Section 2
sets out the definitions of the fuzzy sets. In Section 3, the structures of the sets
are discussed, and in Section 4, the inferencing operations are investigated. A
definition of type-2 fuzzy sets in terms of complex fuzzy sets is presented in
Section 5. The final section, Section 6, concludes the paper.

1.1 Fuzzy Inferencing Systems
It is via the Fuzzy Inferencing System (FIS)1 that fuzzy sets are put to use. An
FIS is a decision making program which works by applying fuzzy logic opera-
tors to common-sense linguistic rules. In this paper we are concernedwith the
Mamdani FIS, in which a crisp numerical input passes through three stages:
fuzzification, inferencing, and finally defuzzification. The output of inferenc-

1A Fuzzy Inferencing System is also known as a Fuzzy Logic System (FLS).



ing is a fuzzy set known as the aggregated set. During the defuzzification stage
the aggregated set is converted into a crisp number, which is the output of
the FIS. Figure 1 provides a representation of a Mamdani-style type-2 FIS. A
Mamdani-style complex FIS differs from the type-2 version only in that de-
fuzzification is a one stage procedure. Defuzzification is beyond the scope
of this paper; interested readers are referred to the articles of Greenfield et
al. [9–12]. The focus of this present paper will be restricted to the operations
in the inferencing stages of the FIS (Section 4).
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Figure 1: Mamdani-style Type-2 FIS.



1.2 Complex Fuzzy Sets
Ramot et al. [5, page 171] present standard complex fuzzy sets as an extension
of type-1 fuzzy sets:

“... complex fuzzy set theory modifies the original concept of fuzzy
membership by asserting that, at least in some instances, it is nec-
essary to add a second dimensions to the expression of member-
ship. ...The novelty of complex fuzzy sets is manifested in the ad-
ditional dimension ofmembership: the phase of the grade ofmem-
bership, !

S

(x). ”

And what is the purpose of this additional phase term? It permits complex
fuzzy sets to intuitively represent fuzziness in time series applications. Dick
gives this example [6, page 413]:

“... consider traffic congestion in a major city. The basic dynam-
ics of traffic congestion are depressingly well-known: there is a
morning “rush hour” when workers are trying to get to their jobs,
causing high congestion in one direction on major roads; in the
afternoon, there is a rush hour in the opposite direction, as ev-
eryone goes home. In between, traffic is lighter, and at night, the
roads are nearly empty. This situation is approximately periodic,
but never exactly repeats itself. Zadeh has recently [13] termed this
phenomenon “regularity,” ...”

Dick goes on to say that in his view,

“... the proper role for a complex fuzzy set is a remarkably efficient
representation of approximately periodic phenomena, and as the
underlying mathematical foundation of regularity.”

Applications of complex fuzzy sets include analysing solar activity as mea-
sured by the recorded number of sunspots [5], signal processing [5], stock trad-
ing on the New York Stock Exchange [14], and prediction of voter turnout in
elections [14]. The potential for further applications is enormous.

1.3 Type-2 Fuzzy Sets
Type-1 membership functions are subject to uncertainty arising from various
sources [8]. Their accuracy is therefore questionable; it seems counterintuitive
to use real numbers, possibly expressed to several decimal places, to represent
degrees of membership. Klir and Folger comment [15, page 12]:

“... it may seem problematical, if not paradoxical, that a repre-
sentation of fuzziness is made using membership grades that are
themselves precise real numbers. Although this does not pose a



serious problem for many applications, it is nevertheless possible
to extend the concept of the fuzzy set to allow the distinction be-
tween grades of membership to become blurred. Sets described in
this way are known as type 2 fuzzy sets.”

Here Klir and Folger describe blurring a type-1 fuzzy set to form an interval
type-2 fuzzy set. Mendel and John take this idea a stage further [8, page 118],
describing the transition from a type-1 fuzzy set to a generalised type-2 fuzzy
set, again by blurring the type-1 membership function:

Imagine blurring the type-1 membership function [...] by shifting
the points [...] either to the left or the right, and not necessarily
by the same amounts, [...]. Then, at a specific value of x, say x

0,
there no longer is a single value for the membership function (u0);
instead themembership function takes on valueswherever the ver-
tical line [x = x

0] intersects the blur. These values need not all be
weighted the same; hence, we can assign an amplitude distribu-
tion to all of these points. Doing this for all x 2 X, we create a
three-dimensional membership function — a type-2 membership
function — that characterizes a type-2 fuzzy set.

So, type-2 fuzzy sets have a third dimension. This has advantages and dis-
advantages. From amodelling perspective type-2 sets provide more degrees of
freedom.

Thus type-2 fuzzy sets take two forms, the interval, for which all secondary
membership grades are 1, and the generalised, where the secondary member-
ship grade may take any value between 0 and 1. The tendency has been for
developers to opt [16, pages 7, 8, 16] for the computationally simpler inter-
val type-2 FISs [8, 17] for which applications have been developed in areas
such as control, simulation and optimisation [18–23]. In contrast, there are
relatively few, though varied, generalised type-2 fuzzy applications [8,24,25].
Since strategies have been and continue to be developed that reduce the com-
putational complexity of all stages of the generalised type-2 FIS [10,12,26–28],
it is to be hoped that in the future there will be an increasing number of gen-
eralised type-2 FIS applications.

For a complex fuzzy set, the third dimension conveys additional informa-
tion, namely phase, which intuitively models and quantifies the stage in the
periodic cycle. In contrast, for a type-2 fuzzy set, the third dimension reflects
the uncertainty arising out of a deficit in information. How type-2 fuzzy sets
model uncertainty is less obvious and is the subject of [29]. In this paper it is
argued that the volume under the surface of the type-2 fuzzy set is a measure
of the uncertainty relating to the set.



2 Definitions
2.1 Type-1 Fuzzy Sets
Since complex fuzzy sets and type-2 fuzzy sets are both extensions of the basic
type-1 fuzzy set, we begin by formally defining the type-1 fuzzy set.

Definition 1 (Type-1 Fuzzy Set). Let X be a universe of discourse. A fuzzy set
A in X is characterised by a membership function µ

A

: X ! [0, 1], and can be
expressed as follows:

A = {(x, µ
A

(x));µ

A

(x) 2 [0, 1] 8x 2 X}. (1)

Note that the membership grades of A are crisp, real numbers.

2.2 Complex Fuzzy Sets
Standard complex fuzzy sets are defined using polar co-ordinates.

Definition 2 (Standard Complex Fuzzy Set [5, page 172]). “A complex fuzzy set
S, defined on a universe of discourseU , is characterized by a membership function
µ

S

(x) that assigns any element x 2 U a complex-valued grade of membership in
S. By definition, the values µ

S

(x) may receive all lie within the unit circle in the
complex plane, and are thus of the form r

S

(x) · ej!S

(x), where j =

p
�1, r

S

(x)

and !
S

(x) are both real-valued, and r
s

(x) 2 [0, 1].
The complex fuzzy set S may be represented as the set of ordered pairs

S = (x, µ

S

(x))|x 2 U.

00

Though this definition employs polar coordinates, conversion between the
polar form and the Cartesian form is straightforward; in Figure 4(b) the data
displayed is in Cartesian form.

TheCartesian representation of a pure complex fuzzy grade ofmembership

µ(V, z) = µ

r

(V ) + jµ

i

(z) (2)

is defined by Tamir et al. [7] thus:

• µ

r

(V ) is the grade of membership in the interval [0, 1] of a set V in a
fuzzy class � (a fuzzy set of fuzzy sets), i.e. is a ‘pointer’ to a (fuzzy) set
V within a fuzzy class, and

• µ

i

(z) is the grade of membership in the interval [0, 1] of the element z in
the fuzzy set V , i.e. ‘pointer’ to an element within the fuzzy set V .

This leads to a formal definition of a pure complex fuzzy set:



Definition 3 (Pure Complex Fuzzy Set [7]). Let ˜

P (T ) be the set of fuzzy sets in
T and � ✓ ˜

P (T ). A pure complex fuzzy set ˜

C on T is characterised by a pure
complex membership function

µ : �⇥ T �! C

µ(V, z) = µ

r

(V ) + jµ

i

(z)

where µ
r

(V ) is the grade of membership in the interval [0, 1] of a set V in the fuzzy
class � and µ

i

(z) is the grade of membership in the interval [0, 1] of the element z
in the fuzzy set V .

2.3 Type-2 Fuzzy Sets
Let X be a universe of discourse. Let ˜

P (X) be the set of fuzzy sets in X. A
type-2 fuzzy set ˜

A inX is a fuzzy set whosemembership grades are themselves
fuzzy. This implies that µ

Ã

(x) is a fuzzy set in [0, 1] for all x, i.e.

˜

A = {(x, µ
Ã

(x));µ

Ã

(x) 2 ˜

P ([0, 1]) 8x 2 X}. (3)

It follows that 8x 2 X 9J
x

✓ [0, 1] such that µ
Ã

(x) : J

x

! [0, 1]. Applying
(1), we have:

µ

A

(x) = {(u, µ
Ã

(x)(u));µ

Ã

(x)(u) 2 [0, 1] 8u 2 J

x

✓ [0, 1]}. (4)

J

x

is called the primary membership of x while µ
Ã

(x) is called the secondary
membership of x.

Putting (3) and (4) together we have

Definition 4 (Type-2 Fuzzy Set).

˜

A = {(x, (u, µ
Ã

(x)(u)))|µ
Ã

(x)(u) 2 [0, 1]8x 2 X ^ 8u 2 J

x

✓ [0, 1]}, (5)

whereX is a universe of discourse and ˜

A is a type-2 fuzzy set inX.

Two concepts relating to type-2 fuzzy sets are the footprint of uncertainty
and the vertical slice.

Definition 5 (Footprint Of Uncertainty). The Footprint Of Uncertainty (FOU)
is the projection of the type-2 fuzzy set onto the x� u plane.

Definition 6 (Vertical Slice). A vertical slice is a plane which intersects the x-
axis (primary domain) and is parallel to the u-axis (secondary domain).

The notion of a vertical slice may be extended to complex fuzzy sets in both
the standard and pure forms.



3 Structure
Figure 2 shows a type-2 fuzzy set (from a MatlabTM application), together
with its FOU. Figure 3 shows the conventional 2-D representation of the time
series consisting of sunspot numbers observed on amonthly basis [30]. Figure
4 shows the sunspot observations of Figure 3 [30] displayed as a complex fuzzy
set.

A standard complex fuzzy set is represented mathematically by a mapping
whose range is the unit disc, centre (0, 0). In contrast, the mapping represent-
ing a pure complex fuzzy set has the unit square, with vertices (0, 0), (1, 0),
(1, 1), (0, 1), as its range. Similarly, the range of the type-2 fuzzy set mapping
is the unit square.

What is the difference in structure between a complex fuzzy set and a gen-
eralised type-2 fuzzy set? Might not a complex fuzzy set be seen a special case
of a generalised type-2 fuzzy set? Graphically a type-2 fuzzy set is a surface
in 3-D, whereas a complex fuzzy set is a line in 3-D. But a line is a specific
sort of surface. So structurally a complex fuzzy set may be considered to be a
special form of generalised type-2 fuzzy set (in the same way that an interval
type-2 fuzzy set is a specialisation of the generalised type-2 fuzzy set). This is
discussed further in Section 5.

4 Operations
Within a type-2 FIS, join and meet operations are used extensively. Similarly,
for a complex FIS, union and intersection operations are pervasive. For both
type-2 and complex FISs, all the computation occurring during themajor stage
of inferencing is founded upon these operations. In this section wewill look at
whether the type-2 fuzzy join andmeet operations are transferable to complex
fuzzy sets.

To facilitate comparison between mappings, it is essential that they take
the same range,otherwise a bijective transformation between the rangeswould
need to be exhibited. As this is not a trivial issue, we restrict our analysis to
comparing type-2 fuzzy sets with pure complex fuzzy sets.

Minimum (‘^’ or ‘�’) is the most frequently used t-norm; in the analysis
which follows, this t-norm is employed, as is the maximum t-conorm (‘_’ or
‘�’).



(a) 3-D representation

(b) FOU

Figure 2: Aggregated type-2 fuzzy set created during the inference stage of a
type-2 FIS.



Figure 3: Number of sunspots recorded on a monthly basis between 1994 and
2013.



(a) 2-D view.

(b) 3-D view.

Figure 4: Sunspot data represented as a complex fuzzy set. The modulus is
greater than 1 because the sunspot data has not been normalised.



4.1 Operations on Pure Complex Fuzzy Sets
4.1.1 Equation for Union
According to Tamir et al. [7, pages 299–300] there are three ways to construct
the union of two pure complex fuzzy classes2. They describe this (their third)
construction as “...sound, intuitive, and practical.”

Definition 7 (Union of Pure Complex Fuzzy Classes). Let � = {V, z, µ�(V, z)
|V 2 2

U

, z 2 U} and  = {T, z, µ (T, z)|T 2 2

U

, z 2 U} be two complex
fuzzy classes such that V and T are fuzzy sets. Assume that � and  are defined
over a universe of discourse U , and let 2U denote the power set of U . Further
assume that the degree of membership of an object z 2 V and an object y 2 T

is given by µ�(V, z) = µ�
r

(V ) + jµ�
i

(z) and µ (T, y) = µ 
r

(T ) + jµ 
i

(y),
respectively, where µ�

r

(↵), µ 
r

(↵), µ�
i

(↵), and µ 
i

(↵) stand for the real and
imaginary parts of µ�(V, x) and µ (T, y). Finally, letW = 2

U , and let � denote
a t-conorm operation. Then

µ�[ (W, z) = (µ�
r

(V )� µ 
r

(T )) + j(µ�
i

(z)� µ 
i

(z)). (6)

4.1.2 Equation for Intersection
The position with respect to intersection is analogous to that of union, and
again the definition presented here is described by Tamir et al. as “...sound,
intuitive, and practical” [7, pages 301–302].

Definition 8 (Intersection of Pure Complex Fuzzy Classes). Let � = {V, z,
µ�(V, z)|V 2 2

U

, z 2 U} and = {T, z, µ (T, z)|T 2 2

U

, z 2 U} be two complex
fuzzy classes such that V and T are fuzzy sets. Assume that � and  are defined
over a universe of discourse U , and let 2U denote the power set of U . Further
assume that the degree of membership of an object z 2 V and an object y 2 T

is given by µ�(V, z) = µ�
r

(V ) + jµ�
i

(z) and µ (T, y) = µ 
r

(T ) + jµ 
i

(y),
respectively, where µ�

r

(↵), µ 
r

(↵), µ�
i

(↵), and µ 
i

(↵) stand for the real and
imaginary parts of µ�(V, x) and µ (T, y). Finally, letW = 2

U , and let � denote
a t-norm operation. Then

µ�\ (W, z) = (µ�
r

(V )� µ 
r

(T )) + j(µ�
i

(z)� µ 
i

(z)). (7)

4.1.3 Union and Intersection Performed Slice by Slice
Union and intersection operations proceed slice by slice, so it is sufficient to
specify how these operationsmay be applied to two slices. For union,Equation
6 requires that the t-conorm operator be applied to both the real and imag-
inary components of the membership grade i.e the max /max combination.

2Tamir et al. present their analysis in terms of classes, but for the purposes of this paper it can
be assumed that classes and sets are equivalent.



For intersection, Equation 7 indicates that the t-norm operator is applicable
to both the real and imaginary components of the membership grade i.e the
min /min combination.

4.2 Operations on Type-2 Fuzzy Sets
4.2.1 Equation for Join
The formula for the join operation is:

µ

Ã[B̃

(x) =

Z

u2J

u

x

Z

w2J

w

x

f

x

(u) ? g

x

(w)/(u _ w) x 2 X,

where _ is the maximum operator, ? signifies a t-norm,
RR

represents union
over Ju

x

⇥ J

w

x

, and f

x

(u) and g

x

(w) are respectively the corresponding sec-
ondary grades of µ

Ã

(x) and µ
B̃

(x) [31, pages 217–18].

4.2.2 Equation for Meet
The formula for the meet operation is:

µ

Ã\B̃

(x) =

Z

u2J

u

x

Z

w2J

w

x

f

x

(u) ? g

x

(w)/(u ^ w) x 2 X,

where ^ is the minimum operator, ? signifies a t-norm,
RR

represents union
over Ju

x

⇥ J

w

x

, and f

x

(u) and g

x

(w) are respectively the corresponding sec-
ondary grades of µ

Ã

(x) and µ
B̃

(x) [31, page 219].

4.2.3 Join and Meet Performed Slice by Slice
Join and meet operations proceed slice by slice, so it is sufficient to specify
how these operations may be applied to two slices.

Let ˜

A and ˜

B be two type-2 fuzzy sets, in which the co-domains are discre-
tised intoN slices, and the domains sliced at the pointsx

Ã

andx
B̃

respectively.
Two type-1 fuzzy sets,

S

Ã

= {z
A1/yA1 + z

A2/yA2 + · · ·+ z

A

N

/y

A

N

}

and
S

B̃

= {z
B1/yB1 + z

B2/yB2 + · · ·+ z

B

N

/y

B

N

},
are generated.
Join The formula for join requires that all N2 possible min /max pairings of
S

Ã

and S
B̃

be created:

min(z

A1 , zB1)/max(y

A1 , yB1) + min(z

A1 , zB2)/max(y

A1 , yB2) + · · ·

· · ·+min(z

A

N

, z

B

N

)/max(y

A

N

, y

B

N

).



Meet Similarly, for meet, pairings are generated as follows:

min(z

A1 , zB1)/min(y

A1 , yB1) + min(z

A1 , zB2)/min(y

A1 , yB2) + · · ·

+ · · ·min(z

A

N

, z

B

N

)/min(y

A

N

, y

B

N

).

Selection of Maximum Membership Grade The next stage is the same for join and
meet. For every resultant domain value (‘denominator’) generated, the max-
imum membership grade (‘numerator’) is selected. The resultant set of pairs
is the join or meet of the two slices.

4.3 Applying Join and Meet of Slices to Complex Fuzzy Sets
What happens when the join and meet operations of type-2 fuzzy sets are
substituted for the union and intersection operations of (pure) complex fuzzy
sets? The complex fuzzy set would be regarded as a type-2 fuzzy set whereby
for each vertical slice the co-domain is not discretised i.e. N = 1. It follows
that N2

= 1, indicating that there is only 1 min /max pairings of S
Ã

and S

B̃

in the case of join (union) and only 1 min /min pairings in the case of meet
(intersection). There would be no need to select the maximum membership
grade as there would only be one pair; this stage is superfluous. The resultant
set of one pair is the join or meet of the two slices.

Is pure complex fuzzy inferencing isomorphic to type-2 fuzzy inferencing?
The type-2 meet operation carries over to the pure complex intersection op-
eration asmin /min. However the type-2 join operation is not transferrable to
the pure complex union operation; the former ismin /max, whereas the latter
is max /max. So there is no isomorphism between pure complex fuzzy sets
and type-2 fuzzy sets.

5 Complex Fuzzy Set definition of a Type-2 Fuzzy Set
The similarity between the concepts of type-2 fuzzy sets and complex fuzzy
sets is apparent from the definition of Tamir et al. of a complex fuzzy class [7,
page 295] as “ ...a pure fuzzy class of order one, that is, a fuzzy set of fuzzy
sets.” A complex fuzzy class, defined over a universe of discourse T , is charac-
terised by a pure complexmembership functionµ(V, z) that assigns a complex-
valued grade of membership in the complex fuzzy class to any element z 2 U

(where U is the universe of discourse). The values that µ(V, z)may receive lie
within the unit square or the unit circle in the complex plane

µ(V, z) = µ

r

(V ) + jµ

i

(z) (8)

where µ

r

(V ) and µ

i

(z) are real value fuzzy grades of membership in the in-
terval [0, 1]. Therefore, Tamir et al. [7, page 297] consider “...the definition



of a pure fuzzy class (a class of order 1) as a mapping into a two-dimensional
space.”

Fuzzy sets of type-2, in which themembership grades are themselves fuzzy
sets, are known as ‘fuzzy-fuzzy sets’, a description that resembles the defini-
tion above of the complex fuzzy class.

An embedded type-2 fuzzy set is a special kind of type-2 fuzzy set. It relates
to the type-2 fuzzy set in which it is embedded in this way: For every primary
domain value, x, there is a unique secondary domain value, u, plus the as-
sociated secondary membership grade that is determined by the primary and
secondary domain values, µ

Ã

(x)(u). For discrete universes of discourseX (or
T ) andU , we have the followingmathematical expression of an embedded set:

Definition 9 (Embedded Set). Let ˜

A be a type-2 fuzzy set in X. For discrete
universes of discourse X and U , an embedded type-2 set ˜

A

e

of ˜

A is defined as
the following type-2 fuzzy set

˜

A

e

= {(x
i

, (u

i

, µ

Ã

(x

i

)(u

i

)))| 8i 2 {1, . . . , N} : x

i

2 X u

i

2 J

x

i

✓ U}. (9)

˜

A

e

contains exactly one element from J

x1 , Jx2 , .. ., JxN

, namely u1, u2, ..., uN

,
each with its associated secondary grade, namely µ

Ã

(x1)(u1), µ
Ã

(x2)(u2), . . .,
µ

Ã

(x

N

)(u

N

).

Tamir et al. interpreted the above Cartesian representation of a complex
fuzzy class [7, page 293] such that the real part acts as a “pointer to a set within
a fuzzy class” and the imaginary part a “pointer to an item within a fuzzy set.”
A similar interpretation can be associated with the values u

i

and µ

Ã

(x

i

)(u

i

)

in the definition above of an embedded type-2 fuzzy set. The value u
i

can be
seen as a pointer to the primarymembership set J

x

, while the value µ
Ã

(x

i

)(u

i

)

points to the item within the set J
x

. Thus, the embedded type-2 fuzzy set
˜

A

e

of type-2 fuzzy set ˜

A can be regarded as mathematically equivalent to the
complex fuzzy class with following complex-value grade of membership

µ(V, z) = µ

r

(V ) + jµ

i

(z)

where V is a subset of U , z 2 X and

µ

r

(V ) =

(

u

i

2 J

x

if V = J

x

0 otherwise

µ

i

(z) =

(

µ

Ã

(x

i

)(u

i

) if V = J

x

0 otherwise.

A type-2 fuzzy set can be represented as the union of its type-2 embedded
sets. Let ˜

A

j

e

denote the jth type-2 embedded set for type-2 fuzzy set ˜

A, i.e.,

˜

A

j

e

⌘
n⇣

u

j

i

, µ

Ã

(x

i

)(u

j

i

)

⌘

, i = 1, . . . , N

o



where {uj

i

, . . . , u

j

N

} 2 J

x

i

. Then ˜

A can be represented as the union of its type-
2 embedded sets, i.e., ˜

A =

P

n

j=1
˜

A

j

e

where n ⌘
Q

N

i=1 Mi

. Therefore, we can
define a type-2 fuzzy set as a collection of embedded complex fuzzy classes in
accord with the above mathematical representation.

6 Conclusions and Further Work
This paper has evaluated the similarities and distinctions between complex
fuzzy sets and systems and type-2 fuzzy sets and systems in several respects:
Rationale For a complex fuzzy set, the third dimension reflects additional in-
formation—that of phase. However, for a type-2 fuzzy set, the third dimension
reflects the uncertainty arising out of a deficit in information.
Applications Complex fuzzy sets are applicable to the analysis of time series,
where there is a phased regularity. In contrast, type-2 fuzzy sets lend them-
selves to applications in which there is a high degree of uncertainty, specifi-
cally situations where there is uncertainty in multiple dimensions [29].
Definitions Complex fuzzy sets in both their forms differ from type-2 fuzzy sets
in terms of definition. However there is equivalence between the definition of
a pure complex fuzzy set and that of a type-2 fuzzy set.
Structure Structural similarity is apparent between these three-dimensional
fuzzy sets. Complex fuzzy sets are represented by a line in 3D, and type-2
fuzzy sets by a surface in 3D. However a surface is a generalisation of a line.
The similarity between pure complex fuzzy sets and type-2 fuzzy sets is strik-
ing, as both are mappings from the domain onto the unit square.
Operations Standard complex fuzzy sets were not compared with type-2 fuzzy
sets as regards inferencing operations. A comparisonwasmade of type-2 fuzzy
inferencing operationswith those of pure complex fuzzy sets; an isomorphism
was shown not to exist.

Overall, the differences outweigh the similarities; despite their shared three-
dimensional nature, complex fuzzy sets and type-2 fuzzy sets are two dis-
tinct entities, constructed for different purposes, and with different behaviour
mathematically.
Complex Definition of a Type-2 Fuzzy Set A definition of type-2 fuzzy sets in terms
of complex fuzzy classes has been presented. This can be used to propose
alternative union and intersection algorithms for complex fuzzy sets using the
corresponding join and meet of the related type-2 embedded sets. This would
have the advantage of being supported by Zadeh’s Extension Principle [2] that
generalises the union and intersection of type-1 fuzzy sets to other types of
fuzzy sets such as type-2 fuzzy sets.



Type-2 ComplexFuzzySets As furtherwork, combine the (standard) complex fuzzy
set with the type-2 fuzzy set in defining the hybrid type-2 complex fuzzy set. In-
vestigate the application of this new form of fuzzy set to the analysis of data
which is both seasonal and uncertain.
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