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Abstract

In this thesis novel numerical algorithms are developed to solve some problems of analy-

sis and control design for unstable linear dynamical systems having their input constrained

by maximum amplitude and rate of the control signals. Although the results obtained are

of a general nature, all the problems considered are induced by flight control applications.

Moreover, all these problems are stated in terms of geometry, and because of this their

solution in the thesis was effectively achieved by geometrically-oriented methods.

The problems considered are mainly connected with the notions of the controllable and

stability regions. The controllable region is defined as the set of states of an unstable

dynamical system that can be stabilized by some realizable control action. This region is

bounded due to input constraints and its size can serve as a controllability measure for

the control design problem. A numerical algorithm for the computation of two-dimensional

slices of the region is proposed. Moreover, the stability region design is also considered.

The stability region of the closed-loop system is the set of states that can be stabilized by

a particular controller. This region generally utilizes only a part of the controllable region.

Therefore, the controller design objective may be formulated as maximizing this region. A

controller that is optimal in this sense is proposed for the case of one and two exponentially

unstable open-loop eigenvalues.

In the final part of the thesis a linear control allocation problem is considered for over-

actuated systems and its real-time solution is suggested. Using the control allocation, the

actuator selection task is separated from the regulation task in the control design. All fault

detection and reconfiguration capabilities are concentrated in one special unit called the

control allocator, while a general control algorithm, which produces “virtual” input for the

system, remains intact. In the case of an actuator fault, only the control allocation unit

needs to be reconfigured and in many cases it can generate the same “virtual” input using

a different set of control effectors. A novel control allocation algorithm, which is proposed

in the thesis, is based on multidimensional interval bisection techniques.
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Chapter 1

Introduction

In nature, unstable things are often more efficient than stable things

Jerrold Marsden

In this thesis novel numerical algorithms are developed to solve some problems of analy-

sis and control design for input constrained linear dynamical systems. Although the results

obtained are of a general nature, all the problems considered are induced by flight control

applications. The thesis therefore should be considered as a combination of two subjects,

namely, Electronic and Electrical Engineering from which it borrows control theory and

methods, and Aerospace Engineering from which it borrows motivation and application

examples.

All the problems considered here are stated in terms of geometry, and because of this

their solutions in the thesis were effectively achieved by geometrically-oriented methods.

More specifically, during the solution of the problems mentioned above we consider modern

geometric optimality criteria. We either maximize the size of some set in Euclidean n-

dimensional space, or we have to somehow estimate its size. Considering these optimality

criteria, we apply some operations on sets, e.g. boundary points search, to solve the problem

and arrive at some computational algorithm.

For validation of the algorithms developed, we perform simulation of the closed-loop

system on a grid of state-space points, investigating linearized models of flight vehicles or

their parts.

Let us now briefly describe problems in flight control that serve as a motivation for
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Figure 1.1: Stable and unstable configurations of an aircraft. Here ∆α - the angle of attack and

∆M - the pitching moment around centre of gravity.

this thesis and their connection with the corresponding problems in general control theory,

which we address in the following chapters.

1.1 Controllable region assessment

An aerodynamically unstable aircraft configuration stabilized by a control system has a

potential to overcome many conventional design limitations. For example, such an aircraft

configuration can possess a higher lift to drag ratio, the critical flight regimes such as

high incidence departures or aeroelastic instabilities can be significantly relaxed or even

eliminated by implementation of a control system. Hence, the active control approach

to air vehicle design grants the opportunity for improvement of air vehicle dynamic and

performance characteristics.

At flight regimes with dynamic instability (see Fig. 1.1), aircraft motion can be locally

represented by a linear time invariant system with exponentially unstable eigenvalues. In

this case an important problem in the design of the control laws is connected with a realistic

account of actuator constraints such as deflection limits and rate saturation.

The unstable linear system with constrained control inputs has a bounded controllable

region, which is a set of system states that can be stabilized by any realizable control action
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(i.e. under amplitude and rate constraints). This means that the stabilization problem

under the restriction of a control input can be solved only for a limited set of initial states

of the system.

Consider as an example the following one-dimensional system:

ẋ = x+ u, |u| ≤ 1.

The stability criterion for x > 0 is of the form ẋ < 0, which means x < −u. Therefore, any

initial state x0 > 1 (as well as x0 < −1) cannot be driven to the origin.

The size of the controllable region for the open-loop unstable system with constrained

control inputs can serve as a controllability measure for the control design problem. If

external disturbances move the system outside the controllable region, nothing is able to

keep the system stable.

1.2 Stability region design

The stability region (or domain of attraction) for the closed-loop system by definition is the

set of states that are stabilizable by a particular controller. The stability region generally

utilizes only a part of the open-loop system controllable region and cannot exceed it. In

some cases a “good” controller in terms of linear system criteria such as local stability and

robust performance can provide the closed-loop system with a very small and unsatisfactory

stability region, given the limitations imposed by actuator constraints (Hanson and Stengel,

1984; Shrivastava and Stengel, 1989). Therefore, an additional design objective may be

formulated as maximizing the region of attraction for the closed-loop system. This objective

maximizes the level of external disturbances, from which the nominal mode of system

operation can be restored after they are cancelled.

Different controllers in the closed-loop system produce stability regions having differ-

ent sizes, which never exceed the size of the corresponding controllable region. So, the

ratio between a stability-controllable region pair can be attributed to the controller as its

performance measure and considered as a characteristic complementing its other linear

properties (see Fig. 1.2). This new measure has been proposed in (Goman, Fedulova and

Khramtsovsky, 1996).



1. Introduction 6

Figure 1.2: Set-based performance measure

1.3 Comparison of the regions

The direct comparison of multidimensional stability and controllable regions can be replaced

by consideration of their two-dimensional cross-sections or slices. Different combinations of

two-dimensional cross-sections help to visualize multidimensional regions and significantly

simplifies the comparative analysis due to relatively small computational demands.

Consider as an example the following linear system having two complex eigenvalues:

A =





0 1

−2.1 1.91



 , B =





0.1 0

0 0.1



 ,





−20

−20



 ≤ u ≤





20

20



 .

Let consider a regulator designed via pole placement technique:

u = Kx, where K =





−9.55 −20.9

31.9 −28.6



 .

This regulator provides the closed-loop system with the following poles: −0.9525±1.09j.

In Fig. 1.3 stability region (solid) is shown in comparison with the controllable one. This

region is clearly nonconvex, and its computation was made via numerical integration. The

dotted curves represent trajectories of the closed-loop system.
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Figure 1.3: An example of two-dimensional system with two controls: a graphical comparison

between the stability and the controllable regions.

However, it should be emphasized that this comparison gives us only necessary, but

not sufficient conditions for controller assessment. The closeness of some cross-sections of

stability and controllable regions does not guarantee their closeness in differently oriented

cross-sections in multidimensional state space. Nevertheless, the proposed method provides

the possibility for identification of unacceptable controllers.

In this thesis the computation of two-dimensional slices of the stability region is per-

formed by direct numerical simulation of the closed-loop system on a fine grid of points

located in two-dimensional plane. Then the slice of stability region or region of attraction

is defined precisely by those points, for which trajectories started from them tend to the

origin.

Similar computation of controllable region on a grid of points is much more time consum-

ing as it requires to solve a two-boundary value problem for each grid point. Fortunately,

the controllable region for systems under consideration is convex and it can be restored by

computation of its boundary points.
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Figure 1.4: An example of attainable moment set for the F-18 fighter aircraft

1.4 Control allocation problem

When an aircraft has multiple control effectors producing forces and moments along different

axes, the control allocation problem may not be unique. The required forces and moments

to solve the control problem can be distributed between control effectors in different ways

and therefore some additional criteria are required to perform such allocation.

A typical modern manoeuvrable aircraft has a redundant number of aerodynamic sur-

faces, such as left and right stabilators, ailerons, rudder, left and right leading flaps, left

and right canard surfaces. In addition, some aircraft (e.g. Su-30, F/A-18 HARV, X-31) are

equipped with the thrust vectoring control generating significant control moments at low

speed and high incidence flight, which much exceed the aerodynamic control margins under

these flight conditions. The advanced aircraft configurations will possess an even greater

number of control effectors.

The aircraft flight control and angular stabilization require some definite margins both

in force and moment control powers to maintain the flight, provide the agility and to reject

possible external disturbances. So, the assessment of the extreme control capabilities for

specific flight conditions and type of maneuvering is an important problem at the prelimi-
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nary stage of an aircraft design.

This problem can be formulated without considering the aircraft dynamic equations and

time consuming mathematical simulations.

Every manoeuvre needs application of some definite magnitudes of forces and moments

and some additional control margins should be available for disturbance rejection. To

meet all design specifications for aircraft configuration and control system the knowledge

about the attainable moment set is important. The attainable set of points for moment

control (see Fig. 1.4) can be a good relative measure of different aircraft configurations

with redundant control effectors.

Note, that the control allocation procedure can be performed in different ways depending

on the performance objectives and any algorithm can only reduce the size of the attainable

moment set. Mathematically, the procedure corresponds to a real-time solution of the

classical root finding problem for a system of overdetermined equations. In the same way

as for controllable and stability regions, the relation between sizes of the actual and the

attainable moment set for the given control allocation algorithm can be a good metric for

its assessment.

The problem of choosing a control allocation technique can be considered also from the

viewpoint of the stability region size, and in this context it is also a logical continuation

of the previous two problems considered in the thesis. It is well recognized that a control

allocation algorithm may affect the closed-loop behaviour (Buffington and Enns, 1996). The

stability region measure might be useful in comparison between different allocation methods.

It is expected that the methods, which yield maximum possible control allocation (Durham,

1994; Petersen and Bodson, 2000), also provide maximum achievable stability region while

preserving the same controller in the closed-loop system.

1.5 Summary of contents

Each Chapter of this thesis represents some particular analysis or design problem, and has

its own bibliography review and a specific set of numerical examples. The contents are

briefly outlined below.

In Chapters 2 and 3 the analysis and design problems that are specific for unstable
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linear time-invariant systems are considered.

Chapter 2 is connected with the analysis of the controllable region. In Sections 2.1,2.2

literature review of the previous development in the field is provided with the emphasis

on polyhedral methods for controllable regions computation. In Section 2.3 the notion of

controllable region slices is introduced, and it is shown how we can use them to compare

stability and controllable regions. In Section 2.4 a numerical algorithm for the computation

of two-dimensional slices of the region is proposed, which is based on a numerically robust

solution of two-boundary value problems for unstable linear systems.

In Chapter 3 we consider the problem of stabilizing exponentially unstable linear systems

with saturating actuators. For systems having up to two exponentially unstable open-loop

poles and multiple control inputs, we provide a geometric insight into how to construct a

saturated stabilizing linear state feedback so that to maximize a domain of attraction of a

closed-loop system. In Section 3.3 a controller which is optimal in this sense is proposed for

the case of one unstable eigenvalue and many control inputs. In Section 3.4 this development

is enhanced to cover the case of two unstable eigenvalues.

In Chapter 4 a linear control allocation problem is considered for overactuated systems

and its real-time solution is suggested. To address this problem, polytopic representation

of an attainable set is considered in Section 4.3 and its properties are discussed. In Section

4.4 an algorithm based on the notion of generalized bisection is derived for systems of linear

overdetermined equations with constrained variables.

Alongside with theoretical descriptions, the proposed algorithms are validated in each

chapter using linearized mathematical models arising from flight dynamics.

1.6 Original results and their dissemination

This thesis is based on open sources of information and no material used here was classified

by commercial or any other reasons. All original contributions of the thesis, listed below,

have been published in refereed conference proceedings, a journal and a book before its

final submission.

• A numerical algorithm for the computation of two-dimensional slices of the control-

lable region. The dynamical systems considered are linear with interval amplitude
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and rate control constraints. The preliminary version of this algorithm was pre-

sented at the AIAA Navigation, Guidance and Control Conference (Goman and

Demenkov, 2002). The final version, which is described in Chapter 2, has been

published in the AIAA Journal of Guidance, Control and Dynamics (Goman and

Demenkov, 2004a).

• A stability optimal controller for the case of one and two exponentially unstable eigen-

values and many control inputs. The dynamical systems considered are linear with

amplitude control constraints. The first version of the algorithm has been published

as an invited book chapter (Goman and Demenkov, 2004b). The second version,

which makes use of the LMI formulation, was presented at the UKACC International

Control Conference (Demenkov, 2006). Both versions constitute Chapter 3.

• A control allocation algorithm that yields the solution in a finite number of iterations,

while utilizing whole attainable set of solutions. The systems of equations considered

are linear two- or three-dimensional with interval-constrained variables. The prelimi-

nary version of the algorithm has been published in the AIAA Navigation, Guidance

and Control Conference proceedings (Demenkov, 2005), although it was not actually

presented there. The final version, which is described in Chapter 4, was presented at

the 17th IFAC Symposium on Automatic Control in Aerospace (Demenkov, 2007).

The contents of the thesis are the results of the original research unless otherwise stated

and have not been submitted for a higher degree at any other university or institution. The

material described in the thesis has been obtained under the supervision of Prof. Mikhail

Goman. Some application results have been obtained in cooperation with him. However,

the majority of the work (approximately 90%) is done by the author.



1. Introduction 12

1.7 Notations and abbreviations

Vectors are supposed to be column if the opposite is not stated.

I identity matrix

Rn n-dimensional Euclidean space

Rn×m n×m real matrix

xT transposed vector

[x; y] [xT yT ]T

(x, y) two-dimensional plane spanned by vectors x and y

0m×n m× n matrix of zeros

x(i) the i-th component of vector x

xmin vector of minimum limits for components of the vector x

xmax vector of maximum limits for components of the vector x

||x||2 2-norm:
√
xTx

||x||∞ infinity-norm: maxi=1,n |x(i)|
xi the i-th column of a matrix or the i-th vector in a sequence

[x, y, ...] row vector with components x, y, ...

t ∈ [t1, t2] t belongs to an interval between t1 and t2

Re λ real part of the complex number λ

∈,⊆ belongs to

∀ for all

i = 1, n i = 1, 2, ..., n

{x, y, ...},{xi}i=1,n set of vectors x, y, ... or x1, x2, ...

1D one-dimensional

2D two-dimensional

3D three-dimensional

LQ, LQR linear-quadratic regulator

LP, QP linear and quadratic programming

FME Fourier-Motzkin elimination

LMI linear matrix inequalities

APS attainable pseudocontrol set



Chapter 2

Computation of controllable

regions

In this chapter an algorithm based on a convex optimization technique is proposed for

computation of the controllable region of an unstable linear system under amplitude and

rate control constraints.

In the first part of this chapter, a review of known methods of controllable region analysis

is given. The second part contains a description of the proposed computational algorithm,

which is based on the solution of a linear programming problem. In the third part examples

of the controllable region analysis for an aeroservoelastic airfoil system and to a reusable

launch vehicle are presented to illustrate the capabilities of the proposed algorithm.

2.1 Some theoretical properties of controllable region

Let us consider the following open-loop unstable continuous-time system:

ẋ(t) = Ax(t) +Bu(t) , (2.1)

where A ∈ Rn×n has eigenvalues with positive real parts, B ∈ Rn×m, x ∈ Rn and u ∈ U .

Here U ∈ Rm is a compact (i.e. overall bounded) set. It is additionally supposed that the

state vector x is fully observable and n > 1.

All eigenvalues λi, i = 1, ..., n of matrix A in (2.1) can be divided into stable (Re λi < 0),

neutral (Re λi = 0) and unstable (also called anti-stable) (Re λi > 0) groups. Here Re λi
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is the real part of λi.

While the stability of an equilibrium in a linear system is a global property, the stability

of an equilibrium in a nonlinear system is just a local characteristic. The unstable linear

system in (2.1) under any control law with constrained inputs becomes nonlinear and can

be stable only in a bounded region of the state-space, known as stability region or region

of attraction. The maximum attainable region of attraction coincides with the controllable

region, which is also called the asymptotically null controllable region (Formalsky, 1968;

Goman et al., 1996; Hu and Lin, 2001b). Theoretical investigation of controllable region

boundedness has been done in (Ma, 1991; Lee and Hedrick, 1995; Zhao and Jayasariya,

1995).

Note that a control function u(t) that satisfies only deflection constraints can be dis-

continuous. The controllable and stability regions in this case can be specified only in the

system state-space, because the reachability of the origin from any initial state does not

depend on initial values of control vector. In some cases a control function u(t) steering an

initial state from the controllable region to the origin can be of the bang-bang type (Hu and

Lin, 2001b; Formalsky, 1968), i.e. piecewise-constant and discontinuous. The possibility of

discontinuous control significantly simplifies the computation of the controllable region.

Rate constraints, imposed on control inputs, preserve continuity of the control function.

In this case the reachability of the origin from some initial states of the system depends on

the initial positions of actuators. This means that the controllable region of the open-loop

system and the stability region for the closed-loop system must be defined in the extended

state+control space.

We will first give some theoretical results for the region of first kind, i.e. considering

amplitude constraints only.

Definition 1 The controllable region C of the system (2.1) is the set of all points x ∈ Rn

such that for each initial condition x(0) = x the control function u(t) ∈ Uexists and the

solution of the controlled system asymptotically tends to origin:

C = {x ∈ Rn : x(0) = x, u(t) ∈ U,∀i = 1, n lim
t→∞

x(i)(t) = 0}.

It can be easily shown that the controllable region is convex.
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Theorem 1 The controllable region C is convex if U is convex.

Proof: The solution of linear differential equation (2.1) has the form:

x(t) = eAtx(0) +

t
∫

0

eA(t−τ)Bu(τ)dτ,

where eAt is the matrix exponential.

Suppose that the controllable region is not convex. In this case there always exist two

points x1(0) ∈ C and x2(0) ∈ C such that at least one point x3(0) /∈ C exists, where x3(0)

is taken from a line segment generated by these points. Since x1(0) ∈ C, x2(0) ∈ C control

functions u1(t) ∈ U, u2(t) ∈ U exist such that x1(t)→ 0, x2(t)→ 0 as t→∞.

Let us write x3(0) as a convex combination of x1(0) and x2(0):

x3(0) = λ1x1(0) + λ2x2(0), λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0.

Take the control function u3(t) as follows:

u3(t) = λ1u1(t) + λ2u2(t).

Note that u3(t) belongs to a line segment generated by u1(t) ∈ U and u2(t) ∈ U and

therefore u3(t) ∈ U if U is convex.

Now, it is easy to show that the solution x3(t) from an initial state x3(0) is the convex

combination of solutions x1(t) and x2(t):

x3(t) = eAt(λ1x1(0) + λ2x2(0)) +

t
∫

0

eA(t−τ)B(λ1u1(t) + λ2u2(t))dτ = λ1x1(t) + λ2x2(t).

From the convergence of x1(t), x2(t) to the origin we have:

lim
t→∞

x
(i)
3 (t) = lim

t→∞
(λ1x

(i)
1 (t) + λ2x

(i)
2 (t)) = λ1 lim

t→∞
x

(i)
1 (t) + λ2 lim

t→∞
x

(i)
2 (t) = 0,

that is, x3(0) ∈ C and this is contrary to our assumption of non-convexity of C.�

To reduce the dimension in the analysis and synthesis tasks, it is natural to take into

account only the subspace corresponding to the unstable and neutral eigenvalues, with

the possible inclusion of some stable eigenvalues which are in the neighbourhood of the

stability boundary. There are two popular state transformations that we can use for this
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purpose: the first one is based on the Schur decomposition (Castelan, da Silva Jr. and

Cury, 1996; Golub and Loan, 1986) of the system matrix A and the second one is based on

the block Jordan decomposition of the matrix A. We restrict our attention on the Schur

decomposition as the most robust and reliable, even in the case of multiple and defective

eigenvalues.

Let us suppose that n system matrix eigenvalues are arranged in a list in increasing order

of its real part with the first n−q desirable stable eigenvalues and the last q undesirable ones

(for example neutral, unstable and stable but with low degree of stability). The stable and

neutral eigenvalues are placed in the beginning of the undesirable part of the list. Consider

the following transformation of basis in (2.1):

x = [Q1|Q2]





s

z





where the matrix Q = [Q1|Q2] is orthogonal (QTQ = I) and such that the columns of Q1 ∈
Rn×(n−q) and Q2 ∈ Rn×q span the subspaces associated with the desirable and undesirable

eigenvalues, correspondingly. This matrix can be obtained from a Schur decomposition of

matrix A by reordering, if necessary, eigenvalues of its diagonal blocks (Golub and Loan,

1986) in accordance with the eigenvalue list formed.

In the new basis the open-loop system is represented by




ṡ(t)

ż(t)



 = QTAQ





s(t)

z(t)



 +QTBu(t) =





A11 A12

0 Az









s(t)

z(t)



 +





B1

Bz



u(t)

where the eigenvalues of matrices A11 and Az contain the desirable and undesirable ones,

correspondingly.

Note, that the dynamics of z(t) associated with the undesirable eigenvalues is decoupled

from s(t). Thus we can isolate the following open-loop reduced-order system:

ż(t) = Azz(t) +Bzu(t), (2.2)

where Az ∈ Rq×q, Bz ∈ Rq×m and z(t) = QT
2 x(t). If the state of system (2.2) is kept in its

equilibrium point with z(t) = 0 and u(t) = 0, it is trivial to show that s(t) asymptotically

tends to the origin and thus we need to stabilize only system (2.2).

The following very important property explains, why one cannot stabilize the unstable

system using bounded controls in the whole state-space.
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Theorem 2 Suppose that our linear system has only anti-stable eigenvalues and control

vector that is constrained. Then the controllable region C of the system is a bounded set:

sup
x∈C

||x||2 <∞.

Proof: The solution of linear differential equation (2.1) has the form:

x(t) = eAtx(0) +

t
∫

0

eA(t−τ)Bu(τ)dτ,

and from this equation with x(t) = 0 and t→∞ we have:

x(0) = −
∞

∫

0

e−AτBu(τ)dτ = −
m

∑

i=1

xi, xi =

∞
∫

0

e−Aτ biu
(i)(τ)dτ.

The last equation describes all the points x(0) ∈ C.

Now we have to prove that for any control function u(τ), ||x(0)||2 <∞. Clearly,

||x(0)||2 ≤
m

∑

i=1

||xi||2,

and it is enough to prove inequality ||xi||2 <∞.

Note that for the vector 2-norm the matrix 2-norm is defined for a matrix M ∈ Cn×n

as (Golub and Loan, 1986):

||M ||2 = sup
x 6=0

||Mx||2
||x||2

,

and ||M ||2||x||2 ≤ ||Mx||2.

||xi||2 = ||
∞
∫

0

e−Aτbiu
(i)(τ)dτ ||2 ≤

∞
∫

0

||e−Aτbiu
(i)(τ)||2dτ ≤

∞
∫

0

||e−Aτ ||2||biu(i)(τ)||2dτ

≤ ||biu(i)
max||2

∞
∫

0

||e−Aτ ||2dτ.

Let us recall the following inequality (Golub and Loan, 1986) for a matrix A ∈ Rn×n:

||eAτ ||2 ≤ eατMs(τ),

where α = max
1≤i≤n

{Re λi : λi ∈ λ(A)} (here λ(A) = {λ1, ..., λn} is the set of all eigenvalues

of A) and

Ms(τ) =

n−1
∑

k=0

||Nτ ||k2
k!

,
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here k! = 1 if k = 0. The matrix N in the above equation is computed from complex Schur

decomposition of matrix A:

QTAQ = D +N,

where Q ∈ Rn×n, QTQ = I, D = diag(λ1, ..., λn) ∈ Rn×n is the diagonal matrix with

eigenvalues of A on its diagonal and zeros in all other elements, and N ∈ Rn×n is the upper

triangular matrix.

Now we have to prove that
∞
∫

0

||e−Aτ ||2dτ <∞.

For an anti-stable matrix A, all eigenvalues of −A are stable and α < 0.

For n = 1, Ms(τ) = 1 and

∞
∫

0

||e−Aτ ||2dτ =

∞
∫

0

eατdτ = − 1

α
<∞.

In the case n > 1, we can split the integral as follows:

∞
∫

0

||e−Aτ ||2dτ =

1
∫

0

||e−Aτd||2τ +

∞
∫

1

||e−Aτ ||2dτ.

Note that for τ ≥ 1 and n ≥ 1,

Ms(τ) =

n−1
∑

k=0

||Nτ ||k2
k!

= 1 +

n−1
∑

k=1

||N ||k2
k!

τk ≥ 1 +

n−1
∑

k=1

||N ||k2
k!

.

Let us denote

β = 1 +
n−1
∑

k=1

||N ||k2
k!

,

then

Ms(τ) ≥ β,Ms(τ) ≥ 1, β ≥ 1.

It is easy to see that for α < 0,

eατMs(τ) ≤ eατβ,

and
∞
∫

1

||e−Aτd||2τ ≤
∞
∫

1

eατMs(τ)dτ ≤
∞

∫

1

eατβdτ = −e
αβ

αβ
<∞.

This completes the proof.�

If our system has not all but some unstable eigenvalues, this system has a subsystem

with the bounded controllable region in some subspace of Rn (obtained for example via the

Schur decomposition), and we cannot stabilize the system in the whole state-space.
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2.2 Controllable region analysis: known approaches

The controllable region of a linear system defined in (2.1) with only amplitude control

constraints has been studied by Formalsky (Formalsky, 1968), Goman et al. (Goman et al.,

1996; Goman and Demenkov, 2004b), Hu and Lin (Hu and Lin, 2001b) (in the latter work the

controllable region is called the asymptotically null controllable region). Several geometrical

properties of the controllable region have been revealed in these works and some methods

for explicit characterization of the controllable region have been proposed.

Computation of the controllable region C can be performed by reconstruction of its

boundary ∂C formed by an invariant manifold of system trajectories under the bang-bang

control (Goman et al., 1996; Hu and Lin, 2001b). It has been shown that trajectories

on ∂C satisfy Pontryagin’s minimum principle (Pontryagin, Boltyanskii, Gamkrelidze and

Mishchenko, 1962) and can contain unstable equilibrium points and closed orbits (Goman

et al., 1996; Hu and Lin, 2001b).

The boundaries of stability and controllable regions for a two-dimensional system with

only anti-stable eigenvalues and scalar limited control input have been analyzed in (Goman

et al., 1996) considering the bang-bang control. The geometric properties of the boundary

trajectories have been investigated using bifurcation analysis methods. Later similar results

have been independently obtained in (Hu and Lin, 2001b) with the rigorous proof of the

boundary trajectories properties.

Every continuous linear system can be approximated with an arbitrary precision by a

discrete-time one. For the linear discrete-time system it is then possible to approximate

its controllable region with an arbitrary precision by the set of linear inequalities using

numeric techniques proposed in (Gutman and Cwikel, 1987; Keerthi and Gilbert, 1987;

Lasserre, 1993; Mayne and Schroeder, 1997). The methods of approximation are mainly

based on the Fourier-Motzkin elimination or on the convex hull computing techniques.

Since we use the discretization of the system in our own algorithm, we briefly consider

these polyhedral methods below.
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2.2.1 Polyhedral methods of controllable region computation

We will focus our attention on the anti-stable subsystem (i.e. having only anti-stable open-

loop eigenvalues) of our linear unstable system. We suppose that system has no neutral

subspace.

For simplicity of notations, we can write this subsystem in the same form:

ẋ(t) = Ax(t) +Bu(t), (2.3)

where x ∈ Rn and u ∈ Rm.

Let the control u ∈ U be constrained as

|u(i)| ≤ u(i)
max. (2.4)

As we know from the previous section, the controllable region C in this case is convex

and bounded set. The idea is to approximate C by linear inequality system, because any

bounded and convex set can be approximated by linear inequalities with arbitrary precision.

We restrict our attention to the set of all piecewise constant control functions of the

form:

u(i)(t) = u
(i)
k , t ∈ [k∆T, (k + 1)∆T ], (2.5)

where k is integer value, started from 0. Here and below we will denote as uk and xk

the values of control and state vector at the sample time t = k∆T . It is clear that if

|u(i)
k | ≤ u

(i)
max for every k, then constraints (2.4) hold for all the time t.

One can form an augmented system on the sampling time interval:

ψ̇(t) = Mψ(t),M =





A B

0 0



 , ψ =





x

u



 ,

with initial condition vector of ψk = [xk;uk]. Then it is easy to compute the matrix

exponential Φ = eM∆T such that ψk+1 = Φψk. This matrix Φ has the following structure:

Φ =





F G

0 1



 .

The submatrices F and G of matrix Φ, which correspond to the state vector xk and to the

control input uk, form the state-space representation of the discrete-time system, which is
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derived from the continuous-time one:

xk+1 = Fxk +Guk (2.6)

with the constraint

|uk| ≤ umax. (2.7)

It is important to note that the origin of system (2.6) corresponds to the equilibrium

point of system (2.3) with x(t) = 0 and u(t) = 0. As ∆T approaches zero, the behaviours

of two systems converge. So, we focus our attention on system (2.6), trying to approximate

the controllable region of system (2.3) by the controllable region of (2.6).

2.2.2 Construction of null-controllable sets

Definition 2 A k-step null-controllable set C(k) with respect to the system (2.6) is the set

of all initial states, from which it is possible to reach the origin by applying any k-length

control sequence constrained by (2.7).

Note that an isochrone for a continuous-time system is defined as the surface of a null-

controllable set for the discrete-time system. The surface of a k-step null-controllable set

corresponds to the isochrone for a continuous time of k∆T .

Definition 3 A one-step controllable set to a region with respect to the system (2.6) is the

set of all initial states, from which it is possible to reach the region in one step by applying

any control constrained by (2.7).

The focus of this section is the algorithm for constructing the null-controllable set via

a one-step controllable set to a region, a method first introduced in (Keerthi and Gilbert,

1987).

Let us consider a polyhedral region C0 in the state-space, defined by the set of linear

inequalities of the form:

C0 = {x ∈ Rn|aix ≤ ci, i = 1, N}. (2.8)

with the given row vector ai and scalars ci.
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Given a set of the form (2.8), the one-step controllable set to C0 is the projection of a

set C∗ onto a subspace, which is orthogonal to the control variable, where

C∗ = {[x;u] ∈ R(n+m) : u ∈ U,Fx+Gu ∈ C0},

and this C∗ is given by a linear inequality set of the form

aiFx+ aiGu ≤ ci, i = 1, N ;

−umax ≤ u ≤ umax.

The projection C1 of C∗ is in the same form as (2.8) and it can be computed via

the Fourier-Motzkin elimination method, i.e. by eliminating from C∗ the control variable.

Then, the set C1 defines the polyhedron in the state-space, containing all of the points from

which it is possible to drive the system in one step into C0.

The initial set has the form of any linear inequality set, containing the origin only. Then,

after applying the elimination method, we have a 1-step null-controllable set. But, the one-

step controllable set to a 1-step null-controllable set is exactly the 2-step null-controllable

set. Proceeding in the same way, we can construct a sequence of nested polyhedrons.

Let us denote as L(·) the procedure of a one-step controllable set construction. Then

any k-step null-controllable set is defined as

C(k) = L(C(k − 1)).

It is known that in unstable subspace the controllable region is convex and bounded.

Because of this it is possible to stop this process after convergence of i-step null-controllable

sets to the boundary of the controllable region (see Fig. 2.1).

Now we briefly discuss the elimination method, proposed in (Keerthi and Gilbert, 1987)

for controllable regions computation.

2.2.3 Fourier-Motzkin method

The Fourier-Motzkin elimination method (FME) can be used to eliminate variables in a

linear inequality system, in a step by step manner, by constructing a series of inequalities

(see (Dantzig, 1966)). This method may be regarded as an extension of the Gaussian

elimination method for a system of linear equations. In (Dantzig, 1966) the FME is used to
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Figure 2.1: Convergence of null-controllable sets

discuss the linear programming (LP) problems, and the LP example is investigated. There

are many applications of the FME (for examples, see (Chandru, 1993; Duffin, 1974; Kohler,

1967)).

A brief method description is as follows.

Suppose that we have a system of linear inequalities of the form:

aix+ biu ≤ ci, i = 1, N, (2.9)

where ai is row vector, x denotes column vector of variables and u denotes scalar variable,

which we would like to eliminate from the system. Let us denote as I+ the set of all i

indices corresponding to bi > 0, and in the same way I− denotes the similar set for bi < 0.

Zero coefficient indexes are collected in the set I0.

Let us divide these inequalities into three groups defined by I+,I− and I0 sets. Consider

the groups corresponding to I+ and I− in slightly modified form:

−ai

bi
x+

ci
bi
≤ u, i ∈ I−; u ≤ −aj

bj
x+

cj
bj
, j ∈ I+

For eliminating the variable u let us sequentially replace u in each inequality from I− by
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right side of all inequalities from I+. Then the projection of the polyhedron onto subspace

of x defined by (2.9) is given by

(

aj

bj
− ai

bi

)

x ≤
(

cj
bj
− ci
bi

)

, j ∈ I+, i ∈ I−;

alx ≤ cl, l ∈ I0.

This method may be very time consuming and memory crucial due to producing a grow-

ing number of hyperplanes. However, most of them can be excluded from the description

by using the linear programming. Suppose that we have linear inequality system

aix ≤ ci, i = 1, N

and we have to check the j-th inequality for redundancy. Consider the following linear

programming task:

aj → max,

aix ≤ ci, i = 1, N, i 6= j.

Then, compare the solution of this problem with cj . The solution greater than cj

indicates non-redundant inequality.

2.2.4 Formalsky’s method

An optimization-based method for explicit description of the controllable region boundary

has been first proposed by A.M. Formalsky in (Formalsky, 1968), and then applied to the

investigation of linear unstable systems in his book (Formalsky, 1974). To the author’s

knowledge, it was the first book in the world that systematically addresses problems as-

sociated with limited controllable and stability regions. Recently, the method has been

rediscovered in (Hu, Lin and Qiu, 2002; Hu and Lin, 2001b) for the case of continuous

systems. In (Hu, Miller and Qiu, 2002) a counterpart for discrete-time systems has been

outlined.

Let us consider the anti-stable subsystem under amplitude control constraints. The main

idea of the method is based on the maximization of a scalar linear function f(z) = dT z

(d ∈ Rn, d 6= 0) over all points z from the controllable region. The maximization process is

performed along the specified direction d, so that the final solution coincides with the point

zd on the boundary of the controllable region. Since the controllable region for anti-stable
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Figure 2.2: Formalsky’s method

system with only amplitude constraints is strictly convex and overall bounded, this solution

always exists and it is unique. The vector d defines supporting hyperplane at this boundary

point zd. Also we suppose for simplicity that u
(i)
max = −u(i)

min.

To compute the controllable region boundary, let us consider a null-controllable set

C(T ) of all points in the state-space, from which the system can be moved to the origin

at the presence of control constraints in a time less than or equal to T . Note that the

controllability region boundary corresponds to the boundary of C(∞).

The points in a null-controllable set C(T ) can be expressed explicitly as initial points

z(0) for the Cauchy problem through the applied control function u(t) on the time interval

[0, T ]. The general solution of system (3.1):

z(T ) = eAzT z(0) +

T
∫

0

eAz(T−t)Bzu(t)dt, z(T ) = 0

transporting the system to the origin can be transformed as:

C(T ) = {z|z = −
T

∫

0

e−AztBzu(t)dt, u(t) ∈ U}.

The optimization task for maximizing a linear function dT z on C(T ) has only one
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solution zd:

zd = arg max
z∈C(T )

dT z = −
m

∑

i=1

T
∫

0

e−Aztbziu
(i)
maxsign(−dT e−Aztbzi)dt, (2.10)

where bzi is a column of matrix Bz.

For two-dimensional systems, computing boundary points zdl
of a null-controllable set

C(T ) for a number of different directions dl

dl = [cosϕl, sinϕl]
T ; ϕl =

2πk

N
, l = 1, N

we can approximate C(T ) rather accurately. For systems of higher dimension, the proposed

method requires generation of too many direction vectors, but it is still useful as an idea

to discover properties of controllable region boundary.

Considering a sequence of Ti = Ti−1 + ∆T approaching infinity Ti → ∞ we will have

C(Ti)→ C. This convergence process can be stopped if

max
l
||zdl

(Ti)− zdl
(Ti−1)||2 ≤ ǫ,

where ∆T is a small time increment and ǫ is required accuracy.

2.3 Computation of controllable region slices

In the sequel, we will slightly modify the definition of controllable region so that we can use

rate constraints as well in our derivation of the computational algorithm. Basically, it holds

the same properties as the region for the case of only amplitude constraints. Convexity can

be demonstrated in the same way as we have done it in Theorem 1.

We will study the effect on system dynamics of the following constraints:

umin ≤ u ≤ umax, (2.11a)

u̇min ≤ u̇ ≤ u̇max. (2.11b)

Here the inequalities are treated componentwise.

We say that an extended state [x0;u0] is asymptotically null controllable if there exists

a control function u(t) that satisfies constraints in (2.11) and generates the state trajectory
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with initial conditions x(0) = x0 and u(0) = u0, so that the state and control asymptotically

approach the origin as t→∞:

lim
t→∞

x(t) = 0, lim
t→∞

u(t) = 0. (2.12)

We will call the set of all extended states [x0;u0] ∈ Rn+m that are asymptotically null

controllable again the controllable region for the system and denote it by C ∈ Rn+m.

2.3.1 Key idea
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Figure 2.3: The key idea of the algorithm : maximization of the linear function over the controllable

region.

Two unit vectors ei and ej directed along the i-th and j-th axes of coordinate system

in Rn+m space form a basis in the slice plane SL(i, j). Any point in this plane can be

expressed as a linear combination of ei and ej :

SL(i, j) = {[x0;u0] ∈ Rn+m so that [x0;u0] = ξ1ei + ξ2ej}, (2.13)

where ξ1,ξ2 are scalar variables.
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Then the cross-section Ξ(i, j) of the controllable region C by plane SL(i, j) in coordi-

nates ξ1 and ξ2 is defined as:

Ξ(i, j) = {ξ ∈ R2 so that [x0;u0] ∈ SL(i, j) ∩ C}, (2.14)

where ξ = [ξ1, ξ2]
T .

From the convexity of C it follows that Ξ(i, j) is also a convex set.

The key idea of the algorithm results from the observation that each point on the bound-

ary of the controllable region cross-section is a solution of the optimization task, in which a

linear function is maximized over the set of points belonging both to the controllable region

and the slice plane. This idea is clearly a modification of the explicit method described

above, but instead of the explicit formula the solution is based on a method of numerical

optimization.

To approximate the boundary of the controllable region let us consider a set of vectors

dl in the plane SL(i, j) uniformly distributed from the centre in different directions (see

Fig. 2.3, top plot):

dl = [ cosϕl, sinϕl ]T , ϕl = 2πl/M, l = 1, ...,M. (2.15)

Then the points ξ(l) belonging to the boundary of the controllable region in the slice SL(i, j)

will be defined as the solutions of the following optimization task (see Fig. 2.3, bottom plot):

ξ(l) = arg max
ξ ∈ Ξ(i, j)

ξ ≥ ξmin

ξ ≤ ξmax

(dT
l ξ). (2.16)

The additional constraints

ξmin ≤ ξ ≤ ξmax (2.17)

are introduced in (2.16) to allow the computation of unbounded controllable region slices,

for example, when matrix A has only one anti-stable eigenvalue.
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The optimization task given in (2.16) leads us to the following variational equations:

dT
l ξ → max (2.18a)

[x0;u0] = ξ1ei + ξ2ej (2.18b)

x0 = −
T

∫

0

e−AτBu(τ)dτ (2.18c)

u(τ) = u0 +

τ
∫

0

u̇(t)dt (2.18d)

umin ≤ u(τ) ≤ umax (2.18e)

u̇min ≤ u̇(t) ≤ u̇max (2.18f)

where vector ξ and function u̇(t) are to be determined and T is sufficiently large. The

solution of the formulated optimization task in continuous time can be obtained using

a version of Pontryagin’s minimum principle that takes proper account of both control

and state constraints. However, due to computational difficulties in the application of the

minimum principle, in this chapter we use a different method that is based on a discrete

approximation of the formulated problem.

2.3.2 Discretization

To solve numerically the optimization task defined by (2.16), the control function u(t)

is parameterized with sampling time ∆T and the system defined in (2.1) is treated as a

discrete one. In this case the powerful linear programming methods can be applied to solve

the optimization problem.

Let continuous piecewise-linear control function be in the following form:

u(t) = uk + u̇k(t− k∆T ) for t ∈ [k∆T, (k + 1)∆T ]. (2.19)

Here k ≥ 0 is an integer value, uk ∈ Rm denotes the control vector and u̇k ∈ Rm denotes

the vector of control inputs rates at time instant t = k∆T .

It is clear that if

umin ≤ uk ≤ umax, (2.20a)

u̇min ≤ u̇k ≤ u̇max, (2.20b)
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Figure 2.4: Parameterization of the control function

for all k, then both amplitude and rate control constraints in (2.11) hold for all t (see Fig.

2.4).

It is possible to express the state and control vectors at time instant t = (k + 1)∆T as

functions of xk, uk and u̇k using the matrix exponential. As a result, the following discrete

system is constructed:

xk+1 = Fxk +Guk +Hu̇k, (2.21a)

uk+1 = uk + u̇k∆T. (2.21b)

where F = eA∆T ∈ Rn×n, G =
∫ ∆T

0 eA(∆T−τ)Bdτ ∈ Rn×m, H =
∫ ∆T

0 eA(∆T−τ)Bτdτ ∈
Rn×m and xk is the system state at the time instant t = k∆T .

2.3.3 Predictive equations for discrete-time system

The controllable or null controllable region for the discrete system in (2.21) can be defined

similarly to the continuous-time system case. Namely, C is the set of all extended states

[x0;u0] that can be driven to the origin by the control sequence constrained by (2.20).

The null-controllable set at step N , denoted as C(N), is the set of extended states

[x0;u0] that can be steered to the origin with admissible control in N steps. It is clear by

definition that the region C(N) is a subset of the null-controllable set at time N∆T for the

continuous-time system.

As for the continuous system, all eigenvalues λi, i = 1, ..., n of matrix F in (2.21) can

be divided into stable ( |λi| < 1), neutral (|λi| = 1) and anti-stable (|λi| > 1) groups. Here

|λi| is the complex modulus of λi.
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The controllable region for the continuous-time system in (2.1) can be approximated by

the null-controllable set at step N for its discrete-time counterpart in (2.21) with sufficiently

small sampling time ∆T and large N . The number of steps N specifies the number of

unknown variables in an optimization procedure. For better approximation it is necessary

to take N as large as possible.

In the context of discrete-time systems, our optimization problem (maximization of the

linear function over all possible future trajectories within some time horizon) is a typical

formulation of the predictive control approach (Maciejowski, 2002). Our method of solution

is closely connected to other known methods of predictive control for constrained linear

systems.

The N -step solution for the discrete-time system in (2.21) has the following form:

xN =FNx0 +

N−1
∑

k=0

FN−k−1(Guk +Hu̇k), (2.22a)

uN =u0 + ∆T

N−1
∑

k=0

u̇k, (2.22b)

where x0 is the initial state vector and u0 is the initial control vector for the discrete system.

The following combination of predictive equations (2.22) with control constraints (2.20)

and terminal conditions (xN = 0, uN = 0) describes all the initial states [x0;u0] ∈ C(N)

for which there exists an admissible sequence of control input rates u̇0, ..., u̇N−1:

FNx0 +

N−1
∑

k=0

FN−k−1(Guk +Hu̇k) = 0, (2.23a)

uk = u0 + ∆T

k−1
∑

r=0

u̇r, k = 1, N, (2.23b)

umin ≤ uk ≤ umax, u̇min ≤ u̇k ≤ u̇max, k = 0, N − 1, (2.23c)

uN = 0. (2.23d)

Unfortunately, (2.23a) is ill-conditioned if matrix F has anti-stable eigenvalues (Rossiter,

Kouvaritakis and Rice, 1998). The computational difficulties in this case follow from the

computation of matrix F k leading to very large errors as k increases.

When matrix F has no stable or neutral eigenvalues (2.23a) can be multiplied by F−N
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and made well-conditioned:

x0 = −
N−1
∑

k=0

F−k−1(Guk +Hu̇k), (2.24)

because matrix F−k in this case has no anti-stable eigenvalues. However when matrix F

has both stable and anti-stable eigenvalues matrix F−k also has both types of eigenvalues

and to improve numerical conditioning via matrix inversion is not further possible.

In (Rossiter et al., 1998) a prestabilization procedure has been proposed to avoid the

onset of very large errors in matrices of the form F k. In this chapter a method based on

system decomposition is implemented to avoid the numerical ill-conditioning problem.

2.3.4 Decomposition of discrete-time system

We will use again the Schur decomposition for matrix F . Consider the following transfor-

mation of the state-space basis in (2.21):

x = [Qζ |Qz]





ζ

z



 (2.25)

so that [Qζ |Qz]
T [Qζ |Qz] = I. The columns of Qζ ∈ Rn×(n−q) span the subspace Vζ associ-

ated with (n− q) stable and neutral eigenvalues, while the columns of Qz ∈ Rn×q span the

subspace Vz, which is a complementary subspace of Vζ . Note that Vz ∪ Vζ = Rn and Vζ is

an F -invariant subspace, i.e. from x ∈ Vζ it follows that Fx ∈ Vζ .

In the new basis the open-loop system in (2.21) is represented as




ζk+1

zk+1



 = QTFQ





ζk

zk



 +QTGuk +QTHu̇k =





QT
ζ FQζ QT

ζ FQz

0q×(n−q) QT
z FQz









ζk

zk



 +





QT
ζ G

QT
z G



uk +





QT
ζ H

QT
z H



 u̇k,

(2.26)

where matrix QT
ζ FQζ has only stable and neutral eigenvalues, matrix QT

z FQz has only anti-

stable eigenvalues and together these eigenvalues form the whole spectrum of eigenvalues

for matrix F .

Note that zk dynamics associated with q anti-stable eigenvalues is decoupled from ζk

and described by the following open-loop subsystem:

zk+1 = Fzzk +Gzuk +Hzu̇k, (2.27)
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where Fz = QT
z FQz ∈ Rq×q, Gz = QT

z G ∈ Rq×m, Hz = QT
z H ∈ Rq×m and zk = QT

z xk.

In a similar way the transformation of the state-space basis can decouple the dynamics

associated with stable and neutral eigenvalues. Consider the following transformation of

the basis in (2.21):

x = [Qw|Qs]





w

s



 (2.28)

so that [Qw|Qs]
T [Qw|Qs] = I. The columns of Qw ∈ Rn×q span the subspace Vw associated

with q anti-stable eigenvalues and the columns of Qs ∈ Rn×(n−q) span the complementary

subspace Vs of Vw. Obviously, Vw ∪ Vs = Rn and Vw is an F -invariant subspace.

Dynamics associated with the stable and neutral eigenvalues sk can be isolated similar

to anti-stable eigenvalues case (see (2.27)):

sk+1 = Fssk +Gsuk +Hsu̇k, (2.29)

where Fs = QT
s FQs ∈ R(n−q)×(n−q), Gs = QT

s G ∈ R(n−q)×m, Hs = QT
s H ∈ R(n−q)×m

and sk = QT
s xk.
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Figure 2.5: The idea of numerically robust prediction

2.3.5 Numerically robust solution via linear programming

The decomposed subsystems for anti-stable and stable/neutral subspaces (see (2.27) and

(2.29)) allow the construction of well conditioned predictive equations for z and s, respec-
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tively:

F−N
z zN = z0 +

N−1
∑

k=0

F−k−1
z (Gzuk +Hzu̇k), (2.30a)

sN = FN
s s0 +

N−1
∑

k=0

FN−k−1
s (Gsuk +Hsu̇k). (2.30b)

The underlying idea here (illustrated in Fig. 2.5) is that matrices F−k
z and F k

s are well-

conditioned, because both F−1
z and Fs do not contain anti-stable eigenvalues and large

errors in F−k
z and F k

s do not appear.

Note that the evolution of the full state vector xk is completely defined by the evolution

of the subsystems states sk and zk.

The ultimate goal of the computational algorithm is to maximize the following scalar

function for every given vector dl ∈ R2 in the slice plane SL(i, j):

dT
l ξ → max , (2.31)

so that points [x0;u0] = ξ1ei + ξ2ej belong to the controllable region C(N). The resulting

vector ξ(l) will define a point on the boundary of the controllable region (see Fig. 2.3).

To specify this optimization problem we need to combine the well-conditioned predictive

equations (2.30) with terminal conditions sN = 0, zN = 0, add initial conditions s0 =

QT
s x0, z0 = QT

z x0, control constraints (2.20) and confine the allowable area in the plane

SL(i, j) to consider unbounded controllable regions. All these form the following set of

linear constraints:

QT
z (ξ1exi + ξ2exj) = −

N−1
∑

k=0

F−k−1
z (Gzuk +Hzu̇k), (2.32a)

FN
s QT

s (ξ1exi + ξ2exj) = −
N−1
∑

k=0

FN−k−1
s (Gsuk +Hsu̇k), (2.32b)

uk = u0 + ∆T
k−1
∑

r=0

u̇r, k = 1, N, (2.32c)

u0 = ξ1eui + ξ2euj , uN = 0, (2.32d)

umin ≤ uk ≤ umax, u̇min ≤ u̇k ≤ u̇max, k = 0, N − 1, (2.32e)

ξmin ≤ ξ ≤ ξmax. (2.32f)
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where unit vector ei ∈ Rn+m is resolved on the state (exi ∈ Rn) and the control (eui ∈ Rm)

vector components: ei = [exi; eui].

The unknown variables in the set of linear constraints in (2.32) are the coordinate vector

in the slice plane ξ = [ξ1, ξ2]
T and the control rate vectors u̇k, k = 0, N − 1.

The optimization problem formulated above can be effectively solved by a linear pro-

gramming method.

2.3.6 Computational issues

All computational results presented in this chapter have been obtained using MATLAB

6.5 on a personal computer Pentium IV 1.6GHz. For example, the computation of the

boundary of the controllable region for an eight-dimensional dynamical system considered as

an example in the next section takes 20 seconds when N = 100 (only amplitude constraints

have been imposed). For the Schur decomposition of the discrete systems the function

blkrsch from the Robust Control Toolbox (MathWorks, 2001b) has been used. The linear

programming has been performed by the function linprog (large-scale algorithm) from the

Optimization Toolbox (MathWorks, 2001a).

2.4 Numerical examples

Example 1: controllable regions beyond the flutter boundary

The active flutter suppression problem has been intensively investigated with implementa-

tion of different control design techniques (Friedmann, 1999; Waszak, 1998; Waszak, 2001;

Mukhopadhyay, 2000; Frampton and Clark, 2000; Scott and Pado, 2000; Ko, Strganac and

Kurdila, 1998; Block and Strganac, 1998; Mukhopadhyay, 2003). Different linear and non-

linear controllers applied for flutter suppression improve system’s dynamic responses and

extend flutter boundary. However, these approaches have difficulty when realistic con-

straints are imposed on the maximum rate and deflection of the control surfaces used for

flutter control. It is indicated (Friedmann, 1999) that there exists some limit in terms of

dynamic pressure or flow speed for possible delay of the flutter onset in the closed-loop

system.
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This fact can be related to the size of the controllable region for the open-loop system

beyond the flutter boundary. Due to limited authority of control effectors the size of the

controllable region decreases with increase of system instability and can become critical

against the level of external disturbances. This view on the flutter suppression problem

was pioneered in (Goman and Demenkov, 2004a) and then addressed by (Applebaum and

Ben-Asher, 2007).

A more deep insight into the active flutter suppression problem will require a detailed

analysis of the controllable regions for the open-loop system and regions of attraction for

the closed-loop system. Such analysis will help to improve the control laws design and

provide the realistic level of robustness for an active control flutter suppression system.
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Figure 2.6: Sketch of the aeroservoelastic airfoil system and the root-loci for different reduced

frequencies in pitch.

To elucidate the proposed approach we consider hereafter an airfoil with trailing-edge

flap, which can be treated as a typical wing section (see Fig.2.6).

The dynamic equations of this aeroservoelastic system can be represented in the follow-
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ing matrix form(Goman and Demenkov, 2004a):











ma shθ shδ

shδ Iθ sθδ

shδ sθδ Iδ





















ḧ

θ̈

δ̈











+











kh 0 0

0 kθ 0

0 0 kδ





















h

θ

δ











=











0

0

kδ











δc +











ch(ρU2/2)S

cm(ρU2/2)Sc̄

cδ(ρU
2/2)Sc̄











,

(2.33)

where the non-dimensional aerodynamic coefficients for the normal force ch, the pitch mo-

ment cm and the flap hinge moment cδ are expressed as linear functions of θ̈, θ̇, θ, ḧ, θ̇, h,

δ̈, δ̇, δ and unsteady aerodynamic contribution to the normal force coefficient cw, generated

by trailing edge vortex wake (Goman and Demenkov, 2004a).

Here Iθ, Iδ - the generalized masses of the pitch and flap dynamic modes, kh, kθ, kδ - the

structural stiffness coefficients in plunge, pitch and flap deflections, ma - the generalized

mass of the plunge dynamic mode, S - the wing area, shθ, shδ, sθδ - the inertial coupling

between the generalized coordinates, V - the flow speed, ρ - the air density.

The unsteady aerodynamic term cw is replaced with a sum of two dynamic variables

x7 and x8, governed by the first order differential equations with characteristic time scales

identified from approximation of the Theodorsen transfer function (Goman and Demenkov,

2004a).

The system (2.33) in its nondimensional form is supplemented with two first order un-

steady aerodynamic equations. The final eight-dimensional dynamic system is represented

in the state-space form given in (2.1) with the state vector x = [h̄, ˙̄h, θ, θ̇, δ, δ̇, x7, x8]
T ,

where h̄ = h/c̄. Here h̄, ˙̄h - the nondimensional plunge displacement and its reduced time

derivative, θ, θ̇ - the pitch angle and its reduced time derivative, δ, δ̇ - the trailing-edge flap

deflection and its reduced time derivative. The reduced natural frequencies of the system

in the pitch, plunge and flap modes are specified in Table 1.

Matrices A with their eigenvalues λ and matrices B of the linearized aeroservoelastic

airfoil system (2.1) are presented below for four different operational conditions beyond the

flutter boundary ωθ = ωθfl
.

1) ωθ = 0.9ωθfl
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A =









































0 1.0000 0 0 0 0 ...

-0.0849 -0.0167 -0.0105 0.0095 0.0186 0.0009 ...

0 0 0 1.0000 0 0 ...

-0.1416 -0.0387 -0.1820 -0.0147 1.8038 -0.0034 ...

0 0 0 0 0 1.0000 ...

0.0351 0.0706 0.7735 0.1260 -17.4331 0.0009 ...

0 -1.1944 1.1944 0.5375 0.6567 0.0888 ...

0 -0.2932 0.2932 0.1319 0.1612 0.0218 ...

0 0.

0.0053 0.0053

0 0.

0.0123 0.0123

0 0.

-0.0225 -0.0225

-0.8598 0.

0 -0.1673









































B =









































0

-0.0146

0

-1.8250

0

17.5566

0

0









































λ =























-0.0057 ± 4.1852i

-0.0351 ± 0.3166i

0.0128 ± 0.2722i

-0.1563

-0.8453























2) ωθ = 0.67ωθfl

A =









































0 1.0000 0 0 0 0 ...

-0.0457 -0.0167 0.0021 0.0095 0.0118 0.0009 ...

0 0 0 1.0000 0 0 ...

-0.0762 -0.0387 -0.0800 -0.0147 0.9603 -0.0034 ...

0 0 0 0 0 1.0000 ...

0.0189 0.0706 0.3834 0.1260 -9.3181 0.0009 ...

0 -1.1944 1.1944 0.5375 0.6567 0.0888 ...

0 -0.2932 0.2932 0.1319 0.1612 0.0218 ...

0 0.

0.0053 0.0053

0 0.

0.0123 0.0123

0 0.

-0.0225 -0.0225

-0.8598 0.

0 -0.1673









































B =









































0

-0.0079

0

-0.9814

0

9.4415

0

0









































λ =























-0.0053 ± 3.0595i

0.0632 ± 0.1944i

-0.0935 ± 0.2096i

-0.1420

-0.8442























3) ωθ = 0.42ωθfl
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A =









































0 1.0000 0 0 0 0 ...

-0.0185 -0.0167 0.0108 0.0095 0.0071 0.0009 ...

0 0 0 1.0000 0 0 ...

-0.0308 -0.0387 -0.0094 -0.0147 0.3763 -0.0034 ...

0 0 0 0 0 1.0000 ...

0.0077 0.0706 0.1133 0.1260 -3.7000 0.0009 ...

0 -1.1944 1.1944 0.5375 0.6567 0.0888 ...

0 -0.2932 0.2932 0.1319 0.1612 0.0218 ...

0 0.

0.0053 0.0053

0 0.

0.0123 0.0123

0 0.

-0.0225 -0.0225

-0.8598 0.

0 -0.1673









































B =









































0

-0.0032

0

-0.3974

0

3.8234

0

0









































λ =























-0.0043 ± 1.9276i

0.0842 ± 0.0865i

-0.1531 ± 0.1154i

-0.0665

-0.8445























4) ωθ = 0.3ωθfl

A =









































0 1.0000 0 0 0 0 ...

-0.0094 -0.0167 0.0137 0.0095 0.0056 0.0009 ...

0 0 0 1.0000 0 0 ...

-0.0157 -0.0387 0.0142 -0.0147 0.1816 -0.0034 ...

0 0 0 0 0 1.0000 ...

0.0039 0.0706 0.0232 0.1260 -1.8273 0.0009 ...

0 -1.1944 1.1944 0.5375 0.6567 0.0888 ...
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The natural frequency in pitch ωθ is inversely proportional to flow speed as shown in
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Figure 2.7: Slices of the controllable regions computed for the flutter range of ωθ under deflection

limit |δc| ≤ 0.1 rad.

Table 1. The flap mode natural frequency ωδ in the case considered is much higher than

the natural frequency ωθ and the plunge mode natural frequency ωh is approximately of

the same order (see Table 1).

Table 1. Aeroelastic system parameters

ωθ =
√

kθ/ma c̄/(2V ), ωθfl
= 0.33

ωh = 0.8ωθ, ωδ = 10ωθ

The root-locus of the aeroservoelastic open-loop system for various values of the reduced

frequency ωθ is shown in Fig.2.6 (bottom plot). The plunge mode eigenvalues become

unstable at ωθ ≤ ωθfl and their real parts increase with decrease of ωθ (or increase of flow

speed U). At the same time the pitch mode eigenvalues become more stable.
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The numerical algorithm outlined in the previous section has been applied for computa-

tion of the controllable regions of an aeroservoelastic airfoil system within the flutter range

at ωθ ≤ ωθfl.

Fig. 2.7 shows the computed two-dimensional slices of the multidimensional controllable

regions in the planes ( ˙̄h, h̄) and (θ̇, θ) (note that all other state variables are equal to zero).

Only deflection constraint |δc| ≤ 0.1 rad has been imposed in this example.
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Figure 2.8: Controllable region slices at ωθ = 0.67ωθfl for different rate limits (top plot) and the

area of these slices versus the rate limit (bottom plot). The deflection limit |δc| ≤ 0.1 rad.

At the flutter boundary ωθ = ωθfl the system is still controllable in the whole state-

space. However, as soon as the operational parameter crosses the linear flutter boundary

and the level of linear system instability increases the controllable region decreases signifi-

cantly.
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First, the controllable regions have the elliptical cross-sections in both planes. When

the imaginary part of anti-stable eigenvalues reduces below ≈ 0.08 the controllable regions

are stretched into a narrow strip. The length of these strip regions increases when two

eigenvalues of the anti-stable subsystem become real.

The size of the controllable region slice, for example, at ωθ = 0.67ωθfl allows the maxi-

mum disturbances in pitch angle |θ| ≤ 0.1 rad and in nondimensional plunge displacement

|h̄| ≤ 0.03. It means that if external disturbances, such as the atmospheric turbulence or

wind gust, lead to higher level of perturbations there is no possibility to keep the system

stable using any controller.

Note that the rate constraint produces additional reduction in the controllable region

size. In Fig. 2.8 (top plot) the cross-sections of the controllable region are presented for

different deflection rate limits.

The area of the controllable region cross-sections clearly tends to zero as the rate limit

decreases significantly. At |δ̇c| ≥ 0.05 rad the cross-section area approaches the size de-

fined only by deflection limit constraints. So the computation of the controllable region

as a function of the deflection and rate limits can be useful for specification of important

requirements for actuator characteristics (see Fig. 2.8, bottom plot).

The stability region of the closed-loop system is normally less than the open-loop system

controllable region. Only the “stability optimal” controller can enlarge the stability region

up to the controllable region size (Goman et al., 1996; Hu and Lin, 2001b).

As an example, Fig.2.9 presents comparisons of the open-loop controllable region and

the closed-loop stability region slices for the linear system at operational point ωθ = 0.67ωθfl

with two different controllers. In both cases the applied feedback is in the form of linear

state control law, supplemented with simple saturation function:

δc(t) = sat(Kx) (2.34)

where K ∈ R1×n,

sat(u) =



















umax, if u > umax;

u, if umin ≤ u ≤ umax;

umin, if u < umin;

(2.35)

and umax = −umin = 0.1 rad.
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Figure 2.9: Comparison of the controllable region at ωθ = 0.67ωθfl with the regions of attraction

for the closed-loop system: slices for the pole placement controller (top plot) and for the linear-

quadratic controller (bottom plot). The deflection limit |δc| ≤ 0.1 rad.

In the first case, the feedback gain K is selected for the pole placement controller, which

transforms the unstable complex pair 0.0632 ± 0.1994i to the stable one −0.12 ± 0.4i (see

Fig.2.9, top plot). As one can see the size of the closed-loop system stability region slice

in this case is approximately two times smaller than the size of the open-loop controllable

region slice.

In the second case the system is closed by the linear-quadratic (LQ) controller, where

feedback coefficient vector K was obtained as the solution for the problem of minimization

of the performance index J =
∫ ∞
0 (xTx + uTu)dt. In this case the closed-loop system

stability region slice is very close to the open-loop controllable region slice.
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Example 2: controllable regions for the X-33 vehicle

Another example of the constrained stabilization problem is connected with unstable lat-

eral/directional dynamics of the X-33 vehicle (Burken, Lu, Wu and Bahm, 2001) at critical

conditions during the entry flight: altitude 29624 m, Mach number 3.13 with a trim angle

of attack α = 0.109 rad and zero trim sideslip and bank angles.

The eight control surfaces can operate independently and their perturbations from the

trim values form the control vector for the linearized system in (2.1):

u = [δrevi, δlevi, δrbf , δlbf , δrvr, δlvr, δrevo, δlevo]
T .

Here δrevi, δlevi - right and left inboard elevons deflections, δrevo, δlevo - right and left

outboard elevons deflections, δrbf , δlbf - right and left body flaps deflections, δrvr, δlvr - right

and left rudders deflections. The control sufrace limits are given in Table 2.

Table 2. X-33 control surface limits

Control surface Lower bound, rad Upper bound, rad

δrevi -0.4363 0.4363

δlevi -0.4363 0.4363

δrbf -0.3054 0.4101

δlbf -0.3054 0.4101

δrvr -0.5236 0.5236

δlvr -0.5236 0.5236

δrevo -0.4363 0.4363

δlevo -0.4363 0.4363

The state vector in the system defined by (2.1) combines the longitudinal and lat-

eral/directional motion parameters:

x = [P,R, β, φ, ψ, α,Q, θ, V ]T .

Here P,Q,R - the roll, pitch and yaw rates, α, β - the angle of attack and sideslip angle,

φ,ψ - the bank and heading angles, V - the aircraft velocity.

The matrices of the linearized X-33 vehicle for the above flight conditions are given

in (Burken et al., 2001):
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Table 3 shows the open-loop poles. Note that the first five eigenvalues represent the

lateral/directional dynamics and the last four eigenvalues represent the longitudinal dy-

namics.

Although the linearized longitudinal and lateral/directional motions are decoupled in

the matrix A, all control surfaces in different extent contribute both to longitudinal and lat-

eral/directional dynamics. Hence the control law design must be carried out simultaneously

for longitudinal and lateral modes. (Burken et al., 2001)

There are two anti-stable eigenvalues in the system, the most significant λ2 is pro-

duced due to directional aerodynamic instability, and the second one λ9 is very slow

phugoid mode instability in the longitudinal motion. The controllable region slices in the

planes (β, P ) and (R,P ) of the lateral/directional parameters have the form of a strip (see

Fig. 2.10, 2.11, 2.12).

The controllable region cross-sections have been first computed without account of the

rate constraints. And the two stabilizing control laws, the LQ optimal controller (designed

in the same manner as for the aeroservoelastic problem in the previous section) and the pole

placement controller, have been compared in terms of slices of their closed-loop stability

regions.

To take into account control constraints, the saturation function given in (2.35) was

implemented for each control input. The slice of the domain of attraction for the LQ

optimal controller covers a large part of the controllable region slice, as shown in Fig. 2.10.

In Fig. 2.11 the cross-sections of the closed-loop system stability region are shown for

the pole placement controller. The closed-loop system eigenvalues in this case have been



2.4 Numerical examples 47

−0.35 −0.175 0  0.175 0.35
−0.35

−0.175

0  

0.175

0.35

Yaw rate, rad/s

S
id

e
sl

ip
 a

n
g

le
, r

a
d

Domain of attraction    
for the LQ controller   

Controllable
region         

−0.524 −0.35 −0.175 0  0.175 0.35 0.524
−0.524

−0.35

−0.175

0  

0.175

0.35

0.524

Roll rate, rad/s

Y
a

w
 r

a
te

, r
a

d
/s

Controllable region

Domain of attraction for the LQ controller 

Figure 2.10: X-33 linearized model. Comparison of controllable and stability region cross-sections

at the presence of only deflection constraints: the linear-quadratic controller.

assigned as shown in Table 3. Note that during control synthesis only body flaps have been

considered as active.

The results presented demonstrate that in the both cases the closed-loop system stability

regions are less than the controllable region. The pole placement control law can produce

an unsatisfactory size for the stability region for the closed-loop system when the assigned

locations of the closed-loop eigenvalues are taken without consideration of the stability

region size.
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Figure 2.11: X-33 linearized model. Comparison of controllable and stability region cross-sections

at the presence of only deflection constraints: the pole placement controller.

Table 3. Eigenvalues of the X-33 model

Open-loop Closed-loop

λ1 = -1.0007 -0.4 + 1.25i

λ2 = 0.93495 -0.4 - 1.25i

λ3 = -0.102 -0.102

λ4 = -0.000562 -0.0562

λ5 = 0 -0.01

λ6 = -0.0609 + 1.24i -0.0609 + 1.24i

λ7 = -0.0609 - 1.24i -0.0609 - 1.24i

λ8 = -0.0149 -0.0149

λ9 = 0.000646 -0.0646
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To demonstrate the rate limit influence on the controllable region size the absolute values

of rates for all control effectors have been limited by the same value. The cross-sections

of the controllable region in the planes (β, P ) and (R,P ) for maximum rate limit 0.35 and

0.175 rad/s are shown in Fig. 2.12. One can see that even these very slow actuators are

not very critical in terms of the size of the controllable region, since the decrease of the

controllable region slice due to rate saturation in this case is relatively small.
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Figure 2.12: X-33 linearized model. Comparison of controllable region cross-sections for different

rate limits.

2.5 Conclusion

The proposed numerical algorithm for the computation of the controllable regions for un-

stable linear systems with two types of control constraints such as deflection limit and
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rate saturation can be applied for post design assessment of different control laws and

specification of design requirements for actuator characteristics. This method allows an un-

limited number of control effectors and anti-stable eigenvalues in the open-loop system. The

computational examples presented for the simple aeroservoelastic system and the aerody-

namically unstable X-33 vehicle demonstrate the utility of the proposed method for design

and post-design assessment of control laws at flight regimes with unstable dynamics.



Chapter 3

Maximization of stability region

In this chapter the problem of linear controller design maximizing the closed-loop system

stability region is considered for the linearized system with one and two unstable eigenvalues

and only deflection constraints. The results presented in (Goman et al., 1996) are extended

to the case of multiple control inputs considering two flight control design examples. The

proposed control design method can be expressed in terms of linear matrix inequalities

(LMI) and therefore can be combined with other performance conditions imposed via LMI,

thus providing us with a tool for control law design combining stability and performance

characteristics.

3.1 Previous developments in the field

In an intrinsically unstable system, control saturation can lead to significant degradation

of dynamic characteristics or even to the loss of stability in the closed-loop system. As

we have learned from the previous chapter, an unstable constrained linear system has

a bounded controllable region, where the stabilization problem can be solved. In many

practical situations associated with a high level of instability and low control authority, the

controllable region decreases significantly and classical linear control design methods lose

their efficiency. Then the engineer needs to perform extensive simulations and subsequent

tuning of the control law parameters. It makes sense then to develop control methods that

can take into account the stability region size on a regular basis.

The number of papers considering maximization of the stability region is growing, fol-
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lowing the recent trend of tremendous activity in the area of control synthesis for systems

with state and control constraints. For linear, input constrained systems this methodology

is now rather well developed.

The best controller in terms of the stability region size has to keep the system sta-

ble in the whole controllable region. Such a controller is called the “maximum stabi-

lizer” (Scibile and Kouvaritakis, 2000) or “stability optimal” one (Grishanin, Lebedev, Lipa-

tov and Stepanjantz, 1999; Goman et al., 1996). The controller of some particular structure

designed with additional criteria for maximizing the stability region (Kamenetskiy, 1996;

Pare, Hindi, How and Boyd, 1998; Henrion, Tarbouriech and Kučera, 2001) can be called a

“stability suboptimal” one. The question of how to determine a stabilizing regulator that

would yield the largest domain of attraction for an unstable plant with control bounds was

posed first in (Stepanjantz, 1985).

Regarding practical applications, the problem was addressed in the context of toka-

mak control (Scibile, 1997; Scibile and Kouvaritakis, 2000), unstable aircraft stabiliza-

tion (Glad, 1996; Goman et al., 1996; Barbu, Galeani, Teel and Zaccarian, 2005) and flutter

suppression (Goman and Demenkov, 2004a; Applebaum and Ben-Asher, 2007).

The contributions to the problem of stability region maximization are of two different

kinds.

3.1.1 Maximum stabilizer design

The first kind deals with the absolute optimal or near optimal solutions, i.e. conversion

of the controllable region or its high-accuracy approximation into a stability region of the

closed-loop system.

The simplest case of one unstable eigenvalue and amplitude control constraints has

been considered for example in (Glad, 1995; Scibile and Kouvaritakis, 2000). The resulting

optimal controller is of the bang-bang type that switches about the hyperplane obtained

from the corresponding eigenvector.

From Gamkrelidze’s theorem (Pontryagin et al., 1962) the time-optimal control law has

a conversion property (Scibile, 1997) and therefore the solution can be obtained via the

Pontryagin’s minimum principle.

The basic version of the minimum principle can cope only with amplitude control con-
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straints and requires the solution of a two-point boundary value problem. The advanced

version can cope even with the amplitude constraints on the input and state variables

constraints, thus it can address both the amplitude and rate constraints on the input.

A simple solution to the problem (Grishanin et al., 1999) has been proposed using

the minimum principle for the case of one unstable eigenvalue. It takes into account both

amplitude and rate control constraints. However, for an increased number of unstable poles,

due to the limitations of the computational resources available, it is still not possible to

implement such a solution in real-time applications. Nevertheless, these results point out

to nonlinear control laws as the more efficient way of problem solution than the linear ones.

The approach for two-dimensional single-input continuous systems with amplitude con-

straints |u| ≤ umax has been proposed in (Goman et al., 1996), where the optimal control

law is the relay-type (u(t) = ±umax) and specified by a switching line. Two equilibrium

points ±A−1Bumax are positioned on this line, which is derived using geometric nonlinear

dynamic analysis (see Fig. 3.1). The stability region in this case is bounded by the limit

cycle curves. The optimal solution also induces a set of suboptimal linear control laws, for

which each row vector in their gain matrices is orthogonal to the optimal switching line.

For higher order systems, the solution can be found for the unstable subspace of state-space

with no more than two dimensions.

In (Hu and Lin, 2001b) it was established that for single-input linear systems having

two exponentially unstable poles, the LQ-optimal controller provides the (full observable)

system with a domain of attraction, which approaches the controllable region as the loop

gain is increased towards infinity. It is interesting to note that in this case the relay-type

“stability optimal” control law tends to be exactly the same as the controller proposed

in (Goman et al., 1996).

Let P be the unique positive definite solution to the following algebraic Riccati equation:

ATP + PA− P TBBTP = 0

Note that this equation is associated with the minimum energy regulation, i.e., an LQR

problem with cost J =
∫ ∞
0 uT (t)u(t)dt. The corresponding minimum energy state feedback

gain is given by

K = −BTP.
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A linear system (without constraints) under LQ control has the following properties (Hu

and Lin, 2001b):

• The loop gain can be increased indefinitely without loss of stability.

• The loop gain can be halved and stability will still be maintained.
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Figure 3.1: Stability optimal relay control law: a system with two real eigenvalues (top plot) and

with two complex eigenvalues (bottom plot).



3.1 Previous developments in the field 55

Consider the standard saturation function

sat(u) = sign(u)min{umax, |u|}.

The result stated in (Hu and Lin, 2001b) is that for the saturated feedback law

u(t) = sat(γKx)

the domain of attraction will approach the controllable region as γ → ∞. The proposed

control design has been applied to a flutter suppression problem in (Applebaum and Ben-

Asher, 2007).

The most theoretically impressive result for the linear input constrained systems has

been achieved in (Goebel, 2005). The existence of a continuous static feedback that ren-

ders the saturated system asymptotically stable on the whole controllable set has been

established there. The proposed approach is based on the solution of the Hamilton-Jacobi

equation, which leads to convex optimization problem. The possibility of computationally

inexpensive on-line realization of such feedback has been outlined in (Goebel and Sub-

botin, 2007).

As we know from the previous chapter, for the linear discrete-time system it is pos-

sible to approximate its controllable region with arbitrary precision by a set of linear in-

equalities using polyhedral methods proposed in (Gutman and Cwikel, 1987; Keerthi and

Gilbert, 1987; Lasserre, 1993; Mayne and Schroeder, 1997). A time-optimal nonlinear con-

trol law was derived from polyhedral controllable sets (Keerthi and Gilbert, 1987). Various

techniques for time-optimal control design and computation are also proposed in (Mayne

and Schroeder, 1997). For example, in the case of a scalar input variable the task of such

regulator is reduced to a search for an admissible point in the intersection of several inter-

vals.

Moreover, any polyhedral controllable set for the so called Euler approximated sys-

tem (Blanchini and Miani, 1996) can be turned into a polyhedral Lyapunov’s function (Blanchini,

1995; Filimonov and Filimonov, 1995; Filimonov and Filimonov, 1996) for the corresponding

continuous-time system by means of a piecewise-linear regulator.

These polyhedral methods belong to the so called set-theoretic approach. For a com-

prehensive review of set-theoretic methods and applications see (Blanchini, 1999) and the
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recent book (Blanchini and Miani, 2007). Note that these polyhedral methods do not always

“officially” address the posed problem, but it is trivial to show that they can be effectively

used to solve it.

3.1.2 Parametric design

The second kind of contributions deals with the problem of parametric optimization. This

problem consists in assigning the regulator parameters so that the stability region becomes

in some sense optimal in size, while the regulator has a specified structure.

Parametric design procedures, which are based on Lyapunov’s function method, has

been proposed first in (Kamenetskiy, 1996), by means of stability analysis techniques from

(Kamenetskiy, 1995), all applied to continuous nonlinear systems. The considered class

of closed-loop systems is restricted to those having two-time differentiable right-hand side

in the state-space form, with a predefined number of regulator parameters. Hence, in the

case of control constraints they must be defined via differentiable functions. The proposed

methods consist in modifying the Lyapunov’s function via its parameters simultaneously

with the regulator parameters along solution curves of special differential inclusion. The

state-space variables of that inclusion are the parameter vector that consists both of the

Lyapunov’s function and regulator parameters. There is no system order restriction. The

stability regions are bounded by a level surface of the Lyapunov’s function. There are three

proposed optimization criteria: the first is an augmentation of the stability region in the

sense of the level surface of the Lyapunov’s function, the second is an augmentation in the

sense of inclusion and the third is an augmentation along some prespecified directions in

the state-space, which are of expert choice.

Various techniques for parametric LMI-based optimization, performed to enlarge the

stability region, are discussed in (Pare et al., 1998; Henrion, Tarbouriech and Garcia, 1999;

Henrion and Tarbouriech, 1999; Henrion et al., 2001).

An approach that is also based on quadratic Lyapunov functions and LMI formulations

is discussed in the book(Hu and Lin, 2001b) along with the methods already outlined above.

Since this book has been completely dedicated to the study of controllable region properties

and stability optimal regulator design, it is a highly recommended reading for anyone who

wants to understand the field. The book’s contents have been described also in numerous
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journal publications (Hu and Lin, 2000; Hu, Lin and Qiu, 2001; Hu and Lin, 2001a; Hu and

Lin, 2001c; Lin and Hu, 2001; Hu, Lin and Shamash, 2001; Hu, Lin and Chen, 2002a; Hu

and Lin, 2002a; Hu and Lin, 2002b; Cao, Lin and Hu, 2002; Hu, Lin and Chen, 2002b). This

research has been continued using the combinations of several quadratic functions in (Hu

and Lin, 2003; Hu, Goebel, Teel and Lin, 2005).

Another interesting branch of research is connected with the determination of stability

regions for linear systems with saturating controls through anti-windup schemes.

Suppose that a linear feedback uc(t) has been designed to stabilize the linear system

without saturation. In order to mitigate the undesirable effects of windup caused by input

saturation, an anti-windup term E can be added to the controller:

u̇(t) = Acu(t) +Bcx(t) + E(sat(uc(t))− uc(t)).

Several LMI-based methods have been proposed (Cao, Lin and Ward, 2002; Cao, Lin

and Ward, 2004; Tarbouriech, da Silva and Garcia, 2003; da Silva and Tarbouriech, 2005;

da Silva and Tarbouriech, 2006; Tarbouriech, Queinnec and Garcia, 2006) for designing an

anti-windup gain E that maximizes an estimate of the basin of attraction of the closed-loop

system in the presence of saturation.

Another approach to the problem is to synthesize an antiwindup compensator that works

as an add-on for any a priori given controller outside its region of linearity (Barbu et al.,

2005; Avanzini and Galeani, 2005; Galeani, Teel and Zaccarian, 2007). The boundaries of

the stability region in the system state space are then independent of the unconstrained

controller dynamics and are only dependent on the structural limitations of the saturated

system.

It is obvious that one can compute the stability region using a grid of points. How-

ever,this approach can be very time consuming. To compute reasonable estimations of

stability regions, various techniques have been proposed in the literature, based on Lya-

punov’s function method (Kamenetskiy, 1995; Peterfreund and Baram, 1998; da Silva and

Tarbouriech, 1999; Julian, Guivant and Desages, 1999; Turner and Postlethwaite, 2001).
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3.2 Problem statement

It is supposed that the following continuous time-invariant linear system:

ẋ(t) = Ax(t) +Bu(t) (3.1)

with A ∈ Rn×n, B ∈ Rn×m, x ∈ Rn, u ∈ Rm has q ≤ n anti-stable eigenvalues λi, Reλi >

0, i = 1, . . . , q and the control vector is bounded:

u ∈ U, (3.2)

where U ∈ Rm is a compact and convex set, which is defined in the form of amplitude

constraints:

|u(i)| ≤ u(i)
max, i = 1,m. (3.3)

It is additionally supposed that the matrix A has no neutral eigenvalues and the state vector

is fully observable.

Considering the problem of system stabilization and maximization of the closed-loop

system stability region, below only the subspace corresponding to unstable eigenvalues will

be considered.

The dynamics associated with the anti-stable eigenvalues is described by the following

reduced-order subsystem (see Chapter 2):

ż(t) = Azz(t) +Bzu(t), (3.4)

where Az ∈ Rq×q, Bz ∈ Rq×m, u(t) ∈ U and z(t) = QT
2 x(t).

If system (3.4) is stabilized and its states approach equilibrium point with z(t) = 0 and

u(t) = 0, it is trivial to show that the stable subsystem s(t) will also asymptotically approach

the origin and thus to stabilize system (3.1) it is enough to stabilize only subsystem z(t)

(3.4). The bounded controllable region C of the anti-stable subsystem produces a cylinder

in the full state-space of original system, which is unbounded in some directions.

Suppose that system (3.1) is stabilized by the linear controller:

u(t) = Kx(t), (3.5)

where K ∈ Rmxn stabilizes the closed-loop system (3.1), (3.5) in the absence of control

saturation.
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To take into account control constraints, consider the saturation function defined for

scalar u(i) ∈ R1 as:

sat(u(i)) =



















u
(i)
max; u(i) > u

(i)
max

u(i); |u(i)| ≤ u(i)
max

−u(i)
max; u(i) < −u(i)

max

and for vector u = [u(1), ..., u(m)]T as:

sat(u) = [sat(u(1)), ..., sat(u(m))]T .

The constrained linear closed-loop system is defined by (3.1) and the following nonlinear

control:

u(t) = sat(Kx(t)). (3.6)

We will operate with the following definition of the stability region.

Definition 4 The stability region S of system (3.1) closed by feedback control (3.6) is the

set of all points x0 ∈ Rn from which the closed-loop system asymptotically approaches the

origin:

S = {x0 ∈ Rn : lim
t→∞

x(i)(t, x0) = 0,∀i = 1, n}.

The optimal stability region Sopt is equal to the controllable region C.

In this chapter the computation of the controllable region C and the linear controller

design maximizing the stability region S of the constrained closed-loop system is considered

for cases, when matrix A has one or two unstable eigenvalues and system (3.1) has multiple

control inputs m ≥ 1.

3.3 Maximum stabilizer design for one-dimensional case

The anti-stable subsystem is described by the first-order differential equation:

ż(t) = azz(t) + bzu(t),

where az > 0, bz ∈ R1×m, u(t) ∈ U and z(t) = QT
2 x(t).
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The closed-loop system is stable if the following algebraic stability conditions hold:

z > 0⇒ ż < 0;

z = 0⇒ ż = 0;

z < 0⇒ ż > 0.

Consider the upper limit on z, while ż < 0:

z <
1

az

(−
m

∑

i=1

b(i)z u(i)) ≤ max
u∈U

1

az

(−
m

∑

i=1

b(i)z u(i)) =
1

az

m
∑

i=1

b(i)z u(i)
maxsign(b(i)z ).

Applying the same reasoning to obtain the lower limit on z, while ż > 0, one can see

that the controllable region of the unstable subsystem is an interval: −zmax < z < zmax,

where

zmax =
1

az
(

m
∑

i=1

|b(i)z |u(i)
max). (3.7)

In the state-space of the original system the controllable region looks like a “strip” that

is defined by the following linear inequality:

−zmax < QT
2 x < zmax. (3.8)

To derive a saturated linear control law u(i)(t) = sat(kiz(t)) maximizing the closed-loop

system stability region it is necessary to satisfy the following two requirements:

1. In the absence of saturation the closed-loop system must be stable

az +

m
∑

i=1

b(i)z ki < 0; (3.9)

2. On the boundary of controllable region the saturated control must satisfy the special

conditions, which minimize ż if z > 0 and maximize ż if z < 0. They result in the

following inequalities for each ki:

b(i) < 0⇒ kizmax ≥ u(i)
max

b(i) > 0⇒ kizmax ≤ −u(i)
max

b(i) = 0⇒ ki = 0

(3.10)

Any linear control law that satisfies the system of linear inequalities (3.9) and (3.10)

is the maximum stabilizer, i.e. it provides the system with the maximal stability region,
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which is equal to controllable region C. This control law can be computed, for example,

via linear programming.

To illustrate the method, let us consider the following linearized lateral-directional dy-

namics of an aircraft without a vertical tail (Ngo, Reigelsperger, Banda and Bessolo, 1996).

The stability and controllability matrices correspond to flight at Mach number M = 0.4,

altitude H = 15000 ft and angle of attack α = 8.8 deg:

[A|B] =











−0.004 0.154 −0.988 −0.009 0.013 0.006 0.011 −0.004

−8.21 −0.785 0.117 7.57 −4.97 3.65 0.079 −0.614

−0.889 −0.03 −0.016 0.091 −0.181 −0.416 −0.804 0.188











.

The state vector x = [β, p, r]T , where β is the sideslip angle in degrees, p, r are the body-

axis roll and yaw rates in degrees per second. The control vector u = [δe, δs, δt, δytv , δf ]T ,

where δe is the differential elevons, δs is the differential spoiler/slot-deflectors, δt is the dif-

ferential all moving tips, δytv is the yaw thrust vectoring, and δf is the differential outboard

leading-edge flaps, all control deflections are expressed in degrees.

The following unstable subsystem can be obtained via the Schur decomposition of matrix

A:

[az|bz] = [ 0.434 −0.485 0.206 −0.654 −0.737 0.218 ].

The variable z of unstable subspace is connected with the system state vector x as

z(t) = QT
2 x(t), QT

2 = [ −0.421 −0.075 0.904 ].

All control variables are constrained by the same value: |u(i)| ≤ 5 deg, i = 1, 5. In

accordance with (3.7) and (3.8) the controllable region of unstable subsystem is defined by

zmax = 26.472.

To compute the maximum stabilizer the following system of linear inequalities must be

solved:

0.434 − 0.485k1 + 0.206k2 − 0.654k3 − 0.737k4 + 0.218k5 ≤ γ,

26.472k1 ≥ 5, 26.472k2 ≤ −5, 26.472k3 ≥ 5, 26.472k4 ≥ 5, 26.472k5 ≤ −5,

where γ < 0.

One of the possible solutions for γ = −1 is

k1 = 0.5365, k2 = −0.2276, k3 = 0.7236, k4 = 0.816, k5 = −0.2412.
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The final step is to convert the control law to a linear function of the original system

state vector:

Kmax =











k1Q
T
2

...

k5Q
T
2











=























−0.2259 −0.0405 0.4850

0.0958 0.0172 −0.2058

−0.3046 −0.0546 0.6541

−0.3435 −0.0615 0.7377

0.1015 0.0182 −0.2180























.

Fig. 3.2 shows the cross-sections of the controllable region (solid lines) in the planes

of two state variables. The controllable region and the stability region for the maximum

stabilizer u(t) = sat(Kmaxx(t)) coincide.

The linear-quadratic regulator (LQR) minimizing the following performance index

J =

∫ ∞

0
(xT (t)x(t) + uT (t)u(t))dt (3.11)

has been synthesized for comparison purposes. The LQR stability region boundaries

(dashed lines) have been computed by direct closed-loop system simulation and they are

shown in Fig. 3.2 (see the top and the left middle plots). One can see that the stability

region for the maximum stabilizer approximately three times bigger than for the LQR. In

the bottom plots in Fig.3.2 several trajectories of the closed-loop system with LQR and

maximum stabilizer controllers are shown to illustrate the size of stability regions.

3.4 Controller design for two-dimensional case

In this case the unstable subsystem is described by a second-order linear system

ż(t) = Azz(t) +Bzu(t),

where Az ∈ R2, Bz ∈ R2×m, u(t) ∈ U and z(t) = QT
2 x(t).

The design objectives in this case are similar to the previous design with one real

eigenvalue. A saturated linear controller u = sat(Kz) has to stabilize the closed-loop

system in the absence of control saturation and prevent leaving the controllable region

when the system operates close to its boundary. We will consider a null-controllable set

C(T ) with enough large T as an approximation of the controllable region C.
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Figure 3.2: Cross-sections of stability regions for maximum stabilizer and linear-quadratic regulator

(LQR), example of control functions produced by maximum stabilizer (middle right plot), closed-

loop system trajectories for LQR (bottom left plot) and maximum stabilizer (bottom right plot) in

(β,r) plane. All variables are given in degrees and degrees per second.
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As a part of the control design method we utilize here Formalsky’s method from the

previous chapter (Formalsky, 1968).

At every boundary point of C(T ) the control function following (2.10) is expressed in

the form of a relay law:

u(i)(0) = u(i)
maxsign(−dT bzi), i = 1,m, (3.12)

where d is a vector normal to the boundary of C(T ) at this point.

Each component of the control vector takes on the boundary of C(T ) its positive or

negative extreme value and there are some points, where it changes sign. Because any

null-controllable set is symmetrical, the points on the boundary of C(T ), where the control

changes sign are also symmetrical.

These points ±z0i for every component u(i) of the control vector are defined by the

condition that the vectors ±di (locally perpendicular to the boundary of C(T ) at these

points) are also perpendicular the to controllability vector bzi, i.e. dT
i bzi = 0 (see Fig. 3.3).

A relay control law

u(i)(z) = u(i)
maxsign(kT

i z), i = 1,m, (3.13)

where ki are vectors normal to the switch lines passing through ±z0i, can produce at

every boundary point of C(T ) the same direction of the control vector as in (3.12) and

therefore prevent the system moving outside of C(T ). The direction of ki is defined from

the inequality kT
i bzi < 0. In this case the control vector bziu

(i)(z) will “push” the system

state towards the interior of the controllable region .

Now consider the linear control law constructed from the relay control law (3.13):

u(i) = γ|ki|z, where |ki| =
u

(i)
max

||ki||2
kT

i . (3.14)

In the presence of control deflection constraints, the control functions become nonlinear

and can be expressed as:

u(i)(z) = sat(γ|ki|z), i = 1,m

The switching lines of the relay control law (3.13) in the phase plane, defined by kT
i z = 0,

are transformed into “strips”, where the closed-loop system is free from control saturation

and therefore linear.
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Figure 3.3: The main geometrical idea (ellipse represents the controllable region)

Parameter γ, which is the same for all control components, allows for variation of the

width of these “strips” and thus for the compromise between the local stability charac-

teristics expressed in terms of eigenvalues location and the size of the closed-loop system

stability region. Of course, the stability region of this saturated linear control law is less

than the controllable region and can asymptotically approach it only as γ → ∞. That is

why we call the controller ”suboptimal”.

Moreover, we can use the following well-known LMI inequalities (Boyd, Ghaoui, Feron

and Balakrishnan, 1994) to express sufficient stability conditions:

AzQ+QAT
z −BzB

T
z < 0 (3.15)

γK = −1
2B

T
z Q

−1 (3.16)

where

K =











|k1|
...

|km|











(3.17)

and Q- positive definite matrix parameter.

We can transform (3.16) as

KQ = −β
2
BT

z (3.18)

where β = 1/γ. Clearly (3.15) and (3.18) are linear matrix inequalities and we can take

β → 0 instead of γ →∞ as our optimization goal.
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These inequalities can be combined with other LMI-based performance conditions, thus

providing us with a tool for control law design combining stability and performance char-

acteristics.

It should be noted that the poles of the closed-loop system may approach the boundary

between stable and unstable complex half-planes as γ →∞. This may result in a so called

”fragile” control law, i.e. small changes in the A and B matrices can make the closed-loop

system unstable. This usually means we need to somehow constrain γ from above.

To avoid this problem, one might calculate some kind of ”stability radius” in parameter

space when the synthesis is finished, reduce the upper limit for γ, if it is not enough, and

recalculate the control law.

As a design example, consider the longitudinal dynamics of an aircraft trimmed at

altitude H = 25000 ft and Mach number M = 0.9 (Hartmann, Barrett and Greene, 1979;

MathWorks, 2001b). The linearized system of motion equations has the following stability

and controllability matrices:

[A|B] =





























−0.0226 −36.6170 −18.8970 −32.0900 3.2509 −0.7626 0 0

0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050 0 0

0.0123 11.7200 −2.6316 0.0009 −31.6040 22.3960 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −30 0 30 0

0 0 0 0 0 −30 0 30





























The first part of the state vector consists of the aircraft’s basic rigid body variables:

perturbation in the forward velocity δV , the angle of attack α, the pitch rate q, and the

pitch attitude angle θ. Two first-order lags x(5) and x(6) are appended to the state vector

to represent actuators dynamics. The control variables δe and δc are signals sent to elevon

and canard actuators:

u = [δe, δc]
T , |δe| ≤ 0.035 rad, |δc| ≤ 0.035 rad.

Note that the angles and angular rates are expressed in radians and radians per second,

respectively.

The system due to aircraft aerodynamic static instability has an oscillatory unstable

mode in the phugoid frequency range, which can be separated off via the Schur decompo-



3.4 Controller design for two-dimensional case 67

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 z
(1)

 z
(2

)

u
(1)

=−u
(1)

max

u
(2)

=+u
(2)

max

u
(1)

=+u
(1)

max

u
(2)

=−u
(2)

max

b
z2

 

b
z1

 

switching line 

d
2
 

d
1

z
02

 

z
01

 

−4 −3 −2 −1 0 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Closed−loop system root−locus for γ∈ [0, 10]

Real

Im
a

g
e

γ=6 

γ=0 

γ=10 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 z
(1)

 z
(2

)

LQR
1

 

Stability  
suboptimal 
linear law 
           

Controllable region 

−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

α

θ

Controllable region 

Stability suboptimal law 

LQR
2

 
LQR

1
 

Figure 3.4: The relay law computation (top left plot), closed-loop system root locus (top right

plot), stability and controllable regions for anti-stable subsystem (bottom left plot), cross-sections

of stability regions in the plane (α, θ) (bottom right plot).

sition:

[Az|Bz] =





0.7067 2.6227 5.1766 −3.6583

−0.0237 0.6729 6.7815 −4.6968



 ,

z(t) = QT
2 x(t), Q

T
2 =





0.0098 −0.0377 −0.1852 −0.9589 0.1726 −0.1219

−0.0036 −0.9269 −0.2146 0.1385 0.2260 −0.1566



 .

Using the Formalsky method, the null-controllable sets C(T ) have been computed until

convergence to the boundary of controllable region C. In this example, the convergence pro-

cess has been stopped at T = 10 sec. The controllable region boundary was approximated

by 120 points.
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To design a linear control law (3.14), the vectors di normal to the boundary of C(10) at

the points where the control functions change sign (dT
i bzi = 0, i = 1, 2), have been defined:

d1 = [b
(2)
z1 ,−b

(1)
z1 ]T = [6.7815,−5.1766]T ,

d2 = [b
(2)
z2 ,−b

(1)
z2 ]T = [−4.6968, 3.6583]T .

Now the control switching points on the boundary of the controllable region, approxi-

mated by C(10), can be computed:

z01 = arg max
z∈C(10)

dT
1 z = −0.035

2
∑

i=1

10
∫

0

e−Azτbzisign(−dT
1 e

−Azτbzi)dτ = (1.5703,−0.5421)T ,

z02 = arg max
z∈C(10)

dT
2 z = −0.035

2
∑

i=1

10
∫

0

e−Azτbzisign(−dT
2 e

−Azτbzi)dτ = (−1.5703, 0.5421)T .

In our case there are two switching lines passing through points ±z01 and ±z02 on the

controllable region boundary, and these lines are numerically the same for each of the two

controls (see Fig. 3.4, top left plot). These switching lines are described by equations:

kT
1 z = 0, kT

2 z = 0

where ki are defined as:

k1 = [z
(2)
01 ,−z

(1)
01 ]T = [−0.5421,−1.5703]T ,

k2 = [z
(2)
02 ,−z

(1)
02 ]T = [0.5421, 1.5703]T .

Since kT
1 bz1 < 0, kT

2 bz2 < 0, these ki already have correct signs.

In the top right plot in Fig. 3.4 the root-locus for the closed-loop system with control

law (3.14) is shown for γ = 0 ÷ 10. Parameter γ = 6 is taken for the computation of the

“stability suboptimal” control law.

In the state-space of original system this suboptimal control law has the form u(x) =

sat(Ksubx), where

Ksub =











6 0.035
||k1||2

kT
1 Q

T
2

6 0.035
||k2||2

kT
2 Q

T
2











=





0 0.186 0.0552 0.0382 −0.0566 0.0394

0 −0.186 −0.0552 −0.0382 0.0566 −0.0394





The comparison of the stability region for the designed “stability suboptimal” control

law and the open-loop system controllable region is presented in the bottom left and right
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plots in Fig. 3.4 in the anti-stable subspace and in the physical plane (α, θ). It is clearly

seen that the closed-loop system stability region with the designed linear control is rather

close to the controllable region.

In the two bottom plots in Fig. 3.4 one can see also the cross-sections of the stability

regions for the two linear quadratic regulators designed for comparison purposes. Linear

quadratic regulators have been computed by minimizing the performance index (3.11): one

considering only the unstable subspace (LQR1) and another for the whole original system,

thus including both stable and unstable subspaces (LQR2).

One can see that the stability region for LQR1 is bigger than the region for LQR2,

because LQR1 stabilizes only the anti-stable subsystem, while LQR2 allocates some control

resourses for the stable subspace and leaves less for the unstable one. Meanwhile the

designed stability suboptimal control law provides much a bigger stability region than both

the linear quadratic regulators and its size is very close to the controllable region.

3.5 Conclusion

Stabilization of linearized dynamics with one anti-stable eigenvalue and a redundant number

of control effectors can be performed in the whole controllable region by a saturated linear

control law. The maximum stabilizer controller in the form of saturated linear feedback

can be designed using the linear programming.

In the case of two unstable eigenvalues the maximum stabilizer can be designed only in

the relay-type form. Nevertheless, the suboptimal linear saturated control law can always

be found.

In the general case of higher-dimensional instability, the design of saturated linear law

is impossible (Goebel, 2005) and the maximum stabilizer should be nonlinear even in the

unsaturated region.
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Chapter 4

Reconfigurable control allocation

In this chapter we study the control allocation problem, which arises in overdetermined

control systems, i.e. systems with the number of controls greater than the number of

system states. In the first part of the chapter we consider the set of all possible control

actions that can be generated by the different allocation of available actuators in the linear

case. We conclude that this set is actually a kind of polytope - a zonotope, and we describe

its properties that we can use further for control purposes.

In the second part, we propose a novel real-time linear control allocation algorithm

based on the ideas from interval analysis and zonotope properties. The algorithm yields

the solution in a finite number of iterations with any given accuracy. It can be therefore con-

sidered for implementation in safety critical applications that may require reconfiguration

possibility due to control effector damage.

4.1 Introduction

The general idea of the reconfigurable control allocation is that all fault detection and

reconfiguration capabilities are concentrated in one special unit called the control alloca-

tor, while the general control algorithm, which is producing a virtual control input, re-

mains intact. In the case of an actuator fault, only the control allocation unit needs to

be reconfigured and in many cases it can generate the same virtual control vector using

a different set of control effectors (see Fig. 4.1). The control allocation (not necessarily

reconfigurable) has been attracting much attention in the aerospace community for around
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15 years since the first algorithm of this type - the so called direct allocation approach

(Durham, 1993; Durham, 1994). Recently, the problem appeared in the context of general

control theory. In the aeronautical context, the role of virtual controls is usually played by

moments and forces.

Controller Allocator Actuators

Fault

Pseudocontrol

y

Physical 

control

u

Figure 4.1: Reconfigurable control allocation approach

In the sequel we will use the assumption that a linear relationship exists between the

n-dimensional pseudo-control vector y ∈ Rn and the actual control effector displacements

u ∈ Rm, n < m, i.e.

y = Bu, (4.1)

where B = [b1|b2|...|bm] is the control effectiveness matrix having m columns. This formu-

lation may arise either from the assumption of linearity of moments and forces produced by

aerodynamic control surfaces, or otherwise from the use of local slopes at the current operat-

ing point (Doman and Oppenheimer, 2002). The pseudo-control vector in the aeronautical

applications may include commanded moment/forces and any additional state variables,

introduced for stabilization purposes.

The problem of determining u for a given y is the root-finding problem, and all allocation

algorithms actually differ one from another by the root-finding method. The simplest

solution would be to apply a pseudo-inverse matrix, but this does not necessarily guarantee

optimality of the solution - not all possible control actions in this case could be realized,

because the control effectors are supposed to be limited by some minimal and maximal

values:

u ∈ U, U = {u ∈ Rm : u
(i)
min ≤ u(i) ≤ u(i)

max, i = 1,m} (4.2)

The achievable pseudo-control vectors are then confined to some attainable pseudo-

control set (APS) Y :

Y (U) = {y : y = Bu, u ∈ U} (4.3)
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The on-board implementation of a control allocation algorithm needs to be computation-

ally effective and should always converge to a solution. Therefore, many optimal meth-

ods that might be easily applicable and reconfigurable off-line, like linear or quadratic

programming (Bodson, 2002), may not constitute a reasonable engineering solution to

the problem (Cameron and Princen, 2000). The latest modifications of the direct al-

location approach (Petersen and Bodson, 2002) and methods based on approximations

or explicit representations of mathematical programming solutions (Johansen, Fossen and

Tondel, 2005; Gaulocher, Roos and Cumer, 2007) are indeed computationally effective, but

lack in reconfiguration capability — in the case of failure the re-computation of the whole

allocator unit is needed.

In this chapter we introduce a new root-finding method that was first outlined for 2D

and 3D control allocation tasks in (Demenkov, 2005) — a method of generalized interval

bisection. We propose a novel n-dimensional real-time linear control allocation algorithm

that satisfies three criteria:

1. guarantee of convergence to a solution

2. a known upper bound for time to find a solution

3. numerical properties such that the size of errors can be controlled

For any given accuracy, a control effectiveness matrix B and a pseudo-control vector y,

the algorithm yields the solution u in a finite number of iterations, while utilizing the

whole attainable pseudo-control set Y (U). The complexity of the algorithm is less than

for optimization-based methods or direct allocation. Moreover, during the iterations the

volume of the search space decreases exponentially and the number of required basic op-

erations is proportional to the logarithm of the reciprocal of the accuracy. The control

allocator based on this algorithm is therefore easily adaptable to any changes in control

effectiveness and even effector damage.

The drawback of the proposed algorithm is that it does not optimize the solution using

any additional performance criteria. Therefore it might be considered as a “last resort” in

a system usually governed by some other (optimal) control allocation algorithm, to keep

the system functioning in situations where safety comes first after an actuator failure.
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4.2 Interval bisection

4.2.1 One-dimensional bisection

Let us recall the simple idea of the bisection method for a function of one variable. Over

some interval the function is known to pass through zero because it changes sign. Evaluate

the function at the interval’s midpoint and examine its sign. Use the midpoint to replace

whichever limit has the same sign. After each iteration the bounds containing the root

decrease by a factor of two. If after i iterations the root is known to be within an interval

of size εi = bi − ai (see Fig. 4.2), then after the next iteration it will be bracketed within

an interval of size

εi+1 = εi/2. (4.4)

Thus, we know in advance the number of iterations N required to achieve a given tolerance

in the solution:

∆ ≈ ε0
2N
⇒ N ≈ log2

ε0
∆
, (4.5)

where ε0 is the size of the initial interval, ∆ is the desired ending tolerance.

Figure 4.2: Bisection method for one variable function (courtesy of Wikipedia)

4.2.2 Generalized (n-dimensional) interval bisection

This classical bisection method can be generalized for n-dimensional problems, and has been

extensively studied in the context of the so called interval analysis (Jaulin, Kieffer, Didrit
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and Walter, 2001). Nevertheless, in general it is impossible to construct its generalization in

the same way as for the one-dimensional case, because it is hard to prove that the generalized

interval in n dimensions does not contain any solution. The number of intervals potentially

containing a solution is then growing exponentially and this restricts the applicability of

the approach.

In our case, however, it is possible, and the one-dimensional version of the algorithm can

be generalized in the following way. Notice that (4.2) defines a box U in the Euclidean space

Rm of all possible control vectors u. In other words, it defines a subset of the control space

that is overall bounded by hyperplanes orthogonal to the axes of coordinates. Suppose that

we have a method to determine if the given pseudo-control vector y is inside the attainable

pseudo-control set for the given box. Then we cut the box U into two boxes U1 and U2

by half-splitting it along the coordinate direction, in which U is longest. We check each

box for the ability to generate the given pseudo-control vector, replace U by one of the two

new boxes that has y in its APS, and repeat the procedure, constructing the diminishing

sequence of boxes:

U ←







U1, if y ∈ Y (U1);

U2, if y ∈ Y (U2).
(4.6)

U 

Y 

y s e d 

y 0 

U 1 U 2 Y 1 

y
Save y Delete

Y 2 

Figure 4.3: The idea of our bisection algorithm

After m steps of this procedure, we will have the longest facet of U two times less than

for the original box. So, if we specify in the same way some tolerance ∆ for the longest

facet of the box, we will obtain the solution in Nm bisection steps, where N is given by
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(4.5) if we treat ε0 as the length of the longest facet of the initial box:

ε0 = max
i=1,m

{u(i)
max − u

(i)
min}. (4.7)

To guarantee the convergence to a solution, we must guarantee that a given pseudo-

control vector ydes belongs to the APS of the initial box. For this, one can check the vector

and replace it by some vector y lying on the APS boundary, if it violates the constraints.

The easiest way to do so is to just scale the given ydes preserving its direction, like in the

direct allocation approach (see Fig. 4.3).

It is possible that both U1 and U2 contain the solution. In this case, one can apply some

optimality criteria to decide which box will be deleted. For example, we can choose a box

that has inside the previously generated control vector u, to minimize the distance between

two consequently generated control vectors.

4.3 Properties of the attainable pseudo-control set

In (Ziegler, 1995) we can find the definition of a zonotope: it is the image of a cube under

an affine projection. Zonotopes are special polytopes. We recall that a polytope can be

described both by the set of its vertices and by a system of linear inequalities.

From (4.3) we conclude that our APS is exactly a zonotope. This fact has been first

established in (Durham, 1994) and properties of the attainable set has been described there

for 3D case.

Suppose that the barycentre of the control constraints hyperparallelepiped is computed:

u0 =
1

2
(umin + umax),

then we can rewrite equation (4.1) as follows:

y = y0 + Zv, (4.8)

where v(i) = (u(i) − u
(i)
0 )/(u

(i)
max − u

(i)
min), y0 = Bu0 and Z = [z1|z2|...|zm] with columns

zi = bi(u
(i)
max − u(i)

min). Note that v is constrained now by m-cube: ||v||∞ ≤ 1.
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Definition 5 A zonotope is the image of a cube under an affine projection, that is, a

polytope Y ⊆ Rn of the form

Y = {y ∈ Rn : y = y0 +

m
∑

i=1

ziv
(i),−1 ≤ v(i) ≤ 1}

for some matrix Z = [z1|z2|...|zm] ∈ Rn×m.

Without loss of generality, in the sequel we suppose y0 = 0 in the last definition.

The following two basic theorems are our reformulation of theorems from (McMullen

and Shepard, 1971).

Theorem 3 Let yi, i = 1, N be vertices of a polytope Y in the Euclidean space. Then any

point y ∈ Y can be written in the form

y =

N
∑

i=1

λiyi, λi ≥ 0,

N
∑

i=1

λi = 1,

that is, a convex combination of yi.

This theorem has its dual one:

Theorem 4 Let {yi}i=1,N be any set of points in the Euclidean space and

y =
N

∑

i=1

λiyi, λi ≥ 0,
N

∑

i=1

λi = 1,

that is, a convex combination of yi. Then y ∈ Y where Y is a polytope with vertices from

the set of points yi.

This means that some but not all vertices of the polytope Y are from this set, while

other yi are inside Y and therefore redundant for its representation.

Consider now v as a convex combination of some vertices vi, i = 1,M . Such represen-

tation always exists because v is limited to the hypercube H in Rm:

H = {v ∈ Rm : ||v||∞ ≤ 1}. (4.9)

The vertices of this hypercube contain only extremal values in its components, i.e.

v
(j)
i = ±1, j = 1,m, i = 1,M.
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Theorem 5 The components of v corresponding to a vertex of Y have only extremal values.

Proof: From the Theorem 3, Y is defined as

y =

M
∑

i=1

λiZvi,

i.e. it is a convex combination of Zvi points and from Theorem 4 any vertex of Y is

represented by Zvi, where vi is a vertex of the hypercube H.�

Now we are ready to introduce the main results of this section. These results are in the

form of simple formulas, which allow us to determine all facets and vertices of the polytope

Y that is defined in the two- and three-dimensional Euclidean space.

4.3.1 3D case

The following result first appeared in (Petersen and Bodson, 2000) without proof. Now we

give the complete proof of the result and discuss some related computational problems.

Theorem 6 Suppose n = 3. Then any normal vector of a facet of the polytope Y is a

scaled cross product of some two columns taken from the matrix Z .

Proof: Consider the following optimization task:

dT y → max,

y ∈ Y,

where d is a normal vector of the polytope facet. From linear programming theory, it is

well known that the problem solution set will always include all vertices that are incident

to this facet (Dantzig, 1966). Consider only these vertices as the solutions to the problem.

We can rewrite the goal function as a function of the variable v :

f(v) = dT y(v) =

m
∑

j=1

dT zjv
(j),

and then our optimization task is

f(v)→ max,

v ∈ H.
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Note that

f(v) ≤
m

∑

j=1

sup
v

(dT zjv
(j)) =

m
∑

j=1

dT zjv
(j)
ext = f(vext),

where v
(j)
ext has the form:

v
(j)
ext = sign(dT zj), if dT zj 6= 0;

v
(j)
ext ∈ [−1, 1], if dT zj = 0.

It is clear that since

f(v) ≤ f(vext),

and varying any v
(j)
ext in the case of dT zj = 0 does not change the value of f(vext), these vext

are the solutions to our optimization task.

From Theorem 5, it is clear that since we consider only those vext that correspond to

the vertices of Y , these vext have the form:

v
(j)
ext =







sign(dT zj), dT zj 6= 0;

±1, dT zj = 0.
(4.10)

The number N0 of zero entries in the dTZ row vector defines the number of vertices Nv,

which are the solution to our optimization task:

Nv = 2N0 .

Recall that a facet of a polytope in 3D space contains at least three vertices. It is clear

that in the case of no zeros in the row vector dTZ, only one vertex serves as a solution and

therefore d is not a facet normal vector. One zero in dTZ corresponds to only two vertices

and d still cannot be a normal vector of a facet. In the case of two zeros in dTZ we will

have d, which is uniquely defined as the vector orthogonal to at least two columns of Z.

And it is now a normal vector of a facet, because it corresponds to at least four vertices of

Y .�

It is worth looking now at Fig. 4.4 in order to understand the principles of the proof.
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Figure 4.4: Schema of the Theorem 6 proof using the original variables

Any normal vector d of a polytope facet is computed as the cross product of two different

columns zi and zj taken from the matrix Z:

d(1) = z
(2)
i z

(3)
j − z

(3)
i z

(2)
j ,

d(2) = z
(3)
i z

(1)
j − z

(1)
i z

(3)
j ,

d(3) = z
(1)
i z

(2)
j − z

(2)
i z

(1)
j .

Note that for any facet normal vector d there exists its opposite in sign vector −d, which

is defined as the normal vector of the opposite facet. Because of this, our polytope is a

symmetric one.

Suppose that we have all columns of Z in a list and determine all pairs of one column

zi and any other column of Z from the list; the number of such pairs is m− 1 and any pair

gives us two valid facets of the polytope. In the next step, we have to remove this zi from

the list and repeat the procedure (now the number of pairs is m − 2). Proceed the same

way until we have at least two columns. The maximum number of facets Nf and therefore

the complexity of the facet determination procedure is given by the next equation:

Nf = 2
m

∑

i=1

(m− i).
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It is clear that Nf < 2m2 and the complexity is at least polynomial. Generally, in the

case of several identical (or scaled by a factor) columns in the matrix Z the number of facets

is less than Nf because different couples produce normal vectors in the same direction in

space.

Note that it is easy to derive from (4.10) the complete procedure to determine all

vertices vi of the hypercube H, which correspond to points Zvi lying in a particular facet

of Y . All facet-incident vertices of the polytope Y are contained in this set of points, but

unfortunately not only those. Generally, some points Zvi exist, which are not related to

the vertices of Y but are placed on the same facet. In this case, we need a procedure to

determine only those vertices of H that correspond to the vertices of Y .

This procedure is as follows, based on the fact that we have at least three incident facets

for any “true” vertex of Y .

• For each facet of Y , create a list of those H-vertices vi that correspond to those points

Zvi that belong to this facet.

• Create one global list of such vertices and associate with any vertex a counter, taking

a vertex from local lists only if it is not already in the global list. If it is in the list,

just increase the counter associated with this vertex (set counter to one initially).

• Remove from the global list any vertex having a counter value less than 3.

The rest of the global list contains only those vertices of H that correspond to the “true”

vertices of Y .

For each particular facet, incident vertices must be ordered clockwise or counterclockwise

to draw this facet of the polytope Y .

We can split a polytope into tetrahedra having exactly four vertices with one of them

at the origin (we suppose that the origin lies not on the polytope boundary, this is always

the case while we consider the polytope Y here). Then, the volume of a tetrahedron with
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Figure 4.5: Reordering procedure.

nonzero vertices yi, yj, yk is given by (Rourke, 1994)
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This volume is signed and is positive if {yi, yj, yk} form a counterclockwise circuit when

viewed from the side away from the origin, so that the facet normal, determined by the

right-hand rule, points towards the outside.

Given a clockwise or counterclockwise ordered list of vertices for a polytope facet, one

can triangulate this facet as a “fan” with all diagonals incident to a common vertex and

this may be done with any vertex serving as the fan “centre” (the point y1 in Fig. 4.5). The

volume of a polytope may be computed by summing the volumes of tetrahedra constructed

from the origin and each triangular facet of the polytope. For each polytope facet having

more than three vertices, one can split the facet into triangular ones by reordering the

vertices, compute the volumes of corresponding tetrahedra and then the whole polytope

volume as a sum of tetrahedra volumes.

Let us explain the vertices reordering procedure by an example in Fig. 4.5. Given

any vertex as the current point in the ordered list (which initially contains only this one),

compute all planes containing three points: this vertex (y1), any another one (y2, y3, y4, y5

or y6) and the origin. Clearly, all of these planes are defined through cross products of
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y1 and one of {y2, y3, y4, y5, y6}. When all vertices are contained strongly in one of the

half-spaces determined by a plane, place the corresponding vertex (y4) as the next one in

the list (do it only if the list does not already contain this one). Then set the current point

to this vertex (y4). Proceed the same way until all vertices are ordered. The resulting list

from Fig.4.5 is {y1, y4, y3, y2, y6, y5}.
At the last step we have to form the representation of the polytope Y via a linear

inequality system. Suppose that all normal vectors dj , j = 1, N of the polytope facets

are collected in matrix D with rows dT
j . For each dj we can determine the distance of the

corresponding facet from the origin. Let us take for each facet any incident vertex yi. Then,

this distance is given by the next equation:

h(j) = dT
j yi.

The vector h of such distances allows us to write a representation of the polytope Y in a

linear inequality form:

Y = {y ∈ Rn : Dy ≤ h}. (4.11)

It is easy to see that in the case of y0 6= 0 the modified polytope Y has the following

representation:

Ω = {y ∈ Rn : Dy ≤ h+Dy0}.

Also, all vertices of the modified polytope Y are constructed from vertices yi of the previous

polytope as y0 + yi. The volume of Y is independent of this coordinate shift.

4.3.2 2D case

The planar case is much simpler in its computational aspect. The following theorem is the

counterpart of Theorem 6 for two-dimensional space.

Theorem 7 Suppose n = 2. Then any normal vector of the polytope facet is orthogonal to

some column taken from the matrix Z.

Proof: Proceed the same way as in Theorem 6. Note that in the planar case any polytope

facet has no more than two vertices (and no less, of course). In the case of one zero in dTZ

we will have d, which is uniquely defined as the vector orthogonal to at least one column
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of Z. Also it is a normal vector of a facet, because it corresponds to at least two vertices

of Y .�

The computation of the vector d, which is orthogonal to a particular vector zi taken

from the matrix Z, is rather simple and given by the following formulas:

d(1) = −z(2)
i , d(2) = z

(1)
i .

Half of the maximum number of facets in this case is equal to a number of rows in the

matrix Z, i.e. Nf = 2m.

The procedure for determining “true” vertices of the polytope is generally the same,

but in this case we have to remove vertices with counter value less than 2.

There is no need to reorder the vertices in the planar case, each facet has exactly two

incident vertices and the volume (which is actually an area in the planar case) of a triangle

formed by these vertices and the origin is as follows (Rourke, 1994):

1

2
(a(1)b(2) − a(2)b(1)),

here we denote vertices as a and b (labeled counterclockwise).

The area of a two-dimensional polytope (which is obviously named as the polygon) is

computed as the sum of all such triangles. Also, to represent a polytope in linear inequality

form (4.11) we have to proceed the same way as in the previous subsection.

4.4 Control allocation algorithm

Now, we return to our main goal - using the described properties of the APS and the

ideology of interval bisection, solve the control allocation task in real-time.

The sketch of an algorithm that implements the generalized bisection method is as

follows. First, we construct from the given matrix B some kind of indicator function, which

will quickly give us an answer regarding as to whether or not the given pseudo-control

vector is inside the attainable pseudo-control set for the particular box. For this, we use

the representation of the APS in the form of a system of linear inequalities. Second, we

scale the given pseudo-control vector to guarantee it is inside the APS for the initial box.

Third, we apply bisection iterations to obtain the solution. All these steps are performed

in a predetermined and finite number of floating-point operations.
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4.4.1 Construction of the indicator function

Let us suppose that in the general case every normal vector dk to a facet of the APS is or-

thogonal to some n−1 columns bk1
, bk2

, ..., bkn−1
taken from the matrix B if rank([bk1

|bk2
|...|bkn−1

]) =

n− 1.

Note also that for every such vector an opposite-direction vector exists that is perpen-

dicular to another APS facet (since the APS is symmetrical). So, we can easily compute

dk for all possible non-degenerate combinations of n − 1 columns of matrix B and be sure

that we have caught all directions perpendicular to APS facets. The particular magnitude

of these vectors is not important for our procedure (i.e. we do not need to normalize them

first).

It is clear that the number of APS facets is bounded above by the number M of vectors

dk, which is the number of combinations of n− 1 vectors out of a set of m:

M =





m

n− 1



 =
(m)!

(m− n+ 1)!(n − 1)!
.

Some of generated vectors are normals to a facet, and some may be redundant. But

the amazing property of the linear inequality approach is that we can use all of them to

produce a correct APS representation.

Assume that we want to maximize a linear function dT
k y over the whole APS for the

given box of control constraints U defined by (4.2):

dist(U, dk) = max
y∈Y (U)

dT
k y. (4.12)

The maximization over vectors y can be easily replaced by the maximization over control

variables:

dist(U, dk) = max
u∈U

dT
kBu = max

u∈U

m
∑

i=1

dT
k biu

(i), (4.13)

and we can maximize this sum by maximizing each of the summands separately:

dist(U, dk) =

m
∑

i=1

max{dT
k biu

(i)
min, d

T
k biu

(i)
max}. (4.14)

Let us formally construct the indicator function IU (y), which is TRUE if vector y

belongs to the APS for the given box U or FALSE otherwise. Then IU (y) ≡ TRUE if and
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only if y satisfies the following system of linear inequalities:

dT
k y ≤ dist(U, dk), k = 1,M

−dT
k y ≤ dist(U,−dk), k = 1,M







(4.15)

dj

dT
i y ≤ dist (U, di )

− di

di

− dT
i y ≤ dist (U, − di )

The attainable

pseudo-control set

dk

dT
j y ≤ dist (U, dj )

Figure 4.6: APS represented by a set of linear inequalities.

It can be seen in Fig. 4.6 how this system defines the APS. Here di is a true normal

vector to a facet, while dj is redundant for the representation (but its presence does not

affect it).

4.4.2 Scaling the pseudo-control vector

If the APS for the initial box contains the origin, one can construct the following scalar

nonnegative Minkowski function (Blanchini, 1995) induced by the APS:

V (y) = max
k

max{dT
k y/dist(U, dk),−dT

k y/dist(U,−dk)}. (4.16)

Its level surfaces are obtained by scaling the boundary of the APS (and it is equal to

1 at the boundary). For those y that violate the APS it allows the scaled pseudo-control

vector αy lying on the boundary and pointing in the same direction to be easily computed.

For this, one can take

α = 1/V (y). (4.17)
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4.4.3 Splitting the control box

This is the easiest step of the algorithm. Suppose that we have some control box U defined

as in (4.2). Then we can find the coordinate direction in which U has the longest facet:

k = arg max
i=1,m

{u(i)
max − u

(i)
min} (4.18)

Now we can form two adjacent boxes splitting the interval for k-th coordinate in the middle:

u
(k)
0 = (u(k)

max + u
(k)
min)/2

U1 = {u ∈ Rm : u
(1)
min ≤ u(1) ≤ u(1)

max, ...,

u
(k)
min ≤ u(k) ≤ u(k)

0 , ..., u
(m)
min ≤ u(m) ≤ u(m)

max} (4.19)

U2 = {u ∈ Rm : u
(1)
min ≤ u(1) ≤ u(1)

max, ...,

u
(k)
0 ≤ u(k) ≤ u(k)

max, ..., u
(m)
min ≤ u(m) ≤ u(m)

max}

During the iterations, one of these boxes should be deleted and the other one will replace

U .

4.4.4 The algorithm

Now we are ready to implement all the steps of the algorithm in one piece of a pseudocode,

which will receive as input parameters the required pseudo-control vector ydes, the previous

control value u0, the normals to facets dk, k = 1,M , the initial control box U and the

number N of required iterations (precomputed with the help of (4.5)):

if V (ydes) > 1 then y = ydes/V (ydes) else y = ydes

for i = 1 to Nm

Split U into U1 and U2

Compute IU1
(y) and IU2

(y)

if IU1
(y) ≡ TRUE and IU2

(y0) ≡ TRUE
if u0 ∈ U1 then U = U1 else U = U1

else

if IU1
(y) ≡ TRUE then U = U1 else U = U2

end

end
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In the case of ambiguity this algorithm tries to pick the solution closer to the previous

control vector u0. Every u in the resulting box U is acceptable since it has the required

numerical accuracy. One can take the center of the box as a final solution.

Note that in the case of actuator jamming or hard-over, there is no need to recompute

normals to all facets. We need only remove from consideration those facets that were

generated using corresponding columns of the B matrix, and adjust the required pseudo-

control vector (we should subtract ”jammed” columns as in (Burken et al., 2001)).

4.5 Numerical examples

To illustrate the proposed approach, let us first consider the following 2D control allocation

problem taken from (Durham, 1993):

B =





7.35e − 4 7.55e − 4 −1.35e − 4

8.56e − 5 5.13e − 4 −1.37e − 3



 ,











−20

−20

−30











≤ u ≤











20

20

30











, ydes =





0.035

0



 .

(4.20)

The advantage of this example is that we can easily do visualization with the algorithm

steps in terms of attainable sets, which is not a very straightforward task when we are

dealing with problems of higher dimension.

In this case, the algorithm can utilize a very simple computation of normal vectors. As

we know that each normal vector to a facet is perpendicular to one of the B columns, we

have

dT
i = [−b(2)i , b

(1)
i ], i = 1, 3. (4.21)

Control constraints are given in degrees and the pseudo-control vector is actually a

vector of the body-axis rolling and yawing moment coefficients:

y =





Cl

Cn



 . (4.22)
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Since the commanded moment appears to be outside the APS, it was first scaled to

y =





0.0286

0



 , (4.23)

which lies at the APS boundary. Then we applied 8 bisection steps with 3 iterations for

each one. After 24 iterations the following enclosing control box was obtained:










19.8438

19.8438

8.6719











≤ u ≤











20

20

8.9063











(4.24)

We can conclude that the final maximal error (the length of the longest facet of this

box as in (4.7)) is 0.2344 deg. We found this estimate to be in perfect agreement with the

predicted error, which is equal to 60/28 deg.

In Figure 4.7 the moment sets for the left and the right control boxes are shown for the

first 8 bisection steps. For each step, we depict by solid lines a box that has been chosen by

the algorithm at that iteration, while dashed lines represent the one that has been deleted.

The cross inside the circle represents the (scaled) commanded moment vector. One can

notice that the union of the two moment sets is always a convex set since it represents the

attainable moment set for the union of two adjacent control boxes.

Another example is connected with unstable lateral/directional dynamics of the X-33

vehicle (Burken et al., 2001) at critical conditions during the entry flight, already considered

in the Chapter 2, where one can find control surface limits. Instead of moments, we are

dealing in this example with angular rates, so that

y =











p

r

q











and

B =











−0.2137 0.2137 −0.8418 0.8418 0.0115 0.0115 −0.2612 0.2621

0.0448 −0.0448 0.3639 −0.3639 −0.0077 −0.0077 0.0548 −0.0548

−0.0617 −0.0617 −0.5393 −0.5393 0.005 −0.005 −0.0754 0.0754











.

Note that B here is different from B in the Chapter 2 (Burken et al., 2001) since we

control only three phase variables.
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Figure 4.7: Moment sets induced by U1 (solid) and U2 (dashed). The horizontal and vertical axes

represent the rolling and the yawing moments, respectively. The crossed circle marks y.
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Figure 4.8: The X-33 reusable launch vehicle

Note that for the 3D case every vector perpendicular to a facet of the APS is actually a

scaled cross-product of two different columns of the matrix B. So, we can easily compute all

possible cross-products bi× bj and be sure that we have caught all directions perpendicular

to the AMS facets. This will give us (m − 1)! vectors dk. Some of them are true facet

normals, and some may be redundant.

For commanded p = 10 deg/sec, q = r = 0 the following enclosing control box was

obtained after 120 iterations:










































−25

1.1703

9.5952

0.11594

−29.991

−29.987

−25

24.974











































≤ u ≤











































−24.998

1.1719

9.5964

0.11719

−29.989

−29.985

−24.998

24.976











































(4.25)

In Figure 4.9 the corresponding rate sets for control boxes that were chosen by the

algorithm are shown for some of the bisection steps.
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Figure 4.9: Rate sets induced by the control boxes chosen on some steps for 3D example (variables

are in degrees per second).



4.6 Conclusion 93

4.6 Conclusion

A novel control allocation algorithm was presented. It has a guarantee of obtaining the

solution for any given pseudo-control vector inside the APS, using normals to the APS facets

and the set of control constraints. The computations are performed in a finite number of

iterations which are known in advance with required numerical accuracy. These properties

allow the algorithm to be considered for implementation in those safety-critical applications

where on-line optimization is prohibited while fast reconfiguration in the case of actuator

failure is required.
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Chapter 5

Conclusions and plans for further

work

Controllability of a system is a necessary condition for the successful design of a controller

and the starting point in a design is to check whether the system is controllable or not.

Hence, tests which check controllability are not only theoretically important but are also

useful tools in the control engineer’s hands. In this thesis such a tool based on a convex

optimization technique is proposed for the computation of the controllable region of an

unstable linear system under amplitude and rate control constraints. It can be applied

for the post design assessment of different control laws and the specification of the design

requirements for the actuator characteristics. Moreover, using computational analysis of

the controllable region, for planar systems with both poles exponentially unstable and

multiple control inputs, we provide a geometric insight into how to construct a saturated

stabilizing linear state feedback so that the domain of attraction of the closed-loop system

is maximized.

The significance of the notion of controllability in linear control theory is obvious since

many design related questions, such as arbitrary pole placement by state feedback, hinge on

the controllability condition. The key to the success of the notion in the linear case is the

Kalman controllability criterion, which on one hand describes an open-loop control property

(controllability) and which implies a closed-loop property (stabilizability). It should be

noted also that the null-time controllability is very closely related to the existence of time-
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optimal control laws and therefore to the stability optimal control as well. Note, however,

that in a nonlinear context, controllability does not imply stabilizability and hence it does

not play the same role for nonlinear systems from the stabilization point of view.

Therefore, one should not expect the results presented in the first two chapters to be

easily extended to the nonlinear case. In the past, a great effort has been devoted to

extending the known relation between controllability and stabilizability for linear systems

to the nonlinear case (Celikovsky and Nijmeijer, 1997). For nonlinear static-state feedback

stabilization, the situation appears to be quite complicated; a well-known example of a

controllable system that is not asymptotically stabilizable by means of a smooth feedback

was given in (Brockett, 1983). Various relaxations and modifications of the notions of

stabilizability and controllability did not help (even a feedback understood in a very general

sense is not able to stabilize the Brockett example). A continuous stabilizing feedback fails

to exist in general.

It has been shown, however, that every asymptotically controllable nonlinear system

can be globally stabilized by means of some discontinuous feedback law (Clarke, Ledyaev,

Sontag and Subbotin, 1997; Shim and Teel, 2003). Despite having great theoretical signifi-

cance, this property does not help in the case of flight control design, especially considering

the recent shift towards all-electric aircraft (Schallert, 2007). The maximum control sig-

nal rates achieved by the electrical-based actuators can be considerably less than for the

previously used hydraulic systems, and this can affect the performance of the closed-loop

control system significantly. Note that even for aircraft with a hydraulic actuation system,

rate control constraints have been frequently considered as more important and leading to

controllability problems such as pilot-induced oscillations (Gilbreath, 2001; Sofrony, Turner,

Postlethwaite, Brieger and Leibling, 2006; Brieger, Kerr, Leibling, Postlethwaite, Sofrony

and Turner, 2007). There is no way of implementing discontinuous control laws in this

situation, and therefore the computation of the controllable region for significantly nonlin-

ear aircraft dynamics makes no sense. The design of any control law that is based on the

controllable region computation seems also impossible.

Despite that, the general ideology of this thesis is still applicable in the nonlinear case, if

one considers it as set-theoretic approach by which one can either estimate or enlarge some

regions in the system state-space and/or parameter space. These regions can be somehow
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related to the performance of the closed-loop system.

In the third part of the thesis, this ideology has been applied to the computation of

the attainable pseudo-control sets and the related maximization of moments and forces

available for an aircraft control in the linear case. Since the result is based on the idea of

interval bisection, one should expect that the interval analysis, which in recent years has

been applied to a number of engineering problems (Jaulin et al., 2001), can help to extend

the results for the general nonlinear case.

Recently, more set-based performance criteria have appeared in the literature, for ex-

ample attainable equilibrium states sets (Goman, Khramtsovsky and Kolesnikov, 2007) or

regions of the Lyapunov function existence in the parameter space for robustness analy-

sis (Juliana, Chu and Mulder, 2007). Generally, one should expect such criteria as being

formulated in terms of nonlinear equations and inequalities. The answer to the posed prob-

lem can be achieved by solving the inequalities via quantifier elimination (Jirstrand, 1997).

In the linear case, quantifier elimination can be performed via the Fourier-Motzkin vari-

able elimination algorithm, described in Chapter 2 (quantifier ”exists”), and Minkowski sub-

traction (quantifier ”for all”). These methods have been used for the computation of control-

lable sets for discrete-time linear systems with and without external disturbances (Keerthi

and Gilbert, 1987; Mayne and Schroeder, 1997).

In the nonlinear case, the elimination process was applied via symbolic computations us-

ing the software package QUEPCAD to derive the set of stationary orientations (also called

the attainable equilibrium set in (Goman et al., 2007)) for the F-16 aircraft model (Glad

and Jirstrand, 1996). Recently, two new methods (Ratschan, 2006; Wittenberg, 2004) and

associated software packages (RSOLVER and CLIP) that perform quantifier elimination

in nonlinear inequalities numerically via interval analysis have appeared. The problems

solvable by these methods include estimation of the region of attraction (Burchardt and

Ratschan, 2007) and hybrid systems modelling (Hickey and Wittenberg, 2004).

The author therefore believes that the progress in the further application of the approach

used in this thesis is closely connected with the formulation of set-based performance criteria

in the form of nonlinear inequalities and solving them by means of quantifier elimination.

This includes the development of new methods for nonlinear variable elimination, which

could be based on their linear counterparts and the local linearization of the constraints.
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