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Abstract 

The cytochrome P450 CYP1 ezymes, CYP1A1, CYP1A2 and CYP1B1, are members of 
the cytochrome P450 superfamily which catalyse the oxidative metabolism of a wide 
range of endogenous and exogenous compounds. CYP 1B1 is highly overexpressed in 
different malignancies but not in the corresponding normal tissues. This significant 
discovery has provided an opportunity to develop tumour specific intracellular activated 
anticancer prodrugs, using CYP 1B1 as molecular target. 

As part of the continuing CYP 1B1 activated anticancer prodrugs discovery programme 
at Leicester School of Pharmacy, this research was set up to delineate the structure- 
activity relationship of the CYP 1 enzymes. This was achieved by studying a range of 
inhibitors designed and synthesised during this Ph. D. project. The inhibitor's ability to 
inhibit CYP 1 enzymes was quantified using a fluorometric high throughput 
ethoxyresorufin O-deethylase assay. 

DMU968 and DMU2157 were identified as inhibitors of CYP 1A1. These inhibitors 
have low intrinsic toxicity and therefore, have potential applications for in vivo and cell 
line based in vitro experiments. 9-Acetylphenanthrene was identified as CYP1A2 
inhibitor. It was demonstrated that 9-acetylphenahthrene has better potency and 
selectivity profiles compared with the known CYP 1 A2 inhibitor furafylline. Fourteen 
CYP 1B1 inhibitors were identified. DMU778 and DMU2103 may have potential 
applications in cell based assays due to low intrinsic toxicity. 

DMU2123 and DMU2127 have been shown to possess tumour specific anticancer 
properties. These compounds were selectively activated by CYPIAI and may have the 
potential as anticancer prodrug since some cancers also highly expressed CYP 1A1. It 
was also found that residual insect P450, present in control microsomes, also 
bioactivated these compounds. Although the identity of the insect P450 has not been 
identified, DMU2123 and DMU2127 have a double potential as insect selective 
pesticides as well as tumour selective anticancer agents. Currently, more detailed 
studies are being performed on these compounds. 

Combining drug metabolism data obtained elsewhere and enzyme inhibition results, 
pharmacophore models for the CYP 1 enzymes were constructed. The pharmacophore 
models for each CYP 1 enzymes have shown distinct structural requirements for 
selective inhibitors and substrates. These pharmacophore models have contributed 
towards better prodrug design. Inhibitors synthesised in this research may be used for 
studying other P450s structure-activity relationships. Selective inhibitors identified in 
this project also provided valuable molecular probes for drug metabolism and 
pharmacokinetic studies. 
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Chapter 1 

The Cytochrome P450 CYP1 

Family Enzymes and Cancer 



The cytochrome P450 CYPJ family enzymes and cancer 

1.1 The P450 enzyme superfamily 

1.1.1 The discovery of P450 

The mammalian cytochrome P450 enzyme complex is a membrane bound oxygenase 

system that consists of the haem-thiolate P450 and its redox partner NADPH- 

cytochrome P450 reductase. Initially, it was thought that P450 was a single unique 

cytochrome but it soon became clear that the P450 exists as multiple forms of enzymes; 

each with different properties in respect of their substrate selectivity and their ultra- 

violet (UV) absorption maxima spectra for the P450-carbon monoxide (CO) adducts 

(Table 1). The multiplicity has led to the enzymes being termed mono-oxygenasel, to 

describe their ability to oxidise a large variety of substrates. 

Table 1: Some characteristics of mammalian P450-CO adducts UV 

absorption maxima 2 

CYP Species X .. (nm) CO adduct 

1A1 rat 447 

I A2 rat 447 

2A I rat 451 

2C5 rabbit 450 

2D9 mouse 449 

2E2 rabbit 452 

3A6 rabbit 449 

4A4 rabbit 450 

17 



The cytochroine P450 CYPI family enzymes and cancer 

The discovery of xenobiotics metabolising enzymes in the microsomal subcellular 

fraction3 (endoplasmic reticulum vesicles) and the appearance of a vivid orange-red 

pigment following the complexation of microsomal preparations with CO4'5 led to the 

discovery of P450 in the 1950s. However, the catalytic functions of P450 have been 

observed more than twenty years earlier before Axelrod3, when Verkade6 reported the 

co-oxidation of fatty acids in dogs and human subjects. Carter7 and Bergstrom8 also 

discovered similar biological oxidation of other a- and ß-substituted fatty acids in 

animals before P450 was named and characterised. The designation of "P450" in early 

1960s followed after Omura? -11 identified the CO binding pigment as a haemprotein 

which possessed an ultra-violet absorption spectrum with a Soret peak at 450nm. 

The P450 mono-oxygenase systems are widespread in nature and are present in all five 

biological kingdoms 12,13 
. It appears that certain primitive species of bacteria do not 

contain any form of the enzyme, indicating that the ancestral P450 gene may have 

developed some 3.5 billion years ago'4"5. In mammals the enzyme system is found 

predominantly on the endoplasmic reticulum (ER) and in mitochondria. P450 has been 

found in all tissues examined including lung, small intestine, kidney, colon, the brain 

and, with greatest abundance, in the liver 16. As more P450s were identified, the 

nomenclature of P450s, usually based on how they were identified, was increasingly 

,a unmanageable and difficult to follow. Under the leadership of Daniel Nebert 17 

naming system was devised based on amino acid sequence homology of the enzymes. 

For example, the rat P450 formally known as P450PB 1 is now referred to as CYP2B 1, 

while the corresponding gene became CYP2B1 to indicate family 2, subfamily B and 

individual enzyme number 1. To date there are over 800 subfamilies of P450 have been 

discovered18 and more are added to the list as new P450s are identified and 
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characterised. 

The explosion of P450 research areas and applications was made possible after the 

successful resolution of microsomal P450 by Coon et. al. 19'20 in 1968. The reconstituted 

system consisting a P450, a NADPH-cytochrome P450 reductase and the lipid 

component phosphatidylcholine, and was shown to be capable of biotransforming a 

variety of drug, hydrocarbon and fatty acid substrates21. Through the advancement in 

biochemistry and biotechnology, the use of heterologously expressed P450s for in vitro 

research is now commonplace. 

Proximal face (of P450 

NADPH-cytochrome 
IBM P450 reductase 

C'1' 1 Oll \SM 

P450 

Distal face 

Phospholipid 
membrane bilayer 

1 

Figure 1: Diagrammatic representation of a typical microsomal P450 mono- 

oxygenase system 

The red bar represents the haem which is embedded within P450 and perpendicular to the plane of the 

membrane. Broad arrows indicate the proximal and distal faces of P450. The cytoplasmic and luminal 

faces are indicated in red. The hydrophobic leader sequences of both components are indicated by the 

bars which protrude into the membrane bilayer to afford anchorage. In some cases, cytochrome b5 can 

also act as a source of electrons for P450 (i. e. CYP3A4). 
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It is no exaggeration to state that the P450 enzymes are the most important biological 

catalysts known in all life forms. The enzymes catalyse the biosynthesis and metabolism 

of endogenous substances, including steroids, fatty acids, phytoalexins, alkaloids, 

eicosanoids and vitamins'. The substrates of P450 also encompass a host of xenobiotics, 

including those that occur biologically (i. e. antibiotics and phytoestrogens), as well as 

man-made chemicals such as drugs and environmental pollutants'. From a medicinal 

chemist's point of view, P450s are important, firstly because of their capability to alter 

pharmacological activity of a drug. Secondly because they provide a gateway to target 

diseased cells, e. g. by synthesising novel prodrugs that would be selectively 

bioactivated by a specific P450 that is prevalent in that diseased state. Pathogenic 

microorganisms could also be targeted using a similar approach and, in theory, the 

prodrug strategy would offer a better therapeutic window and minimum side-effects as a 

result of intracellular bioactivation of the non-toxic prodrug to its cytotoxic species 

selectively within pathogenic cells. This strategy could also be employed in the design 

of novel pesticides and herbicides for use in agriculture. The selective killing of pest 

insects and weeds rather than non selective methods of employing toxic substances 

would have an enormous positive impact on the ecosystem. 

Biotransformation of 
r ............... xenobiotics/metabolism 

Pharmacology 
Toxi logy 

Cytochrome P450 

Biochemistry Medicinal chemistry; 
Physiology 

ýPhytochemistry 
Endogenous metabolism Prodrugs/Pesticides/Herbicides 
and biosynthesis of biological ""...... ' """ 
compounds 

Figure 2: Cytochrome P450 research areas and potential applications 
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1.1.2 Evolution of cytochrome P450 

As more and more genomes from different organisms were sequenced, the number of 

P450 genes/proteins detected also significantly increased. At the moment of writing, 

more than 3000 P450 genes have been sequenced18. The large number of P450s 

identified has made the studies on how this superfamily evolved over the last 3.5 billion 

years14"5 possible. Using appropriate algorithms, it is feasible to compare two or more 

proteins sequences and their approximate evolutionary distance can be calculated22. The 

method is based on the specific rate of protein mutation23 and how mutation rate is 

associated with the divergence of two related proteins24. This led to the unweighted pair 

group method of phylogenetic analysis (UPGMA)25'26, a method for the formulation of 

phylogenetic trees (for example see Figure 3). 

The P450 rpomenclature devised in 1987 '7 is now choking with families as more and 

more P450 families are discovered and assigned. The explosion of family number has 

made the nomenclature cumbersome as well as created inconvenience in evolutionary 

studies. Some families of P450 clearly belong together and therefore, a higher order of 

nomenclature is necessary to cluster these families collectively. The term used for these 

clusters is clan. The clan system devised by David Nelson27, has made the studies of 

P450 evolution manageable. P450s within a particular clan are diverged from a common 

P450. Comparisons of different clans have shown that P450s are probably descendants 

of an ancestral protein present in a prehistoric life form, before the divergence of 

prokaryotes and eukaryotes. It is interesting to note that the CYP 1 family enzymes share 

a common ancestral root with P450s that are responsible for sex hormone biosynthesis 

(Figure 3). This indicates the possible endogenous role of CYP1 enzymes in the 

homeostasis of hormonal level in animals. 
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Figure 3: A UPGMA phylogenetic tree of 43 animal P450s 

The phylogenetic tree only shows one P450 from each family. Adapted from Nelson27. 

It is thought that the ancestral P450 was developed by ancient thermophilic 

archaebacteria which occupied the vicinity of deep sea volcanoes28. This is a sound 

hypothesis since there would be a plentiful supply of iron and sulphur, the key elements 

for P450 and the redoxin redox partner. It has been suggested that the early role of P450 

enzymes may have involved detoxification of reactive oxygen species harmful to 
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anaerobes29. As the oxygen level in the earth's atmosphere rose, due to photosynthetic 

activity of blue-green algae30, excess oxygen has enabled life to develop from simple 

single cell organisms to the progressively more complex eukaryotes. As species evolved 

complexity and multicellularity, ancestral P450s were recruited for new tasks that did 

not exist before and this could be the driving force of P450 divergence31. 

Prokaryotes rly Single Cell 
Eukaryotes 

Divergence of plant-animal-fungi 
Start of sexual reproduction 

Mitochondrial Microsomal 
P450s P450s 

The plant-animal biochemical 
warfare and radiation of life forms 

Present (>3000 P450s) 

Figure 4: Tree diagram summarised the divergences of P450s and the major 

evolutionary events 

23 



The cytochrome P450 CYPI family enzymes and cancer 

It was postulated by Nelson that the oldest P450 in prokaryotes and eukaryotes is 

CYP5127-31. CYP51 and its homologues are found in most life forms that synthesise 

sterols, these include bacteria, mammals, fungi and plants. Insects do not have CYP5 1, 

since they obtain sterols from their diet. However, the author believed that the remnant 

of this gene could still be present in the insect genome. CYP51 and its homologues are 

responsible for 14-a-demethylation of lanosterol skeleton in bacteria, fungi and 

animals, as well as 14a-demethylation of obtusifoliol skeleton in plants (Figure 5). This 

is a crucial stage in sterols biosynthesis as evidenced by the absence of a 14a-methyl 

group in all known functional sterols. 

The evolution of life forms, which has progressed to complex multicellular organisms, 

presumably has necessitated signalling molecules that control inter- and intracellular 

communications. Ancestral P450s were expanded to accommodate these new roles, as 

evidenced by the fact that most of these signalling molecules, including steroid 

hormones and eicosanoids, are synthesised or partially synthesised by P450s. 

As the divergence of animal-fungi-plant took place, we can see the beginning of the 

great animal-plant "biochemical warfare"32. P450s were further diverged in plants to 

synthesise toxic products that would prevent them being consumed by animals but on 

the other hand, animals also evolved to acquire a battery of P450s that could detoxify 

these harmful substances. Many plant substances such as flavonoids do possess 

properties that can alter animals physiological and biochemical processes 33-36. Homo 

sapiens did not emerge as a distinct species until about 1 million years ago 2 and it is 

also widely accepted that our evolution was based on a largely vegetarian diet. 

Therefore, there is an intriguing possibility that plant substances such as flavonoids, 

could be an integral part of our exo-hormonal system that helps to maintain homeostasis 
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in our body (Potter and Tan, unpublished hypothesis). Animal P450s that evolved to 

metabolise these exo-hormones may play a regulatory role on exo-hormonal levels, as 

well as endogenous hormone metabolism. 

alene epoxide 

d 

Ianosterol eburicol VIJLUJ11V11V1 

CYP51 = 14a-demethylase 

1 

Figure 5: Biosynthesis of sterols from different organisms 

Lanosterol is the natural substrate of CYP51 in yeast, bacteria and mammals. Eburicol and obtusifoliol 

are natural substrate of filamentous fungi and plants CYP51, respectively. The carbon-14 is indicated in 

red 
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The cytochrome P450 may have emerged as an enzyme to detoxify reactive oxygen 

species in anaerobes. As the earth's atmospheric oxygen rose, the enzymes subsequently 

acquired the ability to harness chemical potential of oxygen to biosynthesise and 

metabolise endogenous compounds such as steroids, fatty acids and eicosanoids. The 

animal-plant co-evolution also caused further divergences of P450s, as plants tried to 

biosynthesise toxins and animals tried to detoxify these phytochemicals. Therefore, it is 

very reasonable to speculate that all P450s should have a very specific natural 

substrate, which is characteristic of any given P450. Man-made chemicals, such as 

drugs and environment pollutants, are also metabolised by P450s. However, it would 

not be surprising to observe metabolism of these xenobiotics by P450s since most of 

these xenobiotics have a close resemblance to molecules from nature. Elucidation of the 

natural substrate for each P450 is of paramount importance given that this would 

probably lead to a better understanding of the biochemistry and molecular 

pharmacology of life. 

1.2 Regulation and catalytic mechanisms of P450 

1.2.1 Regulation of P450 expression 
Cytochrome P450s have diverse mechanisms of regulation. The most common form is 

thought to be gene transcription, for example the induction of xenobiotic metabolising 

CYPs (eg. CYP1, CYP2, CYP3 and CYP4) by exogenous ligands37'38. Post- 

transcriptional mechanisms are involved, these include mRNA processing and 

stabilization. Lastly, post-translational mechanisms are also implicated. These are 
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thought to be mediated via protein stabilization and degradation through changes in the 

phosphorylation state of the enzyme. 

The most extensively studied and characterised P450 with regard to its regulation is 

CYP1A139. CYPJA1 is a member of the polycyclic aromatic hydrocarbon (PAH) 

inducible gene family. The induction of this P450 involves activation of transcription 

via the aryl hydrocarbon receptor (AhR). AhR is a cytosolic receptor and is usually 

complexed with the molecular chaperone heat shock protein 90 (HSP90)40, co- 

chaperone p2341 and a tetratricopeptide repeat protein of the immunophilin family, 

variously termed as MR-interacting protein (AIP)42, AhR-associated protein 9 

(ARA9)43 and hepatitis B virus X-associated protein 2 (XAP2)44. The complexation of 

AhR and its cytosolic factors is thought to be essential to maintain AhR in a latent non- 

DNA binding mode as well as to maintain a conformational receptive state, ready for 

the binding of AhR ligands41,45,46. The AhR has a basic helix-loop-helix (bHLH) motif 

near the N-terminus47. Close to this motif is a region of around 300 amino acids 

sequence, referred to as Per-ARNT-Sim (PAS) domain (Per and Sim are Drosophila 

proteins), which ensues protein-protein interactions48. The AhR also contains a 

glutamine-rich C-terminus that is involved in nucleus translocation recognition. 

It is generally accepted that upon binding of an AhR ligand, the HSP90 and other 

cytosolic factors will dissociate from AhR to facilitate nucleus translocation49. Inside 

the nucleus, the AhR-ligand complex dimerises with another bHLHJPAS transcription 

cofactor, i. e. the AhR nucleus translocator (ARNT), to form a mature transcriptional 

factor that will bind to DNA recognition site (xenobiotic responsive element, XRE) 

upstream to the CYPJA1 gene and initiates gene transcription. However, Lees and 

WhitelawS° have shown that HSP90 only dissociates in the nucleus after secondary 
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dimerisation between AhR-ligand complex and ARNT. The authors suggested this 

concerted exchange of AhR partner proteins is necessary to avoid AhR degradation. 

AhR transcriptional activity is dependent on the phosphorylation state of the AhR 

itself 1. Tyrosine phosphorylation, as well as phosphorylation of serine/threonine 

residues, has been shown to be required in DNA binding and transcriptional activity. 

The AhR pathway was found to activate gene expression of a factor designated as AhR- 

repressor52. The AhR-repressor competes with AhR for ARNT and this could form part 

of the regulatory circuit in the AhR pathway. 

The AhR is a pleiotropic transcription factor. AhR has been shown to cross-talk with 

nuclear factor kappa B (NF-KB)53, which itself also a pleiotropic transcription factor. 

NF-KB is a key factor in regulating the immune system and inflammatory responses, as 

well as responding to cellular and oxidative stress 54,55. AhR has been found to be 

associated with apoptosis in murine hepatoma lclc7 cells by a mechanism that is 

independent of ARNT and exogenous AhR ligandS56. AhR also cross-talk with hypoxia 

inducible signalling pathway in both inhibitory and additive manners57. These evidences 

shows that NF-xB, the AhR and hypoxia inducible pathways are interconnected in the 

regulation of angiogenesis, apoptosis, immune response as well as metabolism of endo- 

and exogenous compounds. The precise mechanistic control of these interconnected 

systems is currently unknown and remains to be fully elucidated. 

1.2.2 Mechanism of P450 catalysed reactions 
P450s catalyse biosynthesis and metabolism of a wide diversity of chemicals including 

endogenous substances and xenobiotics (either biological or man-made). Many 

reactions catalysed by P450s have been demonstrated, these include hydroxylation, 
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epoxidation, deamination, dealkylation, dehalogenation and even reduction. 
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Figure 6: Some examples of P4S0 catalysed reactions 

The active site of P450 contains a b-haem, a complex between an iron atom and 
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protoporphylin IX. The prosthetic group is bound to the protein partly by hydrophobic 

forces. The fifth ligand of the haem is a thiolate anion provided by a cysteine residue 

from the apoprotein. 

The substrates of P450 can be categorised into 3 main groups58,59. The first group 

termed Type I, are usually hydrophobic compounds. The haem of the P450 in free 

(resting) state is usually hexa-coordinated, with water molecule occupies the sixth 

coordinate site (see Figure 7; part (1)). This features a Fe(III) cation in a stable, low spin 

configuration with very low reduction potential (-300mV). Upon binding of a Type I 

substrate, the water molecule is lost from the Fe(III) which results in a Fe(III) high spin 

configuration. The substrate at this stage does not bind to the haem but is held in the 

substrate binding pocket via various hydrophobic and hydrogen-bonding interactions60 

62. The high spin configuration increased the cation reduction potential to -170mV 

which is mandatory for the P450 catalytic reaction. The increase in reduction potential 

yields a greater electromotive force for the subsequent electron transfer from NADPH- 

cytochrome P450 reductase (Figure 7; part (A)). 

The shift from low to high spin state induced by Type I substrates can be observed in a 

characteristic UV spectral change, with an absorption maximum at around 390nm and a 

minimum at around 420n n59. Type II substrates however, are mainly nitrogenous bases 

and are thought to ligate (via the lone pair electrons on the nitrogen atom) to the haem 

iron of P450. This hexa-coordinate configuration results in a low spin state, with a 

characteristic UV spectral change with absorption maximum around 430-435nm and 

minimum around 385-'390nm. The third group of P450 substrates are the reverse Type I 

substrates. They were formerly designated as modified Type II59, due to the close 

resemblance of spectral change (maximum at 420nm and a trough at 390) to Type II 
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compounds. The reserve Type I spectral change is thought to be the result of 

displacement of the bound endogenous Type I substrate from the P450 binding site63.6a 
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Figure 7: The cytochrome P450 catalytic cycle 

The penta-coordinated haem is shown in (1) with its fifth ligand cysteine residue from the P450 

apoprotein (shown as -S-). (A) and (B) represent the sequential electrons transfer and (1) to (5) are steps 

in the P450 oxidation leading to a hydroxylated product. The inlet showed the iron protoporphylin 

prosthetic group. RH = substrate; ROH = hydroxylated product. 
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The first electron for the reduction of Fe(III) to Fe(II) is provided by the NADPH- 

cytochrome P450 reductase. The NADPH-cytochrome P450 reductase is a flavin- 

containing enzyme. Each one of this flavoprotein is made up with one mole of flavin 

adenine dinucleotide (FAD) and one mole of flavin mononucleotide (FMN) per mole of 

apoprotein65,66. The flavoprotein transfers two electrons from the reduced ß- 

nicotinamide adenine dinucleotide phosphate (NADPH) to the cytochrome P450 and in 

the same process generates two protons. It is known that the transfer of electrons takes 

place in two distinct steps, as represented as (A) and (B) in Figure 7. The precise 

oxidation/reduction states of NADPH-cytochrome P450 reductase during electron 

transfer are not fully understood, as the redox biochemistry of the two flavins are 

complex. However, in an elegant series of studies, Vermilion and co-workers 

established that electrons flow through the reductase follows the pathway from NADPH 

to FAD and FMN and finally to P45067-69. 

The next step in the catalytic cycle is to initiate the oxidative reaction, where molecular 

oxygen is bound to the ferrous iron centre (Figure 7; part (3)). Subsequent one electron 

transfer from the ferrous iron to the molecular oxygen re-oxidises the iron centre to give 

a ferric-superoxide complex. The second electron transfer, followed by two protons 

from the reductase, yields a Fe(V)-oxo complex. 

The Fe(V)=O species is highly electrophilic that would react with electron-rich centres 

of substrates like double bonds of alkenes and arenes, lone pair electrons of 

heteroatoms, or electrons involved in C-H bond. Oxygen insertion into the substrate is 

believed to involve hydrogen abstraction from the substrate. Recombination of the 

resulting transient hydroxyl and carbon radical gives the product and restores the P450 

to its starting ferric state (Figure 8) 70. 
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Figure 8: Hydroxylation of substrate (RH) by cytochrome P450 

It is thought that a Fe(IV)-O radical is involved. The transient Fe(V) and Fe(IV) equilibrium is believed to 

be stabilised by the cysteine axial ligand, and by ligand-to-metal charge transfer from the macro cyclic 

and highly delocalised prophyrin ring. 

Potter (personal communication, unpublished hypothesis) proposed an alternative 

mechanism, which was thought to be more energetically favourable, in the final stage of 

oxygen insertion in P450 catalysed oxidation. The mechanism involved the Fe(V)=O 

species directly with the aid of mesomeric effects of the lone pair electrons on the 

oxygen atom (Figure 9; (i)). This requires substrate temporary bound to the ferric haem 

centre before rearranging to give the hydroxylated product. Direct hydrogen abstraction 

from aliphatic substrate may also take place since the Fe(V)=O centre is highly 

electrophilic. In this case, it is best illustrated by O-demethylation shown in Figure 9(ii). 
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Figure 9: Alternative mechanism in P450 catalysed oxidation 

The mechanism proposed by Professor Gerry Potter which involves the Fe(V)=O species directly as 

opposed to the mechanism shown in Figure 8. 

1.2.3 Molecular modelling of P450 enzymes 
Earlier studies on the relationships of structure to function in the P450s have been 

limited by the lack of three-dimensional (3D) crystal structure for a mammalian P450. 

Older mammalian P450 molecular models are based on the known structure of CYP101 

(P450car�)61, a cytosolic bacterial P450 from Pseudomonas putida that only shares 

10-20% primary sequence homology with its mammalian counterparts60. Some other 
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models, such as the CYPI enzymes, are based on a unique bacterial P450 CYP102 

(formerly P450BM-3 from Bacillus megaterium)71 which has higher homology with 

microsomal P450s. The mammalian P450 crystal model (CYP2C5 from rabbit) was not 

available until year 200072 and after that, many human CYPs were re-modelled using 

this mammalian template 73-75 
. More recently, two human P450 crystal models have been 

determined (CYP2C976 and CYP3A477). Unfortunately, the both projects were privately 

funded (Astek Technology, Cambridge UK) and the full crystal structure is unavailable 

to the public domain. 

Figure 10: The crystal model of CYPI01(P450 0J 
The rods labelled A-L are a-helices and the antiparallel ß-sheets are represented by broad arrows (ß 1-05). 

Adapted from Poulos et al6'. 
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Studies on the available P450 crystal models72'78 demonstrate the dramatic similarity in 

tertiary structural elements between different P450s, even though these proteins only 

share very low primary sequence homology, as well as the number of amino acids in 

each enzymes. The crystal structures of P450s resemble a triangular prism, with 

approximately 45% a-helices, 15% antiparallel ß-sheet structures and the remaining as 

random loops. Although the a-helices are distributed throughout the polypeptide chain, 

tertiary structure reveals an asymmetrical arrangement, with helices clustered on one 

side and the ß-sheets located near the N-terminal of the protein (see Figure 10). In 

microsomal P450s, the N-terminus sequences contain highly hydrophobic amino acids 

residues, termed the signal-anchor (SA) sequences79, which are important to afford 

membrane anchorage80. On the contrary, the membrane bound mature mitochondrial 

P450s do not contain the SA sequence, indicating other hydrophobic surface of the 

protein responsible for membrane anchorage. The crystal structure of the microsomal 

P450 CYP2C5 confirmed the above assumption by showing a hydrophobic surface of 

the P450, formed by non-contiguous portions of the polypeptide chain, interacted with 

endoplasmic reticulum (ER)72. The study also showed that the interaction of the 

hydrophobic surface with ER places the entrance of the substrate access channel in or 

near the membrane. This configuration orients the proximal face of the protein and the 

prosthetic group perpendicular to the plane of ER for interaction with the NADPH- 

cytochrome P450 reductase (Figure 1; page 19). 

As a result of difficulties in obtaining crystal for each individual P450 enzyme, the 3D 

structure for most of the P450s were constructed based on homology modelling 

techniques, employing special software packages and specially built computer 

workstation 7I73-75. In any homology modelling study, amino acids sequence of the 
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target protein is aligned with the sequence of the homologue for which the 3D structure 

is known. This exercise is to identify those residues which comprise secondary 

structural elements (a-helices and ß-sheets) that can be then assembled into a whole 3D 

structure. However, as a result of different number of amino acid in each individual 

P450, the assignment of secondary structure is poor. This is compensated by truncation 

and/or addition of amino acids into the target protein though this exercise has severely 

compromised the accuracy of the final model. 

1.3 Cancer and the P450 CYP1 family enzymes 

1.3.1 Cancer 

Cancer is a disease that arises from stepwise accumulation of genetic changes in normal 

cells. These changes liberate neoplastic cells from the homeostatic mechanisms that 

govern normal cell death and cell proliferation. Cancer can manifest itself in many 

forms, including both solid tumours and leukaemias. These cancer cells will grow out of 

control and invade, erode and destroy normal tissues. 

Over one in three people will be diagnosed with cancer during their lifetime. In year 

2002, more than 270,000 new cases of cancer were diagnosed in the UK81. There are 

over 200 different types of cancer, but the four major types which are lung, breast, 

prostate and colorectal, account for over half of all cases diagnosed. 
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Figure 11: UK Cancer Incidence 2002 

The 20 most commonly diagnosed cancer in UK. Adapted from Cancer Research UK81. 

Cancer was the cause of more than a quarter of all deaths in the UK in 2003 and 

amongst these cases, 22% was caused by cancer of the lung and a quarter from cancers 

of the large bowel, breast and prostate82. Cigarette smoking has been identified as the 

single most important cause of cancer. Overall, one third of all cancer related deaths, 

including around 90% of lung cancer deaths, were linked to tobacco smoking. Apart 

from cigarette smoking, an individual's risk of developing cancer depends on many 

factors including diet, life style and genetic inheritance. 

Carcinogenesis, the process by which cancers are generated, is a multistep mechanism 

where accumulation of genetic errors affects vital regulatory pathways. Cancer is 

initiated in a single cell (clonal origin) which then multiplies and acquires further 

changes that give the population a survival advantage over the normal cells. The altered 

cells then multiply to generate millions of cells that constitute a clinical cancer. It has 
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been estimated that in the human population four to six somatic mutations in genes vital 

in homeostatic control are required for the formation of cancer83. The requirement of 

multiple mutations to generate cancer reflects the complexity in inter- and intracellular 

, signalling that governs cell death and cell proliferation84,85 

1.3.2 P450 CYP1 enzymes and cancer 
The CYP 1 family consists of three family members, namely CYP 1A1, CYP 1 A2 and 

CYP 1B1. Both CYP 1A1 and CYP 1B1 are predominantly extrahepatic enzymes, 

whereas CYP1A2 is mainly found in the liver and constitutes the second major hepatic 

P450 enzyme after CYP3A486. The CYP1 enzymes are highly conserved in the animal 

kingdom and are the only few P450s that have retained the same designation in all 

species. 

As a result of their induction by xenobiotics, studies on CYP 1 enzymes have mainly 

focused on their metabolic capabilities to bioactivate carcinogens. One good example is 

the extrahepatic activation of the steroid hormone 170-estradiol by CYP1A1 and 

CYP1A2 to its carcinogenic metabolite 4-hydroxyestradiol (40H-E2)87,88. It is thought 

that 40H-E2 exerts its mutagenic effect by undergoing redox cycling that results in the 

generation of reactive semiquinone/quinone intermediates that damage DNA by 

alkylation89"93. CYP1 enzymes are also capable of bioactivating a wide range polycyclic 

aromatic hydrocarbons (PAH) and polycyclic aromatic amines (PAA)94"98. The 

enzymes' capabilities to activate procarcinogens to their ultimate mutagenic species 

have led to CYP 1 enzymes being implicated in chemical-induced carcinogenesis. 
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1.3.3 CYP1B1- The gateway to tumour selective chemotherapy 
CYP 1B1 was first identified in mouse embryonic fibroblasts99 and later the human 

homologue was identified in a keratinocyte cell line treated with 3,4,7,8- 

tetrachlorodibenzo-p-dioxin (TCDD)100. Shortly thereafter, the protein was 

characterised and designation of a new subfamily CYP 1B was warranted due to its 

distinction from the other CYP1A proteins'ol. 

Many studies on the tissue expression of CYP 1B1 have concentrated on the detection of 

CYP1 Bl mRNA using reverse transcriptase polymerase chain reaction (RT- 

PCR)98,102, "03 and it is clearly evident that CYP 1B1 is expressed extrahepatically. 

However, these authors did not address the existence of functionally competent 

CYP 1B1 in the tissues they had examined. It has been shown that there is a poor 

correlation between mRNA and the corresponding protein expression 104-106 and 

therefore, presence of CYPI BI mRNA cannot proof that CYP 1B1 protein is also 

expressed. 

Using immunohistochemistry, Murray and co-workers107 have demonstrated that 

CYP 1B1 protein was present in tumours derived from the bladder, brain, breast, colon, 

connective tissues, kidney, liver, lung, lymph nodes, oesophagus, ovary, skin, small 

intestine, stomach, testis and uterus. The presence of CYP 1B1 was not detected in 

corresponding normal tissues though CYPI Bl mRNA was detectable. This observation 

has led to believe that regulation of CYP 1B1 in tumours is predominantly post- 

transcriptional and possibly involves the use of alternative polyadenylation sites, 

resulting in altered mRNA stability 108 
- 

Although CYP 1B1 is highly overexpressed in tumours cells 107,109"117, not all tumours 

contain the enzyme'°9,1lo. In a study performed by Gibson et. al., CYP 1B1 was also 
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found in tumour-associated smooth muscle, blood vessel pericytes and macrophagesI to. 

It is possible that, during cancer progression, signalling molecules, produced by cancer 

cell induce the expression of CYP 1B1 in surrounding tissues. Interestingly, CYP 1B1 

has been demonstrated as an important modulator in mice retinal vascular homeostasis 

and is required for hypoxia-induced neovascularisation118. Moreover, AhR knock out 

experiments in mice have shown abnormal liver growth and poor vascularisation, as 

well as abnormality in epidermal development 119"121. These evidences are highly 

indicative CYP 1B1 being involved in angiogenesis and vascularisation during foetal 

development. Hypoxia inducible pathway has been shown to cross-talk with the AhR 

pathway57. It is probable that during foetal development, hypoxic conditions in rapidly 

growing tissues induce the expression of CYP1B1 via a still unidentified mechanism. 

The expressed protein can then metabolise an endogenous substrate to form a pro- 

angiogenic signalling molecule that directs formation of new blood vessels to the 

hypoxic tissues. As tumours progress, dedifferentiation of cancer cells regress the cells 

back to foetal-alike state. Tumour cells may therefore hijack the foetal angiogenic 

mechanism to counter the hypoxic environment which is usually observed in most solid 

tumours. Consequently, the above hypothesis may partly explain the tumour selective 

expression of CYP 1BI. 

There is indisputable evidence to show that CYP 1 enzymes do activate procarcinogens 

to their ultimate mutagenic metabolites and hence the enzymes are considered to be 

carcinogenic. However, we have to comprehend that most of these mutagenic 

compounds are man-made, synthesised perhaps in the past 200 years as a result of 

industrial revolution and advancement in organic chemistry. Thus, CYP1 enzymes are 

not evolved to metabolise these xenobiotics. The capabilities of CYP 1 enzymes to 
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metabolise these compounds are probably due to their structural similarity to 17p- 

estradiol, the only known endogenous substrate for the CYP 1 mono-oxygenases. 

Contrary to the carcinogenic theory, Potter et. al. believe that CYP 1B1 maybe functions 

as tumour specific rescue enzyme, utilised natural anticancer prodrugs in diet to 

selectively destroy the malignant tumours122. The hypothesis is supported by the fact 

that resveratrol, a dietary phytoestrogen found in grapes and peanuts, was converted to 

piceatannol in vitro by CYP 1B 1123. CYP 1B1 also catalysed formation of two more 

metabolites termed M1 and M3 from resveratrol. The identities of these two metabolites 

have been recently resolved with authentic standards as trans-3,4,5,4'- 

tetrahydroxystilbene and trans-3,4,5,3', 4'-pentahydroxystilbene, respectively (Potter et. 

al., unpublished observations; Figure 12). Piceatannol124"126 and trans-3,4,5,4'- 

tetrahydroxystilbene127 are known anticancer agents. M3 may undergo isomerisation to 

form cis-M3. cis-3,4,5,3', 4'-Pentahydroxystilbene may possess similar anti-tumour 

activity due to its striking resemblance to a highly potent anticancer agent combrestatin 

A4128 

Piceatannol 

OH 

1 ;k OH 

HO 
Resveratrol 

3,4,5,4'-tetrahydroxystilbene 

, 4,5,3', 4'-pentahydroxystilbene 

Figure 12: In vitro metabolism of resveratrol by CYPIBI 
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Most of the current chemotherapeutics in clinical uses are cytotoxic. As a general 

perception that natural anticancer agents have to be as cytotoxic as their synthetic 

counterparts, most medicinal phytochemists have so far been searching for more and 

more cytotoxic natural compounds in the hope that these toxins can be developed into 

mainstream treatment for cancers. This may lead to novel compounds for cancer 

treatment but due to the non-specific toxicity of these compounds, patients may suffer 

from debilitating or even lethal side effects. 

The discovery of specific bioactivation of resveratrol by CYP 1B1 to cytotoxic species 

has shown that non toxic natural molecules present in human diet could prevent tumours 

developing by producing anticancer molecules within the cancer cells. This elegant 

piece of work has for the first time demonstrated the molecular mechanism on how 

dietary components can exert their anticancer properties through specific enzyme 

bioactivation. Since this discovery, more of these beneficial natural molecules have 

been discovered and they are now collectively called Salvestrols (Potter et. al., 

www. naturesdefence. com). These newly identified Salvestrols have turned out to be far 

more powerful and life-protecting than resveratrol. 

Although the exact role of CYP 1B1 in carcinogenesis and cancer progression still 

remains a hotly debated issue, the tumour overexpression of CYP 1B1 has provided a 

gateway to selectively target cancer cells by employing novel anticancer prodrugs that 

will specifically activated by CYP 1B1. The intracellular bioactivation of anticancer 

prodrug has the advantage of significant reduction in severe side-effects since the 

anticancer agent would only be produced within cancer cells that expressed CYP 1B1. 
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1.4 Aim of research 
As part of the continuing drug discovery programme at Cancer Drug Discovery Group 

within the Leicester School of Pharmacy, this Ph. D. research is set up to investigate the 

structure-activity relationships (SAR) of the cytochrome P450 CYP 1B1 enzyme. The 

SAR determined by the inhibitor studies will allow the design of selective substrates for 

the CYP1 family enzymes. This is important because CYP1A2 is a major hepatic 

enzyme whereas CYP 1B1 is overexpressed in tumours. The SAR information will 

allow the design of prodrugs that are selectively activated by CYP 1B1 in tumours and 

hence would reduce any potential hepatotoxicity. Furthermore, it is also important to 

differentiate the active sites of both CYP 1A1 and CYP 1B1. CYP 1A1 expression is 

highly elevated in cancer of prostate129, stomach130>131 and bladder'32. CYP1A1 protein 

also highly elevated in some inflammatory diseases 133. The SAR information on 

CYP 1A1 will allow the design of CYP 1A1 selective prodrugs for the treatment of the 

mentioned ailments. 

In summary, the aim of this project is: 

" To synthesise a range of potential CYP 1B1 inhibitors in order to probe the 

enzyme's active site. 

9 To differentiate between the active sites of the CYP1 family enzymes, CYP1A1, 

CYP I A2 and CYP 1B1. 

" To use the SAR of CYP 1B1 inhibitors to guide future selective prodrug design. 
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Probing the active site of CYPI enzymes using nitrogen heterocyclic chalcones 

2.1 Introduction 

2.1.1 Potential application of selective inhibitor of the CYP1 family 

enzymes 
In an effort to improve CYP 1B1 selectivity of future prodrugs, this project was 

commissioned to define the structure-activity relationships (SAR) of the CYP 1 mono- 

oxygenases. The gathered SAR data would aid future prodrug design and the inhibitors 

identified from this research would potentially have other applications. One such 

possible use would be as a specific inhibitor to determine substrate selectivity for in 

vitro drug metabolism and pharmacokinetics (DMPK) studies. 

CYP1A2 is the main hepatic P450 after CYP3A4 and is responsible for metabolic 

degradation of many drugs in current clinical use. Selective CYP 1 A2 inhibitors with 

low intrinsic toxicity might be co-formulated with these therapeutic agents to improve 

the half-life of the drugs. This would allow less frequent dosing which would 

subsequently lead to an increase in patient's compliance, and may also help to reduce 

possible side-effects associated with frequent repeat dosing. CYP1A1 is mainly an 

extra-hepatic P450 and a selective CYP1A1 inhibitor could be used in the same way as 

above to inhibit extra-hepatic metabolism of clinical therapeutics. 

Recently, CYP 1B1 has been shown to interact with current anticancer agents such as 

flutamide, docetaxel, paclitaxel, bleomycin, methotrexate, epirubicin and mytomycin 

0134,135. In vitro studies have shown that the presence of CYP1B1 reduces the efficacy 

13s'136 of docetaxe1 . Specific CYP 1B1 inhibitors with favourable toxicological and 

pharmacological profiles may be co-administered with current chemotherapeutics to 

enhance their anticancer properties. 
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2.1.2 Development of CYP1B1 activated anticancer prodrugs 
There is an urgent need for more selective anticancer drugs. Current chemotherapeutic 

agents are cytotoxic to tumours and to normal tissues. Although certain tumours are 

highly sensitive to chemotherapy, many others are not, and in some cases chemotherapy 

actually increases morbidity and mortality. A major aim in cancer chemotherapy is to 

selectively kill cancer cells whilst sparing normal ones. Research into different protein 

expression patterns in tumour cells will allow the distinction between tumour and 

normal cells, hence providing targets for new anti-tumour medicines. 

CYP1 B1 

RR 
OH 

R= OH, 0-alkyl 

CYP1B1 

Alkyl-O ' HO 

Figure 13: Aromatic hydroxylation reaction catalysed by CYPIBI 

Apart from catalysing direct aromatic hydroxylation, CYP IBI also catalyses O-dealkylation reaction (see 

inlet). 

It is no exaggeration to say that the discovery of overexpression of CYP1B1 in 

tumours107 is one of the most important revelations in cancer research for the past 

twenty years. The presence of a specific yet functionally competent enzyme within 

tumours has provided medicinal chemists a gateway to design prodrugs that would be 

37'13s selectively activated by this enzyme'. 
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Potter and co-workers have successfully synthesised a range of novel tumour selective 

anticancer prodrugs that were designed to be activated by CYP 1B1 aromatic 

hydroxylation (Figure 13). One of such novel compounds is DMU212 (Stilserene®), 

which will enter phase I clinical trial soon. However, this compound is not bioactivated 

exclusively by CYP 1B11 39, in fact, other CYP 1 enzymes (CYP 1A1 and CYP 1 A2) also 

catalysed the same bioactivation as C YP 1B1. Nevertheless, DMU212 has shown 

significant improvement in term of tumour selectivity'40 and has been shown to cause 

no side effects on animals in toxicology studies 141. 
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Figure 14: MTT-assay showing cytotoxicity of DMU212 against breast cell lines 

MCF10A is a "normal" breast cell line that does not express any CYPI enzymes. MDA-MB-468 

(MDA468) is a highly metastatic and multi-drug resistant human breast tumour model that expresses 

mainly CYP IBI (personal communication Butler, P. C., Cancer Drug Discovery Group). DMU212 

showed 4300-fold tumour selectivity in this in vitro assay. (MTT = 3-(4,5-Dimethylthiazol-2-yl)-2,5- 

diphenyl tetrazolium bromide). 
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2.1.3 Design of CYP1 enzyme inhibitors 

A small range of potential inhibitors (50-100 compounds) has to be synthesised and 

assayed in order to collect enough information to delineate their SAR with CYP 1 family 

enzymes. Because of constraint in time, the target inhibitors must be easy to synthesise 

and their corresponding starting materials must also be readily available. 

Previously, other Type II P450s inhibitors (see Section 1.2.2) have been identified or 

synthesised. One example was the P450 CYP17a-hydroxylase inhibitor Abiraterone® 

and its analogues142'144. The nitrogenous bases on these compounds provided strong 

dative-coordinate bond between the nitrogen lone pair electrons and the P450 haem 

centre. This interaction will deny the target enzyme from its normal catalytic functions. 

A similar design concept was employed in the current studies. 

DMU 102 and DMU 120 are two polymethoxylated tumour selective anticancer chalcone 

prodrugs145. Preliminary DMPK studies (personal communication Wanogho, E., Cancer 

Drug Discovery Group) showed that CYP 1 enzymes catalysed direct aromatic 

hydroxylation at the 3"-position of the chalcone A-ring as well as at the 4'-position of 

DMU120. The isozymes also catalysed O-demethylation at 3'-, 4'- and 4"-positions of 

the prodrugs (Figure 15). 

Chalcones are relatively easy to synthesise with the Claisen-Schmidt aldol condensation 

reaction. Combining previous experience on CYP 17a inhibitors and the knowledge of 

substituted chalcone metabolism by CYP 1 enzymes, six chalcones with heterocyclic A- 

rings were designed to investigate the effectiveness of this group of compounds as 

potential CYP1 enzyme inhibitors (Figure 16). The first three of these chalcones 

consisted of a pyridyl A-ring, whilst the remaining chalcones have a smaller five- 

membered imidazolyl A-ring. Differences in the position of the lone pair of electrons on 
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Figure 15: The structure and nomenclature of chalcone 

The above figure shows the hydroxylation and O-demethylation of chalcone prodrugs DMU 102 and 

DMU 120 (personal communication Wanogho, E., Cancer Drug Discovery Group). 
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Figure 16: Chemical structure of potential CYP1 mono-oxygenases inhibitors 
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the nitrogen hetero-atom will help to determine the optimum binding angle for the 

nitrogen lone pair of electrons to coordinate the haem centre of various P450s. 

2.1.4 Synthesis of CYP1 inhibiting chalcones 
Benzylideneacetophenones, more commonly known as chalcones, constitute a class of 

naturally occurring pigments in plants. The term chalcones was first used by 

Kostanecki146 who pioneered synthesis of natural colouring compounds. Chalcones 

possess a range of biological activities; these include antimicrobial, anti-inflammatory 

and anticancer properties147"'51 . Most substituted chalcones are straightforward to 

synthesise with several proven synthetic strategies'52. The simplest route is the base- 

catalysed Claisen-Schmidt aldol condensation using either methanol (MeOH) or ethanol 

(EtOH) as solvent and 50% w/v sodium hydroxide (NaOH) solution as base. Kinetic 

studies have been reported for the base-catalysed formation of chalcones'53. 

The first step of the reaction mechanism involves the formation of an enolate from the 

reaction of the acetophenone with the base. Kinetic studies have shown that this first 

step is rate-determining. The enolate then reacts with benzaldehyde leading to the 

formation of an aldol intermediate. The spontaneous elimination of a water molecule 

catalysed by the base gives the final a, ß-unsaturated ketone (Figure 17). 

The formation of chalcone by the acid-catalysed condensation of acetophenone and 

benzaldehyde has been studied. However, when basic heterocyclic benzaldehydes were 

used as starting materials, this synthetic option was unsuccessful due to side-reaction 

between the basic starting material and the reagent. 
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Figure 17: Reaction mechanism of Claisen-Schmidt aldol condensation 

Anhydrous reaction conditions can increase the rate of formation of enolate in the rate-determining Step I 

by shifting the reaction equilibrium to the right through the removal of water. This can be achieved by 

using anhydrous solvent and concentrated NaOH solution. 

2.1.5 Biological evaluation of potential CYPI enzyme inhibitors 

The inhibitors were assayed using the 7-ethoxyresorufin-0-deethylase (EROD) assay 

originally described by Burke 154. As the name implies, the experiment relies on the 

ability of P450 to deethylate 7-ethoxyresorufin (7ER) to form resorufin. The experiment 

involves incubation of 7ER, the inhibitor and the cytochrome P450 (in the form of 

microsomes) in EROD buffer at physiological temperature (37°C) for a pre-determined 

incubation time. The EROD buffer consists of deionised water, phosphate buffer at 
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pH7.4 (Pi-buffer) and a NADPH regenerating system. Resorufin is a highly fluorescent 

compound and its production can be quantified fluorimetrically at maximum excitation 

wavelength (fix) of 530nm and maximum emission wavelength (gym) of 590nm. By 

incubating a serial dilutions of inhibitor in the assay, a dose-response curve can be 

constructed and the median inhibitory concentration (IC50; concentration requires to 

cause 50% inhibition) can be determined. 

7-Ethoxyresorufin Resorufin 

N ems' 
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I\OO 
EtO \O\O (CYP1 enzymes 

O-deethylation) 
IN 

Fluorescence 
properties: 

4X = 456nm 
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4X = 530nm 
'r�= 570nm 7eß�= 590nm 

Figure 18: The principle of ER OD assay 

The EROD assay relies on CYP I enzymes to deethylate 7ER to form resorufin. As a result of distinct ? 

and A, m for both 7ER and resorufin, the fluorescence intensity of resorufin can be reliably measured 

without interference from 7ER. 

2.2 Reagents and methods 

2.2.1 Materials 

All chemical reagents and starting materials used in synthesis were purchased from 

either Lancaster Synthesis Ltd (UK) or Aldrich Chemical Co. Ltd (UK). Thin layer 

chromatography (TLC) was performed on silica gel sheet supplied by Merck (TLC 

Aluminium Sheet- Silica Gel 60F254). TLC was monitored sequentially with UV light 
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and was stained with 2,4-dinitrophenylhydrazine (2,4-DNP; to stain for the carbonyl 

group). Purification of synthetic compounds was carried out using flash column 

chromatography with silica gel, supplied by Fisher Scientific, UK. 

The following reagents for EROD assay were obtained from Sigma Chemical Co.: a- 

naphthaflavone, 7-ethoxyresorufin (7ER), resorufin, ß-nicotinamide adenine 

dinucleotide phosphate (NADP+), glucose-6-phosphate dehydrogenase (G6PD), 

glucose-6-phosphate (G6P), (3-nicotinamide adenine dinucleotide phosphate reduced 

form (NADPH) and dimethylsulfoxide (DMSO). Magnesium chloride (MgC12), 

disodium hydrogen orthophosphate (Na2HPO4) and potassium dihydrogen 

orthophosphate (KH2PO4) were obtained from BDH, UK. Fisher Scientific supplied the 

black 96-well microtitre plate (fluorescence grade, sterile, clear flat base with lid). 

2.2.2 Synthetic strategy 
The target inhibitors were synthesised using the Claisen-Schmidt aldol condensation: 

To an equimolar (eq) of the corresponding acetophenone and benzaldehyde in MeOH 

was added 5eq of NaOH 50% w/v solution. The resulting mixture was monitored by 

TLC until all starting materials have been consumed. The reaction was quenched with 

50m1 of distilled water and extracted with ethyl acetate (3 X 150m1). The combined 

organic layers were washed with saturated brine (20m1), dried with anhydrous 

magnesium sulfate and concentrated under vacuo. The resulting concentrate was 

purified by flash column chromatography to afford the pure target compound. 
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2.2.3 Buffer preparation 
100mM Pi-buffer was prepared by the addition of 8.375g of Na2HPO4 and 5.579g of 

KH2PO4 to 900m1 of deionised water. Depending on the initial pH, either 1M NaOH or 

IM hydrochloric acid (HC1) was used to adjust the pH to 7.4. The buffer volume was 

then adjusted to 1L, the pH re-checked and re-adjusted if necessary. The buffer was 

stored at 4°C for up to six months. 

2.2.4 Preparation of Solution A 

Solution A is a component of the NADPH regenerating system in EROD buffer and was 

prepared according to Gentest Corporation'55. NADP+ (200mg), G6P (200mg) and 

MgC12 (133mg) were weighed out, dissolved and made up to 10ml with deionised 

water. This was stored in aliquots of 200µL at -20°C for up to six months. 

2.2.5 Preparation of Solution B 

Solution B is a component of the NADPH regenerating system in EROD buffer and was 

prepared according to Gentest Corporation 1S5. G6PD (250 units) was dissolved with 

6.25m1 of P04 buffer. This was stored in aliquots of 100µL at -20°C for up to six 

months. 

2.2.6 Preparation of NADPH regenerating system 
The NADPH regenerating system was prepared immediately prior to use according to 

Gentest method'55.1.5mL of Solution A, 1.5mL of Pi-buffer and 0.3mL Solution B was 

made up to 15mL with deionised water (or scale to required volume). 
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2.2.7 Preparation of other solutions for EROD assay 
7ER and resorufin stock solutions (1mM) were prepared in DMSO and were stored at 

4°C for up to one year. Inhibitor stock solutions (5mM) were prepared by dissolving the 

respective inhibitor in DMSO and stored at -20°C for up to six months. 7ER and 

resorufin stock solutions were diluted to appropriate concentration with 10% DMSO in 

deionised water prior to EROD assay. Serial dilution of inhibitor was carried out in a 

clear 96-well microtitre plate (supplied by Fisher Scientific) with 10% DMSO pre- 

warmed to 37°C (to ensure complete solubility) to give concentrations of 0.5,0.05, 

0.005 and 0.0005mM. 5µL of these dilutions was transferred to the fluorescence grade 

96-well microtitre plate with EROD buffer to give final inhibitor concentrations of 25, 

2.5,0.25 and 0.025µM. The top concentration of the inhibitor was halved if the inhibitor 

was not soluble at 25µM and this would give final inhibitor concentrations of 12.5, 

1.25,0.125 and 0.0125µM. 

2.2.8 Recombinant human cytochrome P450 isozymes 

Microsomes prepared from insect cells transformed using a baculovirus and expressing 

human cytochrome P450 CYP 1A1, CYP 1 A2 and CYP 1B1 with co-expression of 

human NADPH-cytochrome P450 reductase (SupersomesTM) were obtained from 

Gentest Corporation, USA via Cambridge Biosciences, UK. SupersomesTM were stored 

at -80°C until required. When required, SupersomesTM were rapidly thawed at 37°C and 

then stored on ice. SupersomesTM were diluted in ice-cold phosphate buffer (100mM) at 

pH 7.4 to the appropriate concentration immediately prior to use. 
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2.2.9 Microsomal incubation- EROD assay 
The high throughput EROD assay was carried out as described by Gentest 

Corporation155 with modification. The modification was to prepare serial dilutions of 

inhibitors in a separate 96-well microtitre plate instead of in the fluorescence grade 96- 

well microtitre plate i. e. to check whether inhibitors were completely dissolved in the 

aqueous environment. 

123456789 10 11 12 
A Keys: Inhibitor final concentration 
B 25µM 
C 2.5µM 
D 0.25µM 
EC0NTROL0.025µM 

FBLANK 0µM 
G 0µM 
H 

Figure 19: Typical microtitre plate set up for EROD assay 

Each well contains 30µL of Pi-buffer, 5µL of 0.1 mM 7ER solution (final concentration of 51M), 50µL of 

NADPH regenerating system (final concentration: NADP+ = 1.3µM; G6P and MgCI2 = 3.3µM; 

0.04U/mL of G6PD), 10µL of diluted SupersomeTM (final concentration of 0.5pmol/mL) and 5µL of the 

inhibitor serial dilution. 5µL of 10% v/v DMSO in deionised water was used as control and in the blank. 

Columns 1-2,3-4,5-6 and 7-8 were duplicates. 

For economic reasons and to reduce wastage, only five concentration points were used 

to construct the IC50 curves. Four compounds were assayed per plate per P450 in 

duplicate. The EROD assay was carried out in a humidified incubator at 37°C under 

subdued lighting, in a final volume of 100µL. The reaction was initiated by addition of 

the SupersomeTM and was terminated after 30 minutes by addition of 100µL ice-cold 

57 



Probing the active site of CYPI enzymes using nitrogen heterocyclic chalcones 

MeOH. The blank was the same as the control except SupersomeTM was added at the 

end of the experiment, after addition of ice-cold MeOH (enzyme attenuated by cold 

MeOH). Fluorescence was quantified with a fluorescence plate reader (GeminiXS, 

Molecular Devices) and data was collected using Sofftmax Pro (version 3.1.2, Molecular 

Devices). The EROD assay was performed twice for each inhibitor on separate 

occasions. This was to ensure the quality of data collected and to identify any potential 

operator errors that may give rise to false information. The IC50 values presented in this 

project were the average from two separate experiments 

2.2.10 Data analysis 
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Figure 20: 

EROD Inhibitory Data by Inhibitor A 

  Inhibitor A+ CYP1AI (ICS=5µM) 

" Inhibitor A+ CYPIA2 (IC50=60µM) 

" Inhibitor A+ CYPIBI (IC50=0.5µM) 

Estimation of ICso values from dose-response curve 

The IC50 values for inhibitor were estimated manually as shown above. IC50 value for CYP1A2 was 

estimated by extrapolating the curve (dotted line). The ICs0 values calculated by Prism using non-linear 

regression curve fit for CYP 1A1, CYP 1 A2 and CYP 1B1 were 4.45,3175 and 0.47µM, respectively. 

Data collected from EROD was processed by Prism, version 4.02 (GraphPad Software 
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Inc. ). A dose-response curve was constructed and the IC50 value was obtained manually 

from the curve. This was necessary because the calculated IC50 value from Prism, using 

non-linear regression curve fit, was often inaccurate. IC50 values over 25µM (most 

concentrated point) but less than 100µM were estimated by extrapolation. Inhibitor with 

equal or more than ten-fold potency over other CYP 1 enzymes will be consider as more 

selective inhbitor. 

2.3 Results 

2.3.1 Synthetic methods used to synthesise inhibitors 

The synthetic method described in Section 2.2.2 was used in an attempt to synthesise 

the target heterocyclic chalcone inhibitors, but without fonnation of the desired 

chalcones. TLC monitoring showed that a new spot formed within two minutes after 

addition of NaOH solution. The new spot stained deep-red with 2,4-DNP, indicative the 

formation of a new carbonyl compounds. However, the product broke down if the 

reaction was permitted to proceed to completion. 

Another synthetic approach, described by Chan 156 
, was used which gave the desired 

products. This involved the use of lithium diisopropylamide (LDA) as base, generated 

at low temperature (-78°C) from leq of diisopropylamine and n-butyl lithium (nBuLi) 

under anhydrous conditions and nitrogen atmosphere (this synthetic route is referred as 

Synthetic Method 1 thereafter). DMU709 and DMU710 (structure see Section 2.1.3) 

were synthesised with good yield (40% and 36%, respectively) by employing this 

method. 

The Claisen-Schmidt aldol condensation is an exothermic reaction. The rapid 
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Probing the active site of CYPI enzymes using nitrogen heterocyclic chalcones 

degradation of product using the synthetic method described in Section 2.2.2 could 

probably be due to instability of the product and the heterocyclic benzaldehyde under 

heat. 

DMU724 was synthesised using a modification of the method described in Section 

2.2.2. The procedure involved cooling down the solution of starting materials in MeOH 

to around 0°C before the addition of 2eq 50% w/v NaOH solution (instead of 5eq 

previously). The mixture was stirred on ice at around 0°C for a further 2 hours before 

warming up to room temperature overnight (this synthetic route is referred as Synthetic 

Method 2). DMU724 was afforded with high yield (79%). 

A third method was used to synthesise the imidazolyl chalcones DMU720, DMU721 

and DMU722. This solvent-free Claisen-Schmidt condensation was developed by 

Mogilaiah and Bao'57 for the synthesis of a, ß-unsaturated ketones. The method 

involved grinding the starting materials with powdered NaOH (2eq) using a pestle and 

mortar (this synthetic route is referred as Synthetic Method 3). DMU720, DMU721 and 

DMU722 were afforded by this method in good yields (30%, 27% and 32%, 

respectively). 

2.3.2 Validation of the high throughput EROD assay 

The modified high throughput EROD assay was validated by comparison with a- 

naphthaflavone EROD IC50 values for CYP1 mono-oxygenases reported by Shimada et. 

al'58. The final concentration points employed for the in-house method were half of the 

values described in Figure 20 due to the low solubility of a-naphthaflavone. No 

apparent differences were detected between the two sets of results (Table 2). 
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Table 2: a-Naphthaflavone EROD IC5o values obtained using in house high 

throughput EROD assay compared with data from Shimada158 

IC50 (µM) 
Method CYP1AI CYP1A2 CYP1B1 

Shimada et a/. 0.06 0.006 0.005 

In-house method* 0.04 0.009 0.002 

*Results presented were means of two independent experiments on different occasions. Each experiment 

was carried out in duplicate. 

2.3.3 Identification of lead inhibitors 

Table 3: Nitrogen heterocyclic chalcones inhibitory activities against CYP1 

catalysed EROD reaction 

O 
OMe 

Ar OMe 
OMe 

IC50 (µM) 
Inhibitors Ar CYPIAI CYP1A2 CYP1B1 

DMU709 1N 0.3 25 7 

DMU710 N 0.5 4 19 

DMU720 
H 
N 39 >100 >100 

N 

DMU721 <N 1 
N 

12 49 7 

DMU722 N 30 >100 90 
N 

DMU724 i1 13 >100 >100 

Results presented were means of two independent experiments. Each experiment was carried out in 

duplicate. 
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Probing the active site of CYP I enzymes using nitrogen heterocyclic chalcones 

The pyridyl chalcones DMU709 and DMU710 were identified as more selective 

CYP1A1 inhibitors with sub-micro molar IC50 values. Both inhibitors were 

approximately at least 10-fold more selective against CYP 1A1 catalysed EROD 

reaction. DMU720 and DMU724 have shown weak but selective inhibition of CYP1A1. 

ICSO values for DMU722 were obtained by extrapolation from the dose-response curve. 

The imidazolyl chalcone DMU721 showed only weak inhibition activities against 

CYP 1A1 and CYP 1B1 catalysed EROD reaction. 

2.4 Discussion 

Six inhibitors were synthesised successfully with good yield. Claisen-Schmidt 

condensation is an exothermic reaction. The method intended to be used for synthesis 

(Section 2.2.2) was found to be unsuitable probably due to degradation of starting 

material (heterocyclic benzaldehyde) and target compounds under heat. The suspicion 

was confirmed when the 2-pyridyl chalcone DMU724 was successfully synthesised 

with high yield (79%) using a modified version of the method described in Section 

2.2.2. The modified method (Synthetic Method 2; Section 2.5.2) involved cooling down 

the solution of 2-pyridylcarboxaldehyde and 3,4,5-trimethoxyacetophenone in MeOH to 

approximately 0°C before addition of base. The amount of base used in Synthetic 

Method 2 was less than the amount proposed in the original method. The effect of the 

amount of base used in Synthetic Method 2 on product stability was not investigated. 

DMU709 and DMU710 were synthesised using LDA as base (Section 2.5.2). However, 

this method involved several steps and was time-consuming. In view of limited time, a 

more versatile method was sought to synthesise the target compounds. 
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Probing the active site of CYPI enzymes using nitrogen heterocyclic chalcones 

The solvent-free Synthetic Method 3 (Section 2.5.2) was used to synthesise the 

imidazolyl chalcones DMU720, DMU721 and DMU722. All three compounds were 

afforded in good yield (27-32%). The method involved grinding the starting materials 

with 2eq of powdered NaOH using a pestle and mortar. It is noteworthy to mention that 

this simple and easily reproducible technique in the solid/semi-solid state, affords target 

compounds in a shorter reaction period compared with Synthetic Method 1 and 2. 

Moreover, the condensation takes place at room temperature, in the absence of solvent 

and with a reasonable yield. Synthetic Method 3 was more economical since less 

solvent was used. However, it involved a more labour intensive grinding process. 

The in-house high throughput EROD assay was validated using the known CYP1 

enzyme inhibitor a-naphthaflavone. Incubation time of 30 minutes was selected as 

opposed to 5-10 minutes reported elsewhere. The longer incubation time was necessary 

because any potential inhibitors identified by this EROD assay would be used in the cell 

culture assay that can last up to 96-hours. The inhibitors would be useless if they could 

not survive 30 minutes of potential metabolic degradation by the very enzyme that is the 

target of inhibition. 

Either NADPH or a NADPH regenerating system can be used in the assay. However, 

since 30 minutes incubation time was used in the EROD assay, the regenerating system 

allowed a constant level of NADPH and ensured that no NADPH depletion would occur 

over the longer incubation period. 

DMU709 and DMU710 were identified as more selective inhibitors of CYP 1A1 with 

sub-micro molar IC50 values (Table 3). The 3-pyridyl and 4-pyridyl A-ring of DMU709 

and DMU710, respectively, inhibited their target enzyme as predicted from preliminary 

metabolism studies on chalcone prodrugs DMU 102 and DMU 120 (Figure 15). 
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Figure 21: DMU709 and DMU710 inhibition towards CYPI catalysed EROD 

activity 

DMU709 has a better inhibition window at I µM concentration. Results presented were means of two 

independent experiments. Each experiment was carried out in duplicate. 

Although the 2-pyridyl chalcone DMU724 also selectively inhibited CYP 1A1, its 

inhibition was probably via a Type I interaction (Section 1.2.2). In this case a Type II 

interaction was not possible due to the nitrogen lone pair electrons from the 2-pyridyl 

A-ring being too sterically hindered to perform Type II binding interaction with the 

CYP 1A1 haem centre. 

Compared to the six-membered pyridyl A-ring chalcones, the smaller five membered 

heterocyclic A-ring chalcone DMU720 was less capable to inhibit CYP1 enzymes. 

Similar to DMU724, the nitrogen lone pair electrons on DMU720 were too sterically 
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hindered to provide interaction with the P450 haem. A 3-fold increase in CYP IAI IC5o 

value for DMU720 compared with DMU724 suggesting the diminution in inhibitory 

activity of DMU720 may due to (i) decrease in molecular size of the A-ring and/or (ii) 

decrease in lipophilicity of DMU720. 

M 

1 
Fe+ 

OMe 

O 

Diagonal binding mode 
(indicated with broad arrow 

Figure 22: Possible Type II binding interaction between DMU709 and DMU710 

with the CYP1A1 haem centre 

The above figure illustrates the possible binding orientation of both DMU709 (red) and DMU7 10 (blue) 

within the CYP IAI active site. Both inhibitors interact in a diagonal binding mode. 

Although the nitrogen lone pair electrons on DMU721 and DMU722 were not sterically 

hindered, both DMU721 and DMU722 were less potent inhibitor than DMU709 and 

DMU710. The diminution of inhibitory activity of the imidazolyl chalcones was due to 

the decrease in lipopholicity. Using CambridgeSoft ChemDraw® Ultra software version 

8, the LogP values of DMU709, DMU710, DMU720, DMU721 and DMU722 were 

estimated (Crippen's fragmentation method 159). All imidazolyl chalcones have lower 

LogP values compared with their pyridyl chalcone analogues (LogP 0.5-1.3 for 

imidazolyl chalcones DMU720, DMU721 and DMU722; LogP 1.9 for both DMU709 
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Probing the active site of CYPI enzymes using nitrogen heterocyclic chalcones 

and DMU710). Mammalian P450s are membrane bound enzyme system (Figure 1). 

Williams et al. 72 have shown that the interaction of the P450 enzyme and the 

hydrophobic membrane places the entrance of the substrate access channel in or near 

the membrane. Consequently, the more hydrophilic imidazolyl chalcones are less likely 

to enter the enzyme to elicit their inhibitory activities. 

Chalcones with 3- and 4-pyridyl A-ring have been identified as suitable templates for 

designing future inhibitors. Analogues of these chalcones, with either heterocyclic A- or 

B-ring, are described in the subsequent chapters to delineate their SAR. 

2.5 Experimental 

2.5.1 Analytical methods 
The 'H- and 13C-NMR spectra were recorded by Mike Needham on a 400MHz super- 

conducting Bruker Spectrometer. Infrared spectra were recorded in potassium bromide 

disk on a Shimadzu Spectrophotometer (model FTIR-8300). The mass spectra were 

obtained with a VG 70SEQ spectrometer or with a MALDI spectrometer (Lasermat 

2000, Finnigan MAT Ltd) without using any matrix. Melting points were recorded 

using a Gallenkamp melting point apparatus (model number: MPD35O. BM2.5) and 

were not corrected. 

2.5.2 General methods for chalcone synthesis 
Synthetic Method 1: (The LDA method) To a stirred and cold (-78°C) anhydrous 

tetrahydrofuran (THF) was added diisopropylamine (1eq) followed by nBuLi (1eq) 
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Probing the active site ofCYP1 enzymes using nitrogen heterocyclic chalcones 

dropwise over 5 minutes in a nitrogen atmosphere. The mixture was stirred at -78°C for 

30 minutes before a solution of acetophenone (leq) in anhydrous tetrahydrofuran (THF) 

was added slowly. The resulting mixture was stirred for 10 minutes followed by 

addition of a solution of aldehyde (1eq) in anhydrous THE The mixture was stirred and 

allowed to warm up to room temperature overnight. The reaction was quenched with 

water and neutralised to pH7 with 1M HCI. The mixture was extracted with ethyl 

acetate (3 X 100ml). The combined organic layers were washed with saturated brine, 

dried over magnesium sulphate and concentrated under vacuo. The crude compound 

was purified by column chromatography with increasing solvent system polarity 

(hexane: ethyl acetate: triethylamine (5%); with increasing ethyl acetate from 10-80%). 

Synthetic Met/rod 2: (The NaOH method with cooling) To a stirred and cooled (0°C) 

solution of acetophenone and benzaldehyde in McOH was added 2eq of 50% w/v 

NaOH solution. The resulting mixture was stirred at 0°C for another two hours before 

warming up to room temperature overnight. Standard work up as described in Synthetic 

Method 1. 

Synthetic Method 3: (The solvent-free method) Acetophenone and benzaldehyde were 

mixed and ground with powdered NaOH using pestle and mortar. The mixing and 

grinding stopped when no further changes in consistency and colour of the mixture was 

observed. The resulting mixture was dissolved with 3X 100mi ethyl acetate: water 

mixture (3: 1). The organic layer was partitioned, washed with saturated brine, dried 

over magnesium sulphate and concentrated under vacuo. The crude compound was 

purified by column chromatography with increasing solvent system polarity (hexane: 

ethyl acetate: triethylamine (5%); with increasing ethyl acetate from 10-80%). 
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(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(3-pyridyl)prop-2-en-1-one (DMU709) 

Synthetic Method 1; 'H-NMR (CDC13) 8 3.85 (3H, s, OMe), 3.95 (6H, s, OMe), 7.45 

(2H, s), 7.52 (1H, m), 7.80 (1H, d, J=16.7Hz),, 7.94 (1H, d, J=16.7), 8.30 (1H, d), 8.56 

(1H, d), 8.89 (1H, s); 13C-NMR (CDC13) 6 57.33,61.62,108.11,125.86,125.94, 

133.92,134.78,137.41,141.91,144.70,151.09,151.73,155.11,190.70; IR Spectrum 

V, �ax (KBr)/cm 1 1660 (C=O); Mass Spectrum (FAB) m/z 300 (M+ + 1,100%); mp 

13 1°C. 

(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(4-pyridyl)prop-2-en-l-one (DMU710) 

Synthetic Method 1; 'H-NMR (CDC13) 8 3.90 (3H, s, OMe), 3.96 (6H, s, OMe), 7.44 

(2H, s), 7.72 (1H, d, J=16.4Hz), 7.78 (2H, m), 8.00 (1H, d, J=16.4Hz), 8.63 (2H, m); 

13C-NMR (CDC13) 6 55.99,60.32,106.77,123.07,125.99,126.93,133.12,141.09, 

143.78,149.89,153.68,189.39; IR Spectrum Vm. (KBr)/cm"1 1658 (C=O); Mass 

Spectrum (FAB) m/z 300 (M+ + 1,100%); mp 120°C. 

(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(1H-2-imidazolyl)prop-2-en-l-one (DMU720) 

Synthetic Method 3; 'H-NMR (CD3OD) 5 3.75 (3H, s, OMe), 3.85 (6H, s, OMe), 7.20 

(2H, s), 7.30 (2H, s, imidazolyl), 7.50 (1H, d, J=15.6Hz), 7.82 (1H, d, J=15.6Hz), 13.4 

(1H, s, imidazolyl); 13C-NMR (CD30D) 8 49.39,50.04,57.23,61.63,107.77,124.03, 

131.98,134.79,144.62,145.69,155.11,190.23; IR Spectrum Vm (KBr)/cm'1 1658 

(C=O); Mass Spectrum (FAB) m/z 289 (M++ 1,100%); mp 202°C. 

(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(1H-4-imidazolyl)prop-2-en-1-one (DMU721) 

Synthetic Method 3; 'H-NMR (CDC13) 8 3.90 (3H, s, OMe), 3.95 (6H, s, OMe), 7.27 
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(1H, s), 7.33 (2H, s), 7.37 (1H, s), 7.70 (1H, d, J=15.3Hz), 7.78 (1H, d, J=15.3Hz), 7.81 

(1H, s); 13C-NMR (CDC13) 8 49.58,50.23,56.74,61.34,106.55,120.19,123.02, 

133.86,134.86,137.8,142.89,153.52,189.47; IR Spectrum Vm. (KBr)/cm'1 1666 

(C=O); Mass Spectrum (MALDI) m/z 288.22 (M+, 100%); mp 119-120°C. 

(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(5"-methyl-lH-4-imidazolyl)prop-2-en-l-one 

(DMU722) 

Synthetic Method 3; 1H-NMR (CDC13) 5 2.10 (3H, s), 3.90 (3H, s), 3.95 (6H, s), 7.35 

(2H, s), 7.62 (1H, d, J=15.1 Hz), 7.71 (1 H, d), 7.78 (1H, d, J=15.1 Hz), 13.2 (IH, d); 13C- 

NMR (CDC13) 8 49.38,50.23,56.71,61.33,106.50,118.69,132.17,133.87,136.17, 

142.81,153.50,175.53,189.33; IR Spectrum Vmu (KBr)/cm 1 1651 (C=O); Mass 

Spectrum (MALDI) m/z 302.23 (M+, 100%); mp 106-108°C. 

(E)-1-(3', 4', 5'-Trimethoxyphenyl)-3-(2-pyridyl)prop-2-en-l-one (DMU724) 

Synthetic Method 2; 'H-NMR 8 (CDC13) 3.85(3H, s, OMe), 3.95(6H, s, OMe), 7.34(2H, 

s), 7.52(1H, m), 7.79(1H, d, J=15.5Hz), 8.09 (1H, d, J=15.5Hz), 8.3(1H, d), 8.56(1H, 

d), 8.90(1H, s); 13C-NMR (CDC13) 5 49.98,50.68,56.51,61.01,99.64,106.49,124.43, 

125.26,133.20,136.93,142.71,150.19,153.26,189.11; IR Spectrum Vm. (KBr)/cm'l 

1666 (C=O); Mass Spectrum (MALDI) m/z 299 (M+, 100%); mp 99°C. 
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Summary of Structures 

DMU709 
0 

DMU710 OMe 

OMe 
N OMe 

0 DMU720 OMe 

H J I\ 
OMe 

OMe 

O DMU721 OMe 
H II/ 

<\ OMe 

N OMe 

O 
DMU722 OMe 

H II/ 
N1 OMe 

OMe 

O DMU724 OMe 

OMe 
N OMe 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

3.1 Introduction 

Previously, two heterocyclic chalcones, namely DMU709 and DMU710, have been 

identified as more selective CYP 1A1 inhibitors (Chapter 2). Both compounds have a 

pyridine A-ring in the chalcone core structure (Section 2.4; Figure 21) and it is thought 

that inhibition of the P450 enzyme is via interaction between the lone pair electrons 

from the nitrogenous heterocycle and the P450 haem. 

In order to further define the SAR of the CYP 1 enzyme inhibitors, analogues of 

DMU709 will be synthesised and studied in this chapter. These analogues of DMU709 

will share the similar 3-pyridyl A-ring core structure but with varying number and type 

of functional groups on the chalcone B-ring. Assuming the 3-pyridyl ring is fixed in 

position to the haem, the variation on the chalcone B-ring will allow delineation of 

hydrogen-bonding interactions within the enzyme active sites. A few 3-pyridyl 

chalcones with polycyclic fused-ring system in substitution of the chalcone B-ring will 

also be synthesised. These bulky molecules will help to determine the maximum 

molecular size that the isozyme active sites will tolerate and to probe the hydrophobic 

nature of the enzyme-substrate binding pockets. 

As both the A- and B-ring of the chalcones can orientate to face the P450 haem centre 

in the active site, another group of DMU709 analogues with 3-pyridyl B-ring were 

synthesised. These are discussed in Chapter 4. The latter group of chalcones with 

heterocyclic B-ring is referred to as the "reversed" 3-pyridyl chalcones (Figure 23). The 

4-pyridyl and reversed 4-pyridyl analogues of DMU710 will also be discussed in 

Chapter 4. 

The 4(5)-imidazolyl chalcone inhibitor DMU721 has shown some inhibition activity 

towards CYP1 enzymes catalysed EROD reaction, with EROD IC50 values of 12,49 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

and 7µM for CYP 1A1, CYP 1 A2 and CYP 1B1, respectively. Two DMU721 analogues, 

DMU744 and DMU2120, will be characterised in this chapter to further investigate 

chalcone compounds with a 4(5)-imidazolyl A-ring. 

00 

I, I I, 
Iý 

chalcone "Reversed" 3-pyridyl chalcone 

Figure 23: The structures of 3-pyridyl chalcones and its analogue the "reversed" 

3-pyridyl chalcone 

O0 OMe 0 

j 
OMe OMe 

5.5(0Me H 
N 

OMe 
N OMe <\ 

DMU721 DMU744 N DMU2120 

Figure 24: The 4(5)-imidazolyl chalcone DMU721 and its analogues 

3.2 Reagents and methods 

3.2.1 Materials 

All reagents and starting materials for synthesis were purchased from either Lancaster 

Synthesis (UK) or Aldrich Chemical Co. Ltd (UK). Reactions were followed and 

monitored with TLC as described in Section 2.2.1. Purification of the synthesised 

compounds was carried out using flash column chromatography with silica gel 

(supplied by Fisher Scientific, UK) unless otherwise stated. 
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3-Pyridyl chalcone5 as selective CYPI enzyme inhibitors 

Reagents and plasticware for the EROD assay were obtained from Sigma Chemical Co. 

and Fisher Scientific (see Section 2.2.1). Furafylline was supplied by Ultrafine 

Chemical Ltd, UK. Microsomes expressing human cytochrome P450 CYP1A1, 

CYP 1 A2 and CYP 1B1 with co-expression of human NADPH-cytochrome P450 

reductase (SupersomesTM) were obtained from Gentest Corporation, USA via 

Cambridge Biosciences, UK. Control microsomes (Gentest Corporation) prepared from 

insect cells treated with the vector plasmid but without the human CYP cDNA is 

referred to as inactive microsomes. 

3.2.2 Synthetic strategies 
Details for each synthetic method are described in Section 2.5.2. 

3.2.3 Microsomal incubation- EROD assay 
The EROD assay was conducted as described in Section 2.2.9. The preparation of 

different solutions used in the EROD assay can be found from Section 2.2.3 to Section 

2.2.7. 

3.3 Results 

3.3.1 Synthesis of heterocyclic chalcone inhibitors 

A total of 34 potential CYP1 enzyme inhibitors has been synthesised. Their chemical 

structures, synthetic method, physical characteristics and yields are presented in Table 

4-6. 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

All compounds were synthesised successfully and with reasonable yield. As a result of 

poor solubility of some polycyclic acetophenone in MeOH (see Table 5 notes), acetone 

or a MeOH: dichloromethane mixture were used as solvent for the reaction. 

DMU2123, DMU2124 and DMU2127 were initially synthesised using Synthetic 

Method 2. In these cases, the reactions did not lead to the target compounds but instead 

generated unexpected triaryl compounds (Figure 25). DMU2123, DMU2124 and 

DMU2127 were synthesised successfully employing Synthetic Method 3. 

CI 

Cl Br 

O OOO 

cl Sý 
I/ I I/ I I/ 

N DMU2154 N DMU2ISS CI N DMU2156 

Figure 25: Chemical structure of the triaryl compounds DMU2154, DMU2IS5 

and DMU2156 

Table 4: Chemical structures and physical characteristics of 4(5)-imidazolyl 

chalcones 

Inhibitors Structure Physical characteristics (yield%) Method 

O Me 
OMe 

DMU744 

k(ýCOMS 

N 

qIý 
DMU2120 N1 

fine yellow powder (18%) 2** 

yellow powder (33%) 2** 

Notes: Method (see Section 2.5.2); 2** as Synthetic Method 2 but the reaction was refluxed at 50°C for 2 

days after the initial 24 hours where cooling and warming up to room temperature occurred. 
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3-Pyridyl chalcones as selective CYP1 enzyme inhibitors 

Table 5: Chemical structures and physical characteristics of the 3-pyridyl 

chalcone inhibitors 

Physical chracterictics 
Inhibitors R2 R3 R4 R5 Re (yield %) Method 

DMU709* H OMe OMe OMe H 
DMU711 H H H H H 
DMU712 OMe H H H H 
DMU713 H OMe H H H 
DMU714 H H OMe H H 
DMU715 OMe H OMe H H 
DMU716 H OMe OMe H H 
DMU717 H OMe H OMe H 
DMU718 OMe OMe OMe H H 
DMU757* OH H OH H H 
DMU760* H OH H OH H 
DMU763* OH H H H H 
DMU764* H OH H H H 
DMU765* H H OH H H 
DMU782 OMe H H OMe H 
DMU785* H CI CI H H 
DMU786* CI H CI H H 
DMU2123 H CI H H H 
DMU2124 H H CI H H 
DMU2127 H Br H H H 
DMU2151 H F F H H 

fine yellow powder (40%) 1 
dark yellow solid (35%) 1 

pale yellow crystals (52%) 1 
light brown powder (25%) 1 

yellow powder (48%) 1 

bright yellow powder (55%) 1 
fine light brown crystals (37%) 1 

yellow powder (34%) 1 

yellow crystals (51%) 1 

- see note - 
- see note - 
- see note - 
- see note - 
- see note - 

yellow solid (64%) 2 

- see note - 
- see note - 

pale yellow powder (52%) 3 

pale yellow powder (61%) 3 

fine pale yellow powder (39%) 3 

pale apple green crystals (48%) 2 

Notes: 

Method (see Section 2.5.2). 

* Synthesised previously in Chapter 2 

* Synthesised by Mussarath Walji as part of her undergraduate final year project; Synthetic Method 3 

employed for the synthesis of all three compounds. * Synthesised by Leena Lakdawala as part of her 

undergraduate final year project; Synthetic Method 3 employed for the synthesis of all four compounds. 
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Table 6: Chemical structures and physical characteristics of 3-pyridyl 

chalcone inhibitors with polycyclic fused-ring system 

0 
Ar 

N 

Inhibitors Ar Physical characteristics (yield%) Method 

DMU745 
"'Co 

ýI 
DMU746 

1 
Iý 

DMU762 Cc> 
0 

pale brown crystals (52%) 1 

brown waxy solid (88%) 1 

pale yellow powder (60%) 2 

DMU2133 fine yellow powder (28%) 2* 

DMU2134 
II 

yellow powder (27%) 2 

DMU2136 /II bright yellow solid (61 %) 2# 

DMU2137 fine yellow crystals (61%) 2# 

ýI 

DMU2139 I pale yellow needles (8%) 2 
OMe 

// 

DMU2140 bright yellow solid (54%) 2 

Notes: Method (see Section 2.5.2); 2* = as Synthetic Method 2 but acetone was used as solvent for the 

reaction; 2" = as Synthetic Method 2 but MeOH: dichloromethane mixture was used as solvent (MeOH 

75% v/v). 
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3.3.2 Identification of CYPI Bl inhibitors 

The EROD assay performed on 3-pyridyl chalcones and the triaryl compounds led to 

the identification of several CYP 1B1 inhibitors. DMU713, DMU716, DMU745, 

DMU746, DMU785 and DMU2139 are more selective inhibitors of CYP 1B1 with sub 

micro molar IC50 and with at least 10-fold enzyme selectivity ratio (eSR). Amongst the 

identified CYP 1B1 inhibitors, DMU2139 was the most potent with highest eSR 

compared with inhibition to other CYPI enzymes. The EROD IC50 values for 

DMU2139 were 1.5,15 and 0.08µM for CYP 1A1, CYP 1 A2 and CYP 1B1, respectively. 

All results presented were means of two individual experiments. Each experiment was 

carried out on separate occasions in duplicate. 
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Figure 26: DMU2139- a potent and selective inhibitor of CYPJB1 

DMU2139 more selectively inhibits CYP IB1 catalysed EROD reaction. It is 19- and 188-fold selective 

than CYP IAI and CYP I A2, respectively. eSR of DMU2139 was calculated using this formula: 

IC50 (other isoform)l IC50 (CYPIBI) 
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Table 7: 4(5)-Imidazolyl chalcones inhibitory activities against EROD 

reaction 

IC50 (PM) 
B-ring 

Inhibitors substituents CYP1A1 CYP1A2 CYP1B1 

DMU721* 3,4,5-(OMe)3 12 49 7 
DMU744 2,3,4-(OMe)3 70 70 10 
DMU2120 2-naphthyl 0.7 3 0.5 

* Synthesised previously in Chapter 2. 

The EROD IC50 values for the two 4(5)-imidazolyl chalcones have also been 

determined. DMU744 more selectively inhibits CYP 1B1 with an IC50 of 10µM. 

DMU2120 more selectively inhibits the extrahepatic CYP1 enzymes. These 4(5)- 

imidazolyl chalcones have shown some inhibitory activities against CYP 1 mono- 

oxygenases. Further investigation on other 4(5)-imidazolyl chalcone inhibitors is 

outside the scope of this project. 

Table 8: EROD IC5o values for 3-pyridyl chalcones with methoxylated B-ring 

IC50 (µM) 
B-ring 

CYP YP1BI 

CYPI BI eSR over 

DMU709* 3,4,5-(OMe)3 0.3 25 7 0.04 4 
DMU711 phenyl 25 30 3.5 7 9 
DMU712 2-(OMe) 6 9 3 2 3 
DMU713 3-(OMe) 4 5 0.4 10 13 
DMU714 4-(OMe) 7.5 18 3 3 6 
DMU715 2,4-(OMe)2 2 3 0.4 5 8 
DMU716 3,4-(OMe)2 7 8 0.6 12 13 
DMU717 3,5-(OMe)2 0.6 4 0.2 3 20 
DMU718 2,3,4-(OMe)3 4 2 0.5 8 4 
DMU782 2,5-(OMe)2 3 2 18 0.2 0.1 

Note: Chemical structures see Table 5. DMU713 and DMU716 are more selective inhibitors of CYP 1BI 

which have shown at least 10-fold eSR over the CYPI A enzymes. * Synthesised previously in Chapter 2. 
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Table 9: EROD ICSO values for 3-pyridyl chalcones with hydroxylated B-ring 

IC50 (AM) CYPI B1 eSR over 
B-ring 

Inhibitors substituents CYP1A1 CYP1A2 CYP1B1 CYP1A1 CYP1A2 

DMU757 2,4-(OH)2 59 NI >100 nd nd 
DMU760 3,5-(OH)2 NI NI NI nd nd 
DMU763 2-(OH) 13 7 0.8 16 9 
DMU764 3-(OH) 20 >100 6 3 >17 
DMU765 4-(OH) NI Ni NI nd nd 

Note: Chemical structures see Table 5. DMU763 has shown CYPIBI selectivity over CYPIAI and 

CYPIA2, with eSR of 16 and 9, respectively. NI = no inhibition; nd = not determined. 

Table 10: EROD IC50 values for 3-pyridyl chalcones with halogenated B-ring 

IC50 (µM) CYPIBI eSR over 
B-ring 

substituents CYP1A1 CYP1A2 CYP1B1 CYP1A1 CYP1A2 

DMU785 3,4-(CI)2 1.5 1.5 0.15 10 10 
DMU786 2,4-(CI)2 16 7 5 3 1 
DMU2123 3-(CI) 4 1 0.5 8 2 
DMU2124 4-(CI) 6 10 1.5 4 7 
DMU2127 3-(Br) 3 0.4 0.2 15 2 
DMU2151 3,4-(F)2 15 3 5 3 0.6 

Note: Chemical structures see Table 5. DMU785 has shown a 10-fold selectivity over CYPIA enzymes in 

the EROD assay. 

Table 11: EROD IC, values for the tricyclic compounds DMU2154, DMU2155 

and DMU2156 

Inhibitors CYP1A1 
IC50 () 
CYP1A2 CYP1B1 

DMU2154 NI NI NI 
DMU2155 NI NI 50 
DMU2156 30 >100 7 

eSR of inhibitor over 
CYPIAI CYP1A2 

nd nd 
nd nd 
4 >14 

Note: Full chemical structures see Figure 25. NI = no inhibition; nd = not determined. 
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Table 12: EROD ICso values for 3-pyridyl chalcones with polycyclic B-ring 

Inhibitors 
B-ring 

substitunets CYP1A1 

IC50 (µM) 

CYP1A2 CYP1B1 

eSR of inhibitor over 

CYP1A1 CYP1A2 

DMU745 2-naphthyl 0.3 2 0.02 15 100 
DMU746 1-naphthyl 1 3 0.09 11 33 
DMU762 3,4-MDO 2 11 0.8 3 14 
DMU2133 9-anthracenyl 15 8 9 2 0.9 
DMU2134 4-biphenyl 3 NI 0.5 6 nd 
DMU2136 3-phenanthrenyl 0.1 1.5 0.02 5 75 
DMU2137 9-phenanthrenyl 0.05 1 0.07 0.7 14 
DMU2139 6-OMe-2-naphthyl 1.5 15 0.08 19 188 
DMU2140 1-pyrenyl 0.3 5 0.12 3 42 

Note: Full chemical structures see Table 6. DMU745, DMU746 and DMU2139 have been shown to be 

highly selective against CYPI catalysed EROD reaction. nd = not determined; MDO = 

methylenedioxyyphenyl. 

3.4 Discussion 

All target compounds have been synthesised successfully using different synthetic 

methods (see Table 4-6). The hydroxylated 3-pyridyl chalcones was synthesised using 

Synthetic Method 3 as described by Mogilaiah and Bao' 57. This solvent-free method 

offers a convenient way to synthesise hydroxylated chalcone without the need to 

employ a hydroxy protective group. 

The triaryl compounds DMU2154, DMU2155 and DMU2156 were unexpected 

products generated during the attempted synthesis of DMU2123, DMU2124 and 

DMU2127, respectively, using the solution phase Synthetic Method 2. The chemical 

structures of these triaryl compounds were first evidenced by the unique aliphatic 

proton chemical shift signatures (Figure 27) detected by proton nuclear magnetic 
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S-Pyridyl chalcones as selective CYP1 enzyme inhibitors 

resonance (NMR) spectroscopy. The chemical structures were finally confirmed by 

carbon NMR spectroscopy and mass spectroscopy (MS) (see Section 3.5). 

Rw 

,ý 

pp. 4t4. a 7. Y 3 .63.7 3 .6 15 3.4 307 

Figure 27: Proton NMR spectrum of DMU2154 aliphatic protons 

DMU2155 and DMU21S6 proton NMR spectra have also shown similar aliphatic proton chemical shifts 

and proton-proton coupling patterns. 

The formation of these triaryl compounds was due to a secondary Michael conjugation 

after the target chalcones have been formed initially in the reaction. Unreacted 

acetophenone enolate can attack the chalcone in a Michael addition reaction. This 

addition is facilitated by the electron withdrawing halogen substituent which renders the 

enone carbon atom more susceptible to nucleophilic attack (Figure 28). As the 

conjugated triaryl product was more stable than the pyridyl chalcone, it eventually 

became the main product in the reaction. No conjugated product was formed when the 

solvent-free Synthetic Method 3 was used to synthesise pyridyl chalcones with halogen 

substituents in the B-ring. This was probably due to the inability of chalcone to form an 

enolate in solid phase. 
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Figure 28: Formation of Michael conjugate DMU2154 from DMU2123 

The Michael addition reaction only proceeded in solution phase reaction with pyridyl chalcones that 

consisted electron-withdrawing substituent group on the B-ring. 

In the initial screening of the 3-pyridyl chalcone inhibitors, DMU745, DMU785, 

DMU2136, DMU2137, DMU2139 and DMU2140 have shown very potent activities 

against CYP1 catalysed EROD reaction with IC50 of less than 1nM (Table 14). 

Assuming the inhibitors inhibit their target enzyme in a competitive manner i. e. one 

molecule of inhibitor inhibits one enzyme particle (competitive inhibition); therefore, a 

recorded IC50 value of less than 1 nM was not possible since the concentration of 

enzyme (5nM) used was higher than the concentration of inhibitor in the EROD assay. 

A few possibilities that can explain the unusual potency of these inhibitors. First, there 

could be a tightly controlled allosteric site on the enzyme and the inhibitors could cause 

a conformational change in the enzyme 3D structure, via interaction with the allosteric 

site, leading to the total shut down of the P450. 
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Figure 29: The unexpected potency of DMU745 against CYPI catalysed EROD 

reaction 

Initially, DMU745 was thought to cause total inhibition of CYP IBI at 13pM concentration, as opposed to 

data listed in Table 12. This is unlikely since the amount of P450 present in the assay is more than 100- 

fold (5nM) of the lowest inhibitor concentration. Further investigation has shown that this anomaly was a 

result of pipetor tips interaction with DMU745. 

7ER, resorufin, components responsible for generating NADPH (i. e. NADP+, glucose- 

6-phosphate and glucose-6-phospahte dehydrogenase) and NADPH itself can precipitate 

due to their poor solubility and competition for solubilisation with other organic 

compounds in the aqueous EROD buffer. Precipitation of these reagents in the EROD 

buffer during incubation could lead to erroneous conclusion such as those observed with 

DMU745, DMU785, DMU2136, DMU2137, DMU2139 and DMU2140. Further 

investigations have shown that there was no precipitation of these reagents during 

EROD assay. The apparent potency of the inhibitors concerned therefore was not due to 

precipitation of the reagents used in the EROD assay. 

Another possibility to explain the unusual potency of DMU745, DMU785, DMU2136, 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

DMU2137, DMU2139 and DMU2140 is the inhibitors undergo reverse aldol reaction in 

the EROD buffer, generating the corresponding starting materials (i. e. an equal molar of 

acetophenone and benzaldehyde) from the parent compounds. This will effectively 

double the concentration of the "inhibitors" (i. e. the reverse aldol products) in the 

EROD assay and may account for the potency observed for these compounds. 

However, for this to take place, both starting materials and the chalcone inhibitors must 

share similar selectivity towards their target enzyme so that the additive inhibitory effect 

would account for the high potency observed. In order to investigate this possibility, 

four acetophenones were screened for their EROD inhibitory activity and the results 

were compared with chalcone inhibitors that were synthesised using these starting 

materials (Figure 30). 

Vi-acetylnaphthone 

0 

-11-I 2-acetylnaphthone 

° ýI 
Iý 

ýI 
9-acetylphenanthrene 

Fiure 30. - COP 

o IP, I 
Nk 

I "acetylpyrene 

° ýi 

N DMU746 

O 

\N 
DMU745 

° ýI 

Iý 
N 

ýI 
DMU21371 

0 CC 
DMU2140 

Chalcone inhibitors and their corresponding acetophenone starting 

materials 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

Table 13: Chalcone inhibitors and their corresponding starting materials 

against CYP1 catalysed EROD activity 

Inhibitors CYPIA1 
ICSO (AM) 
CYPIA2 CYPIB1 Inhibitors CYP1A1 

IC50 (AM) 
CYP1A2 CYPIB1 

1-NAP NI 100 NI DMU746 1 3 0.09 
2-NAP NI 14 NI DMU745 <0.001 4.5 <0.001 
9-Phen 15 0.06 1.7 DMU2137 <0.001 0.5 <0.001 
1-AcPy 2.5 0.18 0.18 DMU2140 0.2 5 0.008 

Note: 1-NAP = 1-acetylnaphthone; 2-NAP = 2-acetylnaphthone; 9-Phen = 9-acetylphenanthrene and I- 

AcPy = 1-acetylpyrene; NI = no inhibition. Full chemical structures see Figure 30. 

The contrast in potency and selectivity of the 3-pyridyl chalcones and their 

corresponding starting materials (Table 13) indicated that the suggested reverse aldol 

reaction did not take place during the EROD assay. The unusual potency for DMU745 

to inhibit both CYP 1A1 and CYP 1B1 with less than 1 nM IC50 values could not be a 

result of the combined effects of the products from the reverse aldol reaction. 2- 

Acetylnaphthone, the starting material of DMU745, did not inhibit either CYP 1A1 or 

CYP 1B1. Furthermore, 1-acetylpyrene and 9-acetylphenanthrene, both were starting 

materials for DMU2140 and DMU2137, respectively, have shown different selectivity 

against CYP 1 catalysed EROD activity. These results have shown that the inhibitors 

concerned were stable under incubation condition and the apparent potency was not the 

combined effects of the reverse aldol products. 

During the above investigation, a previously unreported CYP 1 A2 inhibitor has been 

identified. 9-Acetylphenanthrene is a more potent and more selective inhibitor of 

CYP1A2 than furafylline 160,161 
. Furafylline, as a mechanism based inhibitor, pre- 

incubation is a necessity. Whereas for 9-acetylphenanthrene, pre-incubation is not 

required before EROD experiment. 
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Figure 31: Selective inhibitors of CYP1A2 

9-Acetylphenanthrene is a better selective CYPIA2 inhibitor compared to furafylline. 9- 

Acetylphenanthrene has higher potency and the lack of the need to pre-incubate the inhibitor prior to 

experiment. NI = no inhibition. 9-Phen = 9-acetylphenanthrene. 

The screening of the above acetophenones has also provided some SAR information for 

the CYP1 enzymes. CYP1 enzymes favour aromatic polycyclic compounds. This is 

evidenced by the fact that as the size of the aromatic fused-ring increased, the EROD 

IC50 values for all CYP1 family enzymes were generally decreased (Table 13). CYP1A2 

may not favour bulkier aromatic group. This has been shown by the 3-fold increase in 
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3-Pyridyl chalcones as selective CYPI enzyme inhibitors 

ICSO value between 9-acetylphenanthrene and 1-acetylpyrene. 

Lastly, the unusual potency DMU745, DMU785, DMU2136, DMU2137, DMU2139 

and DMU2140 may be caused by inhibitor interaction with plastic. These inhibitors 

could be adsorbed by the polypropylene pipetor tips (Finntips®, Thermo Labsystems) 

during preparation of serial dilution. The mixing of these compounds with diluent (10% 

DMSO in water) was achieved by drawing the solution up and down the length of the 

pipetor tips with a multichannel pipetor. If the compounds were adsorbed into the 

plastic matrix, they could be released back into the less concentrated dilutions when the 

same pipetor tip was used for mixing. The pipetor tips were not changed during serial 

dilution due to two reasons. Firstly, it is very expensive to replace and secondly, the 

visible amount that carried over was negligible (assuming the plastic did not interact 

with the compounds). 

In order to test the above hypothesis, all six inhibitors concerned were subjected to 

further EROD assay, but on this occasion, new pipetor tips were used for each step of 

serial dilution. It was found that the apparent potency of these inhibitors was due to the 

interaction of the inhibitors with the pipetor tips as described above. It is thought that 

high retention of inhibitors by the plastic allowed only small amount of inhibitor being 

released back into each subsequent dilution, but the amount released sufficient to cause 

potent inhibition of their target enzymes. 

Caution should be exercised when interpreting results for DMU745, DMU785, 

DMU2136, DMU2137, DMU2139 and DMU2140 in Table 14 (values in red) since 

adsorption of these inhibitors by the plastic still took place when solutions of these 

compounds were handled by the Finntips®. It was possible that the plastic 96-well 

microplate used in the assays could also interact with these inhibitors. The actual IC50 
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values for these inhibitors could therefore be well less than what have been recorded. 

Table 14: Results showing the interaction of plastic with some potent inhibitors 

of CYP1 enzymes 

Inhibitors CYP1A1 
IC50 (µM) 
CYP1A2 CYP1 B1 Inhibitors CYP1A1 

IC50 (µM) 
CYP1A2 CYP1 B1 

DMU745 <0.001 4.5 <0.001 DMU2137 <0.001 0.5 <0.001 
0.3 2 0.02 0.05 1 0.07 

DMU785 3 2.3 <0.001 DMU2139 1 20 <0.001 
1.5 1.5 0.15 1.5 15 0.08 

DMU2136 <0.001 1 <0.001 DMU2140 0.2 5 0.008 
0.1 1.3 0.02 0.3 5 0.12 

The IC50 values recorded in red were data from experiments where new pipetor tips were used for mixing. 

The inhibitors still showed similar selectively against their target CYPI enzymes even the potency have 

markedly decreased. 
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Figure 32: Chemical structure of DMU745 and its analogues 

In view of the observations that some compounds do interact with the Finntips®, six 3- 

pyridyl chalcones were chosen to investigate whether this phenomenon is only limited 

to the few compounds listed in Table 14. This was achieved by repeating EROD assay 
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where new pipetor tips were used in each serial dilution mixing steps. It was found that 

no apparent plastic interaction was observed with these 6 compounds (see Table 15). 

The regio-isomer of DMU745, namely DMU746, and the imidazolyl analogue 

DMU2120, did not interact with the plastic pipetor tips (Figure 32). This evidence 

strongly suggests the polypropylene used in this particular brand of pipette tips interacts 

with 3-pyridyl chalcone inhibitors in a compound specific manner. 

Table 15: EROD results showing no interaction of plastic with other inhibitors 

of CYP1 enzymes 

IC50 (µM) 
Inhibitors CYP1A1 CYP1A2 CYP1B1 

DMU709 0.3 25 7 
0.5 13 2.5 

DMU713 4 5 0.4 
6 2.5 0.3 

DMU716 7 8 0.6 
8 6.5 0.5 

DMU746 1 3 0.09 
1.3 4 0.3 

DMU763 13 7 0.8 
14 6 0.7 

DMU2120 0.7 3 0.5 
0.8 2.5 0.3 

The IC50 values in red were obtained from experiments where new pipette tips were used for mixing. 

There was no apparent different between two sets of IC50 values recorded between two experiments. 

The pharmacophores for the CYP1 ienzymes were constructed by mapping different 

inhibitors molecules together, using the coordination of the pyridyl lone pair electrons 

to the P450 haem as anchorage point. This type of mapping was pioneered in drug 

design by McCague and Potter, which led to the successful design of anticancer agents 
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o°c 

Chalcone projection 1 

Chalcone projection 3 

Chalcone projection 2 

Chalcone projection 4 

Figure 33: Four possible spatial orientations of 3-pyridyl chalcone 

Tamandron162, Idoxifenet63 and AbirateroneiM. The inhibitors molecules were mapped 

out following two rules: (i) minimal space and (ii) mapping the inhibitor molecules all 

to one side to reduce complexity of the model. Chalcone has four spatial projections 

(Figure 33). Projection 1 and 2 occupy more 3D space than projection 3 and 4. 

Therefore, projection 3 and 4 were preferably used for mapping. 

The mapping of chalcone can be arbitrarily chosen to the left or right of the haem, 

where the haem is located at the base of the model. Both mapping to the left or to the 

right are equally valid since they are relative to the haem. In this project, the chalcone 

inhibitors were mapped by projection of the chalcones to the right, such as shown in 

Figure 34. 
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Figure 34: Projection of the chalcone molecule to the right of the pharmacophore 

model. 

The mapping to one side rule reduces the variability of molecular mapping and hence resulted in a less 

complex pharmacophore model. 

To construct CYP 1A1 pharmacophore, first the orientation of the chalcone inhibitors 

within CYP 1A1 active site has to be determined. Badawi et. al. 88 have shown that 

CYP1A1 preferentially metabolised estradiol (E2) to 2-hydroxy estradiol (20H-E2). 

The formation of 4-hydroxy estradiol (40H-E2) by CYP 1A1 only at approximately 

0.25 nmol/min/nmol P450 compared with formation of 20H-E2 at approximately 8 

nmol/min/nmol P450. This indicated that E2 has to orientate itself diagonally in 

CYP1A1 active site to undergo 2-hydroxylation (Figure 35). 4-Hydroxylation of E2 is 

not favoured by CYP 1A1 indicative the presence of an exlusion zone to the right of the 

haem (Figure 35). Since the 3-pyridyl chalcone projection 4 has a better mapping onto 

the E2 molecule, this projection was used to construct CYP IA1 pharmacophore model. 

The presence of a hydrogen bonding interaction near the exclusion may help to anchor 

the E2 and chalcone molecules in the enzyme active site. 
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Figure 35: Possible orientation of estradiol and DMU711 in CYPIAI active site 

The presence of a second exclusion zone in CYP 1A1 pharmacophore is evidenced by 

the decrease in CYPIAI selectivity from DMU2137 (IC50 0.05µM)3 DMU2139 (IC5o 

1.5µM)- DMU2134 (IC50 3µM). These inhibitors have progressively longer B-ring 

structures that extend towards the apex of the model (Figure 36). DMU2134 is 60-fold 

less selective than DMU2137 probably because the bi-phenyl ring system in DMU2134 

is too close to exclusion zone 2. Although the lengths of molecule between DMU2134 

and DMU2139 are more or less the same, DMU2139 selectivity is twice of DMU2134. 

This observation suggested that there is a hydrogen binding interaction between the 

methoxy oxygen and an amino acid residue. 
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Figure 36: Mapping of DMU2134, DMU2137 and DMU2139 within CYP1AI 

active site 

The progressive loss of CYP1Al inhbitory activity from DMU2137 to DMU2139 to DMU2134 indicates 

the presence of a second exclusion zone. 

Amongst all the 3-pyridyl chalcones with polycyclic B-ring substituent, the 9- 

phenanthrenyl-3-pyridyl chalcone has the strongest inhibitory activity towards CYP1A1 

catalysed EROD reaction. This indicates the presence of a specifically shaped 

hydrophobic region in the active site (Figure 37). The existence of the hydrophobic 

region is supported by the fact that the mono-methoxylated 3-pyridyl chalcones 

(DMU712, DMU713 and DMU714) are more potent CYP 1AI inhibitors than their 

mono-hydroxylated counterparts (DMU763, DMU764 and DMU756; see Table 16). 

The 3,5-dihydroxy-3-pyridyl chalcone (DMU760) has no inhibitory activity on 

CYP 1A1 because both of its hydroxy groups were mapped within the hydrophobic 

region. DMU757 has weak inhibitory activity on CYP 1A1 probably due to the ability of 
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the 2-hydroxy group on DMU757 forming hydrogen bonding interaction at hydrogen 

bonding interaction A (Figure 38). 
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Figure 37: CYPIAI pharmacophore model showing a hydrophobic region in the 

diagonal binding pocket 
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Table 16: EROD results showing the hydrophobic nature of CYP1A1 active 

site R4 
R3 

IC50 (µM) 

R21 

Inhibitors CYP1A1 R2 R3 R4 R5 R6 

DMU712 6 OMe H H H H 
DMU763------- 

-------- 
13------- 

-------- 
OH---- 

------ ------ ----- 
H 

------ ----- 
H 

------ ----- 
H----- 

DMU713 0.4 H OMe H H H 

- -DMU764 - ---- - -- --------- --------20------- ---------H----- --- 
OH----- 

-----H------ -----H------ -----H ----- DMU714 7.5 H H OMe H H 
DMU765 

------------------- 
NI 

--------- ------- 
H 

--------- ----- 
H 

------ ------ 
OH 

---- --------- 
H 

----- ------ 
H 

----- ------ DMU715 2 OMe H OMe H H 
DM-U757------- 

-- -------- 
59------- 

-------- 
OH---- 

------ 
H 

--- - -- - --- 
OH 

----- -- - ----- 
H 

------ ---H ----- DMU717 0.6 H OMe H OMe H 
DMU760 NI H OH H OH H 

Note: NI = no inhibition. 
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Figure 38: CYPIAI pharmacophore model showing the mapping of DMU757 

(black) and DMU760 (red) 
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CYP 1 Al catalysed metabolism of resveratrol to piceatannol more efficiently compared 

with other CYP1 enzymes139 and this result is indicative of a hydrogen-bonding 

interaction near the CYP 1A1 haem (Figure 39). This hydrogen bonding interaction 

helps anchoring resveratrol within the enzyme active site to undergo metabolism to 

form piceatannol. 
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Figure 39: CYP1A1 pharmacophore model showing resveratrol binding in 

CYPIAI active site for 3'-hydroxylation 

One extra hydrogen bonding interaction in CYP IAI active site has been identified by mapping 

resveratrol into the pharmacophore model. Hydrogen bonding interaction C interacts with the 4'-hydroxy 

substituent and hydrogen bond A interacts with 3-hydroxy group of resveratrol. 

The above CYP1A1 pharmacophore model (Figure 39) is in accord with the pattern of 

metabolism of DMU212 by CYP1A1139. CYP1A1 preferably metabolised DMU212 to 

DMU214 and DMU281 (Figure 40). Mapping of DMU212 onto the constructed 
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CYP 1A1 pharmacophore model has shown how DMU212 orientated itself to form 

DMU214 and DMU281. 
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Figure 40: CYPJAI pharmacophore model showing metabolism of DMU212 to 

DMU214 and DMU281 

A close inspection on CYP 1 A2 IC50 values of the compounds used to generate CYP 1AI 

pharmacophore model, the potency of these compounds to inhibit CYP 1 A2 are slightly 

decreased. Since CYP 1 A2 is the most efficient CYP 1 enzyme to catalyse the formation 

of 20H-E288, it was thought that CYP 1 A2 also has a similar diagonal binding pocket as 

CYP 1A1. The 4-biphenyl-3-pyridyl chalcone DMU2134 did not inhibit CYP 1 A2 at all, 

which indicated that the bi-phenyl B-ring of DMU2134 is too bulky for CYP1A2 active 

site (Figure 41). The CYP 1 A2 exclusion zone 2 could be closer to the haem and 

therefore reducing the overall size of the active site pocket. A hydrogen binding 
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zone 2 

Available hydrogen 
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interaction near the exclusion zone 1 may have help to anchor E2 molecule within the 

active site by interacting with the 170-hydroxy group. 
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Figure 41: CYPIA2 pharmacophore model showing mapping of DMU2134 (red) 

and estradiol (black) 

The exclusion zone 2 is closer to the haem and effectively reduces the size of the active site pocket. 

DMU2134 is too bulky to fit into the binding pocket hence its inability to inhibit CYP I A2. 

DMU763 inhibits CYPIA2 with IC50 of 7µM, DMU764 inhibits the P450 with IC5o 

more than 100µM and DMU765 does not inhibit CYP1A2 (Table 9). These 

observations confirm the presence of hydrogen bonding interaction at point A, which 

interacts with the 2-hydroxy group on DMU763. The inability for both dihydroxy 3- 

pyridyl chalcones (DMU757 and DMU760) to inhibit CYP 1 A2 indicates the presence 

of hydrophobic region. Since not much differences in data were observed to delineate 

the size and shape of CYP1A2 hydrophobic region, it is temporary assigned similar as 
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with CYP 1A1 (Figure 42). 

CYP1A2 
exclusion 
zone 2 

Ii 
Hydrophobic 
region 

Hydrogen bonding 
/ interaction A 

ýýý/ H 

CYPIA2 
exclusion 
zone 1 

Figure 42: CYPIA2 pharmacophore model showing mapping of DMU763 (black) 

and the selective CYPIA2 inhibitor 9-acetylphenanthrene (red) 

Although CYP IB1 catalyses the formation of piceatannol from resveratrol, Wilsher has 

found that CYP 1B1 is more efficient in converting resveratrol to trans-3,4,5,4'- 

tetrahydroxystilbene139. The same author also found that DMU212 is metabolised to 

DMU281 by CYP 1B1, but the metabolite is further metabolised by C YP 1B1 

exclusively to give DMU295 (trans-4,4'-dihydroxy-3,5-dimethoxystilbene). Since 

resveratrol, as well as DMU212 and DMU281, have to orientate within CYP 1B1 

binding pocket in different way accordingly to facilitate metabolism to form the 

respective metabolites, CYP 1B1 therefore must have 2 distinct binding pockets within 

the active site. 

Figure 43 shows resveratrol orientating itself in CYP 1B1 active site ready for 3'- (red) 
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and 4-hydroxylation (black). Three hydrogen bonding interactions have been assigned 

to the vertical binding pocket. These hydrogen bonds interact with hydroxy substituents 

in resveratrol, so as hydroxy and methoxy substituents in DMU28 1. The hydrogen 

binding interactions help to anchor resveratrol and DMU281 in position within CYP 1BI 

to undergo metabolic conversion to trans-3,4,5,4'-tetrahydroxystilbene and DMU295, 

respectively. 

The substituted 3-pyridyl chalcones bind to CYP 1B1 horizontal binding pocket. These 

heterocyclic chalcones cannot bind to CYP IB1 vertically because the substituted phenyl 

B-ring would occupy the position where the hydrogen interaction D is situated. As the 

phenyl B-ring is more hydrophobic, this interaction is unlikely. The hydrogen bonding 

interaction D is interacting with the chalcones carbonyl oxygen when chalcones are 

bound to CYP 1B1 horizontal pocket (Figure 44). 
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Figure 43: CYP1B1 pharmacophore model showing the vertical and horizontal 

binding modes of resveratrol 

Resveratrol undergoing 3'-hydroxylation (red) in the horizontal binding pocket. The above figure also 

shows resveratrol undergoing 4-hydroxylation (black) in the vertical binding pocket. 
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A number of the 3-pyridyl chalcones with a polycyclic aromatic B-ring have shown 

high selectivity and potency for CYP IB1, with recorded IC50 values of less than I OOnM 

(Table 12). IC50 values for DMU762, DMU2134 and DMU2140 are ranging from 

0.12 µM to 0.8µM and DMU2133 IC50 value for CYP 1B1 is 9µM. These findings 

indicate the presence of a hydrophobic region in the CYP I B1 horizontal binding pocket 

(Figure 45). 
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Figure 44: Mapping of DMU711 onto CYPIBI pharmacophore 

Inlet shows different conformers and orientations of DMU711. 
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Figure 45: Hydrophobic region in CYPIBI pharmacophore model 

Note: DMU745 (blue); DMU746 (black); DMU2136 (red). 

The presence of hydrophobic region is concord with the observation that methoxylated 

3-pyridyl chalcones (Table 8) are more potent CYP 1B1 inhibitors than their 

hydroxylated counterparts (Table 9). Both dihydroxylated 3-pyridyl chalcones 

(DMU757 and DMU760) do not inhibit CYP 1B1 as oppose to their dimethoxylated 

counterparts because both DMU757 and DMU760 dihydroxyphenyl substituent will be 

rejected by the hydrophobic region. Interestingly, the 2-hydroxylated 3-pyridyl chalcone 

(DMU763) has shown more CYP1B1 selectivity with a recorded IC50 value of 0.8µM. 

This is probably due to the 2-hydroxy group in DMU763 able to form a hydrogen bond 

at hydrogen bonding interaction D. 
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Figure 46: CYPIBJ pharmacophore model showing inhibition of CYPIBI by 

DMU763 

DMU709 (Chapter 2) is a CYP 1A1 inhibitor but its 2,3,4-trimethoxy analogue 

(DMU718) is CYP 1B1 selective. The unique chemical structure of the 3,4,5- 

trimethoxyphenyl moiety on DMU709 forces the middle methoxy group to occupy 

space that is out of the planar plane of the phenyl ring. This orientation will occupy 

more room in 3D space. The hydrophobic region in CYP 1B1 may be formed by two 

groups of hydrophobic amino acid residues in a sandwich formation. This is in accord 

with the homology model published by Lewis74. The bulky trimethoxyphenyl moiety 

may not favour to be sandwiched between these hydrophobic amino acid residues. 

DMU718 is 14-fold better CYP 1B1 inhibitor than DMU709. Although DMU718 

contains a trimethoxyphenyl moiety, its methoxy groups may be out of the more space 
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confining part of the hydrophobic region. DMU782 is weak inhibitor of CYP IB1 with a 

recorded IC50 value of 18µM. The chemical structure of DMU782 can be mapped onto 

DMU2133 (CYP 1B1 IC50 9µM). DMU2133 is not a potent CYP 1B1 inhibitor and 

because structurally DMU782 is so similar to DMU2133, this may account for the low 

potency for DMU782 to inhibit CYP 1BI. 

Figure 47: Mapping the molecular structure of DMU782 onto DMU2133 

Amongst the synthesised 3-pyridyl chalcones, DMU709 has been found to be the most 

selective inhibitor for CYP 1A1.9-Acetylphenanthrene, the starting material for the 

synthesis of DMU2137, has been identified as more selective inhibitor of CYP 1 A2 with 

better selectivity and potency compared with the known CYP1A2 mechanistic based 

inhibitor furafylline. Several more selective inhibitors of CYP 1B1 have been 

discovered. Of these, DMU2139 offers the best selectivity and potency. The 

pharmacophore models for the CYP 1A1, CYP 1 A2 and CYP 1B1 (Figure 40,42 and 46, 

respectively) are preliminary and would be further refined in Chapter 4. 
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3.5 Experimental 

Synthetic methods and analytical methods see Section 2.5.1 to 2.5.2. 

(E)-1-(Phenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU711) 

Synthetic Method 1; 'H-NMR (CD3OD) 5 7.42 (3H, m), 7.55 (1H, t, benzyl), 7.69 (1H, 

d, J=16.8Hz), 7.81 (1H, d, J=16.8Hz), 8.02 (2H, d, benzyl), 8.17 (1H, d, Py), 8.46 (1H, 

d, Py), 8.77 (1H, s, Py); 13C-NMR (CD3OD) 6125.98,126.10,130.16,130.31,133.31, 

134.84,137.26,139.40,142.03,151.08,151.81,192.03 (C=O); IR Spectrum Vm. 

(KBr)/cmi 1661 (C=O); Mass Spectrum (FAB) m/z 210 (M+ + 1,100%); mp 94°C. 

(Eý-1-(2'-Methoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU712) 

Synthetic Method 1; 'H-NMR (CD3OD) 8 3.80 (3H, s, OMe), 6.95 (1H, t, benzyl), 7.06 

(IH, d, benzyl), 7.35-7.50 (5H, m), 8.04 (IH, d, Py), 8.43 (IH, d, Py), 8.66 (IH, s, Py); 

13C-NMR (CD3OD) 8 56.76,113.60,122.24,125.98,130.25,130.93,131.63,133.39, 

135.22,137.01,140.27,150.82,151.66,160.37,194.69 (C=O); IR Spectrum Vm. 

(KBr)/cm 1 1657 (C=O); Mass Spectrum (FAB) m/z 240 (M++ 1,100%); mp 91°C. 

(E)-1-(3'-Methoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU713) 

Synthetic Method 1; 1H-NMR (CD3OD) 8 3.75 (3H, s, OMe), 7.10 (1H, d, benzyl), 

7.32-7.42 (2H, m), 7.50 (1H, s, benzyl), 7.60 (1H, d, benzyl), 7.68 (1H, d, J=16.1Hz), 

7.77 (1H, d, J=16.1Hz), 8.16 (1H, d, Py), 8.46 (1H, d, Py), 8.77 (1H, s, Py); 13C-NMR 

(CD3OD) 8 56.38,114.61,121.02,122.74,125.96,126.12,131.60,133.29,137.27, 

140.76,142.04,150.97,171.80,162.00,191.75 (C=O); IR Spectrum Vm. (KBr)/cm" 

1664 (C=O); Mass Spectrum (FAB) m/z 240 (M+ + 1,100%); mp 82°C. 
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(E)-1-(4'-Methoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU714) 

Synthetic Method 1; 'H-NMR (CD3OD) 8 4.05 (3H, s, OMe), 7.30 (2H, d, benzyl), 7.74 

(1H, m, Py), 7.95 (1H, d, J=15.5Hz), 8.15 (1H, d, J=15.5Hz), 8.35 (2H, d, benzyl), 8.49 

(1H, d, Py), 8.78 (1H, d, Py), 9.08 (1H, s, Py); 13C-NMR (CD3OD) 6 56.06,114.62, 

123.06,129.08,129.31,130.78,131.68,132.71,142.89,148.85,149.70,167.85,189.56 

(C=O); IR Spectrum Vm. (KBr)/cm 1 1664 (C=O); Mass Spectrum (FAB) m/z 240 (M+ 

+ 1,100%); mp 105-107°C. 

(E)-1-(21,41-Dimethoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU715) 

Synthetic Method 1; 'H-NMR (CD3OD) 8 3.88 (6H, s, OMe), 6.69 (1H, d, benzyl), 7.14 

(2H, d, benzyl), 7.3 8 (1 H, m, Py), 7.52 (1 H, d, J=15.9Hz), 7.78 (1 H, d, J=15.9Hz), 7.94 

(1H, d, Py), 8.62 (1H, d, Py), 8.85 (1H, s, Py); 13C-NMR (CD30D) 5 55.96,56.16, 

99.07,105.89,122.17,124.03,129.49,131.75,133.52,134.98,138.16,150.10,150.88, 

161.03,164.98,189.94 (C=O); IR Spectrum Vmax (KBr)/cm'1 1659 (C=O); Mass 

Spectrum (FAB) m/z 270 (M+ + 1,100%); mp 93-95°C. 

(E)-1-(3', 4'-Dimethoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU716) 

Synthetic Method 1; 1H-NMR (CDC13) 8 3.90 (6H, s, OMe), 6.95 (1H, d, benzyl), 7.37 

(IH, m, Py), 7.57-7.71 (3H, m), 7.79 (IH, d, J=15.7Hz), 7.94 (IH, d, Py), 8.62 (IH, d, 

Py), 8.87 (1H, s, Py); 13C-NMR (CDC13) 6 56.06,56.11,110.01,110.76,123.16, 

123.51,123.71,130.88,134.56,140.05,149.38,149.83,150.91,153.58,158.12,187.56 

(C=O); IR Spectrum Vora. (KBr)/cm"l 1655 (C=O); Mass Spectrum (FAB) m/z 270 (M+ 

+ 1,100%); mp 91-93°C. 
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(E)-1-(31,5'-Dimethoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU717) 

Synthetic Method 1; 'H-NMR (CDC13) 8 3.85 (6H, s, OMe), 6.68 (1H, t, benzyl), 7.14 

(2H, s, benzyl), 7.35 (1H, t, Py), 7.52 (1H, d, J=14.7Hz), 7.78 (1H, d, J=14.7Hz), 7.94 

(1H, d, Py), 8.63 (1H, d, Py), 8.85 (1H, s, Py); 13C-NMR (CDC13) 8 55.68,105.34, 

106.50,123.78,124.00,130.72,134.53,139.78,141.01,150.07,151.17,161.07,189.47 

(C=O); IR Spectrum Vm. (KBr)/cm'1 1666 (C=O); Mass Spectrum (FAB) m/z 270 (MM 

+ 1,100%); mp 90-91°C. 

(E)-1-(2', 3', 4'-Trimethoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU718) 

Synthetic Method 1; 'H-NMR (CDC13) 8 3.90-3.95 (9H, OMe), 6.78 (1H, d, benzyl), 

7.35 (1H, m, Py), 7.53 (1H, d, J=15.7Hz), 7.63 (1H, d, J=15.7Hz), 7.78 (1H, d, benzyl), 

7.93 (1H, m, Py), 8.61 (1H, d, Py), 8.84 (1H, s, Py); 13C-NMR (CDC13) 8 56.13,61.04, 

62.06,107.46,123.71,126.01,128.43,131.03,134.43,138.70,142.15,149.93,150.75, 

153.95,157.45,189.96 (C=O); IR Spectrum Vm. (KBr)/cm" 1666 (C=O); Mass 

Spectrum (MALDI) m/z 299.7 (M*, 100%); mp 77°C. 

(E)-1-(2', 3', 4'-Trimethoxyphenyl)-3-(1H-4-imidazolyl)prop-2-en-l-one (DMU744) 

Synthetic Method 3; 1H-NMR (DMSO) 8 3.85 (3H, s, OMe), 3.90 (3H, s, OMe), 3.95 

(3H, s, OMe), 6.72 (1H, d, benzyl), 7.28 (1H, s, imidazolyl), 7.45-7.60 (3H, m), 7.71 

(1H, d, J=17.5Hz), 9.02 (1H, broad, imidazolyl); 13C-NMR (DMSO) 8 56.32,60.70, 

62.02,108.06,121.92,125.43,125.73,127.4,128.37,129.56,136.47,141.82,153.14, 

157.15,189.53 (C=O); IR Spectrum Vn,. (KBr)/cml 1662 (C=O); Mass Spectrum 

(MALDI) m/z 287.9 (M+, 100%); mp 182-183°C. 
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(E)-1-(2-Naphthyl)-3-(3-pyridyl)prop-2-en-l-one (DMU745) 

Synthetic Method 1; 'H-NMR (CDC13) 5 7.32 (1H, t, naphthyl), 7.59 (2H, m, naphthyl), 

7.69-8.01 (6H, m), 8.10 (1H, d, J=16.3Hz), 8.52 (1H, d, Py), 8.62 (1H, d, Py), 8.90 (1H, 

s, Py); 13C-NMR (CDC13) 8 123.80,123.93,124.39,126.95,127.89,128.63,128.77, 

129.59,130.15,130.80,132.58,134.63,135.16,135.65,140.85,150.07,151.15,189.56 

(C=O); IR Spectrum Vmax (KBr)/cm'1 1651 (C=O); Mass Spectrum (MALDI) m/z 259.2 

(M+, 100%); mp 117°C. 

(E)-1-(1-Naphthyl)-3-(3-pyridyl)prop-2-en-l-one (DMU746) 

Synthetic Method 1; 'H-NMR (CDC13) 8 7.33 (1H, m, naphthyl), 7.38 (1H, d, 

J=16.2Hz), 7.51-7.64 (4H, m), 7.78-8.04 (4H, m), 8.37 (IH, d, Py), 8.62 (IH, d, Py), 

8.77 (1H, s, Py); 13C-NMR (CDC13) 8 124.28,124.79,125.83,126.06,127.82,128.13, 

129.06,130.87,132.48,134.30,134.90,136.90,142.13,150.32,150.60,151.47, 

151.80,195.08 (C=O); IR Spectrum Vm (KBr)/cml 1662 (C=O); Mass Spectrum 

(MALDI) m/z 259.1 (M+, 100%); mp 123-124°C. 

(E)-1-(3,4-Methylenedioxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU762) 

Synthetic Method 2; 'H-NMR (CDC13) 8 6.07 (2H, s, methylenedioxy), 6.74 (1H, d, 

benzyl), 6.90 (IH, d, benzyl), 7.49-7.59 (2H, m), 7.75 (IH, d, J=16.8 Hz), 7.92 (IH, d, 

Py), 8.39 (1H, m, Py), 8.63 (1H, d, Py), 8.88 (1H, s, Py); 13C-NMR (CDC13) 6 101.99, 

108.02,108.45,123.65,123.76,124.88,130.83,132.61,134.54,140.35,148.48, 

149.93,151.02,152.04,187.59 (C=O); IR Spectrum Vý, ax (KBr)/cm 1 1658 (C=O); 

Mass Spectrum (MALDI) m/z 253.3 (M+, 100%); mp 138-139°C. 
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(E)-1-(2', 5'-Dimethoxyphenyl)-3-(3-pyridyl)prop-2-en-1-one (DMU782) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.80 (3H, s, OMe), 3.90 (3H, s, OMe), 6.95 

(1 H, d, benzyl), 7.07 (1 H, d, benzyl), 7.23 (1 H, s, benzyl), 7.33 (1 H, t, Py), 7.54 (111, d, 

J=15.8Hz), 7.64 (1H, d, J=15.8Hz), 7.90 (1H, d, Py), 8.60 (1H, d, Py), 8.72 (1H, s, Py); 

13C-NMR (CDC13) 6 55.80,56.40,113.39,114.49,119.71,123.66,128.65,129.03, 

130.97,134.51,138.78,149.84,150.72,152.79,153.68,191.35 (C=O); IR Spectrum 

Vm. (KBr)/cm 1 1662 (C=O); Mass Spectrum (MALDI) m/z 269.6 (M+, 100%); mp 

169-170°C. 

(E)-1-(2-Naphthyl)-3-(1H-4-imidazolyl)prop-2-en-l-one (DMU2120) 

Synthetic Method 2; 'H-NMR (DMSO) 8 6.58-6.69 (2H, m, naphthyl), 7.73 (1H, s, 

imidazolyl), 7.77 (1H, d, J=16.5Hz), 7.86 (1H, d, J=16.5Hz), 7.92 (1H, s, naphthyl), 

8.00 (IH, d, naphthyl), 8.03-8.10 (2H, m, naphthyl), 8.17 (IH, d, naphthyl), 8.72 (IH, s, 

imidazolyl); 13C-NMR (DMSO) 8 118.24,124.24,127.03,127.80,128.58,129.66, 

129.70,130.06,132.16,132.46,134.66,135.02,135.52,189.03 (C=O); IR Spectrum 

Vmax (KBr)/cm"1 1647 (C=O); Mass Spectrum (MALDI) m/z 248.2 (M+, 100%); mp 

139-140°C. 

(E)-1-(3'-Chlorophenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU2123) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.38 (1H, t, benzyl), 7.46 (1H, t, Py), 7.58 

(1H, d, benzyl), 7.55 (1H, d, J=16. lHz), 7.80 (1H, d, J=16.1Hz), 7.89 (1H, d, benzyl), 

7.96 (IH, d, Py), 7.99 (IH, s, benzyl), 8.64 (IH, d, Py), 8.87 (IH, s, Py); 13 C-NMR 

(CDC13) 6 123.24,123.77,126.54,128.57,130.03,130.40,132.97,133.23,134.58, 

139.00,141.70,150.06,151.32,188.40 (C=O); IR Spectrum Vm (KBr)/cm'l 1666 
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(C=O); Mass Spectrum (MALDI) m/z 243.9 (M+, 100%); mp 128-129°C. 

(E)-1-(41-Chlorophenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU2124) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.36 (1H, t, Py), 7.48 (2H, d, benzyl), 7.55 

(1H, d, J=16.3Hz), 7.79 (1H, d, J=16.3Hz), 7.91-8.00 (3H, m), 8.64 (1H, d, Py), 8.85 

(1H, S, Py); 13C-NMR (CDC13) 6 123.32,123.81,129.08,129.96,130.53,134.63, 

136.07,139.62,141.42,150.02,151.29,188.46 (C=O); IR Spectrum Vm. (KBr)/cm" 

1666 (C=O); Mass Spectrum (MALDI) m/z 243.3 (M+, 100%); mp 111-112°C. 

(E)-1-(3'-Bromophenyl)-3-(3-pyridinyl)prop-2-en-l-one (DMU2127) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.34-7.42 (2H, m), 7.53 (1H, d, J=15.8Hz), 

7.72 (1H, d, benzyl), 7.80 (1H, d, J=15.8Hz), 7.91-7.97 (2H, m), 8.15 (1H, s, benzyl), 

8.65 (1H, d, Py), 8.88 (1H, s, Py); 13C-NMR (CDC13) 6 118.02,118.15,118.72,121.94, 

125.23,125.34,126.46,129.54,130.85,134.45,136.68,145.03,146.29,183.26 (C=O); 

IR Spectrum Vm. (KBr)/cm 1 1662 (C=O); Mass Spectrum (MALDI) m/z 288.8 (M+, 

100%); mp 127°C. 

(E)-1-(9-Anthracenyl)-3-(3-pyridinyl)prop-2-en-l-one (DMU2133) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.18-7.23 (2H, m), 7.33 (1H, d, J=14.9Hz), 

7.45 (2H, d, anthracenyl), 7.47 (2H, d, anthracenyl), 7.63 (1H, d, Py), 7.85-7.91 (2H, 

m), 7.79-8.05 (2H, m), 8.52 (1H, s, anthracenyl), 8.55 (1H, s, Py); 13C-NMR (CDC13) 8 

123.69,125.01,125.57,126.82,128.38,128.75,130.04,130.73,131.10,133.99, 

134.49,143.58,150.13,151.44,199.47 (C=O); IR Spectrum Vm. (KBr)/cm'1 1631 

(C=O); Mass Spectrum (MALDI) m/z 309.1 (M+, 100%); mp 172-173°C. 
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(E)-1-(4-Biphenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU2134) 

Synthetic Method 2; 1H-NMR (CDC13) 8 7.34-7.43 (2H, m), 7.49 (2H, t, biphenyl), 

7.61-7.68 (3H, m), 7.75 (2H, d, biphenyl), 7.82 (IH, d, J=16.1 Hz), 7.77 (IH, d, Py), 

8.11 (2H, d, biphenyl), 8.64 (1H, d, Py), 8.88 (1H, s, Py); 13C-NMR (CDC13) 6 123.75, 

123.86,127.27,12.737,128.28,128.96,129.15,130.73,134.58,136.43,139.80, 

140.79,145.87,149.97,151.09,189.21 (C=O); IR Spectrum Vm. (KBr)/cm" 1659 

(C=O); Mass Spectrum (MALDI) m/z 285.5 (M+, 100%); mp 140°C. 

(E)-1-(3-Phenanthrenyl)-3-(3-pyridinyl)prop-2-en-l-one (DMU2136) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.28 (1H, t, phenanthrenyl), 7.53-7.91 (9H, 

s, m), 8.09 (IH, d, phenanthrenyl), 8.60 (IH, d, Py), 8.68 (IH, d, Py), 8.85 (IH, 

phenanthrenyl), 9.22 (1H, s, Py); 13C-NMR (CDC13) 6 122.69,123.71,123.82,124.00, 

125.49,126.19,127.19,127.25,128.78,128.93,129.75,129.76,130.49,130.69, 

132.11,134.55,134.90,135.27,140.75,150.00,151.04,189.41 (C=O); IR Spectrum 

Vmax (KBr)/cm"' 1655 (C=O); Mass Spectrum (MALDI) m/z 309.1 (M+, 100%); mp 

113°C. 

(E)-1-(9-Phenanthrenyl)-3-(3-pyridinyl)prop-2-en-l-one (DMU2137) 

Synthetic Method 2; 1H-NMR (CDC13) 8 7.30 (1H, t, Py), 7.39 (1H, d, J=16.1Hz), 7.59- 

7.77 (5H, m), 7.87 (IH, d, Py), 7.93 (IH, d, phenanthrenyl), 8.03 (IH, s, 

phenanthrenyl), 8.34 (IH, d, phenanthrenyl), 8.60 (IH, d, Py), 8.68 (IH, d, 

phenanthrenyl), 8.72 (1H, d, phenanthrenyl), 8.77 (1H, s, Py); 13C-NMR (CDC13) 8 

122.73,123.00,123.75,126.43,127.20,127.29,127.40,128.71,128.73,129.12, 

129.64,129.88,130.05,130.38,130.77,131.59,134.47,135.52,141.92,150.12, 
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151.27,194.77 (C=O); IR Spectrum Vm. (KBr)/cm'1 1651 (C=O); Mass Spectrum 

(MALDI) m/z 309.6 (M+, 100%); mp 120°C. 

(E)-1-(6'-Methoxy-2-naphthyl)-3-(3-pyridyl)prop-2-en-1-one (DMU2139) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.95 (3H, s, OMe), 7.17 (1H, s, naphthyl), 

7.22 (IH, m, naphthyl), 7.36 (IH, t, Py), 7.73 (IH, d, J=15.8 Hz), 7.78-7.90 (3H, m), 

7.98 (1 H, d, Py), 8.08 (1 H, m, naphthyl), 8.47 (1 H, s, naphthyl), 8.63 (1 H, d, Py), 8.89 

(1H, s, Py); 13C-NMR (CDC13) 8 55.40,105.87,119.81,123.71,123.83,125.05,127.38, 

127.83,130.03,130.85,131.13,133.08,134.55,137.34,140.32,149.94,150.95, 

159.91,189.03 (C=O); IR Spectrum Vm. (KBr)/cm'1 1643 (C=O); Mass Spectrum 

(MALDI) m/z 289.4 (M+, 100%); mp 133°C. 

(E)-1-(1-Pyrenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU2140) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.38 (1H, t, Py), 7.50 (1H, d, J=14.9Hz), 7.62 

(1H, d, J=14.9Hz), 7.87 (1H, d, Py), 7.98-8.07 (2H, m), 8.10-8.25 (6H, m), 8.59 (1H, d, 

Py), 8.63 (1H, d, prenyl), 8.78 (1H, s, Py); 13C-NMR (CDC13) 8 123.74,124.00,124.27, 

124.53,124.85,126.05,126.24,126.30,126.41,127.07,128.91,129.38,129.51, 

130.54,131.04,132.97,133.51,134.45,141.52,149.97,151.07,194.67 (C=O); IR 

Spectrum Vm, (KBr)/cm'1 1620 (C=0); Mass Spectrum (MALDI) m/z 333.4 (M', 

100%); mp 113°C. 

(E)-1-(3', 4'-Difluorophenyl)-3-(3-pyridyl)prop-2-en-l-one (DMU2151) 

Synthetic Method 2; 1H-NMR (CDC13) 8 7.30 (1H, m, benzyl), 7.38 (1H, t, Py), 7.54 

(1H, d, J=16. OHz), 7.78-7.90 (3H, m), 7.97 (1H, d, Py), 8.65 (1H, d, Py), 8.88 (1H, s, 
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Py); 13C-NMR (CDC13) 8 117.47,117.99,118.02,122.66,123.77,125.43,125.48, 

130.32,134.60,134.76,141.82,150.01,151.38,186.96 (C=O); IR Spectrum Vm. 

(KBr)/cm'1 1662 (C=O); Mass Spectrum (MALDI) m/z 245.5 (M+, 100%); mp 119°C. 

1,5-bis(3'-Chlorophenyl)-3-(3-pyridyl)pentane-1,5-dione (DMU2154) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.33 (1H, d, J=17Hzgem), 3.38 (1H, d, 

J=17Hzgem), 3.49 (IH, d, J=17Hzgem), 3.52 (IH, d, J=17Hzgem), 4.08 (IH, p), 7.21 (1 H, 

t, Py), 7.39 (2H, t, benzyl), 7.51 (2H, d, benzyl), 7.65 (1H, d, Py), 7.80 (2H, d, benzyl), 

7.89 (2H, s, ben), 8.45 (1H, d, Py), 8.59 (1H, s, Py); 13C-NMR (CDC13) 6 32.65,42.59, 

114.34,121.82,124.47,126.52,128.37,131.61,133.41,136.46,137.21,146.66, 

147.54,194.82 (C=O); IR Spectrum Vmax (KBr)/cm'1 1678 (C=O); Mass Spectrum 

(MALDI) m/z 398.3 (M+, 100%); mp 146°C. 

1,5-bis(4'-Chlorophenyl)-3-(3-pyridyl)pentane-195-dione (DMU2155) 

Synthetic Method 2; 'H-NMR (DMSO) 8 3.38 (IH, d, J=16.7Hzgem), 3.42 (IH, d, 

J=16.7Hzgem), 3.52 (IH, d, J=16.7Hzgem), 3.56 (IH, d, J=16.7Hzgem), 4.03 (IH, p), 7.22 

(IH, t, Py), 7.44 (4H, d, benzyl), 7.69 (IH, d, Py), 7.91 (4H, d, benzyl), 8.39 (IH, d, 

Py), 8.57 (1H, s, Py); 13C-NMR (DMSO) 5 34.06,43.94,123.35,128.88,129.90, 

135.08,135.29,138.25,139.47,147.49,149.52,197.49 (C=O); IR Spectrum Vmax 

(KBr)/cm' 1681 (C=O); Mass Spectrum (MALDI) m/z 398.8 (M+, 100%); mp 154°C. 

1,5-bis(3'-Bromophenyl)-3-(3-pyridyl)pentane-1,5-dione (DMU2156) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.33 (1H, d, J=16.8Hzgem), 3.37 (1H, d, 

J=16.8Hzgem), 3.48 (1H, d, J=16.8Hzgem), 3.53 (1H, d, J=16.8Hzgem), 4.08 (1H, p), 7.22 
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(1H, t, Py), 7.33 (2H, t, benzyl), 7.63-7.70 (3H, m), 7.85 (2H, d, benzyl), 8.04 (211, s, 

benzyl), 8.45 (1H, d, Py), 8.57 (1H, s, Py); 13C-NMR (CDC13) 8 32.63,42.55,121.42, 

121.83,124.91,128.63,129.47,133.64,134.54,136.65,137.20,146.67,147.53,194.72 

(C=O); IR Spectrum Vm. (KBr)/crri 1 1678 (C=O); Mass Spectrum (MALDI) m/z 487.1 

(M+, 100%); mp 154°C. 
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CYPI enzyme inhibition by "reverse" 3- & 4-pyridyl chalcones 

4.1 Introduction 

The 3-chloro and 3-bromo 3-pyridyl chalcones DMU2123 and DMU2127, respectively, 

are both inhibitors of CYPIB1 (Table 10). Surprisingly, both inhibitors are bioactivated 

in the induced MCF7 and MDA"MB-468 (MDA468) cell lines, making them potential 

prodrug candidates for further pre-clinical studies (see Chapter 5). One may have 

concluded that, since these molecules have inhibition activity against CYP 1B1, their 

bioactivation to the cytotoxic species would not be catalysed by the same CYP enzyme. 

Indeed, preliminary drug metabolism studies have shown that the bioactivation of these 

potential anticancer agents was mainly by CYP1A1, though an unidentified residue 

insect CYP presence in other SupersomesTM and the control microsomes also catalysed 

the same process, but to a lesser extent (Chapter 5). 

The bioactivation of DMU2123 and DMU2127 has shown that the 3"pyridyl chalcones 

can align themselves in the P450s in two orientations. The pyridyl A-ring of these 

compounds can bind to the haem to cause enzyme inhibition, or the substituted B-ring 

can face the haem ready to undergo metabolic oxidation. 

To further investigate the structure-activity relationships (SAR) of CYP 1 enzymes, a 

range of reverse 3-pyridyl chalcones has been synthesised and examined. Nine 4-pyridyl 

analogues of DMU710 (see Chapter 2) have also been made and their SAR will be 

discussed in this chapter. The reverse 3-pyridyl chalcones will help to determine which 

end of the chalcone molecule preferably binds to the surface of the haem, by comparing 

the EROD inhibitory data between the 3-pyridyl and the reverse 3-pyridyl chalcones. 

The combined EROD data from all the synthesised chalcones would help to refine the 

pharmacophore models constructed in the previous chapter. 
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4.2 Reagents and methods 

4.2.1 Materials 

All chemical reagents and starting materials for synthesis were purchased from either 

Lancaster Synthesis (UK) or Aldrich Chemical Co. Ltd (UK). Reactions were followed 

and monitored with TLC as described in Section 2.2.1 with 2,4-DNP. Purification of the 

synthesised compounds was carried out using flash column chromatography with silica 

gel (supplied by Fisher Scientific, UK) unless otherwise stated. 

Reagents and plasticware for the EROD assay were obtained from Sigma Chemical Co. 

Ltd and Fisher Scientific (see Section 2.1.1). Microsomes prepared from insect cells 

transformed using a baculovirus expressing human cytochrome P450 CYP1A1, 

CYP 1 A2 and CYP 1B1 with co-expression of human NADPH-cytochrome P450 

reductase (SupersomesTM) were obtained from Gentest Corporation, USA via 

Cambridge Biosciences, UK. Handling of SupersomesTM was previously described in 

Section 2.2.8. 

4.2.2 Synthetic strategies 

All target inhibitors were synthesised using the Claisen-Schmidt aldol condensation 

with a base as catalyst. All three methods described in Section 2.5.2 were employed. 

Synthetic Method 1 uses lithium diisopropylamide as base. Method 2 is carried out with 

50% w/v NaOH solution as base and with cooling. Synthetic Method 3 is a solvent-free 

method involved grinding the starting materials and powdered NaOH with a pestle and 

mortar. Details for each synthetic method can be found in Section 2.5.2. 
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4.2.3 Microsomal incubation- EROD assay 
The EROD assay was conducted as described in Section 2.2.9. The method of 

preparation of different solutions used in the EROD assay can be found from Section 

2.2.3 to Section 2.2.7. 

4.3 Results 

"N 

O 

II/ 

IIO 
NN 

(Horizontal binding mode) (Vertical binding mode) 

Figure 48: Chemical structure of the di-3-pyridyl cholcone DMU2141 in the 

horizontal and vertical binding mode projections 

A total of 19 reverse 3-pyridyl chalcones have been synthesised. As a result of the lack 

of readily available starting materials, only 3 polycyclic compounds have been made for 

the reverse 3-pyridyl series of chalcones. (E)-1,3-di(3-pyridyl)prop-2-en-1-one (refer to 
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as di-3-pyridyl chalcone) has also been synthesised. 

Table 17: Chemical structure and physical characteristics of some reverse 3- 

pyridyl chalcones 

Ra 
Rs Ra 

R6 / R2 

%O 

N 

Physical chracterictics 
Inhibitors R2 R3 R4 R5 R6 (yield %) Method 

DMU729 H H OMe H H fine yellow needle (49%) 2 
DMU766 OH H H H H apple green crystal (9%) 3 
DMU767 H OH H H H yellow powder (17%) 3 
DMU768 H H OH H H yellow crystal (13%) 3 
DMU774 H OMe OMe H H yellow waxy solid (15%) 3 
DMU775* OMe H OMe H H - see note - 
DMU776* OMe H H OMe H - see note - 
DMU777* H OMe H OMe H --- see note - 
DMU778 H CI CI H H fine yellow crystal (70%) 2 
DMU789 H OMe H H H light brown crystal (33%) 2 
DMU790 OMe H H H H yellow powder (50%) 2 
DMU2101 H F F H H off white powder (13%) 2 
DMU2103 H OH OMe H H bright yellow powder (13%) 3 
DMU2114 H OMe OMe OMe H bright yellow powder (37%) 2 
DMU2117 OMe OMe OMe H H bright yellow solid (57%) 2 
DMU2118 H H H H H yellow waxy solid (29%) 2 

Note: * Synthesised by Nishad Rajabali as part of her undergraduate final year project; Method (see 

Section 4.5). 
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Table 18: Physical characteristics of the polycyclic reverse 3-pyridyl and the 

di-3-pyridyl chalcones 

Ar 

%O 

N 

Inhibitors Ar Physical chracterictics (yield %) Method 

DMU756 pale yellow solid (5%) 3 

DMU769 
0/ 

bright yellow powder (76%) 2 

fine yellow crystal (29%) 3 DMU2105 
C)Cýý 

N 
DMU2141 pale yellow powder (14%) 2 

Note: Method see section 4.5. 

Nine analogues of the CYP 1A1 inhibitor DMU710 (Chapter 2) were made. Four of 

these compounds were 4-pyridyl chalcones and the remaining were the reverse 4- 

pyridyl analogues. The chemical structure and physical characteristics of these 

heterocyclic 4-pyridyl chalcones are tabulated in Table 19 and Table 20. 
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Table 19: Physical characteristics of the synthesised 4-pyridyl chalcones 

O Ar 

N 

Physical chracterictics 
Inhibitors Ar (yield %) Method 

DMU779 , light brown oil (18%) 3 

/\ 

DMU780 yellow powder (39%) 3 

OMe 

DMU781 dark yellow solid (43%) 3 

OMe 

DMU2143 fine off white crystal (40%) 2 

Note: Method see section 4.5. 

DMU2114 and DMU2157, the reverse 3-pyridyl analogue of DMU709 and the reverse 

4-pyridyl analogue of DMU710 (see Chapter 2), respectively, were found to be more 

selective against CYP1A1 catalysed EROD reaction. Several more selective inhibitors 

of CYPIBI have also been identified in the reverse 3-pyridyl chalcone series. 

DMU774, DMU775, DMU776, DMU777, DMU778, DMU2103 and DMU2105 all 

have been found to be more CYP 1B1 selective with at least 10-fold selectivity ratio 

over the CYP 1A enzymes. The EROD IC50 data are tabulated in Table 21-25. The 

CYPIBI enzyme selectivity ratio (eSR) was calculated with this formula: ICso(CVPIA) 

ICso(cYPI BI )" 
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Table 20: Chemical structure of reverse 4-pyridyl chalcones 
Ar 

0 

N 

Physical chracterictics 
Inhibitors Ar (yield %) Method 

DMU730 fine yellow crystal (32%) 2 

DMU755 I yellow crystal (8%) 1 

DMU2106 fine yellow crystal (42%) 3 

o 
DMU2144 

0i 
bright yellow powder (26%) 2 

MeO 

DMU2157 Meo 
OMe 

light brown solid (17%) 2 

Note: Method see section 4.5. 

Table 21: EROD IC50 values for reverse 3-pyridyl chalcones with hydroxylated 

and halogenated A-ring 

IC50 (µM) CYP1 BI eSR over 
A-ring 

Inhibitors Substituents CYPIAI CYPIA2 CYP1B1 CYP1A1 CYP1A2 

DMU766 2-OH 11 6 0.8 14 8 
DMU767 3-OH 20 35 3 7 12 
DMU768 4-OH 50 NI 5 10 nd 
DMU778 3,4-(CI)2 20 20 0.4 50 50 
DMU2101 3,4-(F)2 20 4 0.7 29 6 
DMU2103 3-OH, 4-OMe 7 70 0.7 10 100 

Note: NI = no inhibition; nd = not determined. 
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Table 22: EROD IC50 values for reverse 3-pyridyl chalcones with 

methoxylated A-ring 

Inhibitors 
A-ring 

Substituents CYP1A1 

IC50 (µM) 

CYP1A2 CYP1E 

DMU729 4-OMe 8.5 16 1.5 
DMU774 3,4-(OMe)2 4 2 0.2 
DMU775 2,4-(OMe)2 1.6 0.9 0.07 
DMU776 2,5-(OMe)2 1.8 1.5 0.07 
DMU777 3,5-(OMe)2 2 4 0.07 
DMU789 3-OMe 5.5 1 0.4 
DMU790 2-OMe 3.5 0.8 0.4 
DMU2114 3,4,5-(OMe)3 0.6 8 3 
DMU2117 2,3,4-(OMe)3 2.5 0.7 0.25 
DMU2118 phenyl 70 10 4 

CYPIBI eSR over 

Al 

6 11 
20 10 
23 13 
26 21 
29 57 
14 3 
9 2 

0.2 3 
10 3 
18 3 

Table 23: EROD IC50 values for the polycyclic reverse 3-pyridyl and the di-3- 

pyridyl chalcones 

ICSO (µM) 
A-ring 

Inhibitors Substituents CYP1A1 CYP1A2 CYP1B1 

DMU756 1-naphthyl 1 2 0.3 
DMU769 3,4-MDO 1 8 0.8 
DMU2105 2-naphthyl 5 8 0.15 
DMU2141 3-pyridyl NI NI 19 

CYPI BI eSR over 

; YP1A1 CYP1A2 

3 7 
1 10 

33 53 

nd nd 

Note: NI = no inhibition; nd = not determined; MDO = methylenedioxyphenyl. 

The 4-pyridyl and reverse 4-pyridyl chalcones generally are more CYP 1A selective 

except DMU779 and DMU780 (Table 24). DMU2144 is a better CYP1A1 inhibitor 

with eSR of 5- and 8-fold over CYP 1 A2 and CYP 1B1, respectively. 
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Table 24: EROD IC50 values for 4-pyridyl chalcones 

IC60 (µM) 
B-ring 

Inhibitors Substituents CYP1A1 CYP1A2 CYP1B1 

DMU710` 3,4,5-(OMe)3 0.5 4 9 
DM U779 1-naphthyl 2 0.5 0.3 
DMU780 2-naphthyl 1.3 1.3 0.35 
DMU781 2,5-(OMe)2 6 4 12 
DMU2143 3,4-MDO 2 6 9 

CYPI BI eSR over 

; YP1A1 CYP1A2 

0.06 0.1 
7 2 
4 4 

0.5 0.3 
0.2 0.7 

Note: MDO = methylenedioxyphenyl; * see Chapter 2 

Table 25: EROD IC50 values for reverse 4-pyridyl chalcones 

ICSO (µM) CYPIBI eSR over 
A-ring 

Inhibitors Substituents CYP1A1 CYP1A2 CYP1B1 CYP1A1 CYP1A2 

DMU730 4-OMe 8 14 12 
DMU755 1-naphthyl 0.4 0.35 0.2 
DMU2106 2-naphthyl 2 50 4 
DMU2144 3,4-MDO 0.8 4 6 
DMU2157 3,4,5-(OMe)3 0.3 5 9 

0.7 1 
2 2 

0.5 13 
0.1 0.7 

0.03 0.6 

Note: MDO = methylenedioxyphenyl 

4.4 Discussion 

Unlike the previous series of 3-pyridyl chalcones (Chapter 3), only two pyridyl 

chalcones synthesised in this chapter, namely DMU780 and DMU2105, were found to 

interact with the plasticware. DMU785 (Chapter 3) and DMU780 were found to interact 

with the plastic pipetor tips but their reverse analogues DMU778 and DMU2106, 

respectively, were found to be inert to plastic. These results reaffirmed that the 

polypropylene pipetor tips (Finntips(g, Thermo Labsystems) interact with heterocyclic 
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chalcones in a compound specific manner. 

DMU745 

0 

DMU2105 

DMU785 

0 
N 

CI 
II/ 

CI DMU778 

0 

N 
DMU780 

0 

DMU2106 

Figure 49: Chemical structure of DMU745, DMU780, DMU785 and their reverse 

analogues 

DMU778 and DMU2106 are inert to plastic showing that the plastic-chalcone interaction is compound 

specific. 

Table 26: Results showing the interaction of plastic pipette tips with DMU780 

and DMU2105 

IC50 (µM) 
Inhibitors CYP1AI CYP1A2 CYP1B1 

DMU780 1.2 3 <0.0001 
1.3 1.3 0.35 

DMU2105 6 23 <0.0001 
5 8 0 15 

The IC50 values recorded in red were data from experiments where new pipetor tips were used for mixing. 

The inhibitors still showed similar selectively against their target CYPI enzymes even the potency have 

markedly decreased. 
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From Chapter 3, it has been found that CYPIAI has a diagonal binding pocket. The 

reverse 3-pyridyl chalcones have to bind to the CYP 1A1 haem in chalcone 

conformation because the flavone conformation would place the reverse 3-pyridyl 

chalcones into vertical binding mode. This was not allowed since there was no vertical 

binding pocket detected based on the results in Chapter 3. 

CYPIA1 
exclusion 
zone 2 

Available hydrogen 
bonding interaction B 

H 

Available hydrogen 
bonding interaction 

Hydrophobic 
region 

Available hydrogen 
ýI -- / bonding interaction D 

H 

Available hydrogen 
bonding interaction A 

CYPIA1 
exclusion 
zone 1 

Diagonal binding mode 

Figure 50: CYP1A1 pharmacophore model showing the binding of reverse 3- 

pyridyl chalcone in chalcone conformation (black) and flavone 

conformation (red) 

The flavone conformation will place the reverse 3-pyridyl chalcone into vertical binding mode. This is 

not allowed because there was no evidence of vertical binding pocket detected, based on the observations 

in Chapter 3. 

The only identified CYP 1A1 inhibitor in the reverse 3-pyridyl chalcone series was 

DMU2114. The reverse analogue of the CYP1A1 inhibitor 3,4,5-trimethoxy-4-pyridyl 
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CYPI enzyme inhibition by "reverse" 3- & 4-pyridyl chalcone 

chalcone (DMU710) also found to be more CYP 1A1 selective. Figure 51 shows the 

mapping of both inhibitors onto the CYP 1A1 pharmacophore model where the 

lipophilic 3,4,5-trimethoxyphenyl moiety of each compound fits well into the 

hydrophobic region. 
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Figure 51: CYPIAI pharmacophore model showing the mapping of CYPJAI 

selective inhibitor DMU2114 (red) and DMU2157 (blue) 

The presence of the hydrophobic region within CYP 1A1 active site is further 

consolidated by the fact that the di-3-pyridyl chalcone DMU2141 does not inhibit 

CYP 1A1 at all. The 3-pyridyl A- and B-ring of DMU2141 can face the P450 haem so 

that the nitrogen lone pair of electrons can coordinate to the haem, causing inhibition of 

the enzyme. However, regardless which molecular orientation DMU2141 binds to the 

CYP1A1 haem (Figure 55), one of its more hydrophilic 3-pyridyl ring would have to be 
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mapped onto the CYP IA1 hydrophobic zone. The CYP IAI hydrophobic region will 

simply reject DMU2141 hence the compound is inactive against CYP 1A1 catalysed 

EROD reaction. 
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Figure 52: Mapping of DMU2141 onto CYP1A1 pharmacophore model 

Regardless of either the 3-pyridyl A-ring (blue) or 3-pyridyl B-ring (red) facing the haem, the other 

hydrophilic pyridyl ring in DMU2141 would be forced into CYP 1A1 hydrophobic region. These 

molecular orientations are unlikely therefore DMU2141 does not inhibit CYP 1A1. 

There is no apparent difference for the 1-naphthyl-3-pyridyl chalcone DMU746 and 1- 

naphthyl reverse 3-pyridyl chalcone DMU756 in the inhibition of CYP 1A1 catalysed 

EROD reaction (IC50 1µM). However, the 2-naphthyl reverse 3-pyridyl chalcone 

(DMU2105; IC50 5µM) shows a -17-fold decrease in the inhibition of CYPIAI when 

compared with its 3-pyridyl analogue (DMU745; IC50 0.3µM). Given that both 
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molecules occupy very similar 3D space (Figure 53), the difference in their potency for 

CYP 1A1 inhibition may be due to the interaction of the naphthyl group with the 

hydrophobic region. 
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Figure 53: Mapping of DMU745 (blue) and DMU2105 (red) onto CYPIAI 

pharmacophore model 

The exclusion zone 1 is not the factor that causes a 17-fold reduction in CYP IAI inhibition potency for 

DMU2105 compared with its 3-pyridyl analogue. In fact, the hydrogen bonding between the carbonyl 

oxygen and hydrogen bonding A plays an important role. 

The 17-fold reduction in CYP 1 Al inhibition potency for DMU2105 suggested C YP 1 Al 

hydrophobic region was smaller. The 2-naphthyl ring of DMU2105 was outside the 

hydrophobic region, hence a lower inhibition potency compared with it 3-pyridyl 

analogue (DMU745). The presence of a small hydrophobic region in C YP 1A1 was 

further supported by 20-fold reduction in inhibition potency of 1-naphthyl-3-pyridyl 
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chalcone DMU746 (IC50 I µM) compared with the 9-phenanthrenyl-3-pyridyl chalcone 

DMU2137 (IC50 0.05µM). Although DMU746 could be mapped onto the more potent 

CYP 1A1 inhibitor DMU2137, the 1-naphthyl group of DMU746 only partially mapped 

into the hydrophobic region (Figure 54). In contrast, most of the 9-phenanthrenyl group 

of DMU2137 was within the hydrophobic region and hence, provided a better 

hydrophobic interaction. 
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Figure 54: The refined CYP1A1 pharmacophore model with a smaller 

hydrophobic region 

The above figure shows the mapping of DMU745 (black), DMU2105 (red) and DMU746 (magenta) on 

the pharmacophore model. The naphthyl rings of DMU746 and DMU2105 only partially mapped into the 

hydrophobic region. 
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CYP I enzyrne inhibition by "reverse" 3- & 4-pyridyl chalcones 

The 4-hydroxy-3-pyridyl chalcone DMU765 did not inhibit CYPIA1 but its reverse 3- 

pyridyl analogue was a weak CYP1A1 inhibitor with an IC50 of 50µM. These 

observations supported the presence of hydrogen bonding interaction at point B. The 3- 

fold increase in potency from DMU2105 to DMU2139 also concords with the above 

observation (see Figure 55). 
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Figure 55: The refined CYP1A1 pharmacophore model showing the mapping of 

DMU768 and DMU2139 

An evaluation of the capabilities of a series of progressively longer 4-alkoxyl reverse 3- 

pyridyl chalcones (see Figure 56) to inhibit CYP 1AI will help to determine the 

maximum molecular length that the CYP 1A1 active site would tolerate. Unfortunately, 

the starting materials (i. e. 4-alkoxybenzaldehyde) are not readily available. Thus, the 

synthesis and evaluation of these proposed inhibitors is outside the scope of this project. 
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CYPI enzyme inhibition by "reverse" 3- & 4-pyridyl chalcones 

Joo 0 

NNN 

Figure 56: Proposed 4-alkoxy reverse 3-pyridyl chalcones for probing CYPIAI 

active site 

As opposed to their 3-pyridyl analogues, the reverse 3-pyridyl chalcones bind to 

CYP1A2 in chalcone conformation rather than in flavone conformation. This is because 

the flavone conformers may be sterically hindered by the CYP1A2 exclusion zone 2. 

DMU729 (4-methoxy reverse 3-pyridyl chalcone) inhibits CYP 1 A2 with an IC50 of 

16µM. However, the 2,4-dimethoxy analogue (DMU775) inhibits CYP 1 A2 with an IC50 

of 0.9µM. The potency of DMU775 is very close to that of 2-methoxy reverse 3-pyridyl 

chalcone (DMU790; ICso of 0.8µM). These results indicate the presence of a second 

hydrogen bonding interaction within CYP1A2 active site (Figure 57). The hydrogen 

bonding interaction at point B in CYP1A2 must be a prominent feature. The interaction 

of the 2-methoxy group of DMU775 with this hydrogen bonding could override the 

unfavourable effect of the 4-methoxy group present in the same molecule. 
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Figure 57: Identification of a second hydrogen bonding interaction within 

CYPIA2 active site 

Figure above shows the mapping of DMU790 (black) onto the pharmacophore model in chalcone 

conformation. The reverse 3-pyridyl chalcones are thought to bind to CYP I A2 in chalcone conformation 

since the flavone conformation (red) could be sterically unfavourable due to the close proximity to 

exclusion zone 2. 

Previously, due to lack of significant differences in data generated by the 3-pyridyl 

chalcones (Chapter 3), the hydrophobic region of CYP 1 A2 was assumed as similar to 

that of CYP1A1, based on the same selectivity pattern observed for both CYPIA 

enzymes. The presence of a hydrophobic region in CYP 1 A2 is confirmed by the 

inability of the di-3-pyridyl chalcone (DMU2141) to inhibit CYP 1 A2. DMU2141 does 

not inhibit CYP1A2 because, regardless of which 3-pyridyl ring facing the haem, the 

other more hydrophilic pyridyl ring would map onto the hydrophobic region. 

There is a significant difference in CYP1A2 inhibition potency between DMU755 (IC5o 
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0.35µM) and DMU2106 (IC50 50µM). DMU755 is 143-fold more potent than 

DMU2106 for CYP 1 A2 inhibition. In order to refine the position and the size of the 

hydrophobic region in CYPIA2 active site, it has to be determined which conformation 

that DMU755 binds to the haem. DMU2141 (4-biphenyl-3-pyridyl chalcone) does not 

inhibit CYP 1 A2, due to steric hindrance caused by the bi-phenyl moiety too close to 

exclusion zone 2 (Chapter 2). Therefore, DMU755 must have bound to the haem as the 

C2 conformer (Figure 58), because the other conformer will occupy the same molecular 

length as DMU2141 and that would render DMU755 not able to inhibit CYP 1 A2. By 

overlaying DMU755, DMU790 and DMU2106, the hydrophobic region of CYPIA2 has 

been refined. The hydrophobic region in CYP 1 A2 is considerably smaller compared 

with CYP1A1; encompassing space just enough to cover a naphthyl group (Figure 59). 

--------------------------------------------------------- 

\II/ 

N 
DMU2141 

N Cl 
DMU755 

N C2 

Figure 58: Possible molecular orientation of DMU755 within CYPIA2 active site 

DMU755 probably binds to CYP1A2 as C2 conformer since the Cl conformer will be sterically hindered 

by the exclusion zone 2. 
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Figure 59: CYP1A2 pharmacophore model with refined hydrophobic region 

By mapping DMU755 (black), DMU790 (blue) and DMU2106 (red), the hydrophobic region of CYP I A2 

has been defined. The hydrophobic region is not as big as it was thought to be and it encompassed space 

for a naphthyl group. 
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Figure 60: The refined CYPIA2 pharmacophore model showing a second 

hydrophobic region 

Figure above shows the mapping of DMU774 (red) and DMU2103 (black). The presence of a second 

hydrophobic region reduces DMU2103 potency by 35-fold compared with DMU774. 
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Figure 60 shows the mapping of the 3,4-disubstituted reverse 3-pyridyl chalcones 

DMU774 and DMU2103. The compounds differ, as DMU2103 has a 3-hydroxy-4- 

methoxy A-ring rather than a 3,4-dimethoxy A-ring, as DMU774. The presence of a 

hydrophilic 3-hydroxy moiety reduces DMU2103 (IC50 70µM) CYP 1 A2 inhibition 

potency 35-fold compared with DMU774 (IC50 2µM). This observation corroborates the 

presence of a second hydrophobic region within CYP 1 A2. 

Vertical 
binding pocket 

--- ----------- 
Hydrogen bonding Available hydrogen interaction A 'OH bonding interaction D 

Hydrophobic region 

S H 

'I1 
t Horizontal 

binding pocket 

L__J N 

Available hydrogen 
bonding interaction B Fe Hydrogen bonding 

interaction C 

Figure 61: Mapping of DMU768 into the vertical binding pocket of CYPIBI 

DMU765 does not inhibit CYPIB1 (chapter 3) but its reverse 3-pyridyl analogue 

DMU768 inhibits CYP 1B1 with an IC50 of 5µM. DMU768 binds to CYP IB1 via the 

vertical binding pocket, since the binding of DMU768 to the horizontal pocket will 

place the hydrophilic phenol substituent into the hydrophobic zone (Figure 61). In fact it 
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is thought that all reverse 3-pyridyl chalcones with substituted functional groups on the 

A-ring are preferably bind to CYP1BI via the vertical binding pocket. This is evidenced 

by most substituted A-ring reverse 3-pyridyl chalcones showing an improved potency 

for CYP 1B1 inhibition. 

Table 27: Comparison of CYP1B1 EROD ICso of 3-pyridyl chalcones and their 

reverse 3-pyridyl analogues 

Substituted A/B-ring 
Inhibitor A-ring B-ring CYP1 B1 IC50 (µM) 

DMU712 2-methoxy 3 
DMU790 2-methoxy ------- 04 
DMU713 3-methoxy 0.4 
DMU789 3-methoxy ------- 04 
DMU714 4-methoxy 3 
DMU729 4-methoxy ------- 15 
DMU715 2,4-dimethoxy 0.4 
DMU775 2,4-dimethoxy ------- 0 07 
DMU782 ----- 2,5-dimethoxy 18 
DMU776 2,5-dimethoxy ------- 0 07 
DMU716 ----- 3,4-dimethoxy 0.6 
DMU774 3,4-dimethoxy ------- 02 
DMU717 3,5-dimethoxy 0.2 
DMU777 3,5-dimethoxy ------- 0.07 
DMU763 2-hydroxy 0.8 
DMU766 2-hydroxy ------- 08 
DMU764 3-hydroxy 6 
DMU767 3-hydroxy ------- 4 
DMU765 4-hydroxy NI 
DMU768 4-hydroxy ------- 5 

Note: 3-pyridyl chalcones (black); reverse 3-pyridyl chalcones (red). 

The 1- and 2-naphthyl reverse 3-pyridyl chalcones (DMU756 and DMU2105, 

respectively) probably bind to CYP 1B1 via the horizontal binding pocket as chalcone 

conformers. The planar naphthyl substituents afford a strong lipophilic interaction with 

the hydrophobic region. 
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DMU776 and DMU777 show potent inhibition of CYPIBI, with a recorded IC50 of 

0.07µM for both inhibitors. This indicates the presence of a second hydrogen bonding 

interaction at the top of the vertical binding pocket. The evidence for the presence of a 

second hydrogen bonding interaction at the top of the vertical binding pocket is 

corroborated by the selective metabolism of DMU214 to DMU293 1 39 by CYP 1Bl 

(Figure 63). 

DMU2141 selectively inhibits CYP 1B1 with an IC50 of 19µM. DMU2141 must have 

bound to CYP 1B1 in the vertical binding pocket. DMU2141 cannot bind to CYP 1B1 

horizontal pocket because its hydrophilic 3-pyridyl rings cannot fit into the hydrophobic 

region. 

Vertical 
binding pocket 

Hydrogen bonding 
interaction E 

Available hydrogen 
bonding interaction A, ---º H Available hydrogen 

bonding interaction D 
Hydrophobic region 

0 

Horizontal i 
binding pocket 

Available hydrogen 
bonding interaction B Fe, Hydrogen bonding 

interaction C 

Figure 62: Identification of the fifth hydrogen binding interaction for CYPI Bl 

pharmacophore model 

Note: DMU776 (blue); DMU777 (red). 
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Figure 63: Mapping of DMU293, DMU776 and DMU777 onto selective substrate 

of CYPI Bl DMU214 

11, and 11, correspond to hydrogen bonding interaction A and E in Figure 62. 

Amongst the identified CYP IA1 inhibitors (IC50 <1 µM) in this chapter, DMU2157 

offers the best enzyme selectivity ratio against other CYPI enzymes (17- and 30-fold 

over CYP 1 A2 and CYP 1B1, respectively). No selective CYP I A2 inhibitors were 

identified in this chapter. Seven highly selective CYP IBI inhibitors have been found 

from the reverse 3-pyridyl chalcone series with at least 10-fold enzyme selectivity ratio. 

DMU777 and DMU778 have shown the best selectivity profile. The intrinsic toxicity of 

all identified inhibitors has to be determined to assess their suitability for cell culture or 

in vivo experiments. This will be discussed in Chapter 5. 
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4.5 Experimental 

Synthetic and analytical methods see Section 2.5.1 and Section 2.5.2 

(E)-1-(3-Pyridyl)-3-(4"-methoxyphenyl)prop-2-en-1-one (DMU729) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.87 (3H, s, OMe), 6.95 (2H, d, phenyl), 7.36 

(1H, d, J=17.2Hz), 7.43 (1H, m, Py), 7.61 (2H, d, phenyl), 7.81 (1 H, d, J=17.2Hz), 8.27 

(1H, d, Py), 8.79 (1H, d, Py), 9.22 (1H, s, Py); 13C-NMR (CDC13) 8 55.41,114.53, 

119.09,123.56,127.19,130.45,133.79,135.77,145.82,149.66,152.92,162.06,189.07 

(C=O); IR Spectrum Vm (KBr)/cm-1 1658 (C=O); Mass Spectrum (MALDI) m/z 

238.38 (M+, 100%); mp 74°C. 

(E)-1-(4-Pyridyl)-3-(4"-methoxyphenyl)prop-2-en-1-one (DMU730) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.85 (3H, s, OMe), 6.95 (2H, d, benzyl), 7.29 

(1H, d, J=16.2Hz), 7.61 (2H, d, benzyl), 7.75 (2H, d, Py), 7.79 (1H, d, J=16.2Hz), 8.82 

(2H, d, Py); 13C-NMR (CDC13) 6 55.43,114.56,118.91,121.45,127.06,130.55, 

144.77,146.65,150.71,162.23,189.78 (C=O); IR Spectrum Vm (KBr)/cm'1 1659 

(C=O); Mass Spectrum (MALDI) m/z 239.49 (M+, 100%); mp 92-93°C. 

(E)-1-(4-Pyridyl)-3-(1-naphthyl)prop-2-en-l-one (DMU755) 

Synthetic Method 1; 'H-NMR (CDC13) 8 6.67 (1H, d, J=16.3Hz), 7.28-7.38 (4H, m), 

7.48-7.55 (2H, m), 8.22 (2H, d, naphthyl), 8.70 (2H, d, Py), 8.87 (2H, d, Py); 13C-NMR 

(CDC13) 8 120.52,121.56,123.26,123.62,125.94,126.49,127.27,128.21,131.53, 

131.74,133.82,143.64,144.39,150.16,150.91,189.60 (C=O); IR Spectrum VR, ax 

(KBr)/cm"' 1666 (C=O); Mass Spectrum (MALDI) m/z 259.31 (M+, 100%); mp 101- 
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102°C. 

(E)-1-(3-Pyridyl)-3-(1-naphthyl)prop-2-en-1-one (DMU756) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.32-7.70 (5H, m), 7.83-7.99 (3H, m), 8.22 

(1H, d), 8.32 (1H, d), 8.71 (1H, d, Py), 8.80 (IH, d, Py), 9.30 (1H, s, Py); 13C-NMR 

(CDC13) 8 123.31,123.68,123.85,125.29,125.42,126.39,127.14,128.83,131.27, 

131.76,131.87,133.50,133.76,135.91,142.84,149.83,153.23,188.87 (C=O); [R 

Spectrum Vm. (KBr)/cm"' 1666 (C=O); Mass Spectrum (MALDI) m/z 259.23 (M+, 

100%); mp 127°C. 

(E)-1-(3-Pyridyl)-3-(2"-hydroxyphenyl)prop-2-en-1-one (DMU766) 

Synthetic Method 3; 'H-NMR (DMSO) 8 6.88 (IH, t, phenyl), 6.95 (IH, d, phenyl), 

7.29 (1 H, t, phenyl), 7.58 (1 H, t, Py), 7.81 (1 H, d, J=16.3Hz), 7.86 (1 H, d, phenyl), 8.08 

(IH, d, J=16.3 Hz), 8.39 (IH, d, Py), 8.79 (IH, d, Py), 9.23 (IH, s, Py), 10.30 (IH, s, 

OH); 13C-NMR (DMSO) 5 116.31,119.70,120.83,121.23,124.09,128.89,132.58, 

133.29,136.00,140.42,149.48,153.17,157.36,188.98 (C=O); IR Spectrum V,,,. 

(KBr)/cm"' 1654 (C=O); Mass Spectrum (MALDI) m/z 225.48 (M+, 100%); mp 148°C. 

(E)-1-(3-Pyridyl)-3-(3"-hydroxyphenyl)prop-2-en-1-one (DMU767) 

Synthetic Method 3; 'H-NMR (DMSO) 8 6.89 (1H, d, phenyl), 7.18-7.32 (3H, m), 7.58 

(1 H, t, Py), 7.65 (1 H, d, J 15.7Hz), 7.77 (1 H, d, J=15.7Hz), 8.42 (1 H, d, Py), 8.79 (1 H, 

d, Py), 9.21 (IH, s, Py), 9.67 (IH, s, OH); ' 3C-NMR (DMSO) 8 115.19,118.32,120.45, 

121.78,124.23,130.24,132.99,135.70,136.27,145.34,149.45,153.28,157.54,188.98 

(C=O); IR Spectrum Vm. (KBr)/cm"' 1662 (C=O); Mass Spectrum (MALDI) m/z 
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225.48 (M+, 100%); mp 192-193°C. 

(E)-1-(3-Pyridyl)-3-(4"-hydroxyphenyl)prop-2-en-1-one (DMU768) 

Synthetic Method 3; 'H-NMR (DMSO) 5 6.63 (2H, d, phenyl), 7.36 (1 H, t, Py), 7.45- 

7.59 (4H, m), 8.21 (1 H, d, Py), 8.59 (1 H, d, Py), 9.08 (1 H, s, Py), 9.91 (1 H, s, OH); ' 3C- 

NMR (DMSO) 8 115.94,118.37,123.91,125.67,131.36,133.24,135.83,145.37, 

149.55,153.07,160.50,188.25 (C=O); IR Spectrum Vm. (KBr)/cm"' 1654 (C=O); 

Mass Spectrum (MALDI) m/z 225.48 (M+, 100%); mp 188-189°C. 

(E)-1-(3-Pyridyl)-3-(3,4-methylenedioxyphenyl) prop-2-en-l-one (DMU769) 

Synthetic Method 2; 'H-NMR (CDC13) 8 6.07 (2H, methylene), 7.87 (1 H, d), 7.16 (2H, 

m), 7.29 (IH, d, . )--16.8Hz), 7.41 (IH, m), 7.74 (IH, d, J=16.8Hz), 8.25 (IH, d, Py), 

8.80 (1 H, d, Py), 9.21 (1 H, s, Py); 13C-NMR (CDC13) 6 101.76,106.76,108.78,119.47, 

123.63,125.65,128.98,133.74,135.81,145.84,148.57,149.70,150.37,153.05,188.97 

(C=O); IR Spectrum Vm. (KBr)/cm"' 1662 (C=O); Mass Spectrum (MALDI) m/z 

253.33 (M+, 100%); mp 144-145°C. 

(K)-1-(3-Pyridyl)-3-(3' ', 4"-dimethoxyphenyl)prop-2-en-1-one (DMU774) 

Synthetic Method 3; 'H-NMR (CDC13) 8 3.90 (3H, s, OMe), 3.92 (3H, s, OMe), 6.90 

(1 H, d, phenyl), 7.15 (1 H, s, phenyl), 7.21 (1 H, d, phenyl), 7.31 (1 H, d, J=16.8Hz), 7.43 

(IH, m, Py), 7.79 (IH, d, J 16.8Hz), 8.25 (IH, d, Py), 8.77 (IH, d, Py), 9.22 (IH, s, 

Py); 13C-NMR (CDC13) 8 56.04,56.06,110.26,111.27,119.46,123.58,127.50,133.85, 

135.85,146.18,149.43,149.72,151.94,153.00,189.15 (C=O); IR Spectrum V. 

(KBr)/cm"' 1658 (C=O); Mass Spectrum (MALDI) m/z 268.92 (M+, 100%); mp 88- 
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89°C. 

(E)-1-(3-Pyridyl)-3-(3", 4"-dichlorophenyl)prop-2-en-1-one (DMU778) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.45-7.55 (4H, m), 7.71-7.78 (2H, m), 8.30 

(IH, d, Py), 8.83 (IH, d, Py), 9.24 (IH, s, Py); 13 C-NMR (CDC13) 8 122.78,123.69, 

127.53,129.94,131.04,133.47,134.47,135.84,142.95,149.74,153.44,188.48 (C=O); 

IR Spectrum Vm. (KBr)/cm"' 1670 (C=O); Mass Spectrum (MALDI) m/z 278.13 (M+, 

100%); mp 168°C. 

(E)-1-(1-Naphthyl)-3-(4-pyridyl)prop-2-en-1-one (DMU779) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.47-7.61 (7H, m), 7.81 (IH, d, naphthyl), 

7.92 (1 H, d, naphthyl), 8.03 (1 H, d, naphthyl), 8.48 (1 H, d, naphthyl), 8.67 (2H, d, Py); 

13C-NMR (CDC13) 8 122.02,124.47,125.54,126.70,127.75,127.83,128.59,130.48, 

130.71,132.42,133.94,136.19,141.91,142.19,150.68,194.46 (C=O); IR Spectrum 

Vm. (KBr)/cm" 1655 (C=O); Mass Spectrum (MALDI) m/z 259.31 (M+, 100%); oil. 

(E)-1-(2-Naphthyl)-3-(4-pyridyl)prop-2-en-1-one (DMU780) 

Synthetic Method 3; 'H-NMR (CDC13) 5 7.46 (2H, d, Py), 7.53-7.64 (2H, m), 7.72 (1 H, 

d, J=15.4Hz), 7.80 (IH, d, J=15.4Hz), 7.88 (IH, d, naphthyl), 7.93 (IH, d, naphthyl ), 

7.98 (1H, d, naphthyl), 8.08 (1H, d, naphthyl), 8.52 (1H, s, naphthyl), 8.68 (2H, d, Py); 

13C-NMR (CDC13) 6 122.01,124.24,126.02,126.95,127.85,128.70,128.78,129.55, 

130.26,132.48,134.85,135.65,141.36,142.10,150.63,189.42 (C=O); IR Spectrum 

Vm. (KBr)/cm"' 1663 (C=O); Mass Spectrum (MALDI) m/z 259.18 (M+, 100%); mp 

126°C. 
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(E)-1-(2', 5'-Dimethoxyphenyl)-3-(4-pyridyl)prop-2-en-l-one (DMU781) 

Synthetic Method 3; 'H-NMR (CDC13) 5 3.83 (3H, s, OMe), 3.90 (3H, s, OMe), 6.98 

(IH, d, benzyl), 7.09 (IH, m, benzyl), 7.26 (IH, d, benzyl), 7.43 (2H, d, Py), 7.56 (1 H, 

d, J=15.9Hz), 7.63 (1H, d, J=15.9Hz), 8.68 (2H, d, Py); 13C"NMR (CDC13) 8 55.83, 

56.43,113.44,114.47,120.13,121.98,128.79,130.77,139.19,142.51,150.49,152.98, 

153.74,191.25 (C=O); IR Spectrum Vm. (KBr)/cm 1 1674 (C=O); Mass Spectrum 

(MALDI) m/z 269.59 (M+, 100%); mp 79°C. 

(E)-1-(3-Pyridyl)-3-(3"-methoxyphenyl)prop-2-en-l-one (DMU789) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.89 (3H, s, OMe), 6.98 (1H, d, phenyl), 7.15 

(IH, s, phenyl), 7.23 (IH, d, phenyl), 7.33 (IH, t, phenyl), 7.43 (IH, t, Py), 7.45 (IH, d, 

J=14.8Hz), 7.79 (1H, d, J=14.8Hz), 8.27 (1H, d, Py), 8.79 (1H, d, Py), 9.23 (1H, s, Py); 

13C-NMR (CDC13) 6 53.68,111.91,115.11,119.58,120.05,121.96,128.36,131.80, 

134.18,144.19,148.10,151.48,158.35,187.41 (C=O); IR Spectrum Vm. (KBr)/cm 

1662 (C=O); Mass Spectrum (MALDI) m/z 239.68 (M+, 100%); mp 78°C. 

(E)-1-(3-Pyridyl)-3-(2''-methoxyphenyl)prop-2-en-l-one (DMU790) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.90 (3H, s, OMe), 6.91-7.01 (2H, m), 7.35- 

7.45 (2H, m), 7.58 (1H, d, J=14.3Hz), 7.61 (1H), 8.11 (1H, d, J=14.3Hz), 8.27 (1H), 

8.78 (1H, d, Py), 9.22 (1H, s, Py); 13C-NMR (CDC13) 8 55.49,111.27,120.77,122.16, 

123.53,129.56,130.62,132.18,135.51,141.52,149.73,152.84,158.95,189.59 (C=O); 

IR Spectrum Vmax (KBr)/cm 1 1663 (C=O); Mass Spectrum (MALDI) m/z 239.38 (M+, 

100%); mp 95-96°C. 
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(E)-1-(3-Pyridyl)-3-(3'', 4''-difuorophenyl) prop-2-en-l-one (DMU2101) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.24 (1H, m), 7.43 (111, d, J=14.8Hz), 7.46- 

7.54 (3H, m), 7.77 (1H, d, J=14.8Hz), 8.30 (1H, d, Py), 8.83 (1H, d, Py), 9.24 (1H, s, 

Py); 13C-NMR (CDC13) 8 116.56,116.82,117.87,118.15,122.20,123.69,125.48, 

133.18,135.82,143.37,149.70,153.37,188.53 (C=O); IR Spectrum Vm. (KBr)/cm 1 

1670 (C=O); Mass Spectrum (MALDI) m/z 245.48 (M+, 100%); mp 135-136°C. 

(E)-1-(3-Pyridyl)-3-(3"-hydroxy-4"-methoxyphenyl)prop-2-en-l-one (DMU2103) 

Synthetic Method 3; 'H-NMR (CDC13) 8 3.98 (3H, s, OMe), 5.94 (1H, s, OH), 6.89 

(IH, d, phenyl), 7.17 (IH, d, phenyl), 7.30 (IH, s, phenyl), 7.34 (IH, d, J=14.6Hz), 7.45 

(IH, m, Py), 7.78 (IH, d, J=14.6Hz), 8.29 (IH, d, Py), 8.80 (IH, d, Py), 9.23 (IH, s, 

Py); 13C-NMR (CDC13) 6 55.86,112.09,115.21,119.39,122.59,124.02,127.56, 

133.27,135.97,145.47,146.84,149.64,150.76,153.20,188.43 (C=O); IR Spectrum 

Vm. (KBr)/cm 1 1658 (C=O); Mass Spectrum (MALDI) m/z 255.55 (M+, 100%); mp 

157°C. 

(E)-1-(3-Pyridyl)-3-(2-naphthyl)prop-2-en-1-one (DMU2105) 

Synthetic Method 3; 'H-NMR (CDC13) 8 7.46 (1H, m), 7.51-7.56 (2H, m), 7.58 (1H, d, 

J=15.7Hz), 7.78 (1H, d), 7.83-7.92 (3H, m), 8.01 (1H, d, J=15.7Hz), 8.04 (1H, s), 8.30 

(1H, d, Py), 8.81 (1H, d, Py), 9.29 (1H, s, Py); 13C-NMR (CDC13) 8 121.54,123.60, 

123.70,126.92,127.67,127.87,128.76,128.92,131.13,132.00,133.37,133.65, 

134.63,135.91,146.10,149.82,153.19,189.10 (C=O); IR Spectrum Vmax (KBr)/cm"l 

1654 (C=O); Mass Spectrum (MALDI) m/z 259.70 (M+, 100%); mp 136°C. 
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(E)-1-(4-Pyridyl)-3-(2-naphthyl)prop-2-en-l-one (DMU2106) 

Synthetic Method 3; 'H-NMR (CDC13) S 7.52-7.59 (2H, m), 7.85 (1H, d, J=15.511z), 

7.87-8.02 (7H, m), 8.23 (1H, s, naphthyl), 8.83 (2H, d, Py); 13C-NMR (CDC13) 8 

119.44,119.53,122.01,124.62,125.44,125.55,126.46,126.50,129.02,129.85, 

130.91,132.14,141.76,143.77,148.50,186.94 (C=O); IR Spectrum Vm.., (KIIr)/cm'l 

1659 (C=O); Mass Spectrum (MALDI) m/z 259.09 (M+, 100%); mp 152°C. 

(E)-1-(3-Pyridyl)-3-(3", 4'', 5''-trimethoxyphenyl)prop-2-en-1-one (DMU2114) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.92 (9H, s, OMe), 6.88 (2H, s, phenyl), 7.37 

(1H, d, J=14.5Hz), 7.45 (1H, t, Py), 7.74 (1H, d, J=14.5Hz), 8.28 (IH, d, Py), 8.80 (1H, 

d, Py), 9.23 (1H, s, Py); 13C-NMR (CDC13) 6 56.21,60.93,105.92,120.75,123.64, 

129.82,133.58,135.83,140.92,146.09,149.64,153.01,153.50,189.03 (C=O); IR 

Spectrum Vm. (KBr)/cm 1 1662 (C=O); Mass Spectrum (MALDI) m/z 299.18 (M+, 

100%); mp 123-124°C. 

(E)-1-(3-Pyridyl)-3-(2", 3", 4"-trimethoxyphenyl)prop-2-en-l-one (DMU2117) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.85 (3H, s, OMe), 3.93 (3H, s, OMe), 3.99 

(3H, s, OMe), 6.73 (IH, d, phenyl), 7.39 (IH, d, phenyl), 7.43 (IH, t, Py), 7.52 (IH, d, 

J=15.2Hz), 8.03 (1H, d, J=15.2Hz), 8.27 (1H, d, Py), 8.79 (1H, d, Py), 9.22 (1H, s, Py); 

13C-NMR (CDC13) 6 55.85,60.82,61.34,107.66,120.52,121.47,123.53,124.12, 

133.83,135.35,141.30,142.42,149.63,152.78,153.93,156.19,189.34 (C=O); IR 

Spectrum Vm. (KBr)/cm 1 1658 (C=O); Mass Spectrum (MALDI) m/z 298.93 (M+, 

100%); mp 78-79°C. 
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(E)-1-(3-Pyridyl)-3-(phenyl)prop-2-en-l-one (DMU2118) 

Synthetic Method 2; 'H-NMR (CDC13) 8 7.35-7.45 (4H, m), 7.48 (1H, d, J=14.1Hz), 

7.62 (2H, t, phenyl), 7.82 (IH, d, J=14.1 Hz), 8.27 (IH), 8.79 (IH, d, Py), 9.24 (IH, s, 

Py); 13C NMR (CDC13) 8 121.37,123.59,128.57,128.99,130.92,133.43,134.41, 

135.78,145.84,149.71,153.09,188.98 (C=O); IR Spectrum Vmax (KBr)/cm's 1666 

(C=O); Mass Spectrum (MALDI) m/z 209.76 (M+, 100%); mp 79°C. 

(E)-1,3-di(3-Pyridyl)prop-2-en-l-one (DMU2141) 

Synthetic Method 2; 'H-NMR (DMSO) 8 7.52 (1H, t), 7.63 (1H, t), 7.83 (1H, d, 

J=15.5Hz), 8.10 (1H, d, J=15.5Hz), 8.39 (1H, d), 8.49 (1H, d), 8.65 (1H, d), 8.86 (1H, 

d), 9.06 (1H, s), 9.37 (1H, s); 13C-NMR (DMSO) 8 123.83,124.42,127.48,131.51, 

132.63,133.73,136.79,145.25,149.64,150.00,153.43,155.11 189.78 (C=O); IR 

Spectrum Vm. (KBr)/cml 1666 (C=O); Mass Spectrum (MALDI) m/z 210.48 (M+, 

100%); mp 123-124°C. 

"71-1-(3,4-Methylenedioxyphenyl)-3-(4-pyridyl)prop-2-en-l-one (DMU2143) 

Synthetic Method 2; 'H-NMR (CDC13) 8 6.08 (2H, s, methylenedioxy), 6.90 (1H, d, 

benzyl), 7.45 (2H, d, Py), 7.51 (1H, s, benzyl), 7.57-7.70 (3H, m), 8.68 (2H, d, Py); 13C- 

NMR (CDC13) 8 101.98,107.97,108.35,121.92,124.99,125.81,132.31,140.87, 

142.18,148.47,150.57,152.16,187.45 (C=O); IR Spectrum Vn, ax (KBr)/cm' 1655 

(C=O); Mass Spectrum (MALDI) m/z 253.27 (M+, 100%); mp 114°C. 

(Eý-1-(4-Pyridyl)-3-(3,4"methylenedioxyphenyl)prop-2-en-l-one (DMU2144) 

Synthetic Method 2; 'H-NMR (CDC13) 8 6.03 (2H, s, methylenedioxy), 6.85 (1H, d, 
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benzyl), 7.09-7.18 (2H, m), 7.23 (1H, d, J=16.2Hz), 7.68-7.79 (3H, m), 8.80 (211, d, 

Py); 13C-NMR (CDC13) 8 101.76,106.67,108.73,119.16,121.42,125.83,128.78, 

144.60,146.57,148.53,150.48,150.70,189.55 (C=O); IR Spectrum Vm. (KBr)/cm'' 

1655 (C=O); Mass Spectrum (MALDI) m/z 253.02 (M+, 100%); mp 123°C. 

(E)-1-(4-Pyridyl)-3-(3'', 4'', 5"-trimethoxyphenyl)prop-2-en-1-one (DMU2157) 

Synthetic Method 2; 'H-NMR (CDC13) 8 3.85 (6H, s, OMe), 3.90 (3H, s, OMe), 6.88 

(2H, s, benzyl), 7.29 (1H, d, J=17.5Hz), 7.68-7.71 (3H, m), 8.83 (2H, d, Py); 13C-NMR 

(CDC13) 6 51.21,55.93,100.99,115.55,116.43,124.63,136.11,139.49,141.92, 

145.71,148.51,184.80 (C=0); IR Spectrum Vmax (KBr)/cm" 1666 (C=0); Mass 

Spectrum (MALDI) m/z 299.46 (M+, 100%); mp 110-111°C. 
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Summary of Structures 
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The intrinsic toxicity of heterocyclic chalcones: Discovery of CYPI A1 selective anticancer prodrugs 

5.1 Introduction 

Several inhibitors for each individual CYP 1 enzymes have been described in previous 

chapters. The intrinsic toxicity of these inhibitors has to be determined, because any 

identified inhibitors would potentially apply to in vitro and in vivo testing of CYP 1B1 

and CYP1A1 activated anticancer prodrugs in order to validate the prodrugs efficacy. It 

is desirable to have a non-toxic inhibitor in the assay so that any cytotoxicity observed 

can only be caused by the prodrug but not by the inhibitor. 

The intrinsic toxicity of the inhibitors was assayed using the in vitro MTT-cytotoxicity 

test described by Park et. al. 165 (MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide). The human breast cell line MCFlOA was used in the MTT-assay 

for the measurement of inhibitors intrinsic toxicity. MCF1OA was used because this cell 

line contains very small amount of P450 enzymes. MCF1OA has been shown to express 

CYP2C, CYP3A4 and CYP2D6 mRNA166, "67 however, analysis of CYP protein only 

consistently showed the presence of the CYP2C family168,169. There was no DMU212 

3'-hydroxylase activity in the MCF1OA breast cell line, indicating the absence of CYP1 

enzymes139. The use of cell line with minimal P450 level is crucial for assessing the 

intrinsic toxicity of inhibitors. This is because the non-heterocyclic part of the inhibitors 

can be potentially metabolised by CYP enzymes. This may drastically change the 

intrinsic toxicity of the inhibitors and lead to erroneous conclusions. 

In addition to the intrinsic toxicity measurement, it was also of interest to assess if the 

compounds could undergo metabolic bioactivation by CYPs and hence act as potential 

prodrugs. Although inhibitors are unlikely to be activated by the enzyme they inhibit, it 

was deemed worthwhile to evaluate if any of these compounds could function as 

substrates. The reason for this is that the bioactivation of these compounds, if any 
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detected, could provide leads into developing novel CYP I AI/CYP 1B1 bioactivated 

prodrugs. In other words, these inhibitors were screened in case they may possibly be 

activated by the target enzymes they inhibit. 

Two human breast cancer cell lines were used for the bioactivation screening. The 

MCF7 induced with 10nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 24 hours prior 

to experiment was used to demonstrate CYP1A1 bioactivation whilst the multi-drug 

resistant MDA-MB-468 (MDA468) cell line was used to illustrate CYP 1AI /CYP 1B1 

activation. The CYP1A1 and CYP1B1 content in both cell lines have been elucidated 

by Wilsher in the study of the cis-stilbene prodrug DMU213139 . In this study Whilscr 

demonstrated that conversion of DMU213 to DMU215 and CM3 was exclusively 

catalysed by CYP1A1 and CYP1B1, respectively, in individual CYP metabolism assay. 

The author has shown that the level of DMU215 detected after incubation of DMU213 

with TCDD pre-treated MCF7 was 20-fold higher than that of MDA468, which in turn 

20-fold higher than naive MCF7 cells. The CYP1B1 specific metabolite CM3 was only 

detected in MDA468 cells. These data indicated that there is only basal level of 

CYP1A1 in the MCF7 cell. Pre-treatment of MCF7 with lOnM TCDD induced the 

expression of CYP1A1 but not CYP1B1, given that the CYP1B1 specific metabolite of 

DMU213 was not detected. The induction of CYP1A1 in MCF7 treated cell is 

corroborated by studies reported elsewhere170"71. The induction of CYP 1B1 in TCDD 

pre-treated MCF7 has been reported 172. However, CYP 1B1 activity was not detected in 

Wilsher's study. Since CM3 was only detectable in MDA468, this provides evidence 

that CYP 1B1 is constitutively expressed by this cell line. 

The MTT-assay with MCF10A provides the intrinsic toxicity of the inhibitor whilst 

TCDD induced MCF7 only indicates bioactivation by CYP 1A1. The MDA468 MTT- 
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screening provides an assay to indicate bioactivation by CYP IA1 /CYP 1BI. The 

comparison of the recorded IC50 values of induced and naive MCF7 cells provides the 

activation factor (AF; calculated as IC50 (naive McF7)/ IC50 (induced nIcvi)) caused by 

CYP1A1. The data from MCF1OA and MDA468 provide the tumour selective factor 

(TS) calculated as IC50 (MCFIOA)/ IC50 (MDA46S). The selective CYP IB1 bioactivation of 

inhibitors can be elucidated by comparing data from induced MCF7 and MDA468 

MTT-assay. 

5.2 Experimental 

5.2.1 Materials and method for the MTT-cytotoxic assay 
All human breast cell lines were obtained from the American Type Culture Collection. 

MCF7 cells were grown in RPMI 1640 with phenol red whereas MDA468 was grown 

in the same medium without phenol red. MCF1OA was grown in DMEM: HAM's F-12 

with 10 µg/mL insulin, 500 ng/mL water soluble hydrocortisone and 20 ng/mL 

epidermal growth factor. All media were supplemented with 10% v/v heat inactivated 

foetal calf serum (heated to 56°C for 45 minutes to inactivate complement). Cells were 

maintained at 37°C, 5% CO2 in air with 100% humidity and passaged at sub-confluence 

using trypsin-EDTA (0.5% and 0.2% w/v, respectively). No antibiotics were used in 

any assay. 

To harvest adhered cells for experiments, the medium was aspirated and 1 mL of a 1% 

trypsin-EDTA solution was added to the cells and gently agitated for 30 seconds. 

Following removal of the trypsin-EDTA solution, a further 0.5-1. OmL of the solution 

158 



The intrinsic toxicity of heterocyclic chalcones: Discovery of CYP1 Al selective anticancer prodrugs 

was added and the cells incubated at 37°C for 5 (MCF7 and MDA468) or 15 minutes 

(MCF1OA). The resultant cell suspension was placed in a sterile container with IOmL of 

fresh medium. To determine the density of the cell suspension, an aliquot (100µL) was 

added to 100µL of a trypan blue solution (0.4% w/v) and the number of cells 

determined using a haemocytometer. 

The cell suspension was diluted with medium to give 2X 103 cells per 100µL medium 

per well of 96-well flat-bottomed plates (Nunc 96-well microtitre plate, Fisher 

Scientific). After 4 hours to allow adherence, 100µL of medium containing TCDD 

(2,3,7,8-tetrachlorodibenzo-p-dioxin, from 100µM stock in DMSO; custom prepared) or 

medium with 0.2% v/v DMSO as control was added to each well to give a final 

concentration of lOnM TCDD (0.1% v/v DMSO), for 24 hours to allow 

CYP1A1/CYP1B1 expression in MCF7 cells. The medium was then carefully aspirated 

and 100µL fresh medium added. Within 30 minutes compound was added in 

quadruplicate in 100µL medium at double the final concentration from 100mM stock in 

DMSO to give a final concentration of not more than 0.1% v/v DMSO, or DMSO 

solvent alone at 0.1% v/v as control. The cells were then allowed to grow on for 96 

hours to give 80-90% confluence in the control wells after which 50µL MTT (3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) at 2mg/mL in RPMI 1640 

without phenol red was added to each well for 1.5 hours. All medium was aspirated and 

the formazan product generated by viable cells was solubilized with 150µL DMSO. 

Plates were vortexed and the absorbance at 540nm determined using a plate reader. 

Maintenance of cell cultures and preparation of microtitre plates for cytotoxic studies 

was performed by Paul Butler, Cancer Drug Discovery Group. 
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5.2.2 Materials and methods for the microsomal incubation and 

HPLC analysis of DMU2123 and DMU2127 

Materials 

Cytochrome P450 CYP1A1, CYP1A2, CYP1B1, CYP2D6, CYP3A4, CYP3A5 were 

prepared from insect cells transformed using a baculovirus vector expressing human 

Cytochrome P450 with co-expression of human NADPH-cytochrome P450 reductasc 

(SupersomesTM) were obtained from Gentest Corporation, USA via Cambridge 

Biosciences, UK. Control microsomes prepared from insect cells treated with the only 

vector plasmid were also obtained from Gentest Corporation, USA. ß"Nicotinamide 

adenine dinucleotide phosphate reduced form (NADPH), was obtained from Sigma 

Chemical Co. HPLC grade acetonitrile, methanol, water, dimethylsulfoxide (DMSO), 

general reagent grade sodium hydroxide (NaOH), hydrochloric acid (HC1) 

microcentrifuge tube, and propylene microtitre plates were obtained from Fisher 

Scientific. Magnesium chloride (MgC12.6H2O), potassium chloride (KC1), anhydrous 

disodium hydrogen orthophosphate (Na2HPO4) and anhydrous potassium dihydrogen 

orthophosphate (KH2PO4) were obtained from BDH. HPLC analytical columns were 

supplied by Phenomenex. 

HPLC analytical method for DMU2123 and DMU2127 

Separation of DMU2123 was achieved by using the following analytical conditions: 

Phenomenex Luna 5µm Phenyl-Hexyl (250x4.60mm) analytical column at 30°C, UV 

detector using wavelengths of 304nm. The mobile phase consisted of 60% solvent A 

(10mM ammonium acetate in water) and 40% solvent B (5% propanol in acetonitrile). 

A linear gradient was initiated immediately on the start of analysis with solvent B rising 
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to 70% over 10 minutes and held at 90% for 1 minute before returning to the initial 

conditions (using a flow rate of 1 mL/min). A re-equilibrium time of 8 minutes was 

allowed between each sample analysis. The retention time of DMU2123 is 10.59 

minutes. For DMU2127, the analytical conditions is almost the same as for DMU2123, 

except for the wavelengths used to detect the DMU2127 is 303nm. The retention time 

of DMU2127 is 11.08 minutes. 

Quantitation of DMU2123 and DMU2127 

To quantify DMU2123, as well as DMU2127, the denatured, pooled microsomes were 

spiked with authentic standard DMU2123 solution in DMSO (100µM) to give a final 

calibration concentration of 1,2,3,4,5,6,7,8,9,10µM, then the calibration standards 

were treated exactly the same with incubated samples before analysed by HPLC. 

Calibration curves were linear in the concentration ranges used with correlation 

coefficients of >0.995. 

Microsomal Incubations 

The compound was incubated with SupersomesTM and control insect microsomes under 

the following conditions: compound (10µM), CYP (20pmol. mL''), NADPH (0.5mM), 

and MgC12 (0.5mM) in Pi-buffer (10mM) at 370C in a humidified incubator. Samples 

(100µL) were taken at 0,5,10,15,20,25min. 

Sample preparation 

The enzymatic reaction in the sample terminated immediately by addition of an equal 

volume of ice-cold solvent B (5% v/v propanol in acetonitrile). Following 
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centrifugation (13000rpm, 4min, 4 C), the supernatants were removed, placed in glass 

HPLC vials and analysed by HPLC. All samples have been done in duplicate. 

The microsomal incubation and HPLC analysis of the disappearance of DMU2123 and 

DMU2127 was performed by Somchaiya Surichan, Cancer Drug Discovery Group. 

5.2.3 Data analysis 
Analytical data were collected and the chromatograms of the analysis were plotted using 

Borwin HPLC software. Data collected from MTT-assay was processed by Prism, 

version 4.02 (GraphPad Software Inc. ). A dose-response curve was constructed and the 

IC50 value was obtained manually from the curve. This was necessary because the 

calculated IC50 value from Prism, using non-linear regression curve fit, was often 

inaccurate. 

5.3 Results 

All inhibitors synthesised have been screened for their intrinsic toxicity and potential 

bioactivation using the MTT-cytotoxic assay employing three human breast cell lines, 

namely MCF1OA, MCF7 and MDA468. Table 27 shows the MTT-assay results for the 

initial six inhibitors designed to probe CYP1 enzymes active site (discussed in Chapter 

2). DMU721 and DMU722 have shown a very low intrinsic toxicity with IC5o values for 

MCF1OA of 20µM and 50µM, respectively. The more CYP1A1 selective inhibitors 

DMU709 and DMU710 were relatively toxic to MCF1OA breast cell line. This may 
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impair the potential of these inhibitors for cell based in vitro and in vivo assay. 

DMU724 was bioactivated in the MDA468 cell line (IC50 0.1µM) with a tumour 

selective factor (TS) of 50. 

Table 28: 

Note 

Cytotoxicity of heterocyclic chalcone inhibitors 

Inhibitors MCF7 
IC 0 (µM) 

MCF7' MCF10A MDA468 AF TS 

DMU709 1.8 2 1.7 0.8 0.9 2.1 
DMU710 1.4 1.4 1.5 1.4 1.0 1.1 
DMU720 6 67 2 1.0 3.5 
DMU721 20 26 20 25 0.8 0.8 
DMU722 50 50 50 15 1.0 3.3 
DMU724 3 25 0.1 1.5 50.0 

tumour selective factor (IC50 MCFIOA / IC50 MDA468). 
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Figure 65: Chemical structure of heterocyclic chalcones listed in Table 28 

There are some interesting data collected from MTT-screening on the 3-pyridyl 

chalcones discussed in Chapter 3. DMU711 and DMU717 have been shown to be 
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activated by CYP1A1 but CYP1B1 deactivated these two compounds. Several 

compounds, such as DMU712, DMU713, DMU714, DMU718 and DMU2140 have 

shown deactivation by CYP1B1. There is clear evidence to indicate bioactivation of the 

triaryl compounds DMU2154 and DMU2156 by CYP1A1. DMU2123 and DMU2127 

are potential CYP1A1 activated anticancer prodrugs with 125- and 300-fold tumour 

selective factor, respectively. An initial DMPK studies have been performed on these 

two compounds and will be discussed later in this chapter. 
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Figure 66: Chemical structure of 3-pyridyl chalcones listed in Table 29 
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Table 29: Cytotoxicity of 3-pyridyl chalcones and other heterocyclic 

compounds discussed in Chapter 3 

Inhibitors MCF7 MCF7+ 
IC50 (µM) 

MCF10A MDA468 AF TS 

DMU711 5 0.6 6 11 8.3 0.5 
DMU712 2.5 1.5 4 7 1.7 0.6 
DMU713 3 2 4 10 1.5 0.4 
DMU714 4 3 5 11 1.3 0.5 
DMU715 4 3 5 5 1.3 1.0 
DMU716 4 3 4 8 1.3 0.5 
DMU717 0.9 0.4 3 8 2.3 0.4 
DMU718 5 3 5 9 1.7 0.6 
DMU744 >100 30 60 20 >3.0 3.0 
DMU745 5 5 2 1 1.0 2.0 
DMU746 4 4 2 0.5 1.0 4.0 
DMU757 5 4 3 1 1.3 3.0 
DMU760 NT NT NT NT nd nd 
DMU762 2 1.5 7 1 1.3 7.0 
DMU763 20 10 16 8 2.0 2.0 
DMU764 1.5 0.8 5 2 1.9 2.5 
DMU765 90 >100 NT 40 deactivating activating 
DMU782 2 0.7 2 0.3 2.9 6.7 
DMU785 6 4 2 0.6 1.5 3.3 
DMU786 3 2 4 2 1.5 2.0 
DMU2120 9 9 15 6 1.0 2.5 
DMU2123 6 0.4 5 0.04 15.0 125.0 
DMU2124 4 2 45 5 2.0 9.0 
DMU2127 2 0.03 6 0.02 66.7 300.0 
DMU2133 5 3 4 0.4 1.7 10.0 
DMU2134 7 7 6 4 1.0 1.5 
DMU2136 7 7 3 2 1.0 1.5 
DMU2137 5 5 3 1 1.0 3.0 
DMU2139 7 6 5 3 1.2 1.7 
DMU2140 1 1 1 4 1.0 0.3 
DMU2151 4 3 6 4 1.3 1.5 
DMU2154 30 4 NT 7 7.5 nd 
DMU2155 NT NT NT NT nd nd 
DMU2156 15 0.6 NT 3 25.0 nd 

Note: NT = non toxic; nd = not determined; MCF7t = induced MCF7. 
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Figure 67: Chemical structure of other heterocyclic compounds listed in Table 29 
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In the reverse 3-pyridyl series (see Figure 68), CYP1B1 bioactivated DMU729, 

DMU778 and DMU2103 with recorded IC50 values of 5µM, 4µM and 4µM, 

respectively (MTT-assay with MDA468). DMU769 is a more selective substrate for 

CYP1A1 (Table 30) 

Table 30: Intrinsic cytotoxicity of reverse 3-pyridyl chalcones and DMU2141 

Inhibitors MCF7 MCF7+ 
IC50 (µM) 

MCF10A MDA468 AF TS 

DMU729 21 20 20 5 1.1 4.0 
DMU756 10 8 7 4 1.3 1.8 
DMU766 2.5 0.9 7 2 2.8 3.5 
DMU767 7 6 10 2 1.2 5.0 
DMU768 27 25 15 6 1.1 2.5 
DMU769 10 6 25 5 1.7 5.0 
DMU774 11 11 20 8 1.0 2.5 
DMU775 9 8 25 5 1.1 5.0 
DMU776 6 6 12 3.5 1.0 3.4 
DMU777 2 0.5 4 2.5 4.0 1.6 
DMU778 23 23 20 4 1.0 5.0 
DMU789 6 4 7 20 1.5 0.4 
DMU790 6 4 10 3 1.5 3.3 
DMU2101 10 6 4 4 1.7 1.0 
DMU2103 25 15 25 4 1.7 6.3 
DMU2105 6 5 4 3 1.2 1.3 
DMU2114 5 3 7 4 1.7 1.8 
DMU2117 10 7 15 18 1.4 0.8 
DMU2118 6 1.5 12 6 4.0 2.0 
DMU2141 6 4 14 4.5 1.5 3.1 

The intrinsic toxicity and bioactivation data for the 4-pyridyl and reverse 4 pyridyl 

chalcones is tabulated in Table 31. The CYP1A1 inhibitor DMU2157 undergoes 

metabolic activation by the same P450 the compound tries to inhibit. DMU779, 

DMU2106 and DMU2144 are all deactivated by CYP 1AI. 
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Table 31: Intrinsic toxicity of 4-pyridyl and reverse 4-pyridyl analogues 

Inhibitors MCF7 MCF7+ 
IC, (µM) 

MCFIOA MDA468 AF TS 

DMU730 29 16 20 5.5 1.8 3.6 
DMU755 8 5 4 3 1.6 1.3 
DMU779 3 2.5 0.8 0.6 1.2 1.3 
DMU780 3 3.5 2 1.5 0.9 1.3 
DMU781 1.2 0.6 0.8 0.3 2.0 2.7 
DMU2106 12 12 6 4 1.0 1.5 
DMU2143 6 4 5 2 1.5 2.5 
DMU2144 19 19 9 5 1.0 1.8 
DMU2157 7 4 15 5 1.8 3.0 

O 

Me 
(ýN 

DMU730 

O 

N 
DMU780 Li 

O 

, zt O 

N> 
DMU2143 

0 

N 
DMU755 

O OMe 

N11 
DMU781 OMe 

0 

p ýN 
DMU2144 

° ýI 

r 
Ir 

DMU779 

0 
(C(D 

DMU2106 

0 
M Nk 

Me0 
IIN 

OMeDMU2157 

N 
DMU780 

Figure 69: Chemical structures of 4-pyridyl and reverse 4-pyridyl chaolcones 

listed in Table 31 
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5.4 Discussion 

Amongst the inhibitors listed in Table 28, DMU724 showed a 50-fold selectivity 

towards the MDA468 human breast cancer model in the MTT-cytotoxic assay. There 

was no apparent difference observed in cytotoxic IC50 values between the MCF I OA and 

MCF7 cell lines (IC50 5µM and 3µM). The IC50 for induced MCF7 was 2µM. No 

differences in toxicity were observed in MCF1OA and MCF7 but the induced MCF7 

cell IC50 value was higher than the MDA468, indicated that bioactivation of DMU724 

in MDA468 was probably mediated by CYP 1B1. However, the EROD results 

contradict this suggestion, since DMU724 is very weak inhibitor of CYP 1B1. The exact 

mechanism of bioactivation is unknown but probably due to 3'-demethylation of the B- 

ring of DMU724. The hydroxyl group of demethylated product may inhibit tyrosine 

kinases by mimicking the tyrosine residue. Further work is required to elucidate the 

mechanism of bioactivation of this compound but it is outside the scope of this project. 
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Figure 70: Mapping of DMU724 into CYPI Bl pharmacophore ready for 3'- 

demethylation 
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Based on the observations that the 3,4-methylenedioxy 3-pyridyl chalcone and its 

reverse 3-pyridyl analogue (DMU762 and DMU769, respectively) have tumour 

selective factor of 5 and above, three 3,4-methylenedioxy compounds were made as 

potential CYP1 activated prodrugs (see Figure 71). DMU918 is an analogue of 

DMU724. It is hope that by oxidative demethylation of the methylenedioxyphenyl 

group, the catechol metabolite of DMU918 would be much more toxic than the 

proposed metabolite of DMU724. The catechol group is widely known to possess anti 

tyrosine kinase activities and it may undergo redox cycling to generate reactive oxygen 

species and quinone. The reactive oxygen species and quinone can cause DNA damage 

and lead to cell death. 

DMU919 is the 2-pyridyl analogue of the 3-pyridyl DMU769. DMU769 is probably 

bioactivated by CYP1A1 since there is no difference in ICso values between the induced 

MCF7 and MDA468 cell lines. The 3-pyridyl moiety in DMU769 can inhibit the 

enzyme that bioactivate the compound and therefore only some degree of activation 

takes place and hence, a relatively low toxicity recorded for DMU769. The 2-pyridyl 

substituent in DMU919 is sterically hindered to coordinate to the P450 haem and 

therefore may not impede its bioactivation. The di-3,4-methylenedioxy chalcone 

DMU968 was designed to undergo double oxidative demethylation to reveal two 

catechol groups. 
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Figure 71: Chemical structure of DMU918, DMU919 and DMU968 

Table 32: CYP1 enzymes inhibition and cytotoxicity of DMU918, DMU919 and 

DMU968 

IC50 (AM) 
Inhibitor CYP1A1 CYP1A2 CYPIB1 MCF7 MCF7+ MCF10A MDA468 

DMU918 5 50 7 5 2 5 0.8 
DMU919 1 100 9 25 15 20 60 
DMU968 2.5 NI NI 30 30 25 17 

Note: NI = no inhibition; MCF7+ = induced MCF7. 

The reduction in IC50 value comparing naive and induced MCF7 as well as MCF1OA 

and MDA468 revealed that DMU918 was bioactivated by CYP 1A1 however, DMU918 

metabolite may not have the structural requirements to mediate cytotoxicity. There was 

no apparent difference between the recorded toxicity of DMU919 in naive and induced 

MCF7 so as MCF1OA. DMU919 was deactivated in the MDA468 cell line. 

Unfortunately, the mechanism of deactivation is unknown. DMU968 are relatively non- 

toxic in all cell lines tested. DMU968 is a CYP1A1 selective inhibitor with an ICSO of 

2.5µM. In the EROD assay DMU968 did not inhibit either CYP 1 A2 or CYP 1BI. 

Combining its low toxicity in normal and tumour cells and its selectivity for CYP 1 Al, 
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DMU968 may be a potential specific CYP1A1 inhibitor for in vitro and in vivo assay. 
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Figure 72: DMU968: A highly selective inhibitor of CYPIAI 

DMU2123 and DMU2127 are activated by both the induced MCF7 and MDA468 cell 

lines to highly cytotoxic species (Figure 73). The MTT-assay results provide the 

evidence that both DMU2123 and DMU2127 can be bioactivated by CYP I Al and/or 

CYP 1B1. In order to confirm bioactivation of these potential anticancer agents is CYP I 

mediated, the MTT-cytotoxicity assays have been repeated with co-incubation of CYP I 

enzyme inhibitors acacetin or a-naphthaflavone'73°174 at 1µM. 
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Figure 73: Bioactivation of DMU2123 and DMU2127 by CYPIAI/CYPI BI 

Note: 468 = MDA468; IOA = MCFIOA; MCF7 TCDD = MCF7 induced with I OnM TCDD. 

173 



The intrinsic toxicity of heterocyclic chalcones: Discovery of CYPI Al selective anticancer prodrugs 

Figure 74 show that the bioactivation of DMU2123 and DMU2127 could be reversed by 

the CYPI enzyme inhibitors acacetin (ACA) and a-naphthaflavone (aNF). This 

demonstrates that bioactivation of DMU2123 and DMU2127 is CYPI enzyme 

mediated. 
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Figure 74: Cytotoxicity of DMU2123 and DMU2127 in the absence and presence 

of CYP1 enzyme inhibitors 

To further assess the selectivity of CYP 1 enzyme in bioactivating DMU2123 and 

DMU2127, analysis of the disappearance of DMU2123 and DMU2127 after incubation 
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with CYP 1 SupersomesTM was carried out. Incubation of DMU2123 and DMU2127 

with control microsomes showed an unexpected disappearance of these molecules 

(Figure 75-76). 

It was first thought that these compounds may not be stable under the experimental 

conditions. Incubation of these compounds without any P450 and control microsomes 

has been undertaken to observe the stability of these compounds under the incubation 

conditions. In order to determine whether NADPH could possibly affect the stability of 

these compounds, incubation in the absence and presence of NADPH alone was carried 

out. Under these conditions (with or without NADPH), there was no disappearance of 

these compounds observed suggesting these compounds were stable under the 

incubation conditions (Figure 77-78). 
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Figure 75: Disappearance of DMU2123 on incubation with CYPI family enzymes 

and control microsomes 
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Figure 78: Stability of DMU2127 on incubation with and without NADPH 

Since the disappearance of DMU2123 and DMU2127 is not due to instability of these 

molecules under the incubation conditions, the disappearance of these compounds must 

be mediated by enzymatic degradation. This leads to the belief that there maybe residual 

insect enzymes present in the control microsomes that facilitate the metabolism of 

DMU2123 and DMU2127. Attenuation of control microsomes by sonication in warm 

water (50°C) for 1 hour prior to incubation with DMU2123 and DMU2127 to denature 

the microsomes stopped the metabolism of these compounds. This confirmed the 

presence of drug metabolising enzymes in the control microsomes (Figure 79-80). 

In order to find out whether the enzymes present in the control microsomes are 

cytochrome P450 enzymes, both DMU2123 and DMU2127 were incubated with and 

without NADPH. This showed that NADPH was indeed required for the metabolism of 

these compounds. The requirement of NADPH for the control microsomes to 

metabolise DMU2123 and DMU2127 indicates that the enzymes present in the control 

microsomes are insect cytochrome P450 enzymes (Figure 81-84). 
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Figure 79: Disappearance of DMU2123 on incubation with CYPIA1, control 

microsomes and denatured control microsomes 
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Figure 81: Disappearance of DMU2123 on incubation with CYPIAI and control 

microsomes in the presence of NADPH 
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Figure 82: Disappearance of DMU2123 on incubation with CYPIA I and control 

microsomes in the absence of NADPH 
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Figure 83: Disappearance of DMU2127 on incubation with CYPIAI and control 

microsomes in the presence of NADPH 
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Figure 84: Disappearance of DMU2127 on incubation with CYPIA I and control 

microsomes in the absence of NADPH 
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DMU2123 and DMU2127 were incubated with a panel of six different P450s to assess 

the selectivity of the various CYP enzymes in the metabolism of these compounds. Both 

DMU2123 and DMU2127 were metabolised preferably by CYP IAI and CYP 1AI was 

clearly the most efficient enzyme at metabolising these molecules. Although CYPI BI 

catalysed the metabolism of DMU2123 and DMU2127 as well, the major hepatic 

P450s, such as CYP1A2, CYP2D6, CYP3A4 and CYP3A5, also catalysed the 

metabolism of these compounds. 
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To further assess the selectivity of the substrates, the relative rates of disappearance of 

DMU2123 and DMY2127 with different CYPs was determined. This was calculated by 

dividing the rate of disappearance (ie. slope in Figure 85) with the concentration of CYP 

used (i. e. 20 pmol. mL'). These results are tabulated in table below. 

Table 33: The rate of disappearance of DMU2123 and DMU2127 on 

incubation with different P450s 

Microsomes 

Rate of disappearance 
(nmol. miri'pmol'1 CYP) 

DMU2123 DMU2127 

CYP1A1 0.014 0.014 
CYP 1 A2 0.009 0.005 
CYP 1B1 0.007 0.008 
CYP2D6 0.005 0.006 
CYP3A4 0.007 0.006 
CYP3A5 0.005 0.005 
Control microsomes 0.009 0.008 

The rates of disappearance of these compounds by P450s other than CYP 1A1 are lower 

or equivalent to that of the control microsomes. This suggests that the disappearance of 

DMU2123 and DMU2127 observed in CYPs other than CYP1A1 is probably mediated 

by the residual insect P450s present in the microsomes. In other words, DMU2123 and 

DMU2127 are selective substrates for CYP 1 Al. 

It has been found that both CYP1A1 and the residual insect CYPs present in the control 

microsomes and SupersomeTM can metabolise DMU2123 and DMU2127. However, no 

metabolite peak could be detected. The size of the solvent front peak was quite large. 
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There is a possibility that the polar metabolite co-eluted with the solvent front. After 

careful inspection of chromatograms from the stability experiment, even if no 

metabolite was formed (due to the absence of the enzyme), the big solvent front peak 

was detected in samples incubated with NADPH but only a very small peak detected in 

sample with no NADPH. These observations indicate that the big solvent front peak is a 

result of the presence of the NADPH itself rather that the metabolite of DMU2123 and 

DMU2127. 

The inability to detect metabolite peak for DMU2123 and DMU2127 in HPLC analysis 

suggests a highly reactive species has been generated by oxidative metabolism. The 

reactive metabolites could bind to microsomal proteins, and this would account for the 

inability to detect the metabolites. These elusive metabolites of DMU2123 and 

DMU2127 have been designated as DMU2123M and DMU2127M, respectively. These 

metabolites have been tentatively assigned as (E)-1-(3'-chlorosylphenyl)-3-(3- 

pyridyl)prop-2-en-1-one (DMU2123M) and (E)-1-(3'-bromosylphenyl)-3-(3- 

pyridyl)prop-2-en-1-one (DMU2127M). The formation of the perchlorate metabolite 

from DMU2123 and the perbromate metabolite DMU2127 are mechanistically feasible, 

and this mechanism is illustrated below. 
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Figure 86: Proposed mechanism for CYPIAI catalysed formation of DMU2123M 

(X= CI) and DMU212 7M (X = Br) 
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Figure 87: Proposed mechanism of cytotoxicity by DMU2123M and DMU2127M 

The metabolites of DMU2123 and DMU2127 could form covalent conjugates with nucleophiles from 

functional proteins and DNA. This is illustrated by the formation of a conjugate linkage between the thiol 

residue in the enzyme. Notes: Enz-SH = thiol residue from an enzyme. 
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The perchlorate and perbromate metabolites are bleach-like molecules. These molecules 

could disrupt DNA and enzyme activities by forming permanent conjugates with 

nucleophiles within biological macromolecules (Figure 87). These disruptions could 

lead to loss of essential cell functions and ultimately lead to cell death. More 

metabolism studies are currently underway to assess DMU2123 and DMU2127 as 

potential candidates to enter pre-clinical studies. 

There was no metabolite detectable either after incubation of DMU2123 and DMU2127 

with the control microsomes. This indicates that similar reactive metabolites generated 

by CYP1A1 are produced by the insect CYPs. Although the identities of the insect 

CYPs are still unknown, nevertheless DMU2123 and DMU2127 may represent a novel 

class of insecticide that requires bioactivation by a cytochrome P450 enzyme. These 

would be highly selective for insect expressing a particular CYP and further 

development could lead to the discovery of other insect CYP activated prodrugs with 

interesting potential as selective pesticides i. e. these compounds are essentially CYP 

activated insecticide prodrugs. 

The intrinsic toxicity of the reverse 3-pyridyl chalcones is generally lower than their 

normal 3-pyridyl counterparts except DMU768. For example, DMU709 is intrinsically 

the most toxic normal 3-pyridyl chalcone (IC50 1.7µM). However, its reverse 3-pyridyl 

counterpart DMU2114 is -4-fold less toxic. These results indicated that chalcones with 

an oxygen substituted phenyl B-ring is a prerequisite for higher cytotoxicity. 

The toxicity measured in MCF10A breast cell line for the reverse 3-pyridyl chalcone 

DMU768 is 15µM but its normal 3-pyridyl analogue (DMU765) is non-toxic (>100µM) 

to the same cell line. Although it is thought that substituted phenyl B-ring in chalcones 

is important to mediate cytotoxicity, the nitrogen lone pair of electrons in DMU768 can 
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afford hydrogen bonding interactions and therefore contribute to its cytotoxicity. The 

comparison of DMU765 and DMU768 intrinsic toxicity reveals that hydrogen bonding 

at 3'-position of the chalcones B-ring is important in mediating cytotoxicity. 
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Figure 88: The predicted metabolism of DMU729 based on the metabolism of 

DMU212 by CYP1 B1 

Inlet shows mapping of DMU729 onto DMU212 and the predicted metabolism of DMU729. 

Although the reverse 3-pyridyl chalcones were designed to be inhibitors of the CYPI 

enzymes, the results from the MTT-assay has shown that a few inhibitors were actually 

substrate for the CYP1 mono-oxygenases (Table 30). DMU729 and DMU768 are 

deduced to be CYP1B1 selective substrates since they are only bioactivated in the 

MDA468 cell line. DMU769 is a CYP 1A1 selective substrate since bioactivation was 

observed in the MCF7 as well as the MDA468 cell line. 

The difference in cytotoxic IC50 values between induced MCF7 (IC50 15µM) and 
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MDA468 (IC50 4µM) for DMU2103 indicates the major CYP that causes bioactivation 

of DMU2103 is probably CYP 1BI. 

The CYP1B1 bioactivation of DMU729 is in accordance with the metabolism of the 

trans-stilbene anticancer prodrug DMU212138,140 (Figure 88). CYP1B1 was found to be 

highly favoured the para O-demethylation of DMU212139. DMU729 can be mapped 

onto DMU212 structure, which predicted the possible metabolite of DMU729 was 

DMU768. Since 3'-hydroxylase activity was also detected in the metabolism of 

DMU212 by CYP 1B1, DMU2103 was also a predicted metabolite for DMU729. 

However, the recorded intrinsic toxicity of DMU768 and DMU2103 was lower than the 

toxicity observed in MDA468 cell line for DMU729. It is therefore, both DMU768 and 

DMU2103 are not the metabolites that cause the increase toxicity observed for 

DMU729 in MDA468 cell line. 

DMU769 was at least 2-fold more toxic in the human breast cancer cell lines indicative 

that this compound was bioactivated by CYP 1 enzymes. The predicted metabolite of 

DMU769 is (E)-1-(3-pyridyl)-3-(3", 4"-dihydroxyphenyl)prop-2-en-l-one (or 3,4- 

dihydroxy reverse 3-pyridyl chalcone). As the recorded cytotoxic IC50 values for 

MDA468 cell line have shown no apparent difference for DMU729, DMU768, 

DMU769 and DMU2103 (4-6µM), the metabolite that causes toxicity in MDA468 for 

DMU729, DMU768, DMU769 and DMU2103 has been tentatively assigned as the 3,4- 

dihydroxy reverse 3-pyridyl chalcone. 
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Figure 89: Proposed bioactivation pathway of DMU729, DMU768, DMU769 and 

DMU2103 

DMU2123 and DMU2127 are selectively bioactivated by CYP1A1. Since elevated 

expression of CYP1A1 has been shown in the cancer of prostate 129, stomach130131 and 

bladder132, these compounds have the potential to be CYP1A1 selective anti-tumour 

prodrugs. 

The investigation of DMU2123 and DMU2127 analogues is outside the scope of this 

project. The synthesis of these potential anticancer agents is currently undertaken by 

Ketan Ruparelia, Cancer Drug Discovery Group. 
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Figure 90: Potential tumour selective anticancer prodrugs 

5.5 Experimental 

Synthesis and analytical methods see Section 2.5.1 to Section 2.5.2 

(E)-1-(3,4-methylenedioxyphenyl)-3-(2-pyridyl)prop-2-en-l-one (DMU918) 

Synthetic Method 2; 1H"NMR (CDC13) 8 6.05 (2H, s, methylenedioxy), 6.88 (1H, d, 

benzyl), 7.28 (1H, t, Py), 7.45 (1H, d, benzyl), 7.57 (1H, s, benzyl), 7.69-7.78 (3H, m), 

8.06 (1H, d, J=14.9Hz), 8.68 (1H, d, Py); 13C-NMR (CDC13) 6 101.86,107.88,108.43, 

124.25,125.16,125.27,125.37,132.71,136.81,142.14,148.33,150.10,151.92, 

153.29,188.18 (C=O); IR Spectrum Vm. (KBr)/cm 1 1662 (C=O); Mass Spectrum 

(MALDI) m/z 252.96 (M+, 100%); mp 112-113°C. 
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(E)-1-(2-pyridyl)-3-(3,4-methylenedioxyphenyl)prop-2-en-l-one (DMU919) 

Synthetic Method 2; 'H-NMR (CDC13) 8 6.03 (2H, s, methylenedioxy), 6.85 (111, d, 

benzyl), 7.20 (1H, d, benzyl), 7.28 (1H, s, benzyl), 7.48 (1H, d, Py), 7.82-7.90 (2H, m), 

8.13 (1H, d, J=15.4Hz), 8.18 (1H, d, Py), 8.73 (1H, d, Py); 13C-NMR (CDC13) 8 101.56, 

107.08,108.54,118.98,122.81,125.55,126.71,129.75,136.93,144.59,148.35, 

148.77,149.94,154.39,189.28 (C=O); IR Spectrum Vm. (KBr)/cm1 1666 (C=O); 

Mass Spectrum (MALDI) m/z 253.32 (M+, 100%); mp 132°C. 

(E)-1,3-di(3,4-methylenedioxyphenyl)prop-2-en-1-one (DMU968) 

Synthetic Method 2; 'H-NMR (DMSO) S 6.08 (2H, s, methylenedioxy), 6.13 (2H, s, 

methylenedioxy), 6.93 (IH, d, benzyl), 7.01 (IH, d, benzyl), 7.25 (IH, d, benzyl), 7.55- 

7.65 (2H, m), 7.72 (1H, d, J=16.5Hz), 7.83 (1H, d, benzyl), 8.23 (1H, s, benzyl); 13C. 

NMR (DMSO) 8 101.64,102.02,106.97,108.03,108.05,108.46,119.95,124.90, 

125.72,129.44,132.62,143.47,148.06,148.21,149.54,151.47,186.88 (C=O); IR 

Spectrum Vm (KBr)/cml 1647 (C=O); Mass Spectrum (MALDI) m/z 296.45 (M+, 

100%); mp 163°C. 
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Validate the efficacy of selective CYPI enzyme inhibitors and the CYPI Ui pharniacophore model 

6.1 Selective CYP1 enzyme inhibitors in the MTT- 

bioactivation assay 
Apart from delineating the structure-activity relationship of the cytochrome P450 CYP 1 

mono-oxygenases, one of the objectives for this project is to identify suitable CYPI 

selective inhibitors for future in vitro and in vivo biological assay. A selective CYPI 

inhibitor is a valuable tool to examine the efficacy of CYP 1 Al or CYP 1B1 activated 

anticancer prodrugs. The suitability of an inhibitor for cell based and animal 

experiments depends on the toxicity of the compound. Ideally, the inhibitor must have 

low intrinsic toxicity so that it will not interfere with the final results. This is 

particularly important if the inhibitor is to be used for in vivo assay. Secondly, 

metabolite(s) of the inhibitor should also be non-toxic. In other words, inhibitor with 

high intrinsic toxicity or toxicity after metabolic activation will give erroneous 

conclusions in the evaluation process of potential CYP 1 activated anticancer agents. 

In this project, the intrinsic toxicity and toxicity of the inhibitor metabolites have been 

examined. The intrinsic toxicity of the inhibitors synthesised was measured using MTT- 

cytotoxic assay with the human breast cell line MCF1OA. This cell line was used 

because of its low CYPs content. So far, only protein from the CYP2C family has been 

discovered 168,169 and the presences of CYP1 enzymes were not detected139 in MCF1OA. 

Although the synthesised inhibitors in this project were designed to inhibit CYP1 mono- 

oxygenases, bioactivation and deactivation of these inhibitors by the very enzymes that 

they try to inhibit have been demonstrated (see Chapter 5). Since the efficacy of 

CYP 1A1 /CYP 1B1 activated prodrugs are evaluated in MTT-assay with naive and 

induced MCF7, as well as MDA468 cell lines, the inhibitor metabolites should ideally 

non-toxic or otherwise will interfere the final outcomes. 
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Table 34: Enzyme selectivity and cytotoxicity of CYP1A1 inhibitors 

Inhibitor 
EROD IC50 (µM) 

CYP1A1 CYP1A2 CYP1 B1 MCF7 
Cytotoxic IC50 (µM) 

MCF7` MCF10A MDA468 

DMU709 0.3 25 7 1.8 2 1.7 0.8 
DMU710 0.5 4 19 1.4 1.4 1.5 1.4 
DMU968 2.5 NI NI 30 30 25 17 
DMU2114 0.6 8 3 5 3 7 4 
DMU2157 0.3 5 9 7 4 15 5 

Note: NI = no 
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Figure 91: Cytotoxicity and enzyme selectivity of DMU2157 
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Five more selective CYP 1A1 inhibitors have been discovered and their enzyme 

selectivity and toxicity are tabulated in Table 34. DMU2157 has the best profile due to 

its potency for CYP1A1 inhibition and relatively low toxicity. Co-incubation of 

DMU2157 at 0.5-1.0µM in prodrug activation studies will not cause any toxicity to all 

human breast cell lines but can afford at least 60% inhibition of CYP 1A1 activity. 

DMU968 is relatively non-toxic, it can be use at up to 3µM without causing any toxicity 

to the cell lines. 
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Figure 92: Cytotoxicity and enzyme selectivity of DMU968 
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One of the CYP1A1 inhibitors, namely DMU709, has been used to evaluate the efficacy 

of the CYP1A1 activated anticancer agent DMU135145. As a result of the toxicity of this 

inhibitor, only 0.11M was co-incubated with the prodrug in MCF7 and MCF7 pre- 

treated with lOnM TCDD (Figure 93). The presence of inhibitor caused a 2-fold 

increase in IC50 value compared to incubation of the prodrug alone in the induced 

MCF7 cells. Only small inhibition observed in this case because at 0.1 µM, DMU709 

only inhibits -25% of CYP 1A1 activity. 
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Figure 93: Bioactivation of DMU135 in naive and induced MCF7 and enzyme 

selectivity of DMU709 
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9-Acetylphenanthrene was identified as CYP1 A2 inhibitor. The cytotoxicity of 9- 

acetylphenanthrene was not determined in this project. 9-Acetylphenanthrene is a 

general chemical for organic synthesis. There is no specific hazard label associated with 

this compound and therefore, it is thought that this compound is relatively non-toxic. 

More work is pending to determine the suitability of this inhibitor in any biological 

assay. 

Table 35: Enzyme selectivity and toxicity of CYP1B1 inhibitors 

EROD IC50 (µM) 
Inhibitor CYP1A1 CYP1A2 CYPIB1 MCF7 

DMU713 4 5 0.4 
DMU716 7 8 0.6 
DMU745 0.3 2 0.02 
DMU746 1 3 0.09 
DMU763 13 7 0.8 
DMU774 4 2 0.2 
DMU775 1.6 0.9 0.07 
DMU776 1.8 1.5 0.07 
DMU777 2 4 0.07 
DMU778 20 20 0.4 
DMU785 1.5 1.5 0.15 
DMU2103 7 70 0.7 
DMU2105 5 8 0.15 
DMU2139 1.5 15 0.08 

Cytotoxic IC50 (µM) 
CF7' MCF10A MDA468 

3 2 4 10 
4 3 4 8 
5 5 2 1 
4 4 2 0.5 
20 10 16 8 
11 11 20 8 
9 8 25 5 
6 6 12 3.5 
2 0.5 4 2.5 
23 23 20 4 
6 4 2 0.6 
25 15 20 4 
6.5 5 4 3 
7 6 5 3 

A total of fourteen CYP 1B1 inhibitors have been identified in this research. All 

CYP 1B1 inhibitors listed in Table 35 have a sub micro molar IC50 against CYP IB1 

catalysed EROD activity and with at least 10-fold enzyme selective ratio over other 

CYP 1A enzymes. Amongst these CYP 1B1 inhibitors, DMU778 and DMU2103 have 

potential uses for in vitro and in vivo assay due to their low toxicity in the human cancer 

breast cell lines. 
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Figure 94: Cytotoxicity and enzyme selectivity of DMU778 

DMU778 can be co-incubated in prodrug bioactivation assay at I µM. At this 

concentration, DMU778 does not cause toxicity to any human breast cell lines and can 

inhibit -60% of CYP 1B1 activity. Same as DMU778, DMU2103 can be used at 1µM as 

an inhibitor. At this concentration DMU2103 only cause some slight toxicity to the 

breast cancer cell lines and it can inhibit -60% of CYP 1B1 mediated bioactivation. 
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Figure 95: Cylotoxicity and enzyme selectivity of DMU2103 

A CYP 1B1 inhibitor DMU713 has been used to evaluate the selective bioactivation of a 

natural compound Q40. Q40 was identified in house as a selective substrate for 

CYP 1B1. Using DMU713 at 1 µM, the bioactivation of Q40 by CYP 1B1 was inhibited 

(Figure 96). 
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Figure 96: Inhibition of Q40 bioactivation in MDA468 cell line by DMU713 

The ability to inhibit selective substrates in MTT-assay provides evidence on the 

efficacy of the synthesised inhibitors. Currently, the suitability of other inhibitors to be 

used in co-incubation studies is being assessed. Maintenance of cell cultures and 

preparation of microtitre plates for further assessment of CYP1 enzyme inhibitor is 

performed by Paul Butler, Cancer Drug Discovery Group. 

6.2 Validation of CYP1 enzyme pharmacophore models 

Using the differential inhibition of cytochrome P450 CYP 1 mono-oxygenases by a 

range of structurally diverse heterocyclic chalcones and drug metabolism data from 

elsewhere, the pharmacophore models of each CYP1 enzymes were constructed. The 

CYP 1A1 pharmacophore model consists of a diagonal binding pocket. The two 

exclusion zones limit the binding of larger substrates/inhibitors. Finally, the selectivity 

of the substrate and the inhibitor of CYP 1AI is afforded by four hydrogen bonding 

199 



Validate the efficacy of selective CYP l enzyme inhibitors and the CY P1BI pharnlacoI, I , i, rwd, " 

interactions and the hydrophobic region. 
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Figure 97: Pharmacophore model for the cytochrome P450 CYPIAI 

DMU135, DMU2123 and DMU2127 are potential CYP 1A1 activated anticancer agents. 

The cytotoxicity of DMU135 is mediated by CYP 1A1 demethylation of the 3,4- 

methylenedioxy moiety. Mapping of DMU135 into CYPIA1 pharmacophore model 

corroborates with the metabolic profile of this prodrug. Within the enzyme active site, 

the hydrophobic trimethoxyphenyl group of the prodrug mapped onto the hydrophobic 

region. Hydrogen bonding interactions at point A and point D also help to anchor 

DMU135 ready for oxidative demethylation (Figure 98). 

The di-3-pyridyl chalcone DMU2141 does not inhibit CYP 1A1. One may have 

concluded that selective bioactivation of DMU2123 and DMU2127 by CYP 1 Al would 

be impossible, since the 3-pyridyl moiety of the prodrugs have to be mapped within the 
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hydrophobic region of the enzyme in order for the prodrugs to undergo metabolic 

activation. Mapping of these prodrugs onto the CYP 1A1 pharmacophore model 

revealed that the pyridyl A-ring of these prodrugs are not at the similar position as 

DMU2141. In order to undergo metabolic activation, the halogen substituents of 

DMU2123 and DMU2127 have to be directly above the oxidised haem (i. e. the Fe(V)- 

oxo species). This orientation forces the 3-pyridyl group occupying near the periphery 

of the hydrophobic region. Finally, the hydrogen bonding interaction at point B secures 

the prodrugs within the active site for metabolic activation (Figure 99). 
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Figure 98: Selective metabolic bioactivation of anticancer agent DMUJ35 by 

CYPJA1 
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Figure 99: Selective metabolic bioactivation of anticancer agent DMU2123 and 

DMU2127 by CYPIAI 
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Figure 100: Pharmacophore model for the cytochrome P450 CYP1A2 
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The constructed CYP 1 A2 pharmacophore model shows some degree of similarity to 

that of CYP1A1. This is supported by the similarity in the pattern of inhibition by the 

synthesised inhibitors in this project. The distance between the exclusion zones in 

CYP1A2 is shorter, evidenced by the inability of DMU2134 to inhibit this P450. The 

differential potency for DMU774 and DMU2103 to inhibit CYP 1 A2 indicates the 

presence of a second hydrophobic region (Figure 57). 
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Figure 101: Pharmacophore model for the cytochrome P450 CYP1B1 

The selective metabolism of DMU214 to DMU293 (discussed in Chapter 4) and 

metabolism of natural compound resveratrol (see Chapter 3) provide the evidence that 

substrates can bind to CYP 1B1 active site in horizontal and vertical binding modes. In 

order to accommodate two possible binding modes, the active site of CYP IBI must be 

considerably larger than the active site in CYP 1A enzymes. A total of five hydrogen 

bonding interactions has been identified. The ability of some 3-pyridyl chalcones with 
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polycyclic aromatic B-ring substituents to inhibit CYP 1B1 with high potency 

demonstrates the presence of a hydrophobic region within the horizontal binding 

pocket. It is thought that part of the hydrophobic region in CYP IBI is formed by two 

groups of bulky hydrophobic amino acids residue arranged in layers parallel to each 

other. This restrict amount of space available for non-planar bulky substituents. 

Knowing the structural requirements of CYP 1B1, DMU419 was designed and 

synthesised (patent pending; synthesised by Ketan Ruparelia, Cancer Drug Discovery 

Group). 

Although DMU419 is not entirely bioactivated by CYP 1B1, it has shown improvement 

in CYP 1B1 selectivity, evidenced by most of the bioactivation was recorded in 

MDA468 cell line. There is also a -7-fold improvement in intrinsic toxicity of DMU419 

compared with its 3,4,5-trimethoxy analogue (DMU135 IC50 2µM). Currently, the 

CYP 1B1 pharmacophore model is used to aid the design of next generation CYP 1B1 

bioactivated anticancer prodrugs at the Cancer Drug Discovery Group, Leicester School 

of Pharmacy. 
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Figure 102: DMU419 cytotoxicity on human breast cell lines 
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Figure 103: Bioactivation of DMU419 by CYPI Bl 

Figure shows the mapping of DMU419 onto CYP 1BI pharmacophore model ready to undergo oxidative 

demethylation. The hydrophobic trimethoxyphenyl 13-ring is mapped into the hydrophobic region. The 

hydrogen bonding interaction at point D and the oxygen in the 2-methoxy substituent help to anchor 

DMU419 within the enzyme active site. 

6.3 Summary 

A total of sixty-six heterocyclic chalcone inhibitors has been synthesised. Three triaryl 

compounds, namely DMU2154, DMU2155 and DMU2156 were made as by-products 

during the failed synthesis of DMU2123, DMU2124 and DMU2127, respectively, using 

the solution phase Synthetic Method 2. Three chalcone prodrugs, namely DMU918, 

DMU919 and DMU968, were synthesised but their metabolites are relatively non-toxic 

due to lack of functionalities to mediate toxicity in the human cancer breast cell lines. 
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Amongst the synthesised compounds, DMU709, DMU710, DMU968, DMU2114 and 

DMU2157 have been identified as more selective inhibitors for CYP 1A1.9- 

Acetylphenanthrene was identified as CYP1A2 inhibitor during the investigation of the 

interaction of plasticware and 3-pyridyl chalcones. Fourteen CYP 1B1 inhibitors have 

been found amongst the synthesised compounds. All CYP 1B1 inhibitors have shown at 

least 10-fold enzyme selective ratio against the CYP 1A enzymes and with recorded sub 

micro molar IC50 values. Some of these inhibitors have been used to evaluate the 

efficacy of the CYP 1 activated synthetic and natural prodrugs. DMU713 able to inhibits 

selective CYP 1B1 bioactivation of natural compound Q40 in MDA468 cell line. 

DMU709 at 0.1µM has been shown to partially inhibit CYP 1A1 bioactivation of 

DMU135. Higher concentration of DMU709 in co-incubation studies is not feasible due 

to the intrinsic toxicity of the compound. Ideally, all identified inhibitors should be 

assayed to determine their suitability as inhibitor in the MTT-cytotoxic experiment. 

This is because apart from enzyme selectivity, other factors such as non-specific protein 

binding and metabolic degradation by other enzymes presence in the cell lines can 

affect the efficacy of these compounds as inhibitors. 

Although DMU2123 and DMU2127 were designed to be CYP1 family inhibitors, these 

two compounds were bioactivated by CYP1A1. It was also found that residual insect 

P450s presence in the control microsomes and other SupersomeTM also metabolised 

these compounds. Since no metabolite was detected in HPLC analysis after microsomal 

incubation, it was postulated that the metabolite of DMU2123 and DMU2127 must be 

highly reactive. The metabolites of these compounds have been tentatively assigned as 

the DMU2123 perchlorate and DMU2127 perbromate. The perchlorate and perbromate 

metabolites are bleach-like compounds and can disrupt biological macromolecules such 
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as DNA and enzymes by forming permanent covalent conjugates. There was no 

metabolite peak detected in other incubation studies suggesting the insect P450s also 

generated the same metabolites as by CYP1A1. DMU2123 and DMU2127 have shown 

125- and 300-fold tumour selective ratio, respectively. They are potential anticancer 

agents for further preclinical studies. DU2123 and DMU2127 may also represent a 

novel class of insecticides that require P450 bioactivation. 

The structure-activity relationship for CYP 1 inhibitors has been investigated. CYP 1 

pharmacophore models, based on inhibitor data and drug metabolism results, were 

constructed. The pharmacophore models have been used to design next generation 

prodrugs, such as DMU419, with improved CYP 1B1 selectivity. The validity of the 

pharmacophore models constructed have been proven by other newly designed 

CYP 1B1 selective prodrugs synthesised within the Cancer Drug Discovery Group at 

Leicester School of Pharmacy. 
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