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Abstract Feed-forward neural networks are commonly

used for pattern classification. The classification accuracy

of feed-forward neural networks depends on the configura-

tion selected and the training process. Once the architecture

of the network is decided, training algorithms, usually gradi-

ent descent techniques, are used to determine the connection

weights of the feed-forward neural network. However, gra-

dient descent techniques often get trapped in local optima of

the search landscape. To address this issue, an ant colony op-

timization (ACO) algorithm is applied to train feed-forward

neural networks for pattern classification in this paper. In ad-

dition, the ACO training algorithm is hybridized with gradi-

ent descent training. Both standalone and hybrid ACO train-

ing algorithms are evaluated on several benchmark pattern

classification problems, and compared with other swarm in-

telligence, evolutionary and traditional training algorithms.

The experimental results show the efficiency of the proposed

ACO training algorithms for feed-forward neural networks

for pattern classification.

Keywords Neural networks · Pattern classification · Ant

colony optimization

1 Introduction

Artificial neural networks are commonly used for pattern

classification problems (Carpenter and Grossberg, 1988; Day-

hoff, 1990; Mehrotra et al, 1997; Zhang, 2000). Feed-forward

neural networks are typically used to perform the classifica-

tion task (Bishop, 1995). However, for a feed-forward neural
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network to perform classification properly, a prior configu-

ration is required: (a) the architecture of the network needs

to be determined, and (b) the connection weights of the net-

work need to be determined. In this paper, we focus on the

latter configuration of a feed-forward neural network, where

the optimal combination of numerical values for the connec-

tions weights is to be found.

Typically, gradient descent techniques, such as the back-

propagation algorithm (Rumelhart et al, 1986), are used to

adjust the connection weights. A serious drawback of gradi-

ent descent training techniques is that they often get trapped

in local optima since they perform trajectory searching (Sut-

ton, 1986; Whitley et al, 1990). One way to overcome this

drawback is to adopt non-trajectory searching methods that

perform longer “jumps” in the search space than trajectory

methods, e.g., global optimization algorithms. Such algo-

rithms are less likely to get trapped in a local optima than

gradient descent algorithms. Usually, evolutionary algorithms,

e.g., genetic algorithms (GAs) (Alba and Chicano, 2004;

Montana and Davis, 1989), evolution strategies (Mandis-

cher, 2002), differential evolution (DE) (Ilonen et al, 2003)

and estimation of distribution algorithms (Cotta et al, 2001),

are used to train feed-forward neural networks.

Recently, another class of global optimization algorithms,

i.e., swarm intelligence (Bonabeau et al, 1997), has been

used for training. Swarm intelligence algorithms are inspired

from the natural behaviour of social insects, such as the

ant foraging, bird flocking, fish schooling, and so on. The

applications of swarm intelligence for pattern classification

include particle swarm optimization (PSO) (Carvalho and

Ludermir, 2006; Mendes et al, 2002), artificial bee colony

(ABC) (Karaboga and Ozturk, 2009) and ant colony opti-

mization (ACO) (Blum and Socha, 2005; Socha and Blum,

2007). Among these developments, ACO has attracted less

attention than PSO and ABC since it was originally intro-

duced to solve discrete optimization problems (Dorigo and
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Gambardella, 1997; Dorigo and Stützle, 2004) rather than

training neural networks, which is a numerical (continuous)

optimization problem (Socha, 2004; Socha and Blum, 2007).

ACO training includes two main developments. First,

the hybridization of ACO with back-propagation (Liu et al,

2006) uses the traditional ACO framework, where a popula-

tion of ants construct solutions (e.g., a combination of con-

nection weights) and update the pheromone table (Dorigo

et al, 1996). Recently, an improved variation has been pro-

posed in (Mavrovouniotis and Yang, 2013), which is based

on the pheromone update policy of the MAX -MIN ant

system (Stützle and Hoos, 1997). Second, the ACO for con-

tinuous optimization, denoted as ACOR, which follows a

different approach from the well-known ACO framework,

was proposed in (Blum and Socha, 2005). ACOR utilizes

the continuous probability density function.

The key idea of the aforementioned hybrid ACO with

back-propagation training (Mavrovouniotis and Yang, 2013;

Liu et al, 2006) is to run ACO for several iterations to

select the initial connection weights, and then perform

back-propagation training. This paper extends the work

in (Mavrovouniotis and Yang, 2013) and applies back-

propagation, as a local search improvement, to each solu-

tion constructed at each ACO iteration. To fully investigate

the performance of the proposed ACO training methods,

they are further compared with several other swarm intelli-

gence, evolutionary and traditional training methods on sev-

eral real-world problem datasets.

The rest of the paper is outlined as follows. Sect. 2

describes the training process in neural networks. Sect. 3

describes the proposed ACO framework for training feed-

forward neural networks. In Sect. 4, the experimental results

and analysis are given. Finally, several concluding remarks

and direction for future work are given in Sect. 5.

2 Training feed-forward neural networks

2.1 Description of artificial neural networks

A feed-forward neural network consists of a number of units

(neurons) that are allocated in different layers, i.e., input,

hidden, or output layers, which are interconnected. Typi-

cally, directed graphs are used to represent the network,

where nodes represent the units and arcs represent the con-

nections between them. Each arc holds a value, which is the

connection weight between a pair of units. Within the feed-

forward model, all connections of the network are strictly

forwarded from the input units to the hidden units and fi-

nally to the output units. For example, Fig. 1a presents a

feed-forward neural network with one input layer of three

units, one hidden layer of five units and one output layer of

two units.

(a)

(b)

Fig. 1 a Feed-forward neural network with a single hidden layer. b

Unit (from any layer) process of a feed-forward neural network

Each unit i performs a function, which is defined as:

yi = fi





n
∑

j=1

wijxj − θi



 , (1)

where fi represents the activation function (usually a sig-

moid or Gaussian function) of unit i, yi is the output of unit

i, wij represents the connection weight between units i and

j, xj represents the j-th input of the unit and θi is the thresh-

old (or bias) of unit i. An illustration of the processing of a

unit, say unit i, is given in Fig. 1b.

2.2 Training artificial neural networks

Once the network’s architecture is decided, then training

needs to be performed to determine the weights of the

connections before the network is used. Feed-forward neu-

ral networks are typically applied for pattern classification

(Bishop, 1995) and supervised learning is a convenient way

to train them.

Supervised learning requires a training set that consists

of several input parameters and corresponding target param-

eter that defines the correct classification. Each input param-

eter is associated with a single unit from the input layer and

each different class is associated with a single unit from the

output layer. The target parameter is used to calculate the

network error, i.e., the difference between the actual and

target outputs when training is performed. The squared er-

ror percentage (SEP) is used to measure the network error,

which is defined as follows:

SEP = 100
omax − omin

nonp

E, (2)
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where omax and omin are the maximum and minimum out-

put values of the output unit, respectively, np and no repre-

sent the number of patterns and the number of output units,

respectively, and E is the squared error, defined as follows:

E =

np
∑

p=1

no
∑

i=1

(tpi − opi )
2, (3)

where tpi and opi are the target and actual values of output

unit i, respectively.

Generally, the aim of training a neural network is to

minimize the error, e.g., the SEP, of the network by ad-

justing the connection weights to generate a classifier that

takes patterns as input and provides their correct classifi-

cation as output. Traditional training algorithms, such as

the back-propagation algorithm (Rumelhart et al, 1986) and

the Levenberg-Marquardtalgorithm (Levenberg, 1944; Mar-

quardt, 1963; Hagan and Menhaj, 1994), have been success-

fully applied to train neural networks (Hinton, 1989; Lang

et al, 1990; Fels and Hinton, 1993). The former algorithm

is based on gradient descent and approximates the error of

the network with a first-order expression, whereas the latter

algorithm is based on the Newton method and approximates

the error of the network with a second-order expression.

Both back-propagation and Levenberg–Marquardt algo-

rithms have a drawback because they often get trapped in

local optima of the search landscape since they are local op-

timization algorithms (Sutton, 1986; Whitley et al, 1990).

One way to avoid this drawback is to evolve the connection

weights. Evolutionary algorithms, such as GAs (Alba and

Chicano, 2004; Montana and Davis, 1989), evolution strate-

gies (Mandischer, 2002), and estimation of distribution al-

gorithms (Cotta et al, 2001), are typically used to perform

the evolution process in the networks.

Different from traditional training algorithms, evolution-

ary algorithms are global optimization methods, and thus,

are less likely to get trapped in a local optimum. A com-

prehensive survey regarding evolutionary neural networks is

available in (Yao, 1999). Recently, swarm intelligence tech-

niques, including PSO (Mendes et al, 2002; Carvalho and

Ludermir, 2006), ABC (Karaboga et al, 2007; Karaboga and

Ozturk, 2009) and ACO (Socha and Blum, 2007), were also

used to train neural networks. A review for other metaheuris-

tics used for training neural networks is available in (Alba

and Marti, 2006).

There is a trade-off on whether training via metaheuris-

tic is more efficient than training via gradient descent (Bul-

linaria, 2005). Some researchers have demonstrated that

standalone evolutionary training is faster than gradient de-

scent training (Montana and Davis, 1989), whereas other

researchers have demonstrated that there is no any signif-

icant difference between the two types of training and the

difference really depends on the problem (Socha and Blum,

2007). However, hybrid training with a GA (Alba and Chi-

cano, 2004) or ACO (Liu et al, 2006; Socha and Blum,

2007; Mavrovouniotis and Yang, 2013) usually performs

better than standalone metaheuristics or gradient descent

algorithms. This is due to the fact that metaheuristics are

global optimization algorithms and they are less sensitive

on the initial condition of training whereas local optimiza-

tion algorithms find the local optimum in the neighbourhood

of the initial weights given. For example, in many cases the

initial weights selected for back-propagation may lead to a

very poor local optimum. To address this issue, some hybrid

training algorithms use the best values obtained from ACO

training as the initial weights for back-propagation training

(Liu et al, 2006; Mavrovouniotis and Yang, 2013). The idea

is to select a promising neighbourhood by ACO training and

then search for the optimum by gradient descent training.

Furthermore, it was discussed that simple training algo-

rithms usually perform better than complex ones (Cantu-Paz

and Kamath, 2005). In fact, it was suggested that instead

of using a single large network to solve large and complex

problems, it is better to use a neural network ensemble that

adopts the divide-and-conquer strategy (Yao and Liu, 1996,

1998). A neural network ensemble combines a set of sim-

ple networks that learn to decompose the problem into sub-

problems and then solve them efficiently (Yao and Islam,

2008).

3 The ant colony optimization training algorithm

The ACO metaheuristic is inspired by the foraging be-

haviour of real ant colonies. ACO algorithms were initially

proposed to solve combinatorial optimization problems

(Dorigo and Gambardella, 1997; Bullnheimer et al, 1999;

Dorigo et al, 1999). In general, an ACO algorithm consists

of two modes, i.e., the forward and backward modes. In the

forward mode, a population of ants construct solutions prob-

abilistically based on existing pheromone trails. In the back-

ward mode, the solution constructed, including the solution

quality, is used to update pheromone trails. After several it-

erations, the ants will converge into a near-optimum or opti-

mum solution.

Recently, ACOR was proposed (Socha, 2004) and ap-

plied to train feed-forward neural networks since the train-

ing process can be considered as a continuous optimiza-

tion process (Blum and Socha, 2005; Socha and Blum,

2007). ACOR utilizes the continuous probability density

function. More precisely, a solution archive is maintained

in which the worst solutions are replaced in every iteration.

The solutions are constructed by sampling several proba-

bility density functions which are derived from the solu-

tion archive. The results of ACOR showed that a standalone

ACO training algorithm is outperformed by gradient descent

training, whereas a hybrid ACOR with back-propagation



4

Fig. 2 Framework of the ACO training for feed-forward neural net-

works

or Levenberg–Marquardt training outperforms gradient de-

scent training.

A different ACO training was proposed in (Liu et al,

2006) that uses a framework that is close to the original

ACO framework rather than the ACOR framework. The key

idea is to apply ACO training to find good initial weights for

the back-propagation which is applied when ACO training

is terminated. Their results showed that the ACO with back-

propagation hybrid training is more effective and efficient

than the standalone back-propagation algorithm. Later on,

the above ACO training was improved by imposing limits to

the pheromone trails (Mavrovouniotis and Yang, 2013).

In this paper, the ACO training based on the frame-

work proposed in (Mavrovouniotis and Yang, 2013) is ex-

tended and furthermore investigated. The new framework

is as shown in Fig. 2. The main extension is that back-

propagation training is applied after each ACO iteration

rather than when the ACO training terminates. In the fol-

lowing subsections, the proposed ACO training is described

in more details.

3.1 Initialization

For ACO training, the optimal combination of connection

weight values needs to be found. Given a neural network,

the number of connection weights l is calculated as:

l = nh(ni + 1) + no(nh + 1), (4)

where nh, ni and no are the number of hidden, input, and

output units, respectively. The additional units represents the

bias inputs of the units. Hence, ACO becomes a sufficient

choice to select good combinations due to its good perfor-

mance on different combinatorial optimization problems.

The key idea is to split the value range of each con-

nection weight wij from unit i to unit j into d discrete

Fig. 3 Solution construction of an ant that has already selected val-

ues ai1h and ai2h for connection weights wi1 and wi2, respectively,

which are stored in the ant’s memory

points aijh (h = 1, 2, . . . , d), which are generated from a

normal distribution. Each connection weight point aijh is

assigned a pheromone value τijh in the pheromone table.

The pheromone table is initialized with an equal amount of

pheromone for all trails in the table as follows:

τijh ← 1/(ni + nh + no), ∀ aijh. (5)

where ni, nh and no are as defined in Eq. 4.

3.2 Probabilistic solution construction

In the probabilistic solution construction, each ant selects

one and only one discrete point for each connection weight.

All the selected points of the previously visited connection

weights are stored in the ant’s (partial) memory. The dimen-

sion of an ant’s memory is determined by the number of con-

nection weights in the network, i.e., l, as defined in Eq. 4.

More precisely, with a probability 1 − q, where q (0 ≤

q ≤ 1) is a parameter of the decision rule, an ant chooses a

value for wij from the set of discrete points probabilistically

as follows:

pijh =
τijh

∑d

k=1
τijk

, (6)

where pijh is the probability of selecting aijh for wij , d rep-

resents the number of discrete points, and τijh represents the

existing pheromone trail assigned with aijh.

Figure 3 illustrates how an ant selects values for the con-

nection weights of unit i. For example, the values ai1h and

ai2h have been selected for connection weights wi1 and wi2,

respectively. Next, the ant needs to decide either with the

probability 1 − q to select a value for wi3 according to the

existing pheromone trails or with the probability q to choose

the value with the maximum amount of pheromone. Note

that the parameter q is used to tune the exploration and ex-

ploitation of the algorithm. The selection of discrete points

is repeated until all ants have selected values for all l con-

nection weights.
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3.3 Pheromone update policy

When all ants choose a value for each connection weight,

including the bias weight, the pheromone update procedure

starts. Only the best ant retraces its values selected for each

weight in the construction phase and deposits pheromone as:

τijh ← τijh +∆τbestijh , ∀ aijh ∈ T best, (7)

where T best is the combination of discrete points selected by

the best-so-far ant and ∆τbestijh is the amount of pheromone

to be deposited, which is defined as follows:

∆τbestijh = 1/Ebest, (8)

where Ebest is the network error of the T best combination,

as defined in Eq. 2. Hence, the less network error, the more

pheromone is deposited since the inverse of the network er-

ror is considered.

Furthermore, pheromone evaporation is applied to re-

duce all pheromone trails as follows:

τijh ← (1− ρ)τijh, ∀ aijh, (9)

where ρ ∈ (0, 1) is a constant that defines the pheromone

evaporation rate. The pheromone evaporation helps to elim-

inate bad decisions made in the past.

Within the proposed ACO training, the possible

pheromone trail values are limited to the range [τmin, τmax],

where τmax = 1/(ρEbest) is the maximum pheromone trail

limit, ρ is defined in Eq. 9, Ebest is the network error of

the best combination, τmin = τmax/(2l) is the minimum

pheromone trail limit, and l is as defined in Eq. 4.

The differences between the proposed ACO training and

the one described in (Liu et al, 2006) are (a) only the best-so-

far ant is allowed to deposit pheromone and (b) pheromone

trail limits are imposed. It is very important to keep the max-

imum and minimum pheromone trail values at a closer range

to eliminate the high intensity of pheromone trails that may

bias ants to search at non-promising areas. In fact, the ex-

periments in (Mavrovouniotis and Yang, 2013) support this

claim.

3.4 Local search improvements

Metaheuristics (such as ACO) which do not consider any

gradient descent information when training a network, may

not be as accurate as those methods that use this information.

Therefore, when an ant constructs a solution, a gradient de-

scent approach can be applied to improve the accuracy of

ACO training.

Gradient descent methods perform small step jumps to

a neighbourhood of the search landscape and, thus, can lo-

cate the optimum nearby. However, the (local) optimum lo-

cated may be far from the global optimum. In contrast, ACO

performs large-step jumps and is more difficult to reach the

Table 1 Structure and dimension of feed-forward neural networks to-

gether with the set division of the different benchmark problems used

in the experiments

Problem Structure Dimension Training Testing

Cancer 9-6-2 74 525 174

Diabetes 8-6-2 68 576 192

Heart 35-6-2 230 690 230

Thyroid 21-6-3 153 5400 1800

Gene 120-6-3 747 2382 793

Horse 58-6-3 375 273 91

Card 51-6-2 326 518 172

Glass 9-6-6 102 161 53

Soybean 82-6-19 631 513 170

optimum in a neighbourhood. However, ACO is more likely

to discover different neighbourhoods than a gradient descent

method due to its stochastic components.

Considering both aspects, a hybrid training method can

be applied: the ACO training can be used to discover a

promising neighbourhood, possibly containing the global

optimum, in the search space, and the gradient descent train-

ing can be used to locate the optimum in that specific neigh-

bourhood.

4 Experimental study

4.1 Experimental setup

To evaluate the performance of the proposed ACO training

algorithm, it is compared with other algorithms in training

feed-forward neural networks for solving different bench-

mark classification problems (Prechelt, 1994). The details

regarding the configuration of the networks and datasets

used for different problems are shown in Table 1. The ex-

perimental study is divided into three parts. The algorithms

implemented and compared in the first part of the experi-

mental study (see Subsect. 4.2) include the following:

1. Back-propagation (BP) (Rumelhart et al, 1986): the ba-

sic back-propagation training without any acceleration

or other tweaking techniques such as momentum and so

on.

2. Levenberg–Marquardt (LM) (Hagan and Menhaj, 1994):

the standard Levenberg-Marquardt training, which is an-

other gradient descent algorithm.

3. ACO-BP: the proposed ACO training algorithm with the

combination of back-propagation, where each solution

constructed by ACO undergoes a local search improve-

ment by back-propagation.

4. Random constructive heuristic (RCH): this algorithm

constructs solutions at each iteration in the same way

as ACO but without any pheromone trail reinforcement.

Next, the second part of the experimental study (see Sub-

sect. 4.3) is used to compare the proposed ACO training with
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ACOR (Socha and Blum, 2007), an existing ACO training

from the literature that does not follow the original ACO

framework. The aim of these two experimental studies is to

investigate the effect of pheromone trails on the training of

feed-forward neural networks. Hence, a partial set contain-

ing the most commonly used benchmark instances is used.

Finally, the third part of the experimental study (see Sub-

sect. 4.4) is used to compare the proposed ACO training

against other nature-inspired metaheuristics used for train-

ing feed-forward neural networks on the complete set of

benchmark instances.

All the algorithms perform 1, 000 function evaluations in

order to have a fair comparison. A fourfold cross-validation

is used, where a set of patterns is divided into four equal

subsets. Then, four experiments are performed where one

subset is used as the testing dataset (patterns that the network

has never seen before) and the remaining subsets are used as

the training dataset.

The classification error percentage (CEP) for a single ex-

periment from the four cross-validation experiments is com-

puted as follows:

CEP = 100
# of misclassified patterns

# of testing patterns
(10)

and the result of the set division between the training and

testing dataset is averaged over 50 independent runs on a set

of different random seeds.

4.1.1 Benchmark problems

The aim of classification problems is to determine the class

that a certain pattern belongs to. Each pattern within a

problem instance consists of an input and an output vec-

tor formed by real numbers. To interpret the output of the

classification problem, the winner-takes-all method is used.

More precisely, an output unit is associated with each differ-

ent class. Therefore, when an input vector is pushed in the

neural network, the network’s classification result is pulled

out from the output unit with the larger value.

Different real-world benchmark datasets taken from the

UCI repository (Bache and Lichman, 2013; Prechelt, 1994)

are used in this study. The first six benchmark problems rise

from the medical field whereas the remaining three from

other scientific fields. They are described as follows:

– Cancer: Taken from a database of diagnostics of breast

cancer obtained by Dr. William H. Wolberg from the

University of Wisconsin Hospitals, Madison (Bennett

and Mangasarian, 1992; Mangasarian et al, 1990; Wol-

berg, 1990; Wolberg and Mangasarian, 1990). It consists

of 699 patterns, each of which consists of 9 inputs and 2

outputs.

– Diabetes: Based on personal data and medical exami-

nations which decide whether a Pima Indian is diabetes

or not. The dataset contains a redundancy of senseless

0 values that most probably indicate missing or noisy

data. It consists of 768 patterns, each of which consists

of 8 inputs and 2 outputs.

– Heart: Based on medical examinations which predict

heart disease obtained from four different sources: (1)

Hungarian Institute of Cardiology, Budapest (Andras

Janosi, M.D.); (2) University Hospital, Zurich, Switzer-

land (William Steinbrunn, M.D.); (3) University Hospi-

tal, Basel, Switzerland (Matthias Pfisterer, M.D.); and

(4) V.A. Medical Center, Long Beach and Cleveland

Clinic Foundation (Robert Detrano, M.D., Ph.D.) (De-

trano et al, 1989; Gennari et al, 1989). More precisely,

the dataset decides whether at least one of four major

vessels is reduced in diameter by more than 50%. It con-

sists of 920 patterns, each of which consists of 35 inputs

and 2 outputs.

– Thyroid: Based on patient query and patient examina-

tion data. This dataset is used to diagnose thyroid hyper-

or hypo-function. It consists of 7200 patterns, each of

which has 21 inputs and 3 outputs representing whether

the patient’s thyroid has overfunction, normal function,

or underfunction.

– Gene: Contains data from a window of 60 DNA se-

quence elements and has two different classes, i.e.,

donor or acceptor. It is used to predict whether the mid-

dle of the sequence is a donor, an acceptor, or none of

these. It consists of 3, 175 patterns, each of which con-

sists of 120 input and 3 outputs.

– Horse: Based on the veterinary examination results of

a horse having a colic. This dataset is used to predict

whether the horse will survive, die, or be euthanized.

The data contain 314 patterns, each of which consists

of 58 inputs and 3 outputs.

– Card: Contains real credit card application (unexplained

for confidence reasons) used to predict whether the bank

granted the credit card or not. It contains 690 patterns,

each of which consists of 51 inputs and 2 outputs.

– Glass: Based on the results of a chemical analysis of

glass splinters which is used to classify different glass

types, e.g., building windows, vehicle windows, and so

on. It consists of 214 patterns, each of which consists of

9 inputs and 6 outputs. The number of patterns that rep-

resent different classes are not even, since the sizes of

the six classes are 70, 76, 17, 13, 9 and 29, respectively.

– Soybean: Based on a description of the bean, the plant

and the plant’s life. For example, whether the bean size

and colour are normal or whether the seed of the plant

was treated, and so on. It consists of 683 patterns, each

of which consists of 35 inputs and 19 outputs.

Since cross-validation is used, the first 75% patterns of a

dataset is used as the training dataset and the remaining 25%

is used as the testing dataset. Table 1 indicates the division
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Table 2 Parameter settings for the algorithms investigated on three datasets from the medical field used in the basic experiments

Cancer Diabetes Heart

Algorithm m q ρ η β m q ρ η β m q ρ η β

ACO 2 0.05 0.3 - - 2 0.05 0.3 - - 2 0.05 0.3 - -

ACO-BP 2 0.05 0.3 0.01 - 2 0.05 0.3 0.01 - 2 0.05 0.3 0.01 -

BP - - - 0.002 - - - - 0.01 - - - - 0.001 -

LM - - - - 50 - - - - 5 - - - - 1.5

RCH 2 0.0 - - - 2 0.0 - - - 2 0.0 - - -

of the training and testing dataset. For each experiment in

cross-validation, the same sizes of the datasets are used.

4.1.2 Parameter settings

The structure of the networks is inspired by the literature

(Socha and Blum, 2007; Alba and Chicano, 2004; Karaboga

and Ozturk, 2009; Mavrovouniotis and Yang, 2013) and

they are given in Table 1. The network architecture for each

benchmark problem consists of one input layer, one hidden

layer, and one output layer. The number of sigmoid units for

each layer is shown in the format input-hidden-output. The

dimension defines the number of connection weights within

a network calculated in Eq. 4. The reason that the specific

structures are used is for the convenience to later on com-

pare the results of the proposed algorithms with the results

of another ACO training algorithm (Socha and Blum, 2007)

and other bio-inspired training algorithms (Karaboga and

Ozturk, 2009), which have used the same network architec-

tures on the same cross-validation experiments. Therefore,

a fair comparison between the results of the proposed ACO

training algorithm with other existing results can be given.

The parameters of the aforementioned algorithms used

for the three benchmark problems, i.e., Cancer, Diabetes

and Heart, were mainly inspired by the literature (Socha and

Blum, 2007; Mavrovouniotis and Yang, 2013). They are pre-

sented in Table 2, where m is the ant population size, q de-

fines the exploration of the solution construction and ρ is the

evaporation rate for ACO-based algorithms, η is the learning

rate for BP, and β is the factor for LM. Not included in the

table is the parameter d for ACO, ACO-BP and RCH, which

is set to d = 30 for all problems and defines the number of

discrete points for connection weights. Note that RCH does

not have an evaporation rate because pheromone trails are

not considered during the solution construction.

4.2 Analysis of the ACO training results

The experimental results of the algorithms on three bench-

mark problems taken from the medical field regarding CEP

are presented in box-plots in Fig. 4a–c, for the datasets Can-

cer, Diabetes, and Heart, respectively. Each figure illustrates

the distribution of the CEP values, averaged for all four-

fold cross-validation experiments, between the first and third

quartiles. The corresponding Wilcoxon rank sum statistical

results (with Bonferroni correction) of the algorithms on the

testing datasets are presented in Table 3. Finally, the CEP re-

sults on both testing and training datasets, for each algorithm

of all fourfold cross-validation experiments, are presented in

Table 4. From the experimental results several observations

can be drawn.

The Cancer problem (see Fig. 4a and Table 3) appears to

be an easy dataset to classify. All algorithms, including the

RCH training method, have good performance. The fact that

RCH has reasonably good CEP, even if it is the worst per-

forming algorithm, supports the claim that the dataset is easy

to classify. However, none of the algorithms was able to clas-

sify all the patterns from the testing dataset correctly, which

is probably due to the limited size of the training set. The

best performing algorithm is ACO-BP, which significantly

outperforms standalone ACO and BP training algorithms.

ACO significantly outperforms LM training, whereas is sig-

nificantly outperformed by BP.

The Diabetes problem (see Fig. 4b and Table 3) appears

to be a noisy dataset, as described previously, and more diffi-

cult to classify than the Cancer dataset. All algorithms have

a relatively poor performance in terms of CEP, which may

indicate that the training dataset might not represent all the

necessary patterns to better classify the patterns from the

testing dataset. RCH is significantly outperformed by its

competitors. The standalone BP is the best performing al-

gorithm followed by ACO-BP. A standalone ACO is outper-

formed by both traditional training algorithms, i.e., BP and

LM, and by the hybrid ACO-BP.

The Heart problem (see Fig. 4c and Table 3) is a larger

dataset than Cancer and Diabetes problems. All the algo-

rithms are significantly different, whereas the best perform-

ing algorithm is the ACO-BP algorithm followed by LM,

BP, ACO and RCH, respectively. More precisely, BP and

LM outperform the standalone ACO algorithm, whereas the

hybrid ACO-BP algorithm outperforms both gradient de-

scent techniques. This may be due to the dimension of the

Heart data, which is significantly larger than the other two

datasets, and thus, the probability of an algorithm to get
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Fig. 4 Box plots of the CEP results on three datasets: a Cancer, b Di-

abetes, and c Cancer

stuck in a local optima of the search landscape increases sig-

nificantly.

Generally speaking, the standalone BP training tech-

nique is usually outperformed by the hybrid ACO-BP train-

ing, especially in the Heart dataset. This is probably be-

Table 3 Statistical significance of the CEP experimental results. The

values of “+” and “−” indicate that the two algorithms are signifi-

cantly and insignificantly different, respectively

Algorithm ACO ACO-BP BP LM RCH

Cancer

ACO + + + +

ACO-BP + + + +

BP + + + +

LM + + + +

RCH + + + +

Diabetes

ACO + + + +

ACO-BP + + + +

BP + + + +

LM + + + +

RCH + + + +

Heart

ACO + + + +

ACO-BP + + + +

BP + + − +

LM + + − +

RCH + + + +

Table 4 Experimental results regarding CEP for each algorithm over

all runs for all cross-validation experiments on both testing and training

sets

Algorithm Cancer Diabetes Heart

Algorithm Testing Training Testing Training Testing Training

ACO 3.66 2.46 25.75 22.47 21.68 17.64

ACO-BP 2.87 1.51 22.81 19.53 16.78 10.87

BP 3.04 2.46 22.18 21.38 18.07 16.03

LM 4.63 1.81 23.92 21.04 17.52 4.23

RCH 6.67 7.52 31.64 30.74 27.08 27.01

cause the selected initial weights of the BP may lead to a

poor local optimum as it was observed previously in (Liu

et al, 2006; Mavrovouniotis and Yang, 2013). It is interest-

ing to observe that the pheromone trail mechanism is use-

ful and improves the training process of the network. This

can be supported from the fact that the ACO training (with

pheromone trails) significantly outperforms the RCH train-

ing (without pheromone trails) in all problems. Furthermore,

the standalone ACO training is outperformed by BP and LM

training techniques since ACO does not perform trajectory

searching. Therefore, it is difficult to locate the optimum

in a specific neighbourhood accurately because it performs

large-step jumps in the search landscape. In contrast, ACO-

BP outperforms both the standalone BP and ACO training

techniques since it has less risk to get trapped in a local op-

tima and improves the searching accuracy, simultaneously.

Finally, if the CEP results of the testing over the train-

ing datasets are compared, it can be seen that all the algo-

rithms do not suffer from strong over-fitting except LM in

the Cancer and Heart datasets. ACO-BP suffers from slight

over-fitting especially in the Heart dataset. Probably, a dif-
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Table 5 Pairwise comparison of the CEP results of the proposed ACO

and ACO-BP with the results of another existing ACO based training

obtained from (Socha and Blum, 2007). The best value from each pair

(i.e., ACO with ACOR and ACO-BP with ACOR-BP) for each problem

is indicated in bold

ACO ACOR ACO-BP ACOR-BP

Cancer 3.66 4.02 2.87 3.45

Diabetes 25.75 24.48 22.81 23.96

Heart 21.68 20.67 16.78 18.00

ferent number of cross-validation experiments or different

divisions of the dataset into training and testing sets may be

necessary to avoid over-fitting. In fact, the CEP results may

be furthermore improved when over-fitting is avoided.

4.3 Comparison with other ACO training algorithms

It is interesting to compare the performance of the stan-

dalone ACO and hybrid ACO-BP training algorithms for

neural networks with the corresponding continuous ACO

variations, denoted ACOR and ACOR-BP (Socha and Blum,

2007), respectively. The two existing training algorithms

were applied with the same stopping criteria (i.e., 1000 func-

tion evaluations) and performed the same fourfold cross-

validation with the proposed training algorithms.

Table 5 summarizes the results obtained from ACOR and

ACOR-BP (Socha and Blum, 2007) and pair-wisely com-

pares them with the proposed ACO and ACO-BP, respec-

tively. The standalone ACO has better performance than the

standalone ACOR in the Cancer problem instance, whereas

the latter algorithm has better performance than the former

algorithm in the Diabetes and Heart problem instances, ei-

ther significantly or insignificantly. In contrast, the hybrid

ACO-BP has better performance than the hybrid ACOR-BP

in all problem instances.

4.4 Comparison with other bio-inspired and gradient

descent training algorithms

The proposed ACO training is further compared with other

training algorithms inspired from nature, such as the GA,

PSO, ABC and DE algorithms and gradient descent training

algorithms, such as BP and LM. The aforementioned algo-

rithms used for network training were applied with a differ-

ent stopping criterion in (Karaboga and Ozturk, 2009), i.e.,

maximum 2, 000 function evaluations or when SEP ≤ 0.01

for 50 runs1. The same settings were applied to the proposed

1 The authors in (Karaboga and Ozturk, 2009) performed only

the first cross-validation of our fourfold cross-validation experiments.

Therefore, the results of the proposed ACO refer only to the first cross-

validation dataset division.

ACO training for a fair comparison. Table 6 summarizes the

results of the training algorithms obtained from (Karaboga

and Ozturk, 2009) together with our ACO training results.

All the algorithms are applied on a complete set of bench-

mark instances described previously in Sect. 4.1.1 and they

use the same network’s architecture given in Table 1.

ACO performs better than the other bio-inspired algo-

rithms on the Diabetes, Thyroid, Horse, Card and Soybean

datasets. ABC outperforms its competitors on Cancer, Heart

and Gene datasets, whereas DE obtains the best result on

Glass datasets. ACO performs better than the gradient de-

scent algorithms on the Diabetes, Horse and Card datasets,

whereas LM performs better on the Thyroid, Glass and Soy-

bean datasets.

On most problems, the results are relatively close in

terms of CEP, expect on Gene, Horse, Glass and Soybean

datasets. It is interesting to observe that most of these prob-

lem instances, e.g., Gene, Horse and Soybean, are among

the largest problem instances according to the dimensions

of the networks shown in Table 1. This further supports our

observation above that large problem instances are often dif-

ficult to classify due to the many possible local optima they

might contain.

Generally speaking, among the bio-inspired training al-

gorithms the proposed ACO training algorithm achieves the

best result for more datasets than its competitors, closely fol-

lowed by the ABC training algorithm. Although ACO has

better performance than ABC, the latter has better robust-

ness than ACO. This can be observed from the experimental

results, where ABC maintains lower standard deviation but

higher CEP, whereas ACO maintains higher standard devi-

ation but lower CEP. Finally, LM and ACO training algo-

rithms achieve the best results for three datasets among all

training algorithms, whereas ABC achieves the best results

for the remaining two datasets.

5 Conclusions

The connection weights in feed-forward neural networks

are usually adjusted using gradient descent methods. Of-

ten such methods may get trapped to local optima of the

search landscape. In this paper, an ACO training is pro-

posed where a population of ants select different combina-

tions for connection weight values. A standalone ACO and

a hybrid ACO-BP training are applied to train feed-forward

neural networks for pattern classification. Several real-world

benchmark problems are selected as test problems in the ex-

periments. The performance of ACO and ACO-BP training

is compared against: two traditional training methods (i.e.,

BP and LM), an ACO training without pheromone consid-

eration (i.e., RCH), a standalone ACO and a hybrid ACO

from the literature (Socha and Blum, 2007) (i.e., ACOR and

ACOR-BP), respectively, and four other training algorithms
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Table 6 Comparison of the CEP results with their standard deviation of the proposed ACO training on a several benchmark datasets with the results

of other bio-inspired training algorithms obtained from (Karaboga and Ozturk, 2009). The best value among all algorithms for each problem is

indicated in bold

Problem ACO GA PSO ABC DE BP LM

Cancer 1.42 ± 1.05 1.35 ± 0.28 2.01 ± 0.86 1.14 ± 0.00 1.19 ± 0.28 1.89 ± 0.43 8.18 ± 10.29

Diabetes 24.43 ± 4.65 26.51 ± 1.21 27.50 ± 2.05 25.22 ± 0.97 24.84 ± 1.32 28.27 ± 6.30 29.80 ± 3.77

Heart 20.02 ± 1.60 20.60 ± 0.68 21.87 ± 1.45 19.48 ± 1.41 20.33 ± 1.29 21.44 ± 0.55 24.96 ± 7.40

Thyroid 6.31 ± 0.09 7.09 ± 0.03 7.27 ± 0.02 6.95 ± 0.01 7.08 ± 0.95 7.26 ± 0.00 2.61 ± 1.81

Gene 30.05 ± 1.89 31.02 ± 0.71 36.30 ± 2.10 29.50 ± 1.88 31.18 ± 2.18 11.37 ± 1.15 14.35 ± 2.48

Horse 27.56 ± 6.22 29.12 ± 2.84 31.14 ± 3.94 28.63 ± 2.61 29.29 ± 2.72 27.84 ± 2.12 33.79 ± 4.50

Card 12.90 ± 3.01 13.56 ± 1.21 15.58 ± 1.59 13.53 ± 1.17 13.90 ± 1.26 13.86 ± 0.47 21.59 ±7.98

Glass 45.77 ± 8.25 50.18 ± 3.15 52.49 ± 7.14 45.62 ± 3.11 44.90 ± 2.84 59.09 ± 9.52 42.99 ± 11.55

Soybean 36.42 ± 6.84 40.39 ± 4.93 60.50 ± 8.50 38.63 ± 3.18 74.90 ± 2.10 61.16 ± 19.18 25.51 ± 9.89

inspired from nature (i.e., GA, PSO, ABC and DE) from the

literature (Karaboga and Ozturk, 2009).

From the experimental results, several concluding re-

marks can be drawn. First, ACO is a good choice for select-

ing good values for the BP. The standalone ACO training

is outperformed by the standalone ACOR training whereas

the hybrid ACO-BP shows superior performance, especially

on large problem instances. Second, the performance of

gradient descent methods is degraded as the problem size

increases when compared with the hybrid ACO-BP train-

ing algorithm. Third, gradient descent methods usually have

better performance than a standalone metaheuristic training,

including ACO training. This is because gradient descent

methods are more accurate than metaheuristic methods in

terms of searching. Finally, ACO has a relatively good per-

formance when compared with other metaheuristics in net-

work training for pattern classification. However, different

metaheuristics perform better on different problem instances

due to the problem dependency issue.

In general, the ACO metaheuristic can be a useful tech-

nique in neural network training for pattern classification es-

pecially when it is hybridized with gradient descent training.

For future work, it will be interesting to apply LM as

a local search improvement with ACO, or even apply both

BM and LM as local search improvements. Moreover, it

will be interesting to investigate ACO’s training adaptability

to a dynamic environment (Rakitianskaia and Engelbrecht,

2012).
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