
PhD Thesis

Robust Botnet Detection Techniques for
Mobile and Network Environments

Author:

Basil Alothman

First Supervisor:

Dr.Suleiman Yerima

Second Supervisor:

Professor Helge Janicke

A thesis submitted in partial fulfilment of the requirement

for the degree of Doctor of Philosophy PhD.

in the

Faculty of Technology

De montfort University

Leicester, United Kingdom

April 2019

http://www.alothman.me
https://scholar.google.co.uk/citations?user=11ZyqloAAAAJ&hl=en
http://www.dmu.ac.uk/about-dmu/academic-staff/technology/helge-janicke/helge-janicke.aspx
http://www.dmu.ac.uk/study/technology/technology.aspx
http://www.dmu.ac.uk
https://goo.gl/maps/HqsFuh5UtvA2

Declaration and List of Publication

I, Basil Alothman, declare that this thesis titled, ’Robust Botnet Detection Techniques

for Mobile and Network Environments’ and the work presented in it is my own. I confirm

that this work submitted for assessment is my own and is expressed in my own words.

Any uses made within it of the works of other authors in any form (e.g. ideas, equations,

figures, text, tables, programs) are properly acknowledged at any point of their use. A

list of the references employed is included. This thesis is written by me and produced

using LATEX.

Professional Conference/Journal Papers (Published):

1. B. Alothman and P. Rattadilok, “Android botnet detection: An integrated

source code mining approach,” 2017 12th International Conference for Internet

Technology and Secured Transactions (ICITST), Cambridge, 2017, pp. 111-115.

2. B. Alothman and P. Rattadilok, “Towards using transfer learning for Botnet

Detection,” 2017 12th International Conference for Internet Technology and

Secured Transactions (ICITST), Cambridge, 2017, pp. 281-282.

3. B. Alothman, “Similarity-based instance transfer learning for botnet detection.”,

International Journal of Intelligent Computing Research (IJICR) 9, 880-889

(Mar2018).

4. B. Alothman, “Raw Network Traffic Data Preprocessing and Preparation for

Automatic Analysis,” International Conference On Cyber Incident Response,

Coordination, Containment and Control (Cyber Incident), Glasgow, 2018.

5. B.Alothman, H. Janicke, and S. Yerima,(2018) “Class Balanced Similarity-Based

Instance Transfer Learning for Botnet Family Classication,” The 21st International

Conference on Discovery Science (DS2018), Limassol, Cyprus, 2018 Lecture Notes

in Computer Science, Springer International Publishing, Cham. pp. 99-113.

Signed:

Date:

ii

30 April 2019

Abstract

Cybercrime costs large amounts of money and resources every year. This is because

it is usually carried out using different methods and at different scales. The use of

botnets is one of the most common successful cybercrime methods. A botnet is a group

of devices that are used together to carry out malicious attacks (they are connected

via a network). With the widespread usage of handheld devices such as smartphones

and tablets, networked devices are no longer limited to personal computers and laptops.

Therefore, the size of networks (and therefore botnets) can be large. This means it

is not surprising for malicious users to target different types of devices and platforms

as cyber-attack victims or use them to launch cyber-attacks. Thus, robust automatic

methods of botnet detection on different platforms are required.

This thesis addresses this problem by introducing robust methods for botnet family

detection on Android devices as well as by generally analysing network traffic. As for

botnet detection on Android, this thesis proposes an approach to identify botnet Android

botnet apps by means of source code mining. The approach analyses the source code via

reverse engineering and data mining techniques for several examples of malicious and

non-malicious apps. Two methods are used to build datasets. In the first, text mining

is performed on the source code and several datasets are constructed, and in the second,

one dataset is created by extracting source code metrics using an open-source tool.

Additionally, this thesis introduces a novel transfer learning approach for the detection of

botnet families by means of network traffic analysis. This approach is a key contribution

to knowledge because it adds insight into how similar instances can exist in datasets

that belong to different botnet families and that these instances can be leveraged to

enhance model quality (especially for botnet families with small datasets). This novel

approach is denoted Similarity Based Instance Transfer, or SBIT. Furthermore, the

thesis presents a proposed extended version designed to overcome a weakness in the

original algorithm. The extended version is called CB-SBIT (Class Balanced Similarity

Based Instance Transfer).

iv

Acknowledgements

Firstly, I would like to thank Allah (God) for giving me this opportunity to complete

my PhD thesis.

It is not easy to give enough thanks to people who supported me during my time at

De Montfort University. But I would like to express my thanks to several people (in no

particular order). I would like to extend my thanks and appreciation to my supervisors

Dr Suleiman Yerima and Professor Helge Janicke for their support and guidance during

my research.

Also, special thanks always go to all my family members and friends who were patient

while I was abroad away from my home country and wished me the best success and

encouraged me to work hard and submit my thesis as soon as possible. They have

always been with me during the good and difficult times.

Finally, I would like to thank my sponsor (Ministry of Education, Kuwait) and

Embassy of Kuwait, Kuwait Cultural Office Supervisors who followed the progress of

my work and were always available to support me and answer my questions and concerns.

v

This Research is Dedicated

To my late paternal grandfather Mr. Nasser Alothman who taught me

the importance and power of relationships, tolerance and giving.

To my late maternal grandfather Mr. Homoud Almogahwi who

instilled in me the endurance and passion required for hard work. He supported

me financially, morally and provided me with books at a young age (he owned a

large press company that generously printed and distributed books around GCC

countries).

To my parents Yousef Alothman and Nadia Almogahwi who were

always proud of me and influenced me to be a computer scientist. They never

stopped showering me with their kindness, generosity and love.

To my beloved wife Mariam Aldalali for her help, empathy and endless

love. She is my real constant source of encouragement, strength and support.

To my children Yousef, Nadia, Loulwah and Bader in whose eyes I

always saw the motivation and hope and for being quiet, obedient, respectful and

cooperative with us.

vii

Contents

Declaration and List of Publication ii

Acknowledgements v

Contents ix

List of Figures xiii

List of Tables xiv

Abbreviations xv

Symbols xviii

1 Introduction to the thesis 1

1.1 Introduction . 1

1.2 Motivation . 4

1.3 Methodology . 7

1.3.1 Android Botnet Detection . 8

1.3.2 Network Traffic Analysis . 9

1.4 Aims and Objectives . 9

1.4.1 Aims: . 9

1.4.2 Objectives: . 10

1.5 Hypotheses . 11

1.6 Key Contributions . 12

1.7 Thesis Overview . 13

1.8 Summary . 15

2 Background and Literature Review 16

2.1 Background . 17

2.1.1 Botnet Introduction . 17

2.1.1.1 Botnet Definition . 17

2.1.1.2 Key Concepts . 18

2.1.1.3 Anatomy of a Bot Attack 20

2.1.1.4 Botnet Topologies . 20

2.1.2 Botnet Examples . 24

ix

Contents

2.1.2.1 SDBot . 24

2.1.2.2 RBot . 25

2.1.2.3 Zeus . 25

2.1.2.4 WannaCry . 26

2.2 What is Reverse Engineering? . 26

2.3 An Overview of Machine Learning and Transfer Learning 27

2.3.1 What is Machine Learning . 27

2.3.2 What is Transfer Learning . 28

2.3.2.1 Formal Definition of Transfer Learning 30

2.3.2.2 Inductive transfer learning 32

2.4 Existing Work on Android Botnet Detection 34

2.5 Recent Work on Network Traffic based Botnet Detection 38

2.6 Summary . 45

3 An Integrated Source Code Mining Approach for Android Botnet
Detection 46

3.1 Overview . 47

3.2 Dataset Formation and Feature Extraction 50

3.2.1 Text-Mining Approach . 52

3.2.2 Source Code Metrics Approach . 53

3.2.3 Feature Selection . 55

3.3 Algorithms used in this Work . 58

3.3.1 NaiveBayes . 58

3.3.2 KNN . 58

3.3.3 Decision Trees . 59

3.3.4 RandomForest . 59

3.3.5 Sequential Minimal Optimization (SMO) 60

3.4 Experimental Results . 60

3.5 Summary . 68

4 A Novel Similarity-Based Instance Transfer Learning Approach for
Botnet Family Classification 69

4.1 Introduction . 70

4.2 Methods . 71

4.2.1 The TransferBoost Algorithm . 72

4.2.2 The Similarity-Based Instance Transfer (SBIT) Algorithm 75

4.3 Instance Similarity . 79

4.3.1 What is Similarity . 79

4.3.2 How to Measure the Similarity of Instances 80

4.3.3 The Similarity Types used in this Work 81

4.3.4 Example Similarity Values . 84

4.4 SBIT Limitations and Extension . 86

4.4.1 The Class Imbalance Problem . 86

4.4.2 What is Overfitting? . 87

4.4.3 The Synthetic Minority Over-sampling Technique (SMOTE)
Algorithm . 87

4.4.4 The Class Balanced SBIT Algorithm (CB-SBIT) 89

x

Contents

4.5 Summary . 91

5 Preprocessing of Raw Network Traffic Data and Performance
Evaluation of the Proposed Methods 92

5.1 Introduction . 93

5.2 Preprocessing Raw Network Traffic Data 94

5.2.1 Obtaining the PCAP Data . 95

5.2.2 From PCAP to Plain Text . 96

5.2.3 Labelling the Data: . 96

5.2.4 Missing Value Replacement (Imputation): 97

5.2.5 One Hot Encoding: . 97

5.2.6 Removal of Highly Correlated Features 98

5.2.7 Outlier Detection and Removal: . 99

5.2.8 Splitting and Sampling: . 99

5.2.9 Data Exploration: . 100

5.3 Applying Steps to Real Data . 101

5.4 Experimental Evaluation and Discussion 104

5.4.1 The Network Traffic Data . 105

5.4.2 Evaluation of Classical Classifiers on Network Traffic Data 106

5.4.3 Evaluation of SBIT against RandomForest and TransferBoost . . . 108

5.4.4 CB-SBIT vs SBIT . 110

5.4.5 CB-SBIT vs SMOTE (using Network Traffic Data) 112

5.4.6 CB-SBIT vs TransferBoost (using Text Data) 117

5.5 Summary . 121

6 Conclusions and Future Directions 123

6.1 Lessons learned from this project . 123

6.2 How and Why this work is useful . 124

6.3 Conclusions . 125

6.3.1 Android Botnet Detection . 125

6.3.2 Raw Network Traffic Data Preprocessing 126

6.3.3 Similarity Based Instance Transfer (SBIT) 126

6.3.4 Class-Balance Similarity Based Instance Transfer (CB-SBIT) . . . 127

6.4 Limitations and Future Work . 128

6.4.1 Android Botnet Detection . 128

6.4.2 SBIT and CB-SBIT . 129

A Code for transforming Java Source Code into Dataset for Machine
Learning 131

B Code for evaluating Performance of Classifiers 133

C SBIT Implementation 135

D CB-SBIT Implementation 138

xi

Contents

Bibliography 141

xii

List of Figures

1.1 Example Transfer Learning Scenario . 7

1.2 Thesis Structure . 8

2.1 Anatomy of a Botnet Attack . 20

2.2 Centralised Topology . 22

2.3 Decentralised Topology (P2P) . 22

3.1 APK File Reverse Engineering . 50

4.1 A Flowchart of the TransferBoost Algorithm 74

4.2 A Flowchart of the SBIT Algorithm . 76

4.3 Histogram of Similarity Values . 85

4.4 How SMOTE Works . 88

5.1 PreProcessingPipeline . 95

5.2 Contents of PCAP File . 95

5.3 PLS Components 1 vs 2 for TBot, Zero access and Zeus data 104

5.4 Performance of Classical Classifiers on Network Traffic Data 107

5.5 Run Times of the Two Algorithms . 110

5.6 Accuracy Values for CB-SBIT and SBIT 111

5.7 Accuracy Values for CB-SBIT and SMOTE 116

xiii

List of Tables

3.1 A List of the Apps used in the Experiments 51

3.2 Dataset resulting after applying TextToWordVector and then TF-IDF filter 53

3.3 Source Code Metrics extracted by CodeAnalyzer 54

3.4 Dataset resulting after extracting Source Code Metrics 55

3.5 A Summary of the Created Datasets . 57

3.6 A Summary of Performance Results (Average Accuracy of Classifiers on
Various Datasets) . 61

3.7 A Summary of NaiveBayes Results . 64

3.8 A Summary of kNN Results . 65

3.9 A Summary of J48 Results . 65

3.10 A Summary of RandomForest Results . 66

3.11 A Summary of SMO Results . 66

4.1 Different Similarity Measure Types and their Formulae 82

5.1 Number of Instances in each Class . 103

5.2 Dataset Details . 106

5.3 The accuracy of each Method using Different Target Datasets 109

5.4 Datasets Resulting after CB-SBIT and SMOTE 114

5.5 Text Dataset Details . 119

5.6 Results using Text Dataset . 120

5.7 Percentage of Similarity Values that are > 0.5 using Text and Network
Traffic Data . 121

6.1 An Example Dataset Resulting After Merging Text Mining and Metrics
Datasets . 129

xiv

Abbreviations

ITU International Telecommunication Union

iOS iPhone/iPad/iPod Operating System

SMTP Simple Mail Transfer Protocol

P2P Peer To Peer

PCAP PacketCAP CAPture

Bot RoBot

Net Network

Botnet RoBot Network

C&C Command and Control

DoS Denial of Service

DDoS Distributed Denial ofService

IRC Internet Relay Chat

HTTP Hyper Text TransferProtocol

SQL Structured Query Language

IP Internet Protocol

MIL Multiple Instance Learning

ANNs Articial Neural Networks

MLFF Multi-Layer Feed-Forward

SSL Secure Socket Layer

MLP Multi-Layer Perceptron

BBNN Block-Based Neural Network

FPGA Field Programmable Gate Array

SVM Support Vector Machine

OC-SVM One- Class-SVM

KNN K-Nearest Neighbours

xv

Abbreviations

NB Naive Bayes

RF RandomForest

OPFC Optimum-Path Forest Clustering

SOM Self-Organising Maps

DTs Decision Trees

REPTree Reduced Error Pruning Tree

TL Transfer Learning

NoTL NO Transfer Learning

APK Android Package Kit

ISCX Information Security Center of eXcellence

SMS Short Message Service

LAH List Abbreviations Here

JAR Java ARchive

NLP Natural Language Processing

API Application Programming Interface

JD Java Decompiler

GUI Graphical User Interface

TF-IDF Term Frequency and Inverse Document Frequency

SCM Source Code Metric

SMO Sequential Minimal Optimisation

Acc Accuracy

ERR ERror Rate

FPR False Positive Rate

FNR False Negative Rate

TPR True Positive Rate

TNR Tue Negative Rate

AUC Area Under theCurve

SBIT Similarity Based IinstanceTransfer Learning

CB-SBIT Class Balanced SBIT

Sim Similarity

SMOTE Synthetic Minority Over-sampling TEchnique

UK United Kingdom

CSV Comma- Separated Value

xvi

Abbreviations

FTP File Transfer Protocol

PCA Principal Component Analysis

PLS Partial Least Squares

LOF Local Outlier Factor

xvii

Symbols

X Feature Space

X Data

P (X) The marginal probability distribution (for X in X)

x(i) The ith instance in X

D A Domain

DS A Source Domain

DT A Target Domain

T A Task

TS A Source Task

TT A Target Task

Y Label Space

y(i) The label of the ith instance in X

f(•) A Predictive Function

∈ is in

6= is not equal to

P (x) Probability of x

P (x|c) Probability of x given c∑
Summation

n∑
i=1

Summation of all elements from 1 to n

xi The ith element in x

xviii

Chapter 1

Introduction to the thesis

1.1 Introduction

The Internet is a very busy network that sees huge amounts of data being transferred

every day. Users and machines, communicate by sending and receiving various types

and amounts of data. This means that despite the usefulness of such communication

platform, there are several ways to cause harm. One of these ways is to communicate

with someone while pretending to be someone else. Another way is by installing

tools onto other people’s devices in order to spy on them or to steal some sensitive

information. Also, it is possible to use such installed tools to attack others who might

be thousand of miles away. These electronic attacks can be launched against personal

or corporate computers and networks. One of the existing methods for executing such

harmful attacks is via botnets. Botnets are groups of networked devices that can be

exploited to carry out malicious attacks.

1

Chapter.1 Introduction

The dangers of botnets are becoming more widespread; an example of this is the

WannaCry attack that caused many major institutions in several countries to struggle

to perform their services (Kalita, 2017). The research community has recently been

actively trying to develop automatic techniques to identify botnets in order to stop their

harmful activities.

Large amounts of money is lost every year due to botnet activities. For example, reports

from reliable sources suggest that more than 65 Billion US Dollars were lost in 2005 and

the entire damages caused by spam bots were estimated to have a cost of around 100

Billion US Dollars in 2007 alone (International Telecommunication Union, 2017). It

is not a secret that organised cyber crimes are becoming widespread as they can be a

profitable venture within short periods of time. It is estimated that cyber crime can cost

the global economy up to 600 billion US Dollars a year (Healey and Knake, 2018). This

is emphasised in a report published by the WhiteHouse where it is estimated that the

US economy suffered a loss of more than 108 Billion US Dollars in 2016 (The Council

of Economic Advisers, 2018). Hence, researchers have been working actively to develop

effective techniques to detect, and protect from, such malicious attacks.

Normally, machines like these are known as bots and such networks are known as botnets.

More on the definition and architecture of botnets is provided throughout this thesis

(especially in Chapters 2 and 3). It is believed that hundreds of millions of computers

that are connected to the Internet are infected each year, which results into more than

15 victims each second (Demarest, 2014). These networks represent a serious threat

because they can be exploited to carry out malicious and illegal actions which can have

high level damages. In fact, existing research indicates that a large number of attacks

was because of the Internet of Things (IoT) and its poor security model (Crosbie, 2016).

It is estimated that the number of units installed in the IoT will surpass 25 billion by

2

Chapter.1 Introduction

2020 (Middleton et al., 2013). Hence, the potential number and magnitude of attacks

via the IoT is likely to increase.

It is indeed a source of concern to find out that the number of distributed denial

of service (DDoS) attacks is on the rise (Wang et al., 2018) and the ways attacks

are carried out (in terms of diversity, intensity and duration) is increasing every

year (Verisign DDoS Report, 2018).

Android is one of the most popular smartphone operating systems which keeps growing

among smart-device users. This operating system is open source, user-friendly and it

is relatively easy to write Java applications that run smoothly on it. Its popularity

makes it one of the default targets for malicious cyber-attacks. It can be used to launch

attacks or it can also be the victim of malicious attacks. Android’s play-store is not very

restrictive which makes installing malicious apps easy.

It is common for botnet developers to target smartphone users in order to install their

malicious tools on a large number of devices. This is often done to gain access to sensitive

data such as credit card details, or to cause damage to individual hosts or organisation

resources by executing denial of service attacks. With the large number of Android apps

being released everyday it is difficult to know whether or not an app is safe to install. To

overcome this issue, among other challenges, it would be useful to automate the process

of checking how safe a new app is (i.e. to use the smartphone itself to predict whether

or not an app is safe).

Because botnets run on networked devices, they normally communicate with each other,

and more fundamentally, with a central point known as the Command and Control

(C&C for short). The communication takes place to send/receive commands and

3

Chapter.1 Introduction

responses/results. Botnets use various network protocol to communicate safely and

evade any protection and detection systems. For example, many botnets use the Internet

Relay Chat (IRC) as well as Simple Mail Transfer Protocol (SMTP) protocols.

Also, botnets can be formed with different architectures. For example, botnets can

have the traditional client/server network architecture where several clients connect to

the same server (or group of servers). This model is known as the centralised C & C.

While this architecture can be easy to develop, it is also easy to combat against. If the

communication between the infected machines and the server(s) is terminated, then the

botnet is effectively stopped. Another network model that is adapted by some botnets

is the Peer-to-Peer configuration (P2P for short). This architecture is more difficult to

combat than the centralised approach because of the large number of connections that

can involve thousands or millions of devices.

1.2 Motivation

The work presented in this thesis primarily focuses on two problems. The first problem

is botnet detection on the Android operating system by means of source code mining

and analysis. The approach developed in this thesis analyses the source code of a

given android app and attempts to identify whether it is botnet or normal. The second

problem is more generic as it focuses on botnet detection and identification via analysis

of network traffic. The network based detection is tackled by developing a novel transfer

learning algorithm as will be explained in this thesis.

As for botnet detection on Android, the main motivation for the approach presented in

this thesis is to develop a proactive method that attempts to identify the danger before

it occurs. Android users can easily install apps from both official Google play store and

4

Chapter.1 Introduction

third party app markets. The problem here is that the only way users can trust an app

is via reading comments and reviews written by other users (who may also be malicious

actors). The approach presented in this thesis protects users against this by introducing

a method for analysing the source code of Android apps before installing them. The

method reverse engineers the Android apps and obtains their source code. Then, from

the obtained source code, it uses two different approaches to create datasets suitable for

machine learning and data mining. This is all done after only downloading the Android

app and without installing and running it. It is worth mentioning here that although

this thesis focuses on Android apps, the proposed approach can be used in other mobile

operating systems. For example, applications running on the iPhone operating system

(iOS) can also be reverse engineered (Joorabchi and Mesbah, 2012) and their source

code can be analysed using the same method.

Regarding the second problem addressed in this thesis, the main motivation for

developing a transfer learning approach for the precise detection of botnet traffic can

be summarised by providing an example (an example is provided in Figure 1.1 later in

this section). From reviewing existing approaches, it can be noticed that many of them

target specific botnets. On the other hand, many approaches try to identify any botnet

activity by analysing network traffic. They achieve this by concatenating existing botnet

datasets to obtain larger datasets, building predictive models using these datasets and

then employing these models to predict whether network traffic is safe or harmful.

The problem with the first approach is that data is usually scarce and costly to obtain.

By using small amounts of data, the quality of predictive models will not be optimum.

On the other hand, the problem with the second approaches is that it is not always

correct to concatenate different datasets (i.e. datasets containing network traffic from

5

Chapter.1 Introduction

different botnets). Datasets can have different distributions which means they can

downgrade the quality and predictive performance of machine learning models.

The proposed ideas in this thesis are based on using transfer learning. In more

detail, instead of immediately concatenating datasets that belong to different botnets,

this thesis suggests using transfer learning to carefully decide what data to use in

concatenating such datasets. The main hypothesis is: Performance can be improved

by using transfer learning techniques across datasets containing network traffic from

different botnets. This should be done instead of blindly concatenating datasets.

So, before providing any further details, one can ask: what is transfer learning?. We

as human beings have the ability to utilise past learning experiences when we are faced

with new tasks. For example, when someones knows how to ride a bike, can he/she

benefit from this experience when they learn how to drive a car?. Our level of mastering

the new task depends on how much it is related to our past task. In machine learning,

the sub-field that attempts to apply this experience, or knowledge, transfer is known as

Transfer Learning. It is typically employed when there is little, or limited, amounts of

labelled data in one task (usually called the target task), and plenty of data in another

related task (usually called the source task). The idea here is that using the target data

only can lead to obtaining models with poor performance since there is not sufficient

data. By transferring knowledge from the source task(s) the model quality can be

improved.

The problem of labeled data scarcity is common in machine learning. In many fields it

can be too costly to obtain labeled data. Examples of fields where labeled data can be

highly costly to obtain are: data for cancer patients, data for new botnets or viruses

and data for undersea studies. One can evaluate existing traditional machine learning

6

Chapter.1 Introduction

algorithms. Because of the small size of data, the performance of these algorithms can

be poor. In order to enhance performance, one idea is to collect more data (which can

cost significant amounts of money, time and effort). Fortunately, in many cases, there

exists plenty of data in domains that are close (or related) to the domain under study.

This is where transfer learning comes into play.

Figure 1.1: Example Transfer Learning Scenario

The example diagram in Figure 1.1 illustrates the idea. For WannaCry, the available

data is limited and insufficient to create a highly accurate model. On the other hand,

there is plenty of data for each of the other three botnets. The idea is to use transfer

learning to augment the WannayCry dataset so that more accurate predictive models

can be created for WannaCry botnet detection.

1.3 Methodology

The work in this thesis focuses on two main problems as shown in Figure 1.2. The first

challenge was to develop a source code mining approach for the analysis of Android

apps. The second challenge was to develop a novel approach for the detection of botnets

via analysis of network traffic. For both parts, existing literature was reviewed and

limitations were identified. Although there is existing work that attempts to address

these problems, techniques developed in this thesis add new contributions to the field

as will explained throughout the remaining chapters.

7

Chapter.1 Introduction

Figure 1.2: Thesis Structure

1.3.1 Android Botnet Detection

The Android apps used in this work were collected from existing repositories. Two

types of of apps were collected: normal and botnet. As the main focus is on botnet

apps, it was ensured that the normal apps were network apps (i.e. apps that work as

part of a network such as messaging and photo sharing apps). This is to make sure

the comparison is done using apps that are similar in their underlying architecture. An

open source tool was used to reverse engineer these apps and generate their source code.

Afterwords, existing text mining approaches were used to form a dataset using the source

code. At the same time, a freely available source code analysis tool was used to extract

several metrics and for a separate dataset. These datasets were then used to evaluate

the performance of several classical machine learning algorithms.

8

Chapter.1 Introduction

1.3.2 Network Traffic Analysis

The network traffic data used in the network based approach was obtained from an open

source repository. The data was in raw format which means it was not immediately

suitable for machine learning tools. Therefore, several steps were taken to transform it

into a usable format. Subsequently, a novel transfer learning algorithm was developed

and implemented. This novel algorithm was then evaluated extensively (using this

dataset) and extended to enhance its performance and reduce its limitations.

1.4 Aims and Objectives

Although the previous sections have introduced several key points about the work carried

out in this thesis, this section lists the aims and objectives of this thesis:

1.4.1 Aims:

The aims of this thesis are:

1. Develop a robust proactive approach for botnet app detection on android systems

2. Evaluate the proposed approach for botnet app detection on android systems

3. Develop a novel approach for botnet family classification with improved accuracy

4. Evaluate the proposed botnet family classification approach through extensive

experiments and comparison with other classification approaches

More details about these points is provided in Section 1.6.

9

Chapter.1 Introduction

1.4.2 Objectives:

In order to achieve the aims, the following steps are going to be performed to develop

the source code mining approach:

1. Collect various botnet and normal android apps and use reverse engineering

techniques to obtain their Java source code

2. Use text preprocessing techniques to transform the Java source code into format

suitable for machine learning tools

3. Design and implement source code analysis techniques to distinguish between

source code of botnet apps from source code of normal apps

4. Run experiments using several classifiers and find out which classifier works best

on which dataset

In addition, the following steps are going to be performed to develop the novel transfer

learning approach:

1. Collect network traffic data that contains traffic from various botnets as well as

normal network traffic

2. Preprocess the data to transform it into format suitable for machine learning tools

3. Design and implement the novel transfer learning algorithm

4. Conduct several experiments to evaluate the performance of this novel algorithm

and identify its strong and weak points

5. Extend this novel algorithm to overcome its weaknesses

10

Chapter.1 Introduction

6. Conduct several experiments to compare the performance of this novel algorithm

against the performance of existing commonly-used freely available algorithms

1.5 Hypotheses

The following hypotheses will be tested in the course of this thesis.

Hypothesis 1: Analysis of source code of Android apps can be an effective proactive

method for the detection and identification of botnet apps. This thesis proposes an

approach to reverse engineer Android apps, obtain their source code and mine this

source code to predict whether an app is a bot or not. In other words, this hypothesis

states that:

Android normal and botnet apps can be distinguished by using machine

learning methods to analyse and gain insight into their source code

Chapter 3 of this thesis presents the development and evaluation of a source code mining

approach. The findings of this work show that this simple yet powerful method can

indeed produce accurate and reliable results.

Hypothesis 2: Where limited data is available for a target task, data available aplenty

for one or more related but different task(s) (known as the source task(s)) can be

exploited to enhance learning in the target task. This can be achieved by developing

a transfer learning approach that carefully selects data from the source task(s) and

transfers it to the target task. In other words, this hypothesis states that:

Performance can be improved by using transfer learning techniques across

datasets containing network traffic from different botnets.

11

Chapter.1 Introduction

A novel approach is developed, extended and compared to other existing approaches in

Chapter 4. An extensive evaluation of this approach using different types and sizes of

real-world datasets is presented in Chapter 5. The novel approach is shown to outperform

existing classical and commonly used approaches.

1.6 Key Contributions

The following points provide a summary of the contributions of this thesis to the field

of using Machine Learning for botnet detection:

1. A Robust Integrated Source Code Mining Approach for Android Botnet

Detection: this approach provides a method that can used to detect botnet

android apps by reverse engineering their source code and then analysing it. This

method is useful because it helps in detecting botnet apps before users run them.

This means that the proposed method attempts to stop any harm before it happens

by being proactive. The idea of this methods is based on using text mining

techniques to gain insight into the source code of Android apps and classifying

them accordingly.

2. A Novel Similarity Based Instance Transfer Learning approach for

Botnet Family Classification: a novel instance transfer learning approach is

developed and evaluated in this work. The main idea of this novel approach is

to measure the similarity between instances in different datasets and to transfer

highly similar instances to the smaller dataset. The instances are transferred from

the Source dataset(s) to the Target dataset. Although this approach is simple and

easy to implement, it is powerful and effective (in its accuracy and speed) as will

be shown throughout the thesis.

12

Chapter.1 Introduction

3. Class Balanced Similarity-Based Instance Transfer Learning for Botnet

Family Classification: this approach extends the Similarity Based Instance

Transfer approach mentioned in the previous point. It works in exactly the same

way but adds an extra step to ensure class balance in the resulting target dataset.

In short, it only keeps instances transferred from source datasets so that the classes

in the target dataset have a similar percentage (i.e. a similar proportion in the

target dataset). This methods helps in avoiding overfitting and make interpreting

models easier.

4. A Systematic Method for Transforming Raw Network Traffic Data into

a format suitable for Machine Learning and Data Mining: a major part

of this thesis is focused on botnet detection via network traffic analysis. However,

open source network traffic data usually exists in raw format (known as PCAP

format). Therefore, the thesis provides a systematic method that can be applied

to not only transform this raw format into a format suitable for machine learning

and data mining, but also to gain insight into the data, inspect and visualise it.

1.7 Thesis Overview

Here a summary of the structure of the thesis is provided.

• Chapter 1: This chapter presents an introduction to the main research

idea, motivation, research scope and limitation, research hypothesis and thesis

contributions. The proposed approaches are introduced at a high level; detailed

explanations will be provided throughout the remaining chapters of this thesis. In

addition, the chapter ended with an overview of the structure of this thesis.

13

Chapter.1 Introduction

• Chapter 2: Chapter two contains the background and literature review. It

contains sections on what botnets are, some key concepts that must be understood

in order to understand botnets, the anatomy of a botnet attack, botnet topologies

and architectures, and several botnet examples. In addition, this chapter provides

a summarised introduction to machine learning in general, and transfer learning

in particular. It mainly focuses on inductive transfer learning because it is the

branch under which this thesis falls. Additionally this chapter has a review of

several existing botnet detection techniques that are related to the work in this

thesis.

• Chapter 3: The third chapter contains a detailed explanation of the integrated

source code mining approach that is developed for botnet detection on Android.

The chapter starts by providing a summary of existing approaches and then

explains in detail how Android apps were reverse engineered to obtain their

source code. Next, an explanation of how the source code was used to create

two different types of datasets is given. This is followed by an overview of the

machine learning methods that were used and a detailed experimental evaluation

of their performance.

• Chapter 4: Chapter four has the work carried out on network traffic analysis.

It explains the novel transfer learning approach that was developed as part of

this thesis. Additionally, this chapter defines similarity, how it can be calculated

and how it was used as part of the novel approach.The chapter also contains

an explanation of two existing well known algorithms as they are used in the

experimental evaluation. In addition, a major part of this chapter is a section of

some of the limitations of the novel approach and an extension to this approach.

14

Chapter.1 Introduction

• Chapter 5: The fifth chapter contains two main sections. One of them is on

how to preprocess raw network traffic data, extract useful information from it

and transfer it into a format suitable for machine learning tools and platforms.

This section provides several steps that can be applied on such data and provides

several examples and visualisations. It is then followed by an example use case

where these steps were applied to an existing freely available raw data. The second

main section of this chapter contains a detailed experimental evaluation using the

resulting network traffic dataset as well as some text data. This chapter also

includes several performance comparisons such as comparing the novel algorithm

(and its extended version) against two common existing algorithms.

• Chapter 6: This chapter concludes the thesis and presents limitations and future

work. It is written so that each approach contains a separate section for

conclusions, limitations and future work. This is done to keep the explanation

focused and to make easier for the reader to understand.

1.8 Summary

In this chapter an introduction to the main research idea was provided to the reader

and the hypothesis was stated. The proposed approach was also introduced at a high

level; a detailed explanation will be provided throughout the remaining chapters of this

thesis. In addition, we have also listed our main contributions and publications. The

chapter ended with an overview of the structure of this thesis.

15

Chapter 2

Background and Literature

Review

Before delving into details of the techniques developed in this thesis, it is logical to

provide an overview of some essential concepts. It comes as no surprise that there is

a large number of techniques for botnet detection and prevention; some of which date

back to the 1980s. The contributions of this chapter include an introduction to botnets

in order to familiarise the reader with what they are, how they work and the anatomy

of their attacks. In addition, the chapter also provides an overview of reverse and

re-engineering as the former technique is employed in the work carried out in this thesis.

This is followed by a brief overview of the field of machine learning and the sub-field of

transfer learning. After that the chapter presents an overview of the most recent botnet

detection approaches. A summary of Android botnet detection methods is provided.

Also, the overview includes existing botnet detection work that uses transfer learning.

As for botnet detection techniques that use traditional machine learning, only the most

recent approaches are considered.

16

Chapter 2. Review of Existing Approaches

2.1 Background

2.1.1 Botnet Introduction

This chapter begins by providing a definition of botnet and then continues with

explaining other important concepts and aspects.

2.1.1.1 Botnet Definition

There are several definitions of botnets in the literature. A general definition is: A

botnet is a group of networked devices that are used to carry out malicious attacks.

Examples of such devices are desktop computers, laptops, smartphones and tablets.

These devices, known as hosts, are normally under the remote control of another device

known as the botmaster (Haddadi et al., 2014).

For malicious users, this configuration is advantageous because the device carrying

out attacks, or malicious activities in general, is not theirs. This is because the

communication between the botmaster and hosts, or botclients, can be done via

Internet Relay Chat (IRC) channels. Using such channels makes it difficult to trace

back because attackers can use an obfuscating proxy to send the commands through.

Furthermore, attackers can also use tools to send commands via multiple hops to add

more complexity (Schiller and Binkley, 2007).

It can be observed that the word botnet consists of two words; bot and net. A bot

is a computer program, a script or an application, that executes tasks automatically.

This means that a bot can be useful in cases when automation is required. An example

is placing online bids such as on ebay. However, the type this thesis focuses on is

the one that is programmed to receive remote commands to perform dangerous actions.

17

Chapter 2. Review of Existing Approaches

The word net means that several bots (thousands or even millions) are run on networked

machines to performs tasks on a large scale. These machines are considered as botclients.

Botnets are considered by many as the core of cyber-crime as they are used to gain control

of, and use, a large number of connected devices to send commands to perform harmful

tasks such as information theft and industrial espionage (Kirubavathi and Anitha, 2016).

In general, they are among the most famous threats that are difficult to mitigate and

protect against (Acarali et al., 2016).

One of the most well-known attacks over the internet is the distributed denial of service,

or DDoS, attacks. Although botnets are used to carry out such attacks, they are mostly

used for spam attacks, or to steal sensitive information such as login credentials and

credit card details. Additionally, they are also used to commit fraudulent attacks on

banks, bank details and organisations (Kirubavathi and Anitha, 2016).

The ways botnets spread vary. According to (Borgaonkar, 2010) they can be injected

into remote machines via using social engineering tricks on chatting applications and

hyper-text transfer protocol (HTTP) based communication tools in general. Another

way is the use of advanced double fast-flux service networks and structured query

language (SQL) injection attacks (Sood et al., 2016).

2.1.1.2 Key Concepts

In order to understand how botnets work, it is important to be familiar with the following

concepts which are key in the configuration and functioning of botnets (the following

overview was summarised by (Tiirmaa-Klaar et al., 2013)).

18

Chapter 2. Review of Existing Approaches

• Network: the first concept to be familiar with is computer networking. Botnets

are spread over a large number of devices that communicate with each other and

with their botmaster. This communication facilitates the ability to send/receive

commands and updates.

• Machines are Compromised: Normally the botclients are compromised

devices. What this means is that these clients can be used to perform attacks

unwillingly and unknowingly. In other words, these devices are exploited and used

to participate in botnets without the knowledge and permission of their real users

or owners.

• Remote Control: the compromised devices mentioned in the previous point

are normally controlled remotely by a botmaster. They receive commands and

communicate in a Command and Control configuration (known as the C&C). This

allows the exploiter to use some or all of the bots in the botnet as the attack they

are trying to perform requires. This control can be in one of several structures

(See section 2.1.1.3 for more detail).

• Remote Controller: The previous point talked about the compromised devices

being remotely controlled. This process is performed by a malicious person

(the exploiter). The remote controller is usually the botmaster mentioned in

Section 2.1.1.1. This person usually wishes to execute some illegal activities and

harmful attacks. An example attack was the DDoS attack that was launched

against Estonia (Robinson and Martin, 2017).

19

Chapter 2. Review of Existing Approaches

2.1.1.3 Anatomy of a Bot Attack

Botnets follow a systematic way to launch attacks. As shown in Figure 2.1, the first

step is for the botmaster to infect a victim with a bot. As mentioned previously, there

are several ways to infect a victim. Note that the number of infected victims can be

large and, therefore, the attacker can have an army of bots under his/her control. After

the victims are infected, they connect to the C&C server and wait for instructions. This

connection can be established using one of the known protocols such as HTTP or IRC.

Then, the C&C server sends its commands to the victims which in turn execute the

commands and report back the results to the C&C.

Figure 2.1: Anatomy of a Botnet Attack

2.1.1.4 Botnet Topologies

Botnets have their own characteristics and components. They can normally be divided

into smaller entities such as botmasters, bot clients, bot servers, bot victims and nodes.

The botmaster is the attacker (i.e. controller of the botnet). This is usually the developer

of the botnet (i.e. malware management or bot controller). The bot client/host is the

target device which the botmaster wants to control and use. The bot Server Command &

Control (C&C) is the Command and Control server of the bots which receives commands

20

Chapter 2. Review of Existing Approaches

from the botmaster through some command and control (C&C) infrastructure to control

and give orders to the bot client. In general, there are three types of bot servers C&C:

Centralised (one host), Peer2Peer (one to one) and distributed client (random). Nodes

are the bots which will be used to attack the victims. Botnet victims, or the botnet

customers, receive the planned attack from the attacker. An example bot attack is

through sending or flooding the target system with a huge amount of any kind of data

to disrupt the system.

Centralised Topology (Star & Distributed cluster)

This configuration is like the usual client-server model where a client connects to a

server, and the server sends commands and receives reports/results from the client. In

such C&C architecture, all bots connect to the botmaster (see Figure 2.2). It is worth

mentioning here that the botmaster itself can consist of more than one device (i.e. it can

be a group of machines instead of a single machine as in Figure 2.2). These machines

are usually responsible for transmitting commands to bots. This topology offers the

advantage of reliable coordination between the bots and their botmaster. Also, it speeds

up reaction time and it makes status monitoring easy for the botmaster. On the other

hand, the C&C server(s) in this architecture is always a single point of failure. This

means that once a botnet is identified, eliminating the communication between bots and

their botmasters effectively means turning off the botnet. This led to the development

of the decentralised configuration discussed next.

21

Chapter 2. Review of Existing Approaches

Figure 2.2: Centralised Topology

Decentralised Topology (Peer2Peer/Random/No C&C)

The Peer-to-Peer topology, or P2P for short, is another botnet configuration that exists

(see Figure 2.3). In this architecture, as its name suggests, bots can have a control role

in addition to their usual role. In more detail, the bots can communicate directly with

each other so that if the botmaster is removed (or some of the bots are removed), the

botnet continues to function. This means that it is no longer necessary to communicate

with the botmaster which gives the advantage of being resilient to failure. Therefore,

identifying bots does not necessarily mean turning off the entire botnet as is the case

with the centralised topology.

Figure 2.3: Decentralised Topology (P2P)

In addition, the P2P architecture offers more flexibility and robustness especially when

the number of bots is large. The flexibility stems from their ability to exist on machines

and communicate with other bots directly without the need to communicate with a

22

Chapter 2. Review of Existing Approaches

central point. There are a few techniques that are used to construct a P2P botnet.

The process usually has two steps. In the first step, peer candidates need to be

selected. And in the second, actions need to be implemented so the selected candidates

become members of the botnet. Examples of bots that adopt the P2P configuration for

communication are Nugache (Stover et al., 2007) and Sinit (Wang et al., 2007).

The Hybrid C&C model

In this architecture, functionalities from both centralised and decentralised botnets are

used. In general, bots that are part of a hybrid P2P botnet can be either server bots or

client bots. The server bots exhibit the behaviour of both clients and servers whereas

the client bots are configured to act as clients only.

Random C&C model

In this architecture, the bot does not continuously communicate with the botmaster or

other bots, rather it actually waits for the botmaster to make connection attempts. For

an attack to be performed, the botmaster tries to connect to idle bots, if it finds any, it

sends them commands to perform attacks. This model is not too difficult to implement

and it is not easy to identify and interrupt because the communication between the bot

and botmaster is not initiated by the bot. On the other hand, coordination issues can

arise if the number of bots is large as the botmaster has to go through a large list of bots.

There are no real botnets that use this model, it is only theoretical as it was suggested

by (Cooke et al., 2005).

23

Chapter 2. Review of Existing Approaches

2.1.2 Botnet Examples

Many different botnets have appeared over the years. They differ in several aspects

such as the topology, the main task to perform, the botnet size and so on. Some

of these botnets are evolved and changed over time to become harder to detect and

interrupt. It is important to point out that malicious internet applications are sometimes

categorised according to their function. In other words, many malicious applications such

as ransomware have a botnet architecture (or an architecture similar to that of botnets).

They have client tools that reside on victim hosts and respond to commands coming

from a central point. Therefore, the work in this thesis can be applied to detect any of

these malicious applications with botnet architecture via network traffic analysis. The

following subsections provide a high-level overview of some botnets and malware (i.e.

malicious software with botnet architecture) examples:

2.1.2.1 SDBot

This family of bots is common, as its original developer has made it publicly available

(i.e. open-source). This has led to it being developed into several flavours and variants.

This botnet spreads itself through network shares that use empty or easy to guess

passwords (Kharouni, 2009). It is noteworthy that this botnet, or one of its variants,

can appear under several names such as backdoor.Sdbot, Troj/Sdbot, BKDR SDBOT

or Backdoor.IRC.Sdbot. When infecting devices, this botnet connects to a vulnerable

device and executes a script to download itself into that device to infect its underlying

system. After that, it opens a backdoor to enable the attacker to take control of that

system.

24

Chapter 2. Review of Existing Approaches

2.1.2.2 RBot

This family of bots is known to be complex and hard to interrupt (Dietrich et al., 2011).

It has hundreds of variants and these variants can have different names and techniques.

This family of bots had a significant impact on how botnets avoid identification as it

was the first family to use encryption or compression algorithms in its communication.

Systems infected by RBot can be controlled and use to participate in DDoS attacks,

key logging, spamming and so on. Like SDBot, RBot can have several names such as

W32.Spybot.worm, Worm RBot or Backdoor.RBot.gen. RBot easily infects systems

with blank or weak passwords (much like SDBot). In addition, it targets some

well-known flaws in the Windows Operating System. It is also interesting that some

variants of this botnet can exploit backdoors or open ports created by other botnets.

2.1.2.3 Zeus

Zeus (or Zbot) is one of the peer-to-peer botnets that first emerged in 2007 (Binsalleeh

et al., 2010). This family of botnets is mainly used for stealing money (or cyber fraud

in general), phishing, banking information stealth and other attacks. The Zeus botnet

was designed to steal information through man-in-the-browser attack via key-logging

techniques and forms grabbing. Its method for spreading is through drive-by-download

(e.g.email, network, websites, torrent . . . etc.) and phishing (e.g.emails, webchat).

Usually, Zeus’s malicious code is hosted on a site and when a user visits that site, their

device is infected. The same can happen when the site displays an advertisement instead

of actually hosting the code. When a device is infected, it joins the Zeus botnet and it

can be under the attacker’s control.

25

Chapter 2. Review of Existing Approaches

2.1.2.4 WannaCry

WannaCry is one of the most recent botnets at the time of writing this thesis. It is

reported to have affected organisations in 150 countries (Kalita, 2017). Although it

is usually classified as ransomware, because it demands payment after launching the

cyber attack, it is effectively a botnet. According to many computer security experts,

WannyCry uses a flaw in software that was developed by Microsoft. When a device is

infected, WannaCry locks, or encrypts, the files and demands a quick payment (which

increases with time). In more detail, it makes all the data on the infected computer

system inaccessible (by locking it) and only allows the user to access two files; one of

which contains instructions on what to do next and the other is the WannaCry tool itself.

When the tool is launched it informs the computer users of the encryption of their files,

and tells them that they only have a few days to make a payment. It also warns users

that they will lose their files if they fail to make the payment. One interesting aspect

of WannaCry is that it demands payment in bitcoin. It provides info on how to buy

bitcoins and where to send them to.

2.2 What is Reverse Engineering?

Before delving into the details of the work carried out as part of this thesis (this is going

to be explained in Chapter 3), it is better to define what is meant by reverse engineering.

Reverse engineering can be defined as the practice of dismantling an object to examine,

analyse or investigate its internal structure in order to improve it (Müller et al., 2000).

This is not to be confused with re-engineering (Koschke, 2005) which is concerned with

redesigning an object so that it becomes better in one or more aspects (i.e. to overcome

the object’s weaknesses or faults).

26

Chapter 2. Review of Existing Approaches

2.3 An Overview of Machine Learning and Transfer

Learning

One of the main contributions of this thesis is automatic botnet detection via transfer

learning (which is a machine learning technique). The data used to train machine

learning models for machine is usually processed into a matrix structure with features

(sometimes called attributes, descriptors or variables) as columns and instances

(sometimes called examples or data points) as rows. Normally the class feature

(sometimes called the target feature) is the last feature (i.e. the last column in the

matrix). This Section provides a brief overview of what machine learning is, how it

works and why it is useful. It also explains what transfer learning is, how it works and

when transfer learning can be more useful than traditional machine learning techniques.

2.3.1 What is Machine Learning

Machine learning is mainly about developing and applying algorithms that can learn

from data (Bishop, 2006). Primarily, the objective is to automatically explain the past

and predict the future through data analysis. This field combines several other fields that

include statistics, data science, artificial intelligence and database technologies. Hence,

it is a multi-disciplinary field. It is worth mentioning here that data is a key component.

Without data nothing practical can be done and only theoretical concepts and ideas can

be developed at most (see Chapter 5 for more details).

Explaining the past is done via data analysis and exploration. Here statistical and

visualisation techniques are usually used to describe the data. This is performed to

highlight important relationships, patterns, trends or aspects that exist in the data so

27

Chapter 2. Review of Existing Approaches

further analysis can be performed. Furthermore, predicting the future is performed

via modelling. In predictive modelling (Kuhn and Johnson, 2013), a model is created

from the data in order to make a prediction. The prediction can be made for one or

more outcomes. Here it will be simple and work will be done with a single outcome. If

such an outcome is categorical, then the process is called classification. If the outcome

is numerical, then the process is called regression. If the predictive process is about

grouping similar instances of the data into groups of similar instances then it is called

clustering. There are more processes in machine learning and data mining but this

brief overview should be sufficient as an introduction. Note that the work presented in

this thesis is focused on classification. Making automatic predictions is highly regarded

nowadays. The historical data that is already stored, and the large amounts of data

that is generated everyday, can help businesses (via machine learning and data mining)

derive valuable insights and knowledge (Wu et al., 2014). This extracted knowledge can

help in decision making and future planning to improve efficiency and maximize gains

and profits.

2.3.2 What is Transfer Learning

Human beings in general have the ability to utilise past learning experiences when they

are faced with new tasks. The level of mastering the new task depends on how much

it is related to the past task. In machine learning, the sub-field that attempts to apply

this experience, or knowledge transfer is known as Transfer Learning .

As explained in (Torrey and Shavlik, 2009), in traditional machine learning algorithms

one deals with tasks individually, meaning if one has several tasks he/she learns each one

separately. By contrast, transfer learning attempts to learn one or more tasks (known as

28

Chapter 2. Review of Existing Approaches

source tasks) and use the knowledge learned to enhance learning in another task (known

as the target task). The target and source tasks must be related in one way or another.

Transfer learning is typically employed when there is little, or limited, amounts of

labelled data in one task (known as the target task), and plenty of data in another

related task (known as the source task). The assumption here is that using only the

target data will result in less accurate models since there is insufficient data. Whereas,

by transferring knowledge from the source task to the target task the model quality can

be improved.

There are three key research issues in transfer learning (Pan and Yang, 2010). The

first issue is what to transfer, which is concerned with the parts of knowledge that can

be transferred between tasks because not all knowledge is common between different

tasks (i.e. some knowledge can be specific for specific tasks). It is worth mentioning

here that the work in this thesis is focused on this issue. The second issue is how to

transfer. This is related to whether to transfer the knowledge as is or to apply some

form of modification such as using weights. The third issue is when to transfer. This

is an important aspect of transfer learning as in may cases the knowledge transfer ends

in a negative transfer. That is, instead of improving learning in the target task, the

knowledge transferred deteriorates the process.

Transfer learning techniques can be categorised into three sub-settings. Inductive

transfer learning, transductive transfer learning and unsupervised transfer learning. The

focus here will be on Inductive transfer learning, the reader is referred to the survey

in (Pan and Yang, 2010) for more details on the other two categories. The work in this

thesis is focused on inductive transfer learning because the data comes from a similar

domain (network traffic) and all the datasets used have the same feature space (i.e. they

29

Chapter 2. Review of Existing Approaches

have the same feature sets). This similarity in domain and features (notice features and

not necessarily feature values) makes the research problem automatically falls under the

umbrella of induction because one needs to find where the differences are and how to

exploit them.

2.3.2.1 Formal Definition of Transfer Learning

After providing a textual definition of transfer learning, this section formalises the

problem and presents it in an intuitive way. This formalisation is based on the survey

in (Pan and Yang, 2010). The definition breaks down the problem into its basic

components such as Domain, Task and so on.

Domain and Task:

Let us assume that there exists a feature space X and a marginal probability distribution

(for data in that space) P (X), where X = {x(1),x(2), . . .x(n)} ∈ X .

A Domain D can be defined as the combination of the feature space X and marginal

probability distribution P (X) as follows:

D = {X , P (X)}

In addition to that, let us assume that there is a label space Y (that contains all possible

labels for all instances in data X) and a predictive function f(•) which is unknown. The

purpose of this function is to predict a label that is in Y given input data.

A Task T can be defined as the combination of the label space Y and the predictive

function f(•) as follows:

30

Chapter 2. Review of Existing Approaches

T = {Y, f(•)}

The predictive function f(•) can be learned from the training data of the form {x(i), y(i)},

where x(i) ∈ X and y(i) ∈ Y, and used to predict label y(i) for data point x(i) (f(x(i)) =

y(i)).

Source and Target Domain and Task:

It was mentioned previously that transfer learning is focused on learning from one or

more source tasks to augment learning in a target task. To represent this using the

above notation, the following two domains can be defined:

1. Source domain: DS = {XS , PS(X)} where X = {x(1),x(2), . . .x(n)} ∈ XS

2. Target domain: DT = {XT , PT (X)} where X = {x(1),x(2), . . .x(n)} ∈ XT

And Similarly, two corresponding tasks:

1. Source task: TS = {YS , fS(•)} where fS(•)→ y(i) ∈ YS

2. Target task: TT = {YT , fT (•)} where fT (•)→ y(i) ∈ YT

Observe that the predictive functions connect the source and target domains to the

source and target tasks respectively as follows:

fS(x(i)) = y(i) where x(i) ∈ XS and y(i) ∈ YS

fT (x(i)) = y(i) where x(i) ∈ XT and y(i) ∈ YT

Transfer Learning:

Given a source domain DS and learning task TS , a target domain DT and learning task

TT , the purpose of transfer learning is to enhance the learning of the target predictive

function fT (•) in TT using the knowledge DS and TS , where the source and target

31

Chapter 2. Review of Existing Approaches

domains are different (i.e. DS 6= DT), or the source and target tasks are different (i.e.

TS 6= TT). Given this definition, there are multiple scenarios and cases:

• Scenarios 1: When the source and target domains are different (i.e. when DS 6=

DT) at least one of the following conditions is satisfied:

1. XS 6= XT (feature spaces are different)

2. PS(X) 6= PT (X) (probability distributions are different)

• Scenarios 2: On the other hand, when the source and target tasks are different

(i.e. TS 6= TT) at least one of the following conditions is satisfied:

1. YS 6= YT (label spaces are different)

2. fS(•) 6= fT (•) ⇔ PS(yS |XS) 6= PT (yT |XT) (predictive functions are

different)

It is important to notice that work in this thesis falls under the second case in the first

scenario.

2.3.2.2 Inductive transfer learning

In transfer learning in general, there are two different tasks (i.e. the source and target

tasks are not the same) coming either from the same domain or from two different

domains. In inductive transfer learning, the most important thing is to have different

source and target tasks, it does not matter if the source and target domains are different

or the same. For example, under the domain of textual article classification, one task can

be identifying sports articles and another task can be identifying politics articles. Here,

although the domain is the same and the tasks are different, transfer learning between

32

Chapter 2. Review of Existing Approaches

them is still possible. Inductive transfer learning can be performed in more than one

way:

• The instance-transfer approach: This approach says, let us not borrow all

data from the source task directly, but rather, let us try to use relevant instances

from the source task, along with data in the target task, in building a model for

the target task. An example approach is TrAdaBoost that can be found in (Dai

et al., 2007). TrAdaBoost is based on the classical AdaBoost algorithm. It works

when the source and target tasks have the same set of features, but different data

distributions. In addition, TrAdaBoost assumes that some of the data in the source

task can be useful (i.e. leads to positive transfer) and some can be harmful (i.e.

leads to negative transfer). The idea is to assign weights to data from the source

task in such a way that useful data can have more effect than harmful data. The

author has made the java implementation of this approach publicly available.

• Feature representation transfer: In this approach, attempts are made to

find feature representations that reduce classification error. This task is also

known as common feature learning (Argyriou et al., 2008). Methods for feature

representation transfer can be supervised (Argyriou et al., 2007, Lee et al., 2007)

or unsupervised (Raina et al., 2007).

• Parameter-transfer: In this approach it is assumed that models created for

individual related tasks should have some parameters in common. Some of the

existing approaches transfer parameters of Support Vector Machines (Evgeniou

and Pontil, 2004) and priors of Gaussian Processes (Lawrence and Platt, 2004).

• Relational-knowledge transfer: Methods falling under this approach focus

on transfer learning in relational domains. Approaches employ techniques from

33

Chapter 2. Review of Existing Approaches

statistical relational learning to transfer relationships from the source to target

domains. An example method is reported in (Mihalkova et al., 2007) where

relational knowledge is transferred across relational domains by using Markov Logic

Networks (Richardson and Domingos, 2006).

2.4 Existing Work on Android Botnet Detection

Many approaches for botnet detection have been reported in the literature. The work

in (Feng et al., 2014) introduced an approach that is based on the analysis of network

traffic. They extract a set of features (i.e. attributes) from traffic chunks and then

use machine learning algorithms to identify whether the traffic is malicious or not.

Other works include BotMiner (Gu et al., 2008), BotHunter (Gu et al., 2007) and

more recently BotDet (Ghafir et al., 2018). As the work presented in this chapter

is focused on botnet detection on the Android operating system, the key existing

approaches will be summarised in the remainder of this section. An interesting approach

is Dendroid (Suarez-Tangil et al., 2014) where malware Android apps were grouped into

families by analysing their source code. A similarity measure was used to taxonomise

apps and create a phylogenetic-tree like structure. One approach to detect malicious

Android apps was the work in (Sheen et al., 2015). In this work, features such as the API

calls and permission requests that an APK file makes are used in separate datasets and

an ensemble of classifiers (collaborative decision fusion) was used to perform predictions.

Another approach that is related to permissions can be found in (Wei et al., 2015). In

their work, they use techniques from the text mining domain to analyse the relationship

between permission requests that an Android app makes and its textual description.

34

Chapter 2. Review of Existing Approaches

Although it focuses on malware detection, the approach in (Yerima et al., 2013) reverse

engineers Android apps and analyses their source code. It focuses on detecting API

calls made by the apps as well as the permissions that apps require and the commands

that apps execute. The idea here is that by examining whether known APIs are being

called from within an app’s source code, it is possible to determine the app’s intended

behaviour during runtime. This is the same with permissions requested by apps and

commands that apps attempt to run. In general, the approach builds a profile for each

app by extracting these features and then uses a Bayesian classifier (e.g. NaiveBayes)

to predict the probability of whether a new unseen Android app is suspicious or benign.

Another malware detection and classification technique is the method in (Kang et al.,

2016) which disassembles malware Android apps to obtain and use their opcodes for

malware detection. It uses n-opcode information to generate two different types of

representation. One representation was the binary n-opcodes which describes the

n-opcodes that have been used in an application, whereas the other representation was

frequency n-opcodes which contains the counts of n-opcode in an application. This

approach evaluates the performance of several classical machine learning classifiers such

as Support Vector Machine (SVM) and RandomForest (RF). An interesting finding of

this approach was that a high accuracy was obtained when using a small value for n in

frequency n-opcodes.

In addition to the previous work, another method that disassembles malware Android

apps to obtain and use their opcodes for malware detection is reported in (McLaughlin

et al., 2017). One hot encoding is then used to create feature vectors based on the

obtained opcodes. These vectors are then fed into a convolutional neural network (CNN)

which learns the intrinsic characteristics of the data and yields a high classification

accuracy.

35

Chapter 2. Review of Existing Approaches

Several approaches use static or dynamic analysis techniques. In static analysis,

attempts are made to detect malicious activities without the need to execute the Android

apps. The main idea is to model how the Android apps work by constructing and

analysing some graphical models. An example of this type is the recent work in (Junaid

et al., 2016) where an approach is presented to detect malicious behaviour in Android

apps using models of their life cycles. Reverse engineering was used in this approach to

construct a life cycle model for each Android app. After that, possible event sequences

are derived from these models and used in attack detection. They developed a system

called Dexteroid to identify SMS (Short Message Service) when they are sent to costly

numbers as well as whether sensitive data is being leaked. Other examples include the

work carried out in (Gordon et al., 2015) who built a tool called DroidSafe, the work

in (Arzt et al., 2014) who built a tool called FlowDroid and the work in (Yang and

Yang, 2012) who developed a tool called LeakMiner. On the other hand, approaches

that employ dynamic analysis try to execute the Android apps to perform specific tasks

and use the resulting data to detect malicious attacks. Some recent examples are the

works in (Bai et al., 2016, Yan and Yin, 2012, Yang et al., 2013). Additionally, the

authors of (Yang et al., 2015) proposed an approach to build data flow models from the

reverse engineered source code of Android apps. Their method tries to build data flow

models by detecting where data enters an application and how this data moves through

it. In other words, they build trees of classes, methods and variables and use these trees

to identify malicious code.

An approach, denoted DynaLog, is presented in (Alzaylaee et al., 2016, 2017) to

generate dynamic features for malware detection. This approach attempts to overcome

obfuscation techniques (used in malware families to avoid detection) by extracting

features that describe the behavior of malware rather than its source code or contents.

36

Chapter 2. Review of Existing Approaches

DynaLog exploits open source tools to log and derive several low level events which gives

it the advantage of being able to inspect the behaviour of Android apps at a deeper level.

Once these logs are generated, several informative features are extracted and used in

the identification process.

A recent approach that performs reverse engineering to obtain the source code of Android

apps and analyse it is reported in (Kabakus and Dogru, 2018). In this work, the obtained

source code was then analysed for API calls which was used as an indicator of the

maliciousness of an app.

In general, source code analysis has been used before for the purpose of malicious code

detection. For example, the work in (Benjamin and Chen, 2013) uses genetic algorithms

for feature selection in an attempt to analyse the behaviour of malicious apps. The

developers of this technique collected a total of 770 malicious applications written in

several programming languages and used text mining techniques to transform the source

code into data suitable for data mining techniques. The extracted features were used as

input to the genetic algorithm. The effectiveness of selected feature subsets was later

assessed.

Another recent approach that is has a degree of similarity to the approach discussed in

this chapter can be found in (Nikola et al., 2017). The authors report two techniques: an

app permission analysis technique and a source code analysis technique. The idea behind

the second technique was to reverse engineer Android apps and automatically inspect

their source code using text mining and machine learning methods and algorithms. The

main focus of the work in (Nikola et al., 2017) was to detect malicious parts of the

source code. In other words, to analyse the entire source code of an app and attempt

to spot the code sections where malicious activities are carried out. Although this is

indeed an interesting idea, the approach presented in this chapter is more focused on

37

Chapter 2. Review of Existing Approaches

making a precise prediction on the entire code of an app as a whole. Another problem

regarding the approach in (Nikola et al., 2017) is that the data that was used seems

to be no longer available. Therefore, it is not clear whether they have used malware

from different families or several variations of the same malware. In addition, another

point is that it is not clear whether the normal apps used are network apps. It is worth

highlighting that one of the noticeable aspects of the work presented in this chapter

is that it uses botnets from different families and not variations of the same botnet.

Furthermore, the normal apps employed were network apps. More information on this

is provided in Section 3.2.

2.5 Recent Work on Network Traffic based Botnet

Detection

There is a large number of existing approaches that attempt to detect and identify

botnets using network traffic. A good survey reporting many of these attempts can be

found in (Silva et al., 2013).

The approach in (Garcia and Pechoucek, 2016) analyses network traffic by using a graph

representation to represent connections made using botnets. It creates a graph for each

Source IP where nodes contain tuples representing destination IP, destination port and

the protocol. The edges of such graphs represent flows between nodes. Then the nodes

and edges of the graph are updated in such a way to reflect how many times each a node

and a graph is repeated as well as when a node makes a self loop.

In (Stiborek et al., 2018) a botnet detection approach that uses the interactions of

malicious traffic with system resources as a data representation was proposed. The idea

38

Chapter 2. Review of Existing Approaches

is based on defining a similarity measure to reflect the properties of various resource

types. It uses the same vocabulary concept that is commonly used in multiple instance

learning (MIL). After that a clustering algorithm is used to group the data in separate

groups.

Analysis of traffic flow characteristics was performed in (Kirubavathi and Anitha, 2016)

to detect malicious traffic. The method attempts to extract multiple high impact features

from network flows and then employs classical learning algorithms to classify data. The

authors report that the features extracted are irrelevant of the packet contents which

makes the method suitable for analysing encrypted traffic. Another technique that

focuses on extracting significant features from network traffic is reported in (Bartos

et al., 2016).

Combining multiple classifiers (i.e. ensemble) was used in (Bijalwan et al., 2016) to

analyse network traffic data and attempt to detect botnet traffic. The authors only

mention that they used an a freely available PCAP dataset, extracted features and

evaluated an ensemble of classifiers. It is not clear what they used to extract features

or what these features are.

Artificial Neural Networks (ANNs) were used for network traffic analysis as discussed

in (Beghdad, 2008). They provide a technique to model user behaviour and therefore

they can be seen as a suitable technique. The technique used in (Abuadlla et al., 2014)

employs ANNs for network data analysis where a two-stage method is proposed. The

technique uses a neural network of type multi-layer feed-forward (MLFF) where possible

attacks are detected in the first stage (i.e. to identify whether the traffic is Normal or

Malicious) and, after that, an attempt is made to identify the attack type in the second

stage.

39

Chapter 2. Review of Existing Approaches

Another ANNs method was proposed in (Jadidi et al., 2013) where a multi-layer

perceptron (MLP) was used in an attempt to spot suspicious network traffic. The MLP

used in this technique used two different optimisation techniques to optimise weights

between neurons. These techniques are the Cuckoo (Rajabioun, 2011) and Particle Swan

Optimization with Gravitational Search Algorithm (PSOGSA) (Mirjalili and Hashim,

2010). According to the experiments conducted in this work, the PSOGSA yields better

results than Cuckoo. ANNs have also been used in hardware-based detection systems.

an example is the method reported in (Tran et al., 2012) where a block-based neural

network (BBNN) was built using a field-programmable gate array (FPGA). A genetic

algorithm was used to optimise the interconnection weights with the purpose of obtaining

the best possible detection and false alarm rates.

Another machine learning technique that was used for network traffic analysis and

malicious traffic detection is support vector machine (SVM). According the review

in (Liao et al., 2013) it can be successful in many cases especially when analysing numeric

data in binary classification (in other words detecting whether traffic belongs to one of

two categories). One of the existing methods is the SVM-based approach reported

in (Yuan et al., 2010). This technique applies feature selection using a discriminator

selection algorithm to have the optimal feature subset. After that the data is used

train an SVM classifier which is later employed to predict the category of unseen traffic.

One-class SVM (OC-SVM), which is a technique used for anomaly and outlier detection,

was used in (Winter et al., 2011) to detect malicious network traffic. Only malicious

data was used to train the OC-SVM learner and then used to isolate similar patterns in

future data. The authors claim that this approach is inductive because it can recognise,

not only the patterns it has seen before, but also their variations.

Another popular machine learning technique that was used in analysis of network traffic

40

Chapter 2. Review of Existing Approaches

is the K-Nearest Neighbors (KNN) classifier. This algorithm is known to be simple to

understand and easy to use because it classifies a new data point by a majority vote

of its nearest training points (i.e. its neighbors). One of the existing techniques that

is based on KNN is reported in (Costa et al., 2015). This technique builds a graph

to perform Optimum-Path Forest Clustering (OPFC). The graph is based on KNN to

assign weights to nodes because more than one optimisation technique was used to find

the optimal value of k. As this can be considered a clustering technique, its results

were compared to those of k-means and Self-Organising Maps (SOM) algorithms. The

technique in (Abdulla et al., 2014) uses KNN with fuzzy logic to identify malicious

traffic. Fuzzy logic was used to select labels for new instances whereas KNN was used

to select the classes that are likely to match the real class value.

Decision trees (DTs) are known to be easy to interpret machine learning algorithms

that have been successfully used in several areas. Hence, it comes as a no surprise that

they have been utilised in network traffic analysis and recognition. One of the recent

approaches can be found in (Rai et al., 2016). The developers of this approach propose

a new method for selecting the value used in a node to make a split (i.e. a new branch

of the DT is created based on the split value). According to the authors, the algorithms

performs information gain based features selection and then selects a split value that

ensures that the classifier is not biased towards prevalent values. The work reported

in (Haddadi et al., 2014) uses DTs and genetic programming for network traffic analysis

and classification. The authors indicate that their method can be used even when

packet payload data is encrypted. The features used in this work were extracted from

only the packet header information (which means the technique should work regardless

of the payload being encrypted or not). The developers used an open source tool called

Softflowd to extract two sets of features which were later analysed in an attempt to

41

Chapter 2. Review of Existing Approaches

develop an understanding of differences between botnets and their behaviour. It is

noteworthy that Random Forest has also been used in network traffic analysis. Random

Forest is based on the idea of sampling the input data several times, generating various

DTs using the sampled datasets and then combining the predictions of these DTs. One

of the existing techniques can be found in (Zhang et al., 2008).

Another network traffic analysis technique that uses DTs is reported in (Zhao et al.,

2013). The authors mentioned that they wanted to select a classifier that adapts to real

time data changes and, after investigating various machine learning algorithms, they

chose to work with DTs. After some analysis, the authors report that they worked with

the Reduced Error Pruning algorithm (REPTree) because it enhances the detection

accuracy when data is noisy and the resulting model is usually small which reduces

complexity.

An existing approach that evaluates the performance of several classical classifiers can be

found in (Stevanovic and Pedersen, 2014). The authors report that they experimented

with eight commonly used classifiers which included ANNs, SVM and Random Forest.

The results reported in this work show that the performance of different classifiers can

vary as only two of the used eight exhibited promising results. In fact, the conclusion

was that tree based learners (i.e. Random Forest and Random Tree) performed better

than others classifier families.

A recent system that focuses on identifying command and control (C&C) traffic is

BotDet which is discussed in (Ghafir et al., 2018). BotDet contains as many as four

techniques to detect C&C traffic. These techniques includes an implementation of a

module that uses a predefined list of known malicious IPs of C&C servers to identify

connections to those servers. Another module is based on a black list of secure socket

42

Chapter 2. Review of Existing Approaches

layer (SSL) certificates which are known to be malicious as opposed to IPs. SSL

certificates are used by malicious applications to encrypt communication and make such

applications harder to detect. BotDet also includes a module that attempts to detect

any connections to a Tor network. In addition, it contains a module that prevents

hosts from using the domain flux technique which enables infected hosts to connect to

undesired domain name servers. In general, BotDet is an implementation and realisation

of already existing approaches.

The first attempt to use transfer learning in network traffic classification was introduced

in (Zhao et al., 2017) where feature transfer learning was used, as opposed to the method

proposed in this thesis which is instance transfer. The technique is based on projecting

the source and target data into a common latent shared feature space and then using

this new feature space for making predictions. The technique works in such a way that

it attempts to preserve the distribution of the data. Although this the results reported

by the author seem to be reasonable, there is no freely available tool or code to use for

comparison. As this technique is iterative, it is computationally heavy. The approach

proposed in this work is different as it performs instance transfer by performing only

one pass over the target data.

A recent work that applies transfer learning for classification of network traffic can be

found in (Sun et al., 2018). This work does not propose a new transfer learning method,

rather, it only evaluates the performance of an existing open source transfer learning

algorithm called TrAdaBoost (Dai et al., 2007). Although the results show performance

improvement when compared against the base classifier without transfer (referred to as

NoTL in the publication), it is noteworthy to mention that TrAdaBoost was extended

and enhanced by the introduction of TransferBoost (Eaton and desJardins, 2011) (which

43

Chapter 2. Review of Existing Approaches

is the algorithm that is used for evaluation and comparison of results as will be explained

in more detail in Sections 4.2 and 5.4).

Instance transfer learning has been applied in multiple areas. For example, the recent

work in (Liu et al., 2018) reports an attempt that employs Multiple Instance Learning

(MIL) in text classification. This is a two stage method where, in the first stage, the

algorithms decides whether the source and target tasks are similar enough to perform

transfer which leads to the second stage where transfer is performed.

Note that the methods presented in this thesis differ from existing technique. For

example, the Android botnet detection is a proactive approach that attempts to detect

botnet apps before they are executed. In other words, it tries to detect danger before

it occurs. This is performed by reverse engineering and analysing the source code of an

Android app. More details about this technique are presented in Chapter 3. In addition,

this thesis presents a novel transfer learning approach for the automatic detection of

botnet families by means of network traffic analysis. This transfer learning approach

is based on measuring the similarity of instances in source and target datasets and

transferring only instances that are deemed similar. This is based on the assumption

that similar instances can have similar characteristics which means they have a potential

to enhance models created using the target data after transfer. This thesis does not only

present a new approach, but it also evaluates and compares its performance against other

existing commonly used approaches. In addition, this thesis discusses a limitation of this

approach and provides an extension that overcomes this limitation. This new transfer

learning approach is discussed in detail in Chapters 4 and 5. In general, the contributions

of this thesis are listed in Section 1.6.

44

Chapter 2. Review of Existing Approaches

2.6 Summary

This chapter was dedicated to background and literature review of related works in

botnet detection and transfer learning. The first part of the chapter explained how

botnets work, their architecture and the anatomy of their attacks. It also provided

botnet examples. In order to grasp the work done in this thesis, it is important to have

at least a high level overview of machine learning. The second section of this chapter

represents an introduction to what machine learning and data mining is about. At the

beginning, the section provided a brief definition of machine learning. After that, it

described transfer learning, a machine learning sub-field, that is the focus of this thesis.

The third part of this chapter summarised the most recent botnet detection approaches

that use machine learning algorithms as their method of detecting malicious traffic. This

part included a summary of Android botnet detection techniques.

45

Chapter 3

An Integrated Source Code

Mining Approach for Android

Botnet Detection

Android is one of the most popular smartphone operating systems. This makes it one

of the default targets for malicious cyber-attacks. Android’s Play Store is not very

restrictive which makes installing malicious apps easy. As botnets are amongst the most

dangerous cybercrime tools that are used nowadays on the internet, it is not surprising

for botnet developers to target smartphone users and install their malicious tools on

a large number of devices. This is often done to gain access to sensitive data such as

credit card details, or to cause damage to individual host or organisation’s resources

by executing denial of service attacks. The main contribution of this chapter is that it

proposes an approach to identify mobile (Android) botnet apps by means of source code

mining. The source code is analysed via reverse engineering and data mining techniques

for several examples of malicious and non-malicious apps. Two approaches are used

46

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

in this work to build datasets. In the first, text mining is performed on the source

code and several datasets are constructed and, in the second, one dataset is built by

extracting source code metrics using an open-source tool. After building the datasets,

several classification algorithms are evaluated and their performance was assessed. It is

worth mentioning here that several sections of this chapter were published by the author

of this thesis in (Alothman and Rattadilok, 2017).

3.1 Overview

Android is a popular operating system that is now growing among smartphone users.

This operating system is open source, customisable and user-friendly. Also, it is

relatively easy to write Java applications that run smoothly on the OS. With the huge

number of existing Java apps, it becomes difficult to know whether a new app is safe

to install or not. To overcome this issue, among other challenges, it would be useful

to automate the process of checking how safe a new app is (i.e. to use the smartphone

itself to predict whether or not an app is safe).

In this work, an attempt is made to solve this problem by automatically reverse

engineering Android apps, obtaining their Java source code and using the source code

to make predictions. This is achieved by using data mining techniques to analyse the

Java source code of these apps and try to predict whether a given app is bot or not.

A summary of related work and existing approaches was given in the previous Chapter

(Section 2.4).

The motivation and objectives of this work are to investigate using a proactive solution

for Android botnet detection. The proposed solution tries to identify botnet apps before

they are executed in order to eliminate harm before it occurs. This is achieved by

47

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

proposing, implementing and evaluating a source code mining method as will

be explained in detail in subsequent sections of this chapter.

Observe that these apps are originally available as Android Application Package (APK)

files and they are transformed into a format that can be automatically analysed. As part

of this work, a collection of botnet and safe, or normal, apps was gathered (the botnet

apps were obtained from the ISCX dataset (Abdul Kadir et al., 2015, Gonzalez et al.,

2015) which is freely available on the Canadian Institute for Cybersecurity’s website1).

The Dex2jar tool (Team, 2016) was employed to reverse engineer these Android apps

and convert them into Java source code. In total, a collection of 21 apps was obtained

(9 botnets and 12 safe) and these apps were used to create datasets suitable for data

mining.

In these datasets, each app is an instance (i.e. example). Several attributes (i.e. features)

were extracted for each app from its Java source code, and the class variable was either

botnet (positive) or not (negative). After building these datasets, several classifiers were

used and their performance was evaluated.

To the best of this thesis’s author’s knowledge, this is the first work to identify Android

botnet apps by directly mining their source code. Therefore, the contributions of

this work can be summarised as follows: This approach uses data mining techniques

to analyse the Java source code in two ways. In the first method, the Java source

code is treated as if it is normal text by using Natural Language Processing (NLP)

methods (Weiss, Indurkhya and Zhang, 2004). And in the second approach, several

statistical measures are extracted from the source code and used as attributes (i.e.

features) in the dataset. This approach can be considered static as it does not require

1https://www.unb.ca/cic/datasets/android-botnet.html

48

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

the execution of the Android app itself. The idea is that as soon as an Android app is

downloaded, it is reverse engineered and its Java source code is obtained and used to

predict whether this app is safe or malicious. It is noteworthy that the advantage here

is being proactive. In other words, it is an attempt to identify danger before it occurs.

Another point is that this work can be considered a behaviour-based approach as

opposed to a signature-based approach. Using signature-based methods have the general

disadvantage of relying on other people to report whether a certain app is malicious

(signature-based methods work by comparing signatures, or hashes, of files or file

contents on a system to a list of known malicious files).

In addition to the previous two points, another minor but key contribution of this work

is that it makes sure the botnets used in experiments belong to different botnet families.

This is highlighted because some approaches use variations of the same botnet to enrich

data. For example, different versions of the same botnet app can be used as different

examples (instances in the training data as will be shown later in this chapter). Another

point this work ensures is that the normal apps used are network apps which makes

the comparison and analysis more objective (i.e. it would be incompatible to compare

botnets against local games or other apps that perform no network activities).

The remainder of this Chapter is organised as follows: Section 3.2 explains in detail

how datasets used in this work were constructed. Section 3.3 has a short description

of the algorithms which have been used in the proposed approach. Section 3.4 has the

experimental results and discussions. The Chapter then ends with a summary.

49

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

3.2 Dataset Formation and Feature Extraction

As part of this work, reverse engineering was used to obtain the Java source code of

the Android apps. As the APK files are compressed files, they were renamed to .zip

and then unzipped which resulted in .dex files (Zhang et al., 2016). After that, the

Dex2jar (Team, 2016) tool was used to convert the dex files into Java jar files. After

tha Java jar files were obtained, the Java decompiler JD-GUI (Team, 2015) was used

to regenerate the Java source code of the APK apps. The entire process is illustrated in

Figure 3.1.

Figure 3.1: APK File Reverse Engineering

In order to make sure all apps analysed in this work are as similar as possible, only

50

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

network apps were used to represent normal apps (i.e. apps that are used to connect to

and communicate with other users such as chatting and messaging apps). A list of the

apps used in this work is provided in Table 3.1.

Botnet Apps Normal Apps

Anserverbot AndroIRC

Bmaster SimpleIRC

DroidDream Kik

Geinimi LOVOO

Nickyspy Line

PJapps WhatsApp

Pletor Hi5

Zitmo SKOUT

Rootsmart Viber

Messenger

WeChat

SnapChat

Table 3.1: A List of the Apps used in the Experiments

To be able to predict whether a given app is botnet or not, predictive models are needed.

For this purpose, the WEKA (Hall et al., 2009) open source machine learning platform

was used (version 3.6.13). The methods used to create the datasets are explained in the

following subsections.

51

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

3.2.1 Text-Mining Approach

Text mining (Witte et al., 2008) aims to process textual information, which is normally

unstructured, and use the resulting structured data to build predictive models and

to understand the original textual information better. The structured data is usually

obtained by deriving numerical summaries about the documents based on the words they

contain. To be able to use the Java source code (obtained after reverse engineering) to

perform text mining, all the Java code of each app was concatenated into one file (which

means there is now one large Java source code file per app) and then a dataset was

created. This dataset initially has three columns: The app’s name, the apps Java source

code and the app’s class (botnet or not).

After that, WEKA’s TextToWordVector filter was applied with Term Frequency and

Inverse Document Frequency (TF-IDF) on all the Java code. TF-IDF (Weiss, Indurkhya

and Zhang, 2004) is a widely used transformation in NLP where terms (or words) in a

document are given importance scores based on the frequency of their appearance across

documents. This idea was used so that any information, such as Java class, method and

variable names, or words used in comments, are assigned scores. A word is important

and is assigned a high score if it appears multiple times in a document (i.e. Java source

code of an app). However, it is assigned a low score (meaning it is less important) if it

appears in several documents (Java code of several apps). WEKA’s default parameters

were used for this filter except for the number of words to keep. This parameter is 1000

by default, and it was changed to 3000 and 5000. This is because some of the apps

had a large number of Java classes and lines. In more detail, the number of different

words is expected to be high and therefore the value of this parameter was varied in an

increasing order. An example dataset resulting after this process is shown in Table 3.2.

52

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Observe that the features are Weights (W’s) of words that result after applying the

TF-IDF filter. And the dots ... mean so forth.

App Name W1 W2 . . . Class (botnet or not)

App 1 0.069 0.034 . . . Yes

App 2 1.03 0.018 . . . No

.

App n 0.009 0 . . . No

Table 3.2: Dataset resulting after applying TextToWordVector and then TF-IDF filter

3.2.2 Source Code Metrics Approach

This method aims to use software metrics as characteristics (or features) of

the Java source code obtained in Section 3.2. For this purpose, the tool

CodeAnalyzer (CodeAnalyzer, 2017) was used and several quantitative measures were

obtained. These include statistics such as the total number of files, the total number

of code lines and the code to comment ratio. Table 3.3 provides an overview of these

metrics.

53

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Metric Definition

Total Files (For multiple file

metrics)

The total number of source code files in the

project

Total Lines The overall number of lines

Average Line Length The average line length (sum of length of all lines

divided by the overall number of lines)

Code Lines The overall number of code lines

Comment Lines The overall number of comment lines

Whitespace Lines The overall number of empty lines

Code/(Comments +

Whitespace) Ratio

The ratio of code lines to comment and empty

lines

Code/Lines Ratio The ratio of code lines to comment lines

Code/Comments Ratio The ratio of code lines to comment lines

Code/Whitespace Ratio The ratio of code lines to empty lines

Code Lines/File (For multiple

file metrics)

The overall number of code lines divided by the

total number of source code files in the project

Comment Lines/File (For

multiple file metrics)

The overall number of comment lines divided

by the total number of source code files in the

project

Whitespace Lines/File The overall number of whitespace lines divided

by the total number of source code files in the

project

Table 3.3: Source Code Metrics extracted by CodeAnalyzer

54

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

An example dataset resulting after this process is shown in Table 3.4. Observe that

SCM stands for Source Code Metric.

App Name SCM1 SCM2 . . . Class (botnet or not)

App 1 33921 0.11 . . . Yes

App 2 128998 0.21 . . . No

.

App n 45635 0.33 . . . No

Table 3.4: Dataset resulting after extracting Source Code Metrics

3.2.3 Feature Selection

WEKA’s StringToWordVector with TF-IDF filter was applied with a various number of

words to keep so that different sets of features (i.e. words) can be experimented with.

This helps in obtaining more insight into the importance of different terms used in the

source code, and at the same time helps in capturing the unimportant ones. In addition,

using various numbers of words to keep helps in inspecting the effect of having sparse

features because some terms might occur rarely and some others can be common. The

resulting datasets had much more features than examples. For example, the number of

features in dataset W3000 is 4332 (see Table 3.5) and the number of examples we have is

21. This means that, in this dataset, the number of features is more than 200 times the

number of examples. Having a large number of features makes it practically impossible to

interpret models and can cause overfitting (Liu and Motoda, 2007). Therefore, reducing

the number of features can help avoid overfitting and build models which are easier to

interpret and with better predictive performance. Having a smaller number of features

can also reduce the computational time considerably (Liu and Motoda, 1998). As feature

55

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

selection tries to identify the most informative features and removes the uninformative,

irrelevant, noisy or unreliable features, WEKA’s SubSetEval feature selection algorithm

was applied to each of these datasets. The selected features included words such as lock,

state and concurrent and the removed features included words like audio, recycle and

widget. Table 3.5 provides a description of all our datasets. Observe that these datasets

are used in the experiments and evaluation performed in Section 3.4.

56

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Dataset Name No of Features Dataset Description

Metrics 13 Resulted after extracting code

metrics using CodeAnalyzer

W1000 1332 Resulted after applying WEKA’s

StringToWordVector with number

of words to keep = 1000

W1000FS 24 Resulted after applying WEKA’s

SubSetEval feature selection

algorithm to dataset W1000

W3000 4332 Resulted after applying WEKA’s

StringToWordVector with number

of words to keep = 3000

W3000FS 85 Resulted after applying WEKA’s

SubSetEval feature selection

algorithm to dataset W3000

W5000 7697 Resulted after applying WEKA’s

StringToWordVector with number

of words to keep = 5000

W5000FS 21 Resulted after applying WEKA’s

SubSetEval feature selection

algorithm to dataset W5000

Table 3.5: A Summary of the Created Datasets

57

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

3.3 Algorithms used in this Work

In this study, several machine learning algorithms in WEKA were used. They were

selected because they are commonly used (Wu et al., 2007). The following Subsections

provide a list of these algorithms and a brief introduction to each of them:

3.3.1 NaiveBayes

The Naive Bayes classifier (Rish, 2001) is based on Bayes theorem with independence

assumptions between input variables (predictors). Suppose x was the input variables

and c was the class, Bayes theorem introduces a method of calculating the posterior

probability, P (c|x), from P (c), P (x), and P (x|c). These terms can be read as follows:

P (c|x) is the probability of the class c given the data x, P (c) is the probability of the

class c, P (x) is the probability of the data (sometimes denoted the evidence) and finally

P (x|c) is the probability of the data x given the class c. The values of P (c), P (x)

and P (x|c) should be computable directly from training data. This classifier assumes

that the effect of the value of an input variable (x) on a given class (c) is independent

of the values of other input variables. This assumption is known as class conditional

independence.

3.3.2 KNN

K-Nearest Neighbours (KNN) (Larose, 2004) is an algorithm that stores all available

examples (i.e. instances) and classifies new examples based on a similarity measure (e.g.

distance function). In more detail, the algorithm calculates the distance (or similarity)

between an input example and the training examples and chooses the k examples that

are closest (or more similar) to the input example. Then a majority vote of neighbours

58

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

is used to classify new examples. This is achieved by the choosing the most common

class among the K-Nearest neighbours. In this study a value of five neighbours (K=5)

was used. This is about a quarter of the total number of instances. Observe that an odd

value, rather than even, was selected to avoid having ties (i.e. having a result where the

number of neighbours that belong to one class is the same as the number of neighbours

that belong to another class).

3.3.3 Decision Trees

Decision trees work is by building classification or regression models in the form of a

tree structure (Rokach and Maimon, 2014). This is done by breaking down a dataset

into smaller and smaller subsets while at the same time an associated decision tree is

incrementally developed. The final result is a tree with decision nodes and leaf nodes.

A decision node has two or more branches, and a Leaf node represents a classification

or decision. WEKA provides more than one decision tree algorithms, in this work the

J48 algorithms was used. J48 is a variation of the well-known C4.5 algorithm (Quinlan,

1993) which is decision tree. It was selected because it is a popular algorithm that is

known to perform well in many areas and it ranked as the number one algorithm in the

extensive experiments performed as part of a published evaluation (Wu et al., 2007).

3.3.4 RandomForest

This algorithm works by building many decision trees at training time and using them

to vote for the class of a new example (Dua and Du, 2011). To construct each tree, the

training data is obtained by randomly sampling both the examples and input variables

(with replacement). In other words, because the training data is randomly samples in

59

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

terms of both examples and features, each decision tree in the RandomForest is trained

with different data which gives different trees the ability to focus on different aspects of

the data.

3.3.5 Sequential Minimal Optimization (SMO)

This is WEKA’s implementation for the Sequential Minimal Optimization for Training

Support Vector Machines (Platt, 1998). Support Vector Machines are a powerful

technique that tries to find the plane (or hyperplane) which maximises the distance

between points from different classes in vector space (Steinwart and Christmann, 2008).

It mainly works in binary classification settings, but there are existing methods to make

it work for multi classification and regression.

3.4 Experimental Results

The algorithms used in this study were introduced in Section 3.3. Each of

these algorithms was run on each of the datasets described in Table 3.5. Five

fold cross-validation was used to calculate a number of classification evaluation

metrics (Santafe et al., 2015). Table 3.6 shows the average classification accuracy of

each algorithm on each dataset. Accuracy (see Equation 3.1) can be defined as the

percentage of predictions that a model gets right. Five-fold cross-validation was used

because the dataset contains nine botnet apps and 12 normal apps. This will split the

data into five equal parts making sure that each part contains botnet and normal apps

(no app appears in more than one part). To evaluate an algorithm, it is trained on

4/5 of the data and an accuracy value is computed by testing the trained algorithm on

the remaining 1/5. This is repeated five times, with a different testing part is selected

60

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

each time. Then the overall accuracy is calculated as the average of the five calculated

accuracy values. It is worth mentioning here that these algorithms were ran with their

default parameters unless mentioned otherwise.

Dataset NB KNN(5) J48 RF SMO

W1000 76.20% 81.00% 85.70% 85.70% 85.70%

W1000FS 85.70% 95.20% 85.70% 95.20% 95.20%

W3000 85.70% 95.20% 67.20% 90.50% 90.50%

W3000FS 90.50% 95.20% 85.70% 95.20% 95.20%

W5000 81.00% 95.20% 85.70% 90.50% 95.20%

W5000FS 85.70% 100% 95.20% 100% 100%

Metrics 85.70% 81.00% 67.20% 81.00% 81.00%

Table 3.6: A Summary of Performance Results (Average Accuracy of Classifiers on
Various Datasets)

Some of the performance metric values for different algorithms in Table 3.6 and later

tables in this chapter are the same. This is likely to be because of the small size of

the dataset and number of folds selected for cross-validation. Different values can be

obtained by using more data or a different number of folds).

Accuracy =
nbot→bot + nnor→nor

nbot→bot + nbot→nor + nnor→bot + nnor→nor
× 100% (3.1)

According to Equation 3.1 accuracy in our experiments is calculated as the sum of the

number of cases a model predicts correctly (i.e. the number of botnet instances which

were correctly predicted as botnet added to the number of normal instances which were

correctly predicted as normal) divided by the total number of cases (i.e. the number

61

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

of botnet instances which were correctly predicted as botnet added to the number of

botnet instances which were incorrectly predicted as normal added to the number of

normal instances which were correctly predicted as normal added to the number of

normal instances which were incorrectly predicted as botnet). Observe that our class of

interest is the botnet class and that these numbers are used to compute other metrics as

follows:

The error rate, or ERR, is the fraction of predictions that a model gets wrong

(Equation 3.2). The value of ERR is normally between zero and one (the closer to

zero the better the classifier).

ERR =
nbot→nor + nnor→bot

nbot→bot + nbot→nor + nnor→bot + nnor→nor
(3.2)

The False Positive Rate, or FPR, is the ratio between the number of botnet cases which

were incorrectly classified as normal to the total number of botnet cases (Equation 3.3).

The value of FPR is normally between zero and one (the closer to zero the better the

classifier).

FPR =
nbot→nor

nbot→nor + nbot→bot
(3.3)

The False Negative Rate, or FNR, is the ratio between the number of normal cases which

were incorrectly classified as botnet to the total number of normal cases (Equation 3.4).

The value of FNR is normally between zero and one (the closer to zero the better the

classifier).

FNR =
nnor→bot

nnor→bot + nnor→nor
(3.4)

62

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

The True Positive Rate, or TPR, is the ratio between the number of normal cases which

were correctly classified as normal to the total number of normal cases (Equation 3.5).

The value of TPR is normally between zero and one (the closer to one the better the

classifier). TPR is also known as Sensitivity.

TPR =
nnor→nor

nnor→bot + nnor→nor
(3.5)

The True Negative Rate, or TNR, is the ratio between the number of botnet cases which

were correctly classified as botnet to the total number of botnet cases (Equation 3.6).

The value of TNR is normally between zero and one (the closer to one the better the

classifier). TNR is also known as Specificity.

TNR =
nbot→bot

nbot→nor + nbot→bot
(3.6)

Another metric that we have calculated is the area under the curve, or AUC, which is

often used in evaluating classifiers. Its main advantage is that, when several classifiers are

used, it can be used to decide which of them is the best at predicting classes. The value

of AUC is normally between zero and one (the closer to one the better the classifier).

The reader is referred to (Bradley, 1997) for a comprehensive explanation of this metric.

The following tables show AUC, TPR, TNR, FPR, FNR and ERR for the five classifiers

explained previously on all the datasets described in Table 3.5. The most interesting

value of each metric is displayed in bold. Bear in mind that for some metrics we are

looking for the minimum value and some others we are looking for the highest value.

63

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Dataset AUC TPR TNR FPR FNR ERR

W1000 0.736 0.556 0.917 0.083 0.444 0.238

W1000FS 0.894 0.667 1.0 0.0 0.333 0.143

W3000 0.847 0.778 0.917 0.083 0.222 0.143

W3000FS 0.903 0.889 0.917 0.083 0.111 0.095

W5000 0.792 0.667 0.917 0.083 0.333 0.19

W5000FS 0.903 0.889 0.917 0.083 0.111 0.095

Metrics 0.843 0.778 0.917 0.083 0.222 0.143

Table 3.7: A Summary of NaiveBayes Results

Table 3.7 shows the results after using NaiveBayes. It can be seen that it equally scores

the highest AUC and TPR on the two datasets W3000FS and W5000FS. On the other

hand, it scores the highest TNR and lowest FPR on the W1000FS dataset. In addition, it

equally scores the lowest FNR and ERR for on the two datasets W3000FS and W5000FS.

It is interesting to see how NaiveBayes performs well on datasets generated using text

mining techniques (especially after applying feature selection).

64

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Dataset AUC TPR TNR FPR FNR ERR

W1000 0.958 0.667 0.917 0.083 0.333 0.19

W1000FS 0.931 0.889 1.0 0.0 0.111 0.048

W3000 0.935 1.0 0.917 0.083 0.0 0.048

W3000FS 1.0 0.889 1.0 0.0 0.111 0.048

W5000 0.949 1.0 0.917 0.083 0.0 0.048

W5000FS 1.0 1.0 1.0 0.0 0.0 0.0

Metrics 0.898 0.778 0.833 0.167 0.222 0.19

Table 3.8: A Summary of kNN Results

Table 3.8 shows the results after using the kNN classifier. It can be seen that it scores

the best values for all metrics on the W5000FS dataset. This is probably because the

increased number of features (i.e. number of words to keep) provides more information

for the classifiers to distinguish between different classes. This is in addition to the fact

that it performs equally well on some of other datasets.

Dataset AUC TPR TNR FPR FNR ERR

W1000 0.861 0.889 0.833 0.167 0.111 0.143

W1000FS 0.847 0.778 0.917 0.083 0.222 0.143

W3000 0.75 0.667 0.833 0.167 0.333 0.238

W3000FS 0.833 0.667 1.0 0.0 0.333 0.143

W5000 0.847 0.778 0.917 0.083 0.222 0.143

W5000FS 0.944 0.889 1.0 0.0 0.111 0.048

Metrics 0.741 0.556 0.917 0.083 0.444 0.238

Table 3.9: A Summary of J48 Results

65

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Table 3.9 shows the results after using WEKA’s J48 decision tree algorithm. It can be

seen that it scores the best values for all metrics on the W5000FS dataset. This is in

addition to the fact that it performs equally well on some of other datasets.

Dataset AUC TPR TNR FPR FNR ERR

W1000 0.977 0.778 0.917 0.083 0.222 0.143

W1000FS 0.986 0.889 1.0 0.0 0.111 0.048

W3000 0.981 0.778 1.0 0.0 0.222 0.095

W3000FS 0.995 0.889 1.0 0.0 0.111 0.048

W5000 0.972 0.889 0.917 0.083 0.111 0.095

W5000FS 1.0 1.0 1.0 0.0 0.0 0.0

Metrics 0.898 0.778 0.833 0.167 0.222 0.19

Table 3.10: A Summary of RandomForest Results

Table 3.10 shows the results after using WEKA’s RandomForest algorithm. It can be

seen that it scores the best values for all metrics on the W5000FS dataset.

Dataset AUC TPR TNR FPR FNR ERR

W1000 0.833 0.667 1.0 0.0 0.333 0.143

W1000FS 0.944 0.889 1.0 0.0 0.111 0.048

W3000 0.889 0.778 1.0 0.0 0.222 0.095

W3000FS 0.944 0.889 1.0 0.0 0.111 0.048

W5000 0.944 0.889 1.0 0.0 0.111 0.048

W5000FS 1.0 1.0 1.0 0.0 0.0 0.0

Metrics 0.819 0.889 0.75 0.25 0.111 0.19

Table 3.11: A Summary of SMO Results

66

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

Table 3.11 shows the results after using WEKA’s SMO algorithm. The results show

that SMO has the same TPR and FNR for all datasets.

For each dataset, the best performing algorithm was displayed in bold in Table 3.6 using

the accuracy as a measure of performance. As it can be seen, some algorithms perform

equally well for some datasets. The feature values are positive real numbers in all of

these datasets. For the metrics dataset, the number of features is less than the number

of examples. As for the other datasets, some of them had much more features than

examples as can be seen in the No of Features column in Table 3.5.

The disadvantage of having much more features than examples was mentioned in

Section 3.2.3 and the experimental results support what was discussed there. It is

clear from the table that the performance improves significantly after applying feature

selection. This case is true regardless of the number of features before applying feature

selection (recall several values for the number of words to keep parameter were used when

the TextToWord filter was applied). By analysing the experimental results further, an

interesting observation can be made. That is, the performance of the Decision Tree (J48)

algorithm is always the worst regardless of the dataset. Another observation is that the

k-Nearest Neighbour algorithm (with five neighbours in these experiments) seems to be

the best performing algorithm in general.

However, using other metrics for classification performance shows that results can vary.

Looking at Tables 3.7, 3.8, 3.9, 3.10 and 3.11 reveals that in general the used

classifiers perform well on dataset W5000FS. These classifiers showed high values for

AUC, TPR and TNR, and low values for FPR, FNR and ERR. However, by observing

the performance datasets generated using text mining methods, it can be noticed that

performance improves as the number of features increases. In addition, it was interesting

67

Chapter 3. An Integrated Source Code Mining Approach for Android Botnet Detection

to see that none of the classifiers performed best on the Metrics dataset and using feature

selection of the datasets generating using text mining improves classifier performance.

Some might suggest that code obfuscation might be used to evade detection. It should

be clarified that this is exactly what this proposed method is about. Even if a known

botnet app uses such techniques, it just needs to be added to the training data and

used in building predictive models. In fact, the code obfuscation techniques can provide

additional features that can be added to the training datasets for use in building the

predictive models. Another point that even if obfuscation is used to evade detection,

the method proposed in this chapter can still be utilized after a de-obfuscation step has

been applied. This means that appropriate de-obfuscation methods can be built into

the preprocessing pipeline prior to the prediction stage. Lastly, if de-obfuscation fails,

then the source code metrics approach can still be utilized since it is based on statistical

methods that do not depend on the code syntax.

3.5 Summary

This chapter provided a complete overview of a new method that was developed for

the detection of botnet Android apps. The method is based on reverse engineering

Android apps and mining their source code via Natural Language Processing and

statistical techniques. The chapter began by providing an overview of the problem and

summarising major existing techniques. After that a detailed explanation of how the

technique works, how the datasets were created and how the experiments were run was

given. The chapter ended with analysing and discussing the results which showed that

the proposed method can detect botnets with higher accuracy especially when feature

selection is applied.

68

Chapter 4

A Novel Similarity-Based

Instance Transfer Learning

Approach for Botnet Family

Classification

The previous chapters introduced several topics that are essential to understand how

botnets work. Not only this, but they also contained an introduction to machine learning

and transfer learning which are at the core of this thesis. In addition, a review of existing

approaches was also conducted. This chapter explains in detail a novel transfer learning

method for botnet detection via network traffic analysis. The novel algorithm is called

Similarity-Based Instance Transfer Learning, or SBIT for short. The chapter explains

how this transfer learning method for botnet family classification was developed and

how it works. In addition, this chapter contains an extension of this method. The

extended version is denoted Class Balanced SBIT (or CB-SBIT for short) because it

69

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

ensures the dataset resulting after instance transfer does not contain class imbalance.

Class imbalance is undesired because it can lead to overfitting among other problems in

machine learning.

4.1 Introduction

Botnet Detection has been an active research area over the last few decades. Researchers

have been working hard to develop effective techniques to detect botnets. From reviewing

existing approaches, it can be noticed that many of them target specific botnets and

many others try to identify any botnet activity by analysing network traffic. They

achieve this by concatenating existing botnet datasets to obtain larger datasets, building

predictive models, and then employing these models to predict whether unseen network

traffic is safe or harmful. Examples of previous works where concatenated datasets have

been used include the works in (Zhao et al., 2013), (Stevanovic and Pedersen, 2013)

and (Stevanovic and Pedersen, 2014).

The problem with the first approach is that data is usually scarce and costly to obtain.

By using small amounts of data, the quality of predictive models will be questionable.

On the other hand, the problem with the second approach is that it is not always

correct to blindly concatenate datasets from different botnets. Datasets can have

different distributions which means they can downgrade the predictive performance of

machine learning models. The approach proposed in this chapter is a novel transfer

learning approach that utilises datasets from different but related domains. The idea is

instead of concatenating datasets, transfer learning can be used to carefully decide what

data to use. The hypothesis is that predictive performance can be improved

by using transfer learning across datasets containing network traffic from

70

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

different botnets. The novel approach presented in this thesis is compared to a

classical open source transfer learning algorithm called TransferBoost. Experiments

show that the proposed method outperforms the TransferBoost approach and produces

higher accuracy. Not only this, but it is also faster which gives it another advantage. The

dangers of botnets are becoming more widespread; an example of this is the WannaCry

attack that caused many significant institutions in several countries to struggle to

perform their services (see Section 2.1.2.4). The research community has been actively

trying to develop automatic techniques to identify botnets in order to stop their harmful

activities. SBIT and CB-SBIT methods can be used to enhance the performance of

predictive models to identify ’mormal’ and ’malicious’ traffic. The subsequent section

presents TransferBoost, SBIT and then CB-SBIT. Extensive comparative analysis is

presented Chapter 5.

This chapter contains the following key contributions: 1) It contains a summary and

overview of two existing commonly used open source transfer learning and data sampling

algorithms (namely TransferBoost and SMOTE respectively), 2) It presents and explains

what is meant by instance (or in general, vector) similarity and how it can be measured,

3) It introduces the novel transfer learning algorithm and highlights its strength and

weakness and 4) It proposes an extension of this novel algorithm to overcome its

weakness.

4.2 Methods

The following subsections provide an overview of the open source transfer learning

algorithm that was used.

71

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

4.2.1 The TransferBoost Algorithm

The TransferBoost algorithm (Eaton and desJardins, 2011) is a transfer learning

algorithm that is based on the classical AdaBoost algorithm. It is an instance transfer

learning algorithm and it works by trying to boost target data by transferring instances

from the source data and assigning weights to these instances. It examines the

transferrability of instances by checking the change in performance on the target task

when, and when not, transferring instances. The weight assignment in TransferBoost

is done in such a way that higher weights are assigned to instances that show

positive transferrability and lower weights are assigned to instances that show negative

transferrability. It iteratively updates weights so that, when it finishes training, instances

that exhibit positive transfer can have high weights, and therefore they have more

influence, and instances that exhibit negative transfer can have very low, or zero, weights,

and therefore they have little to no influence.

The TransferBoost’s algorithm developer has made the implementation publicly

available. The implementation is in Java and it is based on WEKA. It was downloaded

and used in the experiments as will be explained in more detail in Section 5.4.

As shown in Figure 4.1 TransferBoost concatenates all the source datasets with the

target datasets and assigns initial weights to instances of the newly created dataset.

It then creates an initial model using this dataset and it computes a weight for this

model and new weights for the instances according to their transferrability. After this it

creates another model for which it computes a corresponding weight and uses this model

to assign new weights to instances. This is repeated k times and in the end k models are

created The value of k is a TransferBoost parameter that can be predefined. Its default

72

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

value is 10. . A prediction for an unseen instance is done by finding a weighted majority

vote of the predictions of all the created k models.

73

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

Figure 4.1: A Flowchart of the TransferBoost Algorithm

74

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

4.2.2 The Similarity-Based Instance Transfer (SBIT) Algorithm

In this section the proposed transfer learning method is going to be explained. Most of

its details were published in (Alothman, 2018b) by the author of this thesis. As it was

mentioned previously, the method is based on instance transfer. The algorithm receives

as input one target dataset and one or more source datasets. As shown in Figure 4.2, it

loops through the instances of each source dataset and checks how similar these instances

are to the instances of the target dataset.

For example, imagine a situation where one wants to develop a machine learning model

to accurately detect network traffic generated by botnet X and there is only little amount

of labelled data that can be used (let us refer to data that belongs to class X as DX).

Using just this data to build an accurate predictive model might not be possible due to

the small size of the data. Imagine there are two large labelled network traffic datasets

that belong to two different botnets Y and Z respectively (let us refer to these two

datasets as DY and DZ). How can datasets DY and DZ be utilised to improve the

quality of the model developed using dataset DX?. Concatenating DX , DY and DZ to

generate a large dataset might not be the correct course of action because the datasets

can have different distributions and this can lead to a poorer model. The approaches

proposed and discussed in this chapter are based on carefully selecting instances from the

datasets DY and DZ and appending these instances to the dataset DX . The selection

process is based on the degree of similarity between instances in DX and instances in

DY and DZ .

75

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

Figure 4.2: A Flowchart of the SBIT Algorithm

76

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

Algorithm 1 shows the pseudo-code of the SBIT approach. As the data is numerical,

As many as five similarity methods are used to check how similar the instances are. An

instance is selected for transfer from the source dataset to the target dataset if it satisfies

the conditions. These conditions are based on using empirically determined threshold

values for each type of similarity that was used. In more detail, several experiments

were carried out using various threshold values and the ones that lead to improved

performance were selected. The idea is, because the source datasets are related to the

target dataset, they are likely to contain similar instances (similar and not necessarily

identical). In other words, botnets have a similar architecture and communication

mechanism. This means the data they send and receive can be similar.

77

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

Algorithm 1: The Proposed Transfer Learning Method Algorithm:

Similarity-Based Instance Transfer (SBIT)

Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T

Input : Selected = []

Input : thr1, thr2, . . . thrk

Output: New Dataset that is the result of Merge(T, Selected)

1 for S ∈ [S1, S2 . . . Sn] do

2 for Is ∈ S do

3 for IT ∈ T do

4 Sim1 = ComputeSimilarity1(Is, IT);

5 Sim2 = ComputeSimilarity2(Is, IT);

6 . . . ;

7 Simk = ComputeSimilarityk(Is, IT);

8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then

9 Add Is to Selected ;

10 TNEW = Merge(T, Selected);

11 Return TNEW ;

In more detail, the source datasets are scanned one by one and an attempt is made to

find any similar instances in these datasets to any of the instances of the target dataset.

In the remaining parts of this chapter, the developed method will be referred to as SBIT

(short for Similarity-Based Instance Transfer).

The definition of similarity and how it can be calculated is going to be explained in

Section 4.3. Observe that lines 4, 5 and so on in Algorithm 1 do not mention what the

78

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

type of calculated similarity is, nor do they specify how many similarity types should

be calculated. This is left to the user and it can be modified to suit the application

area where this algorithm is being used. It must be said that the current version of this

work requires manual specification of the similarity types used as well as the thresholds

that are used to decide whether two instances are similar or not (a different threshold

can be used for each similarity type). The check is performed in line 8 in Algorithm 1

and, as it illustrates, one or more similarity thresholds must be exceeded for an instance

from a source dataset to be deemed similar to an instance from the target dataset (and

hence it is marked for copying to the target dataset). The currently used values for

the similarity threshold are manually set and an interesting extension to this algorithm

would be to determine these values automatically (perhaps by using a search approach

such as genetic algorithms).

4.3 Instance Similarity

Before discussing the types of similarities that were used, it is logical to explain why

instance similarity was used. The idea is that similar instances tend to belong to

similar classes (i.e. they have similar behaviour). This is believed to be a reasonable

rule-of-thumb in the absence of more detailed knowledge. Also, this is going to be

examined experimentally and its worthiness will be investigated (see Section 5.4 for

further details).

4.3.1 What is Similarity

The definition of similarity can be subjective; therefore, it is essential to have a

quantitative approach for estimating the degree of resemblance between two or more

79

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

entities. When one says entities A and B are similar, it is important to check how

similar they are, or in other words, in what aspect(s) they are similar. For example,

one might claim that a circle and a triangle are similar. Although several differences

such as the angles in a triangle and the fact that a circle has an infinite number of lines

of symmetry can be immediately listed, one aspect of similarity is that both are closed

geometric shapes.

Let us assume that the similarity of two entities is measured as a real number S.

Therefore, it is common to make sure that the value of S is:

0 <= S <= 1

This is interpreted as a value of S = 0 means there is no similarity at all between the

two entities, whereas a value of S = 1 means the two entities are identical (i.e. They

are the same). The degree of similarity increases as S approaches 1, and decreases as S

approaches 0.

4.3.2 How to Measure the Similarity of Instances

To measure the similarity of two instances, one approach is to consider the feature values

of each instance as a vector (only feature values without the class label). Fortunately,

the feature values in the network traffic data used in this work are all numeric.

For example, a feature vector representing one instance should look like:

[f1, f2, . . . fn]

Where f1, f2, . . . fn are the feature values for the first feature, second feature and so on.

There are many different formulae for computing the similarity between two numerical

80

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

vectors of the same length. The reader is referred to the book in (Deza and Deza, 2009)

for an explanation of various similarity measures.

4.3.3 The Similarity Types used in this Work

Now let us assume there are two real-value vectors X and Y such that:

X = [x1, x2, . . . xn]

and

Y = [y1, y2, . . . yn]

To compute similarities between X and Y , one only needs to plug these vectors in a

suitable similarity formula (Warrens, 2016). The similarity types used in this work are

listed in Table 4.1.

For example, imagine there are two instances Izeus and Isogou that belong to the two

botnets Zeus and Sogou respectively, and these two instances have the same feature

space (i.e. the name and number of features is the same in both). In order to compute

the similarity between Izeus and Isogou, their feature values can be used in one of the

formulae (see Table 4.1) and the result can be easily obtained. Although it has been

mentioned previously, it is important to bear in mind that different similarity types look

at different similarity aspects. Thus, sometimes it is a good idea to use more than one

type of similarity.

81

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

Similarity Formula

Tanimoto Similarity (X,Y)

n∑
i=1

(xi,yi)

n∑
i=1

x2
i+

n∑
i=1

y2i +
n∑

i=1
(xi,yi)

Ellenberg Similarity (X,Y)

n∑
i=1

(xi+yi)1xi·yi 6=0

n∑
i=1

(xi+yi)(1+1xi·yi=0)
, 1xi·yi 6=0 =

1, if xi · yi 6= 0

0, otherwise

Gleason Similarity (X,Y)

n∑
i=1

(xi+yi)1xi·yi 6=0

n∑
i=1

(xi+yi)
, 1xi·yi 6=0 =

1, if xi · yi 6= 0

0, otherwise

Ruzicka Similarity (X,Y) 1−

n∑
i=1

min{xi,yi}
n∑

i=1
max{xi,yi}

BrayCurtis Similarity (X,Y) 2
n(x+y)

n∑
i=1

min{xi, yi}

Table 4.1: Different Similarity Measure Types and their Formulae

The following is a summary of how each similarity value in Table 4.1 is calculated.

Observe that this is based on the assumption that the two real-value input vectors are

of the same length (i.e. they contain the same number of elements). If the two vectors

have different lengths, their lengths should be made equal through up/down sampling

before measuring their similarity.

• Tanimoto: The Tanimoto similarity of two real-value vectors is calculated as a

fraction of the following structure: the numerator only contains the dot product

of the two input real-value vectors, whereas the denominator contains the sum of

(1) the sum of the squared elements of the first input vector (2) the sum of the

squared elements of the second input vector (3) the dot product of the two input

vectors

82

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

• Ellenberg: The Ellenberg similarity is calculated as a fraction of sums of

corresponding elements in the two input real-value vectors. The sum in the

numerator is calculated as follows: if any of the corresponding elements is zero,

then the value of their sum is zero, otherwise the correct sum is used. As for the

denominator, if any of the corresponding elements is zero, then the value of their

sum is the non-zero element, otherwise the correct sum is multiplied by two and

used.

• Gleason: The Gleason similarity is similar to Ellenberg similarity explained in the

previous point. The numerator is calculated in the same way. The denominator

is calculated as the sum of corresponding elements in the two input real-value

vectors.

• Ruzicka: To calculate Ruzicka similarity, firstly, the following sums are computed:

(1) the sum of the minimum of corresponding elements in the two input vectors

(2) the sum of the maximum of corresponding elements in the two input vectors.

Secondly, the sum obtained in (1) is divided by the sum obtained in (2) and the

result is subtracted from 1.

• BrayCurtis: The BrayCurtis similarity requires finding the average of each of the

two input real-value vectors, summing these averages and multiplying the result

by the number of elements in one of the input vectors. Then two is divided by

the result and the resulting value is multiplied by the sum of the minimum of

corresponding elements in the two input vectors.

83

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

4.3.4 Example Similarity Values

This section illustrates similarity values between instances of the Zeus and Menti

botnets. As the histograms in Figure 4.3, the five similarity measures explained in

Section 4.3.3 were computed between all instances and the histogram were plotted to

show the distribution of similarity values.

It can be immediately noticed that the Tanimoto, Ruzicka and BrayCurtis similarities

are skewed towards lower values (Figures 4.3a, 4.3d and 4.3e respectively), whereas

Ellenberg and Gleason similarities are skewed towards higher values (Figures 4.3b

and 4.3c respectively). This means that there is in general low similarity between Zeus

and Menti data when using Tanimoto, Ruzicka and BrayCurtis similarities. On the

other hand, there is in general high similarity between Zeus and Menti data when using

Ellenberg and Gleason similarities. This could be attributed to the fact that different

similarity measures compute similarity based on different aspects. For example, one

type of similarity may focus on the port numbers and used protocols, and another type

of similarity may focus on some other features. In fact, this is the main reason why

multiple similarity measures were used.

It is possible to compute the similarity between all instances in source and target datasets

and to use the mean, or median, of the resulting values as the threshold for each similarity

type separately. For example, an experiment as the one shown in Figure 4.3 can be run

prior to SBIT and the mean of each similarity type can be used as a threshold for that

particular threshold for that particular similarity.

84

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

(a) Tanimoto Similarity (b) Ellenberg Similarity

(c) Gleason Similarity (d) Ruzicka Similarity

(e) BrayCurtis Similarity

Figure 4.3: Histogram of Similarity Values

85

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

4.4 SBIT Limitations and Extension

Careful inspection of Algorithm 1 reveals that SBIT copies an instance from the source

data to the target data as soon as it satisfies the similarity criteria (lines 8 and 9). It

performs this step without paying attention to the class of that instance. This means it

is possible for instances transferred by SBIT to belong to one class only (or at least for

the majority of them to belong to the same class) which leads to creating a new target

dataset that is class imbalanced.

4.4.1 The Class Imbalance Problem

One of the main reasons that cause overfitting (Section 4.4.2) is class imbalance (He and

Ma, 2013). Class imbalance refers to the problem when a classification dataset contains

more than one class and number of instances in each class is not approximately the

same. For example, there might be a two-class classification dataset that contains 100

instances where the number of instances for one of the classes is 90 and for the other

is 10. This dataset is said to be imbalanced as the ratio of first class to second class

instances is 90:10 (or 9:1). One might train a model that yields 90% accuracy but in

reality it could be that the model is predicting the same class for the vast majority of

testing data.

There are several ways to combat class imbalance (Chawla, 2010). One of these methods

is to down sample the majority class (this is sometimes referred to as under sampling). In

other words, to randomly select a subset of the instances that belong to the majority class

so that the number of instances in each class in the resulting dataset is approximately the

same. Another method is to over sample the minority class; which means to randomly

duplicate instances from the minority class so the dataset becomes class balanced.

86

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

One common technique that falls under this category is the SMOTE algorithm (or the

Synthetic Minority Over-sampling Technique (Chawla et al., 2002)) which generates

synthetic instances that belong to the minority class rather than generating duplicates.

See Section 4.4.3 for more details on how SMOTE works.

4.4.2 What is Overfitting?

Overfitting and underfitting are two of the most common challenges in machine

learning (Bramer, 2013). Overfitting happens when a model fits the data it is trained

on too well. It occurs when a model, not only learns the details in training data, but

also the detail in the noise to the extent that it negatively affects the performance of the

model on unseen data (Simonson, 2013). What this means is that the model picks up

the noisy patterns in the training data which might not necessarily exist in new data.

As a result, the model’s ability to generalise is negatively affected. Underfitting on the

other hand refers to the phenomenon when a model poorly models the training data and

fails to generalise to unseen data. It can be identified early during the model training

process by observing the performance of the model on the training data (it will be poor).

4.4.3 The Synthetic Minority Over-sampling Technique (SMOTE)

Algorithm

SMOTE, or Synthetic Minority Oversampling Technique (Chawla et al., 2002), is a

statistical approach that increases the number of instances in a dataset so that the

dataset is class balanced. In other words, the technique works by creating new instances

from already existing instances. These already existing instances are usually the minority

87

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

cases that are supplied as input to the algorithm. Observe that SMOTE normally does

not alter the number of instances of a majority class.

(a) Original Instances

(b) SMOTE Works on Minority Instances

(c) SMOTE Creates New Instances from Original Instances

Figure 4.4: How SMOTE Works

88

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

The new instances generated by SMOTE are not just duplicates of existing instances;

instead, SMOTE creates these new instance between existing (real) instances of the

minority class. In other words, the new instances are sythesised as a combination of

the pre-existing real instances. SMOTE exploits the nearest neighbours as shown in

Figure 4.4.

Figure 4.4 shows a scatter plot of instances from Zeus and RBot botnets using two

features only. As depicted, the way SMOTE works can be explained as follows: SMOTE

draws imaginary lines between nearest instances (Figure 4.4b) and creates the required

number of instances on those lines (Figure 4.4c). This makes the new synthetic instances

more general (i.e. they have the same distribution as the original instances).

One issue that can be noticed about how SMOTE works is the number of neighbours.

If the algorithm is given as parameter the value 1 as the number of neighbours, or there

is only one instance of the minority class, then it does not work. If it creates any new

instances in this case they will all be duplicates or copies of that single instance. This

will be made clearer later in Section 5.4.5.

4.4.4 The Class Balanced SBIT Algorithm (CB-SBIT)

To avoid class imbalance the SBIT (Alothman, 2018b) algorithm discussed in

Section 4.2.2 can be modified to ensure the resulting dataset is class balanced. Details

of this extension were published by the author of this thesis in (Alothman et al., 2018).

Recall SBIT assumes that the target dataset is class balanced, the modified version of

SBIT makes sure that the new dataset (resulting after selecting instances from source

datasets) remains class balanced by using a strict criteria as illustrated in Algorithm 2.

This can be achieved in more than one way. For example, it can be done on the fly

89

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

by keeping track of the ratio of classes of instances transferred from the source datasets

and ensuring that whenever an instance is added, the ratio remains almost the same.

In other words, it guarantees that approximately the same number of instances from

different classes is transferred to the target dataset. Another method is to perform a

post-processing step and sub-sample the instances selected for transfer in such a way

that the classes are balanced. In the current implementation, both methods are available

although only the latter is included in Algorithm 2 (lines 10 and 11).

Algorithm 2: Class Balanced Similarity-Based Instance Transfer (CB-SBIT)

Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T

Input : Selected = []

Input : thr1, thr2, . . . thrk

Output: New Dataset that is the result of Merge(T, Selected)

1 for S ∈ [S1, S2 . . . Sn] do

2 for Is ∈ S do

3 for IT ∈ T do

4 Sim1 = ComputeSimilarity1(Is, IT);

5 Sim2 = ComputeSimilarity2(Is, IT);

6 . . . ;

7 Simk = ComputeSimilarityk(Is, IT);

8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then

9 Add Is to Selected ;

10 ClassBalancedSelected = SubSample(Selected);

11 TNEW = Merge(T,ClassBalancedSelected);

12 Return TNEW ;

90

Chapter 4. A Novel Similarity-Based Instance Transfer Learning Approach for Botnet
Family Classification

The SubSample function in Algorithm 2 counts the number of instances in each class

in the input dataset and randomly removes instances from the majority class(s) until

the dataset is class balanced. As will be shown in Section 5.4.4, CB-SBIT in general

improves the accuracy of SBIT due to its ability to ensure class balance.

4.5 Summary

This chapter has introduced the algorithms developed as part of this thesis (i.e.

SBIT and CB-SBIT) as well as two commonly used open source algorithms (i.e.

TransferBoost and SMOTE). As for the developed algorithms, the chapter included

a detailed explanation of the intuition behind them, their pseudo-code and discussion.

The chapter also included a detailed explanation of what similarity is, the similarity

measures used in this work and how they were used in the developed novel algorithms.

On the other hand, the two open source algorithms were briefly explained because they

were used for evaluation purposes. The next chapter contains a detailed experimental

evaluation of all these algorithms.

91

Chapter 5

Preprocessing of Raw Network

Traffic Data and Performance

Evaluation of the Proposed

Methods

One of the most important aspects in machine learning in general, and in botnet

detection specifically, is data. Without data no practical experiments can be conducted

and therefore no concrete conclusions can be drawn. This chapter provides a detailed

overview of how data used in this work was obtained and preprocessed. It also presents

an extensive evaluation of the novel techniques explained in Chapter 4. Each data

preprocessing step is explained in such a way so that the reader can follow what was

carried out and why it was carried out. After explaining the steps, the chapter shows the

results of applying these steps to the downloaded dataset. After that, the last section of

92

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

this chapter demonstrates the experimental results of using this data with the proposed

approaches.

5.1 Introduction

Data preprocessing is an essential step in data-driven approaches; this is because data in

the real world is often incomplete, or unsuitable, for being used by software algorithms

such as those used in data mining and machine learning. For instance, data can contain

missing values or unnecessary and uninformative features. Also, noise can exist in the

data in the form of outliers or errors and these can influence not only models created

using the data but also the interpretation of these models. Because of these issues and

others, it is important to ensure that data is in an acceptable condition to be used in

tasks such as automatic prediction and analysis.

Over the last few years, the cost of malicious attacks has risen to tens of millions of

Pounds from UK bank accounts (Agency, 2017). However, in order to test and evaluate

malicious traffic detection techniques, network traffic data is required. Obtaining

Network traffic is normally captured using tools such as Wireshark (Orebaugh et al.,

2007). The data is usually in raw PCAP (Packet CAPture) format which is not

processable by popular data mining platforms such as WEKA (Hall et al., 2009) or

Scikit-learn (Pedregosa et al., 2011). Hence, it is necessary to prepare the data and

transform it into a suitable format.

An existing approach that uses Wireshark to transform PCAP data into textual data

is the work in (Fowler and Hammel, 2014). While Wireshark extracts some features, it

does not extract statistical metrics such as the ones generated by the open source tool

that has been used in this work (more in Section 5.2.2). Although the review in (Davis

93

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

and Clark, 2011) attempts to summarise several existing preprocessing techniques, it

focuses more on features extracted from traffic data. This paper (to the best of this

thesis’s author’s knowledge) is the first that provides a detailed step-by-step explanation

of various preprocessing phases.

This chapter has three main contributions: 1) It provides several steps that should be

considered when carrying out network traffic data transformation from raw to a textual

format, 2) It demonstrates these steps by applying them to a real, rather than simulated,

data, and 3) It presents detailed performance evaluation of our novel tranfer learning

algorithms presented in Chapter 4 using the datasets resulting from the network traffic

data transformation.

5.2 Preprocessing Raw Network Traffic Data

The most common raw format of network traffic data is the PCAP format which is not

supported by many widely used machine learning and data mining tools and platforms.

Hence, as shown in Figure 5.1, it is necessary to carry out several steps to prepare the

data for processing. These steps are explained in detail in the following subsections.

94

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Figure 5.1: PreProcessingPipeline

5.2.1 Obtaining the PCAP Data

The data is usually captured in PCAP format using network traffic analysers such as

Wireshark. According to the documentation of Wireshark, some global information

is stored in the header of each PCAP file. After that, the file contains record(s) for

captured packets. These records are organised in such a way that each packet data has

its own packet record as shown in Figure 5.2.

Figure 5.2: Contents of PCAP File

95

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

5.2.2 From PCAP to Plain Text

According to the documentation of Wireshark, network data stored in the captured

packet data in a PCAP file might not necessarily be in its original order as it appeared

on the network. This is because the PCAP file might store only some part of each packet

(usually the length of this part is predefined to be larger than the largest possible packet

so no packet is trimmed). Due to this reason, it is highly recommended to use specialised

tools that understand the structure of PCAP files. Therefore, to transform PCAP data

into a textual format, it is advised to use the freely available tool FlowMeter (Draper-Gil

et al., 2016). This is a Java package that reads in a directory which contains one or

more PCAP files and transforms them into Comma-Separated Value (CSV) files. It

analyses the contents of PCAP files and generates several attributes (features) such as

Source Port, Destination Port, Protocol, Flow Duration, Flow Bytes per second and

Flow Packets per second. The total number of features generated by FlowMeter is 26

and their full description can be found in (Draper-Gil et al., 2016).

5.2.3 Labelling the Data:

Making predictions in data mining can be supervised or unsupervised. In supervised

prediction (e.g. classification), models are trained on labelled data (data that contains

features and class labels; for example, class labels for network traffic data can be Normal

Traffic or Malicious Traffic). These models are then used to classify new data to predict

which class it belongs to. On the other hand, in unsupervised prediction, no labels are

required as the data is usually organised in clusters of relevant, or similar, instances.

This step is left to the user. If classification is being carried out, then the user needs

to assign labels to instances in the data. Observe that the CSV file resulting from

96

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

FlowMeter (see Subsection 5.2.2) contains a Class field which only has the value ISCX.

However, if the user is applying clustering, then no advance labelling of the data being

clustered is usually required; except if it was for testing or evaluation purposes.

5.2.4 Missing Value Replacement (Imputation):

One of the problems in real-world data is missing values. The existence of such

phenomenon means the data is incomplete. In data analysis, there are several techniques

to deal with such cases (Pigott, 2001). One of these techniques is to remove rows, or

columns, that contain missing values - especially if the percentage of missing values is

high. Another technique is to generate a reasonable replacement for each missing value.

Generating an estimate can be done by using the feature mean for numeric values (or

majority for nominal values). Another approach is to use the median instead of the mean

or to use a learning algorithm such as k-Nearest Neighbor or decision tree (Rahman

and Islam, 2011) to predict the missing value. Using multiple imputations, where

several possible values of a missing value are generated to obtain several parallel full

datasets and then combining results of analyses using these datasets, is also a common

approach (ALLISON, 2000). The CSV data generated by FlowMeter can have missing

values. As will be explained in Section 5.3, missing values in each column were replaced

by the median of existing values of that column.

5.2.5 One Hot Encoding:

One hot encoding (Guo and Berkhahn, 2016) is a technique used to represent categorical

variables as binary vectors (1 and 0). The categorical values are mapped into integer

values where binary vectors are used to represent unique values (elements of each binary

97

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

vector are all zeros except the index of the categorical value, which is given the value of

1). As for the data generated by FlowMeter, this is relevant to the features Source Port,

Destination Port and Protocol. These fields appear as integers in the generated CSV file

but in reality they are categories. In data mining, it is not recommended to represent

categories as numbers because this introduces order, which may not exist in the original

representation. For example, Hypertext Transfer Protocol (HTTP) works on port 80

and File Transfer Protocol (FTP) works on port 21. If numerical representation is used,

then data mining algorithms can assume that HTTP is larger than FTP, because 80 is

larger than 21, and this is not true. Another reason to represent categorical values in

the binary format using one hot encoding is that many data mining algorithms, such as

neural networks (Haykin, 2007), work best with numerical data, or might not work at

all with categorical data.

5.2.6 Removal of Highly Correlated Features

Having highly correlated variables (or features) in data analysis can have negative

consequences when interpreting models. The existence of such variables in data can be

problematic because they can influence the variance of model coefficients making them

change unpredictably even to small changes in the model (Xue and Qu, 2017). Many of

the features generated by FlowMeter are highly correlated. This can be understood from

the explanation provided by the developers (Draper-Gil et al., 2016) and by using the

tool and then generating a correlation matrix, or heatmap, for the resulting data. Since

highly correlated variables can influence the performance of data mining and machine

learning algorithms, it is a common practice to remove them.

98

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

5.2.7 Outlier Detection and Removal:

An outlier is an observation point (i.e. instance) that is distant from other

observations (Aggarwal, 2013). The existence of outliers in the data can affect the

distribution of the data; in fact, having many outliers can introduce noise into the data.

Hence, it is a common practice in data analysis to detect and remove outliers. There are

several techniques for outlier detection in the literature (Hodge and Austin, 2004). The

process has been given several names by authors. For example, the following terms can

be found: novelty detection, anomaly detection, noise detection, deviation detection or

exception mining. These all refer to the same process of outlier detection that entails,

given a sample, identifying the point (or points) in this sample that seem to differ

noticeably from other points in this sample. Observe that in many cases in cyber security,

outliers are often the instances of interest. Hence, this step is only presented here as

an optional step; although applying it depends on the purpose of the application. For

example, when attempting to distinguish between normal and harmful traffic, removing

outliers might not be the best option, whereas, if the purpose is to distinguish between

different botnet types, then removing outliers might enhance performance.

5.2.8 Splitting and Sampling:

Although it may be optional, a step that can be applied by those working in automatic

identification of malicious network traffic is to create separate datasets for different

classes. For example, teams might be targeting a specific botnet attack. Thus, using

data that belongs to this botnet to train a learning algorithm is a high priority step.

Therefore, if there exists a large dataset that contains network traffic data from various

malicious applications, as well as Normal (i.e. Safe) data, it can be useful to create

99

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

smaller sub-datasets so that each sub-dataset contains data that belongs to one class

only (label).

Following this, there should now be a separate dataset for each class. It is important

to make sure that each sub-dataset contains Malicious and Normal network traffic data.

This makes it easy to build separate models for separate attacks using data from each

specific attack type and Normal data. In data mining and machine learning, this is

known as having positive and negative examples in the dataset. Here a suggestion would

be to randomly select non-overlapping samples from the Normal data and append them

to the Malicious data. It is worth mentioning here that each new sub-dataset should

contain an approximately equal number of Malicious and Normal instances to avoid class

imbalance (Chawla, 2005). After finishing this step, the data should be ready for data

mining and machine learning experiments.

5.2.9 Data Exploration:

Another step (which can be optional) is to perform data exploration and inspection (e.g.

visualisation). If the data is high dimensional then it is not possible to visualise it and its

dimensionality should be reduced prior to this step. There are many techniques that can

be used to reduce dimensionality. For instance, one of the data exploratory and analysis

approaches is Principal Component Analysis (Jolliffe, 1986). Principal Component

Analysis, or PCA, is a technique used to identify a smaller number of uncorrelated

features (i.e. attributes or variables). It performs this by linearly combining the original

features and creating a new feature space. These uncorrelated features are usually known

as the principal components. Its main objective is to explain the highest possible amount

of variance with the smallest possible number of principal components. It is commonly

used as a dimensionality reduction procedure as well as an exploratory procedure to

100

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

examine whether there is separation among instances that belong to different classes.

PCA is an unsupervised technique because it only uses the data (without the class

variable) to operate. On the other hand, another data exploration technique is Partial

Least Squares (Boulesteix and Strimmer, 2007), or PLS. This is a supervised technique

that uses both the data X and the class variable Y. It is used to model the covariance

structures in these two matrices (i.e. X and Y) and discover the fundamental relations

between them. The idea behind it is to explain the highest multidimensional variance in

Y by finding the corresponding multidimensional direction in X. It is noteworthy that

before applying techniques such as PCA or PLS, two important steps that are usually

applied are data scaling and normalisation; more details about such transformations can

be found in (van den Berg et al., 2006). As will be explained in Section 5.3, PLS was

used in the experiments conducted as part of this thesis because it considers the class

label in its calculations.

5.3 Applying Steps to Real Data

This section demonstrates the results of applying the steps explained in Section 5.2.1 on

a publicly available PCAP dataset. This is the dataset that was mainly used in the work

carried out in this thesis. All source code that demonstrates how to programmatically

apply these steps is now available on Github 1. To apply these steps, the botnet and

normal network traffic data that was used in (Samani et al., 2014) was downloaded.

The data is in PCAP format, and more details about it can found online 2. The

authors have made two datasets available, a training dataset and a testing dataset. The

experiments were run using the testing dataset only because it contains more botnet

1https://github.com/alothman/RawNetworkDataPreProcessing
2http://www.unb.ca/cic/datasets/botnet.html

101

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

types. Because the data is in PCAP format, it was transformed into CSV format using

FlowMeter as explained in Subsection 5.2.2. The total number of instances obtained

after transformation was 309000. After that, the data was labelled (Subsection 5.2.3).

Each row (record) in the CSV file represents a network flow over a very short time

period and this record belongs to a specific class. Labelling here means to assign a

class, or category, to each row (i.e. the label can be: Normal, Zeus, Neris, . . . etc). The

research team that published this data provided guidelines on how to assign labels. The

guidelines are based on Source and Destination IP addresses so they were implemented

and used. The resulting distribution of instances and classes was as shown in Table 5.1.

The next step applied was imputing missing values. This was carried out using the

median of each feature to replace any values that were missing (Subsection 5.2.4). Then,

the features Source Port, Destination Port and Protocol were replaced with the results

of one hot encoding (Subsection 5.2.5). This is because FlowMeter represents them

numerically whereas in reality they are categories. Its noteworthy here that the number

of features after this step increased dramatically from 26 to over 60000.

This step was followed by examining the data for highly correlated features

(Subsection 5.2.6). A correlation matrix was generated and features which were highly

correlated were removed. The removed features were Flow IAT Max, Flow IAT Min,

Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max, Fwd IAT Min, Bwd IAT Max,

Bwd IAT Min, Active Max, Active Min, Idle Mean, Idle Max and Idle Min. This was

consistent with the description provided in (Draper-Gil et al., 2016). Also, this did not

significantly decrease the number of features because only 13 were removed and over

60000 remained.

The data is now ready for further processing, and therefore, outlier detection and removal

102

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Label Original No of
Instances

No of Instances after
Outlier Removal

Normal 149726 66131

Weasel Bot 67915 45778

Virut 42253 18170

Neris 24070 9190

Murlo 12301 9007

Menti 4887 3283

IRC 2031 4105

Zero access 1816 343

TBot 860 306

Black hole 2 443 202

Zeus 385 83

Sogou 27 81

Smoke bot 76 21

Black hole 3 103 13

RBot 80 11

IRCbot and black hole1 39 5

Weasel Botmaster 39 1

Osx trojan 27 1

Table 5.1: Number of Instances in each Class

(Subsection 5.2.7) was applied using Scikit-learn’s LocalOutlierFactor (LOF) (Breunig

et al., 2000). The resulting distribution of instances and classes after applying this step

was as shown in Table 5.1. It is interesting to see that the number of instances in some

cases was as low as 1 after applying outlier detection. This is because outlier detection

and removal was applied to the large dataset that contains instances from all botnets as

well as normal instances. Having a large number of instances means it is likely that no

transfer learning is required and standard machine learning can be used. However, as

the work carried out in this thesis demonstrates, transfer learning is needed when the

number of instances is low.

The final two steps in terms of data preparation were to split the resulting dataset into

smaller sub-datasets according to the class variable and to create sampled sub-datasets

that contain ’Botnet’ and ’Normal’ traffic as explained in Subsection 5.2.8.

It was mentioned in Subsection 5.2.9 that PLS was performed on the data to check

103

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

whether instances from different botnets have different distributions. The Sub-datasets

of botnets: TBot, Zero access and Zeus were concatenated and PLS was applied on

the resulting dataset. Plotting the scores of the first two components reveals a clear

separation between separate classes as shown in Figure 5.3. Please notice that each PLS

component is a linear combination of the original features. This is a strong indication

that instances that belong to different botnets have different distributions. Thus instead

of blindly concatenating the datasets (classes), transfer learning should be utilised to

select the most suitable instances that will enhance the performance of the predictive

models.

Figure 5.3: PLS Components 1 vs 2 for TBot, Zero access and Zeus data

5.4 Experimental Evaluation and Discussion

In this section a detailed explanation of the experimental setups and discussion of the

results is provided. The section starts with explaining how the data was prepared

and then it shows an evaluation of several traditional classifiers. Then it compares the

performance of the SBIT and CB-SBIT algorithms in more than one setting using mainly

network traffic data but also data from the text mining domain.

104

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

5.4.1 The Network Traffic Data

To test the SBIT method and compare it to existing methods, the botnet dataset

mentioned in Section 5 was used. It was split into smaller Sub-datasets according to the

class label which resulted in one separate dataset for each botnet as well as one dataset

that contains the Normal traffic. Non-overlapping samples from the Normal dataset

were randomly drawn and added to the botnet datasets so that there are positive and

negative examples in each dataset (i.e. each dataset now contains botnet and Normal

data). It was ensured that the number of positive and negative examples in each dataset

is approximately the same to avoid class imbalance.

As explained in Section 2.3.2, transfer learning requires Target and Source datasets.

To carry out experiments, datasets which are relatively small were selected and used

as Target datasets (the number of Target datasets is five). Table 5.2 shows details of

each source and target dataset. Also, three datasets were selected to be used as Source

datasets (this means source datasets are the same across all experiments). To evaluate

performance, the Target datasets were split into two datasets: Target and Test.

105

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Dataset Name Usage No of Instances

Menti Source Dataset 489

Mulro Source Dataset 526

Neris Source Dataset 501

Sogou-Target Target Dataset 10

Sogou-Test Evaluation Dataset 44

TBot-Target Target Dataset 10

TBot-Test Evaluation Dataset 231

RBot-Target Target Dataset 10

RBot-Test Evaluation Dataset 13

Zeus-Target Target Dataset 10

Zeus-Test Evaluation Dataset 165

Smoke bot-Target Target Dataset 10

Smoke bot-Test Evaluation Dataset 32

Table 5.2: Dataset Details

5.4.2 Evaluation of Classical Classifiers on Network Traffic Data

In this section the performance of several classical classifiers on the network traffic

data that was created is presented (see Section 5.4.1 for more details about the data).

Observe that these are the datasets for the five botnets: RBot, Smoke bot, Sogou, TBot

and Zeus. In the plots in Figure 5.4 these are shown in the x-axis as numbers from zero

to four. Observe that these are the full datasets (i.e. before splitting them into a Target

and Test datasets as shown in Table 5.2). The y-axes in the sub-figures in Figure 5.4 are

the Accuracy, Area Under the Curve (AUC) and Error Rate (ERR) respectively. These

106

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

were explained in a previous chapter of this thesis (Section 3.4). The main purpose

of these experiments is to select the base classifier for the transfer learning algorithm

developed as part of this thesis.

(a) Accuracy

(b) Area Under the Curve (AUC)

(c) Error Rate

Figure 5.4: Performance of Classical Classifiers on Network Traffic Data

Figure 5.4a shows the average accuracy after running a ten-fold cross validation using

107

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

WEKA’s Decision Tree (J48), NaiveBayes, RanfomForest and SMO. It can be noticed

that RandomForest scored the highest accuracy in more datasets than any other

classifier. In more detail, RandomForest scored the highest accuracy in four of the

five datasets (i.e. datasets 0, 1, 2 and 4) and SMO scored the highest accuracy in the

remaining dataset (i.e. dataset 3). All the remaining classifiers scored lower accuracies

in all datasets.

In Figure 5.4b the Area Under the Curve (AUC) scored by the four classifiers. Again it

is clear that RandomForest performs better than the other evaluated classifiers in most

cases. It is interesting to see that the second best performer was NaiveBayes.

In order to reach a final decision, the Error Rate (ERR) was computed for the same

classifiers on the five used datasets using ten-fold cross validation. Observe that in ERR

usually one is interested in the minimum value (unlike accuracy and AUC where one

is looking for the highest value). It is clear from Figure 5.4c that RandomForest wins

again because in general it has the smallest ERR among the rest of the classifiers.

After performing the previous experiments, it becomes clear that RandomForest should

be selected as the base classifier for the transfer learning algorithm developed as part of

this thesis. This is because it performs better than other classifiers on network traffic

data.

5.4.3 Evaluation of SBIT against RandomForest and TransferBoost

With the previous setup, comparison of the performance of the SBIT algorithm against

that of RandomForest and TransferBoost was carried out. The reason RandomForest

was selected is because it performs better than other classifiers on network traffic data

as shown in Section 5.4.2. For RandomForest, it was trained using only the Target

108

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

datasets one at a time. For TransferBoost and the SBIT method, source and target

datasets are required to perform training. The source datasets were fixed for both as

mentioned previously. The Target dataset was changed using the Target datasets that

were selected (i.e. the datasets that contain the word Target in Table 5.2). To evaluate,

the accuracy of each model was computed using the corresponding test dataset. The

results are illustrated in Table 5.3.

Target Dataset RandomForest TransferBoost SBIT

RBot 83.33% 83.33% 86.58%

Smoke bot 46.87% 50.00% 63.75%

Sogou 52.27% 59.10% 77.27%

TBot 63.62% 71.42% 69.51%

Zeus 69.87% 70.51% 76.66%

Table 5.3: The accuracy of each Method using Different Target Datasets

Because now there are five different Target datasets (and their corresponding Test

datasets), it can be seen from Table 5.3 that the SBIT method outperforms

RandomForest and TransferBoost in 80% of the cases (four out of five). When

experimenting with the Smoke bot data, the SBIT method produces more than 10%

increase in accuracy. Also, when using Sogou data, it can be noticed that the SBIT

method’s accuracy is more than 17% higher than that of TransferBoost. However,

TransferBoost performs better than the SBIT method when using TBot data. In

addition to this, it can be seen that RandomForest was the worst performer in all

experiments. It is also worth mentioning that the performance of traditional learners

such as RandomForest, NaiveBayes, SVM and others was evaluated in a separate

experiment. RandomForest was in general the most accurate among them and therefore

109

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

it was selected to be used it in the experiments. Another interesting comparison aspect

is the run time of the SBIT algorithm against TransferBoost. Since the SBIT algorithm

makes a single iteration over the Source data (as opposed to the iterative nature of

TransferBoost), it is expected that the SBIT method is going to be faster. This was

confirmed when run times of the previous experiments were computed as illustrated in

Figure 5.5.

Figure 5.5: Run Times of the Two Algorithms

5.4.4 CB-SBIT vs SBIT

As explained in Section 4.2.2, SBIT and its extension CB-SBIT work by selecting

instances from source datasets and transferring those instances to the target dataset.

Currently the difference between the two algorithms is that CB-SBIT makes sure the

new target dataset contains equal percentage of classes. In order to compare the

two algorithms against each other, varying sizes of small network traffic datasets were

created. The reason work was done on small datasets is that transfer learning

is normally applied when data is scarce. These datasets are the same datasets used

in (Alothman, 2018b) (i.e. network traffic data that belong to the following five botnets:

110

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Zeus, TBot, Sogou, RBot and Smoke bot). As explained in detail in (Alothman, 2018b),

each of these botnets has a target and testing datasets. Datasets that contain network

traffic from Menti, Murlo and Neris botnets were used as source datasets.

(a) Dataset 1× 1 (b) Dataset 2× 2

(c) Dataset 3× 3 (d) Dataset 4× 4

(e) Dataset 5× 5

Figure 5.6: Accuracy Values for CB-SBIT and SBIT

The contents of these datasets are derived from the freely available raw botnet network

traffic data which can be found in (Samani et al., 2014). As this dataset is in raw

format, FlowMeter (Draper-Gil et al., 2016) was used to generate several features that

111

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

include statistical values as well as information such as Source Port, Destination Port

and Protocol. Several steps were performed to transform this data into a suitable format

for machine learning. All of these steps are explained in detail and published by the

author of this thesis in (Alothman, 2018a).

To perform experiments, the size of each target dataset was varied in such a way that

each time the target dataset contains two, four, six, eight and ten instances (it was

ensured that each dataset contains the same number of botnet and normal traffic to

guarantee class balance). Then SBIT and CB-SBIT were run on each of these datasets

and evaluated their performance by computing the accuracy using the corresponding test

dataset for each botnet. The accuracy values are illustrated in Figure 5.6. A description

of the target datasets is provided in the first column in Table 5.4 in Section 5.4.5.

It is important to observe that although there are several metrics that can be used to

evaluate the performance of classifiers (Japkowicz and Shah, 2011), only the accuracy

was used (accuracy is the percentage of predictions that a model gets right). The reason

is that the test datasets are class balanced.

Figure 5.6 illustrates the results of comparing the performance of CB-SBIT against that

of SBIT using the experiment’s datasets. It shows that CB-SBIT performs better than

SBIT in general. Out of the 25 target datasets which were used, CB-SBIT outperforms

SBIT in 16 of them. However, SBIT still outperformed CB-SBIT in 6 datasets and they

performed equally on three datasets.

5.4.5 CB-SBIT vs SMOTE (using Network Traffic Data)

The way SBIT and CB-SBIT work means new real data is being added to the target

dataset. Real data means the data is not synthetically generated but rather it is collected

112

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

from its original source. A common algorithm that is used to generate synthetic data

is the SMOTE algorithm (or the Synthetic Minority Over-sampling Technique (Chawla

et al., 2002)) which generates synthetic instances for a particular class in a dataset.

This section compares and evaluates the performance of CB-SBIT and SMOTE. The

datasets in Section 5.4.4 were used in this evaluation and their full description is provided

in Table 5.4.

The size of each target dataset was varied so that each time the target dataset contains

two, four, six, eight and ten instances - it was ensured that each dataset contains the

same number of botnet and normal traffic to guarantee class balance. Then CB-SBIT

was run on each of these datasets and saved the resulting target dataset - which now

contains the original instances and instances added from source datasets. Using the

number of instances of each class in all the resulting datasets, SMOTE was used to

generate new datasets of similar sizes using the original target datasets as the base

datasets.

113

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Dataset Name

(size)

Size of Dataset

generated by CB-SBIT

Size of Dataset

generated by SMOTE

Zeus 1 (1× 1) 32× 32 -

Zeus 2 (2× 2) 106× 106 106× 106

Zeus 3 (3× 3) 108× 108 108× 108

Zeus 4 (4× 4) 138× 138 138× 138

Zeus 5 (5× 5) 156× 156 156× 156

TBot 1 (1× 1) 42× 42 -

TBot 2 (2× 2) 161× 161 161× 161

TBot 3 (3× 3) 211× 211 211× 211

TBot 4 (4× 4) 274× 274 274× 274

TBot 5 (5× 5) 360× 360 360× 360

Sogou 1 (1× 1) 44× 44 -

Sogou 2 (2× 2) 67× 67 67× 67

Sogou 3 (3× 3) 147× 147 147× 147

Sogou 4 (4× 4) 170× 170 170× 170

Sogou 5 (5× 5) 252× 252 252× 252

RBot 1 (1× 1) 17× 17 -

RBot 2 (2× 2) 34× 34 34× 34

RBot 3 (3× 3) 38× 38 38× 38

RBot 4 (4× 4) 186× 186 186× 186

RBot 5 (5× 5) 212× 212 212× 212

Smoke bot 1 (1× 1) 1× 1 -

Smoke bot 2 (2× 2) 52× 52 52× 52

Smoke bot 3 (3× 3) 58× 58 58× 58

Smoke bot 4 (4× 4) 77× 77 77× 77

Smoke bot 5 (5× 5) 96× 96 96× 96

Table 5.4: Datasets Resulting after CB-SBIT and SMOTE

114

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

The first column of Table 5.4 shows the botnet name and the size of the baseline target

dataset used (the 1× 1 means this dataset contains only two instances, one botnet and

one normal, the same concept applies for other sizes). The second column contains the

size of the dataset after applying CB-SBIT using each target dataset as explained above

(numberof botnetinstances×numberof normal instances). The third column contains

the size of the dataset after applying SMOTE using each target dataset. Observe that

the cells corresponding to target dataset of size 1× 1 is empty. This is because SMOTE

requires at least two instances of each class to work. Therefore, because SBIT (and

CB-SBIT) works normally even when the target dataset contains only one instance of

one or more classes, it is fair to conclude that CB-SBIT has a clear advantage when this

is the case.

The performance of RandomForest using each one of them was evaluated. RandomForest

was run on each dataset and the accuracy was computed using the corresponding test

dataset for each botnet. The accuracy values are illustrated in Figure 5.7.

115

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

(a) Dataset 2× 2 (b) Dataset 3× 3

(c) Dataset 4× 4 (d) Dataset 5× 5

Figure 5.7: Accuracy Values for CB-SBIT and SMOTE

Inspecting Figure 5.7 reveals interesting results. Because SMOTE does not work when

the number of instances for any of the classes in the data is less than two, CB-SBIT

has a clear advantage in this case. Figure 5.7a shows a similar behaviour that CB-SBIT

performs better when the dataset size is small but greater than two. When the dataset

size is increased gradually, the performance of SMOTE improves and it can be said that

it performs equally to CB-SBIT. After using the 25 datasets described in Table 5.4,

CB-SBIT performs better than SMOTE in 17 cases, SMOTE performs better than

CB-SBIT in 7 cases and the two of them perform equally in one case.

116

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

5.4.6 CB-SBIT vs TransferBoost (using Text Data)

For this comparison the popular 20 news groups dataset (Lang, 2007) was used to

compare the performance of CB-SBIT against TransferBoost (Eaton and desJardins,

2011) and RandomForest. This dataset consists of 20,000 newsgroups posts on 20

topics where 1000 posts were collected for each topic. According to the guidelines

provided in (Lang, 2007) the 20 groups can be generally categorised into the following six

high level categories: computer (contains five sub-categories), miscellaneous (contains

only one sub-category), recordings (contains four sub-categories), science (contains

four sub-categories), talk (contains three sub-categories) and religion (contains three

sub-categories). In order to perform experiments the following six datasets were selected

(one from each category): misc.forsale, comp.graphics, alt.atheism, sci.electronics,

rec.autos and talk.politics.misc.

In order to obtain data suitable for machine learning, techniques popular in text

mining (Feldman and Sanger, 2006) were used. Text mining involves using several

techniques to process (usually unstructured) textual information and generate structured

data which can be used to create predictive models and/or to gain some insight into the

original textual information. The structured data is usually extracted by analysing the

words in the documents and deriving numerical summaries about them.

To be able to use the text documents belonging to the six categories, a dataset that

has two columns was created: the text contained in each document the class of that

document (which is one of the six categories). After that, the TextToWordVector filter

in WEKA (Hall et al., 2009) was applied with Term Frequency and Inverse Document

Frequency (TF-IDF) (Weiss, Indurkhya, Zhang and Damerau, 2004). TF-IDF is a widely

used transformation in text mining where terms (or words) in a document are given

117

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

importance scores based on the frequency of their appearance across documents. A word

is important and is assigned a high score if it appears multiple times in a document.

However, it is assigned a low score (meaning it is less important) if it appears in several

documents.

WEKA’s default parameters for this filter were used except for the number of words to

keep. This parameter is 1000 by default, it was changed to 10000. In addition to the

TextToWordVector, also WEKA’s NGramTokenizer was used (with NGramMinSize and

NGramMaxSize set to two and three respectively). Not only this, but also Stop Words

were removed using a freely available set of stop words. The resulting dataset contained

as many as 10530 features and several thousand instances (belonging to the six classes).

The next step was to make sure datasets contained positive and negative examples.

This was achieved by choosing one of the six categories to be the negative class (the

misc.forsale data was randomly chosen). After this, the large dataset was split into

smaller datasets according to class and randomly selected a subset of 194 instances from

each dataset (except the misc.forsale dataset). Then samples from the misc.forsale

dataset were randomly selected (without replacement) and appended to the other

datasets. This was done to ensure that each dataset contains positive and negative

instances. At the end of this step five datasets were obtained as follows: comp.graphics,

alt.atheism, sci.electronics, rec.autos and talk.politics.misc (to clarify, the comp.graphics

dataset now contains 388 instances, 194 of which are of the comp.graphics class and the

remaining 194 are of the misc.forsale class, the same concept applies for the other four

datasets).

Since transfer learning requires source and target datasets, two of the five datasets

were randomly selected to be the source datasets (these were the rec.autos and

118

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

sci.electronics datasets). The remaining three datasets (comp.graphics, alt.atheism

and talk.politics.misc) were the target datasets. Each of these three datasets was

randomly split into smaller datasets (a target and testing datasets). Each target dataset

contained 10 instances (five positive and five negative) and the remaining data was

used as the testing datasets. Observe that it was ensured that non-overlapping subsets

were randomly selected in all previous steps. Details of these datasets are provided in

Table 5.5.

Dataset Name No of Instances Dataset Usage

rec.autos 388 (194× 194) Source dataset

sci.elecronics 388 (194× 194) Source dataset

alt.atheism Target 10 (5× 5) Target dataset

alt.atheism Test 378 (189× 189) Test dataset

comp.graphics Target 10 (5× 5) Target dataset

comp.graphics Test 378 (189× 189) Test dataset

talk.politics.misc Target 10 (5× 5) Target dataset

talk.politics.misc Test 378 (189× 189) Test dataset

Table 5.5: Text Dataset Details

With this setup experiments using RandomForest, TransferBoost and CB-SBIT were

run. When using RandomForest, it was trained using only the target datasets one

at a time. This is because RandomForest only requires one dataset as its input.

TransferBoost and CB-SBIT require one Target dataset and one or more Source

Datasets, therefore the source datasets were fixed as shown in Table 5.5 and changed

the Target dataset using the Target datasets which have been selected. To evaluate, the

119

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

accuracy of each model was computed using the corresponding test dataset. The results

are illustrated in Table 5.6.

Dataset Name CB-SBIT TransferBoost RandomForest

alt.atheism 51.06% 89.68% 50.53%

comp.graphics 50.00% 78.84% 50.00%

talk.politics.misc 50.26% 87.56% 52.12%

Table 5.6: Results using Text Dataset

It is clear from Table 5.6 that when using textual data, TransferBoost outperforms

RandomForest and CB-SBIT. This could be attributed to the nature of the data and

how each algorithm works. It can be noticed that the performance of CB-SBIT and

RandomForest are almost identical. This is because CB-SBIT uses RandomForest as its

base learner and the fact that similarity values between instances in source and target

datasets were found to be too small (when compared to the similarity values obtained

when using network traffic data). Examples of this are shown in Table 5.7 where we

compare the percentage of similarity which values are over 0.5 to the total number of

similarity values obtained when comparing two datasets (observe that the number of

similarity values obtained after using dataset 1 and dataset 2 is the product of the sizes

of the two datasets). The first column of the table shows the two datasets used (for which

instances five types of similarity were computed). The second to the sixth columns show

the similarity types.

120

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

Datasets Tanimoto Ellenberg Gleason Ruzicka BrayCurtis

Graphics - Autos 0.0093% 0.0093% 0.0193% 0.0093% 0.0193%

Politics - Electronics 0.0086% 0.0080% 0.0173% 0.0080% 0.0173%

Zeus - Sogou 12.6311% 91.2733% 97.3485% 7.9254% 14.1463%

TBot - Menti 2.9381% 85.6801% 99.8750% 2.0438% 3.0313%

Table 5.7: Percentage of Similarity Values that are > 0.5 using Text and Network
Traffic Data

It is evident that there is much higher similarity in network traffic data than in text

data. This means that CB-SBIT hardly finds any instances to transfer from the source

to any of the target datasets when using text data. This is an interesting observation

especially when it is compared to how CB-SBIT was able to transfer several instances

when used with the network traffic data.

5.5 Summary

This chapter provided a detailed evaluation of the main work carried out as part of

this thesis. It provided an explanation of several steps that can be applied when

preprocessing network traffic data. Although some of these steps can be seen as optional,

some others are essential in order to detect malicious network traffic with high accuracy.

After explaining these steps, they were applied to an existing network traffic dataset.

This is the dataset that was used to carry out the experiments conducted as part

of this thesis. After that this data was used to evaluate the algorithms developed

and compare their performance against other algorithms. The chapter provided an

evaluation of several traditional classifiers such as RandomForest and NaiveBayes to

justify why RandomForest was selected to be the base classifier for the SBIT and

121

Chapter 5. Preprocessing of Raw Network Traffic Data and Performance Evaluation of
the Proposed Methods

CB-SBIT algorithms. Also, several tests were run to demonstrate the performance of

SBIT and CB-SBIT against each other and against TransferBoost and SMOTE. These

experiments were performed using network traffic data as well as text data. The results

show that CB-SBIT performs better than the other algorithms on network traffic data

whereas TransferBoost outperforms other algorithms on text data. In the next chapter

the conclusions and research work are provided.

122

Chapter 6

Conclusions and Future

Directions

This is the last chapter of this thesis. It provides several lessons learned after developing

and experimentally evaluating the methods explained in the previous chapters. In

addition, the chapter highlights how and why the work carried out is useful. It is

important to observe that the remaining part of this chapter is broken down into specific

sections and subsections for the conclusions, limitations and possible future work for each

method. This is done in order to make it more focused and easier to understand by the

reader.

6.1 Lessons learned from this project

Several lessons can be learned from an empirical project such as this. One of the major

lessons is to ensure there is enough suitable data as obtaining data can be costly and

time consuming. One should avoid assuming that there is plenty of freely-available data

123

Chapter 6. Conclusions and Future Directions

and should try to have the data ready at an early stage of a project. Another lesson

is to make sure enough computing power is available especially if the project involves

analysing data of big size. Several computing bottlenecks were encountered during this

project and an external powerful computer needed to be used.

Also, documenting and publishing methods and results can be useful especially at

high-level conferences where experts of the field meet. This is beneficial because one

can receive feedback and build on it. An important practice is to release source code

and data so that other researchers can use them. This gives the carried out work more

credentials as people can reproduce the results.

6.2 How and Why this work is useful

The work carried out as part of this thesis is intuitively compelling and it is primarily

experimental. The main scientific methodology behind it is to implement any new ideas

and test them on real data. This is useful especially with the large number of problems

existing in the real world (problems that can be solved by machine learning). This work

is useful for researchers and practitioners who address various research problems and use

an empirical method to solve them (i.e. researchers with a hands-on and experimental

mindset).

The methods presented in this work for Android app source code analysis are applicable

in any other areas where a textual representation can be extracted from a non-textual

representation. The core idea, which is to use the textual representation of an object as

a basis to identify the category the object belongs to, remains the same.

In addition, the novel transfer learning algorithm introduced in this thesis can be useful

in other areas where data is scarce. An example of these areas is medical data analysis

124

Chapter 6. Conclusions and Future Directions

(such as automatic diagnosis of patients with rare medical conditions). Additionally, it

can also be used in image analysis and object recognition applications where images of

certain objects are too few.

6.3 Conclusions

This section provides the conclusions of every method developed, explained and

experimentally evaluated in this thesis.

6.3.1 Android Botnet Detection

This thesis proposed an effective approach for the automatic detection of botnet apps.

This approach is based on the analysis of the Java source code of such apps. The

approach starts with Android apps as apk files, uses reverse engineering to obtain their

Java source code and then analyses that source code. The source code analysis and

mining was done using two techniques. In the first method, the Java source code is

treated as if it was normal text by using Natural Language Processing (NLP) methods.

And in the second approach, several statistical measures (i.e. metrics) from the source

code were extracted and used as attributes. The developed approach can be considered

static as it does not require the execution of the Android app itself. The idea is that as

soon as an Android app is downloaded, it is reverse engineered and its Java source code

is obtained and used to predict whether this app is safe or malicious. The advantage

here is being proactive. In other words, an attempt is made to identify danger before it

occurs.

As for the data resulting after extracting the source code metrics, only one dataset was

created. On the other hand, several datasets were created after using NLP techniques.

125

Chapter 6. Conclusions and Future Directions

This is because when converting text into word vectors the number of words to keep

was varied and therefore multiple datasets were created. In addition, feature selection

was applied to these datasets and tests were run using the original and feature selected

versions of each dataset.

Several traditional classifiers were evaluated and multiple metrics were calculated to

examine their performance. It was interesting to see that Random Forest was in general

the best classifier and the preferred representation was to use 5000 number of words to

keep and to apply feature selection.

6.3.2 Raw Network Traffic Data Preprocessing

Automatic detection of malicious network traffic is an important task that should be

as accurate as possible. One of the main steps in carrying out this detection is to

capture network traffic, prepare it for analysis and then perform the analysis. As part of

thesis, several steps that should be considered when analysing network traffic data were

provided, explained, and their results were illustrated using real freely available data.

While some of these steps are optional, some others are required in order to transform

data into a suitable format for data mining tools and platforms. After applying these

steps to an existing open source PCAP dataset, the resulting data was used for extensive

machine learning experiments as part of evaluating the transfer learning approaches

proposed in this thesis.

6.3.3 Similarity Based Instance Transfer (SBIT)

This thesis has introduced a novel, fast yet effective and powerful method for transfer

learning which was successfully used to classify botnet traffic. This method is an instance

126

Chapter 6. Conclusions and Future Directions

transfer method that is based on the similarity between instances in the source data and

instances in the target data. The method computes more than one similarity measure to

make sure as much information as possible is captured. Experimental results show that

this method outperforms, in general, a classical instance transfer learning algorithm,

namely the TransferBoost algorithm. Not only this, but this method is also much faster

which gives it another advantage.

6.3.4 Class-Balance Similarity Based Instance Transfer (CB-SBIT)

This thesis has introduced the novel SBIT algorithm and an extension to it. The

extended version of the SBIT algorithm is aware of the percentage of classes in the

resulting dataset (resulting after instance transfer) in the sense that it makes sure the

classes are balanced. This helps in avoiding several problems such as overfitting and

misinterpretation. The new version of the SBIT algorithm was called Class-Balanced

SBIT, or CB-SBIT for short. The thesis also included extensive experimental evaluation

of the CB-SBIT algorithm against the original SBIT algorithm as well as against two

open source commonly used algorithms; the SMOTE and TransferBoost algorithm.

Experimental results showed that CB-SBIT outperforms SBIT in majority of the tests

performed; which means CB-SBIT is an improvement over SBIT. When comparing

CB-SBIT against SMOTE, several network traffic datasets of various sizes were used

and it was evident that CB-SBIT outperforms SMOTE in small datasets (CB-SBIT

seems to perform better than SMOTE as the dataset gets smaller). An interesting case

was when the dataset contains only one instance of one or more classes. SMOTE does

not work in this case whereas CB-SBIT functions normally. On the other hand, text data

from the publicly available 20 news groups dataset was used to compare the performance

of CB-SBIT against TransferBoost. It was interesting to discover that, despite the fact

127

Chapter 6. Conclusions and Future Directions

that CB-SBIT (and subsequently SBIT) outperforms TransferBoost when using network

traffic data, TransferBoost works much better than CB-SBIT on text data.

The reason why CB-SBIT exhibited poorer performance on the text data proved to be

because of the extremely low similarity values between instances from different topics

in the text data. Whereas, in the network data where the computations showed that

higher similarity values were present, the performance was excellent. The differences

in performance between the text and network datasets proves that the proposed

’similarity-based’ methods worked as expected in the appropriate transfer learning

scenario.

6.4 Limitations and Future Work

Here the limitations and possible extensions of every method developed, explained and

experimentally evaluated in this thesis are provided.

6.4.1 Android Botnet Detection

One of the limitations of the approach proposed in Chapter 3 is that the system can

be defeated by code obfuscation. This is a problem that usually affects static based

approaches in general. In order to mitigate obfuscation, the source code metric approach

is still valid since it does not rely on the code syntax (unlike the NLP approach).

Despite limited Android botnet data, the methods proposed and evaluated in Chapter 3

are still valid and applicable in practice. However, it would be desirable to evaluate the

performance with a larger dataset in the future as this will allow techniques such as

ensemble learning (with algorithms such as bagging, boosting, stacking, dagging ... etc)

128

Chapter 6. Conclusions and Future Directions

to be explored. These algorithms tend to perform better with larger datasets (although

it has been shown that boosting, by design, works well with small datasets).

Another idea that can be explored is to merge the two types of datasets created (i.e. the

metrics and text mining data). This is illustrated in Table6.1 (where W’s are weights

resulting after TF-IDF and M’s are metrics as explained in previous sections). After that,

an investigation into whether any performance improvement is gained can be carried out.

App Name W1 W2 . . . M1 M2 . . . Class (botnet or not)

App 1 0.069 0.034 . . . 2343 0.21 . . . Yes

App 2 1.03 0.018 . . . 1983 0.43 . . . No

. .

App n 0.009 0 . . . 3261 0.37 . . . No

Table 6.1: An Example Dataset Resulting After Merging Text Mining and Metrics
Datasets

In addition to the above, the approach developed in this thesis can be applied to other

mobile operating systems such as the iOS because existing research shows it is possible

to reverse engineer their apps (Joorabchi and Mesbah, 2012).

6.4.2 SBIT and CB-SBIT

One of the current limitations of the SBIT method (and its extension CB-SBIT) is

that similarity thresholds are predefined (i.e. they are manually set). In other words,

these values are not automatically dynamically adjusted according to the data being

analysed. Therefore, future work could explore whether an optimisation approach,

such as Genetic Algorithms, can be exploited to find the optimal threshold used for

129

Chapter 6. Conclusions and Future Directions

similarity. Note that however, this could slow down the SBIT/CB-SBIT algorithms.

Hence, speed-performance trade-off could also be investigated.

Also, future work could explore computing the similarity between all instances in source

and target datasets and to use the mean, or median, of the resulting values as the

threshold for each similarity type separately to see if performance can be improved. In

addition to that, the current versions of the algorithms only checks if the similarity is

above a certain threshold, it does not check whether the similarity is 1 (i.e. the source

and target instances are identical). This check is necessary to make sure data does not

contain duplicates. Hence, it is intended to add this check in the near future.

The current implementation of SBIT and CB-SBIT uses five types of similarity as

explained in previous chapters in this thesis. Namely, the currently used similarity

types are Tanimoto, Ruzicka, BrayCurtis, Ellenberg and Gleason. This can be extended

to include more similarity types. Not only this but to also use distance measures instead

of similarity measures.

130

Appendix A

Code for transforming Java
Source Code into Dataset for
Machine Learning

import java.io.File;

import java.io.IOException;

import weka.core.Instances;

import weka.core.converters.ArffSaver;

import weka.core.converters.TextDirectoryLoader;

import weka.core.stemmers.LovinsStemmer;

import weka.core.stopwords.WordsFromFile;

import weka.core.tokenizers.WordTokenizer;

import weka.filters.Filter;

import weka.filters.unsupervised.attribute.Reorder;

import weka.filters.unsupervised.attribute.StringToWordVector;

// import weka.core. converters . ConverterUtils . DataSource ;

public class Preprocess {

public static void main(String [] args) {

// convert the directory into a dataset

TextDirectoryLoader loader = new TextDirectoryLoader ();

try {

// here each text file is transformed

// into one string in the dataset

// each string has a class (BotNet or Normal)

// the dir should contain two subdirs ,

// one contains files with Normal code

// the other contains files with Botnet code

loader.setDirectory(new File("Path/To/SourceCodeDirs/"));

Instances rawData = loader.getDataSet ();

// Make a filter

StringToWordVector filter = new StringToWordVector ();

// Make a tokenizer

WordTokenizer wt = new WordTokenizer ();

String delimiters =

" \r\t\n.,;:\’\"()?!-><#$\\%&*+/@^_=[]{}| ‘~0123456789";

wt.setDelimiters(delimiters);

filter.setTokenizer(wt);

// Inform filter about dataset

filter.setInputFormat(rawData);

// number of words to keep

filter.setWordsToKeep (5000);

131

Appendix A. Code for transforming Java Source Code into Dataset for Machine
Learning

// apply TF -IDF transform

filter.setIDFTransform(true);

filter.setTFTransform(true);

// use stemming

LovinsStemmer stemmer = new LovinsStemmer ();

filter.setStemmer(stemmer);

// filter. setLowerCaseTokens (true);

// use stopwords list to remove stop words

WordsFromFile stopWords = new WordsFromFile ();

stopWords.setStopwords(new File("stopwords.txt"));

filter.setStopwordsHandler(stopWords);

// here is where we apply the filter

Instances dataFiltered = Filter.useFilter(rawData , filter);

// move class label to last index - the filter to use is Reorder

Reorder reorder = new Reorder ();

reorder.setAttributeIndices("2-last ,1");

reorder.setInputFormat(dataFiltered);

dataFiltered = Filter.useFilter(dataFiltered , reorder);

// set class index to the last attribute

// here we tell the dataset that the class is the

// last element/field/column

dataFiltered.setClassIndex(dataFiltered.numAttributes () - 1);

// save the dataset as ARFF file

ArffSaver saver = new ArffSaver ();

// saver. setInstances (rawData);

saver.setInstances(dataFiltered);

saver.setFile(new File("data.arff"));

saver.writeBatch ();

} catch (IOException e) {

// TODO Auto - generated catch block

e.printStackTrace ();

}

catch (Exception e) {

// TODO Auto - generated catch block

e.printStackTrace ();

}

}

}

132

Appendix B

Code for evaluating Performance
of Classifiers

import java.io.IOException;

import java.util.Random;

import weka.classifiers.Classifier;

import weka.classifiers.Evaluation;

import weka.classifiers.bayes.NaiveBayes;

import weka.classifiers.lazy.IBk;

import weka.classifiers.trees.J48;

import weka.classifiers.trees.RandomForest;

import weka.classifiers.functions.SMO;

import weka.core.Instances;

import weka.core.converters.ConverterUtils.DataSource;

public class BotnetMain {

/**

* @param args

*/

public static void main(String [] args) {

try {

// here we open/load the arff file

DataSource data = new DataSource("data.arff");

// here we get the actual dataset

Instances dataset = data.getDataSet ();

// here we tell the dataset that the class is in the

// last element/field

dataset.setClassIndex(dataset.numAttributes () - 1);

// here we just printout the number of features/ attributes

System.out.println(dataset.numAttributes ());

int seed = 1; // the seed for randomizing the data

int folds = 10;

Random rand = new Random(seed);

double acc = 0.0;

// here we just want to print the classifier name

// and Accuracy value for each model

System.out.println("Model ,Accuracy");

// create several models , run 10 fold

// cross validation and get Accuracy metric

J48 tree = new J48();

// Initialise evaluation with the dataset

Evaluation eval = new Evaluation(dataset);

// this is where we apply 10 fold cross - validation

eval.crossValidateModel(tree , dataset , folds , rand);

// get the accuracy , here we used double because

//we need the accurate number ex. 92.21

acc = eval.pctCorrect ();

133

Appendix B. Code for evaluating Performance of Classifiers

System.out.println("J48 ,"+acc);

NaiveBayes nb = new NaiveBayes ();

// this is where we apply 10 fold cross - validation

eval.crossValidateModel(nb , dataset , folds , rand);

// get the accuracy , here we used double because

//we need the accurate number ex. 92.21

acc = eval.pctCorrect ();

System.out.println("NaiveBayes ,"+acc);

IBk knn = new IBk (5);

// this is where we apply 10 fold cross - validation

eval.crossValidateModel(knn , dataset , folds , rand);

// get the accuracy , here we used double because

//we need the accurate number ex. 92.21

acc = eval.pctCorrect ();

System.out.println("KNN ,"+acc);

RandomForest rf = new RandomForest ();

// this is where we apply 10 fold cross - validation

eval.crossValidateModel(rf , dataset , folds , rand);

// get the accuracy , here we used double because

//we need the accurate number ex. 92.21

acc = eval.pctCorrect ();

System.out.println("RandomForest ,"+acc);

SMO smo = new SMO (); // SMO(Sequential Minimal Optimisation)

// this is where we apply 10 fold cross - validation

eval.crossValidateModel(smo , dataset , folds , rand);

// get the accuracy , here we used double because

//we need the accurate number ex. 92.21

acc = eval.pctCorrect ();

System.out.println("SMO ,"+acc);

} catch (IOException e) {

e.printStackTrace ();

}

catch (Exception e) {

e.printStackTrace ();

}

}

}

134

Appendix C

SBIT Implementation

import java.io.FileNotFoundException;

import weka.classifiers.trees.RandomForest;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.converters.ConverterUtils.DataSource;

public class SBIT {

public static void main(String [] argv) throws FileNotFoundException {

try {

// the source dataset filenames

String [] sourceDatasets = {"TBot.arff","Zeus.arff",

"osx_trojan.arff","RBot.arff"};

// the target dataset filename

String targetDatasetName = "Sogou.arff";

// load the target dataset

DataSource target = new DataSource("botnet -data/"+targetDatasetName);

Instances targetData = target.getDataSet ();

targetData.setClassIndex(targetData.numAttributes () - 1);

// create a randomforest model using the target data

RandomForest rf1 = new RandomForest ();

rf1.buildClassifier(targetData);

// test dataset

String testData = "ISCX_Testing_new_Sogou_TEST.arff";

DataSource test = new DataSource("botnet -data/"+testData);

Instances testDataset = test.getDataSet ();

testDataset.setClassIndex(testDataset.numAttributes () - 1);

// create an empty dataset to copy instances to it temporarily

// later we concatenate this with the target dataset

Instances dataToTransfer = new Instances(testDataset ,0,0);

// loop through source datasets

int n = sourceDatasets.length;

for(int i = 0; i < n; i++){

// load the ith source dataset

DataSource source1 = new DataSource("botnet -data/"+sourceDatasets[i]);

Instances sourceData1 = source1.getDataSet ();

sourceData1.setClassIndex(sourceData1.numAttributes () - 1);

// loop through instances of ith source dataset

for(int j = 0; j < sourceData1.numInstances (); j++){

// get Instance object of current instance

Instance srcInst = sourceData1.instance(j);

// get attr values in a double array

double [] srcAttrs = new double[srcInst.numAttributes ()-1];

for(int att = 0; att < (srcInst.numAttributes ()-1); att ++)

srcAttrs[att] = srcInst.value(att);

// loop through instances of target dataset

for(int k = 0; k < targetData.numInstances (); k++){

// get Instance object of current instance

135

Appendix C. SBIT Implementation

Instance trgInst = targetData.instance(k);

// get attr values in a double array

double [] trgAttrs = new double[trgInst.numAttributes ()-1];

for(int att = 0; att < (trgInst.numAttributes ()-1); att++)

trgAttrs[att] = trgInst.value(att);

// now we have attr values for both src and trg instances

//we can compute similarity between them

double taniSim = Distance.tanimotoSimiarity(srcAttrs , trgAttrs);

double ellenbergSim = Distance.ellenbergSimilarity(srcAttrs , trgAttrs);

double gleasonSim = Distance.gleasonSimilarity(srcAttrs , trgAttrs);

double ruzickaSim = Distance.ruzickaSimilarity(srcAttrs , trgAttrs);

double brayCurtisSim = Distance.brayCurtisSimilarity(srcAttrs , trgAttrs);

// add current source instance of it passes the similarity thresholds

if(taniSim > 0.55 &&

ellenbergSim > 0.55 &&

gleasonSim > 0.55 &&

ruzickaSim > 0.55 && brayCurtisSim > 0.55

){

dataToTransfer.add(srcInst);

}

}

}

}

// here we add the instances we have selected

Instances newTargetData = new Instances(dataToTransfer);

newTargetData.addAll(targetData);

// create a randomforest model using the NEW target data

//i.e. data after selecting instances from source datasets

RandomForest rf2 = new RandomForest ();

rf2.buildClassifier(newTargetData);

// keep track of class values for actuals and predicted

String [] actuals = new String[testDataset.numInstances ()];

String [] rf1Predicted = new String[testDataset.numInstances ()];

String [] rf2Predicted = new String[testDataset.numInstances ()];

// Now loop through instances of test data and get

// predictions for both RF models

for (int i = 0; i < testDataset.numInstances (); i++) {

// get Instance object of current instance

Instance newInst = testDataset.instance(i);

double actual = newInst.classValue ();

String actualClass = targetData.classAttribute (). value((int) actual);

actuals[i] = actualClass;

// call classifyInstance , which returns a double value for the class

// classify using model created using original target dataset

double predicted = rf1.classifyInstance(newInst);

String rf1PredictedClass = targetData.classAttribute (). value ((int) predicted);

rf1Predicted[i] = rf1PredictedClass;

// classify using model created using original target dataset

predicted = rf2.classifyInstance(newInst);

String rf2PredictedClass = targetData.classAttribute (). value ((int) predicted);

rf2Predicted[i] = rf2PredictedClass;

}

System.out.println("=======================");

double rf1Accuracy = compareResults(actuals , rf1Predicted);

System.out.println("RF1 Accuracy: " + rf1Accuracy);

double rf2Accuracy = compareResults(actuals , rf2Predicted);

System.out.println("RF2 (SBIT) Accuracy: " + rf2Accuracy);

} catch (Exception e) {

// TODO Auto - generated catch block

e.printStackTrace ();

}

}

136

Appendix C. SBIT Implementation

/** a small function to compute accuracy

*

* @param actual the actual values

* @param predicted the predicted values

* @return accuracy

*/

public static double compareResults(String actual[], String predicted []){

double equals = 0;

// int unequals = 0;

for(int i = 0; i < actual.length; i++){

if(actual[i]. equals(predicted[i])){

equals ++;

}

}

return ((equals/actual.length)*100);

}

}

137

Appendix D

CB-SBIT Implementation

import java.io.FileNotFoundException;

import weka.classifiers.trees.RandomForest;

// import weka.core. AttributeStats ;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.converters.ConverterUtils.DataSource;

import weka.filters.supervised.instance.SpreadSubsample;

import weka.filters.Filter;

public class ClassBalancedSBIT {

public static void main(String [] argv) throws FileNotFoundException {

try {

// the source dataset filenames

String [] sourceDatasets = {"TBot.arff","Zeus.arff",

"osx_trojan.arff","RBot.arff"};

// the target dataset filename

String targetDatasetName = "Sogou.arff";

// load the target dataset

DataSource target = new DataSource("botnet -data/"+targetDatasetName);

Instances targetData = target.getDataSet ();

targetData.setClassIndex(targetData.numAttributes () - 1);

// create a randomforest model using the target data

RandomForest rf1 = new RandomForest ();

rf1.buildClassifier(targetData);

// test dataset

String testData = "ISCX_Testing_new_Sogou_TEST.arff";

DataSource test = new DataSource("botnet -data/"+testData);

Instances testDataset = test.getDataSet ();

testDataset.setClassIndex(testDataset.numAttributes () - 1);

// create an empty dataset to copy instances to it temporarily

// later we concatenate this with the target dataset

Instances dataToTransfer = new Instances(testDataset ,0,0);

// loop through source datasets

int n = sourceDatasets.length;

for(int i = 0; i < n; i++){

// load the ith source dataset

DataSource source1 = new DataSource(sourceDatasets[i]);

Instances sourceData1 = source1.getDataSet ();

sourceData1.setClassIndex(sourceData1.numAttributes () - 1);

// loop through instances of ith source dataset

for(int j = 0; j < sourceData1.numInstances (); j++){

// get Instance object of current instance

Instance srcInst = sourceData1.instance(j);

// get attr values in a double array

double [] srcAttrs = new double[srcInst.numAttributes ()-1];

for(int att = 0; att < (srcInst.numAttributes ()-1); att ++)

138

Appendix D. CB-SBIT Implementation

srcAttrs[att] = srcInst.value(att);

// loop through instances of target dataset

for(int k = 0; k < targetData.numInstances (); k++){

// get Instance object of current instance

Instance trgInst = targetData.instance(k);

// get attr values in a double array

double [] trgAttrs = new double[trgInst.numAttributes ()-1];

for(int att = 0; att < (trgInst.numAttributes ()-1); att++)

trgAttrs[att] = trgInst.value(att);

// now we have attr values for both src and trg instances

//we can compute similarity between them

double taniSim = Distance.tanimotoSimiarity(srcAttrs , trgAttrs);

double ellenbergSim = Distance.ellenbergSimilarity(srcAttrs , trgAttrs);

double gleasonSim = Distance.gleasonSimilarity(srcAttrs , trgAttrs);

double ruzickaSim = Distance.ruzickaSimilarity(srcAttrs , trgAttrs);

double brayCurtisSim = Distance.brayCurtisSimilarity(srcAttrs , trgAttrs);

// add current source instance of it passes the similarity thresholds

if(taniSim > 0.55 &&

ellenbergSim > 0.55 &&

gleasonSim > 0.55 &&

ruzickaSim > 0.55 && brayCurtisSim > 0.55

){

dataToTransfer.add(srcInst);

}

}

}

}

// first we balance the data to transfer

// resample majority class (down sample)

SpreadSubsample ss = new SpreadSubsample ();

ss.setDistributionSpread (1.0);

ss.setInputFormat(dataToTransfer);

// here is where we apply the filter

Instances balancedDataToTransfer = Filter.useFilter(dataToTransfer , ss);

// here we add the instances we have selected

Instances newTargetData = new Instances(balancedDataToTransfer);

newTargetData.addAll(targetData);

// uncomment the following lines to check the class distributions

// AttributeStats stats = targetData . attributeStats (targetData . classIndex ());

// int [] nominalCounts = stats. nominalCounts ;

// System.out.println(Arrays.toString(nominalCounts));

// stats = dataToTransfer . attributeStats (dataToTransfer . classIndex ());

// nominalCounts = stats. nominalCounts ;

// System.out.println(Arrays.toString(nominalCounts));

// System.out.println (" Original Target Dataset size: "+ targetData . numInstances ());

// System.out.println (" New Target Dataset size: "+ newTargetData . numInstances ());

// System.out.println (" dataToTransfer Dataset size: "+ dataToTransfer . numInstances ());

// create a randomforest model using the NEW target data

//i.e. data after selecting instances from source datasets

RandomForest rf2 = new RandomForest ();

rf2.buildClassifier(newTargetData);

// keep track of class values for actuals and predicted

String [] actuals = new String[testDataset.numInstances ()];

String [] rf1Predicted = new String[testDataset.numInstances ()];

String [] rf2Predicted = new String[testDataset.numInstances ()];

// Now loop through instances of test data and get

// predictions for both RF models

for (int i = 0; i < testDataset.numInstances (); i++) {

// get Instance object of current instance

Instance newInst = testDataset.instance(i);

double actual = newInst.classValue ();

139

Appendix D. CB-SBIT Implementation

String actualClass = targetData.classAttribute (). value((int) actual);

actuals[i] = actualClass;

// call classifyInstance , which returns a double value for the class

// classify using model created using original target dataset

double predicted = rf1.classifyInstance(newInst);

String rf1PredictedClass = targetData.classAttribute (). value ((int) predicted);

rf1Predicted[i] = rf1PredictedClass;

// classify using model created using original target dataset

predicted = rf2.classifyInstance(newInst);

String rf2PredictedClass = targetData.classAttribute (). value ((int) predicted);

rf2Predicted[i] = rf2PredictedClass;

}

System.out.println("=======================");

double rf1Accuracy = compareResults(actuals , rf1Predicted);

System.out.println("RF1 Accuracy: " + rf1Accuracy);

double rf2Accuracy = compareResults(actuals , rf2Predicted);

System.out.println("RF2 (CB-SBIT) Accuracy: " + rf2Accuracy);

} catch (Exception e) {

e.printStackTrace ();

}

}

/** a small function to compute accuracy

*

* @param actual the actual values

* @param predicted the predicted values

* @return accuracy

*/

public static double compareResults(String actual[], String predicted []){

double equals = 0;

// int unequals = 0;

for(int i = 0; i < actual.length; i++){

if(actual[i]. equals(predicted[i])){

equals ++;

}

}

return ((equals/actual.length)*100);

}

}

140

Bibliography

Abdul Kadir, A. F., Stakhanova, N. and Ghorbani, A. A. (2015), Android botnets:

What urls are telling us, in M. Qiu, S. Xu, M. Yung and H. Zhang, eds, ‘Network and

System Security’, Springer International Publishing, Cham, pp. 78–91.

Abdulla, S., Ramadass, S. and Altyeb, A. A. (2014), ‘kenfis: knn-based evolving

neuro-fuzzy inference system for computer worms detection’, Journal of Intelligent

and Fuzzy Systems 26, 1893–1908.

Abuadlla, Y., Kvascev, G., Gajin, S. and Jovanović, Z. (2014), ‘Flow-based anomaly

intrusion detection system using two neural network stages’, Computer Science and

Information Systems 11(2), 601–622.

Acarali, D., Rajarajan, M., Komninos, N. and Herwono, I. (2016), ‘Survey of approaches

and features for the identification of http-based botnet traffic’, Journal of Network and

Computer Applications 76, 1 – 15.

URL: http://www.sciencedirect.com/science/article/pii/S1084804516302363

Agency, T. N. C. (2017), ‘Uk internet users potential victims of serious cyber attack’.

URL: http://www.nationalcrimeagency.gov.uk/news/723-uk-internet-users-potential-victims-of-serious-cyber-attack

Aggarwal, C. C. (2013), Outlier Analysis, Springer Publishing Company, Incorporated.

141

Bibliography

ALLISON, P. D. (2000), ‘Multiple imputation for missing data: A cautionary tale’,

Sociological Methods & Research 28(3), 301–309.

URL: https://doi.org/10.1177/0049124100028003003

Alothman, B. (2018a), ‘Raw network traffic data preprocessing and preparation

for automatic analysis’, International Conference On Cyber Incident Response,

Coordination, Containment & Control (Cyber Incident) - 2018 .

Alothman, B. (2018b), ‘Similarity based instance transfer learning for botnet detection’,

International Journal of Intelligent Computing Research (IJICR) 9, 880—-889.

Alothman, B., Janicke, H. and Yerima, S. Y. (2018), Class balanced similarity-based

instance transfer learning for botnet family classification, in L. Soldatova,

J. Vanschoren, G. Papadopoulos and M. Ceci, eds, ‘Discovery Science’, Springer

International Publishing, Cham, pp. 99–113.

Alothman, B. and Rattadilok, P. (2017), Android botnet detection: An integrated source

code mining approach, in ‘2017 12th International Conference for Internet Technology

and Secured Transactions (ICITST)’, pp. 111–115.

Alzaylaee, M. K., Yerima, S. Y. and Sezer, S. (2016), ‘Dynalog: An automated dynamic

analysis framework for characterizing android applications’, CoRR abs/1607.08166.

Alzaylaee, M. K., Yerima, S. Y. and Sezer, S. (2017), ‘Improving dynamic analysis of

android apps using hybrid test input generation’, CoRR abs/1705.06691.

Argyriou, A., Evgeniou, T. and Pontil, M. (2008), ‘Convex multi-task feature learning’,

Mach. Learn. 73(3), 243–272.

URL: http://dx.doi.org/10.1007/s10994-007-5040-8

142

Bibliography

Argyriou, A., Micchelli, C. A., Pontil, M. and Ying, Y. (2007), A spectral regularization

framework for multi-task structure learning, in ‘Proceedings of the 20th International

Conference on Neural Information Processing Systems’, NIPS’07, Curran Associates

Inc., USA, pp. 25–32.

URL: http://dl.acm.org/citation.cfm?id=2981562.2981566

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau,

D. and McDaniel, P. (2014), Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps, in ‘Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation’, PLDI

’14, ACM, New York, NY, USA, pp. 259–269.

URL: http://doi.acm.org/10.1145/2594291.2594299

Bai, G., Wu, Y., Sun, J., Wu, J., Liu, Y., Zhang, Q. and Dong, J. S. (2016), ‘Droidpf:

a framework for automatic verification of android applications’.

Bartos, K., Sofka, M. and Franc, V. (2016), Optimized invariant representation of

network traffic for detecting unseen malware variants, in ‘25th USENIX Security

Symposium (USENIX Security 16)’, USENIX Association, Austin, TX, pp. 807–822.

URL: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bartos

Beghdad, R. (2008), ‘Critical study of neural networks in detecting intrusions’, Comput.

Secur. 27(5-6), 168–175.

URL: http://dx.doi.org/10.1016/j.cose.2008.06.001

Benjamin, V. and Chen, H. (2013), Machine learning for attack vector identification

in malicious source code, in ‘IEEE ISI 2013 - 2013 IEEE International Conference

on Intelligence and Security Informatics: Big Data, Emergent Threats, and

Decision-Making in Security Informatics’, pp. 21–23.

143

Bibliography

Bijalwan, A., Chand, N., Pilli, E. S. and Krishna, C. R. (2016), ‘Botnet analysis using

ensemble classifier’, Perspectives in Science 8, 502 – 504. Recent Trends in Engineering

and Material Sciences.

URL: http://www.sciencedirect.com/science/article/pii/S2213020916301422

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A. M., Debbabi,

M. and Wang, L. (2010), ‘On the analysis of the zeus botnet crimeware

toolkit’, http://www.ncfta.ca/papers/On_the_Analysis_of_the_ZeuS_Botnet_

Crimeware.pdfwww.ncfta.ca.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning (Information Science

and Statistics), Springer-Verlag, Berlin, Heidelberg.

Borgaonkar, R. (2010), An analysis of the asprox botnet, in ‘2010 Fourth International

Conference on Emerging Security Information, Systems and Technologies’,

pp. 148–153.

Boulesteix, A.-L. and Strimmer, K. (2007), ‘Partial least squares: a versatile tool for

the analysis of high-dimensional genomic data’, Brief Bioinform 8(1), 32–44.

Bradley, A. P. (1997), ‘The use of the area under the roc curve in the evaluation of

machine learning algorithms’, Pattern Recogn. 30(7), 1145–1159.

URL: http://dx.doi.org/10.1016/S0031-3203(96)00142-2

Bramer, M. (2013), Principles of Data Mining, 2nd edn, Springer Publishing Company,

Incorporated.

Breunig, M., Kriegel, H.-P., Ng, R. T. and Sander, J. (2000), Lof: Identifying

density-based local outliers, in ‘PROCEEDINGS OF THE 2000 ACM SIGMOD

144

http://www.ncfta.ca/papers/On_the_Analysis_of_the_ZeuS_Botnet_Crimeware.pdf www.ncfta.ca
http://www.ncfta.ca/papers/On_the_Analysis_of_the_ZeuS_Botnet_Crimeware.pdf www.ncfta.ca

Bibliography

INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA’, ACM,

pp. 93–104.

Chawla, N. (2005), Data Mining for Imbalanced Datasets: An Overview, Vol. 5, Springer.

Chawla, N. V. (2010), Data Mining for Imbalanced Datasets: An Overview, Springer

US, Boston, MA, pp. 875–886.

URL: https://doi.org/10.1007/978-0-387-09823-4 45

Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, P. W. (2002), ‘Smote:

Synthetic minority over-sampling technique’, J. Artif. Int. Res. 16(1), 321–357.

URL: http://dl.acm.org/citation.cfm?id=1622407.1622416

CodeAnalyzer (2017), ‘Codeanalyzer’. Accessed 29 Nov 2017.

URL: http://www.codeanalyzer.teel.ws

Cooke, E., Jahanian, F. and McPherson, D. (2005), The zombie roundup:

Understanding, detecting, and disrupting botnets, in ‘Proceedings of the Steps to

Reducing Unwanted Traffic on the Internet on Steps to Reducing Unwanted Traffic

on the Internet Workshop’, SRUTI’05, USENIX Association, Berkeley, CA, USA,

pp. 6–6.

URL: http://dl.acm.org/citation.cfm?id=1251282.1251288

Costa, K. A., Pereira, L. A., Nakamura, R. Y., Pereira, C. R., Papa, J. P. and Falcão,

A. X. (2015), ‘A nature-inspired approach to speed up optimum-path forest clustering

and its application to intrusion detection in computer networks’, Information Sciences

294, 95 – 108. Innovative Applications of Artificial Neural Networks in Engineering.

URL: http://www.sciencedirect.com/science/article/pii/S0020025514009311

145

Bibliography

Crosbie, J. (2016), ‘The internet of things helped a ddos attack destroy the internet’,

https://www.inverse.com/article/22591-internet-of-things-ddos-attack.

Dai, W., Yang, Q., Xue, G.-R. and Yu, Y. (2007), Boosting for transfer learning, in

‘Proceedings of the 24th International Conference on Machine Learning’, ICML ’07,

ACM, New York, NY, USA, pp. 193–200.

URL: http://doi.acm.org/10.1145/1273496.1273521

Davis, J. J. and Clark, A. J. (2011), ‘Data preprocessing for anomaly based network

intrusion detection: A review’, Comput. Secur. 30(6-7), 353–375.

URL: http://dx.doi.org/10.1016/j.cose.2011.05.008

Demarest, J. (2014), ‘Taking down botnets: Statement before the senate judiciary

committee, subcommittee on crime and terrorism’, https://www.fbi.gov/news/

testimony/taking-down-botnets.

Deza, M. M. and Deza, E. (2009), Encyclopedia of Distances, Springer Berlin Heidelberg.

Dietrich, C. J., Rossow, C., Freiling, F. C., Bos, H., van Steen, M. and Pohlmann, N.

(2011), ‘On botnets that use dns for command and control’, http://www.cj2s.de/

On-Botnets-that-use-DNS-for-Command-and-Control.pdf.

Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I. and Ghorbani, A. A. (2016),

Characterization of encrypted and vpn traffic using time-related features, in ‘ICISSP’.

Dua, S. and Du, X. (2011), Data Mining and Machine Learning in Cybersecurity, 1st

edn, Auerbach Publications, Boston, MA, USA.

Eaton, E. and desJardins, M. (2011), Selective transfer between learning tasks using

task-based boosting, in ‘Proceedings of the 25th AAAI Conference on Artificial

Intelligence (AAAI-11)’, AAAI Press, pp. 337–342.

146

https://www.inverse.com/article/22591-internet-of-things-ddos-attack
https://www.fbi.gov/news/testimony/taking-down-botnets
https://www.fbi.gov/news/testimony/taking-down-botnets
http://www.cj2s.de/On-Botnets-that-use-DNS-for-Command-and-Control.pdf
http://www.cj2s.de/On-Botnets-that-use-DNS-for-Command-and-Control.pdf

Bibliography

Evgeniou, T. and Pontil, M. (2004), Regularized multi–task learning, in ‘Proceedings

of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining’, KDD ’04, ACM, New York, NY, USA, pp. 109–117.

URL: http://doi.acm.org/10.1145/1014052.1014067

Feldman, R. and Sanger, J. (2006), Text Mining Handbook: Advanced Approaches in

Analyzing Unstructured Data, Cambridge University Press, New York, NY, USA.

Feng, L., Wang, H., Han, Q., Zhao, Q. and Song, L. (2014), Modeling

peer-to-peer botnet on scale-free network, in ‘Abstract and Applied Analysis’.

http://dx.doi.org/10.1155/2014/212478.

Fowler, C. A. and Hammel, R. J. (2014), Converting pcaps into weka mineable data, in

‘2014 15th IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD)’, Vol. 00,

pp. 1–6.

URL: doi.ieeecomputersociety.org/10.1109/SNPD.2014.6888681

Garcia, S. and Pechoucek, M. (2016), Detecting the behavioral relationships of malware

connections, in ‘Proceedings of the 1st International Workshop on AI for Privacy and

Security’, PrAISe ’16, ACM, New York, NY, USA, pp. 8:1–8:5.

URL: http://doi.acm.org/10.1145/2970030.2970038

Ghafir, I., Prenosil, V., Hammoudeh, M., Baker, T., Jabbar, S., Khalid, S. and Jaf, S.

(2018), ‘Botdet: A system for real time botnet command and control traffic detection’,

IEEE Access 6, 38947–38958.

Gonzalez, H., Stakhanova, N. and Ghorbani, A. A. (2015), Droidkin: Lightweight

detection of android apps similarity, in J. Tian, J. Jing and M. Srivatsa, eds,

147

Bibliography

‘International Conference on Security and Privacy in Communication Networks’,

Springer International Publishing, Cham, pp. 436–453.

Gordon, M. I., Kim, D., Perkins, J., Gilham, L., Nguyen, N. and Rinard, M. (2015),

Information-flow analysis of Android applications in DroidSafe, in ‘Proceedings of the

22nd Annual Network and Distributed System Security Symposium (NDSS)’.

Gu, G., Perdisci, R., Zhang, J. and Lee, W. (2008), Botminer: Clustering analysis

of network traffic for protocol- and structure-independent botnet detection, in

‘Proceedings of the 17th Conference on Security Symposium’, SS’08, USENIX

Association, Berkeley, CA, USA, pp. 139–154.

URL: http://dl.acm.org/citation.cfm?id=1496711.1496721

Gu, G., Porras, P., Yegneswaran, V., Fong, M. and Lee, W. (2007), Bothunter: Detecting

malware infection through ids-driven dialog correlation, in ‘Proceedings of 16th

USENIX Security Symposium on USENIX Security Symposium’, SS’07, USENIX

Association, Berkeley, CA, USA, pp. 12:1–12:16.

URL: http://dl.acm.org/citation.cfm?id=1362903.1362915

Guo, C. and Berkhahn, F. (2016), ‘Entity embeddings of categorical variables’, CoRR

abs/1604.06737.

URL: http://arxiv.org/abs/1604.06737

Haddadi, F., Runkel, D., Zincir-Heywood, A. N. and Heywood, M. I. (2014), On botnet

behaviour analysis using gp and c4.5, in ‘Proceedings of the Companion Publication

of the 2014 Annual Conference on Genetic and Evolutionary Computation’, GECCO

Comp ’14, ACM, New York, NY, USA, pp. 1253–1260.

URL: http://doi.acm.org/10.1145/2598394.2605435

148

Bibliography

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H. (2009),

‘The weka data mining software: An update’, SIGKDD Explor. Newsl. 11(1), 10–18.

URL: http://doi.acm.org/10.1145/1656274.1656278

Haykin, S. (2007), Neural Networks: A Comprehensive Foundation (3rd Edition),

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

He, H. and Ma, Y. (2013), Imbalanced Learning: Foundations, Algorithms, and

Applications, 1st edn, Wiley-IEEE Press.

Healey, J. and Knake, R. K. (2018), ‘Zero botnets: Building a global effort to clean up

the internet’, https://cfrd8-files.cfr.org/sites/default/files/report_pdf/

CSR83_HealeyKnake_Botnets_0.pdf.

Hodge, V. and Austin, J. (2004), ‘A survey of outlier detection methodologies’, Artif.

Intell. Rev. 22(2), 85–126.

URL: https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

International Telecommunication Union (2017), ‘Global cybersecurity index (gci) 2017’.

https://www.itu.int/dms_pub/itu-d/opb/str/d-str-gci.01-2017-pdf-e.pdf.

Jadidi, Z., Muthukkumarasamy, V. and Sithirasenan, E. (2013), Metaheuristic

algorithms based flow anomaly detector, in ‘2013 19th Asia-Pacific Conference on

Communications (APCC)’, pp. 717–722.

Japkowicz, N. and Shah, M. (2011), Evaluating Learning Algorithms: A Classification

Perspective, Cambridge University Press, New York, NY, USA.

Jolliffe, I. (1986), Principal Component Analysis, Springer Verlag.

Joorabchi, M. E. and Mesbah, A. (2012), Reverse engineering ios mobile applications,

in ‘2012 19th Working Conference on Reverse Engineering’, pp. 177–186.

149

https://cfrd8-files.cfr.org/sites/default/files/report_pdf/CSR83_HealeyKnake_Botnets_0.pdf
https://cfrd8-files.cfr.org/sites/default/files/report_pdf/CSR83_HealeyKnake_Botnets_0.pdf
https://www.itu.int/dms_pub/itu-d/opb/str/d-str-gci.01-2017-pdf-e.pdf

Bibliography

Junaid, M., Liu, D. and Kung, D. (2016), ‘Dexteroid: Detecting malicious behaviors in

android apps using reverse-engineered life cycle models’, Computers & Security 59, 92

– 117.

URL: http://www.sciencedirect.com/science/article/pii/S0167404816300037

Kabakus, A. T. and Dogru, I. A. (2018), ‘An in-depth analysis of android malware using

hybrid techniques’, Digital Investigation 24, 25 – 33.

URL: http://www.sciencedirect.com/science/article/pii/S1742287617303183

Kalita, E. (2017), WannaCry Ransomware Attack: Protect Yourself from WannaCry

Ransomware Cyber Risk and Cyber War, Independently published.

Kang, B., Yerima, S. Y., McLaughlin, K. and Sezer, S. (2016), N-opcode analysis for

android malware classification and categorization, in ‘Cyber Security And Protection

Of Digital Services’, IEEE, pp. 1–7.

Kharouni, L. (2009), ‘Sdbot irc botnet continues to make waves’, http:

//www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/

white-papers/wp_sdbot_irc_botnet_continues_to_make_waves_pub.pdf.

Kirubavathi, G. and Anitha, R. (2016), ‘Botnet detection via mining of traffic flow

characteristics’, Computers & Electrical Engineering 50, 91 – 101.

URL: http://www.sciencedirect.com/science/article/pii/S0045790616000148

Koschke, R. (2005), What architects should know about reverse engineering and

rengineering, in ‘WICSA’, IEEE Computer Society, pp. 4–10.

Kuhn, M. and Johnson, K. (2013), Applied Predictive Modeling, Springer, New York,

Heidelberg, Dordrecht, London.

URL: https://dl.dropboxusercontent.com/u/108263707/ book/KuhnJohnson2013apm.pdf

150

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_sdbot_irc_botnet_continues_to_make_waves_pub.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_sdbot_irc_botnet_continues_to_make_waves_pub.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_sdbot_irc_botnet_continues_to_make_waves_pub.pdf

Bibliography

Lang, K. (2007), ‘20 newsgroups data set’, MIT .

URL: http://www.ai.mit.edu/people/jrennie/20Newsgroups/

Larose, D. T. (2004), Discovering Knowledge in Data: An Introduction to Data Mining,

Wiley-Interscience.

Lawrence, N. D. and Platt, J. C. (2004), Learning to learn with the informative vector

machine, in ‘Proceedings of the Twenty-first International Conference on Machine

Learning’, ICML ’04, ACM, New York, NY, USA, pp. 65–.

URL: http://doi.acm.org/10.1145/1015330.1015382

Lee, S.-I., Chatalbashev, V., Vickrey, D. and Koller, D. (2007), Learning a meta-level

prior for feature relevance from multiple related tasks, in ‘Proceedings of the 24th

International Conference on Machine Learning’, ICML ’07, ACM, New York, NY,

USA, pp. 489–496.

URL: http://doi.acm.org/10.1145/1273496.1273558

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C. and Tung, K.-Y. (2013), ‘Intrusion detection

system: A comprehensive review’, Journal of Network and Computer Applications

36(1), 16 – 24.

URL: http://www.sciencedirect.com/science/article/pii/S1084804512001944

Liu, B., Xiao, Y. and Hao, Z. (2018), ‘A selective multiple instance transfer learning

method for text categorization problems’, Knowledge-Based Systems 141, 178 – 187.

URL: http://www.sciencedirect.com/science/article/pii/S0950705117305415

Liu, H. and Motoda, H. (1998), Feature Selection for Knowledge Discovery and Data

Mining, Kluwer Academic Publishers, Norwell, MA, USA.

151

Bibliography

Liu, H. and Motoda, H. (2007), Computational Methods of Feature Selection (Chapman

& Hall/Crc Data Mining and Knowledge Discovery Series), Chapman & Hall/CRC.

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S.,

Safaei, Y., Trickel, E., Zhao, Z., Doupé, A. and Joon Ahn, G. (2017), Deep android

malware detection, in ‘Proceedings of the Seventh ACM on Conference on Data

and Application Security and Privacy’, CODASPY ’17, ACM, New York, NY, USA,

pp. 301–308.

URL: http://doi.acm.org/10.1145/3029806.3029823

Middleton, P., Kjeldsen, P. and Tully, J. (2013), ‘Forecast: The

internet of things, worldwide’, https://www.gartner.com/doc/2625419/

forecast-internet-things-worldwide-.

Mihalkova, L., Huynh, T. and Mooney, R. J. (2007), Mapping and revising markov logic

networks for transfer learning, in ‘Proceedings of the 22Nd National Conference on

Artificial Intelligence - Volume 1’, AAAI’07, AAAI Press, pp. 608–614.

URL: http://dl.acm.org/citation.cfm?id=1619645.1619743

Mirjalili, S. and Hashim, S. Z. M. (2010), A new hybrid psogsa algorithm for function

optimization, in ‘2010 International Conference on Computer and Information

Application’, pp. 374–377.

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R. and Wong, K.

(2000), Reverse engineering: A roadmap, in ‘Proceedings of the Conference on The

Future of Software Engineering’, ICSE ’00, ACM, New York, NY, USA, pp. 47–60.

URL: http://doi.acm.org/10.1145/336512.336526

152

https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-

Bibliography

Nikola, M., Dehghantanha, A. and Raymond, C. K.-K. (2017), ‘Machine learning aided

android malware classification’, Computers & Electrical Engineering 61, 266–274.

URL: http://usir.salford.ac.uk/41554/

Orebaugh, A., Ramirez, G., Beale, J. and Wright, J. (2007), Wireshark & Ethereal

Network Protocol Analyzer Toolkit, Syngress Publishing.

Pan, S. J. and Yang, Q. (2010), ‘A survey on transfer learning’, IEEE Trans. on Knowl.

and Data Eng. 22(10), 1345–1359.

URL: http://dx.doi.org/10.1109/TKDE.2009.191

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn: Machine learning

in Python’, Journal of Machine Learning Research 12, 2825–2830.

Pigott, T. D. (2001), ‘A review of methods for missing data’, Educational Research and

Evaluation 7(4), 353–383.

URL: http://www.tandfonline.com/doi/abs/10.1076/edre.7.4.353.8937

Platt, J. C. (1998), Sequential minimal optimization: A fast algorithm for training

support vector machines, Technical report, ADVANCES IN KERNEL METHODS -

SUPPORT VECTOR LEARNING.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Rahman, G. and Islam, Z. (2011), A decision tree-based missing value imputation

technique for data pre-processing, in ‘Proceedings of the Ninth Australasian Data

Mining Conference - Volume 121’, AusDM ’11, Australian Computer Society, Inc.,

153

Bibliography

Darlinghurst, Australia, Australia, pp. 41–50.

URL: http://dl.acm.org/citation.cfm?id=2483628.2483635

Rai, K., Syamala, M., Professor, D. and Guleria, A. (2016), ‘Decision tree based

algorithm for intrusion detection’, International Journal of Advanced Networking and

Applications 07, 2828–2834.

Raina, R., Battle, A., Lee, H., Packer, B. and Ng, A. Y. (2007), Self-taught learning:

Transfer learning from unlabeled data, in ‘Proceedings of the 24th International

Conference on Machine Learning’, ICML ’07, ACM, New York, NY, USA, pp. 759–766.

URL: http://doi.acm.org/10.1145/1273496.1273592

Rajabioun, R. (2011), ‘Cuckoo optimization algorithm’, Applied Soft Computing

11(8), 5508 – 5518.

URL: http://www.sciencedirect.com/science/article/pii/S1568494611001670

Richardson, M. and Domingos, P. (2006), ‘Markov logic networks’, Mach. Learn.

62(1-2), 107–136.

URL: http://dx.doi.org/10.1007/s10994-006-5833-1

Rish, I. (2001), An empirical study of the naive bayes classifier, in ‘IJCAI 2001 workshop

on empirical methods in artificial intelligence’, Vol. 3, IBM New York, pp. 41–46.

Robinson, N. and Martin, K. (2017), ‘Distributed denial of government: the estonian

data embassy initiative’, Network Security 2017(9), 13 – 16.

URL: http://www.sciencedirect.com/science/article/pii/S1353485817301149

Rokach, L. and Maimon, O. (2014), Data Mining With Decision Trees: Theory and

Applications, 2nd edn, World Scientific Publishing Co., Inc., River Edge, NJ, USA.

154

Bibliography

Samani, E. B. B., Jazi, H. H., Stakhanova, N. and Ghorbani, A. A. (2014), ‘Towards

effective feature selection in machine learning-based botnet detection approaches’,

2014 IEEE Conference on Communications and Network Security pp. 247–255.

Santafe, G., Inza, I. n. and Lozano, J. A. (2015), ‘Dealing with the evaluation of

supervised classification algorithms’, Artif. Intell. Rev. 44(4), 467–508.

URL: http://dx.doi.org/10.1007/s10462-015-9433-y

Schiller, C. and Binkley, J. (2007), Botnets: The Killer Web Applications, Syngress

Publishing.

Sheen, S., Anitha, R. and Natarajan, V. (2015), ‘Android based malware detection using

a multifeature collaborative decision fusion approach’, Neurocomputing 151, 905 – 912.

URL: http://www.sciencedirect.com/science/article/pii/S0925231214012739

Silva, S. S., Silva, R. M., Pinto, R. C. and Salles, R. M. (2013), ‘Botnets: A survey’,

Computer Networks 57(2), 378 – 403. Botnet Activity: Analysis, Detection and

Shutdown.

URL: http://www.sciencedirect.com/science/article/pii/S1389128612003568

Simonson, K. (2013), ‘Nate silver, the signal and the noise: Why so many predictions

fail—but some don’t’, Business Economics 48(1), 82–84.

URL: https://EconPapers.repec.org/RePEc:pal:buseco:v:48:y:2013:i:1:p:82-84

Sood, A. K., Zeadally, S. and Enbody, R. J. (2016), ‘An empirical study of http-based

financial botnets’, IEEE Transactions on Dependable and Secure Computing

13(2), 236–251.

Steinwart, I. and Christmann, A. (2008), Support Vector Machines, 1st edn,

Springer-Verlag New York.

155

Bibliography

Stevanovic, M. and Pedersen, J. (2013), Machine learning for identifying botnet network

traffic.

Stevanovic, M. and Pedersen, J. M. (2014), An efficient flow-based botnet detection

using supervised machine learning, in ‘2014 International Conference on Computing,

Networking and Communications (ICNC)’, pp. 797–801.

Stiborek, J., Pevný, T. and Rehák, M. (2018), ‘Multiple instance learning for malware

classification’, Expert Systems with Applications 93, 346 – 357.

URL: http://www.sciencedirect.com/science/article/pii/S0957417417307170

Stover, S., Dittrich, D., Hernandez, J. and Dietrich, S. (2007), Analysis of the storm

and nugache trojans: P2P is here, in ‘;login’.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P. and Blasco, J. (2014), ‘Dendroid: A

text mining approach to analyzing and classifying code structures in android malware

families’, Expert Systems with Applications 41(4, Part 1), 1104 – 1117.

URL: http://www.sciencedirect.com/science/article/pii/S0957417413006088

Sun, G., Liang, L., Chen, T., Xiao, F. and Lang, F. (2018), ‘Network traffic classification

based on transfer learning’, Computers & Electrical Engineering .

URL: http://www.sciencedirect.com/science/article/pii/S004579061732829X

Team, D. (2016), ‘dex2jar’. Accessed 22 Oct 2017.

URL: https://sourceforge.net/projects/dex2jar/

Team, J.-D. (2015), ‘java-decompiler/jd-gui’. Accessed on 03-05-2018.

URL: https://github.com/java-decompiler/jd-gui

156

Bibliography

The Council of Economic Advisers (2018), ‘The cost of malicious cyber activity to

the u.s. economy’. https://www.whitehouse.gov/wp-content/uploads/2018/02/

The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf.

Tiirmaa-Klaar, H., Gassen, J., Gerhards-Padilla, E. and Martini, P. (2013), Botnets,

Springer Publishing Company, Incorporated.

Torrey, L. and Shavlik, J. (2009), ‘Transfer learning’, Handbook of Research on Machine

Learning Applications. IGI Global 3, 17–35.

Tran, Q. A., Jiang, F. and Hu, J. (2012), A real-time netflow-based intrusion detection

system with improved bbnn and high-frequency field programmable gate arrays,

in ‘2012 IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications’, pp. 201–208.

van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. and van der

Werf, M. J. (2006), ‘Centering, scaling, and transformations: improving the biological

information content of metabolomics data’, BMC Genomics 7(1), 142.

Verisign DDoS Report (2018), ‘Q2 2018 ddos trends report:

52 percent of attacks employed multiple attack types’,

https://blog.verisign.com/security/ddos-protection/

q2-2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/.

Wang, A., Chang, W., Chen, S. and Mohaisen, A. (2018), ‘Delving into internet

ddos attacks by botnets: Characterization and analysis’, IEEE/ACM Trans. Netw.

26(6), 2843–2855.

URL: https://doi.org/10.1109/TNET.2018.2874896

157

https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://blog.verisign.com/security/ddos-protection/q2-2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/
https://blog.verisign.com/security/ddos-protection/q2-2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/

Bibliography

Wang, P., Sparks, S. and Zou, C. C. (2007), An advanced hybrid peer-to-peer

botnet, in ‘Proceedings of the First Conference on First Workshop on Hot Topics

in Understanding Botnets’, HotBots’07, USENIX Association, Berkeley, CA, USA,

pp. 2–2.

URL: http://dl.acm.org/citation.cfm?id=1323128.1323130

Warrens, M. J. (2016), ‘Inequalities between similarities for numerical data’, Journal of

Classification 33(1), 141–148.

URL: https://doi.org/10.1007/s00357-016-9200-z

Wei, M., Gong, X. and Wang, W. (2015), Claim what you need: A text-mining approach

on android permission request authorization, in ‘2015 IEEE Global Communications

Conference (GLOBECOM)’, pp. 1–6.

Weiss, S., Indurkhya, N., Zhang, T. and Damerau, F. (2004), Text Mining: Predictive

Methods for Analyzing Unstructured Information, SpringerVerlag.

Weiss, S. M., Indurkhya, N. and Zhang, T. (2004), Text Mining. Predictive Methods for

Analyzing Unstructured Information, 1 edn, Springer, Berlin.

Winter, P., Hermann, E. and Zeilinger, M. (2011), Inductive intrusion detection in

flow-based network data using one-class support vector machines, in ‘2011 4th IFIP

International Conference on New Technologies, Mobility and Security’, pp. 1–5.

Witte, R., Li, Q., Zhang, Y. and Rilling, J. (2008), ‘Text mining and software

engineering: an integrated source code and document analysis approach’, IET

Software 2(1), 3–16.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan,

G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J. and Steinberg,

158

Bibliography

D. (2007), ‘Top 10 algorithms in data mining’, Knowl. Inf. Syst. 14(1), 1–37.

URL: http://dx.doi.org/10.1007/s10115-007-0114-2

Wu, X., Zhu, X., Wu, G.-Q. and Ding, W. (2014), ‘Data mining with big data’, IEEE

Trans. on Knowl. and Data Eng. 26(1), 97–107.

URL: https://doi.org/10.1109/TKDE.2013.109

Xue, F. and Qu, A. (2017), ‘Variable Selection for Highly Correlated Predictors’, ArXiv

e-prints .

Yan, L. K. and Yin, H. (2012), Droidscope: Seamlessly reconstructing the os and

dalvik semantic views for dynamic android malware analysis, in ‘Proceedings of the

21st USENIX Conference on Security Symposium’, Security’12, USENIX Association,

Berkeley, CA, USA, pp. 29–29.

URL: http://dl.acm.org/citation.cfm?id=2362793.2362822

Yang, W., Zhang, Y., Li, J., Shu, J., Li, B., Hu, W. and Gu, D. (2015),

Appspear: Bytecode decrypting and dex reassembling for packed android malware, in

‘Proceedings of the 18th International Symposium on Research in Attacks, Intrusions,

and Defenses - Volume 9404’, RAID 2015, Springer-Verlag New York, Inc., New York,

NY, USA, pp. 359–381.

URL: http://dx.doi.org/10.1007/978-3-319-26362-5 17

Yang, Z. and Yang, M. (2012), Leakminer: Detect information leakage on android

with static taint analysis, in ‘Proceedings of the 2012 Third World Congress on

Software Engineering’, WCSE ’12, IEEE Computer Society, Washington, DC, USA,

pp. 101–104.

URL: http://dx.doi.org/10.1109/WCSE.2012.26

159

Bibliography

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P. and Wang, X. S. (2013), Appintent:

Analyzing sensitive data transmission in android for privacy leakage detection, in

‘Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security’, CCS ’13, ACM, New York, NY, USA, pp. 1043–1054.

URL: http://doi.acm.org/10.1145/2508859.2516676

Yerima, S. Y., Sezer, S., McWilliams, G. and Muttik, I. (2013), A new android malware

detection approach using bayesian classification, in ‘Proceedings of the 2013 IEEE 27th

International Conference on Advanced Information Networking and Applications’,

AINA ’13, IEEE Computer Society, Washington, DC, USA, pp. 121–128.

URL: http://dx.doi.org/10.1109/AINA.2013.88

Yuan, R., Li, Z., Guan, X. and Xu, L. (2010), ‘An svm-based machine learning

method for accurate internet traffic classification’, Information Systems Frontiers

12(2), 149–156.

Zhang, J., Zulkernine, M. and Haque, A. (2008), ‘Random-forests-based network

intrusion detection systems’, Trans. Sys. Man Cyber Part C 38(5), 649–659.

URL: http://dx.doi.org/10.1109/TSMCC.2008.923876

Zhang, X., Breitinger, F. and Baggili, I. (2016), ‘Rapid android parser for investigating

dex files (rapid)’, Digital Investigation 17, 28 – 39.

URL: http://www.sciencedirect.com/science/article/pii/S1742287616300305

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A. and Garant, D. (2013),

‘Botnet detection based on traffic behavior analysis and flow intervals’, Computers &

Security 39, 2 – 16. 27th IFIP International Information Security Conference.

URL: http://www.sciencedirect.com/science/article/pii/S0167404813000837

160

Bibliography

Zhao, J., Shetty, S. and Pan, J. W. (2017), Feature-based transfer learning for network

security, in ‘MILCOM 2017 - 2017 IEEE Military Communications Conference

(MILCOM)’.

161

	Declaration and List of Publication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction to the thesis
	1.1 Introduction
	1.2 Motivation
	1.3 Methodology
	1.3.1 Android Botnet Detection
	1.3.2 Network Traffic Analysis

	1.4 Aims and Objectives
	1.4.1 Aims:
	1.4.2 Objectives:

	1.5 Hypotheses
	1.6 Key Contributions
	1.7 Thesis Overview
	1.8 Summary

	2 Background and Literature Review
	2.1 Background
	2.1.1 Botnet Introduction
	2.1.1.1 Botnet Definition
	2.1.1.2 Key Concepts
	2.1.1.3 Anatomy of a Bot Attack
	2.1.1.4 Botnet Topologies

	2.1.2 Botnet Examples
	2.1.2.1 SDBot
	2.1.2.2 RBot
	2.1.2.3 Zeus
	2.1.2.4 WannaCry

	2.2 What is Reverse Engineering?
	2.3 An Overview of Machine Learning and Transfer Learning
	2.3.1 What is Machine Learning
	2.3.2 What is Transfer Learning
	2.3.2.1 Formal Definition of Transfer Learning
	2.3.2.2 Inductive transfer learning

	2.4 Existing Work on Android Botnet Detection
	2.5 Recent Work on Network Traffic based Botnet Detection
	2.6 Summary

	3 An Integrated Source Code Mining Approach for Android Botnet Detection
	3.1 Overview
	3.2 Dataset Formation and Feature Extraction
	3.2.1 Text-Mining Approach
	3.2.2 Source Code Metrics Approach
	3.2.3 Feature Selection

	3.3 Algorithms used in this Work
	3.3.1 NaiveBayes
	3.3.2 KNN
	3.3.3 Decision Trees
	3.3.4 RandomForest
	3.3.5 Sequential Minimal Optimization (SMO)

	3.4 Experimental Results
	3.5 Summary

	4 A Novel Similarity-Based Instance Transfer Learning Approach for Botnet Family Classification
	4.1 Introduction
	4.2 Methods
	4.2.1 The TransferBoost Algorithm
	4.2.2 The Similarity-Based Instance Transfer (SBIT) Algorithm

	4.3 Instance Similarity
	4.3.1 What is Similarity
	4.3.2 How to Measure the Similarity of Instances
	4.3.3 The Similarity Types used in this Work
	4.3.4 Example Similarity Values

	4.4 SBIT Limitations and Extension
	4.4.1 The Class Imbalance Problem
	4.4.2 What is Overfitting?
	4.4.3 The Synthetic Minority Over-sampling Technique (SMOTE) Algorithm
	4.4.4 The Class Balanced SBIT Algorithm (CB-SBIT)

	4.5 Summary

	5 Preprocessing of Raw Network Traffic Data and Performance Evaluation of the Proposed Methods
	5.1 Introduction
	5.2 Preprocessing Raw Network Traffic Data
	5.2.1 Obtaining the PCAP Data
	5.2.2 From PCAP to Plain Text
	5.2.3 Labelling the Data:
	5.2.4 Missing Value Replacement (Imputation):
	5.2.5 One Hot Encoding:
	5.2.6 Removal of Highly Correlated Features
	5.2.7 Outlier Detection and Removal:
	5.2.8 Splitting and Sampling:
	5.2.9 Data Exploration:

	5.3 Applying Steps to Real Data
	5.4 Experimental Evaluation and Discussion
	5.4.1 The Network Traffic Data
	5.4.2 Evaluation of Classical Classifiers on Network Traffic Data
	5.4.3 Evaluation of SBIT against RandomForest and TransferBoost
	5.4.4 CB-SBIT vs SBIT
	5.4.5 CB-SBIT vs SMOTE (using Network Traffic Data)
	5.4.6 CB-SBIT vs TransferBoost (using Text Data)

	5.5 Summary

	6 Conclusions and Future Directions
	6.1 Lessons learned from this project
	6.2 How and Why this work is useful
	6.3 Conclusions
	6.3.1 Android Botnet Detection
	6.3.2 Raw Network Traffic Data Preprocessing
	6.3.3 Similarity Based Instance Transfer (SBIT)
	6.3.4 Class-Balance Similarity Based Instance Transfer (CB-SBIT)

	6.4 Limitations and Future Work
	6.4.1 Android Botnet Detection
	6.4.2 SBIT and CB-SBIT

	A Code for transforming Java Source Code into Dataset for Machine Learning
	B Code for evaluating Performance of Classifiers
	C SBIT Implementation
	D CB-SBIT Implementation
	Bibliography

