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Abstract 

The aim of this study was to investigate the application of impedance spectroscopy using fixed electrode geometries 

on a standard glass vial in the characterization of the freezing process of solutions at different fill liquid volumes. 

Impedance spectra (between 10-106 Hz) were recorded every  3 min, during the freezing cycle on a solution of 3% 

w/v sucrose contained within 10 mL glass vials having an electrode system (two thin copper foils: w:18 mm; h: 5 mm) 

affixed to the external surface of the vial. A fill factor (ɸ) was defined in terms of the relative height of the solution 

volume to the height of the electrodes from the base of the vial. Solution volumes of 1.5 to 5 ml (corresponding to ɸ 

= 0.5-1.6) were investigated to establish the applicability of having a fixed electrode geometry for a range of solution 

volumes. A linear relationship between the time duration of the ice formation/solidification phase and the fill factor 

suggests that fixed electrode geometries may be used to investigate a range of fill volumes. The benefit of this 

approach is that it does not invade the solution and hence records the freezing process without providing additional 

nucleation sites and in a manner which is representative of the entire fill volume. 
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3 
 

Introduction 

Freeze-drying (lyophilisation) is widely practiced in the manufacture of injectable pharmaceuticals to preserve the 

stability of the therapeutic agent and to facilitate storage at room temperature (1). The process comprises three 

discrete stages: freezing, primary drying and secondary drying. Of these stages, it is the freezing stage that defines 

the ice matrix structure and hence the porosity of the dry layer through which water vapour migrates during the 

subsequent primary drying stage (2-5). The ice morphologies that were developed on freezing are impacted by 

various factors, including the presence of foreign objects and the topography of the container walls, which provide 

nucleating sites for subsequent ice growth, the degree of super-cooling and the fill height of liquid in the vial (5-8). 

The characteristics of the freezing process have been evaluated indirectly from retrospective analysis of the primary 

drying stage (i.e. dry layer resistance using process analytical tools) or from measurements of the pore structure of a 

freeze dried cake at the end of the cycle (by microCT tomography) (5, 9). Those studies which attempt to examine 

the freezing process by direct means are invariably undertaken by off-line techniques, viz. freeze-drying microscopy 

and differential scanning calorimetry (10). However the results are of limited relevance due to the fact that the 

cooling rate and the degree of super-cooling differ from the real vial conditions, principally due to the differences in 

sample geometry and differences in cleanliness of a manufacturing environment and a lab environment. 

The conventional in-line method for characterizing the freezing step is to use a thermocouple inserted into the 

product to monitor changes in temperature associated with the exothermic crystallization of ice (11, 12). However, 

by virtue of the fact that the probe resides within the liquid, then the physical presence of the probe necessarily 

perturbs the processes of ice nucleation and solidification, through the introduction of nucleation sites and thermal 

inputs respectively. This may result in ice structures which are different from those that would otherwise develop 

within the regular (non-thermocouple containing) vials (13). Alternatively the thermocouple probe is attached to the 

external surface (base) of the vial to avoid product invasion. Nevertheless, being a single point measurement tool, 

the data derived from a thermocouple measurement may not provide a true representation of the entire fill volume 

(6).  
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Other techniques, including near infra-red (NIR) spectroscopy, Raman spectroscopy and optical tomography (14-16) 

are also used to study the freezing profile. Challenges associated with these technologies include i) the placement of 

a thermocouple probe with in the vial will inevitably impact/perturb the processes of ice formation ii) bulky 

technologies, such as NIR and Raman probes, which require close placement to the vial in question, do not permit 

the usual hexagonal arrangement of vials on the freeze drier shelf and therefore provide limited access to those vial 

in the centre of the cluster. 

Impedance spectroscopy (IS) concerns the response of a material to an applied electric field. The response may 

range from the delocalised charge phenomenon of ionic conduction, through localised space charge polarization 

(e.g. interfacial polarization of the boundaries between two phases) to true dielectric phenomenon such as dipole re-

orientation. The majority of applications for IS are for the analysis of materials in which ionic conduction 

predominates (e.g. solid and liquid electrolytes), for example in the study of fuel cells, rechargeable batteries, and 

corrosion. There are fewer, but equally important, applications for impedance spectroscopy in the study of dielectric 

materials (i.e. solid or liquid non-conductors whose electrical characteristics involve dipolar rotation, e.g. glasses and 

polymers) and for those materials whose mechanism of conduction is predominantly electronic (e.g. single-crystal or 

amorphous semiconductors)(17). Invariably the term dielectric spectroscopy is adopted in preference to IS for the 

latter types of materials, as the main focus for investigation is the thermally damped relaxation of molecular dipoles. 

However, many materials do not fall into one category or another, and so IS often finds uses in more complex 

situations, such as a partly conducting dielectric material with some ionic conductivity. Pharmaceutical materials are 

a good example of this latter type of material, with even the driest of materials (e.g. powders and granules) 

exhibiting protonic conduction processes which percolate through the hydration surface of a powder (18, 19), whilst 

displaying pronounced dielectric relaxation phenomena associated with dipole reorientation (20). Despite numerous 

scientific studies on a wide range of material types, the application for IS for industrial process control is much less 

prevalent, with the most well-known being the monitoring of the fermentation process in the brewing industry (21, 

22).  

The recent exploration of the use of IS for the characterization of the lyophilisation process (23) has shown 

that the cooling rate, the freezing process and the end point of primary drying may be monitored by the application 
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of electrodes external to the vial. The reason why this approach has worked in practice is that the electrical 

impedance of the object is a function of both the dielectric and conductive properties of the assembly which are, in 

turn, defined by the composition and physical state of the material contained within the vial, the temperature of the 

assembly, and the geometry of the vial and electrode system.  The first article demonstrated the application of 

impedance spectroscopy in defining the end point of primary drying, which was determined from the inflection in 

the derivative profile of the imaginary capacitance (dielectric loss) at 1 kHz.  The technology described in that 

publication, comprised a pair of stimulating and sensing electrodes affixed close to the base of a glass vial (10 ml). 

Each electrode has dimensions 18x5 mm, and is surrounded by a guard electrode to prevent leakage of the electrical 

field. The height of each electrode measures 1 cm from the base of the vial (which cover a 3 ml volume in the vial) 

(24).  

An understanding of the position and dimensions of the electrodes in relation to the volume (fill height) 

occupied by the liquid, for a range of vial sizes, is necessary to the general application of this approach in freeze-

drying process development. The obvious first question is how the liquid fill height will impact the impedance 

spectra recorded by the measurement instrument and the second question is how universal this type of 

measurement might be for a range of vial sizes.  

The first question will be addressed in the main body of this article through an experimental study on 

conventional 10 mL vial (Schott) with a fill volume ranging from 1.5 to 5 mL, corresponding to a fill height of 0.5 to 

1.7 cm. The height of the electrodes was fixed at 1 cm from the bottom of the vial, and electrical impedance profiles 

were recorded for a fill volume of 3 ml which provides a fill depth of 1 cm and fill factor (ɸ) of 1 (ratio of sample 

height to the height of the top of the guard electrode). In practice, the fill depth may increase up to 2 cm (equivalent 

to 2ɸ (6ml)). The measurements of electrical responses at these fill heights will define the potential of the 

impedance spectroscopy in monitoring of the freeze-drying process at variable fill volumes. Fill heights > 2 cm should 

be avoided where possible as it may result in high intra-vial variability and poor cake appearance due to altered heat 

flow during freezing and primary drying (6).  

The second question, in relation to the opportunity to measure the freezing characteristics of solutions 

within other sizes of vials, is examined theoretically through calculations of the shift in the relaxation frequency of 
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the interfacial polarization process with changes to the diameter of the vial. The methodology and results of these 

calculations have been given in Appendix 1. 

The final aspect to investigate, when considering different vial geometries and the associated differences in 

the design/geometry of the electrodes, is the impact of the additional electrode mass on the thermal characteristics 

of the vial; as there is potential for the additional mass to impact heat transfer to the vial and the rate of freezing 

and/or drying experienced by the modified vials. The starting point for this analysis is to define a theoretical limit of 

the thermal mass contributed by the electrodes as ~1% of the vial weight. For the 10 ml tubing vials, used in the 

through-vial impedance measurements, the electrode mass was measured and found to be ~ 1.4% of the vial weight. 

For other sizes of vial, it is also necessary to estimate whether the electrode mass is within the theoretical limit of 

~1%. To make this assessment, some calculations were made to determine the mass of the electrode system for 

different sized glass vials, viz. 2ml, 4ml, 6ml and 8ml glass vials. The same calculation was undertaken for the 10 ml 

vial in order to demonstrate the validity of these thermal mass calculations. The methodology and results from these 

calculations are given in Appendix 2. 

  



 

7 
 

Materials  

Sucrose, purchased from Sigma Aldrich UK, was used as supplied. 

Methods 

A 30 mg/ml sucrose solution was prepared in single distilled water obtained from all glass apparatus. Aliquots of the 

sucrose solution were transferred to impedance measurement vials (N=5) via a 0.2 micron micro filter (Minisart, 

Germany). The impedance measurement vial is a clear glass 10 ml freeze-drying tubing vial (Schott) with two copper 

foil electrodes (18x5 mm) attached at the external bottom curvature and connected at the vial neck to a pair of 

miniature coaxial cables via longitudinal copper foil strips. Also a thin guard electrode was applied around each of 

the stimulating and sensing electrodes to prevent electrical leakage during the impedance measurement (Figure 1). 

The measurement vials were connected to a high precision impedance analyser located outside of the freeze drier 

(HETO FD08, Denmark) via a junction box and a hermetically sealed pass-through. The impedance spectrum was 

recorded by scanning the frequencies in the range 101-106 Hz. The acquisition time for each spectrum was 27 s and 

an interval between all five measurements of 3 min. The product temperature was recorded by means of type K 

thermocouple placed in the glass vials, arranged in a line on the shelf, using temperature data logger OctTemp 2000 

(Madgetech USA). 

The fill volume was successively increased from 1.5 to 5 ml. Each freezing experiment was repeated to provide ten 

measurements at each fill volume. The corresponding solution fill height ranged from ~ 4.6 mm (1.5ml) which sits 

below the electrode foil height of 10.5mm, to 17.5 mm (5.0 ml), which sits above the top of the electrodes. These 

product fill heights correspond to a fill factor () increasing from 0.5 to 1.6. (Figure 1)  
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Figure 1 Electrodes attached to the outside of a freeze-drying vial. A is the active electrode, B is the guard electrode, 

C is the connector strip from the elecrode to the neck of the vial, D is the miniature co-axial wire connecting the 

electrode to the measuring system (where the outer braiding of the coaxial cable attaches to the guard electrode 

and the inner conductor attaches either to the stimulating or current sensing electrode (ɸ is the ratio of liquid fill 

height to the height of the top of the guard electrode ) 

The freezing cycle comprised the following steps: (1) Temperature ramp to 25 °C, over 10 min; (2) Hold temperature 

at 25 °C for 20 min; (3) Temperature ramp to -30 °C, over 60 minutes; (4) Hold temperature at -30 °C for 120 min. 
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Results and Discussion 

The basic characteristics of the freezing process are described first for a fill factor of ɸ=1 while the impact of fill 

height is evaluated in the next section.  

Freezing Characteristics at fill factor, ɸ=1  

At a fill factor of ɸ=1 the capacitance spectrum of the material under test (i.e. glass vial and the 30 mg/ml sucrose 

solution) displayed a step-like decrease in the real part of the electrical capacitance as the frequency is increased 

through the critical frequency which corresponds to the relaxation time constant for the sample (f = 1/2πτ) (Fig. 2 I). 

There is a corresponding peak in the associated imaginary capacitance (dielectric loss) spectrum as the material 

under test starts to conduct electricity through the phase lag between the response of the sample and the applied 

electric field (Fig. 2 II). The real part of capacitance refers to that component of the capacitance which is in phase 

with the reactive current and the imaginary capacitance refers to that component of the capacitance that is out of 

phase with the reactive current. The manifestation of the step in the real part of capacitance and the peak in the 

imaginary par of capacitance is known as a pseudo-relaxation process, as it has the appearance of a real relaxation 

process within a material (i.e. one that has a frequency dependence to its dielectric properties owing to some 

molecular relaxation or some form of interfacial charging within the material). In reality the dielectric properties of 

the material within the vial may be static i.e. invariant with frequency, and the pseudo-relaxation process is simply 

due to the accumulation of charge at the glass surface as ions migrate through the liquid (or solid) contained within 

the glass vial. A more appropriate description of the pseudo-relaxation process is therefore ‘an interfacial 

polarization’ process. 
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Figure 2 Capacitance plots during the freezing of a sucrose solution (30 mg/ml) (I) left shows the frequency 

dependence of the real part of capacitance (Cʹ) and (II) right shows the frequency dependence of the imaginary part 

of capacitance (Cʺ ) The dotted line represents liquid state and the solid line denotes frozen state. 

The features of the pseudo-relaxation process as a function of time were characterized in terms of the amplitude 

(C”peak) and frequency position (fpeak) of the peak in the imaginary capacitance spectrum (Fig. 2II).  The time profile of 

log fpeak (Fig 3 I) is remarkably similar to that recorded by the thermocouple (Fig 3 II) and identifies various phases in 

the freezing cycle: the pre-cooling phase (A to B), the onset of ice formation (point B), the solidification phase of the 

product (i.e. the ice growth phase) (B to D) and the subsequent equilibration of the product temperature with the 

shelf temperature (D to E). In contrast the time profile of C”peak (Fig 3 III) is quite different and somewhat scattered, 

up to the point of complete solidification (point D). 
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Figure 3. Time profile of (I) the peak frequency (fpeak), II) the peak amplitude (C”peak)  and III) product temperature 

of sucrose 30mg/ml during freezing. Plots I and III clearly identify critical steps relating to product freezing; A to B is 

product cooling (pre-ice formation), B is the onset of ice formation, C describes the maximum increase in product 

temperature following exothermic heat dissipation during ice formation. From these transitions one can define B-D 

as the ice solidification phase, D-E as the equilibration phase, E-F is product cooling II (post ice formation). C”peak 
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appears noisy during the freezing but delineates precisely the end point of the equilibration phase (point E). Note 

that time zero is taken from the end of the equilibration phase after the vial and contents have been maintained at 

25 °C for 10 min. 

Further explanation of each phase is given below: 

Cooling Phase (A to B) The magnitude of log fpeak decreases linearly with the time because of the temperature 

dependent decrease in the electrical resistance of the sucrose solution. This behaviour continues until the ice 

nucleation point is reached (point B). 

Ice Nucleation (point B) The onset of freezing or ice nucleation is identified by an abrupt increase in the magnitude 

of fpeak which results from the elevation in temperature, following the release of the heat of ice crystallization (an 

exothermic process). The time corresponding to this transition was recorded as the nucleation time. 

Solidification Phase (B-D) As the ice onset phase (nucleation) progresses to the growth of ice crystals, it is the rate of 

ice formation that defines the rate of energy release into the product and hence the rate of the temperature rise. 

However, in parallel with the increase in temperature from ice formation, there is also an increase in the rate of heat 

dissipation through the walls of the vial. At some point, the rate of ice formation slows down, such that the rate of 

heat dissipation then exceeds the rate of heat release and the temperature then starts to decrease. This defines the 

point C. Thereafter, the heat dissipation rate dominates the energy balance in the system and the temperature 

begins to return to equilibrium with the shelf (point E). However, before equilibrium is reached there comes a point 

when no more ice forms in the system and energy dissipation alone defines the energy balance in the system. The 

time period from point B to point D is therefore defined as the solidification time, during which the ice crystallization 

process is complete, whereas the time period from D to E defines the equilibration phase. 

Cooling Phase II (E-F) Following the equilibration phase, the contents of the vial continue to cool at rate defined by 

the cooling rate of the shelf; Though the thermal exchange between the vial contents and the surroundings means 

that the temperature within the vial stabilize 1-2 °C above the shelf temperature.  
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The end of the equilibration phase (E) was estimated from the point where the tangent of the line through the data 

from the solidification phase intersects with the tangent of the line through the data from cooling phase II (post ice 

formation). The freezing time is then defined as the time difference from point B to E. The time duration of each 

phase was also estimated from the product temperature profile recorded by the thermocouple (Fig. 3II). 

Freezing characteristics of sucrose 30 mg/ml at different fill factors (ɸ=0.5 to1.6) 

The features of pseudo-relaxation process were also assessed at two other fill factors (ɸ= 0.5 and ɸ= 1.6). Both log 

fpeak and temperature profiles show that by increasing the fill volume (so that the fill factor changes from 0.5 to 1.6) 

results in the prolongation of the freezing process (fig 4). The analysis of these profiles, along the lines described 

earlier, provides a range of estimates for the ice nucleation time, the freezing time, the solidification time and the 

equilibration time. In each plot, the cumulative standard deviation takes in account the variability in freezing times 

associated with the position of vials on the self in relation to the walls of the drier, and the small differences in vial 

geometry. 
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Figure 4. Time profiles of (I)  fpeak and (II) temperature for 30mg/ml sucrose during freezing at different fill factors (ɸ 

=0.5, 1 and 1.6). (n = 10) Note that time zero is taken from the end of the equilibration phase after the vial and 

contents have been equilibrated at 25 °C for 10 min. 

 

The results from the perspective of ice nucleation time suggest that there appears to be little influence of fill height 

on the onset time. This observation is consistent with the fact that freezing starts from the base of the vial, and so 

the fill height has little bearing on when the inititation of the ice nucleation event occurs. Although one could argue 

that, the greater the fill volume, the longer it will take to cool the product to the nucleation temperature. However, 

the overlapping standard deviation values preclude the drawing of any definitive conclusion. 

The results from ice nucleation time might also suggest an earlier ice nucleation in the impedance spectroscopy 

measured vials compared to thermocouple TC, however these observation remain inconclusive due to a high degree 

of variation in the onset of formation signified by the overlapping standard deviation values.  
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The scatter in the ice nucleation (Fig 5) for any particular fill volume confirms the stochastic nature of the ice 

nucleation process (25) (%COVs range from 12.4 to 8.8 for  the thermocouple data and 7.2 to 4.1 for the IS data). 

This inherent variability in the onset of ice formation could result in differences in the degree of super-cooling and 

hence different ice morphologies in the frozen matrix. The fact that the scatter in the onset is greater for the TC data 

than the IS data may be due to the fact that the TC measurement is more sensitive to its position in the vial in 

relation to the spatial seeding of the ice layer. 

 

Figure 5 Ice nucleation time for sucrose 30mg/ml at different fill factors. Time zero is taken from the end of the 

equilibration phase after the vial and contents have been equilibrated at 25 °C for 10 min. The nucleation time is 

then calculated from the time point B (Fig. 3). 

 

By plotting the freezing time, the solidification time and the equilibration time (from both the fpeak derived-

estimates and thermocouple derived-estimates) shows that the duration of each phase has a broadly linear 

dependance on fill factor (fig 6). The solidification time almost doubles with a doubling of the fill factor as one might 

expect. However,the equilibration time is much less dependent on the fill factor. The fact that the equilibration time 

is almost constant might mean that this time equates to the time required for the excess heat to pass through the 

base of the vial and to some extent through the walls of the vial. As the volume of the frozen mass increases there is 

a small increase in the contribution from the vial, which is associated with the increased wall volume that is adjacent 

to the liquid fill. The intercept on the y-axis can then be considered as the time constant for heat flux through the 

base and the gradient of the line is the time constant for heat flux through unit area of the side walls of the vial.  
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Figure 6 Freezing time, solidification time and equilibration time for 3% w/w sucrose solution at different fill factors 

(n = 10), (LEFT) Impedance measurement (RIGHT) Thermocouple measurement.  

The line of best fit to the IS derived solidification time extrapolates back to zero whereas the line of best fit for the 

TC derived solidification time does not extrapolate to zero.  This observation suggests a potential limitation of the 

point measurement systems, whereby the position of the thermocouple in relation to the fill volume and the walls of 

the vial will impact the time point at which any one particular phase is deemed to have completed. 

In contrast, the improved linearity between the time duration of the solidification phase and the fill volume, as 

derived from the log fpeak values, is a consequence of the fact that the impedance measurement is sensing the 

entire fill volume (Given that the guard electrode surrounds the measurement electrodes then this will force the 

field lines through the contents of the vial and hence the impedance measurements sense the entire contents of the 

vial).  

From this work and other recent publications (24) it is becoming clear that the through-vial impedance spectroscopy 

technique may have a role to play in the development of lyophilization processes and formulations. In particular it 

may find a useful role in defining the in situ characteristics of the freezing process, especially in regard to the 

manefestation of first and second order transitions such as eutectic crystallation (data not presented) and the glass 

transition (26) and the impact of various process conditions (set temperatures and ramp rates) including those which 

define the process of annealing. Further development of the technology to establish a non-contact measurement 

may even allow for the technique to be used more extensively in the processes of scale up. 
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A major advantage over other single vial measurement techniques (such as NIR, microbalance) is that vials may be 

clustered in the usual hexagonal array (which is employed when the shelf is fully loaded) as a consequence of the 

minimal physical space taken up by the electrode system. The major disadvantage (as with all single vial 

measurements) is that only a limited number of vials may be characterised which makes exptralotation to the whole 

batch somewhat difficult. However, further development of the technology to establish a non-contact measurement 

may allow for multiple vials to be assesed within domains of the freeze-drier. Such a development would then 

render the technique more applicable to scale up and process verification in GMP freeze-driers. 

Conclusion 

Impedance spectra from the electrode-vial-solution assembly displayed a pseudo-relaxation process which arises 

from the polarization of the solution-glass wall interface. Of the two parameters characterising the process (i.e. peak 

frequency, fpeak, and peak amplitude, C″peak) it is fpeak that shows a strong correlation with the solution temperature 

as recorded by the thermocouple. The time profile of fpeak during the freezing process recorded the various phases of 

(i) cooling, (ii) ice nucleation and growth leading to the solidification of the product, and (iii) the equilibration of the 

frozen solution with the shelf temperature. A linear relationship between the duration of the solidification phase and 

fill volume suggests that fixed electrode geometries may be used to investigate a range of fill volumes. The extension 

of these studies to lower temperatures (i.e. temperatures below Tg and Tc for sucrose and other materials), so that 

the technique might be used to track the primary drying stage, are described elsewhere in (24) and (26). 
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Appendix 1: Estimation of the peak frequencies of liquid and frozen sucrose solution (30 mg/ml) 

within tubing vial of different vial geometries 

In a simple approximation, the impedance of the object under test can be described as a 

combination of resistor and capacitor; the resistance of which is defined by following equation 

R = K1d/ACSσ          (1) 

where K1 is a geometrical coefficient, d is the internal diameter of the vial, ACS is an area of effective 

vertical cross section of the sample (i.e. the solution within the vial) and σ is specific conductivity of 

the sample. The capacitance can be defined by the following equation. 

C = ε0ε A/l          (2)  

Where ε0 is the permittivity of a vacuum, ε is the dielectric constant of glass, A is the area of the 

electrodes and l is thickness of the glass wall. For the purpose of these calculations, the wall 

thickness is assumed to be constant for all sizes of vial. 

Multiplying R by C we obtain 

τ =RC = K1ε0εdA/σlACS           (3) 

where τ is the known as the time constant of the serial RC circuit. It is this time constant which 

defines the position of the interfacial relaxation peak in the experimental frequency window (where 

fpeak= 1/2πτ). 

In a first approximation ACS can be presented as ACS = AK2 where K2 is a constant coefficient 

(associated with the fixed cylindrical shape of the sample volume). Then (3) can be rewritten as 

τ =RC = K1ε0εdA/σlAK2           (4) 

A in the numerator and denominator can be cancelled thus giving  

τ = RC = K1ε0εd/σl K2          (5) 

For simplicity let us denote 

Kp = K1ε0ε/lσ K2           (6) 

Since all members in the right side of (6) are constants then Kp (the proportionality coefficient) is also 

a constant, and expression 5 can be simplified to 

τ= Kpd            (7) 

and respectively 

Fpeak= 1/2πτ = 1/2πKpd         (8) 
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Expression 8 shows that the frequency position of the peak has an approximately inverse 

dependence on the internal diameter of the vial. 

Having measured the experimental value of fpeak for a 10 ml (fpeak10ml) it is then straight forward to 

estimate Fpeak(xml) for different sized vials from the ratio of the diameters, according to the formula 

below. 

fpeakx=fpeak(10ml) x d10ml/dxml         (9) 

Table 1 gives theoretical estimates for the peak frequency for different sized vials, for both the liquid 

state and the frozen state.  

Table1 Estimated position of pseudo-relaxation peak for a 10% solution of sucrose in distilled water 
within glass tubing vials of varying diameter (but constant wall thickness: 2 mm). * Values of fpeak for 
a 10% sucrose solution in the 10 ml tubing vial (Schott) have been determined experimentally 
 

Vial size (ml) 
Schott 

internal diameter 
(mm) Fpeak liq (kHz) 

Fpeak Frozen 
(kHz) 

10 21.95 64.021 1.390 

2 13.91 101.056 2.194 

4 13.92 100.959 2.192 

6 19.92 70.579 1.532 

8 19.90 70.626 1.533 
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Appendix 2:  

Thermal Mass Contributions from the External Electrodes 

The basis for these calculations is to first determine the position of the top of the guard electrode 

from the base of the vial (Fig. 1, dimension A) for a fill volume that provides a constant ratio of the 

liquid cross sectional area to the liquid fill height, for all sizes of vial and which is equal to that for a 3 

ml fill volume in a 10 ml vial.  

 

                                                          

 

Figure 1 Schematic of the electrode assembly. A: electrode height, B length of guard electrode, C height of 

stimulating/sensing electrode, D width of stimulating/sensing electrode, E width of guard electrode, F spacing 

between guard electrode and sensing electrode, G  is the height of the side segment of the guard electrode  

Once the position of the top of the guard electrode is defined then the next step is to estimate the 

length of the sensing/stimulating electrode (dimension D, Fig. 1). This dimension is defined by the 

ratio of the electrode length to the circumference of the vial, which is fixed at 0.4 for all vials. All 

other dimensions, i.e. the separation/gap between the guard and the sensing/stimulating electrodes 

and the width of the guard electrode are fixed at 1 and 1.5 respectively. Knowing the dimensions A, 

D, E, and F permits the calculation of all other dimensions, from which the total area of the electrode 

assembly can then be calculated (Table 1). The mass of the electrode assembly is then determined 

from the specific weight of the electrode material (0.4 mg/mm2 for the copper foil used on the 10 ml 

vial) and the % increase in vial weight from attaching the copper foil is then determined from the 

weight of the vial. Table 2 shows the dimensions of the electrode assemblies and the results of these 

calculations of % increase in mass. 

  

 
 F 
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Table 1 Calculation of liquid cross sectional area (a) and liquid fill height (h) corresponding to a fixed 

ratio of a/h=45 mm 

vial 

size 

Mean 

Wt (g) 

± SD 

(Wt) 

Mean diameter 

(mm) 

±SD 

(Diameter) 

a:Mean area of 

liquid (mm2) 

± SD 

(Area) 

h:Mean liquid Fill 

height (mm) 

± SD (fill 

height) 

2 4.420 0.014 15.950 0.010 199.833 0.251 4.433 0.006 

4 5.584 0.034 15.983 0.042 200.669 1.046 4.451 0.023 

6 7.999 0.085 21.937 0.006 377.996 0.199 8.385 0.004 

8 8.639 0.084 21.923 0.076 377.537 2.629 8.375 0.058 

10 9.283 0.068 23.957 0.061 450.816 2.299 10.000 0.051 
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Table 2 Theoretical calculations of the % increase in thermal mass on fixing an electrode pair (with guard electrodes) to different volumes of tubing vial 

Vial 

Size ml 

Vial wt 

(mg) 

 

sensing electrode 

Top and bottom guard 

electrode 2 side guard electrodes 

total area of electrode 

assembly mm2 

wt of electrode 

assembly 

thermal mass as % 

of vial wt 

electrode 

height mm 

height 

(mm) 

width 

(mm) 

Area 

mm2 

height 

(mm) 

width 

(mm) 

Area 

mm2 

height 

(mm) 

width 

(mm) 

Area 

mm2 

2 4419 4.4 2.22 11 24.37 1.11 15.9 17.64 4.7 1.11 5.22 94.48 37.793 0.86 

4 5584 4.5 2.23 16.3 36.34 1.11 15.9 17.64 4.7 1.11 5.22 118.43 47.37 0.85 

6 7998 8.4 4.19 16.3 68.29 2.09 21.75 45.58 6.5 2.08 13.52 254.81 101.92 1.27 

8 8639 8.4 4.19 16.3 68.29 2.09 21.79 45.67 6.5 2.09 13.59 255.11 102.04 1.18 

10 9282 10 5 18 90 2.5 24 60 7 3 21 342.00 136.8 1.47 

 

The application of electrodes was practicable by the current method (manually) for vial sizes 6ml, 8ml and 10ml as the dimensions of different electrode 

components were greater than 1mm thickness. On contrary for smaller sized glass vials i.e. 2ml and 4ml, dimension electrodes and its spacing fractionate 

between 1mm which may require an alternate methodology (sputtering) to apply thermal mass of the electrode.  

 


