
1

Ant Colony Stream Clustering: A Fast Density
Clustering Algorithm for Dynamic Data Streams

Conor Fahy, Shengxiang Yang, Senior Member, IEEE, and Mario Gongora

Abstract—A data stream is a continuously arriving sequence of
data and clustering data streams requires additional considera-
tions to traditional clustering. A stream is potentially unbounded,
data points arrive on-line and each data point can be examined
only once. This imposes limitations on available memory and
processing time. Furthermore, streams can be noisy and the
number of clusters in the data and their statistical properties can
change over time. This paper presents an on-line, bio-inspired
approach to clustering dynamic data streams. The proposed
Ant-Colony Stream Clustering (ACSC) algorithm is a density
based clustering algorithm, whereby clusters are identified as
high-density areas of the feature space separated by low-density
areas. ACSC identifies clusters as groups of micro-clusters. The
tumbling window model is used to read a stream and rough
clusters are incrementally formed during a single pass of a
window. A stochastic method is employed to find these rough
clusters, this is shown to significantly speed the algorithm with
only a minor cost to performance, as compared to a deterministic
approach. The rough clusters are then refined using a method
inspired by the observed sorting behaviour of ants. Ants pick-
up and drop items based on the similarity with the surrounding
items. Artificial ants sort clusters by probabilistically picking and
dropping micro-clusters based on local density and local similari-
ty. Clusters are summarised using their constituent micro-clusters
and these summary statistics are stored offline. Experimental
results show that the clustering quality of ACSC is scalable,
robust to noise and favourable to leading ant-clustering and
stream-clustering algorithms. It also requires fewer parameters
and less computational time.

Index Terms—Data stream clustering, density clustering, con-
cept drift, concept evolution, ant colony

I. INTRODUCTION

M INING data streams brings additional problems to
traditional data mining. A data stream is a potentially

unbounded sequence of data and in dynamic environments the
properties of this data can change over time in unforeseen
ways. As a stream progresses, the performance of traditional
classifiers and predictive models can degrade as the character-
istics of the target objects change. This change can be gradual,
known as concept-drift, sudden as concept-shift, or in the form
of concept-evolution when entirely new classes appear in the
stream. Detecting this change is a challenge, as is reacting
and adapting to the change. This challenge is compounded

Manuscript received November 2, 2016; revised August 21, 2017; Decem-
ber 3, 2017 and March 7 2018; accepted March 27, 2018. This work was
supported by the Engineering and Physical Sciences Research Council (EP-
SRC) of U.K. under Grant EP/K001310/1 (Corresponding author: Shengxiang
Yang).

The authors are with the Centre for Computational Intelligence (CCI),
School of Computer Science and Informatics, De Montfort University, The
Gateway, Leicester LE1 9BH, U.K. (email: {conor.fahy, syang, mgongo-
ra}@dmu.ac.uk).

by the scarcity-of-labels problem, whereby in a streaming
environment, newly arriving data is both expensive and time-
consuming to label. Unsupervised learning techniques, such
as clustering, can potentially be used to mitigate this labelling
problem and also as a change detection mechanism alongside
traditional classifiers and predictive models.

Clustering in a data stream requires additional considera-
tions to traditional clustering. When dealing with a continuous
sequence of information, it is only possible to examine the data
once. Clustering needs to be performed quickly to prevent
bottlenecks and potential loss of data. A stream can be
potentially infinite but only a limited amount of memory is
available, necessitating the summarisation of identified clusters
in a meaningful way. The nature of an evolving stream implies
that clusters can drift, new clusters can appear, or clusters can
disappear and reappear cyclically. Therefore, it is difficult to
know a priori how many clusters are present in the stream.
Although traditional partitioning clustering techniques, such
as k-means and its variants, have been successfully applied
to data streaming, they have the drawback of requiring k
to be specified a priori. Density based clustering, a form of
hierarchical clustering, overcomes this limitation.

Density based clustering defines clusters as high-density
areas of the feature space separated by areas of low density.
It can identify arbitrarily shaped clusters, is robust to outliers
and, crucially, does not require the number of clusters to be
known a priori. In our proposed algorithm, dense areas are
described using micro-clusters: n-dimensional spheres with
centre c and radius r. Micro-clusters have a maximum radius ε
where r ≤ ε. A data point is assigned to a micro-cluster if the
point falls within its radius. The set of micro-clusters that are
connected form the macro-cluster. Generally, there are more
micro-clusters than there are actual clusters but significantly
fewer micro-clusters than there are data points. This serves
a dual purpose both as the clustering mechanism and as a
summarisation technique because a number of local data points
can be represented by a single micro-cluster. Clusters identified
by the algorithm are summarized by their constituent micro-
clusters and these summaries are stored off-line for evaluation
by the user. This has two advantages: 1) information about
clusters can be stored in a fraction of the space and 2)
representative micro-clusters are potentially easier to evaluate
than the entire set of individual data points assigned to a
cluster.

A density based approach to stream clustering can address
the problem of a shifting number of non-stationary clusters
and provides a method to summarize these clusters, and we
propose a sampling method to address the speed requirement

2

of data stream clustering. A point’s similarity with a cluster is
evaluated using a sample taken from the cluster. The stochastic
sampling method replaces the traditional, exhaustive search for
each point’s appropriate micro-cluster, and subsequently the
nearest neighbour of each micro-cluster. Rough clusters are
incrementally created in a single pass of the data. The first
point seeds the first cluster, subsequent points are assigned to
an existing cluster or, if too dissimilar, seed a new cluster. Only
after every point has been assigned to its respective cluster
are micro-clusters created. Each point is converted to a micro-
cluster and these micro-clusters attempt to merge with others
in the same cluster only. The merging operation is expensive,
and attempting to merge at this stage reduces the number of
failed merging attempts.

After this single-pass of the data, the discovered clusters are
often rough and too many. These clusters are refined using an
ant-inspired sorting method. This method (i.e., the “pick-and-
drop” method) is modelled based on the behavior of certain
species of ant which cluster corpses into “cemeteries” or sort
their larvae into piles. The idea is that isolated items should be
picked up and then dropped at other locations where similar
items are present. Sorting Ants are assigned to each cluster and
they attempt to refine the initial clusters by probabilistically
picking micro-clusters and dropping them in more suitable
clusters. The probabilistic operations are biased toward the
dissolution of smaller clusters and their contents moved to
similar, larger clusters. Intuitively, it’s better to have all points
of class X in one cluster rather than distributed in a number
of smaller clusters.

In other density based streaming algorithms that use micro-
clusters, e.g., DenStream [7] and its variants, micro-clusters
are defined by two parameters; the maximum radius ε and
minPoints which determines the minimum number of data
points within ε for the micro-cluster to be considered dense. In
ACSC, each point is initially treated as its own micro-cluster
and so the minPoint parameter is effectively 1 and therefore
not required. This removes the complication of defining micro-
clusters as either core, potential or outlier as each micro-
cluster is treated equally. To further simplify we merge the
concepts of density-reachable, directly density-reachable, and
density-connected into one concept density-reachable, which
determines if two micro-clusters are connected and should be
considered part of the same cluster. ACSC assigns points to a
cluster before creating and merging micro-clusters so when
a new micro-cluster is directly density-reachable to any in
the cluster, it is density-reachable and density-connected to
all in the cluster. This simplifies the algorithm, reduces the
overall complexity and allows for effective sampling. The main
features of ACSC can be summarized as follows:

• The two phases of summarisation and clustering are
combined into a single on-line phase.

• Micro-clusters are defined using a single parameter ε, and
ACSC requires just three parameters overall.

• Clusters are formed using a single concept of density and
outliers are identified as clusters containing a single point.

• Sorting operations are performed locally, through sam-
pling from each cluster. This reduces the computational
time and scales linearly to larger dimensionality and

increasing numbers of clusters.
The rest of this paper is organized as follows. Section II

presents related work in this area. Our proposed ACSC is
described in Section III. Section IV presents our experimental
study based on several real and synthetic data streams. Section
V concludes this paper.

II. RELATED WORK

The work by Aggarwal et al. [1] was the first attempt to ad-
dress one of the fundamental problems in dealing with streams,
the problem of being unable to revisit evolving data. The
authors suggested that a stream clustering algorithm should
consist of two components: an online component and an
offline component. Data arriving online should be summarized
and the offline component should perform clustering on the
summarized data. Their algorithm, CluStream, introduced the
concept of micro-clusters as a method to summarize data.
Micro-clusters are a temporal extension of the cluster-feature-
vector proposed in [45]. In CluStream, only a certain number
of micro-clusters can be stored in memory at any one time
so when a new micro-cluster is formed, two existing micro-
clusters must be merged or one deleted. The offline clustering
of the micro-clusters is based on the k-means algorithm [20].

Partitional clustering algorithms have been extended for
single-pass and stream clustering. In [33] a general approach
is proposed to enable traditional soft partitional clustering
algorithms to deal with streaming data. The data stream is
split into chunks and each chunk is partitioned into a set of
cluster centroids. The centroids are weighted with the amount
of samples they represent and in order to maintain the history
of the stream, previously identified centroids are added to
the newly arriving chunk of data to be clustered. In [17]
a constant-factor approximation algorithm for a K-Median
approach to data streaming is described. These algorithms
offer a fast, accurate single pass clustering of data but could be
sensitive to changes in the underlying distribution or a shifting
number of natural clusters.

Density based approaches [12] do not suffer from these
limitations. Clusters are identified as areas of high density
in the feature space and so the number of clusters does not
need to be specified, noise and outlier points are easier to
identify and clusters of any shape can be found. Density
based clustering has been extended for streams by adopting
the aforementioned, two-part, online and offline framework
[7], [41], [43].

MR-Stream [43] partitions the search space into cells and
uses a tree structure to store the space partitioning. Newly
arriving data points are assigned to a cell and the tree structure
is updated. The off-line clustering is performed on the sum-
marized tree.D-Stream introduced in [41] and extended in [8]
also partitions the search space into discrete grid sections on
which data are mapped. A decay factor is used to give higher
importance to recent data. The authors introduced a technique
to detect and remove sparse grid sections, which improves the
space and time efficiency and improves on previous grid based
clustering algorithms.

DenStream [7] extends the concept of micro clusters in-
troduced in CluStream by adding a temporal aspect. It uses

3

the time-dampened window model to assign higher weight
to recent data. Data points are summarized on-line as micro-
clusters and when a clustering request is made by a user, these
micro-clusters are clustered off-line using a traditional density-
based clustering algorithm [12]. However, as observed in [15],
[43], the offline clustering phase is computationally expensive
and, furthermore, it is only executed when a clustering request
is made by a user, so there is potentially a trade-off between
frequent requests to discover changes in the stream and infre-
quent requests in order to reduce computational overheads.

To overcome this, the two phases of DenStream were
merged into a single online phase in FlockStream [15].
Flockstream was inspired by the flocking behavior of birds
as proposed in Reynolds’ Boids algorithm [36]. It uses a
decentralised, self-organising strategy to group similar micro-
clusters. FlockStream has been shown to require substan-
tially fewer pair-wise distance comparisons than DenStream
while achieving similar cluster purity. FlockStream adopts the
concepts of time-weighted core micro-clusters and non-core
micro-clusters introduced in DenStream. These concepts are
also employed in DEC [3] to identify clusters in real-time
streams upon which fuzzy models are developed.

The off-line clustering phase used by DenStream is an
extension of the DBSCAN algorithm [12], which groups data
in terms of core-points, reachable points, and outliers. A point
p is considered core if there are at least minPoints within
a distance ε of p. Point p forms a cluster with all points
that are reachable to it and any points which are not are
considered to be outliers. Various extensions to DBSCAN
have been proposed, including methods for parallelisation [29],
parameter estimation [13], and increased accuracy [31]. A
comprehensive review of all the variants is given in [35].

A particularly relevant extension of DBSCAN is the PACA-
DBSCAN algorithm [23]. PACA-DBSCAN uses the pick-
and-drop model of ant clustering introduced in [9] to ini-
tially partition the data before the DBSCAN algorithm is
applied. The pick-and-drop model proposed by Deneubourg
et al. was extended [30] for data analysis by introducing a
similarity measure between data objects. In this model, each
n-dimensional data point is associated with a 2-dimensional
(2D) point in a 2D space. Initially, these points are distributed
randomly. Artificial ants move around and probabilistically
pick-and-drop the 2D data objects based on local density in
the 2D space and similarity of the data in the n-dimensional
feature space. Clusters emerge as a consequence of these sim-
ple, local rules. This pick-and-drop model has been extended
[18], [6], [19]. However, this model requires many iterations to
cluster the data and the final clustering solution is just a spatial
embedding of the data in a 2D space and a further processing
step is often required. Along with hard clustering methods,
fuzzy approaches to ant clustering have been proposed [24].
Once initial heaps have been formed by the ants, the centroids
are refined by the Fuzzy C Means algorithm [4].

A variation on the Leader Ant algorithm was proposed
in AntClust [27]. Data objects are associated with ants and
ants are assigned an “odour”. Ants sharing the same odour
form nests. This model was extended in [32] for streams and
is one of the few examples in the literature of ant-inspired

stream clustering algorithms. Ants move from nest to nest
along pheromone trails and find their most suitable (closest
in terms of the Euclidean distance). The algorithm computes
the clusters using k-means, which limits its suitability for a
streaming environment.

Along with pick-and-drop and chemical coordination, other
properties of social insects, such as self assembly [2] and
stimergy [14], have been used as inspiration for clustering
models, and there is a large body of research on clustering with
Ant Colony Optimisation (ACO) [11] whereby the clustering
problem is viewed as an optimisation problem [25], [37], [38].
Other bio-inspired stochastic stream-clustering algorithms in-
clude extensions on the Neural Gas algorithm G-Stream [16]
and Kohen’s Self Organising Map [10].

III. PROPOSED ANT-COLONY STREAM CLUSTERING
(ACSC) ALGORITHM

ACSC employs the tumbling window model [28] when
dealing with data streams. A tumbling window is a type of
sliding window where, at each iteration, a fixed size non-
overlapping chunk of data is considered. In each window,
ACSC identifies clusters as a group of micro-clusters, and a
micro-cluster is a set of neighbouring points within a certain
radius; the ε-neighbourhood determines this radius.

A micro-cluster containing N points { ~Xi}, i = {1, ..., N},
is described using three components: the number of data
points the micro-cluster contains (N), the Linear Sum (LS)

of each dimension (i.e.,
N∑
i=1

~Xi), the Squared Sum (SS) of

each dimension (i.e.,
N∑
i=1

~X2
i). LS and SS are d-dimensional

arrays, where d is the number of dimensions in a point. From
these, the radius r and centre c of the micro-cluster can be
determined [1]:

c =
LS

N
(1)

r =

√
SS

N
−
(
LS

N

)2

(2)

A micro-cluster can also contain a temporal variable, but
this is not necessary in the tumbling window model. LS and
SS have the properties of additivity and increment-ability,
which allow micro-clusters to absorb new data points and
to merge with other micro-clusters. A micro-cluster m can
absorb point p if, after updating the LS and SS of m with p,
radius(m) ≤ ε. Similarly, two micro-clusters mi and mj can
attempt to merge into a single micro-cluster mk as follows:

mk = (Ni +Nj , ~LSi + ~LSj , SSi + SSj) (3)

If radius(mk) ≤ ε, the clusters merge; otherwise, the merging
operation fails. The pseudo-code for this process is outlined
in Algorithm 1.

Micro-clusters mi and mj are said density reachable if:

dist(cmi
, cmj

) ≤ ε, (4)

where cmi and cmj are the centres of micro-clusters mi and
mj , respectively.

4

Algorithm 1 Merge Operation
Input : ε-neighbourhood, 2 micro-clusters; a and b
Output : Merged micro-cluster iff operation successful

1: Create new, empty micro-cluster c
2: Initialise c := a
3: Add b to c (Eq. (3))
4: r := radius of c (Eq. (2))
5: if (r ≤ ε) then merge successful
6: Delete a and b
7: Return c
8: else
9: Delete c

10: Return false

The solution provided by ACSC is a set of clusters con-
taining density-reachable micro-clusters. ACSC works in two
steps: 1) Rough clusters are identified in a single-pass of
the window and 2) these rough clusters are refined and their
summary statistics are stored off-line.

A. Find Clusters

ACSC employs the tumbling window model when deal-
ing with data streams. At each iteration, a fixed size non-
overlapping chunk of data is considered. So, at the beginning
of this step, there will be WindowSize points. In a single-pass
of the window, clusters are incrementally formed. The first
point seeds the first cluster. Subsequent points are assigned
to an existing cluster or used to seed a new cluster. Point
p’s suitability with cluster c is evaluated using the Euclidean
distance from p with a sample nSamples taken from c. The
suitability of point p with cluster c is estimated as follows:

Suitability(p, c) =

min(nSamples,n)∑
j=1

dist(p, cj)

min(nSamples, n)
, (5)

where n is the number of points that are present in the cluster.
Each cluster is evaluated and the point is assigned to the most
suitable one provided the suitability is equal to or below ε; if
not, the point seeds a new cluster. The parameter ε determines
the maximum radius for a micro-cluster in the subsequent step
and also serves as the minimum suitability measure in this
step.

As we estimate each point’s suitability with each cluster, we
record each suitability. This is useful information, especially
when afforded just a single pass of the data. Upon joining (or
establishing) a cluster, we update the similarity information
between the selected cluster and its neighbouring clusters. The
similarity between cluster a and cluster b is the average of each
point p in cluster a’s suitability (Eq. (5)) with cluster b:

Similarity(a, b) =
1

n

n∑
i=1

Suitability(ai, b) (6)

The similarity to each neighbouring cluster is a rolling av-
erage updated whenever a new point is assigned to the cluster.
Although comparable, Similarity(a, b) 6= Similarity(b, a).
This phase of the algorithm is outlined in Algorithm 2.

Algorithm 2 Find Clusters
Input : Window
Output : Clusters, Cluster Similarity

1: while <Window> do
2: for <each data point> do
3: if <clusters> then
4: Find best cluster (Eq. (5))
5: Add point to cluster
6: Update cluster similarity (Eq. (6))
7: else if <No clusters ||
8: No suitable cluster> then
9: Create new cluster

10: Add point to cluster
11: Update cluster similarity (Eq. (6))
12:

return Clusters, Cluster Similarity

B. Sort Clusters

The previous step discovers clusters in a single-pass of the
window. The clusters identified at this stage are often rough,
impure and too-many. In this step, micro-clusters are created,
merged, and inter-cluster sorting is performed.

Initially, each d-dimensional point p in each cluster is
treated as its own micro-cluster m. This micro-cluster will
have a radius of 0 and a centre of p. Formally, we have:

m.N = 1

m.LSi = pi, i = {1, · · · , d}
m.SSi = pi

2, i = {1, · · · , d}
(7)

where pi is the ith dimension of point p.
Before sorting, each micro-cluster attempts to merge with

other micro-clusters in the same cluster. The merging operation
is performed by comparing each micro-cluster with every other
in the same cluster. If, after summing their constituent parts
(Eq. (3)), the radius is less than or equal to ε, the merging
operation is a success. Merging at this step ensures that
only neighbouring micro-clusters attempt to merge and avoids
the unnecessary computation of comparing micro-clusters in
different dense areas. Another advantage is that, during the
sorting phase, n points represented by a micro-cluster can be
moved in a single operation, speeding the sorting process and
reducing the number of pairwise comparisons.

‘Sorting Ants’ are created and one is assigned to each
cluster. Each Sorting Ant is native to its own cluster. Sorting
Ants probabilistically decide to pick-up a micro-cluster from
their cluster. A micro-cluster m is chosen at random from
cluster k and is iteratively compared with nSamples micro-
clusters in the same cluster. The Euclidean distance from the
centre of m to each of the selected micro-clusters is calculated
and if both are density-reachable (Eq. (4)), then a reachable
count is incremented. The probability of a pick-up is calculated
as follows:

Ppick = 1− reachable

nSamples
(8)

It is important to note that if the number of micro-clusters n
in cluster c is fewer than nSamples, then only n comparisons

5

Algorithm 3 Sort Clusters
Input : Initial Clusters, Cluster Similarity
Output : Sorted Clusters

1: Create micro-clusters (Eq. 7)
2: Merge micro-clusters in each cluster (Algorithm 1)
3: Assign Sorting Ant to each cluster
4: while <!Stop Condition> do
5: for <each ant> do
6: if <!Sleeping> then
7: Probabilistically pick-up (Eq. (8))
8: if <Carrying> then
9: Move to most similar cluster

10: Probabilistically drop (Eq. (8))
11: Update similarity information (Eq. (6))
12: Update sleepCounter
13: return Clusters

are made. However, Ppick is still calculated using nSamples.
This ensures a higher probability of a pick-up in clusters
containing fewer micro-clusters. This leads to the dissolution
of smaller clusters and their incorporation into larger, similar
clusters.

If a micro-cluster is successfully picked-up, the Boolean
variable carrying is true and the Sorting Ant moves to a
neighbouring cluster and attempts to drop it.

Sorting Ants move to the most similar cluster (using the
similarity information from the first step) ensuring that they do
not attempt to drop micro-clusters in clusters that are dissimilar
to their own. A sorting ant attempts to drop its micro-cluster in
the new cluster based on the inverse of Eq. (8). If the dropping
operation is successful, the micro-cluster is moved to the new
cluster; otherwise, the micro-cluster remains in its original
cluster. The ant returns to its native cluster and updates the
similarity information between the two clusters with the latest
suitability score, see Eq. (5).

Each Sorting Ant continues to attempt sorting until either
the cluster is empty (all of its contents have been moved to an-
other cluster) or the Sorting Ant is ‘asleep’. Each Sorting Ant
has a counter and if a pick-and-drop operation is unsuccessful,
either picking or dropping, this counter is incremented. When
the counter reaches sleepMax, then the cluster is considered
to be sorted and a Boolean counter sleeping is true. The
counter is reset to zero after a successful operation or if a
new micro-cluster is placed in the cluster by a foreign Sorting
Ant. When all ants are sleeping, the stop condition is met.

This step purifies each cluster and causes many smaller, sim-
ilar clusters to dissolve and form one larger cluster. Clusters
containing only one micro-cluster are considered to be outliers
and the clustering solution is given as the set of non-empty
clusters. Each cluster contains a grouping of density-reachable
micro-clusters which summarize the partitioned areas of high-
density in the feature space. These summary statistics are
stored offline and the next tumbling window in the data stream
is evaluated. This step is outlined in Algorithm 3.

IV. EXPERIMENTAL STUDY

The performance of ACSC is evaluated on both stationary
and non-stationary datasets across three metrics. Since there
are so few ant-based stream-clustering algorithms, ACSC is
compared with four popular static ant clustering algorithms.
ACA [42] extends the original pick-and-drop implementation
[30] by introducing a cooling scheme for the picking prob-
abilities. ACAm [6] extends this by associating a short term
memory with each ant. The heuristic is further improved in
ATTA [18] by using a colony of heterogeneous ants. AntClust
does not use the pick-and-drop model for clustering but is
instead inspired by the chemical recognition system of ants.
The performance of these algorithms is taken from results al-
ready published in the literature. ACSC is then compared with
three leading stream clustering algorithms on non-stationary
streams. DenStream [7], CluStream [1] and ClusTree [26]
are density based stream clustering algorithms. Similar to
ACSC, they each employ micro-clusters to identify dense
areas of the stream. However, unlike ACSC, they use the two-
phase process of on-line summarisation and off-line clustering.
DenStream uses a time dampened window to assign higher
importance to more recent data and the off-line clustering
phase is based on a variation of the DBSCAN [12] algorithm
whereas CluStream applies a weighted K-Means algorithm on
the generated micro-clusters. ClusTree uses a self-adaptive
index structure to update the micro-clusters. Each of these
algorithms are evaluated using the Massive Online Analysis
(MOA) [5] open source software.

A. Performance Metrics

ACSC is evaluated across three metrics: Purity, F-Measure
[22] and Rand Index [34]. Each dataset used is labelled and the
ideal “correct” clustering solution is known, so performance
is measured with respect to this ground truth. In each metric,
a bad clustering will have a value close to 0 and an ideal
clustering solution will have a value of 1.

The Purity metric measures how homogeneous a cluster
is. A cluster is assigned to the class which appears most
frequently within the cluster, the accuracy of this is evaluated
by summing the instances of this class and dividing by the total
number of instances in the cluster. The F-Measure (sometimes
called F-Score or F1-Score) is the harmonic mean of the
precision and recall scores obtained by the algorithm.

In the following, R represents the clustering result returned
by the algorithm. R contains n clusters. In every identified
cluster Ri (i = {1, · · · , n}), V i represents the most frequently
appearing class label in cluster Ri, V i

sum is the number of
instances of V i in Ri, and V i

total represents the total number
of instances of V i in the current window. From these, we
define the following features for cluster Ri:

precisionRi
=
V i
sum

|Ri|
(9)

recallRi
=
V i
sum

V i
total

(10)

ScoreRi
= 2 ∗ precisionRi ∗ recallRi

precisionRi
+ recallRi

(11)

6

TABLE I: Description of datasets used in experiments

Classes Features Examples Drift Interval Type

Non-Stationary
1CDT 2 2 16,000 400 Synthetic
2CHT 2 2 16,000 400 Synthetic
4CR 4 2 144,400 400 Synthetic
4CE1CF 5 2 173,000 750 Synthetic
Network Intrusion 2 42 494,000 unknown Real
Forest Cover 7 54 580,000 unknown Real

Stationary
Iris 3 4 150 none Real
Wine 3 13 178 none Real
Zoo 7 17 101 none Real

Overall, Purity (P) and F-Measure (F) can now be expressed
in terms of the total number of clusters identified, as follows:

P =
1

n

n∑
i=1

precisionRi
(12)

F =
1

n

n∑
i=1

ScoreRi
(13)

The Rand Index (R) is a measure of agreement between two
clustering solutions; the solution identified by the algorithm
and the ideal clustering solution known from the ground
truth. It measures the number of decisions that are correct
by penalising false negatives and false positives. Simply put,
it measures the accuracy of the algorithm, defined as follows:

R =
TP + TN

TP + FP + TN + FN
, (14)

where TP , TN , FP , and FP denote the number of true pos-
itive, true negative, false positive and false negative decisions,
respectively.

We compare the performance of ACSC (stochastic) with
results already published in the literature and also with three
deterministic streaming algorithms (DenStream, CluStream
and ClusTree). To statistically analyse the results on the above
metrics, we use the non-parametric One-Sample Wilcoxon
Signed-Rank Test [44]. We reject the null hypothesis that the
distribution of the ACSC results are symmetric around the
corresponding peer result with p < 0.05.

B. Datasets

ACSC is compared with other ant-based clustering solutions
across three well known and popular non-stationary datasets;
Iris, Wine, and Zoo. These datasets were taken from the UCI
Machine Learning Depository1 and the details of each are
presented in Table I. These datasets are originally sorted by
class so we randomly shuffle each dataset to remove any
potential bias in the sorted streaming order. To evaluate the
performance of ACSC over non-stationary streams, six dataset-
s were used. Four datasets are synthetic and are taken from the
non-stationary dataset used in [39] and made publicly available
by the authors2. The four selected datasets were chosen in
order to test increasing numbers of natural clusters present in
the data. ACSC is also tested on two real data-streams: the

1http://archive.ics.uci.edu/ml/
2https://sites.google.com/site/nonstationaryarchive/

TABLE II: Results of algorithms on stationary datasets regard-
ing purity (P), F-Measure (F) and Rand Index (R)

Data P F R

Iris
ACSC 0.92(s+) 0.90(s+) 0.89(s+)
ATTA − 0.81 −
ACA 0.77 0.77 0.78
ACAm 0.81 0.81 0.81
AntClust 0.89 0.84 0.84

Wine
ACSC 0.94(s+) 0.90(s+) 0.88(s+)
ATTA − 0.88 −
ACA 0.86 0.86 0.83
ACAm 0.86 0.87 0.85
AntClust 0.94 0.73 0.73

Zoo
ACSC 0.97(s+) 0.85(s+) 0.88(s-)
ATTA − 0.81 −
ACA 0.77 0.76 0.88
ACAm 0.76 0.77 0.89
AntClust 0.66 0.68 0.90

Average
ACSC 0.94(s+) 0.90(s+) 0.88(s+)
ATTA − 0.83 −
ACA 0.80 0.80 0.83
ACAm 0.81 0.82 0.85
AntClust 0.83 0.75 0.82

Network Intrusion benchmark dataset3 used in [15] and [7]
and the Forest Cover-Type data-set4. The Network Intrusion
data-stream is composed of seven weeks of simulated network
requests on the DARPA network. Requests can be “normal”
or “malicious”. The non-stationary “malicious” class contains
substantial drift as it is composed of twenty three different
types of attack. The Forest Cover data-stream is composed
of 54 cartographic variables describing forest coverage in
Roosevelt National Forest of northern Colorado and is widely
used in the stream-mining literature [1], [26], [16]. The full
details of each dataset are presented in Table I. These datasets
have been transformed into a stream by taking the input order
as the streaming order. For the UCI datasets, we take the
shuffled order as the streaming order.

C. Clustering Quality Evaluation

To evaluate ACSC on the static datasets the algorithm was
tested on one window with windowSize set to the number
of samples. ACSC is compared with leading ant clustering

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://archive.ics.uci.edu/ml/datasets/covertype

7

TABLE III: Average performance of algorithms over the entire stream regarding purity (P), F-Measure (F) and Rand Index (R)

DenStream CluStream ClusTree ACSC

P F R P F R P F R P F R

1CDT 0.99 0.82 0.77 1.0 0.88 0.80 1.0 0.89 0.82 0.99(s-) 0.99(s+) 0.99(s+)

2CHT 0.43 0.27 0.53 0.24 0.23 0.55 0.22 0.24 0.58 0.81(s+) 0.42(s+) 0.55(s-)

4CR 1.00 0.67 0.71 1.00 0.89 0.89 1.00 0.89 0.89 0.99(s-) 0.95(s+) 0.97(s+)

4CE1CF 0.99 0.35 0.56 0.99 0.86 0.89 0.99 0.86 0.89 0.96(s-) 0.76(s-) 0.90(s+)

Network 1.00 0.80 0.81 0.35 0.13 0.36 0.36 0.16 0.3 1.0(=) 0.95(s+) 0.95(s+)

CoverType 0.89 0.10 0.51 0 0 0 0 0 0 0.88(s-) 0.59(s+) 0.64(s+)
Average 0.88 0.50 0.64 0.59 0.49 0.58 0.59 0.51 0.58 0.93 0.77 0.83

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time

P
e
rf
o
rm

a
n
c
e

Performance on Network-Intrusion Stream

Purity
F-Score

Rand Index

1

Fig. 1: Performance of ACSC on 4CR dataset over 100 windows of size 1,000, where ε = 0.05

algorithms and the performances of these algorithms were
taken from results already published in the literature, with
the exception of our implementation of AntClust. The Purity
and Rand Index for the ATTA algorithm are omitted as they
are not available in the literature. The comparative results
are presented in Table II. The average of 30 runs of ACSC
is presented along with result of the Wilcoxon Signed-Rank
Test, where “s+” indicates ACSC performs significantly better
than the best peer result and “s−” indicates ACSC performs
significantly worse. ACSC performs significantly better on
each metric in the Iris and Wine datasets and is outperformed
only by AntClust on the Rand Index measure on the Wine
dataset. The overall average shows that ACSC outperforms
the others on these three datasets on all metrics.

To evaluate ACSC on non-stationary streams, ACSC is com-
pared with DenStream, CluStream and CluStream. Table III
displays a comparative evaluation of each algorithm across
the entire stream. The peer algorithms are deterministic but
ACSC is stochastic so the displayed results are the average,
along with the Wilcoxon test over 30 runs. ACSC, on average
over all 6 datasets, outperforms the compared algorithms. The
levels of cluster purity are comparable across each dataset
except for 2CHT where ACSC performs much better. ACSC
achieves the best Rand Index scores on each dataset and the
best F-Measure on five out of six datasets and on average,
is the best overall. On the final stream; Forest Cover, we are
using the full dataset, containing 54 variables, both continuous
and discreet. CluStream and ClusTree were unable to find
a clustering solution on this full dataset (we are evaluating
through the MOA platform). Previous studies report using a

subset of the data (the first 10 continuous variables).
While Table III shows the mean values across the whole

stream, the on-line performance of ACSC as a stream pro-
gresses is displayed in Figs. 1 and 2. We use the two real
data-streams (Network Intrusion and Forest Cover) and plot
the algorithm’s performance over time.

To evaluate the time requirement of the algorithm we
measure the speed of the algorithm in seconds. We measure
the total time the algorithm takes to process a stream. We also
report the average time to process a single window with size
1,000. Through MOA, we also measure the performance of
the peer algorithms for comparison and report the results in
Table IV.

Fig. 3 shows the mean number of calculations performed
by ACSC and, for comparison, DenStream on the Network
Intrusion stream. These comparisons are the Euclidean dis-
tance comparisons between two micro-clusters. Intuitively, the
greater the number of comparisons, the longer the algorithm
takes. The sampling method in ACSC, and the stage at
which micro-clusters attempt to merge mean that far fewer
comparisons are needed and the reason why ACSC can process
a stream comparatively faster. These results are based on a
window size of 1,000 for ACSC and a horizon and initPoints
of 1,000 for DenStream. The other DenStream variables were
tuned to ε = 0.02, β = 0.2, µ = 1, and λ = 0.25.

The memory requirement of the algorithm is a function of
the window size. The window is read in a single pass, summa-
rized into a smaller number of micro-clusters and then deleted.
These micro-clusters are operated on and stored. So the overall
memory usage is determined by the size of the window (the

8

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

Time

P
e
rf
o
rm

a
n
c
e

Performance on Forest-Cover Stream

Purity
F-Score

Rand Index

1

Fig. 2: Performance of ACSC on 4CR dataset over 100 windows of size 1,000, where ε = 0.05

TABLE IV: Time measurement in seconds over stream. Total time for stream and average window length using window size
of 1,000. * Faster algorithms did not discover a clustering solution

DenStream CluStream ClusTree ACSC

Total, Window Total, Window Total, Window Total, Window

1CDT 05.74 0.38(0.06) 01.69 0.11(0.02) 01.22 0.07(0.01) 0.71(0.01) 0.05(0.02)

2CHT 05.61 0.37(0.05) 01.67 0.11 (0.02) 01.38 0.09 (0.02) 0.62 (0.06) 0.05(0.02)

4CR 50.62 0.29(0.04) 11.78 0.09(0.01) 12.11 0.09(0.01) 09.28(0.1) 0.06(0.01)

4CE1CF 55.06 0.38(0.03) 14.64 0..08(0.01) 12.96 0.08(0.41) 16.85(0.3) 0.09(0.01)

Network 94.41 0.19(0.77) 106.21 0.22(0.18) 22.11 0.06(0.3) 20.63(0.3) 0.04(0.02)

CoverType 278.5 0.56(0.09) 26.62 0.04(0.02)* 22.07 0.03(0.02)* 49.53(1.07) 0.08(0.02)

20 40 60 80 100

0.5
1

1.5
2

2.5
3

3.5

·105

Time Unit

C
om

pa
ri

so
ns

Pairwise Comparisons

ACSC DenStream

Fig. 3: Mean number of calculations performed on Network
Intrusion dataset over 100 windows of size 1,000.

number and dimensionality of points) loaded into memory.
We use a commercial profiler [21] to accurately measure the
memory usage of the algorithm as a stream progresses. We
report the usage in MB on the Network Intrusion and Forest
Cover data streams. We measure memory usage on different
window sizes of 1k, 2k and 5k. These results are displayed in
Fig. 4. For display purposes, each plot-point is an average over
a set of windows. For windows of length 1k, we averaged 10
windows. For windows of length 2k, we averaged 5 windows,
and for windows of length 5k, we averaged 2 windows. It
can be seen that as the window size increases, the memory
usage increases. Also, as the dimensionality increases (Forest
Cover), the memory usage increases. We used a PC with an

0 10 20 30 40 50 60
0

100

200

M
B

Memory Usage on Forest-Cover Stream

Win. = 1k 2k 5k

0 10 20 30 40 50
0

20

40

60

80

Interval

M
B

Memory Usage on Network-Intrusion Stream

Win. = 1k 2k 5k

Fig. 4: Memory usage in MB.

Intel processor at 2.6GHz and 8GB of RAM.

9

TABLE V: Effect of the nComp parameter on speed and performance, Network Intrusion stream with varying window sizes

Ncomp. Win. = 1, 000 Win = 2, 000 Win = 5, 000

Perform. RunTime Perform. RunTime Perform. RunTime

0.05 0.955 (0.2) 15.3 (0.517) 0.951 (0.81) 35.5 (13.5) 0.943 (1.8) 115.4 (4.30)

0.1 0.961 (0.02) 17.9 (0.565) 0.957 (0.02) 36.02 (0.42) 0.946 (0.06) 121.35 (8.20)

0.2 0.965 (0.01) 22.2 (0.168) 0.957 (0.01) 45.07 (0.83) 0.946 (0.01) 125.5 (2.79)

0.4 0.967 (0) 30.2 (0.183) 0.958 (0.01) 59.3 (0.19) 0.946 (0) 145.61 (5.71)

0.8 0.968 (0) 32.9 (0.140) 0.958 (0) 71.8 (1.2) 0.947 (0) 217.01 (6.1)

1.0 0.968 (0) 38.8 (0.031) 0.958 (0) 76.0 (0.7) 0.947 (0) 247.31 (1.19)

TABLE VI: Comparison of DenStream with stochastic and
deterministic ACSC. Network-Intrusion, window = 1,000

Time (secs.) Purity F1 Rand Index

DenStream 94.41 1.0 0.80 0.81
ACSCdeter. 38.8 1.0 0.96 0.95
ACSCstoc. 17.9 1.0 0.95 0.95

TABLE VII: Comparison of DenStream with stochastic and
deterministic ACSC. Forest-Cover, window = 1,000

Time (secs.) Purity F1 Rand Index

DenStream 278.5 0.89 0.10 0.51
ACSCdeter. 71.83 0.88 0.59 0.64
ACSCstoc. 49.53 0.88 0.59 0.64

D. Effect of Stochastic Sampling and Sample-Size

In phase one of the algorithm we make a single pass of a
window, incrementally forming clusters. We evaluate a point
p’s similarity with an existing cluster C using the Euclidean
distance from p with a sample (without replacement) from C.
The nComp parameter determines the size of this sample:

nSamples =WindowSize ∗ nComp. (15)

A smaller value for nComp, say 0.05, will result in a s-
maller sample taken, fewer comparisons made and, intuitively,
a faster run. A larger value for nComp will require more
comparisons, slowing the algorithm but offering, potentially,
greater accuracy with less variance in results. A value of 1.0
for nComp requires a comparison with each point in every
cluster (not just a sample) effectively making this phase of the
algorithm deterministic.

In Table V we report the performance (over 10 runs) of
ACSC on the Network Intrusion data-stream with gradually
increasing values for nComp. We report the performance
of the algorithm (the average of the Purity, F1-Measure and
Rand Index metrics) along with the total running time of the
algorithm (in seconds). We report the results on this stream
with varying window sizes.

On this data-stream it can be seen that the performance of
the algorithm improves only very slightly with an increase in
nComp whereas the running time increases with larger values.
For example, with each window size, a value of 1.0 takes
over twice as long as a value of 0.1 with only a minimal
improvement in performance.

In Tables VI and VII we compare the results of DenStream

TABLE VIII: Wine clustering solution before Sorting Ants

Nest class 1 class 2 class 3

1 [59 9 0]
2 [0 51 6]
3 [0 8 0]
4 [0 1 0]
5 [0 2 0]
6 [0 0 40]
7 [0 0 2]

TABLE IX: Wine clustering solution after Sorting Ants

Nest class 1 class 2 class 3

1 [59 9 0]
2 [0 62 6]
3 [0 0 42]

with ACSC on two real data-streams; Network Intrusion and
Forest-Cover, respectively. We report ACSC using a determin-
istic phase (nComp = 1.0) and, alternatively, a stochastic
phase (nComp = 0.1). The deterministic ACSC performs
better than DenStream on the F1 and Rand Index metrics and
is also faster. The stochastic version is faster still, with an
almost identical performance.

E. Performance of Sorting Ants

In this section, we examine the effect of the second phase
of ACSC. In the first phase, rough clusters are formed. In the
second phase, Sorting Ants are assigned to each cluster and
inter-cluster sorting is performed. We examine the effect of
these Sorting Ants on the initial clusters.

The stopping condition for this phase is determined by the
sleepMax parameter; the number of unsuccessful sorting at-
tempts allowed for each ant before it is “asleep”. A sleepMax
of 0 means that this phase is never performed. We use the Wine
dataset and a window from the Network Intrusion stream as
illustrative examples of the effect of the Sorting Ants. The
Wine dataset contains three classes with a distribution of [59,
71, 48]. While the window (size = 1,000) from the Network
Intrusion stream has a distribution of [998, 2]. Table VIII
shows the clusters identified in phase one on the Wine dataset.
The three natural clusters are grouped into 7 clusters with an
overall purity = 0.97, F-Score = 0.86 and Rand Index = 0.85.

Table IX shows the clusters after the Sorting phase with a
sleepMax of 3. Three clusters are identified with an overall
purity = 0.94, F-Score = 0.91 and Rand Index = 0.90.

10

TABLE X: Network Intrusion window before Sorting Ants

Nest class 1 class 2

1 [841 0]
2 [48 0]
3 [31 2]
3 [78 0]

TABLE XI: Network Intrusion window after Sorting Ants

Nest class 1 class 2

1 [857 0]
2 [70 0]
3 [1 2]
3 [70 0]

0 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

SleepMax

P
e
rf
o
rm

a
n
c
e

SleepMax on Network Intrusion

Purity
F1
RI

Fig. 5: Sleep Max on Network Intrusion.

0 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

SleepMax

P
e
rf
o
rm

a
n
c
e

SleepMax on 1CDT

Purity
F1
RI

Fig. 6: Sleep Max on 1CDT.

Table X shows the Network Intrusion window before, with
purity = 0.98, F1 = 0.51, and Rand Index = 0.72. The sorted
clusters are displayed in Table XI. The sorted clusters have a
similar purity but higher F1 and Rand Index score (0.86 and
0.75, respectively).

Imitating their biological counterparts, the Sorting Ants are
biased to picking-up isolated items and dropping them in
denser areas. The final clusters are a closer representation
of the true underlying structure. The purity score is lower
than the initial clusters as the average purity is measured. For
example, cluster 3 in Table VIII contains a single micro cluster
and so has 100% purity and the overall average increases.
However, these sparse clusters lower the F-Score and Rand
Index metrics. Taken on its own, Purity can be a misleading
metric as it does not consider the actual topology of the data.
A similar performance can be seen in the Network Intrusion
dataset (first 100 windows, with a window size of 1,000) and
the 2CDT dataset in Figs. 5 and 6, respectively.

In previous studies [6], [18], [19], [30], the decisions to
pick and drop are probabilistic. We evaluate a deterministic
alternative to these probabilistic operations. Because the initial
clusters in the first part of the algorithm are formed using a
stochastic process, the algorithm itself is non-deterministic and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.8

0.9

Threshold Value

P
e
rf
o
rm

a
n
c
e

Threshold

Purity
F1
RI

Fig. 7: threshold values on Wine

TABLE XII: Sorting Ants comparison using purity (P), F-
Measure (F) and Rand Index (R)

Data Stream Prob. Deter.

(threshold) P F R P F R

1CDT (0.4) 0.99 0.99 0.99 0.99 0.99 0.99
Network (0.4) 0.99 0.95 0.94 0.99 0.96 0.94
Wine (0.5) 0.94 0.90 0.88 0.94 0.89 0.89

the comparisons here relate only to the behavior of the Sorting
Ants. The decision for picking a micro-cluster (see Eq. (8))
is a probability based on the number of density-reachable
micro-clusters in the cluster and the parameter nComp. We
introduce a deterministic threshold to replace the probability.
The deterministic decision to pick a micro-cluster we propose
is given as follows:

reachable

nComp
≥ nComp ∗ threshold (16)

A drop is successful if there are more reachable micro-
clusters in the second cluster than there are in the first cluster.
To find a suitable threshold, we evaluate different values on
30 runs of the Wine dataset and the results are presented in
Fig. 7. The best performance using a deterministic decision
with a threshold of 0.5 on the Wine dataset is very similar to
the probabilistic decisions, a similar observation can be made
on other datasets, as shown in Table XII. Overall, the results
are very similar and we elect to use the probabilistic functions
as they do not require an additional tunable parameter

F. Scalability and Robustness to Noise

To test the scalability of ACSC, we generated synthetic data
sets with different numbers of dimensions and different num-
bers of natural clusters. As in [7], the points in each synthetic
data set are drawn from a series of Gaussian distributions
(each representing a cluster). The mean and variance of each
distribution are changed after every 5,000 points during the
data generation process. We follow the notation used in [7] to
describe the synthetic data sets: ‘B’ indicates the number of
data points (in hundreds of thousands), ‘C’ and ‘D’ indicate
the number of clusters present and the dimensionality of each
point, respectively. For example, B2C10D20 indicates the data
set contains 200,000 data points of 20 dimensions, belonging
to 10 different clusters.

The performance of the algorithm is measured in the ex-
ecution time using a window size of 10,000 and ε = 0.05.
The scalability of the algorithm, in terms of time, is evaluated

11

10 20 30 40
0

1

2

3

4

5

Dimensions

E
x
e
c
u
ti
o
n

T
im

e
(s
e
c
o
n
d
s)

B2C20
B2C10
B2C5

1

Fig. 8: Scalability to the number of dimensions.

5 10 15 20 25 30
0

1

2

3

4

5

Clusters

E
x
e
c
u
ti
o
n

T
im

e
(s
e
c
o
n
d
s)

B2D40
B2D20
B2D10

1

Fig. 9: Scalability to the number of clusters.

against increasing number of clusters and also increasing
number of dimensions. First, the number of data points and
clusters are fixed and the algorithm is tested on varying
numbers of dimensions from 10 to 40. In Fig. 8, it can be
seen that as the dimensionality increases, the execution time
increases linearly. The plot follows a similar trend for each
dataset regardless of how many clusters are present suggesting
that the dimensionality is a more important factor than the
number of clusters. This is confirmed in Fig. 9. The number
of data-points and dimensions are fixed and the number of
clusters increases from 5 to 30. As the amount of clusters
increases, the execution time increases only marginally.

To evaluate how robust the algorithm is to noise, we
introduce random samples to three datasets; B1C5D20, Wine,
and Network Intrusion (first 100 windows of size 1,000). To
introduce 5% noise, we replace 5% of the final dataset with
random samples. Tables XIII, XIV, and XV show the average
performance over 30 runs of ACSC on each dataset with
varying levels of noise.

The results show that it is robust and the performance of
the algorithm is not greatly affected by noise. It is interesting
to note that the number of clusters identified by the algorithm
increases with the number of noisy samples. Each random
point is assigned to its own cluster and the natural clusters
remain relatively unaffected.

TABLE XIII: B1C5D20 with noise, ε = 0.05

Noise Purity F-Measure R. Index #Nests

0% 1.0 1.0 1.0 5.0
3% 1.0 1.0 1.0 35.7
5% 1.0 1.0 1.0 54.1
8% 0.99 0.98 0.98 82.4

TABLE XIV: Wine with noise, ε = 0.07

Noise Purity F-Measure R. Index #Nests

0% 0.94 0.9 0.88 4.1
3% 0.94 0.9 0.88 8.8
5% 0.93 .89 0.86 15.4
8% 0.91 0.85 0.87 20.1

TABLE XV: Network Intrusion with noise, ε = 0.09

Noise Purity F-Measure R. Index #Nests

0% 0.99 0.95 0.94 1.6
3% 0.99 0.95 0.94 30.8
5% 0.99 0.93 0.94 52.0
8% 0.98 0.91 0.93 79.2

G. Sensitivity Analysis

In previous sections weve examined the sensitivity of the
nComp parameter (Section IV-D) and the sleepMax param-
eter (Section IV-E). In this section we examine the sensitivity
of the ε parameter and the effect of different window sizes on
the algorithm’s performance. The ε-neighbourhood is crucial
in density clustering: if it is too small, no clusters will form;
if it is too large, there will be rough and impure clusters. This
value is sensitive and data-dependent. Figs. 10 and 11 show
the sensitivity of the parameter on the Network intrusion and
4CE1CF datasets, respectively.

To evaluate the sensitivity of window sizes, ACSC was
tested across 6 different window sizes: 500, 1000, 1500, 2000,
3000 and 5000. The mean Purity, F-Measure and Rand Index
are calculated across each window size in the stream and,
for visualisation purposes, we report the algorithm’s ‘score’,
which is simply the average of all three metrics. The results
are shown in Fig. 12. On both Network Intrusion and 4CE1CF,
it can be seen that the window size has the minimal effect on
the accuracy of the algorithm.

H. Discussion

ACSC is shown to outperform other ant-based clustering
algorithms over three static datasets. It also, on average,
outperforms DenStream, CluStream and ClusTree over all
6 non-stationary datasets. The levels of cluster purity are
comparable across each dataset but purity, in isolation, is not
a very revealing evaluation metric as it does not consider
the true topology of the data, for example, assigning each
data point to its own cluster would give 100% purity. It
is, however, a useful metric when taken alongside the F-
Measure and Rand Index measures. ACSC achieves the best
F-Measure and Rand Index scores on five out of six datasets
and, on average, performs the best overall. The second phase
of the algorithm, the sorting phase, is the reason for this. The

12

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

maximum ε size

P
e
rf
o
rm

a
n
c
e

ε-neighbourhood on Network Intrusion Dataset dataset

Purity
F1
RI

Fig. 10: Sensitivity of ε-neighbourhood on Network Intrusion Stream.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

maximum ε size

P
e
rf
o
rm

a
n
c
e

ε-neighbourhood on 4CE1CF dataset

Purity
F1
RI

Fig. 11: Sensitivity of ε-neighbourhood on 4CE1CF Stream.

0.5 1 1.5 2 3 5
0

0.2

0.4

0.6

0.8

1

Window Size

Sc
or

e

4CE1CF

0.5 1 1.5 2 3 5
0

0.2

0.4

0.6

0.8

Window Size

Network Intrusion

Fig. 12: Sensitivity of window size (in thousands).

probabilistic functions for picking and dropping micro-clusters
are biased towards the dissolution of smaller clusters and
incorporating them into similar, larger clusters. This improves
the precision and recall scores (and hence the F-Measure) and
creates clusters closer to the “true” structure of the data. This
is reflected in the Rand Index score. ACSC can process the
evaluated streams faster than the comparative peer algorithms.
This is due to the stochastic sampling method and also how
micro-clusters attempt to merge. This merging operation is
expensive. In ACSC, only micro-clusters in the same cluster
attempt to merge, replacing an exhaustive search and reducing
the number of failed merging operations. Of the real data-
streams evaluated, DenStream performs better than CluStream
and ClusTree. However, ACSC outperforms DenStream.

It is interesting to note that ACSC performs favourably but
requires fewer parameters and considerably fewer calculations.
Fig. 3 shows that ACSC requires roughly 10 times fewer
calculations. This is due to the fact that DenStream performs
an exhaustive search for the nearest neighbour of each micro-
cluster. If ACSC used a deterministic implementation whereby
each point is compared with every other point, it would require
O(N2) time. But, each point in ACSC is evaluated against a
sample taken from a cluster. The absolute worst case would
require O(N2) only if n data points in each window belonged
to n different clusters. Experimental results show that the
number of calculations is comparatively low. We report that
for the Network Intrusion stream, with 42 dimensions, the
algorithm can process a window of 1,000 points in, on average,

13

0.04 seconds with an average memory requirement of 21.5
MB. The larger Forest-Cover stream can be processed in, on
average, 0.08 seconds while requiring 37.6 MB of memory.

ACSC uses a stochastic sampling-without-replacement
method in the initial phase and a probabilistic pick-and-drop
model for the Sorting Ants in the second phase. However, it
is possible to run ACSC deterministically. The sampling rate
in the first phase is determined by the parameter nComp. We
investigate the effects of varying this parameter in IV-D. A
lower value for this parameter (we use 0.1 in all experiments)
reduces the run-time with minimal effect on performance. If
the sampling rate is set to WindowSize, then the first phase
is deterministic, but it will be slower without any further im-
provement in the clustering accuracy. In the second phase, the
probabilistic Sorting Ants can be replaced with deterministic
Sorting Ants described in Section IV-E. With these changes,
the algorithm is deterministic but its speed is sacrificed and an
additional, data-dependant parameter threshold is required.

The window size has little effect on the accuracy of the
algorithm. This window size is just one of three tune-able
parameters required (unlike DenStream, for example, which
requires six parameters). The second parameter is the sleep-
Max value, which determines how many unsuccessful sorting
attempts are allowed before a cluster is considered to be sorted.
Experimental results show that the performance plateaus after
a sleepMax limit of three. Any value greater than this gives
similar results but requires additional, unnecessary, computa-
tion as each ant continues to attempt sorting the cluster. The
final parameter is the ε-neighbourhood. This is data dependent
and very sensitive as shown in Figs. 10 and 11.

V. CONCLUSIONS

In this paper we proposed an Ant Colony Stream Clustering
(ACSC) algorithm for clustering dynamic data streams. ACSC
uses the tumbling window model and results show that it scales
linearly to larger window sizes and higher dimensionality,
while being robust to noise. Clusters are formed in a single
pass of the data using a stochastic sampling method. The
sampling method replaces an exhaustive search and is shown
to require considerably fewer calculations. The deterministic
method (corresponding to nComp=1.0) yields the highest
performance, at the cost of the longest run time. With a
suitable choice of the parameter nComp, the proposed algo-
rithm achieves a significant speed up at only little performance
loss. The initial clusters discovered are further refined using
a method inspired by the sorting behaviour of ants. This
sorting method is based on the classic pick-and-drop ant
clustering algorithm. The probabilistic functions for picking
and dropping are biased towards the dissolution of smaller
clusters and incorporating their contents into similar, larger
clusters. This improves the precision and recall scores and
creates clusters closer to the “true” structure of the data. Our
implementation addresses a short-coming of the original pick-
and-drop model; speed. Rough clusters are identified quickly
in a single pass and then sorted. Furthermore, in the traditional
algorithm, data points are moved individually which can take
a long time. By grouping similar points into micro-clusters, a

number of points can be moved in a single operation, further
speeding the algorithm.

ACSC was shown to outperform other ant-based clustering
algorithms in the literature and was compared with three
popular stream clustering algorithms across real and synthet-
ic datasets. Experimental results show that ACSC performs
favourably while requiring fewer parameters. Of the required
parameters, the ε parameter was shown to be very sensitive and
greatly affects the performance of ACSC. It is data-dependent
and requires manual tuning. Furthermore, it is global and so
restricts the algorithm to finding clusters of similar density,
a common problem for density based clustering algorithms.
Further research will investigate an adaptive, local ε parameter.
This could potentially allow the discovery of clusters with
varying densities in the data.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” Proc. 29th Int. Conf. Very Large Data
Bases, vol. 29, pp. 81–92, 2003.

[2] H. Azzag, “AntTree: a new model for clustering with artificial ants,”
Proc. 2003 IEEE Conf. Evol. Comput., vol. 4, 2003.

[3] R. D. Baruah and P. Angelov, “DEC: Dynamically evolving clustering
and its application to structure identification of evolving fuzzy models,”
IEEE Trans. Cybern., vol. 44, no. 9, pp. 1619–1631, Sep. 2014.

[4] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Computers and Geosciences, vol. 10, no. 2–3,
pp. 191–203, Jan. 1984.

[5] A. Bifet, G. Holmes, R. Kirby, and B. Pfahringer, “MOA: Massive online
analysis,” Journal of Machine Learning Research, vol. 11, pp. 1601–
1604, 2010.

[6] U. Boryczka, “Finding groups in data: Cluster analysis with ants,”
Applied Soft Computing, vol. 9, no. 1, pp. 61–70, Jan. 2009.

[7] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” SDM, vol. 6, pp. 328–339, 2006.

[8] Y. Chen, & L. Tu, “Density-based clustering for real-time stream data.”
In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 133-142). ACM. August,
2007

[9] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,
and L. Chretien, “The dynamics of collective sorting robot-like ants
and ant-like robots,” Proceedings of the 1st International Conference on
Simulation of Adaptive Behavior From Animals to Animats, pp. 356–
363, 1991.

[10] D. Deng and N. Kasabov, “ESOM: An algorithm to evolve self-
organizing maps from online data streams“. Neural Networks, Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on (Vol.
6, pp. 3-8). IEEE. 2000

[11] M. Dorigo, M. Birattari, and T. Stizle,“Ant colony optimization,” IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, 2006.

[12] M. Ester, H. P. Kriegel, J. Sander, and X. Xu,“A density-based algorithm
for discovering clusters in large spatial databases with noise,” KDD, vol.
96, pp. 226–231, 1996.

[13] A. H. Fahim, A. M. Salem, F. A. Torkey, and M. A. Ramadan, “Density
Clustering Based on Radius of Data (DCBRD),” World Academy of
Science, Engineering and Technology, 2006.

[14] C. M. Fernandes, A. M. Mora, J. J. Merelo, and A. C. Rosa, “KANTS:
A Stigmergic ant algorithm for cluster analysis and swarm art,” IEEE
Trans. Cybern., vol. 44, no. 6, pp. 843–856, Jun. 2014.

[15] A. Forestiero, C. Pizzuti, and G. Spezzano, “A single pass algorithm
for clustering evolving data streams based on swarm intelligence,” Data
Mining and Knowledge Discovery, vol. 26, no. 1, pp. 1–26, Nov. 2011.

[16] M. Ghesmoune, M. Lebbah and H. Azzag, “ A new growing neural gas
for clustering data streams” Neural Networks, 78, pp.36-50. 2016.

[17] S. Guha, and N. Mishra. “Clustering data streams.” Data Stream Man-
agement. Springer Berlin Heidelberg, pp. 169-187, 2016.

[18] J. Handl, J. Knowles, and M. Dorigo, “Ant-based clustering and topo-
graphic mapping,” Artif. Life, vol. 12, no. 1, pp. 35–62, Jan. 2006.

[19] J. Handl and B. Meyer, “Ant-based and swarm-based clustering,” Swarm
Intell., vol. 1, no. 2, pp. 95–113, Nov. 2007.

14

[20] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100, 1979.

[21] J-Profiler: Java Profiler. https://www.ej-technologies.com/products/
jprofiler/overview.html, 21 11 2017.

[22] N. Jardine and C. J. van Rijsbergen, “The use of hierarchic clustering
in information retrieval,” Information Storage and Retrieval, vol. 7, no.
5, pp. 217–240, Dec. 1971.

[23] H. Jiang, J. Li, S. Yi, X. Wang, and X. Hu, “A new hybrid method based
on partitioning-based DBSCAN and ant clustering,” Expert Syst. with
Appl., vol. 38, no. 8, pp. 9373–9381, Aug. 2011.

[24] P. M. Kanade and L. O. Hall, “Fuzzy ants and clustering,” IEEE Trans.
Syst., Man, and Cybern. - Part A: Syst. and Humans, vol. 37, no. 5, pp.
758–769, Sep. 2007.

[25] M. Korrek and A. Nizam, “A new arrhythmia clustering technique based
on ant colony optimization,” J. of Biomedical Inform., vol. 41, no. 6,
pp. 874–881, Dec. 2008.

[26] P. Kranen, I. Assent, C. Baldauf and T. Seidl “The ClusTree: indexing
micro-clusters for anytime stream mining“ Knowledge and information
systems, 29(2), pp.249-272. 2011

[27] N. Labroche, N. Monmarche, and G. Venturini, “AntClust: ant clustering
and web usage mining,” Pro. 2003 Genetic and Evol. Comput. Conf.,
pp. 25–36, 2003.

[28] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. “Semantics
and evaluation techniques for window aggregates in data streams.” Proc.
2005 ACM SIGMOD Int. Conf. on Management of data, pp. 311-322,
2005.

[29] B. Liu, “A Fast Density-Based Clustering Algorithm For Large Databas-
es,” Proc. 5th Int. Conf. Machine Learning and Cybern., 2006.

[30] E. Lumar and B. Faieta, “Diversity and adaptation in populations
of clustering ants,” Proc. 3rd Int. Conf. on Simulation of Adaptive
Behavior: From Animals to Animats, vol. 3, pp. 489–508, 1994.

[31] S. Mahran and K. Mahar, “Using grid for accelerating density based
clustering,” Proc. 2008 IEEE Int. Conf. Computer and Inform. Tech.,
2008.

[32] N. Masmoudi, H. Azzag, M. Lebbah, B. Cyrille, and B. J. Maher, “How
to use ants for data stream clustering,” Proc. 2015 IEEE Cong. Evol.
Comput., pp. 656–663, 2015.

[33] P. Hore, L.O. Hall, and D. B. Goldgof. “Creating streaming iterative
soft clustering algorithms.” IEEE Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American, 2007.

[34] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” J. of the American Statistical Assoc., vol. 66, no. 336, pp. 846,
Dec. 1971.

[35] S. U. Rehman, A. Ashgar, S. Fong, and S. Sarasvady, “DBSCAN: Past,
present and future,” Proc. 5th Int. Conf. Appl. of Digital Information
and Web Technologies (ICADIWT), pp. 232–238, 2014.

[36] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–
34, Aug. 1987.

[37] T. A. Runkler, “Ant colony optimization of clustering models,” Int. J.
of Intell. Syst., vol. 20, no. 12, pp. 1233–1251, 2005.

[38] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant colony
approach for clustering,” Analytica Chimica Acta, vol. 509, no. 2, pp.
187–195, May 2004.

[39] M. T. Chao, “Data stream classification guided by clustering on non-
stationary environments and extreme verification latency,” Proc. 2015
SIAM Int. Conf. Data Mining, pp. 873–881, 2015.

[40] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Boston, MA: Pearson/Addison-Wesley, 200, ch. 9, pp. 147–160.

[41] L. Tu and Y. Chen, “Stream data clustering based on grid density and
attraction,” ACM Trans. Knowledge Discovery from Data, vol. 3, no. 3,
pp. 1–27, Jul. 2009.

[42] A. L. Vizine, L. De Castro, and R. Gudwin, “Text document classifica-
tion using swarm intelligence,” Proc. of KIMAS, 2005.

[43] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-
based clustering of data streams at multiple resolutions,” ACM Trans.
Knowledge Discovery from Data, vol. 3, no. 3, pp. 1–28, Jul. 2009.

[44] F. Wilcoxon,and R. A. Wilcox. “Some rapid approximate statistical
procedures”. Lederle Laboratories, 1964.

[45] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: A new data clustering
algorithm and its applications,” Data Mining and Knowledge Discovery,
vol. 1, no. 2, pp. 141–182, 1997.

Conor Fahy received a B.Sc. degree in Computer
Science from Dublin City University, Ireland in
2004. He received an M.Sc. degree in Intelligent
Systems from De Montfort University, Leicester, UK
in 2016, where he is currently pursuing a Ph.D.
degree in the Centre for Computational Intelligence.
His research interests include swarm intelligence
and ensemble methods for unsupervised and semi-
supervised learning in dynamic environments.

Shengxiang Yang (M’00–SM’14) received the B.Sc.
and M.Sc. degrees in automatic control and the
Ph.D. degree in systems engineering from North-
eastern University, Shenyang, China in 1993, 1996,
and 1999, respectively. He is currently a Professor
in Computational Intelligence and Director of the
Centre for Computational Intelligence, School of
Computer Science and Informatics, De Montfort
University, Leicester, U.K. He has over 250 pub-
lications. His current research interests include evo-
lutionary computation, swarm intelligence, artificial

neural networks, data mining and data stream analysis, and relevant real-
world applications. He serves as an Associate Editor/Editorial Board Member
of seven international journals, such as the IEEE Transactions on Cybernetics,
Information Sciences, Evolutionary Computation, and Soft Computing.

Mario Gongora received the Ph.D. degree from
the University of Warwick, U.K. He is currently an
Associate Professor with the School of Computer
Science and Informatics, De Montfort University.
He is also the Deputy Director of the Centre for
Computational Intelligence. His research includes
the application of artificial intelligence techniques to
the identification, modeling, simulation, and control
of complex systems. His expertise is mainly in using
evolutionary computing and biologically inspired
methods for this purpose. He is also involved in close

contact with industry, applying his research results in the analysis of consumer
behavior and other complex industrial processes.

