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Abstract

It is generally that the conflict between the convergence and distribution is de-

teriorated with the increase of the number of objectives. Furthermore, Pareto

dominance loses its effectiveness in many objective problems. Therefore, a more

valid selection mechanism should be proposed to maintain the two properties.

This paper presents a multiobjective evolutionary algorithm, called Adaptive

Neighborhood Selection for Multiobjective evolutionary algorithm(ANS-MOEA),

to deal with multiobjectives optimization problems (MOPs). The method de-

fines the ability of every individual with two categories of information, conver-

gence information (CI) and distribution information (DI). In the critical layer,

well-converged individual is selected firstly in the population, and its neighbors,

calculated by DI, are pushed into neighbor collection soon afterwards. Finally,

the proper distribution of the population is ensured by competition so that

large DI goes back to the population and low DI remains in the collection. Four

state-of-the-art multiobjective evolutionary algorithms are selected as the com-

petitive algorithms to validate ANS-MOEA. The experimental results show that

ANS-MOEA can solve a many objective optimization problems and generate a
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set of remarkable solutions to balance convergence and distribution.

Keywords: Many objectives optimization problems, Multiobjective

evolutionary algorithm, Distribution, Convergence, Neighborhoods, Selection

mechanism

1. Introduction

In the real world, many problems have several objectives that must be met

simultaneously. These problems are called multiobjective optimization problems

(MOPs). Because objectives may have conflicting features, there is no single

optimal solution for a MOP. In the early development, evolutionary algorithms5

(EAs) solve a MOP through some methods that integrate several objectives

into a single objective to optimize. With the development of EAs, a number

of state-of-the-art multiobjective evolutionary algorithms (MOEAs) have been

proposed gradually, such as NSGAII [1], ϵ-MOEA [2], MOEAD [3], SPEA2

[4] etc. In fact, the applied research of MOEA is the hot topic in current10

world. In the academic field, a number of papers research how to solve the

practical problems. MOEAs also have been successfully used in data mining

[5, 6], flowshop schedule [7], wireless sensor networks [8, 9, 10], machine design

[11], vehicle routing [12, 13], electric power dispatch [14], aircraft spare parts

allocation problem [15], control system design [16, 17, 18]. In recent years, some15

related techniques have accelerated the development of MOEAs, including test

problem [19, 20, 21], performance assessment metrics [22, 23], and experimental

platform [24].

Without loss of generality, the form of a MOP can be stated as follows:

Minimize F(x) = (f1(x), f2(x), ..., fm(x))T ,

subject to x ∈ Ω

(1)

where x ∈ Ω is the decision vector and Ω is the decision space: Ω = {x ∈20

Rn|hj ≤ 0, j = 1, ...,m}. fj(x), j = 1, 2, ...,m, is the objective function and m is
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the number of objectives, so Rm is defined as the objective space.The attainable

objective set is described as the set {F (x)|x ∈ Ω}.

In general, there is conflict among all the objectives which are described

in equation (1). Therefore, there are no points in Ω that can optimize all of25

the objective functions simultaneously. When dealing with MOPs, convergence

and distribution are the two significant indicators that should be considered

simultaneously in the MOEAs. Convergence denotes the distance from PFknown

(the Pareto front (PF) is calculated by algorithm) to PFtrue (true PF). And

distribution denotes the distribution of the population in the PF. It has been30

proven that convergence and distribution are conflict with each other and the

convergent rate is bound to be affected when we consider the well performance

of distribution [25]. With an increasing number of objectives for a MOP, these

two indicators become a very challenging topic. Overall, an essential component

of MOEAs is that they are able to design a selection mechanism to maintain the35

distribution without affecting the convergence as far as possible and then obtain

a set of trade-off (balance the convergence and distribution) points. There are

seven major categorizations of MOEAs based on the selection mechanism [26]:

1. Scalarizing-based method: All subgoals are either optimized combination

or gathered into a single target. Thus, a MOP can be converted into single40

objective optimization problem. The typical representative of these kinds

of methods are [3, 27].

2. Indicator-based method: The performance of indicators is used for fitness

assignment. A typical algorithm like IBEA [28], which uses Iϵ+−indicator

and IHD−indicator to compare the quality of two Pareto set approxima-45

tions to each other.

3. Relaxed dominance based method: In general, this kind of method aim to

enlarge the dominating area of the non-dominated solutions by changing

the objective values when they are in comparison so that some of them

are more likely to be dominated by others [2, 29].50

4. Diversity-based method: This method improves the performance by re-
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ducing the adverse impact of diversity maintaince. Take SDE [30] as an

example, it proposed a shift-based density estimation strategy in original

paper. Briefly, it works by turning all of the superior objectives into the

value which is the same as the detected individual and then calculates55

their density.

5. Reference set based method: In recent years, some typical methods have

been proposed which are based on a reference set. One of the represen-

tative algorithms is NSGAIII [31]. These methods use a set of reference

solutions to measure the quality of solutions. Thus, the search process is60

guided by the solutions in the reference solution set.

6. Preference-based method: In most real world problems, the decision maker

(DM) would like to incorporate his/her preferences into the search process.

These preferences are used to guide the search toward the preferred parts

of the Pareto region. The typical methods are [32, 33, 47, 48].65

7. Dimensionality reduction method: The dimensionality reduction approach

aims to deal with MOPs by reducing the number of objectives. In gen-

eral, researchers usually analyze problems based on principal component

analysis (PCA) [34, 35].

In our proposed method ,called ANS-MOEA, the population is stratified into70

several layers with Pareto dominance and it is described as follows:

F1 ≻ F2 ≻ · · · ≻ Fl.

where l is the number of the layers and smaller subscripts dominate bigger sub-

scripts. The individuals in the layers which corresponding smaller subscript

priority to be selected into archive. When Fk, (k ≤ l) size is more than the75

remaining size of the archive, the Fk is defined as the critical layer (CL). In

addition, every individual is endowed with convergence information (CI) and

distribution information (DI). At the time of screening the critical layer, the

elite point has a smaller CI in the CL will be selected into archive set firstly.

Then, the neighborhood of the elite will be selected into the Neighbor Col-80

lection (NC), which is used to store worse points. The algorithm can retain
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well-distributed individual by comparing the DI when NC is saturation. The

adaptive neighborhood selection mechanism adjusts the size of the neighbor-

hood depend on the number of individuals in the CL. In the case of a low

dimension, the CL has fewer individuals and sparse population density. If spec-85

ification of the neighborhood is set too small, CL has to be compared too many

times to obtain the well-distributed individual, whereas most individuals have

well distribution so that the operation time is consumed. In contrast, almost all

individuals are distributed on the critical layer in case of high dimensions. In or-

der to obtain well-distributed individuals as well as avoid losing well-converged90

individuals, the smaller size for neighborhood is adjusted adaptively to find the

well-performance trade-off individuals more exactly.

The rest of this paper is organized as follows. Section 2 is devoted to il-

lustrating the proposed MOEA. Section 3 introduces the experimental design

and four state-of-the-art algorithms, and these are GDE3 [36, 37], MOEA/D95

[3], IBEA [28], SMPSO [38]. Section 4 shows the experimental results. Section

5 draws the conclusions of this paper.

2. The Proposed Method

In this section, we describe the detail of our approach. Conveniently, a

reference point, z = (z1, ..., zm)T , is given the lowest value for each objective100

in this method and all individuals are translated into the first quadrant by

subtracting the relevant zj , (j = 1, 2, ...,m). During the evolutionary process,

the reference point must be updated constantly.

2.1. Convergence Information(CI)

Convergence information(CI) [25] reflects the convergence ability of an

individual. In this paper, ANS-MOEA calculates the CI of an individual P in

the population by summing its value in each objective:

CI(P) =
m∑
i=1

fi(p) (2)
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where fi(p) devotes the ith objective value of P and m is the number of ob-105

jectives. It can be noted that there are two information which equation (2)

reflects:

1. m denotes the number of objectives and fi(p) reflects the performance for

each point;

2. A point with good performance in most of the objectives probably has a110

lower value of CI.

The role of CI is that the individual which has the lowest CI value in the

current population is selected into the archive first during the critical selection.

The proposed selection mechanism in the critical layer retains well-converged

individuals by this method in this paper.115

It is worth noting that the CI cannot completely represent the convergence

information of an individual. In a case where an individual is a DRS, which is

called the dominance resistant solution (it has the lowest value on one or several

objectives but performs the worst on the other objectives), it has a lower CI

but does not approximate to the PF . In addition, several points with lower CI120

are often clustered. Therefore, in order to enable the final set to distribute on

the PF uniformly, the distribution information(DI) is used.

2.2. Distribution Information(DI)

The calculation of DI for an individual occurs after a point P, which has

a lowest CI in current critical population, was put into the archive. The DI of

an individual p1 is described as follows:

DI(p1) = arccos

−−→
OP

−−→
Op1

|
−−→
OP||

−−→
Op1|

(3)

It can be seen in the left of Figure 1, when well-converged point P1 was

selected into the archive, the DI of points P2 and P3 were θ12 and θ13 respec-125

tively. But the θ12 and θ13 are not the final distribution information of P2 and

P3. In order to avoid a case in which P has a bigger angle with one point,

but has a smaller angle with another point,the DI(P) is updated and given the
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Figure 1: The definition of distribution information of an individual is described in the left

picture and the update process about DI is described in the right.

latter value. For example, as the right of Figure 1 shows, Pi denotes itself is

the ith point which gets the nod into archive, and the Pi+1 is the next point.130

When calculating the DI of point P, angle θi is indicating the current DI during

Pi is the best point, and then the θi+1 denotes the included angle between P

and Pi+1 when Pi+1 was the next. The right shows that θi+1 is less than θi, so

the DI of P is updated from θi to θi+1.

2.3. Adaptive Neighborhood Selection135

It is significant for the neighborhood selection mechanism to maintain

trade-off points that adjust the size of the neighborhood appropriately. When

rare individuals distribute in the CL, the distribution of individuals is relatively

sparse and the population density in CL is small so that most individuals have

better distribution. A large size of neighborhood can obtain the widely dis-140

tributed individuals as much as possible. On the contrary, when there are a

large number of individuals pushing and squeezing in the CL, the population

density in the CL is large. A small size of neighborhood can avoid the influence

of convergence speed as much as possible due to the lacking of well-converged

individuals. In addition, outstanding individuals must be selected carefully with145

the comparing times of NC increases.
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Algorithm 1 CriticalSelection

Require: P (critical population), remain(archive size);

1: K = N − remain, T = ⌈K/remain⌉; /*Calculate the NC size and neigh-

borhood size*/

2: A = ∅, NC = ∅; /*Initialize sets A, NC*/

3: for j = 1 to m do

4: zj = min{fj(x)|x ∈ Ω} /*Calculate the reference point*/

5: f∗
j = fj(p)− zj , p ∈ P /*Translation coordinates*/

6: end for

7: CIp = ConvergenceInformation() /*Calculate the CI of each individual*/

8: while |A| < remain do

9: p∗ = {pi|∀j ̸= i, CIpi < CIpj}

10: A = A.add(p∗), P = P.remove(p∗), frontSize = frontSize− 1

11: DistributionInformation() /*Calculate the DI of each individual*/

12: Neighborhood(T )

/*Calculate the neighborhood for p∗*/

13: j = 0

14: while(j < T ) do

15: qj = FindworstDI(Neighborhood) /*Find out the smallest DI in

neighborhood*/

16: if(|NC| < K) then

17: NC.add(qj)

18: else then

19: p
′
= FindwellDI(NC) /*Find out the biggest DI in NC*/

20: if(DIp′ > DIpj )

21: P.add(p
′
),frontSize = frontSize+ 1

22: NC.remove(p
′
)

23: NC.add(pj)

24: end if

25: j++

26: end while

27: end while

28: return A
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Algorithm 1 gives the detailed procedure of the approach. In the CL, we

define the number of individuals which are needed to screen out as remain, and

the population in the CL is defined as frontSize. Then the size of NC is defined

as follows:

K = fronSize− remain (4)

and the neighborhood size of every individual is defined as:

T = ⌈K/remain⌉ (5)

The function of NC is to reserve the individuals after the elimination whereas

it was used to store neighbors at the beginning. Equation(5), which is shown

in line 1 in Algorithm 1, divides the whole CL into the remain part. When

K ≫ remain, the density of the population in the CL is usually small and150

there are a few points needed to be selected. Well-converged individuals (the

algorithm procedure is shown in line 9) were selected from each part in turn. NC

and archive are saturated at the same time. In this case, no comparison occurred

in the NC. But in most instances since dimensions exceed five or even more,

archive and the NC are not saturated simultaneously. The saturation rate of155

the NC is superior to the archive. Line 13-26 describes the progress about arrow

3 presented in Figure 2 in detail, where line 16-18 indicates that individuals are

inserted in the NC when the NC is unsaturated. In the case where the NC

is saturated, shown in lines 19-24, the points, which in the neighborhood of

the subsequent selected well-converged individuals, were added into the NC by160

comparing with the points in the NC. In this case, the point with the biggest DI

was elected from the NC and is merged into the population subsequently when

the DI of this point is bigger than the neighbor point.

Figure 2 shows an example of the process of critical selection. Two cases

about arrows 3 probably occur and must be illustrated, shown in Figure 2:165

1. No exchange occurs when the DI of the points in the neighborhood is

bigger than all of the points in the NC.

2. On the contrary, the points which have a larger DI in the NC are replaced
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Figure 2: The procedure of critical selection, where A is the well-convergence individual in

the current population.

1.As arrow 1 indicates, the well-converged individual was selected into the archive.

2.Arrow 2 expresses the process in which the neighbor B of A was put into the NC.

3.Subsequently, arrow 3 shows the comparison progress in the NC and superior individual C

was selected to rejoin the population.

by several smaller DI points in the neighborhood one by one, and then the

points take a part in the election of the well-convergence individual.170

This process ensures that the worst distribution of individuals were embodied

in the NC through comparative analysis by neighborhood selection mechanism

and then they were eliminated in the end. The rest of the superior individuals

were maintained in the archive as much as possible.

2.4. The General Framework175

In this section, we introduce a general framework of algorithm which im-

itates the framework of NSGAII [1].

As Algorithm 2 shows that line 3 generates the offspring population by

GeneticOperation, and then these two populations, called the offspring pop-

ulation and the parent population, are merged into one population named180

Uniont, shown in line 4. Line 5 divides the merged population into several

non-domination layers by function NondominateSort. Subsequently, each layer

10



Algorithm 2 General Framework

Require: MOP , MaxGeneration, N(population size), g = 0, m(the number

of objectives)

Ensure: Pt+1

1: Pt = p1, p2, ..., pN , At = ∅

2: while(g < MaxGeneration) do

3: Qt = GeneticOperation(Pt)

4: Uniont = Pt

∪
Qt

5: {F1, F2, ..., Fl} = NondominateSort(Uniont), where F1 ≻ F2 ≻ ... ≻

Fl

6: i = 0

7: while(|At| ≤ N) do

8: At = At

∪
Fi

9: i = i+ 1

10: end while

11: if |At| = N then

12: Pt+1 = At

13: break

14: else

15: At = At − Fi

16: Pt+1 = At

∪
CriticalSelection(Fi, N − |At|)

17: end if

18: end while
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merges into the Pt+1, described in lines 6-10, according to the dominance se-

quence. In general, the number of points in the CL is more than Pt+1 needs.

And then as the line 16 shows the function CriticalSelection, which has a de-185

tailed description in Algorithm 1, screens out the proper number of points to

merge into Pt+1.

3. Experimental Design

This section validates the performance of ANS-MOEA. We give the test

problem and performance metrics involved in the experiments first. Then, we190

have a brief introduction about four other state-of-the-art MOEAs: GDE3 [36],

MOEAD [3], IBEA [28], SMPSO [38]. Finally, the results of comparing the

algorithms are provided.

In this paper, all of the algorithms which are in comparison are used within

the jMetal [24] framework. The framework includes a number of classic and195

modern state-of-the-art optimizers, a wide set of benchmark problems and a set

of well-known quality indicators to assess the performance of the algorithms.

In the experiments, a crosser probability pc = 0.9 and a mutation probability

pm = 1/l (where l is the number of decision variables) are used. In addition, the

operators for crossover and mutation are simulated binary crossover (SBX [39])200

and polynomial mutation(PM [40])with both distribution indexes set to 20. For

the proposed method and four other state-of-the-art MOEAs, the population

size is 100, and all algorithms were run 30 times independently.

3.1. Test Problems And Performance Metrics

In this paper, DTLZ and the walking fish group (WFG) toolkit [19] were205

considered as the test suites for the MOEAs. DTLZ is a continuous prob-

lem suite that can adjust to any number of objectives and decision variables,

commonly used in many-objective optimization. For the DTLZ suite, the prob-

lems can be classified into two groups roughly. One group, including DTLZ2,

DTLZ4, DTLZ5, and DTLZ7, is used to investigate the ability of an algorithm to210
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cope with problems with different shapes. The other group, including DTLZ1,

DTLZ3 and DTLZ6, which creates more obstacles, is used to test the ability of

convergence of an algorithm. In addition, WFG is also a continuous problem

suite that can be scaled to any number of objectives and decision variables. The

parameters k (position parameters) and l (distance parameters) in WFG are set215

to 2× (m− 1) and 20, respectively, where m denotes the number of objectives.

Table 1 describes the characteristics of the problem DTLZ1-DTLZ7 and Table

2 describes the details of WFG1-WFG9.

Table 1: The characteristic of DTLZ suite, where M and N denote the number of objectives

and decision variables, respectively

Problem Properties M N

DTLZ1 Linear,Multimodal 3, 5, 8, 10, 15 M+9

DTLZ2 Concave 3, 5, 8, 10, 15 M+9

DTLZ3 Concave,Multimodal 3, 5, 8, 10, 15 M+9

DTLZ4 Concave,Biased 3, 5, 8, 10, 15 M+9

DTLZ5 Concave,Degenerate 3, 5, 8, 10, 15 M+9

DTLZ6 Concave,Degenerate,Biased 3, 5, 8, 10, 15 M+9

DTLZ7 Mixed,Disconnected,Biased 3, 5, 8, 10, 15 M+9

Besides the test problem mentioned above, two widely acknowledged per-

formance metrics, GD [22, 41] and IGD [23, 30], were used to assess the per-220

formance of the proposed method, ANS-MOEA, and the other four algorithms,

GDE3 [36], MOEAD [3], IBEA [28], SMPSO [38].

GD(generational distance) is used to assess the ability of convergence by

calculating the average Euclidean distance from the final solution set to the

true Pareto front and is defined as:

GD =

√∑n
i=1 d

2
i

n
(6)

where n is the number of solution in the final solution set PFkown, and di

denotes the minimum Euclidean distance between each of these solutions and
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Table 2: The characteristic of WFG suite, where M , k and l denote the number of objectives,

position parameters and distance parameters respectively)

Problem Properties M k l

WFG1 Convex, Mixed, Biased 5, 10, 15 2× (M − 1) 20

WFG2 Convex, Nonseparable, Disconnected 5, 10, 15 2× (M − 1) 20

WFG3 Linear, Nonseparable, Degenerate 5, 10, 15 2× (M − 1) 20

WFG4 Concave, Separable 5, 10, 15 2× (M − 1) 20

WFG5 Concave, Separable 5, 10, 15 2× (M − 1) 20

WFG6 Concave, Nonseparable 5, 10, 15 2× (M − 1) 20

WFG7 Concave, Separable 5, 10, 15 2× (M − 1) 20

WFG8 Concave, Nonseparable 5, 10, 15 2× (M − 1) 20

WFG9 Concave, Nonseparable, Multimodal 5, 10, 15 2× (M − 1) 20

the point of the Pareto optimal set PFtrue. The value of GD illustrates the225

deviation degree between PFkown and PFtrue. It is clear that a value of GD=0

indicates that all the generated elements are in the Pareto front.

IGD(invert generational distance) is selected since it can provide combined

information about convergence and distribution of a solution set. IGD measures

the average distance from the individuals in the Pareto front to the closest

solution in the PFkown. Mathematically, let P ∗ be a reference set representing

the Pareto front, and the IGD value from P ∗ to the PFkown is defined as follows:

IGD =

∑
z∈P∗ d(z, P )

|P ∗|
(7)

where P ∗ denotes the number of individuals in P ∗ and d(z, P ) is the nearest

Euclidean distance from z to P (PFkown). The value of IGD reflects the com-

prehensive performance of an algorithm. The lowest value of IGD is the best,230

which points out that PFkown is close to PFtrue and has a good distribution.

3.2. Description Of The Four Other Evolutionary Algorithms

In order to verify the proposed method ANS-EMOA, four state-of-the-art

MOEAs were selected in the experiment. The brief introduction of the charac-
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teristics of these MOEAs are described as follows:235

1. GDE3 [36]. A developed version of generalized differential evolution, and

this is an extension of differential evolution for global optimization with a

set of objectives and constraints. The basic idea GDE3 proposed is similar

to the first GDE version in which the trial vector was selected to replace

the old vector in the next generation if it weakly constraint-dominated the240

old vector.

2. MOEAD [3]. MOEAD is one of the most popular MOEAs. It is an

aggregation-based algorithm that decomposes the many-objective prob-

lems into N scalar optimization subproblems with the N predefined well-

distributed weight vectors. With the evolution of these subproblems, well245

individuals were integrated into the archive set. There are three aggrega-

tion function: 1) weight sum, 2) Tchebycheff and 3) penalty-based bound-

ary intersection (PBI) approach are proposed in the original paper. In

this paper, we chose the MOEA/D with the Tchebycheff.

3. IBEA [28]. In the original paper, the binary quality indicators, Iϵ+−indicator250

and IHD−indicator, were used to compare the quality of two Pareto set

approximations relative to each other. The paper mentioned that the

binary quality indicators represent a natural extension of the Pareto dom-

inance relation, and therefore can directly be used for fitness calculations

similar to the common Pareto-based fitness assignment schemes. In this255

paper, IHD−indicator was used for the IBEA in experiment.

4. SMPSO [38] uses the velocity constriction mechanism to limit the speed of

the particles. In order to control the particle’s velocity, the proposed idea

adopted a constriction coefficient obtained from the constriction factor.

4. Experiments Results And Discussions260

This section presents the experimental results of all the MOEAs compared

and all the results were presented by tables and figures. In addition, some

analysis and discussions of the results were also described after that.
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Table 3: The GD values (mean and standard deviation) of the obtained solutions of the

five algorithms on the DTLZ problems, where the best values are shown with a deep gray

background and the second best with a light gray background, respectively.

Problem Obj. ANS-MOEA GDE3 MOEAD IBEA SMPSO

DTLZ1

3 5.32E-4(1.1E-3) 2.42E-3(2.6E-4) 1.70E-2(4.8E-2) 8.67E-2(1.1E-1)† 1.17E-2(1.4E-2)

5 3.12E-3(5.5E-3) 1.03E+0(4.0E-1)† 3.26E-3(1.0E-3)† 3.88E-2(4.5E-2)† 7.77E+0(4.4E+0)†

8 5.28E-3(9.6E-3) 1.85E+1(2.1E+1)† 1.02E-1(1.1E-1) 7.66E-2(8.4E-2) 3.94E-2(1.1E-2)†

10 2.80E-4(2.8E-4) 8.31E+0(4.3E-1) 1.25E+0(6.8E-1)† 6.15E-2(4.1E-2)† 4.48E-2(4.8E-3)†

15 6.30E-4(1.3E-3) 1.77E+1(1.9E+0)† 8.34E-1(1.2E+0) 1.67E-3(1.5E-3)† 1.36E+1(9.1E-1)†

DTLZ2

3 3.90E-4(1.7E-4) 1.42E-3(3.5E-4)† 9.34E-5(2.7E-5) 1.22E-6(6.1E-7) 2.07E-3(1.9E-4)†

5 4.12E-4(3.1E-4) 1.60E-2(4.8E-4) 1.42E-3(3.6E-4)† 7.77E-6(5.2E-6)† 4.88E-2(5.3E-3)†

8 2.80E-4(3.4E-4) 6.49E-2(5.4E-3)† 3.92E-3(3.6E-3)† 2.02E-5(3.8E-6)† 1.31E-2(1.8E-3)†

10 2.07E-4(4.1E-4) 8.38E-2(2.8E-3)† 9.63E-3(1.1E-2)† 7.21E-5(1.1E-6)† 1.28E-2(3.2E-3)†

15 1.06E-4(1.0E-4) 3.92E-2(1.2E-3) 1.19E-3(6.6E-4)† 5.10E-6(1.1E-5) 2.98E-2(2.5E-3)†

DTLZ3

3 1.34E-4(1.1E-4) 8.04E-4(2.3E-5)† 1.22E-2(2.4E-2) 6.14E-2(7.1E-2) 1.52E+0(2.1E+0)

5 1.19E-4(1.4E-4) 1.30E-2(1.9E-3) 6.84E-1(1.4E+0) 9.20E-4(3.5E-4)† 1.30E+1(6.7E-1)†

8 4.71E-3(8.8E-3) 1.51E+1(4.6E+0)† 1.61E+0(2.3E+0) 9.45E-5(3.9E-5) 4.22E-2(2.2E-2)†

10 3.12E-8(1.3E-8) 2.23E-1(1.9E-2)† 6.36E-3(7.7E-3) 1.52E-5(1.3E-5) 1.81E-2(3.9E-3)†

15 3.42E-6(6.1E-6) 1.82E-1(2.0E-2) 1.60E-6(1.4E-6) 4.50E+2(1.3E+3) 3.63E-2(9.6E-3)†

DTLZ4

3 2.03E-4(1.8E-4) 1.27E-3(2.3E-4) 1.50E-4(9.8E-5) 1.09E-5(1.1E-6) 1.79E-3(2.5E-4)†

5 2.07E-4(1.4E-4) 1.54E-2(1.1E-3)† 4.57E-4(4.3E-4) 1.72E-6(3.4E-6)† 2.65E-2(3.5E-3)

8 2.74E-3(4.6E-3) 2.96E-2(4.6E-3)† 1.25E-4(1.5E-4) 1.73E-4(1.7E-7) 1.05E-2(5.5E-3)†

10 1.84E-5(4.2E-7) 3.47E-2(6.1E-3)† 1.77E-5(3.1E-5)† 1.01E-5(2.0E-5)† 8.60E-3(1.9E-3)†

15 3.80E-6(1.1E-5) 2.05E-2(2.5E-3)† 2.06E-8(4.7E-8) 0.00E+0(0.0E+0) 1.68E-2(1.6E-3)†

DTLZ5

3 1.00E-4(8.3E-5) 3.58E-9(5.2E-9)† 2.58E-5(6.1E-6)† 4.35E-8(2.3E-8)† 1.49E-4(9.2E-5)†

5 3.68E-4(2.5E-4) 1.24E-2(2.4E-3)† 7.31E-4(6.8E-4) 1.03E-4(6.9E-4) 1.77E-2(4.4E-3)

8 4.18E-4(4.7E-4) 3.72E-2(6.9E-3)† 2.69E-4(5.1E-4) 2.25E-4(2.7E-4† 5.50E-3(2.7E-3)†

10 3.04E-4(2.6E-4) 2.26E-2(9.7E-4)† 2.69E-3(1.5E-4)† 5.38E-4(3.7E-4)† 2.84E-3(9.6E-4)†

15 1.32E-4(9.8E-5) 3.96E-2(7.9E-3)† 1.98E-4(2.8E-4) 8.17E-9(2.4E-8) 1.52E-2(2.2E-3)

DTLZ6

3 1.62E-3(1.3E-3) 0.00E+0(0.0E+0) 0.00E+0(0.0E+0) 2.96E-3(2.7E-3) 6.08E-3(7.4E-5)

5 1.15E-2(9.0E-3) 2.01E-2(7.0E-3)† 7.44E-2(7.4E-3)† 7.95E-2(2.4E-3)† 1.77E-2(4.4E-3)

8 2.65E-3(3.9E-4) 4.35E-2(3.0E-3)† 1.73E-4(2.5E-4)† 7.60E-4(7.6E-4)† 1.39E-2(3.9E-3)†

10 2.46E-3(6.4E-4) 4.20E-2(1.6E-3)† 1.35E-4(2.7E-4)† 1.69E-4(1.9E-4)† 1.28E-2(3.1E-3)†

15 1.46E-3(5.6E-4) 1.39E-1(3.7E-3) 1.23E-4(2.8E-4)† 6.89E-3(5.6E-3)† 2.62E-2(2.8E-3)†

DTLZ7

3 9.10E-4(2.7E-4) 1.92E-3(6.0E-4)† 2.00E-4(8.8E-5)† 2.85E-3(1.8E-4)† 3.17E-3(6.4E-4)†

5 9.85E-4(1.2E-3) 1.02E-2(5.8E-4) 3.67E-3(1.5E-3) 1.54E-3(9.7E-4)† 1.49E-2(3.5E-3)†

8 7.55E-4(8.5E-4) 1.69E-2(2.9E-3)† 1.49E-2(9.4E-3)† 5.63E-6(1.1E-5) 7.12E-2(3.9E-2)†

10 9.97E-4(7.6E-4) 7.15E-2(1.6E-2)† 2.07E-2(1.3E-2)† 1.35E-7(4.1E-7)† 4.82E-2(4.7E-3)†

15 1.76E-4(3.5E-4) 6.23E-2(1.5E-2)† 0.00E+0(0.0E+0)† 4.52E-5(1.4E-4) 5.92E-2(1.5E-2)

Table 3 reveals the GD value of five algorithms after the experiments. As

can be seen from Table 2, the proposed method has a good convergence rate re-265

flected by GD values. The application of the CI method assists the algorithm in
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maintaining well-converged points and ensuring the rate of convergence without

the influence of screen process as much as possible. In the table, ANS-MOEA

performs the best on 3-, 5-, 10-objectives DTLZ3, 10-objectives DTLZ5, and

both 3- and 5-objectives on DTLZ6, DTLZ7, and then it also has the best270

value for all considered numbers of objectives on DTLZ1. For the other algo-

rithms, GDE3 have the best value on 3-objectives DTLZ5. MOEAD reaches the

best results on 15-objectives DTLZ3, 8-, 15-objectives DTLZ4 and 8-, 10-, 15-

objectives DTLZ6. In addition, IBEA also has a well converged performance on

8-objectives DTLZ3, 3-, 5-, 10-objectives DTLZ4, 5-, 8-, 15-objectives DTLZ5,275

8-, 10-, 15-objectives DTLZ7 and DTLZ2 for all considered numbers of objec-

tives except 8-objectives.

It is worth to noting that the IHD−indicator (hypervolume indicator, called

HV [42]) is used for IBEA in comparison. So it has good converged performance,

but computing time is fairly long.280

Table 4 shows the results of IGD for different dimensions on the DTLZ suites.

Clearly, the five MOEAs have their own advantages on the test problems. ANS-

MOEA performs the best on 10-objectives DTLZ4, DTLZ6, DTLZ7 and most

considered numbers of objectives on the other problems except 5-objectives

DTLZ1, 8-, 15-objectives DTLZ2, 10-objectives DTLZ3 and 3-, 5-objectives285

DTLZ5. As for the rest of the MOEAs, GDE3 has good performances on 8-

objectives DTLZ3 and low-dimension DTLZ4-7. In addition, IBEA performs the

best on 15-objectives DTLZ7. MOEAD obtains the best results on 5-objectives

DTLZ1, 8-, 15- objectives DTLZ2, 5-, 8-, 15-objectives DTLZ4 and 8-objectives

DTLZ6-7.290

Note that MOEAD, which uses the Tchebycheff aggregation method, obtains

the better IGD value on most test problems. An important reason is the use of

a set of uniform weight vectors. Then, it can obtain a well-distributed solution

set. But the result of MOEAD is affected by the shape of Pareto front.

Table 5 gives the performances of MOEAs on WFG. As shown, ANS-MOEA295

obtains the best results on all considered objectives WFG1, 15-objectives WFG2,

5-, 15-objectives WFG5, 10-objectives WFG7, 5-objectives WFG8 and 10-,
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Table 4: IGD (mean and standard deviation) results of the five algorithms on the DTLZ

suites, where the best mean is shown with a deep gray background and the second one with

a light gray background, respectively.

Problem Obj. ANS-MOEA GDE3 MOEAD IBEA SMPSO

DTLZ1

3 1.90E-3(2.4E-4) 2.00E-3(2.8E-5) 9.27E-2(1.8E-1) 3.07E-2(2.0E-2)† 6.60E-3(6.3E-3)

5 5.04E-3(3.9E-4) 1.32E-1(1.4E-1) 3.13E-3(3.8E-5)† 1.61E-2(4.1E-3)† 4.25E-2(2.8E-2)

8 6.26E-3(4.0E-4) 3.98E-2(4.3E-3) 7.14E-3(2.3E-3) 1.28E-2(5.0E-4) 2.53E-2(1.0E-3)†

10 1.03E-2(3.2E-4) 5.33E-2(8.1E-3)† 1.99E-2(8.2E-3)† 2.38E-2(1.0E-2) 3.83E-2(6.9E-4)

15 5.05E-3(4.7E-4) 3.21E-2(4.1E-3)† 5.08E-3(1.8E-3) 2.74E-2(1.0E-2)† 2.61E-2(2.6E-3)†

DTLZ2

3 1.46E-3(3.8E-5) 1.89E-3(8.6E-5) 3.68E-3(2.8E-5)† 3.02E-3(3.7E-5)† 2.70E-3(8.9E-5)†

5 3.74E-3(2.9E-4) 6.89E-3(3.0E-4) 4.46E-3(2.3E-4)† 4.17E-3(4.1E-5)† 9.70E-3(3.3E-4)†

8 6.19E-3(1.9E-3) 1.31FE-2(1.2E-3)† 5.42E-3(6.2E-4) 8.60E-3(3.3E-4)† 1.34E-2(2.3E-4)†

10 5.51E-3(2.1E-3) 1.47E-2(1.7E-3)† 6.36E-3(1.1E-3)† 8.28E-3(4.5E-4) 1.50E-2(1.9E-4)†

15 9.57E-3(7.1E-4) 1.13E-2(5.9E-4)† 9.28E-3(1.9E-4) 1.24E-2(5.7E-3)† 1.03E-2(6.0E-4)†

DTLZ3

3 1.80E-3(5.1E-5) 2.02E-3(5.0E-5)† 5.31E-0(2.7E-3) 1.64E-2(7.6E-4) 1.20E-2(8.3E-3)

5 4.42E-3(1.1E-4) 6.94E-3(5.1E-4)† 6.15E-3(1.0E-3)† 1.89E-2(9.3E-3)† 1.15E-2(1.3E-3)†

8 6.89E-3(8.7E-5) 1.30E-2(3.4E-4)† 8.85E-3(1.1E-3)† 1.35E-2(1.2E-6) 1.21E-2(3.4E-4)†

10 9.93E-3(7.7E-8) 9.09E-3(1.2E-3) 9.41E-3(6.0E-4)† 9.94E-3(2.1E-6)† 1.23E-2(1.6E-4)†

15 5.31E-3(8.6E-7) 6.08E-3(1.4E-3) 5.32E-3(7.2E-7) 2.58E-2(5.7E-3)† 3.40E-3(1.9E-4)†

DTLZ4

3 1.12E-2(1.2E-2) 1.92E-3(4.8E-5)† 4.70E-3(1.8E-3)† 8.61E-3(7.0E-3) 3.35E-3(9.1E-4)†

5 5.32E-3(4.0E-3) 6.17E-3(1.4E-4)† 5.07E-3(2.1E-4)† 7.86E-3(2.5E-3)† 8.39E-3(8.9E-4)†

8 1.12E-2(1.7E-3) 8.96eE-3(4.7E-4)† 5.41E-3(2.7E-5)† 6.49E-3(1.1E-3)† 9.39E-3(1.8E-4)†

10 5.15E-3(2.4E-3) 1.14E-2(1.2E-3) 6.09E-3(3.4E-5) 5.97E-3(4.2E-4)† 1.12E-2(7.6E-5)†

15 1.12E-2(9.8E-4) 9.09E-3(4.7E-4)† 7.56E-3(1.2E-5)† 1.81E-2(3.1E-3)† 7.71E-3(4.0E-4)

DTLZ5

3 2.05E-4(1.4E-5) 1.63E-4(2.6E-6)† 5.02E-4(8.8E-7)† 1.17E-3(6.4E-5)† 2.10E-4(4.8E-6)†

5 8.47E-3(2.4E-4) 3.43E-3(2.0E-4)† 5.60E-3(3.1E-4)† 9.14E-3(1.7E-3)† 4.88E-3(2.3E-4)†

8 4.72E-3(5.5E-4) 4.76E-3(2.5E-4)† 6.91E-3(4.5E-4)† 1.17E-2(2.7E-3)† 8.82E-3(1.9E-4)†

10 4.81E-3(1.8E-4) 9.27E-2(2.0E-4)† 9.21E-3(2.1E-4)† 1.25E-2(3.1E-3)† 9.34E-3(2.0E-4)†

15 1.08E-3(2.3E-4) 4.77E-3(1.4E-4)† 1.01E-2(1.2E-4)† 1.52E-2(3.8E-3)† 4.26E-3(8.5E-5)†

DTLZ6

3 3.96E-3(4.8E-3) 1.39E-4(1.4E-6)† 3.93E-4(1.9E-7) 1.72E-3(2.7E-4)† 1.73E-4(5.1E-6)

5 4.72E-3(2.4E-4) 3.06E-3(2.7E-4)† 6.24E-3(2.7E-4)† 7.35E-3(1.1E-3)† 3.85E-3(2.9E-4)†

8 7.93E-3(4.3E-4) 1.04E-2(1.4E-3) 7.29E-3(3.0E-5)† 8.72E-3(7.9E-5)† 9.83E-3(4.3E-4)†

10 6.92E-3(3.2E-4) 1.13E-2(7.5E-4) 7.93E-3(8.1E-5)† 9.45E-3(7.8E-5)† 1.11E-2(3.6E-4)†

15 8.73E-3(7.4E-5) 7.85E-3(7.7E-4)† 8.93E-3(5.7E-5) 1.03E-2(2.1E-3)† 3.56E-3(1.5E-4)†

DTLZ7

3 2.08E-3(4.7E-4) 1.17E-3(5.2E-5) 2.22E-3(2.5E-5) 1.28E-2(8.0E-3)† 2.21E-3(1.6E-4)

5 6.09E-3(1.3E-4) 4.65E-3(1.9E-4)† 6.28E-3(2.8E-4)† 2.84E-2(1.4E-3)† 8.85E-3(2.4E-4)†

8 2.54E-2(6.0E-3) 9.02E-2(2.8E-4)† 1.51E-2(1.7E-3)† 3.88E-2(2.6E-4)† 3.38E-2(6.9E-3)

10 1.76E-2(2.2E-3) 1.78E-2(2.6E-3)† 3.79E-2(4.1E-3)† 4.71E-2(2.2E-4)† 2.99E-2(3.5E-4)†

15 1.98E-2(1.4E-3) 1.92E-2(9.8E-4)† 2.06E-2(1.5E-3)† 8.34E-3(9.7E-4)† 1.77E-2(9.1E-4)†

15-objectives WFG9. MOEAD works fairly well on 5-, 10-objectives WFG2,

5-objectives WFG4, 10-objectives WFG5, 10-, 15-objectives WFG6, 5-, 15-

objectives WFG7 and 15-objectives WFG8. Beyond that, GDE3 performs300
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Table 5: IGD (mean and standard deviation) results of the five algorithms on the WFG, where

the best mean are shown with a deep gray background and the second best with a light gray

background, respectively.

Problem Obj. ANS-MOEA GDE3 MOEAD IBEA SMPSO

WFG1

5 5.17E-3(8.2E-4) 1.16E-1(8.3E-4)† 1.13E-1(6.4E-4)† 2.75E-2(7.2E-3)† 1.16E-1(1.2E-3)†

10 1.00E-2(2.9E-3) 3.68E-1(7.2E-3)† 1.72E-1(1.5E-2)† 9.47E-2(2.9E-2)† 3.67E-1(1.2E-3)†

15 1.38E-2(3.3E-3) 5.31E-1(5.5E-3)† 5.21E-1(1.4E-3)† 2.23E-1(4.6E-2)† 5.22E-1(2.5E-3)†

WFG2

5 5.56E-3(4.1E-4) 5.23E-3(3.0E-4) 3.11E-3(2.2E-4)† 8.14E-3(1.9E-3)† 4.65E-3(2.5E-4)†

10 1.09E-2(1.0E-3) 1.81E-2(2.1E-3)† 9.22E-3(7.8E-4)† 1.41E-2(1.0E-3)† 1.23E-2(4.8E-4)†

15 1.33E-2(6.8E-4) 3.61E-2(5.2E-3)† 2.55E-2(3.2E-3)† 2.46E-2(1.6E-3)† 2.33E-2(1.6E-3)†

WFG3

5 9.90E-3(2.3E-4) 2.25E-3(1.7E-4)† 2.02E-3(1.2E-4)† 1.79E-2(5.6E-4)† 1.79E-3(5.5E-5)†

10 1.18E-2(1.6E-3) 2.61E-3(1.1E-4)† 7.64E-3(8.6E-4)† 1.91E-2(1.6E-4)† 3.29E-3(2.1E-4)†

15 1.00E-2(1.7E-4) 2.84E-3(5.0E-5)† 5.37E-3(2.5E-4) 1.76E-2(8.6E-5) 3.39E-3(1.2E-4)†

WFG4

5 1.18E-2(8.0E-4) 6.36E-3(2.7E-4)† 5.93E-3(1.2E-4)† 1.92E-2(1.7E-3)† 6.58E-3(3.1E-4)†

10 1.69E-2(1.8E-3) 7.67E-3(3.9E-4)† 1.10E-2(1.3E-3)† 1.87E-2(4.8E-6)† 6.83E-3(1.2E-4)†

15 1.26E-2(3.5E-4) 8.28E-3(2.6E-4)† 1.03E-2(7.8E-4†) 1.83E-2(1.5E-5)† 8.19E-3(1.0E-4)†

WFG5

5 4.50E-3(7.8E-4) 6.15E-3(1.9E-4)† 5.07E-3(2.4E-4)† 4.51E-3(1.2E-4)† 7.88E-3(1.7E-4)†

10 1.36E-2(3.9E-4) 6.56E-3(2.3E-4) 1.29E-2(2.0E-4) 1.60E-2(3.5E-6)† 7.00E-3(1.4E-4)†

15 6.51E-3(1.1E-3) 7.35E-3(2.8E-4)† 9.90E-3(5.1E-4) 1.62E-2(1.7E-4)† 7.62E-3(1.2E-4)†

WFG6

5 5.38E-3(9.2E-4) 7.31E-3(4.6E-4)† 5.45E-3(1.7E-4)† 5.12E-3(1.1E-4)† 6.91E-3(2.4E-4)†

10 1.63E-2(1.9E-3) 8.60E-3(2.8E-4)† 1.15E-2(1.3E-3)† 2.11E-2(6.2E-5)† 6.84E-3(1.1E-4)†

15 1.58E-2(9.0E-4) 9.05E-3(2.2E-4)† 1.02E-2(3.5E-4)† 2.04E-2(5.8E-5)† 7.40E-3(3.3E-4)†

WFG7

5 7.18E-3(8.3E-4) 8.10E-3(2.7E-4)† 6.33E-3(1.5E-4)† 8.83E-3(4.9E-3)† 8.72E-3(2.7E-4)†

10 1.55E-2(1.4E-3) 2.55E-2(3.2E-4)† 1.60E-2(5.3E-4)† 2.03E-2(1.3E-4)† 2.57E-2(5.3E-4)†

15 1.30E-2(1.3E-3) 2.27E-2(1.6E-4)† 1.18E-2(4.1E-4)† 1.88E-2(1.3E-4)† 2.32E-2(2.0E-4)†

WFG8

5 8.51E-3(1.3E-3) 8.88E-3(2.6E-4)† 8.80E-3(3.3E-4) 1.45E-2(6.3E-3)† 9.56E-3(3.7E-4)†

10 9.60E-3(7.7E-4) 7.35E-3(1.2E-4)† 1.51E-2(5.5E-4)† 1.94E-2(2.9E-6)† 7.27E-3(1.5E-4)†

15 1.17E-2(5.7E-4) 2.56E-2(1.5E-4) 1.12E-2(5.8E-4)† 1.89E-2(2.0E-4) 2.15E-2(1.1E-4)†

WFG9

5 5.95E-3(7.6E-4) 6.87E-3(3.4E-4)† 4.90E-3(1.4E-4)† 4.18E-3(9.0E-5)† 7.95E-3(3.4E-4)†

10 1.19E-2(1.9E-3) 2.77E-2(1.7E-4)† 1.21E-2(2.8E-4)† 1.59E-2(5.6E-6)† 2.08E-2(2.6E-4)†

15 1.25E-2(1.7E-3) 2.41E-2(1.4E-4)† 1.29E-2(5.7E-4)† 1.91E-2(1.1E-4)† 2.39E-2(2.6E-4)†

the best on 10-, 15-objectives WFG3. IBEA has the best performances on 5-

objectives WFG6 and WFG9. And SMPSO has the best values on 5-objectives

WFG3 and 10-, 15-objectives WFG4, and 10-objectives WFG8.

In order to avoid the influence of extreme data and exactly reflect the general

level of all the experimental results, five MOEAs were run 30 times indepen-305

dently. The median and interquartile range (IQR) values of IGD on DTLZ and

WFG are shown in Table 6 and Table 7.

As we can see in the Table 6 and Table 7, ANS-MOEA performs well on
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Table 6: The median and IQR of IGD for the five algorithms on the DTLZ suites.

Problem Obj. ANS-MOEA GDE3 MOEAD IBEA SMPSO

DTLZ1

3 1.19E-3(9.3E-5) 1.42E-3(1.0E-4) 2.21E-3(1.3E-4) 1.14E-2(1.8E-3) 1.68E-3(3.6E-3)

5 2.82E-3(1.9E-4) 4.02E-2(5.8E-2) 2.29E-3(7.1E-4) 9.41E-3(2.4E-3) 1.18E-2(4.6E-1)

8 4.09E-3(2.0E-4) 2.62E-2(3.8E-3) 4.30E-3(1.5E-3) 9.13E-3(2.2E-4) 3.32E-2(6.9E-3)

10 8.51E-3(9.7E-4) 6.24E-2(1.1E-2) 2.60E-2(1.3E-2) 2.01E-2(8.7E-4) 3.67E-2(2.9E-3)

15 5.13E-3(4.0E-4) 2.65E-2(6.9E-3) 3.19E-3(1.7E-4) 7.87E-3(1.4E-2) 2.37E-2(3.5E-4)

DTLZ2

3 1.08E-3(3.5E-5) 1.39E-3(4.0E-5) 2.62E-3(1.9E-5) 2.18E-3(5.4E-5) 1.58E-3(1.4E-4)

5 2.53E-3(7.0E-5) 4.78E-3(2.2E-4) 3.10E-3(2.1E-4) 3.23E-3(1.6E-4) 7.20E-3(9.6E-4)

8 3.68E-3(3.1E-4) 9.67E-3(1.1E-3) 4.69E-3(8.6E-4) 7.34E-3(8.7E-4) 7.81E-3(8.3E-4)

10 4.18E-3(1.2E-3) 1.19E-2(2.0E-3) 4.97E-3(1.3E-3) 7.52E-3(5.8E-4) 9.09E-3(1.0E-3)

15 6.92E-3(5.8E-4) 9.06E-3(1.1E-3) 6.91E-3(9.7E-5) 7.78E-3(3.0E-4) 9.14E-3(6.7E-4)

DTLZ3

3 1.29E-3(5.6E-5) 1.46E-3(4.5E-5) 2.75E-3(5.1E-5) 1.19E-2(5.0E-4) 1.90E-3(5.9E-3)

5 2.46E-3(1.9E-4) 3.64E-3(3.6E-4) 3.50E-3(3.5E-3) 1.06E-2(5.4E-3) 2.61E-2(1.2E-2)

8 4.54E-3(8.9E-5) 8.89E-3(3.0E-4) 6.19E-3(9.3E-4) 9.01E-3(2.0E-6) 8.44E-3(8.0E-4)

10 5.34E-3(1.1E-5) 6.54E-3(1.1E-3) 5.78E-3(2.2E-4) 5.95E-3(3.2E-6) 4.35E-3(8.7E-4)

15 5.62E-3(3.9E-6) 6.11E-3(1.4E-3) 5.63E-3(5.6E-7) 5.63E-3(1.7E-6) 3.81E-3(2.3E-4)

DTLZ4

3 1.23E-2(1.7E-4) 1.44E-3(9.2E-5) 2.74E-3(9.1E-4) 1.23E-2(3.1E-4) 1.66E-3(5.9E-4)

5 2.21E-3(7.5E-5) 3.70E-3(2.0E-4) 2.92E-3(4.4E-4) 5.07E-3(3.2E-3) 4.14E-3(1.2E-4)

8 4.57E-3(8.1E-4) 6.21E-3(4.4E-4) 4.28E-3(7.5E-5) 4.63E-3(1.3E-3) 5.35E-3(2.6E-4)

10 4.96E-3(3.0E-3) 7.91E-3(4.7E-4) 4.79E-3(2.9E-5) 4.87E-3(4.7E-4) 6.55E-3(8.1E-4)

15 5.56E-3(1.8E-7) 7.80E-3(3.3E-4) 5.82E-3(2.1E-5) 6.23E-3(4.1E-4) 7.11E-3(8.6E-4)

DTLZ5

3 1.39E-4(1.1E-5) 1.10E-4(1.4E-6) 3.45E-4(4.6E-7) 8.14E-4(5.2E-5) 1.08E-4(4.7E-6)

5 1.81E-3(3.6E-4) 2.46E-3(2.3E-4) 4.41E-3(1.2E-3) 6.54E-3(3.0E-4) 2.31E-3(3.1E-4)

8 3.46E-3(1.9E-4) 3.69E-3(1.7E-4) 6.23E-3(1.4E-4) 8.45E-3(3.4E-3) 3.31E-3(2.2E-4)

10 4.52E-3(2.8E-4) 3.70E-3(3.9E-4) 7.63E-3(3.1E-4) 1.07E-2(3.9E-3) 3.28E-3(1.6E-4)

15 2.24E-3(1.3E-4) 3.79E-3(6.0E-4) 7.56E-3(2.5E-5) 1.14E-2(2.3E-3) 3.23E-3(1.2E-4)

DTLZ6

3 3.71E-4(3.6E-4) 9.21E-5(3.4E-6) 2.70E-4(1.1E-7) 1.33E-3(7.1E-4) 8.95E-5(3.7E-6)

5 5.41E-3(2.3E-4) 2.26E-3(2.4E-4) 5.01E-3(1.4E-4) 7.11E-3(1.8E-3) 1.92E-3(1.4E-4)

8 7.15E-3(1.0E-4) 7.51E-3(1.0E-3) 7.32E-3(1.5E-4) 8.27E-3(6.5E-5) 3.52E-3(5.6E-4)

10 3.92E-3(5.0E-4) 8.05E-3(9.6E-4) 7.15E-3(9.7E-5) 8.40E-3(5.4E-5) 3.57E-3(6.7E-4)

15 2.84E-3(2.2E-4) 7.17E-3(1.4E-3) 7.71E-3(1.3E-4) 8.24E-3(7.7E-5) 3.79E-3(3.7E-4)

DTLZ7

3 1.21E-3(1.6E-4) 8.60E-4(9.5E-5) 1.70E-3(2.3E-5) 9.50E-3(4.2E-3) 9.89E-4(1.8E-4)

5 4.63E-3(8.6E-5) 3.44E-3(1.6E-4) 4.76E-3(3.0E-3) 1.92E-2(7.3E-4) 4.67E-3(5.2E-4)

8 1.51E-2(6.7E-3) 6.50E-3(2.8E-4) 1.14E-2(2.6E-3) 2.71E-2(2.9E-4) 1.47E-2(7.2E-3)

10 2.30E-2(3.6E-3) 1.23E-2(2.3E-3) 1.48E-2(2.6E-3) 3.28E-2(3.2E-4) 1.74E-2(4.1E-3)

15 2.91E-2(2.9E-3) 1.83E-2(3.1E-3) 2.36E-2(5.5E-3) 3.97E-2(1.0E-4) 1.82E-2(1.3E-3)

most problems. It can be concluded that the IGD values on DTLZ and WFG,

which ANS-MOEA obtains the results through the 30 times repeat and inde-310

pendent experiments, are relatively stable. In order to respond to the median

and IQR directly, the 5-, 10-, 15-dimension boxplots for DTLZ2 and WFG9
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Table 7: The median and IQR of IGD for the five algorithms on the WFG suites.

Problem Obj. ANS-MOEA GDE3 MOEAD IBEA SMPSO

WFG1

5 4.94E-3(4.1E-4) 1.16E-1(1.5E-3) 1.12E-1(1.1E-3) 2.60E-2(1.3E-2) 1.16E-1(1.6E-3)

10 8.99E-3(2.6E-3) 3.70E-1(3.9E-3) 1.72E-1(2.4E-2) 8.14E-2(3.7E-2) 3.67E-1(2.0E-3)

15 1.26E-2(2.0E-3) 5.30E-1(9.7E-3) 5.21E-1(7.1E-4) 2.32E-1(6.2E-2) 5.22E-1(4.2E-3)

WFG2

5 5.60E-3(6.0E-4) 5.23E-3(3.8E-4) 3.09E-3(4.3E-4) 8.15E-3(3.4E-3) 4.59E-3(2.1E-4)

10 1.09E-2(1.9E-3) 1.81E-2(1.5E-3) 9.22E-3(1.3E-3) 1.45E-2(2.0E-3) 1.22E-2(6.0E-4)

15 1.34E-2(1.6E-3) 3.48E-2(1.1E-2) 2.54E-2(5.6E-3) 2.37E-2(2.2E-3) 2.35E-2(2.2E-3)

WFG3

5 6.00E-3(3.8E-4) 2.21E-3(2.3E-4) 2.01E-3(2.2E-4) 1.81E-2(1.9E-4) 1.79E-3(7.5E-5)

10 6.10E-3(2.9E-4) 2.59E-3(1.5E-4) 7.63E-3(1.3E-3) 1.91E-2(2.9E-4) 3.30E-3(4.9E-4)

15 6.01E-3(2.4E-4) 2.83E-3(1.0E-4) 5.34E-3(1.4E-4) 1.76E-2(1.5E-4) 3.39E-3(2.1E-4)

WFG4

5 1.19E-3(8.9E-4) 6.29E-3(3.4E-4) 5.94E-3(1.3E-4) 2.06E-2(3.5E-3) 6.57E-3(2.1E-4)

10 1.73E-3(9.1E-4) 7.80E-3(6.3E-4) 1.08E-2(2.7E-3) 1.87E-2(9.0E-6) 6.85E-3(1.8E-4)

15 1.26E-3(3.9E-4) 8.40E-3(4.5E-4) 9.91E-3(1.8E-3) 1.83E-2(2.6E-6) 8.19E-3(1.7E-4)

WFG5

5 7.67E-3(4.5E-4) 6.15E-3(3.3E-4) 5.02E-3(4.9E-4) 4.52E-3(2.3E-4) 7.85E-3(2.1E-4)

10 1.36E-2(3.9E-4) 6.57E-3(2.3E-4) 1.29E-2(2.5E-4) 1.60E-2(4.0E-6) 7.02E-3(3.1E-4)

15 1.52E-2(1.6E-3) 7.27E-3(2.0E-4) 9.92E-3(8.5E-4) 1.61E-2(1.1E-4) 7.61E-3(2.0E-4)

WFG6

5 8.63E-3(1.0E-3) 7.24E-3(4.1E-4) 5.42E-3(1.6E-4) 5.12E-3(1.4E-4) 6.89E-3(2.8E-4)

10 1.56E-2(6.5E-4) 8.55E-3(3.4E-4) 1.10E-2(1.4E-3) 2.11E-2(4.0E-5) 6.87E-3(1.6E-4)

15 6.56E-3(2.4E-4) 9.11E-3(1.7E-4) 1.00E-2(6.2E-4) 2.04E-2(5.6E-5) 7.27E-3(9.6E-5)

WFG7

5 1.18E-3(1.4E-3) 8.09E-3(3.4E-4) 6.27E-3(3.0E-4) 5.54E-3(6.2E-3) 8.65E-3(2.6E-4)

10 1.51E-3(2.3E-3) 8.57E-3(5.7E-4) 1.61E-2(7.1E-4) 2.02E-2(1.6E-6) 8.51E-3(5.7E-4)

15 1.26E-3(2.5E-3) 8.27E-3(1.1E-4) 1.19E-2(3.3E-4) 1.87E-2(1.3E-6) 8.31E-3(2.7E-4)

WFG8

5 8.32E-3(9.6E-4) 8.82E-3(3.0E-4) 8.81E-3(5.4E-4) 1.72E-2(1.4E-2) 9.70E-3(6.4E-4)

10 9.17E-3(1.5E-3) 7.32E-3(1.9E-4) 1.50E-2(4.2E-4) 1.94E-2(2.0E-6) 7.28E-3(1.8E-4)

15 1.16E-2(1.8E-4) 8.55E-3(2.4E-4) 1.14E-2(8.6E-4) 1.88E-2(1.8E-4) 8.16E-3(1.9E-4)

WFG9

5 1.71E-3(9.2E-4) 5.95E-3(5.3E-4) 3.89E-3(2.2E-4) 3.22E-3(1.3E-4) 7.94E-3(4.4E-4)

10 1.20E-2(2.6E-3) 1.17E-2(2.8E-4) 1.21E-2(5.2E-4) 1.59E-2(5.7E-6) 7.12E-2(4.5E-4)

15 1.24E-2(1.7E-3) 1.19E-2(1.2E-4) 1.31E-2(7.2E-4) 1.90E-2(3.0E-5) 1.42E-2(4.3E-4)

21



were presented in Figure 3 and Figure 4.
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Figure 3: (a), (b), and (c) describe the boxplots of IGD value on 5-, 10-, 15-dimension DTLZ2

respectively.
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Figure 4: (d), (e), and (f) describe the boxplots of IGD value on 5-, 10-, 15-dimension WFG9

respectively.

In the boxplots, the size of rectangle indicates the IQR and the line in the

rectangle represents the median. Take (a) in the Figure 3 as the case. It can be315

seen that the first rectangle, which represents the ANS-MOEA, has the lowest

location in the figure. This indicates the overall data samples ANS-MOEA

provide is superior than the other four state-of-the-art MOEAs. In addition,

ANS-MOEA also have the smallest rectangle and IBEA has the second smallest.

It denotes that the data samples of ANS-MOEA have the smaller otherness.320

In addition, the distribution of the final solution sets in Pareto front are

described in Figure 5. There are seveal points deserve elaboration:

1. As we can see in the Figure 5, ANS-MOEA can approximate the Pareto

front more easily compared with the other MOEAs.

2. In the second column and third column of the Figure 5, which plot the325
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Figure 5: Distribution of final solution set on 3-, 10-objectives DTLZ2 and 15-objectives

WFG9 for ANS-MOEA, GDE3, MOEAD, IBEA, SMPSO respectively.

10-objectives DTLZ2 and 15-objectives WFG9, GDE3 and SMPSO have

the best performance on the WFG9, but they are non-convergent on the
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DTLZ2. ANS-MOEA has the well-converged performance on the DTLZ2

and WFG9, but it has some sparse points on several objectives. The

first reason we consider that it is affected by the distribution of the well-330

converged points and the second reason is that the size of neighborhood

is constantly changing. Furthermore, it is one of the future work to be

resolved.

5. Conclusions

This paper has presented an adaptive neighborhood selection strategy on335

critical-layer population to balance the convergence and distribution in many-

objective [43] evolutionary optimization. The proposed algorithm has been used

to judge the ability of convergence and distribution by CI and DI, which are

called convergence information and distribution information, respectively. The

adaptive neighborhood selection strategy adjusts the size of neighborhood for340

adapting to the different population densities on the critical layer. When the

well-converged individual was selected into the archive, the NC, which is called

the neighborhood collection, reserves its neighbor in order to avoid the over-

close individuals were selected into archive and relatively better distribution

individuals was selected into critical-layer population by competition.345

Simulation experiments have been researched by providing several detailed

comparisons with four other state-of-the-art evolutionary multiobjective algo-

rithms (GDE3, MOEAD, IBEA, SMPSO). In the simulation experiments, DTLZ

and WFG were selected to validate the ability of these five algorithms, and GD,

IGD as the indicators to assess the performance intuitively. As the experimen-350

tal results show, these five algorithms have their own superior performance.

The results reflect that the proposed method has good performance on most

problems.

Although the proposed method has superior performance on most prob-

lems, it also has some drawbacks. For example, as seen in the Table 4, ANS-355

MOEA has the worst performance on the biased and degenerate problem in
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cases of high-dimension. One major future work is to further investigate the

ANS-MOEA in more multiobjective problems with different characteristics [44]

and some real-world problems [45, 46].
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