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Abstract—This paper puts forward the notion of an R-fuzzy
and grey analysis framework. This is based on our previous
works which involved enhancing the R-fuzzy set and the research
undertaken on grey analysis, we believe that this newly proposed
framework - the R-fuzzy grey analysis framework (RfGAf), to
be a viable methodology to adopt when considering uncertainty
modelling. It will be shown that the framework is very well
suited in application areas involving perception modelling, where
group consensus and subjectivity are prevalent. In such do-
mains a single observation can have a multitude of different
perspectives, choosing a single fuzzy value as a representative
becomes problematic. The fundamental concept of an R-fuzzy
set is that it allows for the collective perception of a populous,
and also individualised perspectives to be encapsulated within
its membership set. The introduction of a significance measure
allowed for the quantification of any membership value contained
within any generated R-fuzzy set. This in addition provided one
the means to infer from the conditional probability of each
contained fuzzy membership value. Such is the pairing of the
significance measure and the R-fuzzy concept, it replicates in part,
the higher order of complex uncertainty which can be garnered
using a type-2 fuzzy approach, with the computational ease and
objectiveness of a typical type-1 fuzzy set. This paper utilises the
use of grey analysis, in particular, the use of the absolute degree of
grey incidence for the inspection of the sequence generated when
using the significance measure, when quantifying the degree of
significance for each contained fuzzy membership value. Using the
absolute degree of grey incidence provides a means to measure the
metric spaces between sequences, so that perception divergence
can be quantified.

I. INTRODUCTION

The foundation of the R-fuzzy grey analysis framework
(RfGAf) is based upon the R-fuzzy set, which is a fuzzy
and rough set hybrid, where by the uncertain fuzzy mem-
bership value is bounded between a lower and upper rough
approximation. The R-fuzzy set was proposed by Yang and
Hinde in [1]. It was deemed relatively early on in our research
that the R-fuzzy set when compared to other more traditional
uncertainty models, fared better when considering certain
domain applications, namely those associated to perception
based domains. As the membership set of an R-fuzzy set is
itself a set, more specifically a rough set, a greater amount
of detail can be encapsulated. When comparing the R-fuzzy
model to that of more established uncertainty models, it has
several advantages; some of the major draw backs of existing
approaches is that a membership value can be lost to an
interval or shadow region. In doing so, one is no longer able
to ascertain the object’s relevance relative to its interval. In
certain instances this may not be too much of a concern, but
for domains where perception is being modelled, it should

always be preferred that each and every membership value be
accounted for and have its relevance quantified. For the likes
of; Atanassov intuitionistic fuzzy sets [2], where a membership
degree and non-membership degree are given. Shadowed sets
[3], where the membership value can either belong to the set
(1), not to the set (0), or belong to the shadow region [0, 1], to
an unknown capacity. Interval-valued fuzzy sets [4], where the
use of an interval is used to characterise the object itself. Type-
2 fuzzy sets [5], where the secondary grade of membership
is a type-1 fuzzy set. These established models will not be
able to recognise the difference between the values which are
contained within their intervals or shadow regions. As an R-
fuzzy set makes use of a rough set for its membership set,
the lower approximation will contain all fuzzy membership
values that have absolutely been agreed upon by all in the
consensus. Whereas, the upper approximation will contain all
fuzzy membership values that have at least one vote from
the populous. It is generally agreed that a generalised type-
2 fuzzy set is very well suited in allowing for a greater
amount of detail of uncertainty to be captured, but this is
computationally expensive, and as such the interval-valued
type-2 approach is often used, where any membership value
contained in the footprint-of-uncertainty is given a secondary
grade membership of 1.

It was remarked in the original paper by Yang and Hinde
that if one could quantify the distribution of contained mem-
bership values that constitute the membership set of an R-fuzzy
set, then one would be able to create a bridge that links itself to
that of a generalised type-2 fuzzy set. The introduction of the
significance measure proposed by Khuman et al. in [6], [7],
[8] does precisely that, it allows for the captured uncertain
membership values to be measured. This facilitates a feasible
means to express and infer from complex uncertainty without
the inherent difficulties often associated with type-2 fuzzy sets.
The implementation of the significance measure with an R-
fuzzy set allows for each and every fuzzy membership value
to be quantified [6], [7], [8]. The results of which can be
further investigated using techniques from grey system theory,
which formulates the post analysis component of the proposed
framework.

Grey theory is yet another approach for handling uncer-
tainty, first proposed by Deng in [9]. The paradigm places
particular emphasis on domains associated with small samples
and poor information, where the information may be partially
known and partially unknown, a common trait of uncertain
systems. The purpose of which is to garner an informed and
accurate conclusion based on what little, uncertain information
is available. This is generally achieved through the processes



of generating, excavating and extracting meaningful content.
In doing so, the system’s operational behaviours and its laws
governing its evolution can be accurately described and acutely
monitored [10]. The use of sequences in grey modelling is
heavily favoured, it is this component and the absolute degree
of grey incidence that will provide the post analysis component
of the R-fuzzy and grey analysis framework.

Section II will present the preliminaries for R-fuzzy sets
and the significance measure, also introduced is the absolute
degree of grey incidence. Section III presents the observations,
using a worked example to demonstrate the added benefit of
using grey techniques for the inspection and further analysis
of the results. Section IV will conclude the paper, providing
an overall summary.

II. PRELIMINARIES

We first present the definitions for the approximations, the
bounding component of an R-fuzzy set.

A. Approximation Preliminaries

Definition 1 (Approximations [11]): Assume that A =
(U, A) is an information system and that B C A and X C U.
Set X can be approximated based on the information contained
in B, via the use of a lower and upper approximation set.

The lower approximation contains all observed objects
that wholeheartedly belong to the set X with regards to the
information contained in B. It is the union of all equivalence
classes in [x]p which are absolutely contained within set X,
and is given by:

BX ={z|[z

= J {B@)
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The upper approximation contains all observed objects that
have a possible affinity to the set X with regards to the
information contained in B. It is the union of all equivalence
classes that have a non-empty intersection with set X, and is
given by:

BX ={z|[z]pNX #0} ()

= J {B@)
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B. Fuzzy Set Preliminaries

It is beneficial for the reader to be presented with the
definitions for both a type-1 and type-2 fuzzy set, as one will
soon see how the new framework in part provides a bridge
to that of a generalised type-2 fuzzy approach for handling
uncertainty.

Definition 2 (Fuzzy set [12]): Let U represent the universe
and let A be a set in U (A C U). The fuzzy set A is a set of
ordered pairs given by the following expression:

A = {(z,pa(x)) |z €U} 3)

A= pla)/a

€U

A type-2 fuzzy set is a logical extension to that of type-1,
whereby the addition of a secondary grade of membership is
used. The secondary grade itself is a type-1 fuzzy membership,
and provides a three-dimensional perspective, allowing for
greater encapsulation of uncertainty.

Definition 3 (Type-2 fuzzy set [5]): A type-2 fuzzy set A
is characterised by a type-2 membership function y ;(z,u),
where z € U and u € J, C [0, 1]. A type-2 fuzzy set is given
by the formal expression:

A= {<($>U)7M,§($,u)> | Vo € U,Vu € J, C [0,1]} 4)

in which p1; : U x J, — [0,1]. A can also be expressed

as:
Az/ / pi(z,u)/(z, u) )
Vel JVueJ, C[0,1]

A= /a:eU /ueJm pi(z,u)/(x,u) Jp, C[0,1] 6)

Where f f denotes a union over all admissible = and u
values. For discrete universes of discourse, [ is replaced by
that of .

C. R-Fuzzy Set Preliminaries

We now present the concept of an R-fuzzy set, which
makes use of the approximations as given in Definition 1.

Definition 4 (R-fuzzy sets [1]): Let the pair apr =
(Jz, B) be an approximation space on a set of values J, =
{v1,v2,...,v,} € [0,1], and let J,/B denote the set of all
equivalence classes of B. Let (M 4(x), M 4(x)) be a rough
set in apr. The membership set of an R-fuzzy set A is a rough
set (M 4(x), M a(z)), where x € U, given by:

A= {(z,(M4(x), Ma(2))) |
Vo e U, M 4(z) C My(z)

a:GU

CL} (D

Where > is the union of all admissible z elements
over the universe of discourse. Each x; € U will have an
associated description of membership d (x;), which describes
the belongingness of each x; with regards to the set A C U.
The set C' is the available evaluation criteria from which the
consensus of the populous is contained. For each pair ((x;), ¢;)
where z; € U and ¢; € C, a subset M;(x;) C J, is created,
given by:

(d(zi),c))

Mej(x;) {v |v e Jp,v —5 YES} 8)

The lower approximation for the rough set M (z;) is given
by:
= () Me;(:) ©)
J



The upper approximation for the rough set M (x;) is given
by:
M(2;) = | Mej(:) (10)
J

Therefore the rough set approximating the membership
d(z;) for z; is given as:

J

M(z;) = mMcj(xi),UMcj(a:i) (an

It was remarked in the original proposal of R-fuzzy sets by
Yang and Hinde [1], that the distribution of the membership
function once quantified, could then be used to derive a fuzzy
set to give type-2 fuzzy sets. We now present the significance
measure, the theorems and proofs that describe how an R-fuzzy
set and significance measure pairing can be bridged to that of
a type-2 fuzzy set.

D. Significance Measure

We now present the significance measure, originally pro-
posed by Khuman et al. in [6], [7], [8].

Definition 5 (Degree of significance): Assume that an R-
fuzzy set has already been created using the same notation
given in Definition 4. This also implies that we have a criteria
set C, and in turn, have an established fuzzy membership value
set J;. The total number of all generated subsets for a given R-
fuzzy set is denoted by | N|. The number of subsets that contain
the specific membership value one is inspecting is given by .S,,.
Each value v € J, is evaluated by c¢; € C, the frequency of
which is the number of times v occurred over | N/, this results
in the degree of significance given by:

S
nalv} = 5 (12)

If the returned degree of significance for any given fuzzy
membership value is v5{v} = 1, this implies that the value
was absolutely agreed upon by all in the criteria set C, meaning
that it belongs to the lower approximation:

M,y ={ya{v}=1|veJ, C[0,1]} (13)

For any membership value to be given a yz{v} = 1,
one will know that it will also be included in the upper
approximation. This is due to that fact that Eq. (7) states that
the lower approximation is a subset of the upper approximation
M ,(x) € M 4(x). Any returned degree of significance greater
than 0 will also be included in the upper approximation:

Ma={yi{v}>0|veJ, C[01]} (14

These interpretations echo the sentiments of fuzzy set
theory as presented in Definition 2, whereby an element
can be described by its membership function such that it
returns any real number in the range [0, 1]. Except instead
of representing the belongingness of an object to a particular
set, the significance degree returns the measure of significance,
with relation to its descriptor d(x;), based on its conditional

probability of distribution. Eq. (12) can be rewritten so that
the collected significance degrees constitute a set, given by
the following expression:

A = {{(v,vx{v}) |ve J, C[0,1]} (15)

Theorem 1: The significance measure described in Defini-
tion 5 is equivalent to a standard type-1 fuzzy set, if it can
be described in the same way as presented in Definition 2.
Whereby its membership function must satisfy the restriction
imposed upon it, such that an object is assigned a degree of
inclusion either equalling or within the range of [0, 1]. Also for
equivalence to be satisfied, the continuous set representation
must be based upon the apex stick heights of the returned
degrees of significance for the triggered membership values
satisfying the descriptor being inspected.

Proof 1: From Definition 5 and Definition 4, assume that
set A is a descriptor for a particular R-fuzzy set. A traditional
type-1 fuzzy set is a collection of ordered pairs. The degree
of significance for each membership value belonging to a
particular R-fuzzy set is quantified by its membership function
vi{v} : J. — [0,1], such that it can be given by the
expression:

A = {{wralod) lve L)

Therefore, based on its descriptor the set will contain or-
dered pairs of membership values and their associated degrees
of significance. One can see this expressions is equivalent to
the notation given in Eq. (3):

A = {{&,pa(@) | = € U}

(15 revisited)

(3 revisited)

Where an object is provided with a degree of inclusion
relative to the set being inspected. Here we have v € J,
which is the membership set of membership values instead
of x € U. As J, provides what essentially is the universe of
discourse, the significance degree measure does indeed act as
an equivalent type-1 fuzzy set, when the set is representative
of the descriptor the R-fuzzy set was created for.

Theorem 2: An R-fuzzy set A is equivalent to a type-2
fuzzy set as presented in Definition 3, only if we consider the
probability distribution of the significance degree measure as a
fuzzy membership, then an R-fuzzy set is equivalent to a type-
2 fuzzy set with discrete secondary membership functions.

Proof 2: From Definition 3, we have (x,u) and p ;(z,u),
where (z,u) is indicative of an intersection, and where
5 (z, u) represents the amplitude, or stick height of objects
for said intersection. From Definition 4, an R-fuzzy set uses
a rough set to describe its membership, as a result we have
(M 4, M 4), where the lower and upper approximations, M
and M, respectively, provide the bounds of the set being
approximated, which is the descriptor for set A. The degree
of significance as presented in Definition 5, describes the
conditional distribution of triggered membership values for
its descriptor, given by Eq. (15). Where the collection of
yalx} provides the degree of significance of each and every
membership value that satisfied the descriptor. As p ;(z,u)
provides one with the amplitude of objects over the ‘footprint
of uncertainty’, A provides one with the degree of significance
for all triggered membership values satisfying the require-
ments given by the descriptor. The equivalence is therefore



TABLE 1. HUMAN PERCEPTION BASED ON THE VARIATIONS FOR THE

COLOUR BLUE

# | sec| i fo fs fa fs fo Sr fs o
P1 M DB LB LB DB DB B LB LB B
P F DB LB LB B DB B LB LB LB
Ps3 M DB LB LB DB DB B LB LB LB
P4 M DB LB B DB DB B LB LB LB
Ps M DB LB B DB DB B LB LB LB
Pe M DB LB B DB DB B DB LB LB
Py F DB LB B DB DB B LB B LB
Ps F DB LB DB DB DB B DB LB LB
Pg M DB LB B B DB B LB LB LB
Pio M DB LB B DB DB B LB LB LB
P11 M DB LB B DB DB B LB LB LB
P12 M DB LB B DB B LB B LB
Pi3 M DB LB B DB B LB B LB
Pia M DB LB DB DB DB B LB LB LB
Pis M DB LB DB DB DB B LB LB LB
Pig F DB LB DB DB DB B LB B LB
P17 F DB LB B B DB B LB LB LB
Pis M DB LB DB DB DB B LB B LB
Pig M DB LB DB DB DB B LB LB LB
P2o M DB LB B B DB B LB LB LB

straightforward; both approaches make use of a set, which
itself describes the distribution of that set.

E. Grey Theory

The traditional degree of grey incidence provides the basis
for all variances of the degree of incidence; I' = [fyij], where
each entry in the ' row of the matrix is the degree of
grey incidence for the corresponding characteristic sequence
Y;, and relevant behavioural factors Xi, X5,...,X,,. Each
entry for the j** column is reference to the degrees of grey
incidence for the characteristic sequences Y7, Ys,...,Y, and
behavioural factors X,,. The absolute degree of grey incidence
A = [€ij]nxm, is defined as follows:

Definition 6 (Absolute degree of grey incidence [13][10]):
Assume that X; and X; € U are two sequences of data
with the same magnitude, that are defined as the sum of the
distances between two consecutive time points, whose zero
starting points have already been computed:

1

S;—8; = / (X7 — X3)dt (17)
1
Therefore the absolute degree of incidence is given as:

1+ |si| + ]
L+ [sif +[s5] + |si — 55

(18)

€ij =

This will provide the coefficient values between the con-
tained clusters belonging to the criteria set C. Much like
the work the authors did with regards to natural language
processing using grey analysis in [14], the absolute degree of
grey incidence was utilised to measure the metric spaces of the
sequence curves for an optimal string, against the input strings.
The returned degree of incidence scored the overall similarity,
the higher the value was to 1, the greater the similarity of
the two strings. This provides the post-analysis aspect of the
framework.

III. OBSERVATIONS

This section will showcase the use of the proposed R-fuzzy
grey analysis framework. An example is put forward to further
explain the advantages of such a framework. Our previous
works have demonstrated the approach used on distribution
that did not contain voids, this example will demonstrate no
matter how volatile the data obtained, the RFGAf approach can
still be applied with no loss of information.

Example I: Assume that ' = {f1, f,..., fo} is a set
containing 9 different colour swatches based on the colour
blue:

fi— [25,25,112] — |
f2— [204, 204, 255] —

f3— [42,82,190] — |
fi— [0,51,153] — I
f5— [0,0,128] — I
fo — [0,0,255] — I
fr— [40,146,172] — |
fs — 0,128, 255] — I
fo— [36, 186, 255] —

The example investigates the collected perception of 20
individuals, with regards to the colour blue. The more obser-
vations contained in the criteria set, the greater the chances of
disjoint distribution. The more individuals to give their per-
ception, the more likely confliction may arise. These collected
perceptions are presented in TABLE 1. Notice the inclusion of
the Sex attribute, of which C' contains 15 males and 5 females.

The colours themselves are given by their [RGB]
values, from which the average is worked out and
stored in N. The values contained are given as N =
{54,221,105,68,43,85,119,128,159}. Each average N;
value will correspond to a specific colour swatch F;. For
example, the swatch associated with f3 has a value of 105,
f5 will be related to 43, and so on. Assume that the criteria
set C' = {py,Pas---,Pa0} contains the perceptions of 20
individuals, all of whom gave their own opinions based on
the available descriptors and the swatches themselves.

The descriptor terms contained within the table can be
understood as meaning:

DB — Dark Blue B — Blue LB — Light Blue
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Fig. 1.

The fuzzy membership set J, is created using a simple
linear function: L1
wlfi) = ——— (19

maxr — lmin

Using the linear function given in Eq. (19), the resulting
fuzzy membership set is given as:

J, = {0.06, 1.00,0.35,0.14,0.00,0.24,0.43,0.48,0.65}

Using Definition 4, the final generated R-fuzzy sets based
on the collected subsets for /B, B and DB, respectively, are
given as:

DB :({0.00, 0.06}, {0.00,0.06,0.14,0.35, 0.43})
B :({0.24}, {0.14,0.24,0.35, 0.48, 0.65})

LB :({1.00}, {0.35,0.43,0.48,0.65, 1.00})

By using Eq. (12), one is able to calculate the degree of
significance for each and every encapsulated fuzzy member-
ship value, from J,, that has an affinity to its R-fuzzy set. The
returned degrees of significance for all generated R-fuzzy sets
are presented in TABLE II.

Fig. 1 provides one with a derivable continuous represen-
tation of the generated R-fuzzy sets and the returned degrees
of significance. Given that v 55{0.24} = 0.00, there exists an
area of disjointness between 0.14 and 0.35. Referring back to
TABLE II, one can clearly see where these areas of disjointness
occur and how they are reflected in Fig. 1. The R-fuzzy set
IB has considerable variance throughout its duration, as can
be seen in its fluctuations, it does not however have an area of
disjointness. All three generated R-fuzzy sets do have at least

0.65 1.00

A derivable continuous visualisation for Example 1, based on all the generated significance measures for the R-fuzzy sets of DB, V & [B

one value which returned a significance degree of 1, so even
with the extra members for the criteria set, there is still a value
that exists indicative of the collective perception held.

Furthermore, as the membership set J,, does indeed remain
the same, we can use this as the sequence needed for the
absolute degree of grey incidence component. The membership
values themselves act as the discretised points along the x axis,
whereas the varying significance degrees give the associated
amplitude. Regardless of how small or large the difference
between the returned degrees of significance for comparable
fuzzy membership values, the fact that there can be a difference
should provide one the motivation to explore further. It is
precisely this aspect of wanting to investigate that warrants the
use of the absolute degree of grey incidence. Since we now

TABLE II. THE DEGREES OF SIGNIFICANCE BASED ON TABLE I
DB B 1B
Ja vy Ja vy Iz v
WFB{O.OO} = 1.00 ‘yTg{O.OO} = 0.00 VE{O-OO} = 0.00
WFB{O.OG} = 1.00 'YE{O.OG} = 0.00 7@{0.06} = 0.00

7?3{0'14} = 0.70 7@{0.14} = 0.30 7@{0.14} = 0.00

vppl0-24} = 000 | y5{0.24} = 100 | y5{0.24} = 000

vppl0-35} = 030 | y5{0.35) = 055 | y5{0.35} = 015

v ppl043} = 010 | y5{043} = 000 | yp{043}= 090

v ppl048} = 000 | y5{0.48} = 025 | y5{048} = 075

{0.65} = 000 | y5{0.65} = 005 {0.65} = 095

7LB
v p{1:00} = 100

DB
7?3{1'00} = 0.00

v {100} = 0.00




TABLE III. THE DEGREES OF SIGNIFICANCE FOR MALES TABLE IV. THE DEGREES OF SIGNIFICANCE FOR FEMALES
DB B IB DB B IB
Jz vy Ja ¥ Ja vy Jz ¥ Jz ¥ Jz vy
v ppl0-00y = 100 | v 55{0.00} = 000 | y75{0.00} = 000 7 ppi0.00} = 100 | y5{0.00} = 000 | y75{0.00} = 0.00
Y ppl0:06} = 100 | y5{0.06} = 000 | v5{0.06} = 000 Y ppl0-06} = 100 | y5{0.06} = 000 | v5{0.06}= 000

vppl014} = 073 | y5{0.14} = 027 | y5{0.14} = 000

{024 = 000 | y5{0.24} = 100 | y75{0.24} = 0.00

DB

vppl014} = 060 | y5{0.14} = 040 | y5{0.14} = 000

vppl0-24} = 000 | y5{0.24} = 100 | y5{0.24} = 000

v ppl0-35y = 027 | y5{0.35) = 060 | y5{0.35} = 0.3

v ppl043} = 007 | v 5{043} = 000 | y5{043} = 093

v ppl048} = 000 | v 5{0.48} = 020 | y5{0.48} = 080

v ppl0-35} = 040 | y5{0.35} = 040 | y5{0.35} = 020

v ppl043} = 020 | y5{043} = 000 | yp{043} = 080

v ppl048} = 000 | v 5{0.48} = 040 | y5{0.48} = 060

7 ppl0.65} = 000 | yp5{0.65}= 007 | y5{0.65}= 093 7 ppl0.65} = 000 | y5{0.65}= 000 | y75{0.65} = 1.00
v pEil00} = 000 | y5{1.00}= 000 | y75{1.00}= 100 Y pEil00} = 000 | y5{1.00}= 000 | y75{1.00}= 100
17 ? 1T
0.93 A R &
e IBM) e B(M)
0.80 A R
—e— IB(F) —e— B(F)
LB
0.60 A 0.60
Y+ 7T
0.40
0.27
0.20 A 0.20
0.13 A 2
0.07 S
0 o ‘ 0 #—6— ; —— o )
0.00" 0.14 + 0.35 '0.48 0.65 1.00 0.00" 0.14 + 0.35 '0.48 0.65 1.00
0.06 0.24 0.43 0.06 0.24 0.43 5
T x
Fig. 2. The Comparability Between Males and Females for /B Fig. 3. The Comparability Between Males and Females for B
. o . 1
have established sequences indicative of the fuzzy membership
set J,, we can now measure the difference between the metric o DB(M)
spaces of comparable sequences based on the returned degrees
of significance. 0.73 — e DB(F)
As the data contained in TABLE I contains a Sex attribute, 0.60
one can generate two subsets with relation to male and female. v
This allows for one to create R-fuzzy subsets, from which the
returned degrees of significance can be used to generate the 0.40
comparable sequences needed, for the absolute degree of grey 0.97
incidence. Regardless of how the encapsulation of the returned 0'20
degrees of significance look, it still provides a valid sequence ’
for comparisons to be undertaken, as any generated subset will 0.07
be indicative of the overall R-fuzzy sets generated from it, 0 — 4 ‘ ® ¢ é
along with disjointness and all. 000" 0.14 ' 035 048  0.65 1.00
TABLE III and TABLE IV, contain the returned degrees 0.06 0.24 0'43Jx

of significance relating to males and females, respectively, all
collected from TABLE I. The plots contained in Fig. 2, Fig. 3
and Fig. 4, show the comparable sequences computed from the
returned degrees of significance, for DB, B and [B. TABLE V
provides a summary of the collected absolute degree of grey

Fig. 4. The Comparability Between Males and Females for DB

incidence values for all generated R-fuzzy sets and significance



TABLE V. A COMPARABLE SUMMARY OF THE RETURNED ABSOLUTE DEGREE OF GREY INCIDENCE FOR LB, B & DB
LB M F ‘ B ‘ M F ‘ DB ‘ M F
M | €(1.00) €(0.940) | M | €(1.00) €(0.841) M €(1.00)  €(0.968)
F - €(1.00) F - €(1.00) F - €(1.00)

measure sequences, for each comparable permutation, of which
there are 3. Inspecting the table one can see that sequences
generated for DB shared the most similarities with a returned
metric of €(0.968). This was then followed by LB, with a metric
of €(0.940), therefore the greatest divergence exists for B, with
a metric of €(0.841).

IV. CONCLUSION

The R-fuzzy and grey analysis framework is an uncertainty
model, one which hybridises that of R-fuzzy, which itself is a
fuzzy and rough set pairing; to that of the significance measure
and the absolute degree of grey incidence.

Given that an R-fuzzy set allows for the encapsulation of a
general consensus and also individual perspectives, the wealth
of information an R-fuzzy set can contain is a great deal. The
introduction of the significance measure by the authors in [6],
[7], [8] has allowed for the R-fuzzy concept to model more
complex uncertainty, returning a higher dimension of results
for better inferencing. With the introduction of grey analysis,
specifically the use of the absolute degree of grey incidence,
it has been shown that even more information and inference
can be garnered from the same initial data set.

With the increase in observers contained within the criteria
set, comes a greater chance of disjointness. The sequences
generated for Example I contained areas of disjointness and
volatility, as indicated by the plots. The sequences themselves
often criss-cross with one another. This is not a problem, for
the absolute degree of grey incidence uses the absolute values
for the area encapsulated between discretised points. As such,
a reliable and detailed metric can be returned from which
an insight provides the perceived perceptions of males and
females. As there were 3 times more males as compared to
females, the overall similarities between sequences as indicated
by the high returned metrics, would indicate that with more
females, the value would only increase slightly, if at all.
The robustness that the R-fuzzy grey analysis framework has,
allows for it to be executed on clusters with uneven frequency,
with relatively small amounts of data. This enables whatever
permutations are contained within the criteria set, to be able
to be compared and contrasted. As the comparisons are of the
same R-fuzzy descriptors, the general overall similarity will
be prevalent, however, the enhanced R-fuzzy approach is best
utilised to provide a metric for the divergences that could exist.
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