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Abstract. In this paper, two measures of uncertainty for interval type-2
fuzzy sets are presented, evaluated, compared and contrasted. Wu and
Mendel regard the length of the type-reduced set as a measure of the un-
certainty in an interval set. Greenfield and John argue that the volume
under the surface of the type-2 fuzzy set is a measure of the uncertainty
relating to the set. For an interval type-2 fuzzy set, the volume measure
is equivalent to the area of the footprint of uncertainty of the set. Exper-
iments show that though the two measures give different results, there is
considerable commonality between them. The concept of invariance un-
der vertical translation is introduced; the uncertainty measure of a fuzzy
set has the property of invariance under vertical translation if the value
it generates remains constant under any vertical translation of the fuzzy
set. It is left unresolved whether invariance under vertical translation is
an essential property of a type-2 uncertainty measure.

Keywords: interval type-2 fuzzy set, uncertainty, uncertainty bounds,
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1 Introduction

In 1965 Zadeh introduced the concept of the (type-1) fuzzy set [26]. Type-1
membership functions are of questionable accuracy as their derivation tends to be
subjective or reliant on large sets of data. The practical application of fuzzy sets is
within a Fuzzy Inferencing System (FIS). Uncertainty in type-1 FISs derives from
various sources, e.g. “The meanings of the words that are used in the antecedents
and consequents of rules can be uncertain” and “Measurements that activate a
type-1 FLS may be noisy and therefore uncertain.” [19, page 117]. It is therefore
very difficult, if not impossible, to determine a type-1 membership function, and
consequently it seems somewhat inappropriate to use crisp numbers, possibly
expressed to several decimal places, to represent degrees of membership. Klir
and Folger [16, page 12] comment:

“. . . it may seem problematical, if not paradoxical, that a representation
of fuzziness is made using membership grades that are themselves precise
real numbers. Although this does not pose a serious problem for many
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applications, it is nevertheless possible to extend the concept of the fuzzy
set to allow the distinction between grades of membership to become
blurred. Sets described in this way are known as type 2 fuzzy sets.”

One might argue that the type-1 membership function does reflect the certainty
of a proposition. Does not a membership grade of 1 imply certain truth, a grade
of 0 certain falsehood, and a grade of 0.5 total uncertainty? But really what is
being quantified here is not so much uncertainty as vagueness. This is what lies
behind the common use of fuzziness as a so-called measure of uncertainty for
type-1 fuzzy sets [23, page 5384].

Zadeh’s 1975 innovation of the type-2 fuzzy set [27–29] provides an intuitive
model of uncertainty. A type-2 fuzzy set (defined in Subsection 2.2) may be
thought of as an adaptation of a type-1 fuzzy set [19, page 118]:

“Imagine blurring the type-1 membership function . . . Then, at a spe-
cific value of x, say x′, there no longer is a single value for the membership
function (u′); instead the membership function takes on values wherever
the vertical line intersects the blur. Those values need not all be weighted
the same; hence, we can assign an amplitude distribution to all of those
points. Doing this for all x ∈ X, we create a three-dimensional member-
ship function — a type-2 membership function — that characterizes a
type-2 fuzzy set.”

Type-2 fuzzy sets take two forms, generalised, with variable secondary mem-
bership grades (Subsection 2.2) between 0 and 1, and the simpler interval,
where all secondary membership grades are 1. The specific concern of this pa-
per is the interval type-2 fuzzy set. These are increasingly used in applications
[3, 5, 6, 11, 13, 15, 17, 20, 21], since interval type-2 fuzzy inferencing is less
computationally complex than its generalised counterpart [12, 19].

The concept of a fuzzy uncertainty measure is analogous to that of error
bars in statistics. Therefore such a measure has the potential to provide valuable
information. By quantifying the uncertainty associated with the aggregated fuzzy
set [7, page 1015], one is in effect measuring the uncertainty of the inference
generating the aggregated set. In fuzzy image processing [5, 6, 13], for example,
an uncertainty measure would indicate the reliability of the processed outputs.

In [23] five measures of uncertainty for interval type-2 fuzzy sets are surveyed,
most notably the centroid length measure. A measure not considered in this
survey is that of the area of the interval set’s Footprint Of Uncertainty (FOU).
In this report the centroid length and the FOU area measures are compared and
contrasted.

The next section covers preliminaries such as assumptions and definitions.
Following that, in Section 3, the two uncertainty measures are presented, af-
ter which, in Section 4, the experiments by which the methods are compared
and contrasted are described and their implications assessed. Finally Section 5
concludes the paper.



3

2 Preliminaries

2.1 Assumptions

The following assumptions relate to fuzzy sets:

1. The type-1 fuzzy set is contained within a unit square and may be viewed
as a curve represented by (x, u) co-ordinates.

2. The type-2 fuzzy set is contained within a unit cube and may be viewed as
a surface represented by (x, u, z) co-ordinates.

3. The domain (x-axis) is discretised.

2.2 Definitions

Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised by
a membership function µA : X → [0, 1] and can be expressed as follows [26]:

A = {(x, µA(x))| µA(x) ∈ [0, 1] ∀x ∈ X}. (1)

In the following the notation U = [0, 1] is employed.
Let P̃ (U) be the set of fuzzy sets in U . A type-2 fuzzy set Ã in X is a fuzzy

set whose membership grades are themselves fuzzy [27–29]. This implies that
µÃ(x) is a fuzzy set in U for all x, i.e. µÃ : X → P̃ (U) and

Ã = {(x, µÃ(x))| µÃ(x) ∈ P̃ (U) ∀x ∈ X}. (2)

It follows that ∀x ∈ X ∃Jx ⊆ U such that µÃ(x) : Jx → U. Applying (1), we
obtain:

µÃ(x) = {(u, µÃ(x)(u))| µÃ(x)(u) ∈ U ∀u ∈ Jx ⊆ U}. (3)

X is called the primary domain and Jx the primary membership of x while U is
known as the secondary domain and µÃ(x) the secondary membership of x.

Putting (2) and (3) together, we obtain the definition of a generalised type-2
fuzzy set :

Ã = {(x, (u, µÃ(x)(u)))| µÃ(x)(u) ∈ U, ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (4)

Definition 1 (Interval Type-2 Fuzzy Set). An interval type-2 fuzzy set is
a type-2 fuzzy set whose secondary membership grades are all 1.

In the interval case, Equation 4 reduces to:

Ã = {(x, (u, 1)), ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (5)

Definition 2 (Footprint Of Uncertainty [19]). The Footprint Of Uncer-
tainty (FOU) is the projection of the type-2 fuzzy set onto the x− u plane.

The FOU defines the interval set, as all its secondary membership grades are 1.
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Definition 3 (Lower Membership Function). The Lower Membership Func-
tion (LMF) of a type-2 fuzzy set is the type-1 membership function associated
with the lower bound of the FOU.

Definition 4 (Upper Membership Function). The Upper Membership Func-
tion (UMF) of a type-2 fuzzy set is the type-1 membership function associated
with the upper bound of the FOU.

Discretisation is the process by which a continuous set is converted into a
discrete set through a process of slicing.

Definition 5 (Vertical Slice [19]). A vertical slice of a type-2 fuzzy set is a
plane through the x-axis, parallel to the u− z plane.

Definition 6 (Degree of Discretisation). The degree of discretisation is the
separation of the slices.

Definition 7 (Rectangular Type-2 Fuzzy Set). A rectangular type-2 fuzzy
set is an interval type-2 fuzzy set whose FOU extends between the lines x = 0
and x = 1, with LMF and UMF both running parallel to the x-axis.

Figure 1 depicts two rectangular type-2 fuzzy sets.

Definition 8 (Blank Type-2 Fuzzy Set). The blank type-2 fuzzy set is a
rectangular type-2 fuzzy set whose LMF is the line u = 0 and UMF is the line
u = 1.

Definition 9 (Invariance under Vertical Translation). An attribute of a
fuzzy set has the property of Invariance under Vertical Translation (IVT) if it
remains constant under any vertical translation of the fuzzy set.

Definition 10 (Embedded Set). An embedded set is a special kind of type-2
fuzzy set, which relates to the type-2 fuzzy set in which it is embedded in this
way: For every primary domain value, x, there is a unique secondary domain
value, u, plus the associated secondary membership grade that is determined by
the primary and secondary domain values, µÃ(x)(u).

The centroid length uncertainty measure is inextricably linked with the de-
fuzzification process of a type-2 fuzzy set. Type-reduction, the first stage of
type-2 defuzzification, creates a type-1 fuzzy set know as the Type-Reduced Set
(TRS). Assuming that the primary domain X has been discretised, the TRS of
a type-2 fuzzy set may be defined thus [27], [19, page 121]:

Definition 11. The TRS associated with a type-2 fuzzy set Ã with primary
domain X discretised into N points X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, µÃ(x1)(uk1
) ∗ . . . ∗ µÃ(xN )(ukN

)

)∣∣∣∣∣∀(uk1
, uk2

, . . . , ukN
)

∈ Jx1
× Jx2

× . . .× JxN
⊆ UN

}
.

(6)
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For the TRS of an interval type-2 fuzzy set, Definition 11 reduces to:

Definition 12 (TRS of an Interval Type-2 Set). The TRS associated with
an interval type-2 fuzzy set Ã with primary domain X discretised into N points
X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, 1

)∣∣∣∣∣ ∀(uk1
, uk2

, . . . , ukN
) ∈ Jx1

×Jx2
×. . .×JxN

⊆ UN

}
.

(7)

Mendel and John’s Representation Theorem [19, page 121] provides a precise
method for defuzzification of type-2 fuzzy sets. Though Definitions 11 and 12 do
not explicitly mention embedded sets, they appear implicitly in Equations 6 and
7. When these equations are presented in algorithmic form (Algorithm 1), they
are explicitly referred to. Exhaustive type-reduction (Algorithm 1) processes
every embedded set in turn, hence the term ‘exhaustive method’ [8, 9]. Each
embedded set is defuzzified as a type-1 fuzzy set. The defuzzified value is paired
with the minimum secondary membership grade of the embedded set, which in
the interval case is 1, as all the secondary membership grades are 1. The set of
ordered pairs constitutes the TRS, which is then defuzzified as a type-1 fuzzy
set to give the defuzzified value of the type-2 fuzzy set.

Input: a discretised interval type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the embedded sets do
2 calculate the primary domain value (x) of the type-1 centroid of the type-2

embedded set ;
3 pair the secondary grade (1) with the primary domain value (x) to give set

of ordered pairs (x, 1) {these points lie on a line} ;

4 end

Algorithm 1: Type-reduction of an interval discretised type-2 fuzzy set
to a type-1 fuzzy set, adapted from Mendel [18].

2.3 Principle of Type-2 Uncertainty Measurement

Mendel [18, page 11] advocates the fundamental design requirement with regard
to type-2 uncertainty measurement: “When all sources of uncertainty disap-
pear, a type-2 FLS must reduce to a comparable type-1 FLS.” This principle is
patently valid.

It follows from this requirement that there is no uncertainty associated with
a type-1 fuzzy set, and hence so called measures of uncertainty for type-1 fuzzy
sets [1, 2, 4, 22] cannot be measuring uncertainty ; perhaps they are measuring
another characteristic of the type-1 set such as vagueness (Section 1).
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3 Type-2 Uncertainty Measures

In this section the two interval type-2 uncertainty measures of TRS length and
FOU area are presented; these measures contrast strongly in their rationales and
derivations.

3.1 Length of the TRS as a Measure of Uncertainty

Wu and Mendel propose that the length of the TRS of an interval set provides a
measure of the uncertainty of the set [25]. The most widely adopted method for
type-reducing an interval type-2 fuzzy set is the Karnik-Mendel Iterative Proce-
dure (KMIP) [14]. The result of type-reduction of an interval type-2 fuzzy set is
an interval (a particular case of a type-1 fuzzy set), with the defuzzified value
at the midpoint. The endpoints of the interval are termed uncertainty bounds
[25, page 622]. The iterative procedure is an efficient search method for locat-
ing these endpoints. It is an approximate technique [7], [14, page 203]. Since
the publication of the KMIP, various more efficient versions have been proposed
[24], which differ somewhat in their search strategy whilst giving the same result.
However, in this paper the absolutely accurate Exhaustive Method [7] is used.
Though it has relatively high computational complexity, in the experiments de-
scribed below the discretisation employed is coarse enough for defuzzification to
be accomplished relatively speedily.

3.2 Area of the FOU as a Measure of Uncertainty

How type-2 fuzzy sets model uncertainty is the subject of [10]. In this book chap-
ter it is proposed that the third dimension reflects the uncertainty arising out of
a deficit in information. From this premise it is argued that the volume under
the surface of the type-2 fuzzy set is a measure of the uncertainty relating to the
set. For an interval type-2 fuzzy set, since the secondary membership grades all
take the value of 1, the area of the FOU is equivalent to the volume under the
surface of the type-2 fuzzy set. The measure is applied to the aggregated fuzzy
set [7, page 1015]; this in effect measures the uncertainty of the inference from
which the aggregated set is generated (Section 1).

Minimum Uncertainty The least amount of uncertainty possible is 0. This cor-
responds to a type-2 fuzzy set in which every secondary membership function is
a vertical line of height 1, with 0 area, originating from an FOU that is a line.
Such a type-2 fuzzy set is equivalent to, and reducible to, a type-1 fuzzy set.

Maximum Uncertainty At the other extreme, the greatest amount of uncertainty
possible is 1. There is only one type-2 fuzzy set having uncertainty of 1, an
interval set for which the support for each vertical slice’s secondary membership
function is the complete interval [0, 1]. The area of the FOU is 1. This type-2
fuzzy set may be described as a unit cube (of volume 1). It is fitting that it has
an uncertainty of 1, as, being essentially formless, like a blank sheet of paper, it
is devoid of information. For this reason it is termed the blank type-2 fuzzy set.
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4 Experiments

4.1 Methodology

The two uncertainty measures are compared and contrasted experimentally, us-
ing specially constructed test sets. There are four experimental test runs. For
three of the test runs rectangular interval type-2 fuzzy sets (Figure 2) are em-
ployed. For the fourth test run, the underlying test set has no specific symmetry
or form (Figure 1). The strategy adopted is to either alter the distance between
the LMF and the UMF, or keep this distance constant whilst translating the
test set vertically, in each instance applying both the centroid length and the
FOU area measures. The accurate Exhaustive Method [7] is used to generate the
TRS, as opposed to the KMIP [14], which is an approximation. For all the test
sets the domain has a degree of discretisation of 0.1, so engendering 11 evenly
spaced vertical slices.
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Fig. 1. Rectangular type-2 fuzzy test sets. The LMF and UMF are shown as bold lines.
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Fig. 2. Asymmetric type-2 fuzzy test sets. The LMF and UMF are shown as bold lines.

4.2 Results

The results of the experiments are presented in Tables 1 to 4.
There are several points of commonality between the two measures:

1. From the trend in the last two columns of Table 2, the minimum uncertainty
for both measures is evidently 0.

2. From the trend in the last two columns of Table 1, the maximum uncertainty
for both measures is evidently 1.

3. If the distance between the LMF and UMF is increased, the amount of un-
certainty increases, as measured by both TRS length and FOU area (Tables
1 and 2).

4. As the distance between the LMF and UMF decreases to 0 (Table 2), the
TRS length and FOU area both decrease to 0. Both measures tend to the
value 0 as representing no uncertainty i.e. total certainty, as for a type-1
fuzzy set.
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LMF UMF Left Uncert. Right Uncert. Length Area
Bound Bound of TRS of FOU

0.1 1 0.2157894737 0.7842105263 0.5684210526 0.9000000000
0.01 1 0.0500000000 0.9500000000 0.9000000000 0.9900000000
0.001 1 0.0054455446 0.9945544554 0.9891089109 0.9990000000
0.0001 1 0.0005494505 0.9994505495 0.9989010989 0.9999000000
0.00001 1 0.0000549945 0.9999450055 0.9998900110 0.9999900000
0.000001 1 0.0000054999 0.9999945001 0.9999890001 0.9999990000
0.0000001 1 0.0000005500 0.9999994500 0.9999989000 0.9999999000
0.00000001 1 0.0000000550 0.9999999450 0.9999998900 0.9999999900
0.000000001 1 0.0000000055 0.9999999945 0.9999999890 0.9999999990
0.0000000001 1 0.0000000005 0.9999999994 0.9999999989 0.9999999999

Table 1. Rectangular test sets with defuzzified values of 0.5000000000. The UMF is
constant at 1, and the LMF decreases from 0.1 towards 0.

LMF UMF Left Uncert. Right Uncert. Length Area
Bound Bound of TRS of FOU

0.9 1 0.4855769231 0.5144230769 0.0288461538 0.1000000000
0.99 1 0.4986288848 0.5013711152 0.0027422303 0.0100000000
0.999 1 0.4998635619 0.5001364381 0.0002728761 0.0010000000
0.9999 1 0.4999863629 0.5000136371 0.0000272742 0.0001000000
0.99999 1 0.4999986364 0.5000013636 0.0000027273 0.0000100000
0.999999 1 0.4999998636 0.5000001364 0.0000002727 0.0000010000
0.9999999 1 0.4999999864 0.5000000136 0.0000000273 0.0000001000
0.99999999 1 0.4999999986 0.5000000014 0.0000000027 0.0000000100
0.999999999 1 0.4999999999 0.5000000001 0.0000000003 0.0000000010

Table 2. Rectangular test sets with defuzzified values of 0.5000000000. The UMF is
constant at 1, and the LMF increases from 0.9 towards 1.

LMF UMF Left Uncert. Right Uncert. Length Area
Bound Bound of TRS of FOU

0.025 0.075 0.3526315789 0.6473684211 0.2947368421 0.0500000000
0.125 0.175 0.4538461538 0.5461538462 0.0923076923 0.0500000000
0.225 0.275 0.4724770642 0.5275229358 0.0550458716 0.0500000000
0.325 0.375 0.4803921569 0.5196078431 0.0392156863 0.0500000000
0.425 0.475 0.4847715736 0.5152284264 0.0304568528 0.0500000000
0.525 0.575 0.4875518672 0.5124481328 0.0248962656 0.0500000000
0.625 0.675 0.4894736842 0.5105263158 0.0210526316 0.0500000000
0.725 0.775 0.4908814590 0.5091185410 0.0182370821 0.0500000000
0.825 0.875 0.4919571046 0.5080428954 0.0160857909 0.0500000000
0.925 0.975 0.4928057554 0.5071942446 0.0143884892 0.0500000000

Table 3. Rectangular test sets with defuzzified values of 0.5000000000. The distance
between the LMF and UMF is constant at 0.05, but the height of the test set increases.
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Min. Max. Left Uncert. Right Uncert. Defuzzified Length Area
LMF UMF Bound Bound Value of TRS of FOU

0.02 0.19 0.3363636364 0.5248226950 0.4442324244 0.1884590587 0.0610000000
0.22 0.39 0.4484567901 0.5096952909 0.4805290824 0.0612385007 0.0610000000
0.42 0.59 0.4693014706 0.5060240964 0.4881952415 0.0367226258 0.0610000000
0.62 0.79 0.4781413613 0.5043695381 0.4915292610 0.0262281768 0.0610000000
0.82 0.99 0.4830284553 0.5034280118 0.4933946116 0.0203995565 0.0610000000

Table 4. Asymmetric test sets with variable defuzzified values. The shape and size of
the test set is constant, but the height of the test set increases.

5. As the distance between the LMF and UMF increases to 1 (Table 1), the
TRS length and FOU area both increase to 1. Both measures tend to the
value 1 as indicating maximum uncertainty, as for a blank fuzzy set.

Nonetheless there are clear discrepancies in the values reached by the two
measures; they are not equivalent. If an interval set is translated in the x − u
plane so that its u co-ordinate is increased, its uncertainty decreases, as measured
by TRS length, yet the FOU area measure remains constant. There is thus an
extreme contrast between the two measures in regard to IVT (Definition 9),
as the FOU area measure adheres absolutely to IVT, whereas the TRS length
measure does not. Is IVT an essential characteristic for a type-2 fuzzy uncertainty
measure? In other words, should IVT be a design requirement? If so, then TRS
length is unacceptable as an uncertainty measure; if not TRS length is a valid
measure of uncertainty.

5 Conclusion

Two measures for the uncertainty relating to an interval type-2 fuzzy set are
examined in this paper. Though as techniques they totally contrast, the exper-
iments presented show that similarities are nonetheless apparent in their be-
haviour.

The most telling difference in the outcomes of the two measurement tech-
niques is in relation to invariance under vertical translation, a characteristic
which the FOU area measure adheres to, but the TRS length measure does
not. Whether IVT is an essential characteristic for a type-2 fuzzy uncertainty
measure is left unresolved, a suitable topic for further work.



Bibliography

[1] Bonissone, P.P.: A pattern recognition approach to the problem of linguistic
approximation. In: Proceedings of the IEEE International Conference on
Cybernetics and Society. pp. 793 – 798. Denver, Colorado, USA (1979)

[2] Bonissone, P.P.: A fuzzy sets based linguistic approach: theory and appli-
cations. In: Proceedings of the 12th Winter Simulation Conference. pp. 99
– 111. Orlando, Florida, USA (1980)

[3] Boumella, N., Djouani, K., Boulemden, M.: On an Interval Type-2 TSK
FLS A1–C1 Consequent Parameters Tuning. In: Proceedings of the IEEE
Symposium on Advances in Type-2 Fuzzy Logic Systems 2011. Paris (April
2011)

[4] Dubois, D., Prade, H.: Fuzzy cardinality and the modeling of imprecise
quantification. Fuzzy Sets and Systems 16, 199 – 230 (1985)

[5] Fisher, P.F.: Remote sensing of land cover classes as type 2 fuzzy sets.
Remote Sensing of Environment 114(2), 309

[6] Galar, M., Barrenechea, E., Fernandez, J., Bustince, H., Beliakov, G.: Rep-
resenting Images by Means of Interval–Valued Fuzzy Sets. Application to
Stereo Matching. In: Proceedings of the IEEE Symposium on Advances in
Type-2 Fuzzy Logic Systems 2011. Paris (April 2011)

[7] Greenfield, S., Chiclana, F.: Accuracy and Complexity Evaluation of De-
fuzzification Strategies for The Discretised Interval Type-2 Fuzzy Set. In-
ternational Journal of Approximate Reasoning 54(8), 1013 – 1033 (October
2013), DOI: http://dx.doi.org/10.1016/j.ijar.2013.04.013

[8] Greenfield, S., Chiclana, F.: Defuzzification of the Discretised Generalised
Type-2 Fuzzy Set: Experimental Evaluation. Information Sciences 244, 1 –
25 (September 2013), DOI: http://dx.doi.org/10.1016/j.ins.2013.04.032

[9] Greenfield, S., Chiclana, F., John, R.I.: Type-Reduction of the Discretised
Interval Type-2 Fuzzy Set. In: Proceedings of FUZZ-IEEE 2009. pp. 738–
743. Jeju Island, Korea (August 2009)

[10] Greenfield, S., John, R.I.: The Uncertainty Associated with a Type-2 Fuzzy
Set. In: Rudolf Seising (editor) Views on Fuzzy Sets and Systems from
Different Perspectives, in ‘Studies in Fuzziness and Soft Computing’, series
editor Janusz Kacprzyk. vol. 243, pp. 471–483. Springer-Verlag (2009), DOI:
http://dx.doi.org/10.1007/978-3-540-93802-6 23

[11] Hagras, H., Wagner, C.: Introduction to Interval Type-2 Fuzzy Logic Con-
trollers — Towards Better Uncertainty Handling in Real World Applica-
tions. IEEE Systems, Man and Cybernetics eNewsletter (2009), issue 27

[12] John, R.I., Coupland, S.: Type-2 Fuzzy Logic: A Historical View. IEEE
Computational Intelligence Magazine 2(1), 57 – 62 (February 2007), DOI:
10.1109/MCI.2007.357194

[13] Jurio, A., Paternain, D., Lopez-Molina, C., Bustince, H., Mesiar, R., Beli-
akov, G.: A Construction Method of Interval-Valued Fuzzy Sets for Image



12

Processing. In: Proceedings of the IEEE Symposium on Advances in Type-2
Fuzzy Logic Systems 2011. Paris (April 2011)

[14] Karnik, N.N., Mendel, J.M.: Centroid of a Type-2 Fuzzy Set. Information
Sciences 132, 195 – 220 (2001)

[15] Kayacan, E., Cigdem, O., Kaynak, O.: On Novel Training Method Based
on Variable Structure Systems Approach for Interval Type-2 Fuzzy Neural
Networks. In: Proceedings of the IEEE Symposium on Advances in Type-2
Fuzzy Logic Systems 2011. Paris (April 2011)

[16] Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-
Hall International (1992)

[17] Leottau, L., Melgarejo, M.: Implementing an Interval Type-2 Fuzzy Proces-
sor onto a DSC 56F8013. In: Proceedings of FUZZ-IEEE 2010. pp. 1939–
1942. Barcelona, Spain (2010)

[18] Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and
New Directions. Prentice-Hall PTR (2001)

[19] Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE
Transactions on Fuzzy Systems 10(2), 117 – 127 (2002), DOI:
http://dx.doi.org/10.1109/91.995115

[20] Sanz, J.A., Fernández, A., Bustince, H., Herrera, F.: A Genetic Tuning
to Improve the Performance of Fuzzy Rule-Based Classification Systems
with Interval-Valued Fuzzy Sets: Degree of Ignorance and Lateral Position.
International Journal of Approximate Reasoning 52, 751–766 (2011)

[21] Tellez-Velazquez, A., Molina-Lozano, H., Moreno-Armendariz, M.A.,
Rubio-Espino, E., Villa-Vargas, L.A., Batyrshin, I.: Parametric Type-2
Fuzzy Control Design for the Ball and Plate System. In: Proceedings of
the IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems 2011.
Paris (April 2011)

[22] Wenstøp, F.: Quantitative analysis with linguistic values. Fuzzy Sets and
Systems 4, 99 – 115 (1980)

[23] Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets.
Information Sciences 177, 5378 – 5393 (July 2007)

[24] Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel Algorithms. IEEE Trans-
actions on Fuzzy Systems 17(4), 923 – 934 (August 2009)

[25] Wu, H., Mendel, J.M.: Uncertainty Bounds and Their Use in the Design of
Interval Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems
10(5), 622–639 (2002)

[26] Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338 – 353 (1965)
[27] Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to

Approximate Reasoning. Information Sciences 8, 199 – 249 (1975)
[28] Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to

Approximate Reasoning – II. Information Sciences 8, 301 – 357 (1975)
[29] Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to

Approximate Reasoning – III. Information Sciences 9, 43 – 80 (1975)


	Uncertainty Measurement for the Interval Type-2 Fuzzy Set

