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ABSTRACT 

The overall aim of the present study was to investigate the effects of obesity on oxidant 
stress and platelet responsiveness and examine the modulating effects of both short- 
term dietary interventions and acute exercise on oxidant stress levels and also the 
effects of acute exercise on platelet responsiveness. The role of oxidant stress in 
mediating platelet responsiveness was also studied and selenium supplementation was 
investigated as a potential antioxidant therapy to decrease oxidant stress levels and 
improve platelet responsiveness. 

This work has shown that LH levels is enhanced in obese individuals compared to 
normal-weight individuals (P<0.01) but no other significant differences were identified 
between normal-weight, overweight and obese individuals for TAS, SOD and GSH. A 
multiple regression analysis found the following variables to be predictors of LH levels: 
positive association with weight, vitamin A and fasting triglycerides and a negative 
association with fasting glucose. Although overweight individuals were not prone to 
increased oxidant stress at rest compared to normal-weight individuals, adherence to a 
short-term low carbohydrate diet or completion of a high-intensity aerobic exercise 
session, enhanced oxidant stress. For example on the low-carbohydrate diet, LH 
levels significantly increased at week 2, which decreased by week 4. After four weeks 
on the low-carbohydrate diet, TAS levels significantly increased and SOD and GSH 
showed a non-significant increased trend. Following 30-minutes high intensity aerobic 
exercise LH levels significantly increased which returned to resting levels thirty minutes 
post-exercise. No other changes in TAS, SOD and GSH was identified. Interestingly 
this exacerbated exercise induced response in overweight subjects was ameliorated by 
selenium supplementation. In a double-blind cross-over study, compared to placebo, 
short-term selenium supplementation (3-weeks) significantly increased plasma 
selenium levels in both the normal-weight and overweight groups. Consequently, 
compared to placebo, the overweight group showed a non-significant trend for reduced 
LH levels at rest, significant reduction following high-intensity exercise and a non- 
significant trend for reduced LH thirty-minutes post-exercise following selenium 
supplementation. The normal-weight group did not show any benefit from selenium 
supplementation on LH levels at rest, following high-intensity exercise and thirty- 
minutes post-exercise. No significant changes were found in TAS, SOD and GSH pre 
and post exercise following selenium supplementation in both the normal-weight and 
overweight groups. 

Platelet responsiveness was also studied in several of the above studies to examine 
the role of oxidant stress in mediating platelet responsiveness. Despite showing a 
possible association between oxidant stress and platelet responsiveness pre- and post- high-intensity exercise in both normal-weight and overweight subjects, the nature of the 
association between oxidant stress and platelet aggregation still remains unresolved as 
no association was found between LH levels and percentage ADP-induced platelet 
aggregation at rest across normal-weight, overweight and obese groups. In addition 
although selenium supplementation ameliorated oxidant stress in the overweight group, 
this did not improve platelet responsiveness. Therefore oxidant stress does not appear 
to mediate platelet responsiveness (enhance in vivo platelet reactivity). 

Abbreviations 
LH, lipid hydroperoxide; TAS, total antioxidant status; SOD, superoxide dismutase; 
GSH, reduced glutathione; ADP, adenosine triphosphate. 
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1.0 Introduction 

Oxidant stress is an imbalance between the formation of reactive oxygen/nitrogen 

species and antioxidants (Powers et al., 2004) which is capable of damaging tissues 

i. e. DNA, lipids and protein (Nicki, 1991) which consequently has implications in 

biological phenomena such as cellular aging, mutagenesis, inflammation, and other 

pathologies (Alessio, 1994). Oxidant stress is elevated in conditions such as 

hypertension, hyperinsuliemia and hyperlipidaemia (Vincent and Taylor, 2006). 

Obese patients (Yesilbursa et al., 2005; Mohn et al., 2005; Keaney et al., 2003; Ozata 

et aL, 2002; Davi et al., 2002; Dandona et al., 2001; Präzny et al., 1999) have also 

been shown to have elevated oxidant stress levels but it is unknown if this enhanced 

stress is also evident in overweight individuals. Effective strategies are being sought to 

combat oxidant stress, and in overweight/obese patients an obvious solution would be 

to lose weight. Since overweight/obese individuals often undergo repeated episodes of 

weight loss via short term changes to dietary intake and/or acute bouts of exercise, 

both these strategies will be examined independently in terms of their impact on 

oxidant stress levels. High fat (Slim et aL, 1996) and high sugar diets (Faure et al., 

1997) and moderate unaccustomed exercise have all been shown to pose an acute 

oxidant stress (Alessio et al., 2000), but the independent effects of a short-term low 

carbohydrate diet and acute high intensity exercise on oxidant stress levels in 

overweight individuals is unknown. Antioxidant therapy (Ashton et al., 1999; Skrha et 

a/., 1999; Manning et al., 2004) has been shown to improve oxidant stress levels but 

there appears to be no published data to ascertain the effects of selenium 

supplementation on oxidant stress levels at rest or following acute exercise. Selenium 

is an essential component of the GSH-Px system (Ladenstein et al., 1979), which 

functions as part of an antioxidant system and since Olusi et al (2002) demonstrated 

reduced GSH-Px levels in obesity, Se supplementation in overweight/obese individuals 
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may increase GSH-Px activity (Bortoli et al., 1991; Wilke et al., 1992) and hence 

reduce oxidant stress levels. 

In this thesis, the role of oxidant stress in mediating platelet responsiveness is also 

investigated. This potential link was examined as a mechanism contributing to an 

increased risk of cardiovascular disease which is observed in obese individuals. 

Diabetes mellitus, hypertension and hypercholesterolemia have all been associated 

with ROS-mediated platelet aggregation (Davi et al., 2003; Minuz et al., 2002; Davi et 

at., 1997). 

1.1 Aims and Objectives 

The principle aim of this work is to investigate the effects of BMI on oxidant stress and 

examine the modulating effects of both short-term dietary interventions and acute 

exercise and selenium supplementation on oxidant stress levels. In addition the work 

set out to examine the link between oxidant stress and platelet responsiveness. 

The primary objectives may be outlined as follows: 

Pilot Studies: 

(a) To develop and evaluate PlateletWorks®, a platelet aggregation whole-blood 

assay 

(b) To determine the reliability of the Bioelectrical Impedance Analyser. Bodystat 

QuadScan 4000. 

Study 1 

(a) To investigate the effect of BMI (normal-weight, overweight and obese) on 

lipid hydroperoxide, total antioxidant status, superoxide dismutase and 

reduced glutathione levels. 
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(b) To identify physiological and lifestyle factors that may contribute to the 

normal variability of the overall oxidant stress status. 

Study 2 

(a) To investigate the effect of BMI (normal-weight, overweight and obese) on 

ADP-induced platelet aggregation. 

(b) To investigate the association between lipid hydroperoxide, total antioxidant 

status and ADP-induced platelet aggregation in normal-weight, overweight 

and obese subjects. 

Study 3 

(a) To investigate the effects of two commercially available diet plans for weight 

loss i. e. low carbohydrate and conventional diet (Slimming World) versus a 

control diet on lipid hydroperoxide, total antioxidant status, superoxide 

dismutase and reduced glutathione. 

Study 4 

Part 1 

(a) To investigate the effects of an acute exercise session of low- and high- 

intensity on lipid hydroperoxide and total antioxidant status in healthy 

subjects. 

Part 2 

(a) To investigate the effect of acute high-intensity exercise on lipid 

hydroperoxide, total antioxidant status, superoxide dismutase and reduced 

glutathione and percentage ADP-induced platelet aggregation in normal- 

weight and overweight subjects. 

(b) To investigate the association between lipid hydroperoxide and total 

antioxidant status and percentage ADP-induced platelet aggregation pre 

and post acute high-intensity exercise. 
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Study 5 

(a) To investigate the effect of selenium supplementation on lipid 

hydroperoxide, total antioxidant status, superoxide dismutase, reduced 

glutathione and percentage ADP-induced platelet aggregation at rest and 

post high-intensity exercise in normal-weight and overweight subjects. 

(b) To investigate the association between lipid hydroperoxide and percentage 

ADP-induced platelet aggregation pre and post Se supplementation at rest 

and post high-intensity exercise. 
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Chapter TWO 

Review of Literature 



This chapter discusses the main issues relating to this research project, which include 

obesity, weight management treatment (mainly dietary and exercise interventions) and 

their corresponding effects on oxidant stress markers, antioxidant status and platelet 

responsiveness. In addition, nutritional therapy is discussed to identify possible 

antioxidant-therapy treatments to reduce oxidant stress and improve platelet 

responsiveness. This literature review also highlights the association between oxidant 

stress and platelet responsiveness, a known marker for increased cardiovascular risk. 

1.0 Obesity 

Obesity is defined as a body mass index (BMI) of 30 kg/m2 or more, where a person's 

BMI is defined as their weight in kg divided by the square of their height in metres 

(Health Survey for England, 1999). Overweight is defined as a BMI between 25 and 

29.9 kg/m2 (Health Survey for England, 1999). In 1980 just 6% of men and 8% of 

women were classified as obese, whereas by 2002 the proportion of the population 

obese had trebled to 23% of men and 25% of women (16 years to 75+ years). 

Approximately 55% of the adult population in the UK is overweight or obese (Health 

Survey for England, 2000). 

Obesity has been rated as the sixth most important risk factor contributing to the overall 

burden of disease worldwide (Ezzati et at, 2002). Obesity causes or exacerbates a 

large number of health problems, both independently and in association with other 

diseases (Kopelman, 2000). In particular it is associated with the development of type 

2 diabetes mellitus, coronary heart disease, obstructive sleep apnoea, osteoarthritis of 

large and small joints and increased risk of certain forms of cancer (Kopelman, 2000). 

Obesity has also been associated with a decrease in life expectancy (Department of 
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Health, 2004a). The UK Government estimates that a BMI of 25.0 kg/m2 decreases the 

life expectancy of English men by 2 years and given the progressive epidemic of 

obesity, the eff ect will increase to 5 years by 2050 (Department of Health, 2004a). 

Obesity is accompanied by a range of physiological changes, which is largely 

dependent on the regional distribution of adipose tissue. Generalised obesity causes 

deterioration to respiratory and cardiac function whilst upper body obesity or intra- 

abdominal visceral deposition is a major contributor to 'syndrome X' (Lapidus et al., 

1994). Syndrome X refers to the clustering of abdominal obesity, 

hypertriglyceridaemia, reduced high-density lipoprotein (HDL) cholesterol levels, 

hyperinsulinemia, glucose intolerance and hypertension (Reaven, 1997). In addition to 

these clustering risk factors, further abnormalities have been added to the metabolic 

alterations namely, elevated apoprotein (apo) B concentrations and raised 

plasminogen activator inhibitor-1 (PAI-1) (Kopelman and Grace, 2004). The addition of 

these biochemical abnormalities rephrased the syndrome as the metabolic syndrome 

or insulin-resistance syndrome (Kopelman and Grace, 2004). 

1.1 Aetiology of obesity 

By definition, obesity is caused by an imbalance between energy intake and energy 

expenditure (Kopelman and Grace, 2004). Excessive caloric intake, or low energy 

expenditure, or both may explain the development of obesity if the net positive balance 

is prolonged (Kopelman and Grace, 2004). Although it is assumed that obesity results 

simply from overeating or a sedentary lifestyle, obesity is regarded as a 'complex 

disease' because it arises from multifaceted interactions between genetic, 

physiological, 'behavioural and environmental factors (Lindpaintner, 1995). 
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The genetic hypothesis underlying obesity in both animal and human models has 

allowed immense progress in the understanding of body weight regulation. Monogenic 

forms of obesity in humans have been characterized by mutations in genes affecting 

the central pathways of food intake regulation e. g. mutations in the leptin-hypothalamic 

feedback loop; for example the 'ob' gene may lead to improper coding of leptin 

resulting in obesity (Andersson, 1996). However, monogenic forms of obesity are rare, 

so human obesity is commonly considered as a complex polygenic disease involving 

interactions between multiple genes and the environment (Weinsier et al., 1998). So 

far more than 600 genes, gene markers and chromosomal regions have been identified 

(Perusse et al., 2005), which highlights obesity as a `complex trait' (Nammi et al., 

2004). Candidate genes such as adrenergic beta-3 receptor (Arner, 1995), regions 

regulating the leptin gene (Andersson, 1996), neuromedin B (Bouchard at al., 2004) 

and glutamic acid decarboxylase enzyme (GAD2) (Boutin and Froguel, 2005), may 

play a minor role in the development of obesity. Several susceptibility genes may 

affect energy expenditure, fuel utilization, muscle fibre characteristics and even taste 

preferences, which could impact on our behavioural responses to the environment. 

Therefore unprecedented environmental influences together with genetic susceptibility 

may underpin the obesity prevalence. Weinsier et a/ (1998) highlighted that genetic 

predisposition may permit obesity but the environment determines if individuals do 

become obese. 

Environment is a major determinant of overweight and obesity, which is primarily 

related to food intake and physical activity behaviour (James, 1995). Calorie-dense 

and aggressive food marketing in mass media, supermarket and restaurants and the 

large portions of food served outside the home, promote high calorie consumption 

(James, 1995). The high prevalence of a sedentary lifestyle resulting from the 
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proliferation of labour-saving machinery is also a major environmental factor 

contributing to the development and maintenance of obesity (James, 1995). 

From a behavioural perspective, a number of individual characteristics may place 

individuals at increased risk of obesity (Rennie et al., 2005). Specific behavioural risk 

factors may promote or protect against excess weight gain in adults. A number of 

behavioural factors have been postulated, including diets with a high energy density, 

large portion sizes, eating patterns, high levels of sedentary behaviour and low levels 

of physical activity (Rennie et al., 2005). 

1.2 Complications of obesity 

Obesity is associated with increased morbidity and mortality (Manson et al., 1995). 

Clear associations have been found between obesity and the risk factors for coronary 

heart disease, type 2 diabetes mellitus, certain forms of cancer, gallstones, some 

respiratory disorders and osteo-arthritis (Kopelman, 2000). In addition to the amount of 

excess weight, upper body obesity (as opposed to lower body obesity) contributes 

significantly to the risk for metabolic and cardiovascular disease (CVD) (Pi-Sunyer, 

2002). Physiologically, upper body obesity is a major contributor to the development of 

hypertension, elevated plasma insulin concentrations and insulin resistance, 

hyperglycaemia, hyperlipidaemia, and metabolic alterations (increased LDL particles, 

elevated apo B concentrations and raised PAI-1 (Pi-Sunyer, 2002). This condition is 

known as the metabolic syndrome. 
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1.3 Treatment of obesity 

Clinical guidelines have been published in the UK on the management of obesity 

(National Institute for Clinical Excellence, 2006; Scottish Intercollegiate Guidelines 

Network, 1996; The Royal College of Physicians of London, 1998,2003; National 

Institute of Health, 1998). Several treatment strategies have been identified for weight 

loss: dietary therapy, physical activity, behavioural therapy, combined therapy, 

pharmacotherapy and weight loss surgery. 

General goals of treatment: are prevention of further weight gain (at the very least), 

weight loss and long-term maintenance of a lower weight. An initial weight loss of 10% 

over 6 months is generally recommended (National Institute for Clinical Excellence, 

2006; Scottish Intercollegiate Guidelines Network, 1996; The Royal College of 

Physicians of London, 1998,2003; National Institute of Health, 1998). After 

achievement of 10% weight loss, individuals can then move into a maintenance phase 

programme or attempt additional weight loss, through alterations to the initial weight 

loss plan. Treatment plans such as dietary intake and physical activity for obesity 

management will be discussed individually in the next section but generally the 

scientific evidence suggests that a combination of dietary modification and exercise is 

the most effective behavioural approach for weight loss (National Institute for Clinical 

Excellence, 2006; National Institute of Health, 1998). 

2.3.1 Dietary intervention 

It is common for weight loss programmes to reduce energy intake to 1000-1500 

kcal/day to induce weight loss in overweight adults, which has shown to be safe and 

effective in individuals averaging 90kg before weight loss (American College of Sports 
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Medicine, 2001). Absolute energy intake is generally adjusted based on body weight to 

elicit an energy deficit of 500-1000 kcal/day. With this level of deficit a minimum weight 

loss of 0.5-0.9 kg (1-2 pounds) a week would be realistic. Alternatively, in the severely 

obese patient, very low calorie diets (VLCD) may be useful under medical supervision 

(National Institute of Clinical Excellence, 2006; Scottish Intercollegiate Guidelines 

Network, 1996,1996; The Royal College of Physicians of London, 1998; National 

Institute of Health, 1998). VLCDs are defined as energy intake <800 kcal/day and can 

greatly increase the magnitude and rate of weight loss compared with more 

conservative reductions in energy intake (Wadden et al., 1997). However due to the 

low energy value of these diets, they are generally used for relatively short periods of 

time (12-16 weeks) alongside dietary supplements (American College of Sports 

Medicine, 2001). Evidence suggests that VLCDs produce a 13kg weight loss over six 

months (Nammi of al., 2004), but long-term weight loss by VLCDs is not superior to 

moderate dietary strategies (National Institute of Health, 1998). 

Commercial programmes recommend various combinations of macronutrient 

compositions for weight loss including high-fat, high-protein, and high- and low- 

carbohydrate diets (American College of Sports Medicine, 2001). However the ideal 

macronutrient composition for weight management and risk reduction is still debatable, 

as macronutrient composition dietary treatments are often varied to meet patients' 

requirements and preferences (Kopleman and Grace, 2004). Furthermore scientific 

evidence suggests that the level of energy intake has the greatest impact on weight 

loss short term and that changes in the composition of the diet affects weight loss by 

ultimately affecting energy intake (Astrup et aL, 2000). 

The impact of dietary fat restriction on weight loss has received much attention and has 

been shown to be an effective method in lowering energy density with spontaneous 
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weight loss (Astrup et aL, 2000). A 10% reduction in dietary fat may lead to 

approximately a 5-6 kg weight loss in the obese (Astrup et al., 2000). However these 

diets are still often associated with poor compliance (Westerterp et al., 1996) and 

weight regain in the long term (Toubro and Astrup, 1997). As a result, public interest in 

alternative diets to encourage weight loss have escalated, sparking particular interest 

in short term bouts of 'crash' dieting and carbohydrate restriction (Consumer reports, 

2002) e. g. Atkins Diet (Atkins, 1992). The low-carbohydrate diet (LowCD) promotes 

rapid weight loss within a few days or weeks (Atkins, 1992). The LowCD diet contains 

a high proportion of protein foods, unrestricted use of fat particularly saturated fats and 

a severe restriction of carbohydrates (Atkins, 1992). But despite the renewed interest, 

there is little scientific evidence to determine the safety and efficacy of LowCDs on 

health (Freedman et al., 2001; Blackburn et al., 2001). As most energy in a LowCD is 

derived from protein and fat, there is considerable concern that such diets will raise 

lipid levels and increase risk of coronary disease (Blackburn et al., 2001). Furthermore 

the long-term safety of the LowCD on kidney function and bone health is unknown 

(Astrup et al., 2004). In addition to possible detrimental effects on health, Foster et al., 

(2003) highlighted that weight loss initially achieved on the LowCD was not maintained 

after one year. Such findings, alongside health complications, question the efficacy of 

long-term LowCDs for weight loss and health improvements. 

2.3.2 Physical activity 

Physical activity is an important variable component of energy expenditure, 

representing approximately 20-50% of total energy expenditure (Saris, 1989), and is a 

way to induce an energy deficit (American College of Sports Medicine, 2001). When 

physical activity is used in the treatment of obesity, little evidence suggests that 

exercise produces magnitudes of weight losses that are similar to that achieved with 
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dietary modification (National Institute of Health, 1998). However in a review by Ross 

et al (2000a), it was shown that when energy deficit is held constant and other factors 

that affect energy balance are controlled, exercise can induce significant weight loss. 

For example Ross et al (2000b), found that a 700 kcal/day energy deficit produced 

solely through exercise with energy intake remaining constant resulted in a weight loss 

of 7.6kg over a 3-month period. Exercise is also important for preserving fat-free mass 

in exercising obese subjects, which is important because fat-free mass is the best 

predictor of resting metabolic rate (RMR) and that is the largest contributor to daily 

energy expenditure (Ravussin and Bogardus, 1992). Independent of weight loss, 

regular physical activity has several other physiological benefits including reduced 

blood pressure (BP), improved lipid profile and improved glucose tolerance (Kopelman 

and Grace, 2004) and improved mental and emotional status (Nammi et al., 2004). 

Physical activity guidelines recommend 30 minutes of moderate activity on at least five 

days a week (Department of Health, 2004b), which is associated with improved fitness 

and protection from CVD (Pate et a/., 1995). However Saris et al (2003) highlighted 

that a longer duration of daily activity (45-60 minutes/daily) is required to maintain 

lowered weight and prevent weight regain. There is also evidence that the benefits of 

physical activity can be obtained through brief exercise periods that do not necessarily 

need to be continuous. For example, three 10-minute periods of moderate intensity 

aerobic exercise (intensity eliciting a heart rate of 65-75% of peak heart rate attained 

on a treadmill) is equivalent to a single 30-minute period of exercise (DeBusk et al., 

1990). 
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2.4 Basic concepts of Free-radicals 

Oberley (1988) defined free-radicals as harmful by-products of oxidative metabolism, 

causing molecular damage in living systems. This concept has implications in 

numerous biological phenomena such as cellular aging, mutagenesis, inflammation, 

and other pathologies (Alessio, 1994). 

The term `free-radical' can be defined as any atom or molecule that contains an 

unpaired electron in its outer orbit that can exist independently (Halliwell, 1994; 

Halliwell and Gutteridge, 1999). As a result, free-radicals can be highly reactive 

towards cellular targets, although this varies from radical to radical. To achieve 

stability, free-radicals accept or donate electrons to other molecules. The collective 

term for a variety of free-radicals and non-radical intermediates is reactive oxygen 

species (ROS) (Halliwell, 1994). Examples of oxygen (02) free-radicals are superoxide 

(02 '"), hydroxyl (OH"), and peroxyl (ROO") radicals. The nitrogen free-radicals include 

nitric oxide (NO*) and nitrogen dioxide (N02 ). Both oxygen and nitrogen free-radicals 

can be converted to other non-radical reactive species such as hydrogen peroxide 

(H202) and peroxynitrite (OONO"). 

2.5 Biochemistry of Free-radicals 

Free-radicals are formed in vivo at rest and exercise as by-products of normal energy 

metabolism (Jackson, 1995) which represents the most powerful obligatory source of 

free-radicals in the body (Locatelli et al., 2003). It has been estimated that for every 

twenty-five 02 molecules reduced by normal respiration, one free-radical is formed 

(McCord, 1979). Therefore a rise in metabolism may increase free-radical production, 

which may inevitably damage surrounding tissues and organs. For example, the rate 
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of 02 uptake by the body during exercise may increase by up to approximately 35-fold 

(Aw et al., 1986) and that 02 flux through active-whole-muscle tissue may reach 200- 

fold above resting values (Keul et al., 1972). This paradoxical `02 relationship between 

an apparently healthy act (exercise) and the occurrence of harmful biological reactions 

(Kanter, 1998) prompted Jenkins (1993) to state that: 

`Elemental and gaseous oxygen presents a conudrum in that it is simultaneously 

essential for and potentially destructive to human life 

In addition to the mitochondrial respiratory chain, free-radicals are also formed via 

activation of neutrophils (Halliwell, 1994), generated in the body in response to 

electromagnetic radiation from the environment and are acquired directly as oxidizing 

pollutants such as ozone and NO2 (Halliwell, 1994). However the majority of free- 

radicals in biological systems are oxygen-derived free-radicals. The complete 

reduction of 02 to water (H2O) requires four steps and generates further free-radical 

intermediates and other toxic products during the process (Figure 2.0) 

+CI- 
Chlorine 

Hypochlorus acid 

Myeloperoxidase (MPO) 

e 
-k.. ̂ º 

02 Hydrgogen 

peroxide 

Singlet oxygen 

-: o ýý H2O Hydroxyl 
H20 

ý: NOz'; .:.: 
Nitrogen dioxide 

NO' º OONO' pp. HOONO 
Nitric oxide Peroxynitrite Peroxynitrous acid 

Figure 2.0. Generation of ROS 

Fe2+ re- ý 

Ferrous ion: Ferric state 
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The first one-electron reduction of 02 generates the 02- anion. Addition of a second 

electron and two protons to 02. will form H202. Both 02 and H202 are precursors for 

the production of more powerful oxidants. 02" interacts with NO* to form highly reactive 

nitrogen species, while H202 reacts with intracellular iron to form OR, that are heavily 

implicated in cell membrane lipid degradation, protein aggregation and DNA damage. 

Furthermore H202 is the substrate for myeloperoxidase (MPO) to produce the 

chlorinated oxidants. In the presence of chlorine (Cl), "MPO converts H202 into 

hypochlorous acid (HOCI), a powerful compound capable of oxidizing a number of 

molecules such as lipids and other membranous or intracellular constituents, 

particularly the thiol groups of membrane proteins. 02', H202 and OR, the first three 

intermediary molecules in the 02 reduction pathway will be examined in more detail in 

the following sections. 

2.5.1 Oxygen and its derivatives 

All oxygen-derived intermediates are potentially reactive, but they vary in their 

biological importance. The 02' radical is the most important oxygen-derived free- 

radical because it can lead to the formation of additional ROS (Harris, 1992). 

Molecular 02 is actually a di-radical, having two unpaired electrons, located in a 

different antibonding orbital with the same directional spin. The subsequent effect of 

this arrangement is that 02 can only react with non-radicals by accepting a pair of 

electrons that spin in an anti-parallel manner (McCord, 1979; Young, 1994). 

Free-radicals in living organisms include 02--, hydroperoxyl (H02'), OH', ROO*, alkoxyl 

(RO-) and NO. H202 and HOCI have no unpaired electrons and by definition are not 

free-radicals but are powerful oxidants that are involved in the free-radical reactions 

(Halliwell, 1989, Karlsson, 1997). H202 is predominately produced via the dismutation 
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of 02" and is able to generate high reactive OR through interactions with transition 

metals (Clarkson and Thompson, 2000). OH is potentially one of the most reactive 

oxidants in biological systems (Clarkson and Thompson, 2000). Furthermore the OH 

readily attack polyunsaturated fatty acids (PUFAs) to initiate lipid peroxidation 

(Gutteridge, 1995). 

2.5.2 Superoxide anion (021 

02" is a commonly known oxygen-centred free-radical species. 02. is formed when a 

single electron enters an 02 molecule (Pryor, 1986). 02" is relatively unreactive with 

non-radical species in comparison to other radical types, but if it is generated near the 

site of any biochemical molecule it can be extremely destructive. The chemistry of 02: 

differs greatly depending on its solution environment (aqueous solutions or organic 

solvents), but in general aqueous-phase reactions are more likely to occur in vivo 

(Halliwell and Gutteridge, 1999). In aqueous solutions 02' can act as a base, 

accepting a proton to form HO2. 

Some of the 02' production that occurs in vivo appears to be a chemical accident, due 

to autooxidation reactions and the 'leakage' of electrons from electron-transport chains 

to 02 (Fridovich, 1989; Imlay and Fridovich, 1991). Other 02' productions appear to be 

made deliberately e. g. by activated phagocytes (Babior and Woodman, 1990) and to a 

lesser extent, by different cell types such as fibroblasts and lymphocytes (Murrell et al., 

1990, Maly, 1990). 02' is also continuously produced by vascular endothelium to 

neutralise NO' (Young and Woodside, 2001). Under normal conditions, removal of 

excess 02' by the enzyme superoxide dismutase (SOD) is an important physiological 

antioxidant defence mechanism in aerobic organisms (Fridovich, 1989). However too 

much SOD (in relation to the activities of H2O2 - removing enzymes such as catalase 
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(CAT) and glutathione peroxidase (GSH-Px) may sometimes be deleterious (Scott of 

a/., 1989). This is because SOD enzymes convert 02' into 02 and H202 as shown in 

the following equation; 

02- + 02- + 2H+ f 
H2O2 + 02 

SOD has no other purpose than to dismute 02'" to H202 and 02. 

2.5.3 Hydrogen peroxide (H202) 

Any biological system producing 02", will produce H202, as a result of the dismutation 

reaction. Although SOD is the main method for production of H202 many enzymes 

such as irate oxidase, glucose oxidase and D-amino acid oxidase produce H202 

directly by the transfer of two electrons to 02 (Gutteridge, 1995). H202 has an 

uncharged covalent structure (Gutteridge, 1995), a relatively long-lived half-life (Matsuo 

and Kaneko, 2000), and is treated as a water molecule, which allows it to pass freely 

through biological membranes (Young and Woodside, 2001). H202 can therefore act 

as a passage to transmit free-radical induced damage across cellular compartments 

(Young and Woodside, 2001). H202 is a weak oxidant and a weak reducing agent that 

is relatively stable in the absence of transition metal ions (Gutteridge, 1995). In the 

presence of transition metal ions (e. g. copper and iron, fenton chemistry), H202 can 

lead to the production of OR, which is an extremely highly reactive free-radical (Slater, 

1984; Bast et al., 1991). The redox properties of H2O2 and its ability to form highly 

reactive free-radicals necessitated the evolution of body defence mechanisms. For 

example H2O2 is removed from cells by the action of CAT and GSH-Px (selenium 

containing) (Gutteridge, 1995). 
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2.5.4 Hydroxyl radical (OH-) 

The OH is probably the final intermediary product to be formed before tissue damage 

occurs (Lloyd et al., 1997). All ROS also exert most of their pathological effects 

through OR formation (Young and Woodside, 2001). This most powerful oxidant when 

formed has the ability to react immediately and abstract a hydrogen atom from many 

biological molecules, including carbohydrates, DNA, lipids and thiols at an extremely 

high rate (Halliwell, 1991; Young and Woodside, 2001). The degradation of these 

compounds may produce damaged products and a range of secondary organic 

radicals of variable reactivity (peroxyl, alkoyl and alkyl radicals) (Halliwell and 

Gutteridge, 1999). Because the OH is extremely highly reactive and has a short half- 

life, the radical is unable to react with any molecule beyond 5 molecular diameters from 

its site of formation (Pryor, 1986; Matsuo and Kaneko, 2000), and therefore OH- 

induced damage is site specific. The best-characterized biological damage caused by 

OH is its ability to stimulate the free-radical chain reaction known as lipid peroxidation 

(Halliwell, 1991). This occurs when the OH is generated close to membranes and 

attacks the fatty-acid side-chains of the membrane phospholipids e. g. PUFA side- 

chains such as arachidonic acid. In biological systems OH derives from the less toxic 

02' and H2O2 via the Haber-Weiss and Fenton reactions (Gutteridge, 1995). 

02'+ H202 0 OH, + OH' + 02 (Haber-Weiss Reaction) 

Fe2+ H202 N. - OH- + OH" + Fe 3+ (Fenton Reaction) 

18 



2.5.5 Reactive Nitrogen Species (RNS) 

Reactive Nitrogen Species (RNS) is a term to explain the process of an unpaired 

electron residing on a nitrogen molecule (Halliwell and Gutteridge, 1999). RNS 

includes N02, nitroxyl anion (NO"), NO and ON00'. The most discussed RNS is NO. 

NO- is a free-radical due to the presence of a single unpaired electron (Sen et al., 

2000). NO, is produced in some mammalian cells and can influence blood flow, 

thrombosis and neural activity (Beckman and Koppenol, 1996). NO- has the ability to 

diffuse between cells and bind to 02" to produce the ONOO' which is not itself a free- 

radical but has the potential to attack and damage cellular membranes (Sen et aL, 

2000). This RNS has been reported to have OR characteristics in that it can damage 

most molecules in its surrounding location (Beckman and Koppenol, 1996). One- 

electron reduction of NO- yields the NO', which is relatively unreactive and short-lived 

(Halliwell and Gutteridge, 1999). Given the lack of literature on RNS in health and 

disease, ROS will be the major species referred to in this thesis. 

2.6 Antioxidant and defence system 

To prevent the harmful effects of ROS, antioxidant systems, both enzymatic and non- 

enzymatic, are naturally present in the body to counteract free-radicals (see Table 2.0). 

Halliwell and Gutteridge (1999) defined antioxidants as; 

'any substance which, when present at much lower concentrations than an oxidisable 

substrate, significantly delays or prevents oxidation of that substrate' 
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Antioxidants can act at several different stages in an oxidative sequence; 

a) Removing 02 or decreasing local 02 concentrations 

b) Removing catalytic metal ions 

c) Removing key ROS such as 02 " and H202. 

d) Scavenging initiating free-radicals such as OH', RO* 

e) Quenching or scavenging singlet 02('02). 

(Gutteridge, 1995; Halliwell and Gutteridge, 1999) 

Enzymatic Non-enzymatic 

Superoxide dismutase (SOD) Glutathione 

Catalase (CAT) Vitamin E&C 

Glutathione peroxidase (GSH-Px) Selenium and Ferritin 

Transferrin and Albumin 

Carotenoids 

Table 2.0 Examples of Antioxidants 

Specifically, enzymatic and non-enzymatic antioxidants exist in both the intracellular 

and extracellular environment and work as complex units to remove different ROS. To 

provide maximum intracellular protection, these scavengers 

compartmentalized throughout the cell. 

2.7 Antioxidant enzymes 

are strategically 

The antioxidant enzymes involved in removing ROS include SOD, CAT and GSH-Px 

and other peroxidases. These free-radical-scavenging enzymes are the first line of 

cellular defence against oxidative injury. 
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It consists of four protein subunits (each processing a haem group) and is found in high 

concentrations in the peroxisomes of liver and erythrocytes (Halliwell and Gutteridge, 

1999). CAT becomes an important antioxidant enzyme when H202 levels are high 

(Halliwell and Gutteridge, 1999; Brown, 1993). 

2.7.3 Glutathione peroxidase (GSH-Px) 

GSH-Px catalyses the decomposition of H202 and organic peroxides, consuming 

reduced glutathione (GSH) to form oxidized glutathione, glutathione disulphide (GSSG) 

(step 1). GSSG is then converted back to GSH by glutathione reductase (step 2). 

2GSH + H202 -10 GSSG + 2H20 (step 1) 

GSSG + NADPH + H+ -0' NADP+ 2GSH (step 2) 

GSH-Px is a low-molecular mass thiol compound found intracellularly in most 

mammalian cells, particularly erythrocytes (Halliwell and Gutteridge, 1999). GSH-Px is 

thought to be more important than CAT in H202 detoxification, particularly when it is low 

in concentration (Halliwell and Gutteridge, 1999; Brown, 1993). This may be because 

GSH-Px is located near SOD (Halliwell and Gutteridge, 1999; Brown, 1993). 

2.8 Non-enzymatic antioxidants 

Non-enzymatic antioxidants include, but are not limited to uric acid, albumin, GSH, 

vitamin E, vitamin C, carotenoids, bilrubin and ubiquinone (Powers et al., 2004). These 

endogenous nutrients are all important sources of antioxidants obtained from the diet. 

The most prominent dietary antioxidants are tocopherols, the fat-soluble vitamins 

(Vitamin E), ascorbate, water-soluble vitamins (vitamin C) and carotenoids (Jackson, 
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1994). Minerals such as selenium (Se), iron, copper and zinc also possibly interact 

with every nutrient that affects the pro-oxidant/antioxidant balance of the cell (Jackson, 

1994) These trace minerals contribute to the body's antioxidant defence system by 

acting as co-factors for antioxidant enzymes (Powers et al., 2004). Se is an integral 

part of GSH-Px (Rotruck et al., 1973) and also appears to support the activity of vitamin 

E limiting the oxidation of lipids (Burk and Levander, 1999). Copper and iron are also 

critical components of SOD and CAT, respectively (Jackson, 1994). Other antioxidants 

such as albumin and other proteins including ceruloplasmin and transferrin, also 

protect against oxidative injury by binding the transition metal Fe 2+ (ferrous ion) and 

Cu2+ (copper ion) thereby preventing generation of OR via the Fenton reaction 

(Gutteridge, 1995). 

2.8.1 Ascorbic acid (Vitamin C) 

Vitamin C is a water- soluble vitamin that is widely distributed in mammalian tissues, 

but is present in relatively high amounts in the adrenal and pituitary glands (Yu, 1994). 

Vitamin C is a dibasic acid with an enediol group embedded in a five-membered 

lactone ring. The molecular structure contains two ionising hydrogen atoms that give 

the compound its acidic character (pKa, 4.25). In aqueous environments, vitamin C is 

readily oxidised to the ascorbyl radical and further to dehydroascorbic acid, oxalic acid 

and L-theonic acid as shown in Figure 2.1 (Elmadfa and Koenig, 1996; Tsao, 1997). 

The ascorbate anion is the predominant form that exists at physiological pH (Yu, 1994). 

Vitamin C H--º Ascorbyl 4 -º Dehydroascorbic acid 

Oxalic acid 

L-Threonic acid 

Figure 2.1. Vitamin C degradation properties 
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The role of vitamin C as an antioxidant is two-fold. Vitamin C can directly scavenge 

02 OH' and lipid hydroperoxides (LH) (Powers et al., 2004). Additionally vitamin C 

plays an important role in recycling vitamin E back to its reduced and active state 

(Packer et al., 1979). In the process of recycling vitamin E, reduced vitamin C is 

converted to a vitamin C radical which can be regenerated back to its original form by 

GSH or a-lipoic acid (LA) (Sen and Packer, 2000). 

In association with vitamin E, increased cellular concentrations of vitamin C should 

provide protection against radical-mediated injury (Yu, 1994). However in high 

concentrations, vitamin C can exert pro-oxidant effects in the presence of transition 

metals ions. Ascorbic acid has the ability to reduce Fe3+ (ferric state) to Fe 2+ (Sen, 

1995). Fe 2+ is known to be a potent catalyst in the production of free-radicals (Powers 

et al., 2004) which is important because the majority of hydroxyl radical generation 

comes from Fenton chemistry. Therefore mega-dose vitamin C supplementation has 

been questioned by some investigators due to its pro-oxidant potential (Yu, 1994). 

2.8.2 a- tocopherol (Vitamin E) 

Vitamin E refers to at least eight structural isomers of tocopherols, but among these 

vitamin E is the best known and possesses the most potent antioxidant activity (Burton 

and Ingold, 1989; Janero, 1991). From an antioxidant perspective, vitamin E is the 

primary chain-breaking antioxidant in cell membranes (Burton and Ingold, 1989; 

Janero, 1991). 

Because of its high lipid solubility, vitamin E is associated with lipid-rich structures such 

as the mitochondrial, sarcoplasmic reticulum and the plasma membranes. Under most 

dietary conditions, the concentration of vitamin E in tissues is relatively low (e. g. ratio of 
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vitamin E to lipids in the membrane may range from 1: 1000 in red blood cells to 1: 3000 

in other tissues and organelles, Janero, 1991; Packer, 1991) but continues to have the 

ability to react directly with most free-radicals (converts 02' and OR to less reactive 

forms) before they interact with fatty acids (Janero, 1991). If oxidation occurs, vitamin 

E inhibits propagation by free-radical stabilisation. 

Despite vitamin E being an efficient radical scavenger, the interaction of vitamin E with 

a radical results in a decrease in functional vitamin E and the formation of a vitamin E 

radical. However, the vitamin E radical can be `recycled' back to its native state by a 

variety of other antioxidants (Packer et al., 1979; Burton and Traber, 1990). The ability 

of vitamin E to serve as an antioxidant is synergistically connected to other 

antioxidants, such as glutathione, vitamin C and LA, which are capable of recycling 

vitamin E during periods of oxidant stress (Packer et al., 1979). 

2.8.3 Carotenoids 

Carotenoids (e. g. a- and ß-carotene) are lipid-soluble antioxidants located primarily in 

biological membranes (Strain and Benzie, 1998). They serve as precursors of vitamin 

A (Halliwell and Gutteridge, 1999) and it is believed that ß-carotene in particular is 

protected by vitamin E (Strain and Benzie, 1998). Their antioxidant properties come 

from their structural arrangement consisting of long chains of conjugated double bonds, 

which permit the scavenging of several ROS, including 102,02'-, and OH' and can also 

trap ROO' at low P02, with a potency as great as vitamin E (Burton and Ingold, 1984; 

Yu, 1994). Carotenoids display an efficient biological antioxidant activity as evidenced 

by their ability to reduce the rate of lipid peroxidation induced by radical generating 

systems (Krinsky and Deneke, 1982). In contrast, carotenoids can function also as a 

pro-oxidant. Under nonphysiological circumstances, high 02 tensions have shown 
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caroteniods to lose its antioxidant capacity (Burton and Ingold, 1989; Palozza et al., 

1997). 

2.8.4 Selenium (Se) 

Se plays a critical role in antioxidant defence as a co-factor for the antioxidant enzyme 

GSH-Px (Rotruck et al., 1973). GSH-Px is located in both the cytosol and mitochondria 

of cells and is responsible for removing H202 and other organic hydroperoxides from 

the cell (Halliwell and Gutteridge, 1999). Its antioxidant mechanism is outlined in more 

detail in the antioxidant enzyme section under GSH-Px (see Section 2.8.3). Se also 

appears to support the activity of vitamin E in limiting the oxidation of lipids (Burk and 

Levander, 1999). Animal studies indicate that Se and vitamin E tend to spare one 

another and that Se can prevent some of the damage resulting from vitamin E 

deficiency in a model of oxidant stress (Burk and Levander, 1999). 

2.8.5 Reduced glutathione (GSH) 

GSH is the most abundant non-protein thiol source in muscle cells (Meister and 

Anderson, 1983). GSH is primarily synthesized in the liver and transported to 

peripheral tissues via the circulation. 

GSH concentration in the cell is variable across organs in the body with the two highest 

concentrations being in the lens of the eye(10mmol"mol-1) and the liver (5-7mmol"mol"1) 

(Halliwell and Gutteridge, 1999). Other key organs include lung, kidney and heart 

containing around 2-3 mmol"mol-1 of GSH (Ji, 1995a). Skeletal muscle GSH 

concentration varies depending on muscle fibre types, for example in rats slow fibres 

(type 1) contain 600% more GSH than fast fibres (type Ilb). 
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GSH as a cellular antioxidant may directly scavenge a variety of free-radicals by 

donating a hydrogen atom (Yu, 1994) or may act as a co-substrate with GSH-Px in the 

elimination of both H202 and other organic peroxides (Ji et aL, 1992). GSH has also 

been shown to be involved in reducing a variety of cellular antioxidants. For example 

GSH has been reported to reduce vitamin E radicals that are formed in the chain- 

breaking reactions with alkoxyl or lipid peroxyl radicals (Packer, 1991). In addition 

GSH is used to reduce the semidehydroascorbate radical generated during the vitamin 

C-mediated recycling of vitamin E (Powers and Lennon, 1999). Finally GSH has been 

reported to reduce LA to dihydrolipolate, which is a powerful antioxidant acting against 

several radical species (Packer, 1994) and is important in recycling vitamin C (Packer, 

1994). 

2.9 Oxidant stress 

When free-radical formation is greatly increased, or protective antioxidant mechanisms 

compromised, a state of oxidant stress will result (Powers et al., 2004, figure 2.2). If 

oxidant stress persists, it will eventually lead to molecular damage and tissue injury 

(Symons and Gutteridge, 1998). Consequently, oxidant stress has been defined as a 

disturbance in the balance between production of free-radicals and antioxidant 

defences, which may lead to tissue injury (Halliwell, 1994). Oxidant stress has the 

potential to cause damage to critical cellular targets, such as DNA, proteins and lipids 

(Niki, 1991). The extent of the damage caused to cells depends on the duration, 

degree of stress and the nature of the system stressed (Halliwell and Chirico, 1993). 
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Redox Balance and Oxidative Stress 

Oxidants 

Antioxidants 

Oxidants 
Antioxidants 

Adapted from Powers et al., (2004) 

Figure 2.2. Relationship between oxidants and antioxidants in the determination of 

cellular redox balance. An increase in oxidants or antioxidants results in a disturbance 

in cellular redox balance. Oxidant stress occurs when oxidants outnumber the available 

antioxidants. In contrast, reductive stress occurs when antioxidants out-number the 

oxidants present in the cell (Powers et al., 2004) 

2.10 Lipid peroxidation 

Lipid peroxidation is probably the most extensively investigated free-radical-induced 

process (Halliwell and Gutteridge, 1999). The potential consequences of peroxidation 

of membrane lipids include: loss of PUFAs, loss of lipid fluidity, altered membrane 

permeability, effects on membrane-associated enzymes, altered iron transport, release 

of material from subcellular compartments and the generation of cytotoxic metabolites 

of LHs (Rice-Evans and Miller, 1994). PUFAs are particularly susceptible to 

peroxidation and once the process is initiated, it proceeds as a free-radical-mediated 

chain reaction involving initiation, propagation and termination (see figure 2.3) 

(Gutteridge, 1995). 
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Lipid peroxidation is initiated by the attack on a fatty acid or fatty acyl side-chain by any 

primary free-radical that has sufficient reactivity to abstract a hydrogen atom from a 

methylene group upon PUFAs (step 1). Since a hydrogen atom in principle is a free- 

radical with a single paired electron, its removal leaves behind an unpaired electron on 

the carbon atom to which it was originally attached (step 2). The carbon-centred 

radical is stabilised by a molecular rearrangement to form a conjugated diene (step 3) 

followed by reaction with 02 to give a ROO' (step 4). The ROO' is capable of 

abstracting a hydrogen atom from another fatty acid side-chain to form a LH (step 5), 

but can combine with each other or attach membrane proteins. When the ROO' 

abstracts a hydrogen atom from a fatty acid, the new carbon-centred radical can react 

with 02 to form another ROO', and so the propagation of the chain reaction of lipid 

peroxidation can continue. This propagation step, can be amplified with the availability 

of 02 and PUFA side-chains (Rice-Evans and Miller, 1994). Hence a single substrate 

radical may result in conversion of multiple fatty acid side-chains into LHs, leading to 

oxidative damage in cells, membranes and lipoproteins (Rice-Evans, 1994). The 

length of the propagation chain before termination depends on several factors, e. g. 02 

concentration and the amount of chain-breaking antioxidants present (Young and 

McEneny, 2001). LHs are fairly stable molecules, but their decomposition can be 

stimulated by high temperatures or by exposure to transition metal ions (iron and Cue+). 

Decomposition of LHs generate a complex mixture of secondary lipid peroxidation 

products such as hydrocarbon gases (e. g. ethane and penthane) and aldehydes (e. g. 

malondialdehyde (MDA) and 4-hydroxynonenal). The fatty acid structure determines 

the product. Another complexity of the lipid peroxidation process is that the initial 

abstraction of a hydrogen atom can occur at different points on the carbon chain of the 

fatty acid. Thus, peroxidation of arachidonic acid for example gives six different LHs as 

well as cyclic peroxides and other products such as isoprostanes (Halliwell and 

Gutteridge, 1999). Furthermore, the number of double bonds determines the 
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susceptibility of a fatty acid to peroxidation (Wagner et aL, 1994; Porter et al., 1995). 

PUFAs are readily attacked by free-radicals and become oxidised into LHs (Symons 

and Gutteridge, 1998), whereas saturated fatty acids (SFAs) with no double bonds and 

monounsaturated fatty acids (MUFAs) with one double bond are more resistant to 

peroxidation (Reaven et al., 1991). An adjacent double bond weakens the energy of 

attachment of the hydrogen atoms present on the next carbon atom. Therefore, the 

greater the number of double bonds in a fatty acid chain the easier the removal of a 

hydrogen atom, which is why PUFAs are more susceptible to peroxidation. 

PUFA 
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Figure 2.3. Mechanism of lipid peroxidation (modified from Gutteridge, 1995). 
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2.11 Oxidant Stress in obesity 

There is emerging evidence suggesting that obese individuals have concomitant 

increased free-radical production and depletion of cellular antioxidant defence systems. 

It has been shown that the balance between pro-oxidant/antioxidant is shifted towards 

an increased oxidant stress in obese rats (Dobrian et aL, 2001; Beltowski et aL, 2000; 

Vincent et al., 1999; Vincent et aL, 2001) and obese humans (Yesilbursa et aL, 2005; 

Mohn et al., 2005; Keaney et ah, 2003; Ozata et aL, 2002; Davi et aL, 2002; Dandona 

et aL, 2001; Präzny et a/., 1999). Yesilbursa et al (2005) found significantly higher 

MDA levels in non-diabetic obese adults compared to healthy normal-weight controls 

(2.0±0.77 vs 0.63±0.14nmol/mL). Mohn et al (2005) studied the effects of childhood 

obesity on oxidant stress. In prepubertal children, obese subjects had significantly 

increased MDA levels compared to normal-weight controls (0.90±0.31 vs 

0.45±0.24nmol/mg). Keaney et al (2003) found that in more than 2800 men and 

women, BMI was independently associated with increased levels of urinary 

concentrations of the F2 isoprostrane 8-iso prostaglandin Fla (8-iso PGF2a), a bioactive 

product of lipid peroxidation. For example following multivariable regression models, 

each 5 kg/m2 was associated with a 9.9% increase in 8-iso PGF2a. Overall the 

multivariate model obtained was able to explain 15.8% of the variability in 8-iso PGF2a. 

The most important contributors to the model were smoking, BMI, gender, glucose, 

total cholesterol and HDL cholesterol ratio and prevalent CVD that contributed 7.7%, 

2.4%, 2%, 2%, 0.5%, 0.6% and 0.3% respectively. Davi et al (2002) found that obese 

women had significantly higher levels of urinary 8-iso PGF2a compared to their non- 

obese counterparts. In addition, android obese women had significantly higher levels 

of urinary 8-iso PGF2a (523 (393-685) pg/mg of creatine) than gynoid obese women 

(275 (220-349) pg/mg of creatine). Both android and gynoid obese women had 

significantly higher levels of urinary 8-iso PGF2a when compared to non-obese women 
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(187 (140-225) pg/mg of creatine). Dandona et al (2001) found significantly increased 

plasma of thiobarbituric acid-reactive species (TBARS) (an assessment of lipid 

peroxidation) in obese adults compared to age-matched controls (1.68±0.17 vs 

1.29±0.12pmol/L). Präznjr et a/ (1999) concluded that plasma MDA concentration was 

significantly correlated with BMI in both Type 1 and Type 2 diabetic patients (r=0.68). 

Ozata et al (2002) presented significant evidence that BMI was associated with 

significantly increased levels of TBARS (obese vs non-obese; 7.77±3.41 vs 

3.92±0.93mmol/mL). In animals, Vincent et al (1999) demonstrated that in the 

myocardium of obese Zucker rats markers of oxidant stress were enhanced by obesity. 

In Wistar rats, Beltowski et al (2000) demonstrated increased levels of TBARS by 43% 

and 52% after following an 8-week high calorie high fat (HCHF) diet and a high calorie 

normal fat (HCNF) diet, respectively. Body weight gains were 9.3% and 15.2% higher 

than the control group for HCHF and HCNF diets, respectively. Following a study by 

Vincent et al (2001) it appears that obesity may be associated with enhanced oxidant 

stress, irrespective of underlying cause. Vincent et al (2001) found that obesity 

induced by either a leptin receptor defect or high-fat feeding was associated with 

similar oxidative injury levels e. g. the high-fat fed and fatty animals had similar 

significant elevations in myocardial TBARS in comparison to those of lean controls, 

23% and 25% respectively. 

Inducing weight loss has been shown to reduce oxidant stress levels providing 

additional evidence for a cause and effect relationship between obesity and oxidant 

stress (Yesilbursa et al., 2005; Mohn et aL, 2005; Uzan et aL, 2004; Kisakol et aL, 

2002; Davi et al., 2002). Yesilbursa et al (2005) found that plasma MDA 

concentrations reduced significantly following 6-months of Orlistat treatment (anti- 

obesity drug) in obese patients. After 6-months treatment, the mean weight of the 

obese patients decreased by 6.8kg and plasma MDA levels were significantly reduced 
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by weight loss from 2.0±0.77 to 0.89±0.41 nmol/mL. Mohn et al (2005) studied the 

effect of a6 month dietary restriction weight loss programme on prepubertal severely 

obese children. During the intervention period, children showed a significant reduction 

in BMI (28.99±2.40 vs 27.34±1.87kg/m2) which was associated with a significant 

reduction in MDA levels (0.86±0.43 vs 0.47±0.09nmol/mg). The 6-month change then 

reversed to baseline levels together with fatness indexes when children followed a 

further 6-month control diet. 

Kisakol et al (2002) and Uzan et al (2004) both investigated the impact of bariatric 

surgery on oxidant stress and both concluded a positive effect. Kisakol et al (2004) 

found that a vertical banded gastropasty significantly decreased MDA levels in 22 

morbidly obese patients with significant weight loss [pre-op vs 24 weeks post-op; MDA 

levels: 1.505±0.11 vs 0.712±0.05pmol/L and weight: 123.8±3.65 vs 88.78±2.45kg]. 

Uzan et al (2004) studied the impact of open vs laparoscopic surgery for a gastric band 

in obese patients. Following 6 months, both surgery types produced similar reductions 

in both MDA and weight which were all significant. Lastly Davi et al (2002) studied the 

effects of a 12-week calorie restriction diet on urinary 8-iso PGF2a levels in 20 women. 

Of 20 women with android obesity, 11 achieved successful weight loss (mean weight 

loss averaged 15.3±10.5kg), which was associated with significant reductions in 8-iso 

PGF2ai levels by 32%. However, despite highlighting evidence for a cause and effect 

relationship between the obese state and oxidant stress, there is still confusion that the 

association between oxidant stress and obesity may be related to variables such as 

obesity-related diseases i. e. hypertension, hyperlipidaemia and hyperinsulinemia. 

Irrespective of this, several mechanisms have been suggested which may explain the 

obesity-related oxidant stress: 

a) Increased 02 consumption (i. e. mechanical overload) and subsequent radical 

production via mitochondrial respiration 
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b) Diminished antioxidant capacity 

c) Increased fat deposition 

d) Cell injury causing increased rates of radical formation such as 02 and OH'. 

(Vincent et al., 2001) 

2.11.1 Mechanical overload 

Increased muscle activity can activate metabolic pathways that form free-radicals, 

including increased electron transport chain activity (Ji, 1995a; Ji, 1996) and 

conversion of hypoxanthine to urate (Saiki et al., 2001). Increased respiration rates 

and rapid electron transfer can cause some electrons to leak from the electron 

transport chain to form 02 and H202 P. 1995a; Ji, 1996) and the conversion of 

hypoxanthine (during high muscle activity) to urate forms 02 (Saiki et al., 2001). 

Among obese persons, high cell respiration rates and 02 consumption may be 

exacerbated in muscle tissue during physical activity due to the additive mechanical 

load of carrying excessive body weight (Vincent et al., 2004) and mechanical 

inefficiency (Vincent and Taylor, 2006). For example during the same absolute load- 

bearing walking activity, obese persons have 38% higher V02 (oxygen consumption) 

values than non-obese persons and these values are correlated with post-exercise LH 

values (Vincent et al., 2004). Higher resting and post-exercise hypoxanthine and uric 

acid levels in obese compared to non-obese persons have been identified (Saiki et al., 

2001), suggesting that hypoxanthine may be a cause for increased oxidant stress in 

obese persons (Saiki et al., 2001). 

2.11.2 Compromised antioxidant defence 

Adequate tissue, dietary, enzymatic and non-enzymatic antioxidant defences are 

critical to maintain the pro-oxidant/antioxidant balance in tissues (Halliwell and 
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Gutteridge, 1999). However in obesity, perturbations to antioxidant defences may 

occur (Vincent and Taylor, 2006). For example several studies suggest that obesity is 

associated with lower plasma antioxidant concentration (Reitman et al., 2002; Strauss 

et aL, 1999; Decsi et al., 1997; Kuno et aL, 1998; Moor De Burgos et al., 1992) and 

decreased activities of erythrocyte cytoprotective enzymes (Olusi, 2002; Ozata et aL, 

2002; Beltowski et al 2000). Reitman et al (2002) demonstrated that levels of fat- 

soluble antioxidants, plasma carotenoids and vitamin E were significantly lower in 

patients with severe obesity as compared to normal-weight subjects (0.69±0.32 vs 

1.25±0.72micrograms/mL and 24±10 vs 33±14micrograms/mL, respectively). Strauss 

et al (1999) concluded that vitamin E and ß-carotene were significantly lower in obese 

children compared to their normal-weight counterparts (2.68±0.59 vs 3.17±±0.60pmol/L 

and 0.22±0.14 vs 0.29±0.17pmoVL, respectively). Strauss et al (1999) highlighted that 

the lower serum antioxidants in obese children remained despite similar self-reported 

intakes of fruit and vegetable servings between the normal-weight and obese children. 

Kuno et al (1998) and Decsi et al (1997) also found significantly lower levels of lipo- 

proteins and plasma concentrations of vitamin E and ß-carotene in obese children 

compared to their normal-weight counterparts [Kuno et al (1998); 8.77±1.93 vs 

13.14±2.73nmol/mg protein and 0.30±0.23 vs 0.61±0.25nmoVmg protein, respectively, 

and Decsi et al (1997); 0.34 (0.13-0.70) vs 0.75 (0.32-1.48) mg/dL and 3.8 (1.4-21.4) 

vs 7.8 (1.5-38.6) pg/dL, respectively]. Furthermore Kuno et al (1998) found that the 

obese girls also had a higher 'peroxidizability index' (lipid peroxidation per amount LDL) 

and concluded that the inadequate antioxidants available within the large LDL lipid pool 

caused the oxidant stress. Similarly, in adults, Moor De Burgos et al (1992) found that 

blood retinol, vitamin E, vitamin C and carotene concentrations were 18-37% lower in 

obese women than in lean women respectively. Overall they speculated that the 

altered antioxidant vitamin levels in obesity were due to the redistribution of fat-soluble 
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vitamins into fatty tissues, leaving fewer antioxidants available for plasma and other 

essential sites (Reitman et al., 2002). 

Activities of the major antioxidant enzymes may also be inadequate in obesity. Olusi 

(2002) found that erythrocyte Cu/ZnSOD activity and GSH-Px were significantly lower 

in obesity than in the non-obese state (Cu/ZnSOD: 1005±26 vs 1464±23U/g Hb and 

GSH-Px: 84.3±6.7 vs 98.4±3.3U/g Hb). Similarly, Ozata et al (2002) also reported 75% 

and 42% lower erythrocyte GSH-Px and Cu/ZnSOD activities in obese men than in 

non-obese men. In rat models of diet-induced obesity, erythrocyte SOD and GSH-Px 

activities were reduced by 29-42% in the HFHC group compared with the control 

animals after the 8-week diet-induced obesity period (Beltowski et A, 2000). Other 

research have shown that individual antioxidant enzymes were enhanced in obesity 

(Vincent et aL, 2001, Dobrian et al., 2000). Vincent et al (2001) found that Cu/ZnSOD 

activity in the left ventricles of rats was significantly greater in the obese animals 

compared to lean controls (135 vs 1171U/mg protein). Dobrian et al (2000) also 

reported increased activities of erythrocyte Cu/ZnSOD and GSH-Px after 10 weeks of 

diet-induced obesity. They attributed the increases in these erythrocyte cytoprotective 

enzymes to their stimulation by oxidant stress. Olusi (2002) believed the discrepancies 

in antioxidant enzymes in obesity could be due to the duration of the obesity. For 

example, in the early days of the development of obesity, antioxidant enzymes may be 

stimulated whereas chronic obesity continually depletes antioxidant enzymes. 

Other measures of antioxidant activity have been used such as total antioxidant status 

(TAS) and ferric reducing antioxidant power (FRAP). Several studies have shown 

significantly lower TAS and FRAP values in obese persons than in non-obese 

individuals (Lopes et al., 2003, Fenkci et al., 2003). For example, FRAP values were 

22% lower in obese than in non-obese matched controls (271±15 vs 333±29pmol/L) 
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(Lopes et al., 2003) and TAS values were moderately lower in obese persons 

compared to non-obese persons (1.15±0.01 vs 1.30±0.02mmol/L) (Fenkci et al., 2003). 

More recently, obese children with the metabolic syndrome had significantly lower 

plasma TAS levels than their non-obese counterparts (1.2±0.4 vs 1.57±0.21 mmoVL) 

(Molnar et al., 2004). Furthermore, lower TAS values were directly related to lower 

levels of various forms of plasma carotenoids such as vitamin E, vitamin C and 13- 

carotene (Molnar et al., 2004). 

2.11.3 Increased fat deposition 

Obesity is characterized by increased dietary fat intake, increased fat storage, 

excessive free fatty acids (FFA), excessive intracellular triglycerides and dyslipidaemia 

(Davi et al., 2002; Vincent et al., 2004), which may all contribute to the production of 

oxidant stress (Vincent and Taylor, 2006). 

Dietary lipids influence oxidant stress by providing double bonds in fatty acid chains 

(Reaven et al., 1991). For example, diets high in PUFAs are readily attacked by free- 

radicals as a result of their high number of double bonds in a fatty acid chain which 

makes it easier to remove the hydrogen atom (Symons and Gutteridge, 1998). 

However fatty diets high in SFAs (no double bonds) and MUFAs (one double bond) are 

more resistant to peroxidation (Reaven et aL, 1991). Basu et al (2000) studied the 

effect of consuming PUFAs in the diet on oxidant stress. In a randomized controlled 

trial obese middle-aged men were supplemented with 4.2 g day of conjugated linolenic 

acid (CLA) for one month. Compared to the control group significant increases in 8-iso 

PGF2a were observed in the supplemented group. The lipid peroxidation parameters 

(8-iso PGF2a) returned to their basal levels at 2 weeks after the cessation of CLA (Basu 

et aL, 2000). Riserus et al (2004) studied the effects of consuming a diet added with 
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CLA (an 18 carbon unsaturated fatty acid with two conjugated double bonds derived 

from dairy products and consumption of meat from ruminant animals) for four-weeks in 

obese men. Compared to those who consumed the normal diet, urinary 8-iso PGF2a 

significantly increased by 50% in the treatment group. 

Alternatively, the increased number of lipid molecules present in obesity may simply be 

an enlarged target for oxidative modification of ROS (Vincent et al., 2001). A 

comparative, experimental study investigated myocardial tissue in 16-week old lean 

controls (fa/?, normal diet), obese high-fat fed (Fa/?, 45% dietary fat) and obese fatty 

(fa/fa, normal diet) Zucker rats. Compared to lean controls, the high-fat fed and fatty 

animals had similar significant elevations in myocardial TBARS and PEROX (23%, 

25% and 29% 45%, respectively), and elevated susceptibilities to oxidant stress in vitro 

following exposure to oxidizing agents. Resting heart work was slightly higher in both 

the high-fat fed and fatty animals compared to controls. Myocardial lipid content, SOD 

activities and non-protein thiol (glutathione) levels were significantly elevated in high-fat 

fed and fatty animals compared to controls. The rate of superoxide formation by 

isolated papillary muscles in vitro did not differ among groups. Regression analysis 

revealed that the myocardial lipid content contributed most to myocardial lipid 

peroxidation (R2=0.76). This observation can be explained by increased PUFAs, 

promoting lipid peroxidation (Symons and Gutteridge, 1998) since myocardial oxidative 

injury was not closely associated with heart work, insufficient antioxidant defences or a 

greater rate of superoxide production (Vincent et al., 2001). Furukawa et al (2004) 

reported that increased oxidant stress in accumulated fat is an important pathogenic 

mechanism in obesity-associated metabolic syndrome. Furukawa et al (2004) 

demonstrated that, in non-diabetic subjects, fat accumulation closely correlated with 

the markers of systemic oxidant stress (TBARS and hydrogen peroxide concentration). 

The findings were reproduced in several mouse models of obesity and production of 
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ROS increased selectively in adipose tissue, accompanied by augmented expression 

of NADPH oxidase and decreased expression of antioxidative enzymes (SOD, GSH-Px 

and CAT) (Furukawa et al., 2004). 

Abdominal or visceral adiposity is also linked with increased levels of plasma FFA 

(Vincent and Taylor, 2006) which elevates blood glucose and produces NO' in smooth 

vascular and endothelial cells via a protein kinase C mechanism (Inoguchi et al., 2000). 

FFA can also induce the oxidative respiratory burst in white cells and acutely increase 

ROS formation in culture (Inoguchi et al., 2000). 

Excessive triglycerides may also increase ROS formation via their impact as a 

mitochondrial adenine nucleotide transporter suppressor. This results in an increase in 

02' production within the mitochondrial electron transport chain, which in turn 

decreases intramitochondrial adenine diphosphate. Electrons then accumulate within 

the electron transport chain and react with adjacent 02 to form 02' (Bakker et al., 

2000). 

Hype rcholesteraemia is associated with enhanced oxidizability of LDL molecules 

(Vincent and Taylor, 2006). The lag phase of lipid oxidation is shorter in LDL particles 

from obese individuals and rapid lipid peroxidation occurs in the PUFA of LDL particles 

(Van Gaal of al., 1998; Ozata et al., 2002). 

2.11.4 Cell Injury / low grade inflammation 

Obesity is associated with a state of chronic inflammation (Saito et al., 2003) and 

serum adipokines increase with fat mass, especially visceral fat (Vincent and Taylor, 

2006). Inflammation is characterized by inflammatory cytokine expression (interleukin- 

39 



6 (IL-6) and tumor necrosis factor alpa (TNF-a), C-reactive protein (CRP) production 

and increased white blood cell concentration and white cell activity (Vincent and 

Taylor, 2006). Expansion of the adipose tissue depot in obesity may increase IL-6 and 

TNF-a which both activate CRP production (indication of vascular inflammation) (Kopp 

et al., 2003). Elevations of inflammatory molecules (specifically TNF-a) promote 

oxidant stress by stimulating the expression of atherogenic endothelial adhesion 

molecules and promoting the attachment and migration of monocytes to macrophages 

in vessel walls (Lyon et al., 2003). Macrophages themselves also produce interleukins 

and TNF-a (Vincent and Taylor, 2006). Furthermore increased adhesion molecules 

may impair the insulin signalling cascade which leads indirectly to glucose 

dysregulation and hyperglycaemia (Hotamisligil et al., 1994), contributing further to 

ROS formation (Cosentino et al., 1997). In summary, TNF-a, IL-6 and CRP all cause a 

shift towards a pro-oxidant environment in obesity (Taylor and Vincent, 2006). 

However weight loss in humans have shown to attenuate CRP, TNF-a and IL-6 (Kopp 

et al., 2003). 

2.11.5 Other potential sources of increased oxidant stress in obesity 

Vincent and Taylor (2006) highlighted several other additional potential sources of 

increased oxidant stress in obesity. These include hyperglycaemia, hypertension and 

hyperleptinemia. 

2.11.6 Hyperglycaemia 

Several oxidative pathways are activated in hyperglycaemia by advanced glycosylation 

end products (AGE), polyol pathway and glucose autooxidation (Jiang et al., 1990). 

AGE formed from proteins, lipid and nucleic acids are diabetic precursors which bind to 

40 



specific cell surface receptors (RAGE) and lead to postreceptor signalling and further 

generation of ROS. AGE also activate intracellular transcription factors such as factor- 

kB which initiates a cascade of intracellular pathways (vascular cell adhesion molecule 

(VCAM-1) and intracellular adhesion molecule-1 (ICAM-1). Activation of these 

molecules can produce ROS as shown in rodent vessel tissues (Rodriguez-Manas et 

al., 2003). In addition this accelerates monocytes homing into the endothelium (Evans 

et al., 2002). Intracellular glucose elevations also stimulate the polyol pathway in which 

aldose reductase mediates conversion of glucose to sorbitol. Excess sorbitol causes 

oxidative damage and activates stress genes (Evans et al., 2002). When glucose auto- 

oxidises itself, oxidants are produced which are similar to OH. and 02" (Aronson and 

Rayfield, 2002). Hyperglycaemia also increases nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase activity and NADPH produces 02 especially in the 

endothelium (Zhang et al., 1999). Finally diet-induced elevations of glucose uptake 

into adipocytes of obese mice increase ROS formation (Talior at al., 2003). 

2.11.7 Hypertension 

Hypertension in obesity is a major co-morbidity (Vincent and Taylor, 2006). In the 

endothelium, there are several enzymatic sources of oxidant generation including 

NADPH oxidase, xanthine oxidoreductase, NO synthase and intraluminal pressure 

from hypertension. NADPH oxidase provides the major source of endothelial 02 

which can be enhanced by the presence of other cytokines and hormones of the renin- 

angiotensin system (Rajagopalan et aL, 1996). In particular concentrations of 

hormones in the renin-angiotensin system are higher in obese persons (Egan et ah, 

2001) Under ischaemic conditions, the enzyme xanthine oxidase reacts with 02 to 

form 02 and H2O2 (Kaminski et al., 2002) and increased 02' may react with NO to 

produce ONOO', which in turn reduces NO bioavailability (Wheatcroft et aL, 2003). 
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Hence these alterations are implicated in endothelial dysfunction and vascular 

insensitivity. Elevated intra-luminal pressure from hypertension may also stimulate the 

production of 02ý and ONOO- in the vasculature (Frisbee et al., 2002). ROS inhibits 

calcium-activated K+ channels and reduces vascular sensitivity as has been found in 

the arterial tissues of obese Zucker rats (Frisbee et al., 2002). In addition, 

hypertension itself may increase oxidant formation and excessive renin-angiotensin 

system hormones may exacerbate this process. Therefore both mechanisms can 

enhance endothelial dysfunction in obesity. 

2.11.8 Hyperleptinemia 

Leptin, a polypeptide mediator produced by white adipose tissue acts on hypothalamic 

centres to regulate food intake and energy expenditure (Vincent and Taylor, 2006). 

However excessive amounts of leptin have been associated with increased CVD risk in 

obese persons (Maingrette and Renier, 2003). Leptin may play several roles in 

obesity-induced oxidant stress by increasing direct production of OR and H202, by 

being a proinflammatory substance and by reducing cellular antioxidant paranoxase-1 

(PON-1) (Vincent and Taylor, 2006). 

Leptin can directly stimulate production of ROS in cultured endothelial cells (Bouloumie 

et al., 1999). Following injection with leptin, higher plasma and urine LH, MDA, 

isoprostane and protein carbonyl content (27-33% higher) were noted in Wistar rats 

compared to non-treated controls (Beltowski et al., 2003). This was attributed to lower 

antioxidant defences such as PON-1 (Beltowski et al., 2003). Leptin is a 

proinflammatory substance and indirectly stimulates production of inflammatory 

cytokines such as IL-6 and TNF-a, which may then increase NADPH oxidase which 

generates 02--. Finally leptin reduces the activity of PON-1 and this is directly related to 
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increased plasma MDA and LH (Beltowski et al., 2003). Ferretti et al (2005) recently 

reported that PON-1 activity in HDL was lower in obese compared with non-obese 

individuals (120 vs 4751U/mg protein). In the obese group, low PON-1 activity was 

accompanied by elevations in LH content in HDL and LDL and was inversely correlated 

with plasma leptin concentrations (Ferretti et al., 2005). 

2.12 Oxidant stress in obesity complications 

Vincent and Taylor (2006) and Furukawa et al (2004) believe that obesity creates the 

oxidant conditions of a `breeding ground' for diseases such as diabetes, hypertension 

and CVD. For example, oxidant stress in accumulated fat underlies the dysregulation 

of adipocytokines or adipokines, including PAI-1, TNF-a, resistin, leptin and 

adiponectin. Increased production of PAI-1 and TNF-a from accumulated fat 

contributes to the development of thrombosis (Shimomura et al., 1996) and insulin 

resistance (Hotamisligil et al., 1994; Uysal et al., 1997) respectively, in obesity. In 

contrast, adiponectin exerts insulin-sensitizing (Yamauchi et aL, 2001) and anti- 

atherogenic effects (Yamauchi et aL, 2003) and hence a decrease in plasma 

adiponectin causes insulin resistance and atherosclerosis in obesity. Furukawa et al 

(2004) demonstrated that ROS increased selectively in white adipose tissue which was 

accompanied by augmented expression of NADPH oxidase, which is a major source of 

oxidant stress (Rajagopalan et al., 1996). 

Oxidant stress in obesity can be corrected either by improving antioxidant defences, 

decreasing fat volume, exercise and dietary modification, or a combination of the three. 

Alternatively the redox state in adipose tissue may be a potentially useful target in new 

therapies targeted against obesity-associated metabolic syndrome. 
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2.13 Lifestyle factors affecting oxidant stress 

Various lifestyle, nutritional, environmental and genetic factors can induce an abnormal 

increase in free-radical production and/or a decrease in antioxidant defences causing a 

negative effect on the oxidant stress balance (Moller et al., 1996). Non-smoking, 

vitamin and/or trace element supplementation, regular physical activity and limited UV 

light exposure all contribute to an enhanced antioxidant defence potential, whilst 

tobacco smoking, high psychologic stress, heavy alcohol drinking and low/moderate 

vegetable intake, low fruit and little fish consumption contribute to a decreased 

antioxidant potential (Lesgards et al., 2002). 

The following chapters consider the effect of two primary weight management 

strategies on oxidant stress, namely dietary composition and physical exercise. 

2.13.1 Diet composition 

Endogenous antioxidant defences are inadequate to scavenge ROS in the body 

completely so ongoing oxidative damage to DNA, lipids and proteins and other 

molecules may ultimately contribute to the development of disease (Halliwell, 1996). 

Diet-derived antioxidants may be particularly important in protecting against these 

diseases. However the optimal intake of the most commonly diet-derived antioxidants 

is uncertain, but numerous studies have examined the effects of dietary composition on 

oxidant stress. 

Hyperlipidaemia (Aliev et al., 1998), high sugar (Faure et al., 1997) high protein 

(Mohanty et al., 2002) and high-fat diets (Slim et al., 1996) have all been shown to 

induce oxidant stress. Furthermore, the high sucrose content of a high-fat, refined 

carbohydrate diet may cause postprandial hyperglycaemia (Roberts et al., 2000), which 
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has been demonstrated recently to increase the generation of 02-' in human endothelial 

cells (Cosentino of al., 1997). In support of this, Roberts et al (2002) observed that a 

reduced consumption of fat and refined sugar consumption decreased oxidant stress. 

Velthuis-te Wierik of al (1996) suggested that the quantity and composition of dietary 

fat may affect fat-soluble anti-oxidative vitamin intake and/or anti-oxidative capacity and 

lipid peroxidation status. Fats in food serve as a carrier for fat-soluble vitamins. 

Therefore, reduced-fat foods may adversely affect the availability of fat-soluble vitamins 

and subsequently, anti-oxidative capacity (Velthuis-te Wierik et aL, 1996). In addition, 

increased consumption of PUFAs may enhance lipid peroxidation due to the existence 

of two or more double bonds within their structure (Symons and Gutteridge, 1998). 

However both Velthuis-te Wierik et al (1996) and Swinburn of al (1999) found that the 

consumption of reduced-fat products did not affect the integrity of the anti-oxidative 

scavenging capacity, assessed by measuring plasma MDA and anti-oxidative vitamins 

(B-carotene and a-tocopherol) and erythrocyte free-radical scavenging enzymes (SOD, 

GSH and CAT). SFAs have been shown to adversely affect plasma lipids, lipoproteins 

and haemostatic factors (Mitropoulos et al., 1994) as well as susceptibility to oxidation 

(Mata of aL, 1996). However replacing SFAs with either MUFAs or PUFAs in diets that 

provide less total fat did not appreciably affect LDL oxidative susceptibility (Schwab et 

al., 1998) but Berry of al (1991) and Reaven of al (1991) support the notion that 

subjects who consumed diets rich in MUFAs demonstrated lower LDL oxidation than 

subjects who consumed diets rich in PUFAs. However, unfortunately Wolff and 

Nourooz-Zadeh (1996) noted that the above research findings relating to lipid content 

and oxidant stress are not entirely straightforward. Although it has been shown that 

diets high in PUFAs and MUFAs and low in SFAs decrease atherosclerosis risk (Watts 

of aL, 1992), lipoproteins isolated from individuals consuming diets rich in PUFA and 

MUFA also demonstrated greater pre-disposition to peroxidation than lipoproteins from 
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individuals given SFAs (Kleinveld et aL, 1993). Individual hydroperoxide intake is 

expected to vary widely but will be largely dependent upon the intake of food containing 

hydroperoxides generated by pyrolysis such as fatty fried foods (Wolff and Nourooz- 

Zadeh, 1996). Hydroperoxide intake will also be influenced by the consumption of lard 

and compound cooking fat (such as baking and frying margarines) which contain high 

levels of pre-formed hydroperoxides (Wolff and Nourooz-Zadeh, 1996). Margarine has 

substantially lower levels of hydroperoxide but contains more hydroperoxide than 

butter, which may be due to the greater amount of processing required in its 

manufacturing (Wolff and Nourooz-Zadeh, 1996). 

Both a reduced or increased protein intake may also affect the oxidant stress balance. 

For example, dietary deficiency of protein not only impairs the synthesis of antioxidant 

enzymes but also reduces tissue concentrations of antioxidants, thereby compromising 

antioxidant status (Sies, 1999; Machilin and Bandito, 1987). According to Fang at al 

(2002) high protein diets lead to increased oxidant stress on the basis of the following 

considerations. First homocysteine, an independent risk factor for cardiovascular 

disease, (Boushey et aL, 1995) increases endothelial 02 production and induces 

oxidant stress in the vasculature (Wu and Meininger, 2002). Secondly, increasing 

protein intake has been shown to stimulate generation of ROS and lipid peroxidation in 

human polymorphonuclear leukocytes and mononuclear cells (Mohanty et aL, 2002). 

Finally, increasing dietary protein intake increases whole-body NO production by 

constitutive and inducible NOS in rats (Wu et al., 1999). 

In addition to studying the effects of short term and long term effects of dietary 

composition of oxidant stress parameters, it has been shown that immediately following 

consumption of a high fat meal or glucose load, free-radical production is enhanced 

(Vogel et al., 1997; Dandona et al., 2001). This suggests that increased ROS in 
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obesity maybe due to over-eating rather than dietary macro-nutrient consumption or 

the pathologies associated with obesity. 

2.13.2 Calorie restriction 

If over-eating increases ROS, under-eating may have the opposite effect. Velthuis-te 

Wierik et al (1996) demonstrated that reduced energy intake and fat intake over 6- 

months compared to controls contributed to a reduction in MDA levels. Ramsey et al 

(2002) observed that energy restriction, without malnutrition could retard the 

development of atherosclerosis, due to a reduction in 02 molecules within the 

mitochondria, thereby lowering the production of ROS. This is also supported by the 

studies of Guo et al (2002) who demonstrated that calorie restriction retarded the 

development of atherosclerosis, reduced the levels of lipid peroxidation and decreased 

the production of ROS in the arterial wall of ApoE''mice (mice homozygous knockout 

for the APoE gene). As calorie restriction did not alter the level of plasma cholesterol, 

the results suggested that reduction of oxidant stress in the arterial wall is a possible 

mechanism, by which dietary restriction inhibits atherogenesis in ApoE''mice. In 

humans, Dandona et al (2001) found significant reductions in concentration of TBARS 

following four weeks' of energy restriction and weight loss in humans independent of 

changes in anti-oxidant levels. Mean weight loss was 4.5±2.8kg at week 4 and there 

was a reduction in plasma TBARS from 1.68±0.17pmol/L at week 0 to 1.47±0.13pmol/L 

at 4 weeks. It remains unclear whether energy restriction without weight loss or weight 

loss without energy restriction could reduce oxidant stress. This would identify the 

independent contributions energy restriction and weight loss has on influencing oxidant 

stress levels (Fenster et al., 2002). 
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2.13.3 Acute aerobic exercise session 

Acute-exercise-generated oxidant stress has been well documented (Alessio et al., 

2000). Whole body 02 consumption during exercise may increase 15 fold and 02 flux 

in skeletal muscle may increase 100-fold (Sen, 1995). Therefore it is conceivable that 

an increase in metabolism can overwhelm endogenous antioxidant defences to form 

free-radical species (Ashton et al., 1998). Even moderate exercise may increase ROS 

production exceeding the capacity of antioxidant defences (Alessio, 1993; Ji, 1993). 

However Toshinai et a/ (1998) demonstrated that high-intensity exercise (80% VO2max 

for 22.5 minutes) induced a larger increase in lipid peroxidation compared to moderate 

exercise (40% VO2max for 45 minutes and 60% VO2max for 30 minutes). Tozzi- 

Ciancarelli et a/ (2002) demonstrated that strenuous exercise (maximal exercise test on 

a cycle ergometer), but not moderate exercise (30 minutes at 60% VO2max on a cycle 

ergometer), resulted in significant increased levels of TBARS and significant decreased 

levels of TAS [rest vs post-exercise (TBARS: 1.5±0.2 vs 1.4±0.1 pmol/L and 1.6±0.2 vs 

3.9±0.3pmol/L, respectively; TAS: 1.35±0.04 vs 1.47±0.05U/mL and 1.45±0.03 vs 

1.05±0.03U/mL)]. Lovlin et a/ (1987) also demonstrated that higher aerobic exercise 

intensities caused an increase in oxidant stress. For example exercise eliciting 100% 

VO2max resulted in a 26% significant increase in plasma MDA, exercise eliciting 70% 

VO2max resulted in a non-significant reduction in plasma MDA and exercising at 40% 

VO2max resulted in a 10.3% significant decrease in plasma MDA. A vast majority of 

exercise-induced oxidant stress has been studied in healthy individuals whilst the effect 

of certain pathologies on exercise-induced oxidant stress remains unclear. 

To date, four studies have investigated the effect of obesity on exercise-induced 

oxidant stress (Saiki et aL, 2001; Vincent et al., 2004; Vincent et al., 2005a; Vincent et 
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al., 2005b). Saiki et al (2001) studied 7 obese and 16 normal-weight individuals and 

observed changes in serum hypoxanthine (marker of free radical production) following 

aerobic exercise on a treadmill (15 minutes at 70% heart rate reserve). Baseline 

serum hypoxanthine levels were significantly higher in the obese group than in the 

normal-weight group (3.46±3.70 vs 1.23±1.16pmol/L). Exercise also induced a 

pronounced increase in serum hypoxanthine level in the obese group compared with 

the normal-weight group (43.86±4.56 vs 10.65±6.81 pmol/L) despite the obese group 

achieving a significantly lower peak V02 than in the control group (28.16±4.0 vs 

37.16±4.7mUkg/min). Vincent of al (2004) assessed LH levels in normal-weight and 

obese individuals, pre and post aerobic exercise. At rest LH levels were not 

significantly different between the normal-weight and obese group, but post-exercise 

LH levels increased by 70% and 62% in the obese and normal-weight, respectively, 

which was significantly different to pre-exercise LH levels and significantly different 

between the normal-weight and obese group. Vincent of al (2005a) also found 

significantly increased post-exercise LH levels in obese women compared to normal- 

weight women following a maximal aerobic exercise session (0.13 vs 0.02 (nmol/mL) 

(02/kg/min). This occurred despite 20% shorter exercise times for the obese than for 

the normal-weight women. After controlling for body fat percentage and baseline LH, 

the major contributors to the change in LH levels during exercise were age, peak heart 

rate and exercise duration. However when exercise loads were matched by relative 

intensity, LH responses still remained higher in obese than normal-weight persons 

(0.289 vs 0.054 (nmol/mL) (02/kg/min) (Vincent et al., 2005b). 

Several mechanisms that may contribute to increased free-radical generation during 

exercise include 02 metabolism, anoxia-reoxygenation, mechanical damage to tissues 

and enhanced inhalation of environmental pollutants (NO2, ozone etc) (Vincent et aL, 

2004). The redirection of blood flow during exercise to exercising muscle (reduced 
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blood supply to other organs: liver, kidney and intestine) then the return of the blood 

flow to liver, kidney and intestine mimics ischaemia-reperfusion phenomenon. 

Evidence highlights that ischaemia-reperfusion causes excessive production of free- 

radicals, leading eventually to extensive tissue damage (McCord, 1988). Physical 

stress and shearing forces can also cause significant damage to the skeletal muscle. 

The tissue damage may attract neutrophils, leading to further generation of free- 

radicals (Weiss and LoBuglio, 1982). Air pollutants can also be a direct source of free- 

radicals such as NO or an indirect source of free-radicals, such as ozone. Strenuous 

exercise which leads to hyperventilation can cause increased exposure to 

environmental pollutant related free-radicals (Singh, 1992). Strenuous exercise is 

known to stimulate catecholamine secretion and the circulation, which could potentially 

generate free-radicals in the body through autooxidation, and/or through metal-ion or 

02' catalyzed oxidation (Jewett et al., 1989) and neutrophil activation (Steensberg et 

al., 2001). 

2.13.4 Exercise training 

Although an acute bout of exercise induces oxidant stress (Alessio et al., 2000) regular 

physical activity can favourably effect the pro-oxidant/antioxidant balance (Fukai et aL, 

2000). Repeated exposures to the mild oxidant stress, which occurs with exercise 

training can initiate adaptations to reduce oxidative insult, such as reducing 02' 

production or up-regulating antioxidant enzyme cells (Fukai et aL, 2000). Miyazaki et al 

(2001) found that 12 weeks of strenuous aerobic exercise training (running at 80% 

maximal exercise heart rate for 60 minutes a day, 5 days a week) in untrained normal- 

weight individuals increased basal activity of erythrocyte antioxidant enzymes and 

decreased the production of neutrophil 02" production following an acute period of 

exhaustive exercise on a cycle ergometer. Regardless of exercise training, exhaustive 
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exercise caused a significant increase in the ability of the neutrophils to produce 02' 

and increased levels of TBARS. However, the magnitude of the increase of both 

neutrophil 02" production and TBARS was significantly reduced after training. The 

activities of SOD and GSH-Px increased by 17.1 % and 11.5% at rest, respectively after 

12 weeks of intense exercise training but were unaffected by the period of acute 

maximal exercise. No change in CAT activity was observed with either maximal 

exercise or endurance training. In summary many of the cardio-protective effects 

(decreased blood pressure, reduced platelet aggregation and adhesiveness, and 

increased coronary blood flow (Gielen et a!., 2001) of regular exercise can be attributed 

to adaptations that minimize oxidant stress (Powers et a!., 1999) and/or those that 

increase bioavailable NO (Gielen eta!., 2001). 

In addition to weight management therapy (dietary composition, calorie restriction and 

exercise training) reducing oxidant stress levels in obesity, the improvements in oxidant 

stress levels may be enhanced with antioxidant therapy. The use of antioxidant 

therapy to reduce oxidant stress is discussed in the following chapters. 

2.14 Antioxidant therapy 

Many research studies have studied the effect of antioxidant therapy on reducing 

oxidant stress, following the assumption that the solution to oxidant stress was to 

increase antioxidant status by administering antioxidants. This hypothesis was 

supported by studies undertaken by Armstrong and Doll (1975) and Rimm et al (1996), 

who demonstrated that people in higher socioeconomic classes suffered lower rates of 

CVD compared to lower socioeconomic groups because they ate more fresh fruit and 

vegetables and they smoked less with the net effect of improving their antioxidant 
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status. The studies considered below highlight the potential antioxidant therapy can 

have on reducing oxidant stress in obesity. 

2.14.1 Effect of antioxidant therapy on oxidant stress in obesity 

Various studies have been undertaken to study the therapeutic use of antioxidants on 

the primary and secondary prevention of CVD and in summary they revealed an overall 

lack of benefit (Morris and Carson, 2003). This lack of effect may be explained by 

several facts such as trial populations which were generally older and/or had advanced 

stages of disease or had major confounding variables that negated any potential 

positive supplementation effect. The timing, type and dosage of antioxidant 

supplementation may not have been optimal for the specific population studied (Morris 

and Carson, 2003). Furthermore many CVD antioxidant interventions have used 

endpoints of clinical symptoms of disease i. e. myocardial infarction to assess the 

effectiveness of antioxidant therapy in reducing disease. This is not suitable for early 

detection of disease processes and therefore prevention. Heinecke (2001) stressed 

that future antioxidant supplementation studies should always include biomarkers of 

oxidant stress. 

Although the studies are few in number, they demonstrate the potential antioxidant 

therapy may have for decreasing oxidant stress levels, which may in turn prevent or 

delay disease onset. Skrha et al (1999) found that vitamin E (600mg daily) 

administration in obese diabetic patients for 3 months decreased plasma MDA from 

3.13±0.68 to 2.87±0.97pmol/L. A similar finding was also observed by Manning et al 

(2004) who found reduced LH levels in obese subjects following 6-months of vitamin E 

supplementation (3 months 8001U vitamin E/day, 3 months 1200lU vitamin E/day). LH 

was decreased by 27% at 3-months and by 29% at 6-months following vitamin E 
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supplementation and the decrease in LH was positively correlated with plasma vitamin 

E concentrations at the 6-month time point (r = 0.40). Another study also indicated 

protection against formation of oxidative biomarkers with antioxidant treatment, for 

example in overweight type II diabetic versus non diabetic contols (Anderson et al., 

1999). Twenty diabetics completed an 8-week control period, 8 week treatment period 

(p-carotene (24mg), vitamin C (1000mg) and vitamin E (8001U) followed by an 8-week 

control period (subjects were on a weight maintaining diet). Following the treatment 

period in the diabetic group, lag time for LDL oxidation (measured using copper 

oxidation at 37°) significantly increased (pre vs post: 27.9±6.81 vs 58.9±8.68minutes) 

and TBARS formation significantly decreased (pre vs post: 101.5±10.70 vs 

70.6±9.75nmol/mg). 

Although antioxidant therapy may be suitable therapy to reduce the obesity-associated 

oxidant stress, there still remains few data on the effects of other antioxidants not 

mentioned above on oxidant stress, such as Se. 

2.15 Selenium (Se) 

The essential trace mineral, Se is of fundamental importance to human health 

(Rayman et al., 2000). As a constituent of selenoproteins it plays both structural and 

enzymatic roles, in the latter context it is best known as an antioxidant and catalyst for 

the production of active thyroid hormone (Rayman et al., 2002). Se is the essential 

metal cofactor for the activity of the antioxidant enzyme, GSH-Px (Rotruck et a/., 1973). 

GSH-Px removes H202, lipid and phospholipid hydroperoxides and other 02 derived 

species (Alissa at ah, 2003). If not removed, LH impairs membrane structure and 

function (Gutteridge and Halliwell, 1990) and causes blood clotting disturbances by 

decreasing the production of prostacyclin while increasing the production of 
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thromboxane (Rayman et aL, 1996). Furthermore, in the presence of transition metal 

ions, LH can decompose to give further reactive free-radicals and cytotoxic aldehydes 

(Diplock, 1994). Such secondary products may initiate more lipid peroxidation, promote 

atherosclerosis, damage DNA, and metabolically activate carcinogens (Diplock, 1994). 

The activity of these selenoproteins depends on adequate dietary content of Se. Se 

enters the food chain through plants but its bioavailability is variable on a geographical 

level. For example, Se bioavailability is low in most parts of Europe and in areas of 

China, soils being a poorer source of Se (MacPherson of aL, 1997). Low concentration 

of Se is associated with Se deficiency diseases such as Keshan disease 

(cardiomyopathy) and Kashin-Beck disease (deforming arthritis) (Rayman, 2000). In 

the UK, Se intake is a cause for concern (Rayman, 2002). For example, 22 years ago 

Se intake in Britain was 60pg/day (Thorn et al., 1978) compared to 34pg/day in 1994 

as found in a survey undertaken for Britain's Ministry of Agriculture, Fisheries, and Food 

(Barclay et al., 1995). The UK reference Se intake for males and females is 75 and 

60ug/d respectively (Department of Health, 1991) which current intakes clearly do not 

meet. 

The fall in Se intake may be explained by the drop in imports of Se rich, high protein 

wheat for breadmaking flour from North America (Rayman, 2002), coupled with 

changes in breadmaking technology (Rayman, 1997). Parallel reductions in intake 

have occurred in other European Union countries for similar reasons; added to which, 

bioavailability of Se may have fallen in areas subjected to acid rain or excessive 

artificial fertilisation of soils, both of which reduce plant absorption of the mineral 

(Rayman, 1997). 
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The current Se intake does not allow for maximal expression of plasma GSH-Px 

(Duffield et al., 1999). It has been shown that maximum GSH-Px activity plateaus at 

serum Se levels between 90 and 100ug/I (Pearson et al., 1990). Excessive doses of 

Se are not required to enhance GSH-Px activity, because there appears to be a level of 

Se, above which further increases in its availability cause no elevation in enzyme 

activity i. e. GSH-Px (Pearson et ah, 1990). 

Increasing Se intake from dietary foods may be achieved by consuming meat, poultry 

and fish, which make the biggest contribution to Se intake (about 36% in the UK). 

Breads and cereal are also commonly consumed and make a substantial contribution 

to Se intake in northern Europe (around 22% in the UK) (UK Ministry of Agriculture 

Fisheries and Food, 1997). Brazil nuts, kidneys and crab are also sources of Se 

(Barclay et al., 1995). Other solutions to increase Se intake would be to add Se to the 

food supply by treating crops with fertiliser containing sodium selenate (Na2Se04) via 

the process fortification of foods or via Se supplementation (Aro et al., 1998). Se 

consumed in foods and supplements exists in a number of organic and inorganic forms 

including selenomethionine (plant and animal sources and supplements), 

selenocysteine (mainly animal sources), selenate and selenite (mainly supplements) 

(Young at al., 1982). Bioavailability and tissue distribution depends on the form 

ingested. For example, selenomethionine is more effective in increasing apparent Se 

status because it is non-specifically incorporated into proteins (e. g. haemoglobin and 

albumin) in place of methionine (Thomson et al., 1993). However, it has no catalytic 

activity and so must be catabolised to an inorganic precursor before entering the 

available Se pool (Rayman at al., 2000). Selenomethionine is a less-available 

metabolic source of Se than selenite or selenate, since these only need to be reduced 

to selenide to provide selenophosphate, the precursor of selenocysteine, the active 

form of Se in selenoproteins (Allan et al., 1999). Despite this, organic forms of Se (high 
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Se yeast) are often preferred in interventions because they are less acutely toxic 

(Institute of Medicine, 2000) but they may be more toxic during long-term consumption 

owing to non-specific retention of Se as selenomethionine in body proteins, rather than 

its excretion (Rayman et al., 2000). 

2.15.1 Effects of selenium supplementation on oxidant stress 

To date, no study has examined the effects of administering Se supplements on 

oxidant stress in obese individuals, but Olusi of a/ (2002) has shown that obese 

individuals have reduced GSH-Px activity (which may be due to reduced Se intake 

levels) and so may benefit from Se supplementation as a potential to reduce the 

obesity-associated oxidant stress. Several investigators have examined the effect of 

Se supplementation on oxidant stress in other population groups as discussed in the 

next chapter. 

Bortoli et al (1991) studied the effects of 30-days Se supplementation (4 x 16.5pg 

inorganic Se and 5.0mg Vitamin E) in twenty elderly women. Following 30-days Se 

supplementation, plasma Se levels significantly increased from 73.2±15.9 to 

95.7±21.8pg/L which decreased to 78.5±8.9pg/L, 30-days post supplementation. 

GSH-Px increased from 35.9±7.2 to 41.4±3.5U/g Hb, which increased further to 

42.7±9.2UI/g Hb, 30-days post Se supplementation. MDA levels showed insignificant 

changes during the Se supplementation period but 30-days post Se supplementation, 

MDA significantly decreased to a level lower than pre Se supplementation (baseline vs 

30-days post-Se supplementation: 4.3±0.6 vs 3.3±0.3pmol/L). Wilke et al (1992) noted 

improvements in oxidant stress status in phenylketonuric (PKU) children (at risk of Se 

deficiencies) who were given a daily sodium selenite (0.13pmol Se/kg/day) supply for 

6-months. Compared to controls, PKU children had significantly lower plasma and 
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erythrocyte Se, significantly lower plasma and erythrocyte GSH-Px and significantly 

higher plasma MDA. Following Se supplementation, compared to control values 

plasma Se and GSH-Px values normalised after 1-month, erythrocyte Se after 2- 

months, and erythrocyte GSH-Px and plasma MDA after 4-months. The relatively 

slower biochemistry correction in red cells compared to plasma may be due to red cell 

turnover times (Wilke et aL, 1992). Sarada et al (2002) examined the role of Se in 

reducing hypoxia-induced oxidant stress (at high altitudes ROS are continuously 

generated as a consequence of low 02 partial pressure). In a study by Sarada et al 

(2002), twenty four male Sprague-Dawley rats were divided into four groups: control 

(normoxia), group II (hypoxia), group III (normoxia plus Se) and group IV (hypoxia plus 

Se). The rats being exposed to hypoxic stress were placed in a decompression 

chamber for 6-hours daily for one week. Compared to the control group, hypoxia 

(group II) significantly increased plasma MDA production (2.4±0.5 vs 4.0±0.4nmol/mL), 

significantly decreased plasma GSH (21.2±1.1 vs 11.9±1. Onmol/mL), significantly 

decreased blood GSH-Px, significantly decreased plasma protein and significantly 

decreased plasma Se content. However Se supplementation in group IV reversed the 

trend. Compared to group II, group IV demonstrated a significant decrease in MDA 

(4.0±0.4 vs 1.7±0.7nmol/mL) and subsequent significant increase in plasma GSH 

levels (11.9±1.0 vs 25.8±9.7nmol/mL). Similarly blood GSH-Px, plasma protein and 

plasma Se content all significantly increased in the Se supplemented hypoxia group 

(group IV) compared with hypoxia alone (group II). These results indicated that Se 

could decrease lipid peroxidation during hypoxia. 

However, no beneficial effect of Se supplementation was found by Portal et a/ (1995) 

who performed a double-blind cross-over Se supplementation study on lipid 

peroxidation markers in cystic fibrotic children. Similar to obese patients, cystic fibrosis 

patients have been shown to have increased lipid peroxidation markers (Wilke et A, 

57 



1990), as a result of increased production of ROS mediated by infections or a defect in 

antioxidant defences (Portal et aL, 1995). Portal et al (1995) assessed twenty seven 

cystic fibrosis children who were given 2.8pg of sodium selenite per kg per day for 5- 

months and 5-months with a placebo control and inversion of treatment periods. 

Simultaneously, 17 healthy children were also investigated as control subjects. 

Although Se status was similar in both the control and cystic fibrosis children, cystic 

fibrosis children had significantly higher lipid peroxidation markers (organic 

hydroperoxides) (122.6±23.3 vs 171.5±54.4pmol/L). However organic hydroperoxides 

were normalized at 12-months on either Se or placebo treatment. After the initial 

treatment, Se supplementation significantly increased both plasma Se concentration 

and GSH-Px- activity whilst the placebo group demonstrated a significant reduction in 

plasma Se concentration and no significant changes in GSH-Px activity [baseline vs 

first treatment: Se concentration (Se group, 0.83±0.17 vs 1.11±0.18pmoVL and placebo 

group, 0.78±0.14 vs 0.67±0.13pmol/L), GSH-Px concentration (Se group, 269.8±40 vs 

340.4±77pmol/L and placebo group, 260±45 vs 291.4±67pmol/L)]. However compared 

to month 5, following the second treatment period, Se supplementation significantly 

increased plasma Se concentration but decreased GSH-Px activity whilst in the 

placebo group plasma Se concentration significantly decreased and GSH-Px activity 

decreased. These results indicated that improvement of lipid peroxidation markers in 

cystic fibrosis was not related to the Se supplementation. The decrease in organic 

hydroperoxide levels observed following Se treatment may be linked to the 

improvement of the biological indices of Se status as reported in studies by Bortoli et al 

(1991) and Wilke et al (1990). However this relationship is inconsistent with data 

observed in the placebo group since organic hydroperoxide levels normalized in spite 

of a reduced plasma selenium concentration. It may be possible that the variable 

organic hydroperoxide levels in healthy subjects was a result of seasonal variations or 

the interpretation of the data may have been limited a result of inferences in the organic 
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hydroperoxide marker, despite complying with the criteria of good analytic practice. 

Alternatively, the reduced organic hydroperoxide levels in the placebo group may be a 

placebo effect which may have been influenced by change in patient behaviour due to 

inclusion in the clinical protocol (Portal et al., 1995). 

Overall Se supplementation may have an important role as a potent antioxidant effect 

but its effects on oxidant stress in obesity is unknown. When considering Se 

requirements, the following factors should be borne in mind; the form of selenium 

ingested affects the response of the selenoenzymes (Brown et aL, 2000), the 

concentration of some selenoenzymes is affected more than others by scarce selenium 

supply owing to the hierarchy of selenoprotein expression (Behne et al., 2000), there is 

a significant variation between individuals in the extent of the response of the 

selenoenzymes to Se supplementation so Se requirements between individuals in the 

same population may differ (Institute of Medicine, 2000) and adaptation to low Se 

intake can occur by sparing excretion (Thomson et al., 1993). 

In addition to studying the impact of Se supplementation on oxidant stress it seemed 

appropriate to incorporate other possible potential benefits of Se supplementation on 

preventing disease such as CVD. For example, oxidants may influence the process of 

thrombus formation by interfering at multiple steps within the `cascade of 

thrombogenesis' (Ambrosio of aL, 1997). Of particular interest is the association 

between oxidants and platelet aggregation. In the following chapters the importance of 

haemostasis and platelet aggregation is discussed which is followed by a discussion of 

the possible association between obesity and platelet aggregation and ROS mediated 

platelet aggregation. 
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2.16 Haemostasis and platelets 

Haemostasis protects the integrity and ensures the balance of blood components by 

preventing excessive blood loss through damaged vessel walls (Horne, 2005). The 

normal haemostatic system is extremely complex but exquisitely well regulated. 

Interrelationships exist between responses of the vasculature; circulating platelets, 

coagulation proteins and fibrinolytic mechanisms, which all serve to limit blood loss, 

preserve tissue perfusion and stimulate local repair processes (Troy, 1988). Following 

pathologic stimuli, natural inhibitors of coagulation and fibrinolysis modulate the above 

systems to prevent uncontrolled thrombosis or haemorrhage, although some of the 

constituent proteins involved in the above mechanisms also have additional roles in 

inflammation, angiogenesis and tissue repair (Horne, 2005). Platelets play a central 

role in the process of thrombus formation (Hoak, 1988), as well as playing an important 

role in atherogenesis (Rabbani and Loscalzo, 1994) and the progression of 

atherosclerotic lesions (Kamath et al., 2001). 

2.16.1 The platelet 

Platelets are small anucleate cells derived from human bone marrow megakaryocytes 

(George, 2000). Each megakaryocyte releases about 4000 platelets on maturation. 

The normal platelet count in blood is between 150 x 109 and 400 x 109/1, the average 

life span being around 7-10 days (George, 2000). 

Platelets have a complex internal structure of membranes. Platelets reveal an open 

canalicular system comprising invaginated plasma membrane, thus increasing the 

effective platelet surface many-fold. The membrane of phospholipids promotes the 
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cascade of coagulation by converting coagulation factor X to Xa and prothrombin to 

thrombin (George, 2000). 

In the platelet interior are numerous granular bodies including dense granules, alpha- 

granules, Iyosomes and glycogen. Dense granules are packed with 5- 

hydroxytryptamine (5-HT), noradrenaline, adenosine triphosphate (ATP), adenosine 

diphosphate (ADP) and calcium all of which have a profound effect on other platelets 

and vasomotor responses i. e. contraction and relaxation of the blood vessels. 

(George, 2000) The alpha granules contain a range of proteins, including growth 

factors, coagulation proteins and platelet-specific proteins that influence the adhesion 

of the platelets to each other and to the endothelium. These proteins include platelet- 

derived growth factor (PDGF), platelet-derived endothelial growth factor (PDEGF), 

fibrinogen, Von Willebrand factor (vWF), factor F, bironectin, beta-thromboglobulin 

(BTG), thrombospondin-1 (TSP-1) and the platelet factor 4 (PF4) (George, 2000). 

Platelets have a complex cytoskeleton which is involved in the initial changes in platelet 

shape associated with platelet activation and also the movement and release of the 

internal granules and their contents (George, 2000). The platelet plasma membrane 

contains many glycoproteins which serve as receptors for agonists that initiate platelet 

adhesion and platelet aggregation (McEver, 1990). Specific glycoprotein (GP) 

receptors that react with aggregating factors, clotting factors and inhibitors include: 

  GP la - that facilitates adhesion to collagen exposed by trauma 

  GP lib and Illa (integrin) - attach the platelet to subendothelial vWF; GP lib 

- Illa also binds fibrinogen to promote platelet aggregation 

  GP lb-that also binds to vWF. 
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2.16.2 Platelet function 

The main function of platelets is the formation of mechanical plugs during the normal 

haemostatic response to vessel wall injury, following platelet activation. The platelet 

surface has various receptors, which activate platelets following diverse stimuli, with 

equally diverse platelet responses (mediated by the binding of various stimulants to 

specific platelet receptors). For example, the occupation of ADP receptors by ADP 

leads to the transformation of specific proteins (GP Ilb/Illa complexes) into a form that 

binds fibrinogen (Seiss, 1989). Platelet response may be categorized by 'reversible or 

irreversible' platelet responses (Seiss, 1989). Reversible platelet responses include 

adhesion, shape change and reversible aggregation and the irreversible platelet 

response includes release action, and secondary reversible aggregation (Seiss, 1989). 

Platelet adhesion and a change in shape are the initial physiological responses leading 

towards the development of a haemostatic plug or thrombus (Sixma et al., 1991). 

Vascular injury causes brief vasoconstriction, which is then followed by platelet plug 

formation, then coagulation (Horne, 2005). Constriction or narrowing of the lumen of 

the arterioles, minimizes both the flow of blood to the wounded area and the loss of 

blood from the wound. Platelets then quickly adhere to the injury site because they 

come in contact with sub-endothelial collagen and vWF (Horne, 2005). As a result of 

adhesion, platelets become activated and change their characteristics by extending 

many projections that enable them to recruit additional platelets to the primary 

haemostatic plug (Roberts et al., 2001). Thromboxane A2 and ADP release play a 

major role in the activation of nearby platelets. The occupancy of these agonists on 

receptors (the agonists are released from damaged vessel walls) on the platelet 

plasma membrane, initiate a sequence of events, namely shape change, adhesion of 

the platelets to the vessel wall, the release of granule contents, activation of 
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neighbouring plug and a transitory local vasoconstriction (Rand et al., 2003). Following 

primary haemostasis, the matrix of platelet and other blood components temporarily 

arrests the bleeding. However the plug is fragile and could be easily dislodged from 

the vessel wall at this stage, so platelets form links to become more stable, which is 

induced by a number of agents such as ADP, collagen and thrombin (Kinlough- 

Rathbone, 1977). The linking of platelets via fibrinogen brings about platelet 

aggregation. Simplistically, vWF and fibrinogen bind to receptors on one platelet and 

crosslink to the other platelets by binding onto receptors on the latter (McManama et 

al., 1986). Once platelet aggregates are formed, there is a tendency for the fibrin 

threads to be laid on them to form a clot. The addition of fibrin to the primary 

haemostatic plug creates the secondary haemostatic plug (Roberts et al., 2001). This 

process is facilitated by platelets using several mechanisms such as the platelet 

membrane phospholipids which potentiate the intrinsic pathway of coagulation to form 

thrombin from prothrombin by activated factor X (Hemker et al., 1983). PF4 is a 

platelet release reaction which possesses fibrinogen and P-selectin and which result in 

platelet-leukocyte interaction leading to fibrin deposition by the leukocytes to form a 

thrombus (Palabrica et al., 1992). The entire process is contained at the site of vessel 

injury by anticoagulant proteins (antithrombin and activated protein C) which prevent 

the reactions from spreading (Simmonds et al., 1998). When the vessel injury has 

healed, the secondary haemostatic plug is no longer needed and is broken down and 

removed by additional components of the haemostatic system, known as fibrinolysis 

(Horne, 2005) 

2.17 Haemostatic risk factors for vascular disease 

The importance of the involvement of platelets in the early development of 

atherosclerosis has received differing degrees of support (Miller and Bruckdorfer, 2005) 
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but evidence for the involvement of platelet activity in the terminal stages of CVD is 

compelling (Miller and Bruckdorfer, 2005). 

According to Tsiara et al (2003) and Broadley et al (2003), platelet aggregation and 

platelet activation are central processes in the pathophysiology of CVD. Platelets have 

been found to be engulfed within macrophages (Sevitt, 1986) and there is evidence of 

episodic platelet involvement during plaque development (indicated by fluorescent 

antibodies to platelet antigens which identify platelet emboli). Platelet activity is also 

increased in individuals following myocardial infarction and a low-dose aspirin for the 

suppression of platelet activation has been shown to be effective as a prevention for 

myocardial infarction and stroke (Antiplatelet Trialists' Collaboration, 1994). However 

Elwood et al (2001) found that platelet aggregation did not provide any predictive 

power for myocardial infarction in a cohort of 2000 men. 

2.18 Platelets in obesity 

Obese subjects are predisposed to CVD and furthermore independent of the degree of 

obesity, abdominal obesity strongly correlates with established risk factors for CVD 

(Coleman et al., 1992). In addition to factors such as hypertriglyceridaemia, 

hypercholesterolaemia, low HDL cholesterol and impaired glucose tolerance, 

haemostatic abnormalities in obese individuals have been identified as a cause for 

increased CVD risk (Avellone et al., 1994). For example, obesity has been associated 

with higher fibrinogen levels (Avellone et al., 1994), increased Factor VII (Avellone et 

al., 1994) and higher baseline tissue plasminogen activator and higher PAI-1 levels 

(Landin at al., 1990). In addition, platelet aggregation has been shown to be enhanced 

in obesity (Davi et al., 2002; Haszon at al., 2003). For example, Davi et al (2002) found 

that obesity increased 11-dehydrothromboxane B2 (a marker of in vivo platelet 
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activation), which was further enhanced in individuals with android obesity. It was 

concluded that a potential mechanism between CVD mortality and gross obesity was 

via enhanced thromboxane-dependent platelet activation. However in this particular 

study it should be noted that the authors did not directly measure platelet aggregation. 

Haszon et al (2003) concluded that obese children demonstrated increased platelet 

aggregation (measured using collagen as an agonist with a laser rheoaggregometer) 

which contributed to the development of hypertension and to the promotion of vascular 

damage. However Juhan et al (1980) found that platelet activity was not related to 

body weight and displayed no correlation with excess fat mass. However, platelet 

activity was significantly increased in cases where obesity predominated in the upper 

body (hyperandroid obesity). Alternative measures of platelet activity such as mean 

platelet volume have been shown to be higher in obese individuals (Coban et aL, 

1992), which may also be an indicator of platelet activation (Park et al., 2002). 

Current literature discussed on the association between platelet activity and obesity is 

non-existence despite platelet activity playing an important part in the complex 

`cascade of thrombogenesis'. The lack of literature may be due to the problems 

associated with measuring platelet activity. Provided a robust measure of platelet 

activity can be identified, platelet activity could be assessed in high risk populations to 

ascertain possible risk factors for increased platelet activity i. e. increased oxidant 

stress. This may potentially lead to new founding mechanisms and thus the 

development of future treatments to reduce the risk of CVD in high risk population 

groups. A possible treatment may be antioxidant therapy if a close association 

between oxidants and platelet aggregation is present. 
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2.19 Association between oxidant stress and haemostasis risk factors 

At the vascular endothelial level, oxidant attack disrupts endothelial integrity, which 

disturbs the dynamic interaction between the endothelial cell surface and mechanisms 

aimed at inhibiting or promoting thrombus formation (Ambrosio et al., 1997). Disrupted 

activities include the coagulation cascade, platelet function and fibrinolysis system. In 

normal circumstances the endothelial cells can inhibit thrombus via coagulation by 

synthesizing various substances such as thrombomodulin, tissue-factor pathway 

inhibitor, prostacyclin and PAI-1 or by activating fibrinolysis (Ambrosio et al., 1997). 

Oxidants may also impair anti-thrombotic properties more directly via the breakdown of 

endothelial-derived relaxing factor (EDRF). Endothelial cells release EDRF in the 

vascular lumen, which exerts anti-platelet effects via stimulation of guanylate cyclase 

(Mellion et al., 1981), which counteracts platelet aggregation. 02' have been 

implicated in the breakdown of EDRF (Ambrosio et al., 1997). In vitro, the half-life of 

EDRF is significantly shortened in the presence of 02" and conversely, SOD has been 

demonstrated to prolong EDRF half-life (Rubanyi and Vanhoutte, 1986; Gryglewski et 

al., 1986). 

Unwanted intravascular thrombus formation is usually inhibited by an important 

component of the coagulation pathway, 'tissue factor' (TF) which is suppressed in 

endothelial cells and under tight control because the endothelium is in contact with 

circulating blood (Jaffe, 1991). TF forms a complex with coagulation factors VII and 

Vila, allowing enzymatic activation of factors X and IX, the substrates for factor Vila, 

ultimately leading to the generation of thrombin and the potential to trigger intravascular 

thrombus formation (Pawashe et aL, 1994). Exposure to 02 radicals has been shown 

to significantly increase in TF mRNA levels, which has been indicated in coronary 

artery occlusion and reperfusion in rabbits (Golino et al., 1996). Consequently 
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Ambrosio et al (1997) speculated that 02 radical-mediated TF expression by 

endothelial cells, with its attendant activation of the extrinsic coagulation pathway, may 

have important consequences as it might impact on the pathophysiology of post- 

ischemic reperfusion. In addition to inducing TF expression in endothelial cells, ROS 

could promote intravascular thrombus formation by interfering with mechanisms that 

normally inhibit activation of the coagulation pathway (Ambrosio et al., 1997). Lipid 

peroxides have been shown to increase thrombin production and slow down the rate of 

thrombin decay (Barrowcliffe et al., 1975). Other key anti-thrombotic factors have been 

shown to be susceptible to oxidant-mediated inactivation i. e. plasminogen activator 

(Lawrence et al., 1986), thrombodulin (Glaser et al., 1992) and tissue factor pathway 

inhibitor (TFPI) (Golino et al., 1995). 

Platelets, which play a major role in thrombus formation are a prime target for oxidants 

produced or released in the vascular lumen and at the same time are also capable of 

endogenous generation of oxidants (Finazzi-agro et aL, 1982; Del Principe et aL, 

1991). Previous research investigating the effects of oxidants on platelet aggregation 

is misleading. Some investigators have described an inhibitory effect of oxidants on 

platelets and others have reported that oxidants enhanced platelet aggregation 

(Ambrosio et aL, 1997). These discrepancies may be the result of differences in 

experimental protocols. Relationships between oxidant stress and platelet 

aggregation, to date, have demonstrated that H202 plays an inhibitory role when 

platelets are exposed (Ambrosio et al., 1997). According to Ambrosio et a/ (1997) 02' 

demonstrated a lack of effect on platelet aggregation. Other studies have shown 02' 

as having an pro-aggregatory role, but this finding was found after platelets were 

washed in buffer which lacks the endogenous scavengers usually present in plasma 

(Ambrosio et al., 1997). However this effect has been shown to be lost when platelets 
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are resuspended in plasma which indicates that the effects of 02' on platelets may 

have limited pathophysiological relevance. 

Several mechanisms are associated with the complex effects of oxidants on platelets. 

For example, adenylate cyclase and guanylate cyclase both control platelet 

aggregation. Oxidant exposure to plasma resuspended platelets had no effect on 

basal cAMP (Ambrosio et aL, 1994). However exposure to H202 caused an impaired 

aggregation alongside a 10-fold increase in platelet concentration of cGMP (Ambrosio 

et aL, 1994). Cyclooxygenase, a key enzyme of prostanoid metabolisms, is also 

affected by oxidants, mainly H202. For example arachidonic acid-dependent 

aggregation was almost completely suppressed in the presence of CAT (Ambrosio et 

aL, 1994). Therefore low level production of H202 seems necessary to promote 

thromboxane synthesis, and hence platelet aggregation in response to arachidonic aid 

stimulation (Ambrosio et al., 1997). Another possible mechanism by which oxidants 

may influence platelet aggregation is through potentiation of the effects of platelet- 

activating factor (PAF). PAF is an auta-coid released by platelets and other cell types 

e. g. endothelium and leukocytes, which acts at low concentrations on platelets. 02 

radicals may enhance platelet aggregation through local increases in PAF 

concentrations secondary to reduced breakdown of PAF (Ambrosio et al., 1997). For 

example 02' administration in dogs indicated that PAF-mediated aggregation of 

platelets resuspended in plasma, reduced significantly whilst plasma acetylhydrolase 

activity was preserved (Yao et aL, 1993). Finally, platelet aggregation is influenced by 

NO availability (Chen et aL, 1996). Impaired NO degraded by 02 derived free-radicals 

have been shown to enhance platelet aggregation (Chen et al., 1996). 

In summary, ROS may affect thrombus formation within the vasculature through 

several mechanisms. Oxidants may enhance the activity of the extrinsic coagulation 
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cascade, leading to thrombin formation (via effects in stimulation of tissue factor activity 

and inhibition of fibrinolytic pathways) (Ambrosio et aL, 1997). In addition, oxidants 

may have a complex effect on platelets. For example H202 may inhibit aggregation 

(Ambrosio et al., 1994) whilst 02' may inactivate EDRF and PAF-acetylhydrolase and 

enhance thrombin formation via TF (Ambrosio et aL, 1997). However the net effects of 

oxidants on intravascular thrombosis is dependent on the integrity of the endothelium 

as well as on oxidant-mediated alterations of other major players in thrombosis, such 

as endothelial-derived relaxing factor and coagulation factors (Ambrosio et aL, 1997). 

Although there is a complex relationship between oxidant stress and platelet 

aggregation, weight management or antioxidant therapy may have a indirect effect on 

reducing platelet aggregation through reducing oxidant stress, potentially reducing the 

risk of CVD. 
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Chapter THREE 

General Methodology 



3.0 Introduction 

This chapter outlines the full details of equipment used and testing procedures used in 

the studies described in this thesis. 

3.1 Haematological measurements 

3.1.1 Blood sampling 

Blood sampling was carried out by several technicians with previous experience and 

qualifications in the methods employed. To standardise blood handling and minimise 

inter-subject analytical variation, the same technicians were used for each subject. All 

venous blood sampling was completed after a 12 h fast because it has been shown 

that diet may adversely affect several blood borne metabolites, in particular plasma 

lipids and lipoproteins (Pronk et al., 1993). Blood was obtained from a forearm ante- 

cubital vein (venous vein) and from finger-tip (arterialised capillary blood). The 

equations of Dill and Costill (1974) were used to correct and control for exercise 

induced plasma volume shifts. 

3.1.2 Collection of venous blood 

Each subject assumed a supine position and a tourniquet was fixed above the distal 

region of the subject's bicep (Bachorik, 1982). Venous blood samples were drawn 

after sterilising the forearm with a sterilised swab saturated with 70% (v/v) isopropyl 

alcohol (Medi Swab, Smith and Nephew, UK), using the syringe method. For platelet 

aggregation blood samples the tourniquet was released and blood was collected. The 

first 5m1 of blood for platelet aggregation was discarded. 
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After immediate venous blood collection, blood was transferred to some or all of the 

following tubes (depending on the study) 

  di-potassium ethylene diamine tetra-acetic acid (K2EDTA) and mixed thoroughly. 

  Serum separation tube (allowed to clot at room temperature for 30 minutes before 

centrifugation) and mixed thoroughly. 

  Plain tubes containing sodium citrate as anti-coagulant (assessment of 

haemoglobin (Hb), haematocrit (Hct) and packed cell volume and platelet 

aggregation). 

  Blood (200pl of EDTA) placed into a plain tube for assessment of GSH. 

EDTA and serum separation tubes were then centrifuged at 3000rpm for 10 minutes. 

Plasma and serum were removed using a1 ml pipette and transferred to 1.5 ml plastic 

vials. Plasma and serum aliquots were stored at -70°C and -20°C before biochemical 

analysis. 

3.1.3 Collection of arterialised capillary blood 

The volunteer's finger-tip (usually index finger) was wiped clean with a sterilised swab 

saturated with 70% (v/v) isopropyl alcohol (Medi Swab, Smith and Nephew, UK) and 

then the sample site was punctured using a sterile stainless lancet (Lancet, Sheffield, 

UK). Subsequent blood was wiped clean with medical grade cotton wool. To obtain a 

blood sample, gentle pressure was applied to the site using the thumb and index finger. 

Arterialised capillary blood was used to measure glucose, Hct and Hb. 
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3.1.4 Packed cell volume (PCV) 

A 75mm (59µI) volume heparinised capillary tube (Hawksley and Sons Limited, 

Sussex, UK) was used to collect arterialised capillary blood from the subject's finger- 

tip. An air bubble free sample was then sealed at the distal end with cristaseal 

(Hawkley and Sons Limited, Sussex, UK) and carefully inserted into a micro Hct 

centrifuge (Hawkley and Sons Limited, Sussex, UK) with the sealed end facing 

outwards. The capillary sample was immediately centrifuged at 11,800 revolutions per 

minute (rpm) for four minutes and the subsequent packed erythrocytes were measured 

using a Hawksley Micro Hct Reader (Hawksley and Sons Limited, Sussex, UK). The 

value expressed in L. L" of whole blood was subsequently corrected by 1.5% for 

plasma trapped between erythrocytes (Dacie and Lewis, 1968). Packed cell volume 

was measured in duplicate. The intra- and interassay variation for packed cell volume 

using a Hawksley Micro Hct Reader are 1% and <5%, respectively. 

3.1.4.1 Packed cell volume (PCV): PlateletWorks® 

The PlateletWorks® machine (see Section 3.1.14.2) for assessment of platelet 

aggregation also provided a full blood count including a measure of Hct and Hb. The 

intra- and interassay variation for packed cell volume using PlateletWorks are 7% and 

8%, respectively. 

3.1.5 Haemoglobin (Hb) 

The concentration of Hb in whole blood was measured photometrically following the 

method outlined by Vanzetti (1966). The procedure involves the release of 
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haemoglobin from haemolysed erythrocytes by sodium deoxycholate. Hb is converted 

to methemoglobin by sodium nitrite, which together with sodium azide forms 

azidemethemoglobin. The absorbance was subsequently measured at 570 and 

880nm. This method has been validated against the established haemiglobincyanide 

(HiCN) method. Following calibration with an optical interference filter (Hb = 13.7 g. dL- 

1 (8.7mmol. L-1) ± 0.3g. dL-1 (0.2mmol. L-1), arterialised capillary blood was collected 

from the finger tip (10µI) in a microcuvette (HemoCue B-Haemoglobin, Sheffield, UK). 

The microcuvette was inserted into the photometer (HemoCue B-Hemoglobin, 

Sheffield, UK) and a digital result was obtained in approximately 25 seconds. The 

intra- and interassay variation for haemoglobin using HemoCue are 5.5% and 5.6%, 

respectively. 

3.1.5.1 Haemoglobin (Hb): PlateletWorks® 

The PlateletWorks® machine (Section 3.1.14.2) for assessment of platelet aggregation 

also provided a full blood count including a measure of Hb. The intra- and interassay 

variation for haemoglobin using PlateletWorks® are 7% and 8%, respectively. 

3.1.6 Glucose analysis 

Glucose was measured in either of two ways, which was dependent on the location of 

the research study. At the exercise physiology laboratories in Bedford, glucose was 

measured immediately following blood collection using a YSI 2300 Stat Plus Glucose 

and L-Lactate analyser. At the Centre for Obesity Research, plasma was stored in the 

freezer for later analysis using the glucose oxidase assay method. 
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3.1.6.1 YSI 2300 Stat Plus Glucose and L-lactate analyser (YSI Incorporated) 

This was a commercial analyser which measured glucose in whole blood samples 

(25pl). The YSI incorporates immbolized enzyme technology. Specific to glucose 

measurement, the enzyme glucose oxidase is immbolized between two membrane 

layers, polycarbonate and cellulose acetate. The glucose substrate and 02 molecules 

are oxidised in the presence of glucose oxidase as it enters the membrane layers of 

polycarbonate, producing H202, which passes through the cellulose acetate to a 

platinum electrode, where the H202 is oxidized. The resulting current is proportional to 

the concentration of the glucose substrate. Results were expressed as mmol/L. 

Glucose measurement 

D-Glucose + 02 

H202 measurement 

H202 
Platinum node 

glucose oxidase 

2H++02+2e' 

D-glucono-b-Iactone + H202 

The intra- and interassay variation for glucose using YSI are <3% and 5%, 

respectively. 

3.1.6.2 Glucose oxidase assay (enzymatic calorimetry) 

Plasma glucose was measured using the glucose oxidase method described by 

Barham and Trinder (1972). Glucose is oxidized to gluconate by atmospheric oxygen 

in the presence of glucose oxidase (GOD). The indicator 4-aminophenazone and 
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phenol are oxidized by the H202 formed in the presence of peroxidase (POD). The test 

principle of the glucose oxidase method is shown below: 

Glucose + 02 + H2O º gluconate + H202 
GOD 

H202+ 4-aminophenazone + phenol º 4-(p-benxoquinone-mono-imino)- 
POD 

phenazone + 4H20 

The intensity of the colour (red - violet quinoneimine dye) produced is proportional to 

the glucose concentration in the sample and colour intensity was measured at 546 nm. 

The glucose reagent was supplied by Randox Ltd, UK. Results were expressed as 

mmol/L. The intra- and interassay variation for glucose using the glucose oxidase 

assay are 1.8% and 2.6%, respectively. 

3.1.7 Fructosamine analysis 

Fructosamine is a time-averaged indicator of blood glucose levels and is used to 

assess the glycaemic status of diabetics (Armbruster, 1987). The concentration of 

glycated proteins such as glycohaemoglobin, glycoalbumin or glycated total protein is 

generally recognized to be valuable in evaluating the glycaemic status of diabetic 

patients. 

In the present studies serum fasting fructosamine concentration was measured 

according to the colorimetric assay method described by Johnson et a/ (1983). 

Fructosamine from the sample is present in an alkaline medium (reagent solution at pH 

10.3) in the enol form, which reduces nitrotetrazolium-blue (NBT) to a formazan 

compound. The rate of formation of formazan is directly proportional to the 
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concentration of fructosamine presence in the sample. The rate of reaction was 

measured at 546nm. The fructosamine reagent kit was supplied by Roche 

Diagnostics, UK. Results are expressed as mmol/L. The intra- and interassay 

variation for fructosamine are 0.9% and 2.9%, respectively 

3.1.8 Total cholesterol analysis 

Plasma cholesterol concentrations were measured by the method of Richmond (1973), 

Roeschlau et al (1974) and Trinder (1969). Cholesterol esters were first hydrolyzed 

into cholesterol and fatty acids in the presence of cholesterol esterase. Free 

cholesterol was then oxidized into cholestenone by atmospheric 02 in the presence of 

cholesterol oxidase, which also produces H202. This latter compound then oxidised an 

incorporated indicator 4-aminoantipyrine and phenol to quinoneimine and H2O in the 

presence of POD. 

Cholesterol-ester + H2O º Cholesterol + Fatty acids 
MMIAQfA71I AQtAlAQA 

Cholesterol + 02 º Cholestene-3-one + H202 
(: hnlnctnmi nvifl'. IQA 

2H202 + phenol + 4-Aminoantipyrine º quinoneimine + 4H20 
POD 

The intensity of the colour (blue coloured complex) produced was proportional to the 

cholesterol concentration in the sample and colour intensity was measured at 546 nm. 

The cholesterol reagent kit was supplied by Randox Ltd, UK and results were 

expressed as mmol/L. The intra- and interassay variation for cholesterol are 2.11 % 

and 2.52%, respectively. 
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3.1.9 Triglycerides analysis 

Plasma triglycerides were measured using the method described by Tietz (1990), 

Jacobs and Vandemark (1960) and Koditschek and Umbreit (1969). The triglycerides 

were first hydrolysed into glycerol and FFA by lipase. The glycerol was then 

phosphorylated into L-a-glycerol phosphate by glycerokinase (GK) and ATP in the 

presence of magnesium (Mg2+) ions. The glycerol phosphate was then oxidised by 

atmospheric oxygen into hydroxyacetone phosphate and H202 in the presence of L-a- 

glycerol phosphate oxidase (GPO). 

Triglycerides + H2O j glycerol + fatty acids 
lipases 

Glycerol + ATP P glycerol-3-phosphate + ADP 
GK 

Glycerol-3-phosphate + 02 º dihydroxyacetone phosphate + H202 
GPO 

2H202 + 4-aminophenazone +4 chlorophenol º quinoneimine + HCI + 4H20 
POD 

Finally, H202 oxidised an incorporated indicator 4-aminophenazone and 4 chlorophenol 

to quinoneimine, HCI and H2O in the presence of POD. The blue coloured complex 

was measured at 500nm. The triglycerides kit was supplied by Randox Ltd, UK and 

results were expressed as mmoVL. The intra- and interassay variation for triglycerides 

are 2.32% and 3.55%, respectively. 
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3.1.10 High density lipoprotein (HDL) cholesterol analysis 

Plasma HDL concentrations were measured by the method of Izawa (1990). The 

assay consists of two distinct reaction steps: 

1) Elimination of chylomicron, VLDL-Cholesterol and LDL Cholesterol by 

cholesterol esterase, cholesterol oxidase and subsequently CAT. 

The enzyme cholesterol esterase catalyses the cleavage of cholesterol esters into 

cholesterol and the corresponding fatty acid. In the presence of 02, free cholesterol is 

oxidized by means of cholesterol oxidase to produce cholesternone and H202. The 

non-HDL-derived peroxidase is then scavenged by the enzyme CAT to 02 and H20. 

Cholesterol ester o cholesterol + fatty acid 
Cholesterol esterase 

Cholesterol + 02 º Cholestenone + H202 
(: hnlactami nYVIaCa 

2H202 l 2H20 + 02 
CAT 

2) Specific measurement of HDL-Cholesterol after release of HDL-Cholesterol 

An inhibitor of CAT and a surfactant releases specifically HDL-C to produce 

cholestenone and H202. The H202 converts the reduced form of the indicator 4-(4- 

dim ethyl aminophenyl)-5-methyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-imidazole 

dihydrochoride into a blue (oxidized) form, provided POD is present. The concentration 

of the blue dye is proportional to the concentration of HDL in the sample and the colour 
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intensity was measured at 500nm. The HDL kit was supplied by Randox Ltd, UK and 

results were expressed as mmoVL. 

HDL + CAT inhibitor Cholestenone + H202 

2H202 + *4-AA + *HDAOS º Quinone pigment + 4H20 
POD 

*Key 4-AA =4- Aminoantipyrine 

HDAOS =N- (2 - hydroxy -3- sulfopropyl) - 3.5 - dimethoxyaniline 

The intra- and interassay variation for HDL are 2.24 and 3.4% , respectively. 

3.1.11 Low density lipoprotein (LDL) cholesterol estimation 

Often LDL is calculated using the empirical equation of Friedewald et a/ (1972), which 

incorporates primary measures of total cholesterol, triglycerides and HDL cholesterol. 

In this study LDL concentration of the samples were estimated by the Friedewald 

equation which is shown below. Results were expressed as mmoVL. 

LDL Cholesterol = [Total cholesterol] - [HDL cholesterol] - Triglycerides 

2.2 

3.1.12 Lipid peroxidation measurements 

Lipid peroxidation is a repetitive process whereby PUFA molecules are degraded to a 

variety of end products as highlighted in Section 1.11. The following technique was 

used to determine peroxidation of lipids in human blood. 
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3.1.12.1 Serum lipid hydroperoxide (LH) 

Hydroperoxides in biological systems can be measured by High Performance Liquid 

Chromatography (HPLC) coupled with electrochemical determination, 

chemiluminescence, activation of cyclooxygenase and various methods that 

incorporate thiobarbituric acid (TBA). The TBA methods are most widely used, but are 

also criticised on grounds of both their ambiguity and underestimation of extent of LHs 

(Nourooz-Zadeh et al., 1994). There are two simple and reliable spectrophotometric 

methods in which LHs can be determined in vivo. Both methods are known as the 

`FOX' (Ferrous Oxidation of Xylenol orange) assays and are differentiated by the terms 

FOX 1 and FOX 2. 

Aqueous phase LHs were measured using the methods of Wolff (1994); FOX 1 assay, 

which is best suited for the determination of small levels of H202 in aqueous samples. 

At low pH (dilute acid) hydroperoxides oxidise Fe 2+ to Fe 3+ and the resultant Fe 3+ are 

used as an indirect measure of hydroperoxide content, which can be detected by ferric- 

sensitive dyes. A blue-purple coloured complex is produced with the selective binding 

of xylenol orange to the Fe3+. The absorption could then be measured at 560nm. 

Fe 3+ + XO º blue-purple complex (560nm) 

The LH assay method was as followed: 

Serum (90µI) was incubated with 10µI CAT for 30 minutes at room temperature. To 

this solution 900gI FOX reagent 1 (250µmol/L ammonium ferrous sulphate, 100µmoVL 

xylenol orange, 100µmol/L sorbitol, 25pmol/L sulphuric acid (H2SO4), was added and 

incubated for a further 30 minutes at room temperature in the dark. Standard solutions 

were prepared using 0-5. OpmoVL of H2O2, which were then incubated for 30 minutes 
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with the FOX 1 reagent after which the sample was centrifuged in a Beckman 

microfuge for 5 minutes to remove any flocculated material. The absorbance of the 

supernatant was read spectrophotometrically (U-2001, Hitachi, England) at 560nm 

against the standard curve that was linear over the range 0-5pmol/L. Plasma samples 

were spiked with the enzyme CAT (Sigma, Dorset) to discriminate between authentic 

hydroperoxides reacting with Fe2+ and H202 in the sample. All chemicals were 

purchased from Sigma-Aldrich (Poole, Dorest) unless otherwise stated. 

This assay may yield higher LH values compared to other methods because of the 

presence of iron ions in the assay (Young and McEneny, 2001). The FOX 1 assay was 

used in preference to the FOX 2 assay, following personal communication with Dr Jane 

McEneny, (Queen's Belfast University). The FOX 1 assay had been found to be very 

reproducible with intra- and interassay co-variances of less than 5%, whilst the FOX 2 

assay was less reliable. In this thesis, the intra- and interassay variation for LH are 2% 

and 4%, respectively. 

3.1.13 Determination of antioxidant capacity (non enzymatic and enzymatic) 

This section describes the various procedures and techniques employed to determine 

various antioxidant activity in venous blood. 

3.1.13.1 Total Antioxidant Status (TAS) 

It is impractical to measure all the potentially biologically active antioxidants in human 

samples, but because there is evidence that antioxidants can work simultaneously 

(Halliwell and Gutteridge, 1999), the concept of a 'global' assessment of antioxidant 
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capacity has proved attractive for use in clinical research. Several methods have been 

developed, which may take one of two main approaches; either the quenching or 

delayed production of a stable, measurable radical species, or the reductant properties 

of the antioxidants against a radical cation or a metal ion (Schlesier of al., 2002). An 

example of the former is the TRAP assay (Total radical-trapping antioxidant parameter 

assay) and the latter the FRAP assay (Ferric reducing/antioxidant power assay) 

(Benzie and Strain, 1996). Because these methods use different reaction principles, 

the same antioxidant can produce different contributions to each assay. Vitamins that 

can contribute to TAS are ascorbate, a-tocopherol, and 0-carotene. One major 

drawback of TAS methods is the variable contribution of common plasma constituents, 

particularly albumin and urate. Changes in circulation of these molecules due to 

changes in renal function can alter values without reflecting changes in antioxidant 

concentration. However this problem may be overcome by the use of the 'antioxidant 

gap', a derived value, which subtracts the trolox-equivalence of albumin and urate from 

the measured TAS (Miller of al., 1997). Although measures of TAS are unable to 

detect changes in individual antioxidants, they can be used as a tool to assess redox 

status and may be useful in providing information on the absorption and bioavailability 

of the nutritional complex (Ghiselli of al., 2000). 

In the present studies, the FRAP method was used to assess TAS (Benzie and Strain, 

1996). This test measures the ferric reducing ability of plasma. At low pH, when a 
ferric-tripyridyltriazine (Fe3+-TPTZ) complex is reduced to the Fe 2+ form, an intense blue 

colour with an absorption maximum at 593nm develops. 

The TAS method is as follows with some modification to the protocol of Benzie and 

Strain, (1996). Freshly prepared FRAP reagent (300µL) [300mmol/litre acetate buffer, 
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pH 3.6 (3.1 gC2H3NaO2.3H2O and 16ml C2H402 per litre of buffer solution; 10mmol/L 

TPTZ (2,4,6-tripyridyl-s-triazine) in 40mmol/L HCI; 20mmol/L FeCI3.6H20)]. Working 

FRAP reagent was prepared as required by mixing 25m1 acetate buffer, 2.5m1 TPTZ 

solution and 2.5ml FeCl3.6H2O solution and was warmed to 37°C which was then read 

at 593nm. Sample (10µL) was then added to the FRAP reagent along with 30µL H20- 

Absorbance readings were taken after two minutes. The change in absorbance 

(AA593nm) between the final reading (two minutes) and the initial reading was 

calculated for each sample and related to AA593nm of a Fe2+ standard solution tested 

in parallel. Benzie and Strain (1996) studied the FRAP reaction for up to 8 minutes, but 

selected 4-minute readings for calculations. The readings after 2 minutes were used in 

the present studies as it was found that the FRAP reactions in plasma samples 

reached an end-point around this time. The intra- and interassay variation for total 

antioxidant status are 1% and 3%, respectively. 

3.1.13.2 Superoxide dismutase (SOD) 

SOD was first identified and purified from red cells by McCord and Fridovich (1969). It 

has since been detected in a large number of tissues and its purpose is essential to the 

red cell for the detoxification of 02 and plays a protective role similar to that of the 

GSH-GSH Px system. 

In the present studies, SOD activity was assessed using a method developed by 

Winterbourn et al (1975). The assay is based on the method of Beauchamp and 

Fridovich (1971) and depends on the ability of the enzyme to inhibit the reduction of 

nitroblue tetrazolium (NBT) by 02", which is generated by the reaction of photoreduced 

riboflavin and 02. 
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SOD was measured as described below: 

Blood was collected in EDTA tubes and plasma and the majority of white cells were 

removed. The red cells were washed twice with saline (0.9% w/v), then haemolyzed by 

adding approximately 1.5 volumes of water. 

Hb concentrations were measured and samples adjusted to 10gm/100 ml. A 

chloroform-ethanol extract was prepared (0.5ml hemolysate, 3.5m1 ice-cold distilled 

water, 1.0ml ethanol and 0.6ml chloroform). When preparing the chloroform-ethanol 

extract, the solution was mixed at each addition and shaken for 1 minute. Tubes were 

then centrifuged for 10 minutes at 3000 rpm. 

Another stock solution was prepared (M/15 phosphate buffer, pH 7.8,0.11M EDTA 

containing 1.5mg of sodium cyanide per 100ml; 0.12mM riboflavin (4.5mg per 100ml) 

stored cold in a dark bottle; and 1.5mM NBT (12.3mg per 10 ml), stored cold (5°C). 

For each sample to be assayed, six tubes were set up containing 10,20,40,60,80 

and 500pl red cell extract, plus 0.2ml EDTA/NaCN, 0.1 ml NBT, 0.05m1 riboflavin 

(added last after tubes had been brought to ambient temperature, 20-22°C) and 

phosphate buffer to give a total volume of 3m1. Three tubes containing no red cell 

extract was also included per test run. The tubes were then placed in a light box to 

receive uniform illumination for a standard period of 12 minutes. Optical densities of 

the tubes were then measured using a spectrophotometer at 560nm. 

Results were expressed as units of SOD per gram of Hb. One unit is defined as the 

amount of enzyme causing half of the maximum inhibition of NBT reduction. This unit 

depends on the conditions of the assay, namely light intensity, riboflavin and NBT 

concentrations. Percentage inhibition is calculated from each optical density and the 
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value in the absence of enzyme and plotted against the amount of red cell extract (up 

to 80p1). The tube containing 500pL extract gives maximum inhibition (maximum 

inhibition is also given by 200NL of extract from normal cells, so 500PL is well in excess 

of the minimum requirement). The amount of extract (VpL) which gives half this 

inhibition (1 unit) is determined from the graph plotted above. Since the extract is 

equivalent to a1 Gm per 100ml Hb solution, the red cell enzyme activity is 

100,000 units per gram of Hb 

V 

The red cell SOD activity in healthy adults is between 2,400 to 3,700 units per gram of 

Hb with a mean value of 2,900 units. The intra- and interassay variation for superoxide 

dismutase are 4% and 5.5%, respectively 

3.1.13.3 Reduced glutathione (GSH) 

GSH -a tripeptide consisting of glutamic acid cysteine and glycine acts as a substrate 

for the enzyme GSH-Px. As such it is an important component of the body's 

intracellular antioxidant defences. In particular, GSH functions to protect cellular 

proteins from thiol oxidation. When challenged with oxidative stress, intracellular GSH 

rapidly oxidises to GSSG. Oxidised GSSG produced intracellularly is converted back 

to GSH by glutathione reductase, requiring NADPH as a cofactor. 

In the present studies, GSH was measured using a method developed by Beutler 

(1975). Viritually all of the nonprotein sulfhydryl compounds of red cells are in the form 

of GSH so the assay incorporates 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) as a 
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disulfide compound to readily reduce sulfhydryl compounds to form a highly coloured 

yellow anion (Beutler, 1975). 

GSH was measured using the method described below: 

Whole blood (EDTA) (200pL) was added to 2. Oml of distilled water. Lyzate (200pL) 

was then removed and stored at -20°C for estimation of Hb. Precipitating solution 

(3m1) (one hundred millilitres containing 1.67g of glacial metaphosphoric acid, 0.2g of 

disodium EDTA and 30g of sodium chloride) was added to the remaining 2m1 of 

haemolyzate. After standing for 5 minutes the mixture was filtered through medium 

grade of filter paper and was stored in eppendorf tubes at -20°C. 

During analysis, 2. Oml of filtrate was added to 8ml of 0.3 M Na2HPO4 solution in a 

cuvette. The absorbance was read at 412nm against a blank (prepared by adding 2ml 

of 2: 5 water diluted precipitating solution to 8m1 of phosphate solution). A second 

optical density reading was taken after 1 ml of DTNB reagent (20 milligrams of DTNB 

per 100 ml of 1% sodium citrate solution) had been added to the blank cuvette and the 

cuvette containing filtrate. 

Results are expressed as GSH in micromoles / gram of Hb. The calculation used was 

as follows: 

C= (OD2 - OD, ) X Ei X 11 X5X 100 

1000 13,600 22 Hb 

C= (OD, - OD, ) X E, X 101 

Hb 
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E1 is the molar extinction coefficient of the yellow anion produced when GSH Interacts 

with DTNB. However this value changes when different light path and band widths are 

used for analysis. For example a band width greater than 6 nm may produce a lower 

extinction coefficient. The extinction coefficient can be calculated by performing a GSH 

determination and reading an aliquot in a spectrophotometer with a narrow slit in a1 

cm cuvette to obtain the extinction value D1. An aliquot of the same sample is then 

read in the system being calibrated, obtaining a second optical density reading D2. 

E1 = D, 

D2 

OD, is the optical density measured at 412nm before the addition of DTNB solution, 

and OD2 is the optical density after the addition of DNTB. 

The red cells of GSH activity in healthy adults is approximately 6.57±1.04gmoles of 

GSH /g Hb. The intra- and interassay variation for reduced glutathione are 5% and 

6%, respectively. 

3.1.13.4 Selenium 

Selenium concentrations in plasma were determined by a Varian model SprectrAA-880 

Zeeman graphite furnace atomic absorption spectrometer (GFAAS, Varian, UK) with 

software SpecrAA-880 following the method of Knowles and Brodie (1988). In brief, 

plasma samples were diluted 1/10 by using a sample diluent. The sample diluent was 

prepared by dissolving 0.56g of ascorbic acid (DBH/AnalaR g, Grade, UK), 0.88ml of 

TritonX-100 (BDH, UK), 1 ml of Antifoam B and 0.1 ml of hydrochloric acid, made up to 

1.0L with deionized water. The 20p1 of plasma sample was injected into the graphite 

furnace with a modifier solution (500mg palladium, 0.05% Triton X-100 and 0.1% 
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Antifoam B). By using the auto sampler facility of the GFAAS the calibration curve was 

prepared from the stock solution of selenium (1 mg/L) by mixing the appropriate 

volume. The hallow cathode lamp from selenium was operate at 20mA and 

absorbance was measured at 196nm. The analysis was performed in duplicate and 

results expressed as pg/L. Reagents were supplied by Sigma-Aldrich, UK. The intra- 

and interassay variation for total antioxidant status are 1% and 3%, respectively. 

3.1.14 Platelet aggregation assessment 

Platelet aggregation was assessed by several methods in a preliminary experiment to 

determine a suitable protocol to assess platelet function (see methodology section . 10). 

The two platelet aggregation methods include platelet aggregometry and 

PlateletWorks®, which are both explained in detail below. 

3.1.14.1 Platelet Aggregometry 

Platelet aggregometry is the `gold-standard' for assessment of platelet function, which 

measures platelet aggregation in the presence of an agonist by optical methods. In 

general there are four independently operated aggregation channels. Platelet poor 

plasma (PPP) is inserted into the machine and platelet aggregation is started at 0%. 

This activates the printer to record platelet aggregation and then the platelet rich 

plasma (PRP) is placed into the machine. The reagent (agonist, ADP) is then added to 

the PRP and platelet aggregation is stimulated which is recorded and printed until 

aggregation is completed. 

Platelet aggregation was measured using the method of Born (1962). 
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Whole blood (4.5m1) was added to 0.5m1 sodium citrate in a plain plastic tube which 

was centrifuged for 10 minutes at 1000 rpm to obtain PRP. The remaining blood was 

centrifuged for a further 10 minutes at 3000 rpm to obtain PPP. 

PRP (200µL) was pipetted into an aggregation cuvette and placed in an incubation 

block for 3 minutes. PPP (200µL) was pipetted into an aggregation cuvette and placed 

in the aggregometer to set '100%' transmission. After 3 minutes, the PRP cuvette 

(including magnetic stir bar) was inserted into the aggregometer to set 0% 

transmission. When the platelet aggregometer was zeroed, the stable baseline was 

obtained with PRP for 30 seconds to 1 minute before the agonist was added to record 

the platelet aggregation response. 

For the assessment of platelet aggregation, several ADP concentrations were used. 

The ADP stock solutions were prepared on the day of testing using stock solutions 

equivalent to 10mM, which were kept stored at -20°C. Final ADP concentrations of 20, 

15 and 1 0pM were used. 

Results for platelet aggregation tests were calculated for percent maximum following 4 

minutes. The intra- and interassay variation for platelet aggregation using a platelet 

aggregometer are 8.7% and <10%, respectively. 

3.1.14.2 PlateletWorks® 

Plateletworks® methodology is an adaptation of platelet aggregometry, which is 

extremely simple, inexpensive and quick to perform. This two-step method involved 

using an automated cell counter to measure total platelet count in whole blood and 

then re-determines the number of platelets on a second sample that has been exposed 
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to a known platelet agonist. The agonist stimulates the platelets which are functional to 

aggregate in clumps, and they will therefore be counted as platelets in the second 

sample. The difference in the platelet count between samples one and two provides a 

direct measurement of platelet aggregation and is reported as percent aggregation as 

per the following equation. 

Baseline Platelet Count - Agonist Platelet Count x 100% =% Aggregation 

Baseline Platelet Count 

Whole blood (1 ml) was added to 4 plain plastic tubes each containing 111 pL sodium 

citrate, and varying degrees of ADP concentration added to give a final concentration 

of 20pM, 15pM and 10pM or OpM. The ADP stock solutions were prepared on the day 

of testing using stock solutions equivalent to 10mM, which were kept stored at -20°C. 

The baseline tube (no agonist) was inverted 3-5 times to mix the whole blood with the 

anticoagulant which was then run on PlateletWorks® and platelet count recorded. The 

remaining tubes with varying ADP concentrations were Inverted 3-5 times and run on 

PlateletWorks® and platelet count recorded. The percentage aggregation was then 

calculated. The intra- and interassay variation for platelet aggregation using 

PlateletWorks® are 7.2% and <10%, respectively. 

3.2 Anthropometric measurements 

Several different techniques were used for anthropometric measurements, which were 

dependent on the location of the research studies. However all these measurements 

are described below. 
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3.2.1 Height 

Each subject was instructed to remove footwear prior to height measurement. Height 

was measured to the nearest 0.1cm using a wall-mounted stadiometer in the Exercise 

Physiology laboratories at De Montfort University in Bedford and a free-standing 

stadiometer at the Centre for Obesity Research, Luton and Dunstable Hospital. 

3.2.2 Weight 

Each subject was instructed to wear light clothing and remove footwear prior to weight 

measurement. Weight was measured to the nearest 0.1 kg using a free-standing 

stadiometer (Seca model 713, Cophenhagen, Denmark) in the Exercise Physiology 

laboratories at De Montfort University in Bedford and a Tanita weighing scale at the 

Centre for Obesity Research, Luton and Dunstable Hospital. 

3.2.3 Waist Circumference 

Waist circumference was measured at a point midway between the costal margin and 

the iliac crest and in line with the mid-axilla (WHO, 1995). The tape was pulled taut 

and a measurement to the nearest 1 mm was taken in mid-expiration with subjects 

standing straight with feet together, arms hanging loosely, and looking straight ahead. 
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3.2.4 Body fat 

3.2.4.1 Bioelectrical Impedance (BIA) 

BIA measurements were carried out with the subject lying in a supine position on a flat, 

nonconductive bed by using a multifrequency tetrapolar technique (QuadScan 4000; 

Bodystat, Douglas, United Kingdom). The Bodystat QuadScan 4000 unit has 4 

electrodes. Two electrodes were placed on the right wrist with one just proximal to the 

third metacarpophalangeal joint (positive) and one on the wrist next to the ulnar head 

(negative). Two electrodes were placed on the right ankle with one just proximal to the 

third metatarsophalangeal joint (positive) and one between the medial and lateral 

malleoli (negative). Multifrequency (5,50,100, and 200 kHz) currents were introduced 

from the positive leads and travelled throughout the body to the negative leads. Body 

fat percentage was calculated using the manufacturer's software. It is known that 

resistance depends positively on fat content of the body and negatively on total body 

fluids (Donadio et al., 2005). In addition, reactance, which expresses the capacitance 

of the body, is positively dependent from the number of cell membranes. Impedance is 

also low in the presence of high volumes of body fluids. In particular, impedance to the 

passage of a high-frequency current depends on total body fluids, whereas impedance 

to introduction of a low-frequency current depends only on extracellular fluids (Donadio 

et al., 2005). 

The intra- and interassay variation for body fat using bioelectrical impedance are 1.18% 

and <5%, respectively. 
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3.2.4.2 BodPod 

Whole body air displacement plethysmography was performed using the BodPod body 

composition system (Life Measurement Instruments, California, USA) according to the 

manufacturer's instructions and recommendations. Subjects wore a tight fitting 

swimsuit and swimming cap. The procedure involved a volume calibration with and 

without a 50 litre metal cylinder. Subjects entered the BodPod and sat inside the 

anterior chamber (450 litres), which was connected to a rear measuring chamber (300 

litres) via oscillating diaphragms (used to induce pressure changes in the anterior 

chamber), and breathed normally (relaxed tidal breathing). The recommended 

procedure, consisting of two measurements of body volume (50 seconds each), was 

adopted and when, occasionally, body volumes differed by more than 150 ml, the 

system required that a third measurement be performed. The final result reported by 

the BodPod instrumentation was the mean of the two (or the two closest) 

measurements. 

In summary the operating principles of whole body air displacement plethysmography 

technique is described below. In air-displacement plethysmography, the body volume 

is measured indirectly by the volume of air which is displaced inside an enclosed 

chamber (plethysmograph). Human body volume is therefore measured when a 

subject sits inside a chamber and displaces a volume of air equal to his or her body 

volume. Body volume is calculated indirectly by subtracting the volume of air remaining 

inside the chamber when the subject is inside from the volume of air in the chamber 

when it is empty. The air inside the chamber is measured by applying relevant physical 

gas laws. Boyle's Law states that at a constant temperature, volume (V) and pressure 

(P) are inversely related: P, / P2 = V2 / V1. However because body volume is affected 

by adiabatic conditions created by the subject's presence (this warmer air, 
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approximately 37°C, is more compressible than the ambient air), the BodPod software 

applies certain corrections to the thoracic gas volume (TGV; litres) and air next to the 

skin (using the surface area artefact, SAA; litres) to adjust to isothermal conditions to 

obtain each subject's actual body volume (Dempster et at, 1995). The final body 

volume calculation in the BodPod is as followed: 

Vbcorr (L) = Vbr, N (L) - SAA (L) + 40% VTQ (L) 

where Vb, 0R is the body volume corrected for SAA (the effect of isothermal air near the 

skin's surface is estimated by calculating a surface area artefact) and VTG (the average 

amount of air in the lungs during normal tidal breathing, thoracic gas volume, which is 

measured or predicted). 

Once body mass (M) and Vbcorr are known, the principles of densitometry are applied 

(Behnke et al., 1942; Sid, 1961). Body density is calculated as MNbcon and body 

density (Db) is then inserted into a standard formula for estimating percentage body fat 

based on a 2-compartment model, such as the models of Siri equation. 

% body fat = (495/Db) - 450 Siri equation 

The intra- and interassay variation for body fat using BodPod are 6.7% and 7.8%, 

respectively. 

3.3 Cardiovascular measurements 

3.3.1 Heart rate 

Two methods of calculating heart rate were utilised. One method involved calculating 

resting heart rate by palpating the radial artery at the wrist. Pulse was counted for 20 

seconds, then multiplied by three to give beats/min. The other method involved using a 
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Polar heart rate transmitter belt, worn over the chest. The transmitter belt detects the 

electrocardiogram of the heart and sends an electromagnetic signal to either the Polar 

wrist receiver or Metamax 3B CPX system (if being used) where heart rate information 

appears. 

3.3.2 Blood pressure 

Systemic arterial blood pressure (BP-mmHg) was measured in the brachial artery using 

a mercury sphygmomanometer and stethoscope. Systolic blood pressure was noted 

when clear muffling of repetitive tapping sounds (Korotkoff) became apparent and 

diastolic pressure was noted when the repetitive sounds (Korotkoff) diminished (Tortora 

and Grabowski, 1996). 

3.4 Respiratory measurements 

3.4.1 Douglas Bag method 

Off-line gas analysis was determined using the `gold standard', Douglas Bag method. 

Subjects breathed through a large 2-way non-returnable breathing valve. Expired air 

was directed into a Douglas bag through plastic tubing and a two-way stopcock valve. 

The collection of expired gas was hand timed using chronography to the nearest whole 
breath for a specific time period. Samples of expired air were dried using 97% 

anhydrous calcium sulfate (CaSO4) crystals and presented to a paramagnetic 02 and 

infra-red CO2 analyzer for the determination of percentage 02 and CO2. Before use, 

the analysers were calibrated using specialised gas mixtures. Computation of 02 

uptake and CO2 production corrected to STPD [STDP correction means conversion of 

the measuring environment BTPS (Body Temperature, Pressure Saturated) to STPD 
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(Standard Temperature, Pressure Dry) environment] was computed using the Haldane 

transformation equation (Wasserman of al., 1994). 

3.4.2 On-line gas analyser 

On-line V02 was measured using a Cortex gas analysis system (Metamax 3B, 

Birmingham, UK), which provided real-time breath-by-breath V02. Subjects breathed 

through a rubber mask attached to a DVT volume transducer, which was attached to 

the MetaMax Portable CPX system via a sample line. The MetaMax 3B was calibrated 

before each test using the Hans Rudolph 3 litre syringe for ventilation volume and 

standard gases of known 02 and VCO2 concentration. Respiratory parameters were 

converted from BTPS to STPD. The measured and calculated data was also 

smoothed (every two points) before obtaining numerical printouts. 

3.5 Treadmill 

The treadmill used at De Montfort University in Bedford was the PowerJog JX200 and 

at the Centre for Obesity Research, Luton and Dunstable Hospital, the Marquette 2000. 

Both treadmills were serviced and calibrated regularly. 

3.6 Rating of perceived exertion (RPE) 

Rating of perceived exertion (RPE) was estimated using Borg's Scale (1973). A 

numeric value which ranges from 6-20 could be selected to indicate a perceived rate of 

exertion from 'very very light' to 'maximum'. 
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3.7 Temperature and humidity regulation 

Room temperature was measured using a wall-mounted temperature and humidity 

gauge (Thermo-Hydro), which measured temperature and humidity to the nearest 

0.10C and 0.1% respectively. Barometric pressure was obtained from a wall-mounted 

barometer. 

3.8 Dietary analysis 

In the present studies, subjects were asked to record the quantity and type of food and 

beverage they consumed over several days or a week. This data was analysed using 

a computerised software package (Compeat, Nutrition Systems, Carlson Bengston 

Consultants Limited). 

3.9 Physical activity questionnaire 

The Baecke questionnaire (Baecke of al., 1982) was used as a short questionnaire for 

the measurement of habitual physical activity. The questionnaire was self- 

administered although if necessary help from an observer was provided. In summary 

this questionnaire contained 13 questions with three distinct dimensions; physical 

activity at work, sport during leisure centre and other physical activity during leisure 

time. The sum of all these dimensions allow calculation of a total physical activity 

score which refers to habitual physical activity. Each evaluation on the questionnaire 

allows the calculation of four different physical activity scores; a total physical activity 

score (Btoto,... 60), a sport-related physical activity sub- score (Bsporto,... so), a leisure-time- 

related physical activity sub-score (Bleisureo,... so) and an occupation-related physical 

activity sub-score (Boccupo,... 60)" 
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3.10 Preliminary experiment to develop and evaluate PlateletWorks®(1) 

3.10.1 INTRODUCTION 

The platelet aggregometer is the 'gold' standard method for the assessment of platelet 

aggregation (Born, 1962). But its methodology is highly labour intensive, expensive 

and the reproducibility of results is dependent on controlling many factors; temperature, 

pH, aggregometer speed, platelet count, sample volume and venepuncture technique 

(White and Jennings, 1999). This necessitated the development of several whole 

blood assays, such as PlateletWorks® which is an adaptation of platelet aggregometry 

and is extremely simple, inexpensive and quick to perform (Lau et al., 2002). Its use in 

exercise physiology per se is a relatively new phenomenon. With this in mind a 

preliminary experiment was completed to supplement the validity of platelet 

aggregation data reported in this thesis. 

This study assessed platelet aggregation techniques; platelet aggregometry and 

PlateletWorks® and established whether PlateletWorks® was a cost-effective, quick and 

reproducible measure of platelet aggregation, which could be used to predict clinical 

outcomes for research purposes. 

3.10.2 METHODOLOGY 

Subject Characteristics 

Ten (n=10) apparently healthy male and females (n=5/5, respectively) were recruited 

from the Luton and Dunstable Hospital to participate in the present study (see table 3.0 

for subject characteristics). Ten subjects were chosen as it had previously been 
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suggested that the generation and application of data on biological specimens could be 

obtained from a relatively small group of subjects over a reasonably short period of 

time (Fraser and Harris, 1989). The subjects had no known physician-diagnosed 

diseases or ailments as assessed by a medical history questionnaire. Subjects with 

hypertension, with or without hypertensive treatments, dyslipidaemia or CVD, any of 

those taking any antioxidant supplementations, nonsteroidal anti-inflammatory drugs or 

lose-dose aspirin and smokers were excluded from the study. Written informed 

consent was obtained from all the subjects after they were given a full explanation of 

the study. The research was given ethical approval by Bedfordshire Local Research 

Ethics Committee. 

Table 3.0. Subject characteristics 

Characteristic 

Age, yr 33 t 3.1 

BMI, kg/m2 25.4 1.1 

Weight, kg 74.1 t 3.1 

Values expressed as the mean±SEM. BMI, body mass index. 

Experimental design 

This study was broken up into two stages. 

Stage 1: Familiarisation and developmental 

Stage 2: Validity and reliability 

Stage 1 

Three of the ten subjects recruited visited the Centre for Obesity Research at the 

beginning of the study to enable the familiarisation and development of platelet 

aggregation methods to take place. Subjects attended the centre between 9-12am and 

were instructed to fast for 10-12 hours and refrain from exercise, caffeine and alcohol 
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for 48 hours before the study visit. Subjects were also told to maintain their usual 

dietary regimen. 

Stage 2 

Following the development stage, all ten subjects visited the Centre for Obesity 

Research on 3 separate occasions over a 3-week period. Subjects attended the centre 

between 8-10am and were instructed to fast for 10-12 hours and refrain from exercise, 

caffeine and alcohol for 48 hours before the study visit. Subjects were also told to 

maintain their usual dietary regimen. 

Anthropometric measures 

During visit one at stage two, height was measured without shoes using a stadiometer. 

Weight was measured using a Tanita weighing scale (see methodology section 3.2.1 

and 3.2.2). 

Venous blood sampling 

At each visit, in the supine position, blood samples (exactly 13.5m1) were collected from 

an antecubital vein using the syringe method (see methodology section 3.1). During 

venepuncture the tourniquet was released and the first 5m1 of blood for platelet 

aggregation was disposed of. 

PLATELET AGGREGATION METHODS 

Platelet aggregometry 

Platelet aggregation was measured using the method of Born (1962), as described in 

the methodology section 3.1.15.1. 
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PlateletWorksm 

Platelet aggregation was measured using a modified version of the manufacturer's 

guidelines, as described in the methodology section 3.1.15.2. 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value). The Shapiro-Wilk test confirmed that 

the data was normally distributed. The agreement between the two platelet 

aggregation methods was assessed using correlation analysis, Pearson, Kendal tau 

and Spearman rho and a statistical measure of agreement as reviewed by Bland and 

Altman (1986). The Bland and Altman approach allows for calculation of bias (mean of 

the individual differences between estimates) and the limits of agreement (+2 SD from 

the mean bias). Repeated measures ANOVA was used to test the significance of 

differences in % platelet aggregation between time periods. The data was analysed 

with two way (AxB) mixed analysis of ANOVA which incorporated one between 

(PlateletWorks® vs platelet aggregometer) and one within (time: Wk 1 vs Wk 2 vs Wk 

3) subject factor. Precision data are reported as mean (± SD) with coefficient of 

variation. P-values < 0.05 were regarded as statistically significant. Analyzes of data 

was performed using a computer software package (SPSS for Windows, Version 13.0). 
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3.10.3 RESULTS 

Stage 1 

Some minor changes were made to the PlateletWorks® methodology. The 

PlateletWorks® methodology uses two PlateletWorks® tubes (EDTA baseline tube 

(0.024mL of 7.5 % K3 EDTA solution (1.80mg) and an ADP tube (approximately 20µM 

ADP) to which 1. OmL fresh whole blood was added. In this study, four plain tubes with 

111µL sodium citrate (3.8% w/v) and varying concentrations of ADP (final 

concentration of 20,15,10 and OµM) were set up to obtain a detailed ADP-stimulated 

platelet aggregation response. 

Stage 2 

PlateletWorks® vs Platelet aggregometer 

Platelet aggregation in whole blood samples was determined using PlateletWorks® and 

compared with aggregation using PRP on the aggregometer at three ADP-induced 

platelet aggregation concentrations. Table 3.1 presents the established reference 

range of platelet aggregation at three different ADP concentrations (Final concentration 

of ADP was 10,15 and 20µM). It was demonstrated that the reference range for 

platelet aggregation at ADP-induced platelet aggregation 20µM was 81±3.0% for the 

platelet aggregometer and 81±1.3% for PlateletWorks®. At ADP concentration of 

15µM, platelet aggregation was 69.03±3.03% for the platelet aggregometer and 

68.1±4.1% for PlateletWorks®. At ADP concentration of 10µM, platelet aggregation 

was 60.87±3.68% and 53.1±5.3% for PlateletWorks®. 
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Regression analysis was performed on the ADP agonist data to evaluate the 

relationship between the two test modalities, namely platelet aggregometer and 

PlateletWorks® (r=0.64). The results from this analysis are shown in figure 3.0. Since 

correlation coefficients measure the strength of the relationship and not the agreement 

between them, these data were also analyzed using the non-parametric statistical 

analyzes of both Kendall tau (r=0.506) and Spearman rho (r=0.682) (see table 3.2). 

Table 3.1. Established reference range of platelet aggregation using platelet 

aggregometer and PlateletWorks® at various ADP-induced platelet aggregation 

concentrations. 

Method % Platelet aggregation 

N Mean SEM 

Platelet aggregometer 

10 4M 30 60.87 3.68 

15 µM 30 69.03 3.03 

20 µM 30 81.17 3.31 

PlateletWorks® 

10µM 30 53.1 5.3 

15µM 30 68.1 4.1 

20 µM 30 81.2 1.3 

Values expressed as the mean±SEM. 10,15 and 20µM, Final concentrations 

of ADP-induced platelet aggregation. For further details see text 
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Figure 3.0. Regression analysis to evaluate the relationship between two test 

modalities, namely platelet aggregometer and PlateletWorks®. Results were 

analyzed using Spearman rank correlation test. For further details see text. 

Table 3.2. Comparative analyzes to compare platelet aggregometer and 

PlateletWorks® for ADP-induced platelet aggregation. 

Agonist N Pearson ® Spearman rho Kendall tau 

ADP 90 0.64* 0.682* 0.506* 

ADP, platelet-induced agonist. Results analyzed using Pearson correlation test, 

Spearman rank correlation test and Kendall tau coefficient test and r values are given 

in the Table. (*, P<0.01). For further details see text. 

Using the Bland and Altman approach, figure 3.1 shows a comparison of platelet 

aggregation measured by a platelet aggregometer and PlateletWorks®. The mean 

difference was -2.9% with a 95% confidence interval between -29.7 to 23.9%. There 

was a clear tendency for the Plateletworks® to under-report platelet aggregation, by an 
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average of -2.9%. Despite this, the 95% confidence interval for the lower limit of 

agreement was from -34.5% to -24.9% and the 95% confidence interval for the upper 

limit of agreement was 19.1 to 28.7%. 
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Figure 3.1. Scatter plot (Bland-Altman plot) of PlateletWorks® ADP-induced platelet 

aggregation minus platelet aggregometer ADP-induced platelet aggregation (vertical 

axis) against mean of PlateletWorks® and platelet aggregometer ADP-induced platelet 

aggregation. The dashed horizontal line represents the mean difference and the dotted 

lines represent the 95% limits of agreements (n=90). For further details see text. 

Table 3.3. Intra- and interassay for ADP-induced platelet aggregation using two test 

modalities, namely platelet aggregometer and PlateletWorks®. 

Method Sample % Platelet aggregation CV (%) 

N Mean SD Mean SD 

Platelet aggregometer 90 70.36 13.5 8.66 5.03 

PlateletWorks® 90 67.45 16.76 7.20 6.86 

Values expressed as the meantSD. Reproducibility of % platelet aggregation 

analyzed using the coefficient of variation (CV %). For further details see text. 
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Intra- and interassay was tested for ADP-induced platelet aggregation (%) using the 

platelet aggregometer and PlateletWorks®. Intrassay was 67.5±16.8% for 

PlateletWorks® and 70.4±13.5% for the platelet aggregometer. The interassay was 8.7 

(SD 5.03)% for the platelet aggregometer and 7.2 (SD 6.86)% for PlateletWorks® and 

CV of % platelet aggregation ranged from 1.2 to 22% and 0.6 to 35.2% respectively 

(see table 3.3). There was no evidence of significant differences in % platelet 

aggregation between time periods for both the platelet aggregometer and 

PlateletWorks® (ANOVA, P>0.05) (see table 3.4). 

Table 3.4. Analysis of variance of ADP-induced platelet aggregation for two test 

modalities, namely platelet aggregometer and PlateletWorks®. 

Method Sum of 

squares 

Df Mean Square F P 

Value 

Platelet Between groups 36.16 2 18.08 0.86 0.92 

Aggregometer Within groups 18252.47 87 209.80 

Total 18288.62 

PlateletWorks® Between groups 125.27 2 62.63 0.21 0.81 

Within groups 25611.64 87 294.39 

Total 25736.90 89 

esults analyzed using repeated measured ANOVA and P values are given in the 

Table. For further details see text. 
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3.10.4 DISCUSSION 

This study was designed to assess the platelet aggregation techniques, platelet 

aggregometry and PlateletWorks® and to establish whether the PlateletWorks® was a 

cost-effective, quick and reproducible measure of platelet aggregation, which could be 

used to predict clinical outcomes for research purposes. 

Platelets have an increasingly well-defined role in haemostasis both in health and 

disease e. g. coronary artery thrombosis (Ruggeri, 2002) and other CVDs, including 

stroke and micro- or macro-angioplastic complications due to diabetes mellitus 

(Michelson, 2002). In addition platelets also have a role in the underlying 

atherosclerotic process (Ruggeri, 2002). Platelet function tests have been studied 

extensively in CVD as a means to predict both clinical outcomes and to monitor 

treatment therapies. 

Primary haemostasis may be assessed in two ways: 1) by measuring platelet count 

and 2) by testing platelet function (platelet aggregation) (Lau of al., 2002). Platelet 

aggregometers are the `gold standard' for assessment of platelet aggregation (Born, 

1962) but as an assay has several limitations. For example, platelet aggregometers, 

use large volumes of blood and a complex, lengthy analytical process. Furthermore 

PRP aggregometry is limited by the concentration of platelets (only samples of z50 x 

103/µL platelets can be tested) and also it cannot detect micro-aggregates of <100 

platelets (Storey et al., 1998). These limitations may be overcome by a new test 

platform, PlateletWorks®, which directly evaluates platelet aggregation using whole 

blood. In addition to its rapid turn-around time, it provides a full haematology profile 

(including platelet count), which is extremely useful in the clinical research 
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environment. Lau et al (2002) summarised PlateletWorks® as a novel-bedside assay 

of platelet function suitable for the clinical environment. 

Despite PlateletWorks® not being studied extensively, this study supports the finding of 

Lau et al (2002) in that the PlateletWorks® system may be used as an alternative to 

platelet aggregometry. In this study, the mean difference between the two methods 

was -2.9% with a 95% confidence interval -29.7 to 23.9%. The reference range for 

platelet aggregation following 20µM ADP-induced platelet aggregation was 70-96% for 

platelet aggregometry and 76-89% for PlateletWorks®. Similarly Lau et al (2002) found 

that the reference range for the platelet aggregation response to 20µM ADP induced 

platelet aggregation was 80-97% with PlateletWorks®. This study showed that at lower 

ADP concentrations, platelet aggregation decreased compared to ADP-induced platelet 

aggregation at 20µM. For example at ADP concentrations of 15µM and 20µM, platelet 

aggregation was 69.03±3.03% and 60.87±3.68% respectively for the platelet 

aggregometer and 68.1±4.1 % and 53.1±5.3% respectively for PlateletWorks®. 

Intra- and interassay was tested for ADP-induced platelet aggregation for each platelet 

function method. Intraassay (% aggregation) was 67.5±16.8% for PlateletWorks® and 

70.4±13.5% for the platelet aggregometer. The interassay was 8.7 (SD 5.03)% for the 

platelet aggregometer and 7.2 (SD 6.86)% for PlateletWorks®. The slight variation 

observed may be attributed to natural, diurnal physiological processes during the test 

period or a change in factors which may compromise the sample, for example 

temperature, pH, aggregometer stir speed, platelet count, sample volume and 

venepuncture technique all affect platelet aggregation (White and Jennings, 1999). 

The anticoagulant used will also affect platelets, for example in this study sodium 

citrate was used rather than EDTA as recommended by the PlateletWorks® 
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manufacturer's guidelines. EDTA has been shown to cause falsely low platelets counts 

known as platelet agglutination, irrespective of the presence or absence of any disease 

process (George, 2000). 

3.10.5 CONCLUSION 

To conclude, PlateletWorks® has demonstrated utility in the clinical / research setting to 

provide information on overall primary haemostasis (platelet aggregation and platelet 

count) by using a whole blood sample, which is devoid of long laborious techniques, 

excessive blood volume and the limitations associated with PRP. To confirm 

PlateletWorks® as a clinical research tool, future research should carry out large scale 

clinical studies using PlateletWorks® to assess primary haemostasis between 

population groups and following clinical treatment known to reduce platelet aggregation 

levels. Furthermore, further studies should investigate whether PlateletWorks® has the 

potential to diagnose inherited platelet irregularities (Lau et al., 2002). 
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3.11 Preliminary experiment to determine the reliability of the Bloelectrical 

Impedance (Bodystat QuadScan 4000) (2) 

3.11.1 INTRODUCTION 

Body composition assessment is often an integral part of obesity research since basic 

descriptive information on body composition is linked to energy intake, physical activity, 

energy metabolism and incidence of chronic disease (Brodie of al., 1998). BIA is a 

widely used method to assess body composition (National Institute of Health, 1994). 

The analysis determines the electrical impedance of body tissue, which provides an 

estimate of total body water. From this, fat-free mass (FFM) and body fat (BF) can be 

estimated (Ackmann and Seitz, 1984). Several other techniques, measure body 

composition such as hydrodensitometry, skinfold calipers and DEXA (Brodie of al., 

1998). Some body composition techniques are restricted to research institutes with 

high capital, but low cost body composition systems such as bioelectrical systems can 

be applied rapidly and non-invasively for research purposes and clinical practice. 

It is recognised that the measurement of bioelectrical impedance is influenced by other 

factors that should either be controlled or reported. These include the menstrual cycle 

(Mitchell et al., 1993), skin temperature (Caton et al., 1988), exercise-induced 

dehydration (Brodie et al., 1991), prior food (Fogelholm et al., 1993) and different 

positions (Pinilla et al., 1992). If such features are controlled the prediction errors to 

calculate body fat are 3-5% (Brodie et al, 1998). Most studies report that the 

impedance method is reliable and valid (van Marken-Lichtenbelt, 1994), which is 

extremely important because poor reliability may reduce the precision of a single 

measurement and the ability to track changes in measurements in experimental studies 

may be reduced (Zemel et al., 1996). 
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The purpose of this preliminary study was to assess the reliability of the BodyStat 

QuadScan 4000 for assessment of body composition. 

3.11.2 METHODOLOGY 

Subject characteristics 

Six (n=6) healthy male and females (n=2/4) were recruited from the Department of 

Sport Sciences, De Montfort University (see table 3.5 for subject characteristics). All 

subjects had previously been involved in studies involving the BIA and so were familiar 

with all the experimental procedures. Written informed consent was obtained from all 

the subjects after they were given a full explanation of the study. All subjects were fully 

informed that they were free to withdraw from participation at any time. The study was 

approved by De Montfort University Research Ethics Committee. 

Table 3.5. Subject characteristics 

Characteristic 

Age, yr 23.7: t 3.2 

BMI, kg/m2 24.1 t 1.0 

Weight, kg 72.0: t 4.9 

Body fat, kg 17.8 t 3.1 

Values expressed as the mean ± SEM. BMI, body mass index. 

Experimental design 

Subjects visited the Exercise Physiology laboratories on three separate days over one 

week between 9-12am and were instructed to fast for 10-12 hours beforehand and 
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refrain from exercise, caffeine and alcohol for 48 hours before the experimental period 

began. Subjects were also told to maintain their usual dietary regimen. 

Anthropometric measurements. 

Height and weight measurements are described in detail in the methodology chapter 

(section 3.2.1,3.2.2,3.2.3). Body composition was analyzed using the BIA (BodyStat® 

Quadscan 4000) which is outlined in the methodology chapter (section 3.2.4.1). 

BIA measurements 

Subjects rested in a supine position for 5-10 minutes before assessment of body 

composition. Three measurements of body composition were made in each subject. 

This was repeated twice and the average between the two measurements were 

obtained. 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value) The Shapiro-Wilk test confirmed that 

the data was normally distributed. The significance of differences in BIA 

measurements between time periods was analyzed using one-way ANOVA which 
incorporated one within (time: Wk 1 vs Wk 2 vs Wk 3) subjects factor. Precision data 

are reported as mean (t SD) with coefficient of variation. P-values < 0.05 were 

regarded as statistically significant. Analyzes of data was performed using a computer 

software package (SPSS for Windows, Version 13.0). 
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3.11.3 RESULTS 

Results for the reproducibility tests and analysis of variance for BIA are shown in table 

3.6 and Table 3.7, respectively. 

Table 3.6. Intra- and interassay variation for body fat (kg) using the BIA method. 

Sample CV (%) 

Equipment N Mean SD Mean SD 

BIA (Body fat, kg) 18 17.80 7.69 1.18 1.17 

Values expressed as the mean±SD. Reproducibility of body fat (kg) analyzed using the 

coefficient of variation (CV%). For further details see text. 

Intra- and interassay was tested for body fat (kg) using the bioelectrical impedance. 

Intraassay was 17.80±7.69kg and the interassay was 1.18 (SD 1.17)kg and ranged 

from 0.17 to 3.0%. There was no evidence of significant differences in body fat levels 

between time periods when using BIA (ANOVA, P>0.05) (see table 3.7) 

Table 3.7. Analysis of variance of body fat (kg) for BIA method. 

Parameter Sum of squares Df Mean Square F Sig. 

BIA Between groups 0.214 2 0.107 0.002 0.998 

Within groups 887.284 15 59.152 

Total 887.497 17 

Results analyzed using repeated measured ANOVA and P values are given in the 

Table. For further details see text. 
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3.11.4 DISCUSSION 

This study was designed to assess the reproducibility of the BIA (BodyStat QuadScan 

4000) for assessment of body composition. 

This study found that the BodyStat QuadScan 4000 was highly reproducible. This is 

crucial for single measurement precision and for the ability to track changes in 

measurements during experimental studies. In this study many factors associated with 

influencing the measurement of bioelectrical impedance were controlled, such as 

menstrual cycle (Mitchell of al., 1993), skin temperature (Caton et al., 1988), exercise- 

induced dehydration (Brodie et al., 1991), prior food (Fogelholm et al., 1993) and 

different positions (Pinilla et al., 1992). According to Brodie et al (1998), controlling for 

the above factors whilst using a BIA, obtain a prediction error to calculate body fat of 

around 3-5%. In this study the BIA possessed a day-to-day variation of around 0.3-3% 

(ANOVA, P>0.05). In general most studies report that the BIA method is reliable and 

valid (van Marken-Lichtenbelt, 1994) but highlight that caution should be used with 

single frequency BIA in a clinical setting (Tagliabue et al., 1992). In this study, the 

multiple frequency BIA was used, which is able to differentiate between total and 

extracellular fluid compartments in the body (Chumlea and Guo, 1994). Multi- 

frequency BIA increases the value of assessing clinical and nutritional status (Brodie of 

al., 1998) and has been shown to produce significant improvements in the prediction of 

body water (Cornish of al., 1994). However the application of the BIA to special groups 

must also be interpreted with caution. For example BIA tends to overestimate fat in the 

lean and underestimate fat mass in the obese (Brodie of al., 1998). This is because 

the geometric proportions of obese individuals compared with leaner individuals are 

such that a greater proportion of body mass and body water is accounted for by the 

trunk in relation to the extremities; the trunk however contributes a relatively minor 
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amount to total body impedance. However the advantages of the BIA include speed of 

operation, portability, simplicity and lack of intrusion (Brodie et aL, 1998). 

3.11.5 CONCLUSION 

In conclusion, the BIA method to assess body composition was sufficiently reproducible 

for research purposes. However, for BIA assessments, prior to and during, 

measurement conditions must be standardized. 
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Chapter FOUR 

Study 1 

Lipid peroxidation and antioxidant status at rest in healthy 

normal-weight, overweight and obese subjects 



4.0 INTRODUCTION 

Oxidant stress in obesity may be an important pathogenic mechanism in the obesity- 

associated metabolic syndrome (Furukawa et al., 2004) which includes co-existence of 

several risk factors for atherosclerosis, including hyperglycaemia, dyslipidaemia and 

hypertension. Oxidant stress has also been shown to play a critical role in the 

pathogenesis of various diseases such as cancer, CVD and diabetes (Niki, 2000). 

Several research studies have reported that obesity is associated with increased 

oxidant stress in humans (Yesilbursa et al., 2005; Mohn et aL, 2005; Keaney et al., 

2003; Ozata et aL, 2002; Davi et al., 2002; Dandona et al., 2001; Präzny at al., 1999) 

i. e. increased free-radical production and/or depleted cellular antioxidant defence 

systems (Powers et aL, 2004). The mechanisms suggested that may underlie the 

obesity-associated oxidant stress include increased V02 (i. e. mechanical overload) and 

subsequent radical production via mitochondrial respiration, diminished antioxidant 

capacity, increased fat deposition and cell injury causing increased rates of radical 

formation such as 02 and OH" (Vincent et al., 2001). In addition, hyperglycaemia, 

hypertension and hyperleptinemia are also possible sources of increased oxidant 

stress in obesity (Vincent and Taylor, 2006). It remains unknown if the obesity- 

associated oxidant stress is a cause and effect relationship or of it is due to the obesity- 

related diseases i. e. hypertension, hyperlipidaemia, hyperleptinemia and 

hyperglycaemia (Facchini at aL, 2000). 

Lifestyle factors also influence oxidant stress levels in obese subjects (Moller et al., 

1996). Non-smoking, vitamin and/or trace element supplementation, regular physical 

activity and limited UV light exposure also contributes to an increased antioxidant 

defence potential, whilst tobacco smoking, high psychological stress, heavy alcohol 
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drinking and low/moderate vegetable, low fruit and little fish consumption contribute to 

a decreased antioxidant potential (Lesgards et al., 2002). 

This study investigated the levels of LH, TAS, SOD and GSH in normal-weight, 

overweight and obese subjects. This study also sought to identify physiological and 

lifestyle factors that may contribute to the normal variability of the overall oxidant stress 

status. The evaluation of oxidant stress, taking into account physiological factors, 

nutritional habits and lifestyle factors, may be useful in preventative medicine as a 

precocious diagnosis to identify healthy subjects who are at risk of oxidant stress- 

associated diseases. 

4.1 METHODOLOGY 

Subject Characteristics 

The study group consisted of 90 subjects who were sex-matched between groups [30 

normal-weight (BMI: 23.4t0.46kg/m2), 30 overweight (BMI: 26.6t0.36kg/m2) and 30 

obese (BMI: 33.2±2.82kg/m2) healthy male and females (n=24/66)] (see table 4.0 for 

subject characteristics). Volunteers were invited to take part in the study by local 

advertisement. An inclusion criterion was age between 18 and 50 years old and BMI 

between 20 and 40 kg/m2. Subjects with a history of diabetes, cardiovascular or 

cerebrovascular disease, hepatic or renal disease, tobacco abuse, or those on hormone 

replacement therapy were excluded. In addition subjects were excluded if they were 

hypertensive (with or without treatment), taking treatment for dyslipidaemia, taking any 

antioxidant supplementations or a smoker. Written informed consent was obtained 

from all the subjects after they had been given a full explanation of the study. The 

research was given ethical approval by Bedfordshire Local Research Ethics 

Committee. 
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Table 4.0. Subject characteristics 

P Value 

Characteristic Normal-Weight Overweight Obese NW NW OW 

(NW) (n=30) (OW) (n=30) (0) (n=30) vs vs vs 

(m/f; 8/22) (m/f; 8/22) (m/f; 8/22) OW 00 

Age, yr 30.83 t 1.65 34.67: t 1.56 37.93: t 1.91 . 18 <. 05 . 06 

Body mass, kg 64.55: t 1.26 77.85: t 1.66 91.66 t 2.11 <. 001 <. 001 <. 001 

BMI, kg/m 22.82: t 0.25 26.90: t 0.21 33.03t 0.51 <. 001 <. 001 <. 001 

Body fat, kg 16.79: t 1.04 23.45 t 1.12 35.97: t 1.48 <. 001 <. 001 <. 001 

Waist, cm 75.42 t 1.14 87.59: t 1.49 101.56: t 2.00 <. 001 <. 001 <. 001 

Systolic BP, mmHg 114.67 t 1.97 124.23: t 2.43 127.93 t 2.97 <. 01 <. 001 . 55 

Diastolic BP, mmHg 74.50 ± 1.33 81.03 ± 1.75 86.03 ± 1.65 <. 01 <. 001 <. 05 

Fasting glucose, mmol/L 5.89t 0.29 5.57 t 0.24 5.73t 0.33 . 30 . 22 . 63 

Fructosamine, mmol/L 210.00: t 10.67 223.33: t 8.30 241.35: t 13.06 . 33 . 07 . 25 

Total cholesterol, mmoVL 4.36 t 0.24 5.01 t 0.22 5.46: t 0.29 <. 05 <. 01 . 29 

HDL-cholesterol, mmol/L 1.88 t 0.11 1.57 t 0.12 1.33 t 0.12 <. 05 <. 001 . 10 

LDL-cholesterol, mmol/L 2.23 ± 0.23 3.01 ± 0.23 3.59 ± 0.25 <. 02 <. 001 . 07 

Triglycerides, mmol/L 0.76 ± 0.05 0.95 ± 0.07 0.99 ± 0.07 . 10 <. 05 . 53 

Values expressed as the meantSEM. BMI, body mass index; BP, blood pressure; 

LDL, low-density lipoprotein; HDL, high-density lipoprotein. Results were compared 

using a Mann Whitney U-Test and P values are given in the Table. P values < 0.05 

were considered significant. For further details see text. 

Experimental design 

Subjects visited the Centre for Obesity Research on one occasion between 9-12am 

and were instructed to fast for 10-12 hours and refrain from exercise, caffeine and 

118 



alcohol intake for 48 hours before the study visit. Subjects were also asked to maintain 

their usual dietary pattern. 

Anthropometric measurements 

Height was measured without shoes using a stadiometer. Weight and body 

composition was assessed using the BodPod and waist measurements were also 

taken (see methodology section 3.2.1,3.2.2,3.2.3 and 3.2.4.2). 

Cardiovascular measurements 

Heart rate was measured at the radial artery and blood pressure was measured using 

a mercury sphygmomanometer (see methodology section 3.3). 

Food diary 

Dietary intake was monitored using a 7-day weighed food diary, which was 

subsequently analyzed for macro- and micro-nutrient content using dietary analysis 

software, Compeat (see methodology section 3.8). 

Physical activity 

Subjects completed a Baecke Physical activity questionnaire which was used to assess 

physical activity levels (see methodology section 3.9). 

Venous blood sampling 

Blood samples were collected following a 10-12hr fast using the syringe method (see 

methodology section 3.1). Blood samples were divided between EDTA and serum 

tubes. Samples were centrifuged (3000 rpm for 10 minutes), and then divided and 

stored at both -70°C and -20°C. For preparation of SOD and GSH assays, see 

methodology section 3.1.14.2 and 3.1.14.3, respectively. 

119 



Biochemical measurements included LH, TAS, SOD and GSH as described in the 

methodology chapter (section 3.1.12.1,3.1.13.1,3.1.13.2,3.1.13.3). In addition fasting 

plasma glucose, plasma fructosamine, plasma cholesterol, plasma LDL, plasma HDL 

and plasma triglycerides was measured (see methodology section 3.1.6,3.1.7,3.1.8, 

3.1.9,3.1.10 and 3.1.11, respectively). 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value). The Kolmogorov-Smirno test 

confirmed that the data was not normally distributed so was analyzed by non- 

parametric methods to avoid assumptions about the distribution of the measured 

variables. The Kruskal Wallis analysis of variance test was used to compare groups 

and the Mann-Whitney U-Test was used to evaluate the differences between two 

independent groups. Associations between parameters were assessed using the 

Spearman rank correlation test. For multiple regression analysis, LH was log- 

transformed. Multiple regression analysis was conducted after examination of potential 

effect modifiers and variables were included if they were significantly associated with 

LH levels, P<0.05. Differences were considered statistically significant at P<0.05. 

Statistical analysis was performed using a computer software package (SPSS for 

Windows, Version 13.0). 

4.2 RESULTS 

Subject characteristics for the normal-weight, overweight and obese groups are shown 

in table 4.0. Body mass, body fat, waist circumference and resting diastolic blood 

pressure all progressively increased significantly (P<0.01) with higher BMI values. 

Other significant differences between groups with increasing BMI values include 
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increased resting systolic blood pressure (normal-weight vs overweight, P<0.01 and 

normal-weight vs obese, P<0.001), increased cholesterol (normal-weight vs 

overweight, P<0.05 and normal-weight vs obese, P<0.01), decreased HDL 

concentration (normal-weight vs overweight, P<0.05 and normal-weight vs obese, 

P<0.001), increased LDL concentration (normal-weight vs overweight, P<0.02 and 

normal-weight vs obese, P<0.001), increased triglycerides (normal-weight vs obese, 

P<0.05) and increased age (normal-weight vs obese, P<0.02). Fasting blood glucose 

and fructosamine levels were similar in all subjects. 

Table 4.1 highlights the mean values for habitual physical activity and energy intake for 

the normal-weight, overweight and obese groups. Percentage carbohydrate intake 

progressively decreased with higher BMI values (Kruskall Wallis test, P<0.001) with the 

overweight and obese group demonstrating significantly lower percentage 

carbohydrate intake when compared to the normal-weight group (P<0.01 and P<0.001, 

respectively) [normal-weight vs overweight vs obese (48.41±0.80 vs 43.43±1.39 vs 

43.19±1.19%)]. However no differences between groups were found when 

carbohydrate intake was expressed in grams. Percentage fat intake increased 

progressively with higher BMI values (Kruskall Wallis test, P<0.001) with the 

overweight and obese group demonstrating significantly increased percentage fat 

intake when compared to the normal-weight group (P<0.01 and P<0.001, respectively) 

[normal-weight vs overweight vs obese (31.25±0.73 vs 35.56±1.30 vs 37.14±0.99%)]. 

However when fat intake was expressed in grams, fat intake was only significantly 

greater in the obese group compared to the normal-weight group [normal-weight vs 

obese (60.42±2.94 vs 80.01±6.83g)]. Saturated, polyunsaturated and monosaturated 

fat intake expressed in grams all progressively increased with higher BMI values 

(Kruskall Wallis test, P<0.001, P<0.01, P<0.02, respectively) with the overweight and 

obese group demonstrating significantly increased saturated, polyunsaturated and 
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monosaturated fat intake when compared to the normal-weight group [overweight vs 

obese (P<0.001, P<0.02, P<0.02 and P<0.001, P<0.01, P<0.01, respectively)]. 

The mean values for LH, TAS, SOD and GSH for the normal-weight, overweight and 

obese groups (classified by BMI) are given in table 4.2. LH progressively increased 

with higher BMI values (Kruskall Wallis test, P=0.025) with the obese group 

demonstrating significantly higher LH levels when compared to the normal-weight 

group (0.86±0.05 vs 0.68±0.03pmol/L, P<0.01) but the increased level was not 

statistically significant when compared to the overweight group (0.86±0.05 vs 

0.79±0.06pmol/L, P>0.05) (see table 4.2 and figure 4.0). No other significant 

differences in TAS, SOD and GSH were identified between groups for BMI (Kruskal 

Wallis test, P=0.70, P=0.93, P=0.14 respectively). 

Further analyses was also carried out to identify the impact of waist circumference on 

LH, TAS, SOD and GSH levels (see table 4.3). Current guidelines suggest a cut-off of 

greater than 102 cm in men and 88 cm in women on the basis of causing increased 

risk of many metabolic risk factors such as hyperinsulaemia and hyperlipidaemia (Han 

et a/., 1995). Interestingly LH levels above the cut-off waist circumference guidelines 

were significantly higher compared to those below the cut-off waist circumference 

guidelines (0.84±0.04 vs 0.74±0.04pmol/L, P<0.05). However no significant 

differences in TAS, SOD and GSH were identified between these two groups. 
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Table 4.1. Mean values for habitual physical activity and dietary intake between 

normal-weight, overweight and obese groups. 

P value 

Variable Normal-Weight Overweight Obese NW NW OW 

(NW) (OW) (0) Vs vs vs 

(n=30) (n=30) (n=30) OW 00 

Baecke questionnaire 55.58 t 2.13 53.83: t 1.86 50.73 t 1.69 . 50 . 06 . 22 

Total energy intake, 1680.50: t 68.80 1739.55: t 79.06 1815.92 t 86.56 . 60 . 27 . 74 

kcals 
Carbohydrate, % 48.41 ± 0.80 43.43 ± 1.39 43.19 ± 1.19 <. 01 <. 001 . 62 

Carbohydrate, g 217.29: t 10.56 198.29. t 10.52 205.39: t 12.19 . 21 . 57 . 54 

Fat, % 31.25 ± 0.73 35.56 ± 1.30 37.14 ± 0.99 <. 01 <. 001 . 25 

Fat, g 60.42 ± 2.94 70.99 ± 4.61 80.01 ± 6.83 . 06 <. 01 . 44 

Protein, % 16.92 ± 0.39 16.50 ± 0.58 16.64 ± 0.56 . 22 . 10 . 99 

Protein, g 69.62 ± 2.82 71.16 ± 3.85 73.52 ± 3.26 . 72 . 38 . 54 

Saturated fat, g 19.10 ± 1.52 25.40 ± 1.43 26.69 ± 2.01 <. 001 <. 001 . 88 

Polyunsaturated fat, g 8.45 ± 0.48 11.63 ± 0.94 12.21 ± 0.93 <. 05 <. 01 . 62 

Monosaturated fat, g 16.59* 0.97 21.25. t 1.54 22.23 t 1,57 <. 05 <. 01 . 58 

Alcohol, % 2.95 ± 0.41 4.23 ± 0.66 3.74 t 0.77 . 25 . 98 . 42 

Alcohol, g 7.48: t 1.10 10.70: t 1.66 9.25: L 1.87 . 26 . 81 . 42 

Selenium, g 37.51 ± 2.70 39.61 ± 3.04 42.42 ± 2.55 . 77 . 19 . 16 

Vitamin A, g 608.62: t 63.62 745.60: t 128.68 674.58 t 73.43 . 91 . 68 . 51 

Vitamin C, g 79.26 t 7.21 72.76 t 6.42 77.93 ± 9.13 . 57 . 85 . 91 

Vitamin D, g 3.37t 0.55 2.94: L 0.38 3 . 17 t 0.30 . 95 . 26 . 32 

__-- Vitamin E, g 6.54: t 0.53 7.12: t 0.54 7.47 t 0.58 . 45 . 29 . 68 

Values expressed as the mean±SEM. Results were compared using a Mann Whitney 

U-Test and the P values are given in the Table. P values < 0.05 were considered 

significant. For further details see text. 
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Table 4.2. Mean values for LH, TAS, SOD and GSH between normal-weight, 

overweight and obese groups. 

P value 

Variable Normal-Weight Overweight Obese NW NW OW 

(NW) (OW) (0) Vs vs vs 

(n=30) (n=30) (n=30) OW 00 

LH, pmol/L 0.68 ± 0.03 0.79 ± 0.06 0.86 ± 0.05 . 26 <. 01 . 17 

TAS, mmol/L 678.51 ± 31.22 698.51 ± 49.73 676.41 ± 55.53 . 
98 . 43 . 51 

SOD, U/g Hb 3137.24 t 161.74 3187.61 ± 170.49 3198.18 ± 178.72 . 59 . 92 . 91 

GSH, pmol/g Hb 14.31 ± 1.71 15.07 ± 1.64 11.2 ± 1.90 . 80 . 19 <. 05 

Values expressed as the mean±SEM. LH, lipid hydroperoxide; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione. Results were 

compared using a Mann Whitney U-Test and the P values are given in the Table. P 

values < 0.05 were considered significant. For further details see text. 
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Figure 4.0. LH levels (pmol/L) in normal-weight, overweight and obese groups 
(classified by BMI). Results (mean±SEM) were compared using Mann-Whitney 

U Test. (`, P<0.01, NS: not significant). For further details see text. 
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Table 4.3. Mean values for LH, TAS, SOD and GSH according to waist circumference 

guidelines [cut-off points, reduced CVD risk (<88cm for women and <102cm for men) 

and increased CVD risk (>88cm for women and >102cm for men)]. 

Variable Reduced CVD risk waist increased CVD risk waist 
T P-Value 

LH, pmol/L 

TAS, mmol/L 

circumference (n=52) circumference (n=38) 

0.74 ± 0.04 0.84 ± 0.04 . 025 

i 
3246 ± 128.91 3076.28 ± 148.96 SOD, U/g Hb . 93 

GSH, pmol/g Hb 14.80 ± 1.23 11.76 t 1.71 . 14 

Values expressed as the mean±SEM. LH, lipid hydroperoxide; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione. Results were 

compared using a Mann Whitney U-Test and P values are given in the Table. P values 

< 0.05 were considered significant. For further details see text. 

The Spearman rank correlation test found several variables to be strongly and 

positively associated with LH levels (see table 4.4 and 4.5): BMI (r=0.320, P<0.01), 

body fat (kg) (r=0.214, P<0.05), waist circumference (r=0.357, P<0.001), resting 

diastolic blood pressure (r=0.420, P<0.001) and resting systolic blood pressure 

(r=0.417, P<0.001), fasting triglycerides (r=0.490, P<0.001) and vitamin A (r=0.272, 

P<0.01). HDL and fasting blood glucose were strongly and negatively associated with 

an increase in LH (r=-0.212, P<0.05 and r=-0.316, P<0.01, respectively). Variables 

found to be strongly and positively correlated with TAS levels (see table 4.4 and 4.5) 

included systolic blood pressure (r=0.331, P<0.01), fasting blood glucose (r=0.326, 

P<0.01), triglycerides, (r=0.250, P<0.02). Body fat (kg) and resting heart rate were 

strongly and negatively associated with an increase in LH (r=-0.227, P<0.05 and r=- 

0.212, P<0.05, respectively). As shown in table 4.5, vitamin C was shown to be 

strongly and positively correlated with SOD levels but vitamin A and triglycerides levels 

were shown to be strongly and negatively correlated with SOD levels (-0.270, P<0.01 

125 



and -0.288, P<0.01, respectively). GSH levels were found to be strongly and positively 

correlated with a number of variables including: fasting glucose (r=0.561, P<0.001), 

physical activity levels (r=0.332, P<0.001), total energy intake (kcals) (r=0.299, 

P<0.01), polyunsaturated fat (r=0.277, P<0.01), carbohydrates (r=0.372, P<0.001), 

protein (r=0.282, P<0.007), selenium (r=0.323, P<0.01) and vitamin E (0.372, 

P<0.001). However the following variables were shown to be strongly and negatively 

associated with GSH: body fat (kg) (r=-0.345, P<0.001), total cholesterol (r=-0.360, 

P<0.001), LDL-cholesterol (r=-0.307, P<0.01). 

A multiple linear regression analysis was performed to quantify further the relationship 

between LH levels, subject characteristics, biochemical status, dietary intake and level 

of physical activity (see table 4.6). A significant model emerged (F4,85=10.667, 

P<0.001) which revealed that 30.3% of the variance in LH was explained by the 

following variables; weight (standardized beta, 0.250, P<0.05), fasting glucose 

(standardized beta, -0.276, P<0.01), triglycerides (standardized beta, 0.234, P<0.05), 

vitamin A (standardized beta, 0.258, P<0.01). 

126 



Table 4.4. Correlation coefficients for the relationship between LH, TAS, SOD, 

GSH and BMI, body fat, waist circumference, blood pressure, fasting glucose, 

fructosamine and lipid profile in healthy subjects. 

Variable LH TAS SOD GSH 

Regression coefficients (P Value) 

Weight, kg . 387 (. 000) . 
164 (. 123) -. 093 (. 386) . 

025 (. 812) 

BMI, g/M2 . 320 (<. 01) -. 031 (. 774) -. 043 (. 689) -. 139 (. 192) 

Body fat, kg . 214 (<. 05) -. 227 (. 031) . 088 (. 411) -. 345 (. 001) 

Waist circumference, cm . 357 (<. 001) . 068 (. 527) -. 206 (. 051) -. 052 (. 627) 

Resting HR, beats/minute . 025 (. 81) -. 212 (. 045) . 118 (. 268) -. 173 (. 103) 

Diastolic BP, mmHg . 420 (<. 001) 
. 084 (. 430) -. 092 (. 388) -. 109 (. 304) 

Systolic BP, mmHg . 417 (<. 001) . 331 (. 001) -. 068 (. 526) . 088 (. 410) 

Fasting glucose, mmol/L -. 316 (<. 01) . 326 (. 002) -. 124 (. 244) . 561 (. 000) 

Fructosamine, mmol/L -. 119 (. 437) . 087 (. 570) -. 002 (. 992) -. 138 (. 366) 

Total cholesterol, mmo/L . 165 (. 12) -. 197 (. 063) . 043 (. 690) -. 360 (. 000) 

HDL-cholesterol, mmo/L -. 212 (<. 05) . 081 (. 449) -. 131 (. 218) . 083 (. 435) 

LDL-cholesterol, mmo/L . 164 (. 12) -. 197 (. 063) . 094 (. 380) -. 307 (. 003) 

Triglycerides, mmo/L . 490 (<. 001) . 250 (. 017) -. 288 (. 006) -. 025 (. 817) 

TAS, mmo/L . 161 (. 129) 1.000 (. ) -. 231 (. 029) . 477 (. 000) 

SOD, U/g Hb -. 129 (. 224) -. 231 (. 029) 1.000 (. ) -. 080 (. 456) 

GSH, pmol/g Hb -. 059 (. 580) 
. 477 (. 000) -. 080 (. 456) 1.000 (. ) 

LH, pmol/L 1.000 (. ) 
. 067 (. 531) -. 110 (. 304) -. 049 (. 649) 

BMI, body mass index; HR, heart rate; BP, blood pressure; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione and LH, lipid 

hydroperoxide. Results were analyzed using the Spearman rank correlation test and P 

values are given in the Table. For further details see text. 
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Table 4.5. Correlation coefficients for the relationship between LH, TAS, SOD and 

GSH and lifestyle variables; physical activity levels, energy intake, dietary macro- and 

micro-nutrient composition in healthy subjects. 

Variable LH TAS SOD GSH 

Regression coefficients (P Value) 

Baecke questionnaire -. 019 (. 856) . 
041 (. 701) -. 115 (. 280) . 

332 (. 001) 

Total energy intake, kcals -. 021 (. 842) . 272 (. 010) . 096 (. 370) . 299 (. 004) 

Fat, g 

Saturated, g 

Poly, g 

Mono, g 

-. 001 (. 990) 

. 
087 (. 415) 

-. 030 (. 781) 

-. 001 (. 991) 

. 
155 (. 143) 

-. 072 (. 500) 

. 
162 (. 128) 

. 
115 (. 280) 

. 
075 (. 482) 

. 
122 (. 253) 

-. 018 (. 864) 

. 
040 (. 707) 

. 
137 (. 197) 

-. 025 (. 813) 

. 
277 (. 008) 

. 
078 (. 464) 

Carbohydrate, g -. 023 (. 827) . 216 (. 041) . 096 (. 370) . 372 ). 000) 

Protein, g . 059 (. 581) . 348 (. 001) . 092 (. 390) . 282 (. 007) 

Alcohol, g . 098 (. 358) . 322 (. 002) -. 199 (. 059) . 092 (. 388) 

Selenium, g . 166 (. 118) . 269 (. 010) -. 004 (. 968) . 323 (. 002) 

Vitamin A, g . 272 (<. 01) -. 007 (. 945) . 196 (. 064) . 032 (. 768) 

Vitamin C, g -. 045 (. 675) . 143 (. 178) . 243 (. 021) . 203 (. 055) 

Vitamin D, g . 152 (. 152) . 341 (. 001) -. 270 (. 010 . 205 (. 053) 

Vitamin E, g . 036 (. 733) . 206 (. 051) -. 062 (. 565) . 375 (. 000) 

g, weight. Results were analyzed using the Spearman rank correlation test and P 

values are given in the Table. For further details see text. 

Table 4.6. Determinants of LH level in healthy subjects. 

Variable Beta P value 

Fasting glucose, mmol/L -0.276 . 003 

Vitamin A, mmol/L 0.258 . 007 

Weight, kg 0.250 . 014 

Triglycerides, mmol/L 0.234 . 023 

Adjusted 0.303 

Results were analyzed using the multiple regression analysis model (Enter model) and 

standardized beta and P values are given in the Table. For further details see text. 
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4.3 DISCUSSION 

This study investigated the levels of LH, TAS, SOD and GSH in normal-weight, 

overweight and obese subjects. It is the first study to identify the impact of being 

overweight on oxidant stress parameters. This study also sought to identify 

physiological and lifestyle factors that may contribute to the normal variability of the 

overall oxidant stress status. 

This study clearly identified that the level of LH was markedly higher in the obese group 

compared to the normal-weight group. The overweight group did not show a significant 

increase in LH levels when compared to the normal-weight group. No other consistent 

relationships between BMI, TAS, SOD and GSH were reported. Further analyses also 

showed that LH levels was markedly higher above the cut-off waist circumference 

guidelines for increased risk of CVD (women, >88cm and men, >102cm) compared to 

below the cut-off waist circumference guidelines. No other relationships between waist 

circumference, TAS, SOD and GSH were found. 

In comparison to other research studies investigating obesity-associated oxidant 

stress, this study found similar findings. Increased markers of lipid peroxidation in 

obesity have been frequently observed in other human studies (Yesilbursa et al., 2005; 

Keaney et al., 2003; Ozata et al., 2002; Davi et al., 2002; Dandona et al., 2001; Präznj' 

et al., 1999). Yesilbursa et al (2005), Dandona et al (2001) and Ozata et al (2002), 

recorded significantly higher levels of MDA and TBARS, respectively in obese adults 

compared to normal-weight controls [obese vs normal-weight (Yesilbursa et al., 2005; 

MDA, 2.0±0.77 vs 0.63±0.14nmoi/ml, Dandona et al., 2001; TBARS, 1.68±0.17 vs 

1.29±0.12imol/L and Ozata et al., 2002; TBARS, 7.77±3.41 vs 3.92±0.93mmol/ml)]. 

Keaney et al (2003) and Präznj' et al (1999) concluded that BMI was independently 
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associated with increased levels of urinary concentrations of 8-iso PGF2a in healthy 

individuals, and plasma MDA concentration in both Type I and Type II diabetics 

(r=0.68, P<0.001), respectively. Similarly, Davi et al (2002) found that obese women 

had high levels of urinary 8-iso PGF2a compared to non-obese counterparts, which was 

also significantly higher in android (523 (393-685) pg/mg of creatine) than gynoid (275 

(220-349) pg/mg of creatine) obesity compared to non-obese women (187 (140-225) 

pg/mg of creatine). The findings in this study also supports that android obesity 

increases LH levels because LH levels above the cut-off waist circumference 

guidelines for increased risk of CVD were significantly higher compared to those below 

the cut-off waist circumference guidelines (0.84±0.04 vs 0.74±0.04pmol/L, P<0.05). 

These findings are also confirmed by Keaney et al (2003) who found in a community- 

based cohort, the Framingham Heart Study, a strong association between markers of 

oxidant stress and both BMI and waist-hip ratio, implicating adiposity as the main factor 

for increased oxidant stress. On the contrary, Vincent et al (2004,2005) highlighted no 

significant difference in both plasma TBARS and lipid hydroperoxide levels at rest 

between non-obese and obese counterparts. However the BMI levels in each of these 

studies were 24.9±2.5kg/m2 (non-obese) vs 33.3±2.3kg/m2 (obese) and 22.0±0.9kg/m2 

(non-obese) vs 28.0.3±1.2kg/m2 (obese), respectively. This shows that the studies 

undertaken by Vincent et al (2004,2005) did not include subjects with morbid obesity 

hence LH levels in the obese group were not significantly higher than the non-obese 

group. Although Vincent et als (2005) study did not intend to identify the impact of 

being overweight on oxidant stress levels (objective of the study was to identify the 

impact of obesity on exercise-induced oxidant stress), the study supports the finding 

that overweight subjects do not have significantly enhanced LH levels compared to 

normal-weight subjects. Interestingly, all those studies that show a significant 

increased LH response in obese subjects compared to normal-weight subjects have 

included subjects with a mean BMI of around 33-40kg/m2 (Yesilbursa et al., 2005; 
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Keany of al., 2003; Ozata et al., 2002; Davi of al., 2002; Dandona et al., 2001; Präzny 

et al., 1999). 

This study did not highlight any major significant differences in TAS, SOD and GSH 

levels between normal-weight, overweight and obese groups or between gynoid and 

android obesity, but other research studies have suggested otherwise. Olusi (2002) 

found that erythrocyte Cu/ZnSOD activity and GSH-Px were significantly lower in 

obesity than in the non-obese state (Cu/ZnSOD: 1005±26 vs 1464±23U/g Hb and 

GSH-Px: 84.3±6.7 vs 98.4±3.3U/g Hb). Similarly, Ozata et al (2002) also reported 75% 

and 42% lower erythrocyte GSH-Px and Cu/ZnSOD activities in obese men (n=76) 

than in non-obese men (n=24). In rat models of diet-induced obesity, erythrocyte SOD 

and GSH-Px activities were reduced by 29-42% in the HFHC group compared with the 

control animals after the 8-week diet-induced obesity period (Beltowski et al., 2000). 

Other research have shown that individual antioxidant enzymes were enhanced in 

obesity (Vincent et al., 2001, Dobrian at al., 2000). Vincent et al (2001) found that 

Cu/ZnSOD activity in the left ventricles of rats was greater in the obese animals 

compared to lean controls (135 vs 117 IU/mg protein, P<0.05). Dobrian et al (2000) 

also reported increased activities of erythrocyte Cu/ZnSOD and GSH-Px after 10 

weeks of diet-induced obesity. They attributed the increases in these erythrocyte 

cytoprotective enzymes to their stimulation by oxidant stress. Olusi (2002) believed the 

discrepancies in antioxidant enzymes in obesity could be due to the duration of the 

obesity. For example, in the early days of the development of obesity, antioxidant 

enzymes may be stimulated whereas chronic obesity continually depletes antioxidant 

enzymes. Other antioxidant measures such as TAS and FRAP have been shown to be 

lower in obese persons compared to non-obese persons (Lopes et al., 2003; Fenkci et 

al., 2003). For example, FRAP values were 22% lower in obese than in non-obese 

matched controls [obese vs non-obese (271±15 vs 333±29pmol/L, P<0.05) (Lopes et 
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al., 2003)] and TAS values were moderately lower in obese persons compared to non- 

obese persons [obese vs non-obese (1.15±0.01 vs 1.30±0.02mmol/L, P<0.001) (Fenkci 

et al., 2003)]. It is unknown why this study did not demonstrate any significant 

differences between the normal-weight, overweight and obese groups for TAS, SOD 

and GSH levels. We can only speculate that it is possible that the obese group were 

averaging a transitional phase from developmental obesity to chronic obesity. 

Several mechanisms have been suggested to explain obesity-associated oxidant 

stress, which include increased 02 consumption, compromised antioxidant defence, 

cell injury/inflammation and increased fat deposition (Vincent et al 2001). In addition, 

hyperglycaemia, hypertension and hyperleptinaemia are also possible sources of 

increased oxidant stress in obesity (Vincent and Taylor, 2006). However, whether 

obesity-associated oxidant stress is a cause and effect relationship or due to obesity- 

related diseases i. e. hypertension, hyperlipidaemia, hyperleptinaemia and 

hyperglycaemia (Facchini et al 2000) remains unclear. Since all the subjects in this 

study were healthy (free of obesity-related diseases), it is possible that obesity in this 

study or other unknown factors caused increased oxidant stress. However, this study 

did not intend to identify the primary pathways linking obesity with increased oxidant 

stress levels. 

The study did set out to identify physiological and lifestyle factors that may contribute to 

the normal variability of the overall oxidant stress status in healthy subjects. To date, it 

is thought that only two studies (Keaney et al., 2003; Lesgards et al., 2002) have 

investigated the relationships between intrinsic, lifestyle and environmental factors and 

oxidant stress parameters. Since LH levels were shown to be significantly greater in 

the obese group compared to both the normal-weight and overweight-group, it seemed 

important to discuss potential physiological and lifestyle factors that may contribute to 
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the normal variability of LH levels in healthy subjects. Increased LH levels were 

positively associated with BMI, body fat, waist circumference, resting systolic blood 

pressure, resting diastolic blood pressure, triglycerides and vitamin A. In contrast, 

fasting glucose and HDL were negatively correlated with LH levels. Calorie intake, 

dietary composition intake and physical activity levels were not shown to correlate with 

LH levels. However, Lesgards et al (2002) assessed lifestyle factors in relation to 

overall antioxidant capacity and emphasised that non-smoking, vitamin and mineral 

supplementation, regular physical activity, high fruit consumption were all positively 

related to the individual antioxidant capacity. Keaney et al (2003) identified the clinical 

conditions associated with oxidant stress. In an age-adjusted model, increased urinary 

creatinine-indexed 8-epi-PGF2a was positively associated with female sex, hypertension 

treatment, smoking, diabetes, blood glucose, body mass index and a history of 

cardiovascular disease. Age and total cholesterol were negatively correlated with 

urinary creatinine-indexed 8-epi-PGF2q. The main differences in findings in this study 

compared to Keaney and colleagues and Lesgards and colleagues include the 

negative association between fasting blood glucose and LH levels and the lack of 

association between lifestyle and nutritional intake with LH levels. The variables found 

to be associated with LH in this study are discussed below, alongside other 

observational and interventional studies. 

This study and others (Yesilbursa et al., 2005; Keaney et al., 2003; Ozata et al., 2002; 

Davi et al., 2002; Dandona et al., 2001; Präznj' et al., 1999) have confirmed that a high 

BMI, waist circumference and body fat levels are associated with increased oxidant 

stress levels. The possibility of the obesity-associated oxidant stress has already been 

discussed. Both a high level of diastolic and systolic blood pressure was shown to be 

positively associated with increased LH levels in this study. However although 

Reckelhoff et al (2000) found a positive association between hypertension and LH in 
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hypertensive rats, this was not supported by Keaney et al (2003) in healthy men and 

women. But the lack of association between LH and hypertension in the study by 

Keaney et al (2003) may be a result of a third of subjects receiving anti hypertensive 

therapy, contributing to the discrimination of BP as a correlate of oxidant stress 

(Keaney et al., 2003). Other research suggests that the association of hypertension 

with oxidant stress only applies to certain causes of hypertension, such as those with 

high renin levels (Laursen et al., 1997) or salt sensitivity (Somers et al., 2000). 

In this study triglyceride levels were positively associated with LH levels. Similar 

findings were found by Bae et al (2001) who investigated the effect of postprandial 

hypertriglyceridemia in healthy individuals on endothelial function as related to 

enhanced oxidant stress, by measurement of vascular endothelial function and 

leukocyte 02 production. In response to hypertriglyceridemic stimuli (high fat meal), 

02 formation by leucocytes correlated with the degree of hypertriglyceridemia. In 

addition Hiramatsu and Arimori (1998) found that monocytes and polymorphonuclear 

cells released more 02 when exposed to plasma from hypertriglyceridaemic patients. 

Vitamin A was positively associated with LH levels in this study which supports 

epidemiological observational studies that low levels of vitamins A, E and C are 

associated with increased oxidant stress and CVD (Meagher, 2003; Dagenais et al., 

2000). However Block et al (2002) observed a significant inverse association between 

plasma vitamin A levels and malondialdehyde and F2-isoprostanes in healthy adults. 

Other investigators have also reported that plasma vitamin A is inversely associated 

with smoking (Ayaroi et al., 2000; Food and Nutrition Board, Institute of Medicine, 

2000). According to Chertow (2004) under some conditions, a vitamin may have 

oxidant effects. Giving too much of one vitamin in an altered redox environment may 

change its effect from an antioxidant to a pro-oxidant (Olson, 1996). Very little cross- 
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sectional population research on vitamin A and oxidative damage has been carried out, 

so arising to conclusions regarding vitamin A levels and oxidant stress is difficult. In 

view of this it would seem prudent not to supplement diets with vitamin A or carotene 

unless levels are pathologically low (Chertow, 2004). 

Research has indicated that hyperglycaemia is associated with increased levels of 8- 

epi-PGF2a (Keaney et al., 2003; Davi et al., 1999; Gopaul et al., 1995) and LHs 

(Nourooz-Zadeh et al., 1995). Similarly, urinary levels of 8-epi-PGF2a are increased in 

patients with type I and II diabetes and decrease significantly with aggressive control of 

hyperglycemia (Davi et al., 1999). Several mechanisms have been proposed to 

explain the link between hyperglycaemia and lipid peroxidation. Glucose may combine 

directly with LDL phospholipids or apo B lysine groups to form advanced glycation end 

products that facilitate lipid peroxidation (Bucala et al., 1993). In addition, auto- 

oxidation of glucose and nonenzymatic glycation of proteins may also generate 02 

(Baynes, 1991). Hyperglycaemia also induces the enzymatic production of 02 

through activation of NAD(P)H oxidase in vascular cells (Inoguchi et al., 2000). In this 

study, fasting blood glucose was negatively associated with LH levels of which is 

puzzling because hyperglycaemia is a well-known oxidant (Keaney et al., 2003; Davi et 

al., 1999; Gopaul et al., 1995). However because the majority of subjects in this study 

had normal fasting glucose levels, it is possible that we lost the discriminatory value of 

fasting blood glucose as a correlate of oxidant stress. 

HDL levels was also found to be negatively associated with LH levels which may be a 

result of an underlying mechanism linking obesity to oxidant stress, itself in turn 

contributing to obesity-related disease. For example, it appears that the formation of 

oxidised cholesterol as a result of lipid peroxidation leads ultimately to a decrease in 

HDL production (Ozata et al., 2002). 
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Finally, it was surprising that no association was found between LH levels, dietary 

intake and physical activity. Lesgards et al (2002) concluded that regular physical 

activity and high fruit consumption was positively related to individual antioxidant 

capacity. It is speculated that no association was found because the study population 

across the normal-weight, overweight and obese groups did not record wide 

differences in physical activity and nutritional habits. This could be because the 7-day 

food diary and physical activity questionnaire did not reflect true eating and lifestyle 

habits of the subjects. 

To define the relationship further between LH and indices of physical and biochemical 

factors, a multiple regression analysis was performed. The results demonstrated that 

30.3% of the variance in LH could be explained by the following variables, namely 

weight (standardized beta, 0.250, P<0.05), fasting glucose (standardized beta, -0.276, 

P<0.01), triglycerides (standardized beta, 0.234, P<0.05) and vitamin A (standardized 

beta, 0.258, P<0.01). All these (weight, fasting glucose, triglycerides and vitamin A) 

have been discussed above in relation to their effects on LH levels. Further research 

should aim to examine other potential factors which could lead to enhanced lipid 

peroxidation in obesity. 
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4.4 CONCLUSION 

This study is the first to identify that LH levels are not enhanced in subjects who are 

overweight compared to normal-weight subjects. Similar to other research LH levels 

were markedly higher in the obese group compared to the normal-weight group. In 

addition, independent of BMI, LH levels were enhanced in subjects who had a waist 

circumference above the cut-off waist circumference guidelines for increased risk of 

CVD compared to below the cut-off waist circumference guidelines. The above 

changes could not be related to either TAS, SOD or GSH because these were reported 

to remain unchanged. Following multiple regression analysis, 30.3% of the variance in 

LH could be explained by a negative association with fasting plasma glucose, and 

positive associations with dietary vitamin A intake, weight and plasma triglycerides. 

Care should be taken when interpreting the associations between LH and vitamin A 

and LH and fasting blood glucose as other studies have shown a negative association 

between LH and vitamin A and a positive association between LH and fasting blood 

glucose. 
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Chapter FIVE 

Study 2 

Platelet responsiveness in healthy normal-weight, overweight 

and obese subjects: Association with lipid peroxidation and 

total antioxidant status. 



5.0 INTRODUCTION 

Central obesity is a risk factor for atherosclerotic CVD (Grundy et al., 2002; McGill et 

al., 2002), which interferes with a balance between blood coagulation and fibrinolysis, 

leading to increased thrombogenesis or platelet aggregation (Davi et al., 2002; Haszon 

et al., 2002; Juhan et al., 1980). For example Davi et al (2002) found that gynoid 

obesity (n=25) increased 11 -dehydrothromboxane B2 compared to non-obese control 

values (n=24) (P<0.001), which was even greater in android obesity (n=24) when 

compared to non-obese subjects (p<0.001) (gynoid: 610 (421-759) android: 948 (729- 

1296) and non-obese 215 (184-253) pg/mg of creatine). Furthermore, android obesity 

had significantly higher 11 -dehydrothromboxane B2 when compared to gynoid obesity 

(p<0.001). Haszon et al (2002) investigated platelet aggregation (measured using 

collagen as an agonist with a laser rheoaggregometer) in hypertensive non-obese and 

obese children and age-sex matched non-obese and obese children. Hypertensive 

children in the non-obese and obese group and the normotensive obese children 

showed increased platelet aggregation. A significant positive correlation was also 

observed between the BMI values and percentage platelet aggregation in overweight 

children with or without hypertension (r=0.501, n=35, P<0.01). Juhan et al (1980) 

studied platelet aggregation in 81 obese subjects in relation to fat mass and fat 

distribution. Results of this work showed that platelet activity was not related to body 

weight and displayed no correlation or a slightly negative one to fat mass excess. 

However, platelet activity was significantly increased in cases where obesity 

predominated in the upper body. Alternative measures of platelet activity such as 

mean platelet volume have been shown to be higher in obese subjects (Coban et al., 

1992), which may also be an indicator of platelet activation (Park et al., 2002). 
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Various risk factors for atherosclerosis and cardiovascular thrombosis such as diabetes 

mellitus, hypertension and hypercholesterolemia are associated with ROS-mediated 

platelet aggregation (Davi et al., 2003; Minuz et al., 2002; Davi et al., 1997) which 

suggests that increased oxidant stress in obesity may contribute to persistent platelet 

aggregation. In support of this, Davi et al (2002) noted a significant correlation 

between urinary excretion rate of 8-iso PGF2a and 11-dehydro-TxB2 in gynoid and 

android obesity (r=0.61, P<0.001). Furthermore following multiple regression analysis, 

CRP level was found to predict the highest rates of both lipid peroxidation and platelet 

activation. To characterise the cause and effect of obesity on 8-iso PGF2a and 11- 

dehydro-TxB2 further, Davi et al (2002) examined the effects of a short-term weight loss 

program on changes in urinary 8-iso PGF2a and 11 -dehydro-TxB2 in 20 android obese 

women. Following successful weight loss (15.3±10.5kg) the rates of 8-iso PGF2a and 

11-dehydro-TxB2 excretion were significantly reduced, by 32% and 54% respectively. 

Changes in urinary 11-dehydro-TxB2 excretion correlated with the amount of weight 

loss (r=0.67, P=0.02) and the values of thromboxane metabolite excretion fell within the 

reference range by the end of the study. Therefore, increased oxidant stress in obesity 

maybe a mechanism linking obesity-associated oxidant stress with platelet activity. 

Apart from Davi et al (2002), no other study has observed an association between 

oxidant stress and platelet aggregation in obesity. 

Limited evidence is available on the relationship between obesity, platelet aggregation 

and oxidant stress which may be due to the problems associated with measuring 

platelet aggregation. For example `the gold standard measure of platelet aggregation' 

is platelet aggregometry which is both labour intensive and expensive (Lau et al., 

2002). In addition the reproducibility of results is dependent on controlling many 

factors: temperature, pH, aggregometer stir speed, platelet count, sample volume and 

venepuncture technique (White and Jennings, 1999). In this study, a new direct 
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measure of platelet aggregation is used. PlateletWorks® is an adaptation of platelet 

aggregometry and measures platelet aggregation in whole blood, which is devoid of 

long laborious techniques. The PlateletWorks"' has been evaluated by Lau et al 

(2002) who found that this novel-bed-side assay of platelet function was extremely 

suitable for the clinical environment (acute care settings of percutaneous coronary 

intervention and cardiopulmonary bypass). In addition PlateletWorks® was evaluated 

against platelet aggregometry in a preliminary experiment as part of this thesis, which 

demonstrated that PlateletWorks" was a cost-effective, quick, valid and reproducible 

measure of platelet aggregation. 

This study aimed to identify the effect of BMI (normal-weight, overweight, obese) on 

platelet count and percentage ADP-induced platelet aggregation. In addition the study 

aimed to identify whether increased oxidant stress in obesity was a determinant of 

platelet aggregation levels in obesity. 

5.1 METHODOLOGY 

Subject Characteristics 

The study group consisted of 45 subjects who were sex-matched between groups [15 

normal-weight (BMI: 22.4±0.34kg/m2), 15 overweight (BMI: 25.5±0.20kg/m2) and 15 

obese (BMI: 31.8±1.22kg/m2) healthy male and females (n=18/27)] (see table 5.0 for 

subject characteristics). Volunteers were invited to take part in the study by local 

advertisement. An inclusion criterion was age between 18 and 50 years old and BMI 

between 20 and 40kg/m2. Subjects with a history of diabetes, cardiovascular or 

cerebrovascular disease, hepatic or renal disease, tobacco abuse, or those on hormone 

replacement therapy were excluded. In addition subjects were excluded if they were 
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hypertensive (with or without treatment), taking treatment for dyslipidaemia, taking any 

antioxidant supplementations or a smoker. Written informed consent was obtained 

from all the subjects after they had been given a full explanation of the study. The 

research was given ethical approval by Bedfordshire Local Research Ethics 

Committee. 

Table 5.0. Subject characteristics 

Characteristic 

Age, yr 

BMI, kg/m2 

Body mass, kg 

Body fat, kg 

Waist, cm 

Systolic BP, mmHg 

Diastolic BP, mmHg 

Fasting glucose, mmol/L 

Fructosamine, mmo/L 

Total cholesterol, mmo/L 

HDL-cholesterol, mmol/L 

LDL-cholesterol, mmol/L 

Triglycerides, mmol/L 

Normal-weight 

(NW) (n=15) 

(m/f; 6/9) 

33.20 ± 2.40 

22.38 ± 0.34 

62.2±1.60 

17.79 ± 1.39 

74.98 t 1.32 

111.93 ±2.27 

74.2 ± 2.10 

6.80 ± 0.41 

Overweight Obese NW 

(OW) (n=15) (0) (n=15) vs 

P Value 

NW OW 

vs vs 

(m/f; 6/9) (m/f; 6/9) OW 00 

36.47 t 2.34 35.53 t 2.05 
. 
33 

. 
519 

. 
663 

25.48 ± 0.20 31.75 ± 1.22 <. 001 <. 001 <. 001 

73.7 ±2.14 91.8 ±4.09 <. 001 <. 001 <. 001 

20.88 t 1.76 33.58 t 3.15 
. 213 <. 001 <. 01 

82.44 ± 2.31 99.11 ± 2.92 <. 02 <. 001 <. 001 

123.13 t 3.25 128.73 t 3.19 <. 01 <. 001 
. 309 

79.93 t 2.41 83.67 t 1.51 
. 177 <. 01 <. 05 

5.80±0.35 7.49±0.65 
. 110 

. 709 <. 05 

226.34 ± 18.58 220.92 ± 11.79 202.38 ± 13.83 
. 487 

. 
251 

. 
457 

4.45±0.24 5.19±0.36 4.95±0.23 
. 146 

. 178 
. 950 

1.72±0.10 1.63±0.14 1.37 t 0.16 
. 520 

. 068 . 350 

2.41 ± 0.25 3.18 ± 0.33 3.05±0.26 
. 
120 

. 
110 

. 
950 

0.70±0.05 0.83±0.07 1.17±0.19 
. 130 <. 02 

. 237 

Values are expressed as the mean±SEM. BMI, body mass index; BP, blood pressure; 

LDL, low-density lipoprotein; HDL, high-density lipoprotein. Results were compared 

using a Mann Whitney U-Test and P values are given in the Table. P values < 0.05 

were considered significant. For further details see text. 
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Experimental design 

Subjects visited the Centre for Obesity Research on one occasion between 9-12am 

and were instructed to fast for 10-12 hours and refrain from exercise, caffeine and 

alcohol intake for 48 hours before the study visit. Subjects were also told to maintain 

their usual dietary regimen. 

Anthropometric and cardiovascular measurements and venous blood sampling. 

Height, weight and waist measurements are described in detail in the methodology 

chapter (section 3.2.1,3.2.2,3.2.3). Body composition was assessed using the 

BodPod which is outlined in the methodology chapter (section 3.2.3.1). Cardiovascular 

measurements and venous blood sampling are described in the methodology chapter 

(section 3.3,3.1.1 and 3.1.2). 

Biochemical measurements 

LH, TAS, SOD and GSH were performed as described in the methodology chapter 

(section 3.1.12 and 3.1.13). Other biochemical measures included, fasting plasma 

glucose, plasma fructosamine, plasma cholesterol, plasma LDL, plasma HDL and 

plasma triglycerides as described in the methodology chapter (section 3.1.6.1,3.1.7, 

3.1.8,3.1.9,3.1.10 and 3.1.11). ADP-induced percentage platelet aggregation was 

also measured using PlateletWorks"', which is outlined in the methodology chapter 

(section 3.1.14.2). Final concentrations of ADP used were 10 and 20pM. 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value). The Kolmogorov-Smirno test 
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confirmed that the data was not normally distributed so was analyzed by non- 

parametric methods to avoid assumptions about the distribution of the measured 

variables. The Kruskal Wallis analysis of variance test was used to compare groups 

and the Mann-Whitney U-Test was used to evaluate the differences between two 

independent groups. Associations between parameters were assessed by the 

Spearman rank correlation test. P-values < 0.05 were regarded as statistically 

significant. Analyzes of data was performed out using a computer software package 

(SPSS for Windows, Version 13.0). 

5.2 RESULTS 

Subject characteristics for the normal-weight, overweight and obese groups are shown 

in table 5.0. Body mass and waist circumference all progressively increased 

significantly (P<0.05) with higher BMI values. Body fat (kg) was significantly greater in 

the obese group when compared to both the normal-weight (P<0.001) and overweight 

(P<0.01) groups but no significant difference in body fat (kg) was found between the 

normal-weight and overweight group. Blood pressure increased incrementally with 

higher BMI values but significant differences were only identified in resting diastolic 

blood pressure between the normal-weight and obese, (P<0.01) and overweight and 

obese (P<0.05) group and in resting systolic blood pressure between the normal- 

weight and overweight, (P<0.01) and normal-weight and obese (P<0.001) group. 

Other significant differences between groups with increasing BMI values included 

increased triglycerides (normal-weight vs obese, P<0.02) and increased fasting blood 

glucose values (overweight vs obese, P<0.05). All subjects had similar fructosamine 

levels, total cholesterol, LDL and HDL levels. 
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Mean values for LH, TAS, SOD and GSH for the normal-weight, overweight and obese 

groups are shown in table 5.1. LH increased with higher BMI values with the obese 

group demonstrating an increased trend towards higher LH levels compared to the 

normal-weight group [obese vs normal-weight (0.97±0.12 vs 0.67±0.58pmol/L, 

P=0.078)] and overweight group [obese vs overweight (0.97±0.12 vs 0.68±0.49pmol/L, 

P<0.078)]. TAS levels were also increased with higher BMI values with the obese 

group demonstrating significantly higher TAS levels when compared to the normal- 

weight group [normal-weight vs obese (661.42±34.24 vs 817.67±57.93mmol/L, 

P<0.05)]. No other significant differences were noted between groups in TAS, SOD 

and GSH. 

Table 5.1. LH, TAS, SOD and GSH values observed in the normal-weight, overweight 

and obese groups. 

Variable Normal-Weight Overweight Obese NW NW OW 

(NW) (OW) (0) Vs Vs vs 

(n=15) (n=15) (n=15) OW 00 

LH, pmol/L 0.67 t 0.58 0.68 t 0.49 0.97 t 0.12 . 756 
. 078 

. 078 

TAS, mmol/L 661.42 f 34.24 699.67 t 48.29 817.67 t 57.93 . 604 <. 05 . 101 

SOD, U/g Hb 3427.22 t 259.35 3507.67 t 247.95 2890.86 t 175.77 
. 738 

. 206 
. 105 

GSH, pmol/g Hb 15.33 t 1.72 16.55 t 2.25 16.67 t 1.58 
. 648 

. 868 
. 967 

Values are expressed as the mean±SEM. LH, lipid hydroperoxide, TAS, total 

antioxidant status, SOD, superoxide dismutase, GSH, reduced glutathione. Results 

were compared using a Mann Whitney U-Test and P values are given in the Table. P 

values < 0.05 were considered significant. For further details see text. 

The mean values for platelet count and percentage ADP-induced platelet aggregation 

for the normal-weight, overweight and obese groups are given in table 5.2 and figure 

144 



5.0. No significant differences were noted between normal-weight, overweight and 

obese groups in platelet count. But the degree of percentage ADP-induced platelet 

aggregation decreased with increasing BMI values at both ADP final concentrations of 

10 and 20pM. ADP-induced platelet aggregation with 20pM ADP significantly 

decreased the degree of platelet aggregation in the obese group when compared to 

both the normal-weight and overweight group [obese vs normal-weight (80.07±2.18 vs 

89.33±0.89%, P<0.001) obese vs overweight: (80.07±2.18 vs 85.47±1.51%, P<0.05)]. 

ADP-induced platelet aggregation with 10pM ADP produced a significant decrease in 

the degree of platelet aggregation in the obese group when compared to the normal- 

weight group and a decreased non-significant trend when compared to the overweight 

group [obese vs normal-weight (65.27±2.66 vs 75.2±2.21%, P<0.05) obese vs 

overweight (65.27±2.66 vs 72.53±2.29%, P=0.064)]. 

Further analyses was also carried out to identify the impact of waist circumference on 

platelet count and percentage ADP-induced platelet aggregation (see table 5.3). 

Current guidelines suggest a cut-off greater than 102cm in men and 88cm in women on 

the basis of causing increased risk of many metabolic risk factors such as 

hyperinsulaemia and hyperlipidaemia (Han et al., 1995). ADP-induced platelet 

aggregation with 20pM ADP produced a significant decrease in the degree of platelet 

aggregation above the cut-off waist circumference guidelines compared to below the 

cut-off waist circumference guidelines (81.27±2.28 vs 86.80±1.02%, P<0.05). However 

no significant differences were found between the two groups for percentage ADP- 

induced platelet aggregation with 10pM ADP and platelet count. 

The Spearman rank correlation test found that both LH and TAS were not associated 

with either platelet count and ADP-induced platelet aggregation (final ADP 

concentration, 10NM and 20pM) (see table 5.4). 
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Table 5.2. Platelet count and percentage ADP-induced platelet aggregation (final ADP 

concentration, 10pM and 20pM) in the normal-weight, overweight and obese groups. 

Variable Normal-Weight Overweight Obese NW NW OW 

(NW) (OW) (0) S Vs vs 

(n=15) (n=15) (n=15) OW 00 

Platelet count 224.40 t 13.2 205.57 ± 12.47 230.00 ± 10.54 . 
455 . 819 

. 
229 

10PM 75.27 t 2.21 72.53 ± 2.29 65.27 ± 2.66 . 454 <. 05 
. 064 

20pM 89.33 t 0.89 85.47 ±. 1.51 80.07 ± 2.18 . 076 <. 001 <. 05 

Values are expressed as the mean±SEM. 10 and 20pM, Final concentrations of ADP- 

induced platelet aggregation. Results were compared using a Mann Whitney U-Test 

and P values are given in the Table. P values < 0.05 were considered significant. For 

further details see text. 
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Figure 5.0. Percentage ADP-induced platelet aggregation (10pM and 20pM) in the 

normal-weight, overweight and obese groups. Results (meantSEM) were compared 

using Mann-Whitney U Test. (*, P<0.05, **, P<0.01). For further details see text. 
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Table 5.3. Platelet count and percentage ADP-induced platelet aggregation according 

to waist circumference guidelines [cut-off points, reduced CVD risk (<88cm for women 

and <102cm for men) and increased CVD risk (>88cm for women and >102cm for 

men)]. 

Variable Reduced CVD risk waist Increased CVD risk waist NW 

circumference (n=30) circumference (n=15) Vs OW 

Platelet count 215.08 ± 9.3 229.80 ± 9.46 . 263 

10pM 73.10 t 1.66 66.87: t 2.79 . 162 

20NM 86.80: t 1.02 81.27. t 2.28 
. 027 

Values are expressed as the mean±SEM. 10 and 20µM, Final concentrations of ADP- 

induced platelet aggregation. Results were compared using a Mann Whitney U-Test 

and P values are given in the Table. P values < 0.05 were considered significant. For 

further details see text. 

Table 5.4. Correlation coefficients for the relationship between LH and TAS with 

platelet count and ADP-induced platelet aggregation (final ADP concentration, 10pM 

and 20pM) 

Variable LH TAS 

Spearman rho P value Spearman rho P value 

Platelet Count 
. 077 

. 617 -. 083 . 590 

10 PM -. 143 
. 348 -. 197 . 195 

20 pM . 013 
. 934 -. 139 . 361 

0 and 20µM, Final concentrations of ADP-induced platelet aggregation. Results were 

analyzed using the Spearman rank correlation test and P values are given in the Table. 

P values < 0.05 were considered significant. For further details see text. 
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5.3 DISCUSSION 

It is well established that the risk of CVD is increased with the degree of obesity and 

abdominal obesity (Coleman et al., 1992) and oxidant stress-mediated platelet 

aggregation is a mechanism through which obesity may affect CVD morbidity and 

mortality (Davi et al., 2002). This study examined the effect of BMI (normal-weight, 

overweight and obese) on platelet count and percentage ADP-induced platelet 

aggregation. In addition the study investigated whether increased oxidant stress in 

obesity is a determinant of percentage ADP-induced platelet aggregation. 

The study group consisted of 45 healthy subjects normal-weight, overweight and obese 

subjects. Although not significant, LH levels were higher in the obese group compared 

to the normal-weight group and overweight group. TAS levels were significantly higher 

in the obese group compared to the normal-weight group but no other significant 

differences were noted between groups in TAS, SOD and GSH. It was surprising that 

LH levels were not significantly higher in the obese group, but this could be attributed 

to variable LH levels as a result of sampling handling and/or storage duration 

(Södergren et al., 1998). For example Södergren et al (1998) found that the storage of 

plasma at -70°C was associated with a variable degree of loss of detectable plasma 

hydroperoxides. In this study, data was collected over a period of 6-months so the 

initial samples collected may have been affected by a loss of detectable 

hydroperoxides. Alternatively, the reduced LH levels in the obese group may be due to 

a reduced number of morbid obese subjects as their inclusion is more likely to increase 

mean LH levels (Yesilbursa at al., 2005; Keany et al., 2003; Ozata at al., 2002; Davi at 

al., 2002; Dandona et al., 2001; Präzny et al., 1999). 
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No differences in platelet count was identified between the normal-weight, overweight 

and obese groups. Percentage ADP-induced platelet aggregation decreased with 

increasing BMI values at both ADP final concentrations of 10 and 20pM with the obese 

group demonstrating significantly reduced ADP-induced platelet aggregation compared 

to the normal-weight group. These results suggest reduced platelet in vitro 

aggregability in obese subjects, perhaps due to reduced sensitivity of receptor sites to 

specific agonists. The decreased sensitivity to ADP in this study is an expression of 

enhanced in vivo platelet reactivity, consequent to a release of intraplatelet aggregating 

substances causing a state of platelet exhaustion (Tozzi-Ciancarelli et at, 1997). 

Further analyses also showed that percentage ADP-induced platelet aggregation with 

20pM ADP was significantly reduced in subjects with a greater waist circumference 

(above the cut-off waist circumference guidelines for increased risk of CVD, women, 

>88cm and men, >102cm) compared to subjects with a waist circumference below the 

cut-off waist circumference guidelines. No other significant relationships between 

waist-circumference and platelet count and percentage ADP-induced platelet 

aggregation with 10pM ADP were found. Correlation analysis found no significant 

association between LH and percentage ADP-induced platelet aggregation and TAS 

and percentage ADP-induced platelet aggregation, which suggests that both LH and 

TAS are not determinants of platelet aggregation. 

This is the first study to demonstrate the impact of a range of BMI groups and waist 

circumference (normal-weight, overweight obese) on percentage ADP-induced platelet 

aggregation. In particular the impact of being overweight on obesity has not been 

studied and it is reassuring that being overweight does not enhance in vivo platelet 

reactivity. The finding that obesity does enhance platelet aggregation is in agreement 

with several other studies (Juhan et at, 1980; Davi et al., 2002; Haszon et at, 2003). 

Juhan et al (1980) found that platelet activity was significantly related to android 
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obesity. Davi et al (2002) found that obesity increased 11 -dehydrothromboxane B2 (a 

marker of in vivo platelet activation), which was further enhanced in subjects with 

android obesity [non-obese vs gynoid obesity vs android obesity (187 (140-225) vs 275 

(220-349) vs 523 (393-685)] (non-obese vs gynoid obesity (P<0.001), non-obese vs 

android obesity (P<0.001) and gynoid obesity vs android obesity (P<0.001). Haszon of 

al (2003) concluded that both normal-weight and obese hypertensive and obese 

nonotensive children demonstrated increased platelet aggregation (measured using 

collagen as an agonist with a laser rheoaggregometer) which contributed to the 

development of hypertension and to the promotion of vascular damage. Haszon of al 

(2003) also found a significant correlation between BMI vales and platelet aggregation 

in overweight children with and with out hypertension (r=0.51, n=35, P<0.01). 

The increased platelet aggregation in obesity may be explained by the reduced 

sensitivity towards antiaggregating agents (Trovati of at, 1994; Trovati of at, 1996; 

Vinik of at, 2001). For example insulin has been shown to reduce platelet responses 

to agonists by activating the NO/cyclic nucleotide pathway, but because insulin 

responses are often blunted in obese subjects (Trovati of al, 1995), platelet responses 

to agonists are increased. Obese subjects also demonstrate platelet resistance to the 

NO donor glyceryl trinitrate (GTN) (Anfossi of at, 1998a) and to adenosine (Anfossi et 

at, 1998b) and show an impaired platelet deposition to collagen when submitted to 

euglycaemic insulin infusion in vivo (Westerbacka et at, 2002). The resistance to the 

agents noted above act via the anti-aggregating cyclic nucleotides, cAMP and cGMP, 

the main mediators of platelet anti-aggregation (Geiger, 2001). They act via specific 

protein kinases (Waldman of al., 1987; Butt of at, 1994) to block several steps of the 

agonist-induced elevation of cytosolic Ca 2+ (Yamanishi of at, 1983; Kawahara et at, 

1984), which is a basic mechanism of platelet activation (Rink and Sage, 1990). It is 

known that plasma levels of ß-thromboglobulin, platelet factor-4, P-selectin, and the 
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surface expression of lysosomal or granule proteins also play a role in platelet 

activation (Haas et al., 1999) but the Interaction between these factors and obesity has 

not yet been extensively studied and elucidated. 

Despite observing increased in vivo platelet reactivity and LH levels in obesity, this 

study found no association between oxidant stress and percentage ADP-induced 

platelet aggregation suggesting that oxidant stress does not mediate platelet 

aggregation. This was surprising because other research studies support that oxidant 

stress participates in the regulation of platelet activation (Krotz et al., 2004). Oxidant 

stress-mediated platelet aggregation has been found in several settings of risk factors 

for atherosclerosis and cardiovascular thrombosis, including diabetes mellitus, 

hypertension and hypercholesterolemia (Davi et al., 2003; Minuz et al., 2002; Davi et 

al., 1997). Davi et al (2003) examined whether 8-iso-PGF2 formation (index of in vivo 

lipid peroxidation) correlates with the rate of urinary 11 -dehydro-TXB2 (index of in vivo 

platelet activation) excretion in newly diagnosed diabetic children and adolescents and 

children and adolescents with longerstanding disease. Newly diagnosed diabetic 

patients had significantly higher urinary 8-iso-PGF2 excretion and urinary 11-dehydro- 

TXB2 excretion than patients with longerstanding disease (P<0.05). In addition a 

statistically significant linear correlation was found between 8-iso-PGF2 and 11- 

dehydro-TXB2 excretion rates in both groups of diabetic patients (newly diagnosed and 

longerstanding disease groups) (r=0.73, P=0.0001 and r=0.70, P'=0.001, respectively). 

Davi et al (2003) concluded that the enhanced lipid peroxidation and platelet activation 

in newly diagnosed diabetic patients may be related to an acute imflammatory 

response. For example Davi et al (2003) found that patients with the shortest duration 

of disease and with the highest IL-6 had the highest rates of in vivo lipid peroxidation 

and platelet activation. However IL-6 variability is only likely to explain a small 

percentage of the variability in lipid peroxidation and platelet activation as other 
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inflammatory mediators are likely also to be triggers of enhanced lipid peroxidation and 

platelet activation such as including tumor necrosis factor-a (TNF- a), interleukin (IL)- 

1B (Davi et al., 2003). Minuz et al (2002) examined whether oxidant stress Is 

enhanced resulting in persistent platelet activation in patients with renovascular 

disease (RVD) which is a rare form of secondary hypertension. Lipid peroxidation as 

reflected by urinary 8-iso-PGF2 excretion and platelet activation as reflected by urinary 

11-dehydro-TX2 excretion, were both significantly enhanced in hypertensive patients 

with RVD compared to a control group and patients with essential hypertension. A 

relationship between 8-iso-PGF2 and 11-dehydro-TXB2 was also observed in 

hypertensive patients with RVD (rs=0.48; n=20; P=0.032). Minuz et al (2002) attributed 

the biochemical link between lipid peroixidation and platelet activation to activation of 

the renin-angiotensin system. Davi et al (1997) found a statistically significant 

correlation between the rates of excretion of 8-epi-PGF2a and 11-dehydro-TXB2 in 

hypercholesterolemic patients who demonstrated significantly enhanced levels of 8-epi- 

PGF2a and 11-dehydro-TXB2 compared to control subjects. Lastly, Davi et al (2002) 

noted a significant correlation between urinary excretion rate of 8-iso PGF2a and 11- 

dehydro-TxB2 in gynoid and android obesity (r=0.61, P<0.001). To characterise the 

cause and effect of obesity further on 8-iso PGF2a and 11 -dehydro-TxB2further, Davi et 

al (2002) examined the effects of a short-term weight loss program on changes in 

urinary 8-iso PGF2ai and 11-dehydro-TxB2 in 20 android obese women. Following 

successful weight loss (15.3t10.5kg) the rates of 8-iso PGF2a and 11-dehydro-TxB2 

excretion were significantly reduced, by 32% and 54% respectively. Changes in urinary 

11-dehydro-TxB2 excretion correlated with the amount of weight loss (r=0.67, P=0.02) 

and the values of thromboxane metabolite excretion fell within the reference range by 

the end of the study. Therefore, increased oxidant stress in obesity maybe a 

mechanism linking obesity-associated oxidant stress with platelet activity. In contrast, 

this study failed to demonstrate a potential biochemical link between platelet 
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aggregation and lipid peroxidation measured as ADP-induced platelet aggregation and 

lipid hydroperoxides, respectively. The conflicting findings may be attributed to 

methodological differences such as measurement of ADP-induced platelet aggregation 

which may measure different aspects of platelet activation and may differ in terms of 

sensitivity compared to the markers of platelet activation used in plasma in the above 

studies (Kamath et al., 2001). Possible variations in LH levels due to sampling 

handling and storage conditions (Södergren et al., 1998) may also have affected the 

identification of a biochemical link between lipid peroxidation and platelet aggregation. 

Several in vitro experimental approaches have been used to investigate the specific 

role for distinct ROS on platelets. Platelets exposed directly to H202 have caused 

divergent results. Inhibited ADP-dependent platelet activation (Ambrosio of al., 1994), 

enhanced collagen-dependent platelet activation and enhanced arachidonic acid (AA)- 

dependent platelet activation (Practio of al., 1992) have all been observed. The 

discrepancy in results may be caused by different antioxidant capacities of the buffers 

used in the studies (Krotz et al., 2004). Platelets exposed to 02 have shown a 

reduction in the threshold for platelet activation to thrombin, collagen, ADP or AA and 

induced spontaneous aggregation (Handin et al., 1977; Krotz of al., 2002; Salvemini et 

a/., 1989; De la Cruz et a/., 1992). 02'" also reacts with platelet or endothelium-derived 

NO to OONO'. The decreased bioavailability of NO is of particular importance for 

vascular thrombosis since NO is a potent inhibitor of platelet activation (Krotz et aL, 

2004). OONO" has also been shown to produce a dual effect on platelets. It activates 

platelets in normal buffer and inhibits them when in plasma (Moro of al., 1994; Brown of 

al., 1998). In addition to exogenously derived ROS affecting the regulation of platelet 

activation, recent data also suggests that the platelets themselves generate ROS. The 

release of 02 and other ROS by activated platelets was first observed by Marcus 

(1977). The platelet isoform of NAD(P)H-oxidase has been shown to produce 02'' and 
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enhance the recruitment of platelets by inactivating a platelet ectonicleotidase, thereby 

increasing the bioavailability of ADP (Krotz et al., 2002). A variety of other enzymes 

are capable of producing ROS in platelets such as NO synthase (Wolin et al., 2002) 

and phospholipase A2 (Caccese et al., 2000). 

5.4 CONCLUSION 

Percentage ADP-induced platelet aggregation progressively decreased with increasing 

BMI values but only obese subjects had significantly decreased ADP-induced platelet 

aggregation compared to normal-weight control subjects (expression of enhanced in 

vivo platelet reactivity). Waist circumference above the cut-off guidelines for increased 

CVD risk also showed a tendency for decreased percentage ADP-induced platelet 

aggregation levels when compared to a waist circumference below the cut-off 

guidelines for reduced CVD risk. The in vitro altered platelet behaviour observed in 

obesity, may be considered an expression of exhausted platelet reactivity to in vivo 

stimulation and maybe the underlying cause for increased risk of CVD (Davi et at, 

2002). Various risk factors for atherosclerosis and cardiovascular thrombosis such as 

hypercholesterolemia, diabetes mellitus and hypertension are associated with oxidant 

stress-mediated platelet aggregation (Davi et at, 2003; Minuz et at, 2002; Davi et al., 

1997), which suggests that increased oxidant stress in obesity may contribute to 

persistent platelet aggregation. However this study does not support the biochemical 

link between oxidant stress and platelet aggregation when measuring lipid 

hydroperoxide levels and percentage ADP-induced platelet aggregation. 
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Chapter SIX 

Study 3 

The effects of short-term dietary intervention for weight loss 

on lipid peroxidation and total antioxidant status. 



6.0 INTRODUCTION 

Obesity treatment typically promotes long-term adherence to a well-balanced weight 

loss promoting diet, which emphasises restriction of fat intake (British Nutrition 

Foundation, 2003). However these diets are often associated with modest weight loss 

(Brehm et aL, 2003), poor compliance (Westerterp et aL, 1996), and weight regain in 

the long term (Toubro and Astrup, 1997) and there has been a concomitant increased 

trend in the use of short term bouts of 'crash' dieting and carbohydrate restriction e. g. 

the Atkins Diet (Atkins, 1992) which typically promotes rapid weight loss in the first few 

days or weeks (Atkins, 1992). Possible mechanisms accounting for the increased 

weight loss on the LowCD include the simplicity of the diet (restricting food choices) 

(Foster et al., 2003), alterations in central satiety factors (Foster et al., 2003), dietary 

adherence (Foster et al., 2003), glycogen depletion (Astrup et al., 2004) and 

associated water loss (Astrup et al., 2004). 

The LowCD derives large proportions of calories from fat and protein (Atkins, 1992), 

which may potentially have a detrimental impact on the risk of CVD (Blackburn et aL, 

2001). Increased consumption of saturated fat has been linked to an adverse lipid 

profile (Law, 2000), glucose intolerance (Marshall et al., 1997) and obesity (Bray and 

Popkin, 1998). However improvements in conventional CVD risk factors have been 

found on the LowCD such as triglyceride and HDL-cholesterol concentration and 

insulin sensitivity (Astrup et al., 2004) which may be attributed to weight loss. The 

effects of a LowCD on more novel CVD risk factors such as oxidant stress as yet is 

unknown (Hayden and Reaven, 2000) but it is important to explore these as 

conventional CVD risk factors do not fully explain the observed rates of coronary heart 

disease (Reaven, 1997). 
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Since the early 1990's, it has been accepted that oxidant stress plays a critical role in 

the pathogenesis of endothelial dysfunction (Loscalzo, 2003). Systemic processes 

that invoke endothelial dysfunction include stress-induced activation of intracellular 

oxidative signalling (Cai and Harrison, 2000), with secondary oxidative modulation of 

low density lipoprotein oxidation (LDLOx) (Witztum, 1994) and NO bioavailability 

(Williams et al., 2002). These processes may be modulated by factors such as 

obesity (Williams et al., 2002), weight loss (Higashi et al., 2003) and dietary 

composition (macronutrient and micronutrient intake) (Roberts et al., 2002). 

Several research studies have reported that obesity was associated with increased 

oxidant stress in humans (Yesilbursa et al., 2005; Mohn et aL, 2005; Keaney et al., 

2003; Ozata et al., 2002; Davi et al., 2002; Dandona et al., 2001; Präzny et al., 1999) 

i. e. increased free-radical production and/or depleted cellular antioxidant defence 

systems (Powers et aL, 2004). The proposed mechanisms that may underlie the 

obesity-related oxidant stress include, increased 02 consumption (i. e. mechanical 

overload) and subsequent radical production via mitochondrial respiration, diminished 

antioxidant capacity, increased fat deposition and cell injury causing increased rates 

of radical formation such as 02 and OH" (Vincent et al., 2001). In addition, 

hyperglycaemia, hypertension and hyperleptinemia are also possible sources of 

increased oxidant stress in obesity (Vincent and Taylor, 2006). These abnormalities 

have been shown to be reversible with weight loss (Davi et al., 2002; Vincent et al., 

2001). The macronutrient composition of diets may also influence the oxidant- 

antioxidant balance For example, high-fat (Slim et aL, 1996) and high-sugar diets 

(Faure et aL, 1997) have been shown to induce oxidant stress, whilst a reduced fat 

and reduced sugar intake reduces oxidant stress (Roberts et al., 2002). The quantity 

and composition of dietary fat may also affect fat-soluble anti-oxidative vitamin intake 

and/or anti-oxidative capacity and lipid peroxidation status (Velthuis-te Wierik et al., 

1996). Fat in food serves as a carrier for fat-soluble vitamins, so reduced-fat foods 
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may adversely affect the availability of fat-soluble vitamins and potentially reduce anti- 

oxidative capacity (Velthuis-te Wierik et al., 1996). In addition to the long-term effects 

of dietary intervention, it has been shown that following an acute high fat meal or 

glucose load, free-radical production is enhanced (Vogel et al., 1997; Dandona et aL, 

2001). The independent contributions of changes in dietary macro-nutrient 

composition, energy restriction and weight loss on reducing oxidant stress, to date 

remain unclear (Fenster et aL, 2002). 

The present studies aimed to investigate the effects of two commercially available diet 

plans for weight loss i. e. LowCD and ConvD (Slimming World) versus a control diet 

(CtrID) on LH, TAS, SOD and GSH in healthy overweight women. 

6.1 METHODOLOGY 

Subject Characteristics: 

Thirty (n=30) overweight women participated in the study (see table 6.0 for subject 

characteristics). Inclusion criteria were: age between 18 and 50 years and BMI 

between 25 and 33kg/m2. Exclusion criteria included recent compliance (minimum 2 

weeks) to a dietary regimen for weight loss within the last 3-months, clinically 

significant physician-diagnosed illnesses such as diabetes or hypertension, physician 

prescribed hypotensive or lipid-lowering medications, taking medications affecting 

body weight such as Orlistat and Sibutramine, or any form of antioxidant therapy, and 

pregnancy or lactation. Written informed consent was obtained from all the subjects 

after they had been given a full explanation of the study. The research was approved 

by De Montfort University Ethics Committee. 
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Table 6.0. Subject characteristics. 

Characteristic LowCD ConvD CtrID LowCD LowCD ConvD 

(N = 12) (N = 12) (N = 6) vs vs vs 

ConvD CtrID Ctrld 

Age, jr 39.8 t 2.75 41.5 ± 1.86 36.8 ± 3.29 . 882 . 763 . 525 

Body mass, kg 84.4 ± 2.91 84.1 ± 2.96 75.6 ± 2.68 . 940 . 088 . 112 

BMI, kg/m 30.2 ± 0.84 31.2 ± 0.80 28.7 ± 1.26 . 412 . 481 . 192 

Body fat, kg 32.3 ± 2.16 32.6 ± 2.14 26.1 ± 2.01 . 923 <. 05 . 075 

Waist circumference, cm 95.6 ± 3.58 96.6 ± 3.31 89.3 ± 5.60 . 984 . 558 . 475 

Systolic BP, mmHg 125.2 ± 3.87 123.6 ± 3.95 114.7 ± 3.70 . 847 . 104 . 236 

Diastolic BP, mmHg 84.6 ± 3.16 84.2 ± 2.96 76.8 ± 2.90 . 869 . 170 . 344 

Total cholesterol, mmoVL 5.7 ± 0.53 5.3 ± 0.50 5.1 t 0.59 . 789 . 209 . 542 

LDL cholesterol, mmoVL 3.60 t 0.42 3.59: t 0.41 3.14t 0.45 . 916 . 116 . 068 

HDL cholesterol, mmoVL 1.68±0.24 1.16 t 0.22 1.54: t 0.26 . 173 . 604 . 586 

Triglycerides, mmoVL 0.8 ± 0.11 0.9 ± 0.10 1.0 ± 0.11 . 362 . 282 . 847 

Fasting Glucose, 4.71 t 0.19 4.76 t 0.18 4.64 t 0.21 . 121 . 264 . 300 

mmoVL 

Values expressed as the mean±SEM. BMI, body mass index; BP, blood pressure; LDL, 

low-density lipoprotein; HDL, high-density lipoprotein. Results were compared using a 

Scheffe multiple comparison test and P values are given in the Table. P values < 0.05 

were considered significant. For further details see text. 

Experimental design 

The volunteers were randomly assigned to follow either the LowCD (Atkins Diet), 

ConvD (Slimming World Diet) or CtrlD (Control). On the LowCD, volunteers were 

instructed to follow an ad libitum diet with a maximum intake of 20g carbohydrate/day, 

which induced ketosis (as shown in all volunteers on the LowCD by using a urinary 
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ketone kit). After 2 weeks of dieting, volunteers increased their intake of carbohydrate 

to 40-60g/d if self-testing of urinary ketones continued to indicate ketosis. Volunteers 

following the LowCD were also instructed to take a daily multivitamin (Holland & Barrett 

Multivitamin, ABC Plus) as recommended in the Atkins Diet. On the ConvD, volunteers 

followed the Slimming World Diet, which meets the guidelines of the Balance of Good 

Health (British Nutrition Foundation, 2003) i. e. high carbohydrate (60% of total kcal 

intake) / low fat (<30% of total kcal intake) and moderate protein (12% of total kcal 

intake) content. Volunteers following the CtrlD were instructed to continue their usual 

dietary regime. 

The study was conducted over a 7-week period. All subjects completed a 2-week 

baseline period, 4-week weight loss programme and a 1-week post-diet follow-up. The 

subjects attended the research laboratory weekly on the same day until the study was 

completed. During each visit, volunteers had blood samples taken, underwent 

anthropometric assessments and volunteers following the LowCD and ConvD received 

additional dietary advice. 

Anthropometric and cardiovascular measurements and venous blood sampling 

Height, weight and waist measurements are described in detail in the methodology 

chapter (section 3.2.1,3.2.2,3.2.3). Body composition was analyzed using the BIA 

(BodyStat® Quadscan 4000) which is outlined in the methodology chapter (section 

3.2.4.1). Cardiovascular measurements and venous blood sampling are described in 

the methodology chapter (section 3.3,3.1.1 and 3.1.2). 
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Food diary 

Dietary intake was monitored using a 3-day weighed food diary, which was 

subsequently analyzed for macro-micronutrient content using dietary analysis software, 

Compeat (methodology chapter, section 3.8). 

Biochemical measurements 

LH, TAS, SOD and GSH were performed as described in the methodology chapter 

(section 3.1.12 and 3.1.13). Other biochemical measures included, fasting plasma 

glucose, plasma fructosamine, plasma cholesterol, plasma LDL, plasma HDL and 

plasma triglycerides as described in the methodology chapter (section 3.1.6.1,3.1.7, 

3.1.8,3.1.9,3.1.10 and 3.1.11). 

Statistics 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value or the mean change or improvement). 

The Kolmogorov-Smirno test confirmed that the data was normally distributed. Data 

was analyzed using ANOVA with repeated measures which is an appropriate method 

for detecting differences between groups, time effects and interactions. A two way 

(AxB) mixed analysis of variance (ANOVA) was used which incorporated one between 

group (groups: LowCD vs ConvD cs CtrlD) and one within (time: baseline vs Wk 1 vs 

Wk 2 vs Wk 4) subjects factor. When significant F values were noted, post hoc 

analyzes were performed with a Scheffe multiple comparison test. Paired t-tests were 

used to detect specific differences within groups at certain time points during the study. 

Relationships between dietary intake and biochemical parameters were examined 

using Pearson's test of linear correlation. P-values < 0.05 were regarded as 
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statistically significant. Analyzes of data were carried out using a computer software 

package (SPSS for Windows, Version 13.0). 

6.2 RESULTS 

Subject characteristics for the LowCD, ConvD and CtrlD group are shown in table 6.0. 

The majority of parameters were similar between the three groups at the beginning of 

the study; age, BMI, waist circumference, blood pressure, fasting lipid profile and 

fasting glucose, except for body fat levels. Body fat was significantly higher in the 

LowCD group when compared to the CtrID group (32.3±2.16 vs 26.1±2.01 kg, P<0.05), 

however there was no significant difference in body fat between the ConvD and CtrID 

group (32.6±2.14 vs 26.1±2.01 kg). 

Weight loss and Changes in Body Composition 

Following the 4-week dietary intervention both the LowCD and ConvD groups 

demonstrated significant weight loss [LowCD vs ConvD (mean, -4.88t1.28kg, P<0.001 

vs. -3.14t1.76kg, P<0.001, respectively)] with the LowCD achieving a greater weight 

loss when compared to the ConvD (P=0.01). Despite advice to maintain their habitual 

dietary regimen and physical activity, the CtrID group did lose weight over the 4-weeks 

but this was not statistically significant (-1.2±0.82kg, P>0.05). In terms of body 

composition, following the 4-week dietary intervention both the LowCD and ConvD 

groups demonstrated significant mean fat loss [LowCD vs ConvD (-2.34±0.47kg, 

P<0.001 vs -3.6±0.58kg, P<0.001)]. Although the ConvD resulted in the greatest fat 

loss over 4-weeks, this was not significantly different when compared to fat loss in the 
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LowCD group (P>0.05). The CtrID group demonstrated no significant change in fat 

mass (-0.89±0.96kg, p>0.05) (see table 6.1). 

Table 6.1. Body weight and body fat during the study period (baseline and week 1,2 

and 4 of the dietary intervention period) on the LowCD, ConvD and CtrID. 

Group Baseline Week 1 Week 2 Week 4PPP 

group time interact 

Weight (kg) 

LowCD 84.4±2.78 81.6±2.86****'* *t 81.4±2.93* "l 79.5±2.89*** "m *t 

ConvD 84.0±2.96 82.6±2.90* 82.0±2.87'Nl 80.9±2.7411" 0.001 0.000 0.000 

CtrID 75.6±3.99 75.5±4.20 74.7±4.14* 74.4±4.23 

Group Baseline Week 1 Week 2 Week 4PPP 

group time interact 

Total Body Fat (kg) 

LowCD 32.2±1.74 31.0±1.82" 30.3±1.88'g* 30.0±1.784" 

ConvD 32.6±2.14 31.3±2.15" 30.1±2.021" 29.0±1.93* "0 0.135 0.000 0.032 

CtrID 26.1±2.20 25.5±2.62 25.3±3.00* 25.2±2.76 

Values expressed as the mean±SEM. LowCD, low carbohydrate diet, ConvD, 

Conventional diet, CtrlD, control diet. Results were analyzed using ANOVA with 

repeated measures. P values < 0.05 were considered significant. For further details 

see text. 

* P<0.05, "** P<0.001 denotes values compared to CtrlD group 

P<0.05, P<0.01, ana P<0.001 denotes values compared to baseline levels. 

It P<0.01 denotes difference between LowCD group and ConvD group. 
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Food Intake 

Food intake data is summarized in table 6.2. Mean total daily calorie Intake was 

significantly reduced on both the ConvD and LowCD by approximately one-third versus 

baseline values [baseline vs 4-week diet (ConvD (1848±127 vs 1229±69kcal), LowCD 

(1438±89 vs 1032±7Okcal), P<0.01)], but did not change significantly on the CtrID 

[baseline vs 4-week diet (1491±366 vs 1612±203kcal, P>0.05)]. Mean fat intake 

(percentage of total calorie intake) was significantly lower (-24%) on the ConvD 

[baseline vs 4-week diet (38.5±1.7 vs 29.1±1.2%, P<0.001)] and % fat intake higher 

(+55.2%) on the LowCD [baseline vs 4-week diet (37.1±2.1 vs 57.6±2.1%, P<0.001)]. 

Fat intake was unchanged in the CtrID. When expressed in grams, mean fat intake 

was significantly lower on the ConvD [baseline vs 4-week diet (80.5±7.59 vs 

40.4±3.25g, P<0.001) but did not show any significant changes in both the LowCD and 

CtrID. Mean carbohydrate intake (percentage of total calorie intake) was significantly 

higher (+13.6%) on the ConvD [baseline vs 4-week diet (43.8±1.5 vs 49.8±1.2%, 

P<0.01)] and was significantly reduced (-77%) on the LowCD [baseline vs 4-week diet 

(41.4±2.8 vs 9.2±1.5%, P<0.01)], but unchanged on the CtrlD. When expressed in 

grams, carbohydrate intake was significantly reduced following the LowCD [baseline vs 

4-week diet (160.2±16.14 vs 24.3±3.56g, P<0.001)] and the ConvD [baseline vs 4- 

week diet (213.9±14.15 vs 162.6±9.75g, P<0.05)] but the degree of reduction was 

greater following the LowCD compared to the ConvD (-85% vs -24%). No changes in 

carbohydrate intake expressed in grams was found on the CtrID. Mean protein intake 

(percentage of total calorie intake) increased on the ConvD (+23%) [baseline vs 4- 

week diet (15.3±0.50 vs 18.9±0.71%, P<0.01)] and on the LowCD (+78%) [baseline vs 

4-week diet (18.4±1.2 vs 32.8±1.8%, P<0.01)]. Mean protein intake (percentage of 

total calorie intake) was unchanged on the CtrID. When expressed in grams, mean 

protein intake decreased on the ConvD [baseline vs 4-week diet (69.8±4.14 vs 
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57.2±2.43g, P<0.05)], increased on the LowCD [baseline vs 4-week diet (66.0±5.51 vs 

81.1±6.26g, P<0.05)] and was unchanged on the CtrlD. Over the course of the four- 

week dietary intervention, the main between group differences in dietary intake 

expressed in grams were significantly greater fat intake on the LowCD compared to the 

ConvD (P<0.001), significantly lower carbohydrate intake on the LowCD compared to 

the ConvD (P<0.001) and CtrID (P<0.001) and significantly greater protein intake on 

the LowCD when compared to the ConvD (P<0.001). No significant differences in fat 

intake and protein intake was found between the LowCD and CtrlD. 

Table 6.2. Dietary composition at baseline and mean values for the four-week dietary 

intervention periods on the LowCD, ConvD and CtrlD. 

P 

Group Baseline Diet period P group P time interact 

KCAL LowCD 1438.1 t 88.53" 1031.6. t 70.38" 

ConvD 1847.8±126.581 1229.2 t 69.21 *" P<0.011 0.002 P<0.012 

CtrID 1490.6 ± 366.19 1611.8 ± 203.20 

FAT (%) LowCD 37.1 t 2.08 57.6: t 2.06118"' 

ConvD 38.5: t 1.68 29.1 t 1.24"o 

CtrID 36.6: t 1.70 34.0: L 1.94 

FAT (g) LowCD 58.3 ± 3.93 66.7 ± 5.85t' 

ConvD 80.5: t 7.59 40.4 t 3.25'01x 

CtrID 69.6 ± 9.13 62.6 ± 10.33 

CARBOHYD 

RATE (%) LowCD 41.4 ± 2.75 9.2: t 1.45"****ttt 

P<0.001 0.035 P<0.001 

0.806 P<0.01 P<0.001 

ConvD 43.8 ± 1.51 49.8 ± 1.12" P<0.001 P<0.001 P<0.001 

CtrID 50.1 t 2.07 48.0: t 2.05 
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CARBOHYD 

RATE (g) LowCD 160.2: t 16.14 24.3. t 3.56***###ttt 

ConvD 213.9: t 14.15 162.6: t 9.75*1 P<0.001 P<0.001 P<0.001 

CtrID 220.9 t 29.22 202.5 ± 20.99 

PROTEIN 

(%) LowCD 18.4: t 1.21 32.8: t 1.76"Ns***trt 

ConvD 15.3 ± 0.50 18.9 ± 0.71 "m P<0.001 P<0.001 P<0.001 

CtrID 15.1 ± 0.82 15.8 t 0.88 

PROTEIN 

(g) LowCD 66.0: t 5.51 81.1 t 6.26"tt 

ConvD 69.8 ± 4.14 57.2 ± 2.43" 
. 284 0.918 P<0.01 

CtrID 66.1 ± 11.24 63.3 t 8.31 

Values expressed as the mean±SEM. LowCD, low carbohydrate diet, ConvD, 

Conventional diet, CtrID, control diet. Results were analyzed using ANOVA with 

repeated measures. P values < 0.05 were considered significant. For further details 

see text. 

* P<0.05, ** P<0.01, *** P<0.001 denotes values compared to CtrlD group 

P<0.05, P<0.01, ### P<0.001 denotes values compared to baseline levels. 

P<0.05, tt P<0.05, ttt P<0.001 denotes difference between LowCD group and ConvD 

group. 

Figures 6.0,6.1,6.2 and 6.3 show the results for lipid peroxidation and antioxidant 

status measures as LH, TAS, the intracellular antioxidant defence GSH and the free- 

radical scavenging enzyme SOD. 

In comparison to baseline levels, subjects following LowCD demonstrated variable LH 

levels. An initial non-significant trend for increased levels at week 1 was apparent 
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(P=0.08), followed by a significant increase at week 2 (P<0.05), which returned to near 

baseline levels at week 4 (P>0.05). LH levels did not change significantly on the 

ConvD (P>0.05) but on the CtrID there were slight fluctuations e. g. LH levels 

increased at week 1 (P<0.05) but this returned to baseline level at week 2 (P>0.05). 

Baseline 

I 

Wk1 Wk2 

i 
i 

Wk4 

Q ConvD 

Q LowCD 

  CtrID 

Week 

Figure 6.0. LH levels (pmol/L) at baseline and during the four-week dietary intervention 

on ConvD, LowCD and CtrlD. 

ConvD, conventional diet, LowCD, low carbohydrate diet, CtrID, control diet. Results 

(mean±SEM) were analyzed using ANOVA with repeated measures. (*, P<0.05). For 

further details see text. 

In comparison to baseline levels, subjects following LowCD demonstrated increased 

TAS during the four-week intervention period (week 1, P<0.05; week 2, P<0.05 and 

week 4, P<0.001). No changes in TAS were found during the four-week intervention 

period in the ConvD. In the CtrID, TAS significantly increased compared to baseline 

level at week 2 of the four week intervention period (P<0.05), but returned to near 

baseline levels at week 4. 
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Baseline Wk1 Week Wk2 Wk, 1 

Figure 6.1. TAS levels (pmol/L) at baseline and during the four-week dietary 

intervention on ConvD, LowCD and CtrlD. 

ConvD, conventional diet, LowCD, low carbohydrate diet, CtrID, control diet. Results 

(mean±SEM) were analyzed using ANOVA with repeated measures. (`, P<0.05, 

p<0.001). For further details see text. 

No significant changes were noted in GSH levels and SOD activity following 4-weeks of 

dietary intervention in all diet groups. However there were non-significant trends for 

higher GSH and SOD levels in the LowCD group following the 4-week dietary 

intervention when compared to baseline level (P = 0.066 and P=0.075 respectively). 
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Figure 6.2. GSH levels (pmol/g Hb) at baseline post four-week dietary intervention on 

ConvD, LowCD and CtrlD. 

ConvD, conventional diet, LowCD, low carbohydrate diet, CtrlD, control diet. Results 

(mean±SEM) were analyzed using ANOVA with repeated measures. (*, P=0.06). For 

further details see text. 
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Figure 6.3. SOD levels (U/g Hb) at baseline post four-week dietary intervention on 

ConvD, LowCD and CtrID. 

ConvD, conventional diet, LowCD, low carbohydrate diet, CtrID, control diet. Results 

(mean±SEM) were analyzed using ANOVA with repeated measures. (', P=0.08). For 

further details see text. 
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6.3 DISCUSSION 

This study investigated the short-term effects of either a LowCD or ConvD, versus a 

control group, on LH, TAS, SOD and GSH in overweight healthy women. 

Increased consumption of saturated fat has been linked to an increased risk of CVD 

because of associations with increased plasma concentrations of lipids (Law, 2000), 

glucose intolerance (Marshall et al., 1997) and obesity (Bray and Popkin, 1998). The 

LowCD typically has a high proportion of saturated fat consumption (Atkins, 1992). 

Despite this, a recent study indicated that both the LowCD and ConvD may have 

favourable effects on lipoprotein subfractions and inflammatory processes over a 6- 

month period, so the effects of dietary intervention on cardiovascular risk factors may 

be more complex (Astrup et al., 2004). However such improvements may be in 

response to decreased calorie consumption (Roberts et al., 2002; Velthuis-te Wierik et 

al., 1996). In light of these conflicting findings, this study investigated whether the 

LowCD adversely affected related factors relating to cardiovascular health such as 

oxidant stress parameters, which to date have not been widely studied. 

Evidence suggests that high-fat (Slim et al., 1996) and high-sugar diets (Faure et al., 

1997), can induce oxidant stress, by producing radical-producing substances 

(polyunsaturated fatty acids) (Vogel et al., 1997) and/or reduced antioxidant 

substances such as vitamin E and C (Vogel et al., 1997). In addition to long-term 

dietary effects, it has been shown that following an acute high fat meal or glucose load, 

free-radical production is enhanced (Vogel et al., 1997; Dandona et al., 2001, 

respectively). This can make studying the effect of macro-nutrients on oxidant stress 

difficult as it is unknown whether observed increases in ROS were due to excess 

calorie consumption or metabolic alterations associated with obesity (Fenster et al., 
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2002). Evidence suggests that reduced energy Intake (reduced fat products) 

contributes to a reduction In MDA level (Velthuis-to Wierik et aL, 1996), and energy 

restriction (without malnutrition) retards the development of atherosclerosis, due to a 

reduction in 02 molecules within the mitochondria, thereby lowering ROS (Ramsey et 

aL, 2000). The independent contributions of changes in dietary Intake (macro and 

micro-nutrient composition), energy restriction and weight loss on reducing oxidant 

stress, still remains unclear (Fenster of al., 2002). 

At the beginning of the study all thirty overweight women had similar baseline subject 

characteristics. For example age, BMI, waist circumference, blood pressure, fasting 

lipid profile and fasting glucose were not significantly different between each diet group 

when randomised. However body fat was significantly higher in the LowCD when 

compared to the CtrID group (32.3±2.16 vs 26.1±2.01kg, P<0.05). Surprisingly, there 

were no significant differences in body fat between ConvD and CtrOD (32.6±2.14 vs 

26.1±2.01 kg), despite the mean and standard deviation of the ConvD being similar to 

the LowCD. Following the 4-week dietary intervention both the LowCD and ConvD 

groups demonstrated significant weight loss (-4.88±1.28kg, P<0.001 vs. -3.14±1.76kg, 
P<0.001, respectively) with the LowCD achieving a greater weight loss when compared 

to the ConvD (P=0.01). In terms of body composition, following the 4-week dietary 

intervention both the LowCD and ConvD groups demonstrated significant fat loss 

(-2.34±0.47kg, P<0.001 vs -3.6±0.58kg, P<0.001, respectively). Although the ConvD 

resulted in the greatest fat loss over 4 weeks, this was not significantly different when 

compared to fat loss on the LowCD (P>0.05). It is possible that the greater weight loss 

on the LowCD is a result of greater glycogen depletion (Astrup of al., 2004) and 

associated water loss (Astrup of al., 2004). 
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Following the four week dietary intervention In the LowCD, TAS Increased significantly 

at week 4, LH significantly increased at week 1 and 2 and decreased at week 4 and 

both SOD and GSH showed a non-significant Increased trend at week 4. These 

changes could reflect initial increased susceptibility to free-radical production, Induced 

perhaps by the change in macronutrient content (Slim of al., 1996; Velthuis-te Wierik of 

a/., 1996) [e. g. increased fat and/or protein content], followed by compensatory 

elevations in antioxidant enzyme levels, to help protect tissue against potential oxidant 

damage. However antioxidant concentration changes should be interpreted with 

caution, as this might not indicate tissue damage (Packer, 1997). For example 

according to Cooper et al (2002) a rise in plasma antioxidant levels might enhance the 

antioxidant defences in blood, but could possibly impair defences at the sites from 

which they are mobilized. It is worth noting that the above changes in oxidant stress 

markers may have been further enhanced if subjects were not taking a daily 

multivitamin. A daily multivitamin may have reduced the oxidant stress response seen 

on the LowCD (Anderson et al., 1999). 

The observed adverse effects of the LowCD on oxidant stress and lipid peroxidation 

indicates that further investigation is required (both short-term and long-term). It would 

not seem prudent to recommend a diet for inducing weight loss to improve 

cardiovascular health if the diet has an adverse effect on oxidant stress and the 

subsequent development of atherosclerosis. The present data does not support the 

notion that calorie restriction may be the major modulator of the pro-oxidant/antioxidant 

balance as increased oxidant stress susceptibility in the LowCD group was observed 

despite achieving the greatest weight loss in comparison to both ConvD and CtrID 

groups. However, despite not finding a correlation between dietary fatty acid intake 

and oxidant stress in this study, the quantity and composition of dietary fat intake could 

influence fat-soluble anti-oxidative vitamin intake and also modulate anti-oxidative 
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capacity and lipid peroxidation status. For example, SFAs have been shown to 

adversely affect plasma lipids, lipoproteins and haemostatic factors (Mitropoulos of al., 

1994) as well as susceptibility to oxidation (Mata of al., 1996). Berry of al (1991) and 

Reaven of al (1991) support the notion that subjects who consume diets rich in MUFAs 

demonstrate lower LDL oxidation than subjects who consume diets rich in PUFAs. But 

according to Schwab of al (1998) replacing SFAs with either MUFAs or PUFAs in diets 

that provide less total fat did not appreciably affect LDL oxidative susceptibility. In 

addition, Velthuis-te Wierik et al (1996) found that In healthy normal-weight subjects, 

neither the difference in energy intake, or change in dietary fat composition affect MDA 

and antioxidant status levels. Research findings therefore suggest that relating lipid 

content and oxidant stress is not entirely straight forward (Wolff and Nourooz-Zadeh, 

1996). Although it has been shown that diets high in PUFAs and MUFAs and low in 

SFAs decrease atherosclerosis risk (Watts of al., 1992), lipoproteins isolated from 

individuals consuming diets rich in PUFA and MUFA also demonstrate greater pre- 

disposition to peroxidation than lipoproteins from individuals given SFAs (Kleinveld et 

al., 1993). Wolff and Nourooz-Zadeh (1996) suggested that lipid hydroperoxide intake 

is influenced by the consumption of lard and compound cooking fat (such as baking 

and frying margarines) which contain high levels of pre-formed hydroperoxides. 

Therefore individual hydroperoxide intake is expected to vary widely amongst 

individuals and will be largely dependent upon the intake of food containing 

hydroperoxides generated by pyrolysis such as fatty fried foods (Wolff and Nourooz- 

Zadeh, 1996). This information was unrecorded in the diet diaries in this study so the 

above can only be suggested as a cause for changes in LH and TAS status in the 

LowCD. 

Changes in protein intake could modulate anti-oxidative capacity and lipid peroxidation 

status. According to Fang et al (2002) high protein diets lead to increased oxidant 
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stress. High protein diets, Increase homocysteine levels, which Is an Independent risk 

factor for CVD, (Boushey et al., 1995). Homocysteine Increases endothelial 02' 

production and induces oxidant stress in the vasculature (Wu and Meininger, 2002). 

Increasing protein intake has also been shown to stimulate generation of ROS and lipid 

peroxidation in human polymorphonuclear leukocytes and mononuclear cells (Mohanty 

et al., 2002) and increase whole-body NO production by constitutive and inducible NOS 

in rats (Wu et aL, 1999). 

The overall glycaemic index and glycaemic load (product of glycaemic index of a 

specific food and its carbohydrate content) of diets has also been found to be 

independent risk factors for cardiovascular events (Liu et al., 2000), so may be 

important contributors modulating anti-oxidative capacity and lipid peroxidation status. 

Direct evidence from studies in both normal subjects and those with diabetes show that 

induced hyperglycaemia (Ceriello et al., 1998a) or meal intake and its attendant 

increase in glucose (Ceriello et al., 1998b; Ursini et al., 1998) can increase oxidant 

stress and reduce antioxidant defences. The increase in oxidant stress was 

significantly greater after meals that produced a greater degree of hyperglycaemia 

(Ceriello et a/., 1999). Hu et al (2006) supported a direct relation between dietary 

glycaemic index and markers of oxidant stress, MDA and 8-iso PGF2a by assessing 

dietary glycaemic index and glycaemic load in the form of a food-frequency 

questionnaire and measuring plasma MDA and 8-iso PGF2q in 292 healthy adults. The 

observed rise in plasma MDA and 8-iso PGF2a from the lowest to the highest quartile of 

glycaemic index was comparable to the differences in those concentrations found 

between normal-weight and overweight subjects (Block et al., 2002). This data 

suggests that chronic consumption of high-glycaemic index foods may lead to 

chronically elevated oxidant stress. Therefore increasing dietary intakes of low- 

glycaemic index foods, such as most fruit and vegetables, dairy products and whole 
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gains may be beneficial in terms of reduced oxidant stress. Although the consumption 

of high- and low-glycaemic index foods was not measured In this study, It can be 

speculated that it is unlikely that the changes In LH and TAS on the LowCD Is related 

to the consumption of chronic consumption of high-glycaemic index carbohydrates 

because the total carbohydrate intake on this diet was only about 9.1% of energy 

intake, which is very low. Further research Is needed to Investigate the effects of low- 

and high-glycaemic index on oxidant stress, particularly In relation to commercial diets. 

This study was designed to focus on short term effects of dietary factors on oxidant 

stress but there is a need to study both lipid peroxidation and TAS status following a 

LowCD of a longer duration. Since the study was conducted in a realistic context as 

opposed to a strict but perhaps 'artificial' laboratory environment, it was not possible to 

isolate the independent effects of altered calorie intake and changes in dietary 

composition on the pro-oxidant/antioxidant balance. Consequently future research 

should also be undertaken to examine the effect of diet composition variation, whilst 

controlling for total calorie intake, on the pro-oxidant/antioxidant balance. 

6.4 CONCLUSION 

In conclusion, the above study demonstrated that short-term consumption of a high fat / 

high protein / low carbohydrate diet can predispose individuals to increased oxidant 

stress. Short-term adherence to a ConvD did not demonstrate such potential 

deleterious effects. A greater understanding is needed of the individual contributions of 

body weight and composition, energy restriction and diet composition to lipid 

peroxidation and TAS. Further research should concentrate therefore on the influence 

of longer-term dietary intervention on the integrity of the pro-oxidant/antioxidant 

balance. 
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Chapter SEVEN 

Part (1) 

Preliminary experiment (3) 

Changes in lipid peroxidation and total antioxidant status In response to 

an acute session of low-intensity and high-Intensity exercise 

Part (2) 

Study 4 

The effects of acute high-intensity exercise between normal-weight and 

overweight subjects on lipid peroxidation, total antioxidant status and 

platelet responsiveness 



The intention of the preliminary study was to identify an exercise intensity which 

predisposes healthy individuals to enhanced oxidant stress levels. This could then be 

applied to future research studies to assess the impact of obesity on exercise-induced 

oxidant stress and the effect of antioxidant therapy on reducing exercise-induced 

oxidant stress. Although other researchers have examined the effect of various 

exercise intensities on oxidant stress markers, this study was carried to ensure an 

exercise intensity was selected which elicited the oxidant stress makers used in this 

thesis such as lipid hydroperoxide and total antioxidant status. 

PART ONE - Preliminary Experiment 

7.0 INTRODUCTION 

Physical exercise is associated with a significant increase in V02 both at the whole- 

body level and at skeletal muscle (Ji, 1996). Maximal V02 is increased 10-15 fold 

during exercise in relation to a resting period and a small fraction of 02 is converted 

into intermediate oxidative products (Ji, 1996; Alessio, 1993) causing biochemical 

changes and tissue damage (Ji, 1992; Ji, 1995a). The increased oxidative state 

observed during exercise could be produced by increased free-radical formation or 

reduced activity of antioxidant enzymes (Ji, 1995a). 

During exercise primary sources of radical production in skeletal muscle are the 

mitochondria, xanthine oxidase, NAD(P)H oxidase and the production of NO by NO 

synthase (Davies et al., 1982; Jackson et al., 1985; Reid of al., 1992a, b; Borzone et 

a/., 1994; O'Neil of a/., 1996; Jackson, 1998). Secondary sources of free-radical 

production during exercise include autoxidation of catecholamines, radical generation 

by phagocytic white cells and radical formation due to the disruption of iron-containing 

proteins (Jackson, 1998; Halliwell and Gutteridge, 1999). However the mitochondria is 
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the primary source of free-radical production in skeletal muscle. While 95-98% of 02 

consumption by skeletal muscle results in the formation of ATP and H2O, the remaining 

2-5% of the 02 undergoes one electron reduction to produce 02 (Jackson, 1998; 

Halliwell and Gutteridge, 1999). If the increased production of radicals is not balanced 

by the antioxidant capacity, subsequent reactions may give rise to other ROS such as 

H202 and OR. 

Since physical activity protects against the development of CVD and modifies CVD risk 

(Wannamethee and Shaper, 1998), a regular exercise programme is desirable 

(National Institute of Health, 1996). However this presents a biochemical paradox as 

regular exercise is necessary to obtain good cardio-respiratory fitness, but at the same 

time an acute exercise session may be theoretically harmful (Cutler, 1984; Hooper, 

1989). 

Ajmani et al (2003) found that in healthy individuals (n=14), a maximal graded exercise 

test (modified Balke test) caused significant increases in plasma LH levels [pre vs post- 

exercise (6.5±2.0 to 7.9±1.9pM, P<0.0001)]. Similarly, Lawson at al (1997) studied 5 

subjects and found an increase in MDA levels by 60% from a baseline of 3.28±1.74 to 

peak levels of 5.18±1.91nmol/mL (P<0.01) following the modified Bruce exercise 

treadmill protocol. In addition, SOD activity increased significantly by 256% from a 

baseline value of 2.37±1.27 to 8.47±319U/mL (P<0.01). Some investigators have 

failed to observe any signs of exercise-induced oxidant stress (Margaritis et al., 1997; 

Witt et aL, 1992), which could be due to a number of reasons. The use of different test 

subjects (training status, disease state, age and gender) might influence the findings of 

different studies. A range of different exercise protocols (high- and low-intensity 

aerobic exercise) have also been used to study exercise-induced oxidant stress. Only 

high-intensity exercise regimes appear to increase free-radical production enough to 
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overwhelm antioxidant defences. For example, Lovlin of al (1987) demonstrated that 

maximal exercise, eliciting 100% VO2max resulted in a 26% Increase In plasma MDA 

(P<0.005), exercise eliciting 70% VO2max resulted in a non-significant reduction In 

plasma MDA (P>0.05) and exercising at 40% VO2max resulted In a 10.3% decrease in 

plasma MDA (P<0.05). Tozzi-Ciancarelli of al (2002) demonstrated that strenuous 

exercise (maximal exercise test on a cycle ergometer), but not moderate exercise (30 

minutes at 60% VO2max on a cycle ergometer) resulted in increased levels of TBARS 

[rest vs post-exercise (TBARS: moderate (1.5±0.2 vs 1.4±0.1 pmol/L, P>0.05) and 

strenuous (1.6±0.2 vs 3.9±0.3pmol/L, P<0.05) and decreased TAS levels [rest vs post- 

exercise (TAS: moderate (1.35±0.04 vs 1.47±0.05U/mL, P>0.05) and strenuous 

(1.45±0.03 vs 1.05±0.03U/mL, P<0.05)]. 

This study investigated the effects of an acute session of low- and high-intensity 

exercise on LH and TAS responses in healthy subjects. 

7.1 METHODOLOGY 

Subject Characteristics 

The study group consisted of eleven (n=11) apparently healthy male and females 

(n=9/2) who were recruited from De Montfort University, Department of Sport Sciences 

(see table 7.0 for subject characteristics). Subjects with a history of diabetes, 

cardiovascular or cerebrovascular disease, hepatic or renal disease, tobacco abuse, or 

those on hormone replacement therapy were excluded. In addition subjects were 

excluded if they were hypertensive (with or without treatment), taking treatment for 

dyslipidaemia, taking any antioxidant supplementations or a smoker. Written informed 

consent was obtained from all the subjects after they had been given a full explanation 

of the study. The research was given ethical approval by Bedfordshire Local Research 

Ethics Committee. 
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Table 7.0. Subject characteristics 

Characteristic Mean ± SEM 

Age, yr 21.3 t 0.30 

BMI, kg/m2 25.3: t 1.25 

Body mass, kg 77.1 t 4.42 

Body fat, kg 16.3: t 1.89 

Values expressed as the mean±SEM. BMI, body mass index. 

Experimental design 

Subjects visited the exercise physiology laboratories at Do Montfort University, Bedford 

on two separate occasions between 9-11 am over a 2-week period. For each visit, 

subjects were instructed to fast for 10-12 hours and refrain from exercise, caffeine and 

alcohol for 48 h before the study visit. Subjects were also asked to maintain their usual 

dietary pattern. 

During week 1 anthropometric measures were taken which was followed by an 

exercise session. During week 2 an alternative exercise session was carried out. In 

both weeks, prior to and immediately post each exercise session a venous blood 

sample was obtained from a forearm antecubital vein and arterialised capillary blood 

from a finger-tip. 

Exercise session 

The exercise testing protocol utilised a motorised treadmill (see methodology section 

3.5). For each subject, two exercise sessions were completed (30 minutes walking at 

40% or 70% heart rate reserve). The order of the two exercise sessions were 

randomised and separated by 14 days. The Karvonen method was used to estimate 

heart rate reserve: % heart rate reserve = [(hr max (220-age) - resting heart rate) x (% 
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heart rate reserve intensity/100) + resting heart rate. Heart rate was monitored 

throughout the exercise session. 

Anthropometric and cardiovascular measurements and venous blood sampling 

Height, weight and waist measurements are described in detail in the methodology 

chapter (section 3.2.1,3.2.2,3.2.3). Body composition was analyzed using the BIA 

(BodyStat® Quadscan 4000) which is outlined in the methodology chapter (section 

3.2.4.1). Cardiovascular measurements are described in the methodology chapter 

(section 3.3). Venous blood sampling (blood only collected in plain serum tube) and 

arterialized blood samples for assessment of plasma volume were collected which are 

described in the methodology chapter (section 3.1.1,3.1.2,3.1.3,3.1.4 and 3.1.5). 

Biochemical measurements 

LH and TAS were performed as described in the methodology chapter (section 

3.1.12.1 and 3.1.13.1). Haematocrit was measured using a Hawksley Micro Hct 

Reader and Haemoglobin using a HemoCue B-Haemoglobin photometer which are 

described in the methodology chapter (section 3.14 and 3.1.5). Haematocrit and 

Haemoglobin were measured to calculate the change in plasma volume (Dill and 

Costill, 1974). 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value or the mean change or improvement). 

The Shapiro-Wilk test confirmed that the data was not normally distributed so was 

analyzed by non-parametric methods to avoid assumptions about the distribution of the 

measured variables. The Wilcoxon signed-rank test for paired data was used to 
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determine the significance of differences of LH and TAS between pre- versus post- 

exercise among both the low- and high-intensity exercise sessions. Differences were 

considered statistically significant at P<0.05. Statistical analysis was performed using 

a computer software package (SPSS for Windows, Version 13.0). 

7.2 RESULTS 

LH levels only increased significantly following high-intensity exercise [rest vs post- 

exercise (0.73±0.04 vs 0.88±0.04pmol/L, P<0.02)] which was also shown to be 

significantly higher than the LH level post-exercise in the low-intensity group [high- 

intensity vs low-intensity (post-exercise, 0.88±0.04 vs 0.75±0.03pmol/L, P<0.05)] 

(figure 7.0). TAS increased significantly following low-intensity exercise [rest vs post- 

exercise (1046.6±64.87 vs 1128.54±70.84mmol/L, P<0.05)] (figure 7.1) and decreased 

slightly following high-intensity exercise but this was not significant [rest vs post- 

exercise (1120.2±80.22 vs 1088.8±64.82mmol/L, P>0.05)]. 
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Figure 7.0. LH levels (pmol/L) pre and post acute aerobic exercise (low- and high- 

intensity). Results (mean±SEM) were analyzed using the Wilcoxon signed-rank test. 

(*, P<0.05, '*, P<0.02). For further details see text. 
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Figure 7.1. TAS levels (mmol/L) pre and post acute aerobic exercise (low- and high- 

intensity). Results (mean±SEM) were analyzed using the Wilcoxon signed-rank test. 

(', P<0.05). For further details see text. 

7.3 DISCUSSION 

This study examined the effects of acute high- (70% heart rate reserve) and low- 

intensity (40% heart rate reserve) aerobic exercise on LH and TAS in eleven healthy 

subjects. Prior to both high- and low-intensity aerobic exercise, LH levels were both 

similar. LH levels only increased significantly following high-intensity exercise which 

was also shown to be significantly higher than the LH levels post-exercise following 

low-intensity exercise. TAS levels increased significantly following low-intensity 

exercise and decreased slightly following high-intensity exercise but this was not 

significant. 

In comparison to other research studies investigating exercise-induced oxidant stress, 

this study found similar findings. For example both Ajamini et al (2003) and Lawson et 

al (1997) observed a significant increase of 22% (P<0.0001) and 60% (P<0.01) in LH 

and MDA respectively, following a maximal graded exercise stress test. This study 
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found a 21% increase in LH levels post high-intensity exercise which is similar to 

Ajamini et al (2003). Lovlin et al (1987) demonstrated that exercise eliciting 100% V02 

max resulted in a 26% increase in plasma MDA, whilst exercise eliciting 70% of V02 

max resulted in a non-significant reduction in plasma MDA (P>0.05) and exercising at 

40% V02 max resulted in a 10.3% decrease in plasma MDA (P<0.05). Similar to 

findings in this study, Tozzi-Ciancarelli et al (2002) demonstrated that strenuous 

exercise (maximal exercise test on a cycle ergometer), but not moderate exercise (30 

minutes at 60% V02max on a cycle) resulted in increased levels of TBARS [rest vs post- 

exercise (TBARS: moderate, 1.5±0.2 vs 1.4±0.1 pmoVL, P>0.05 and strenuous, 1.6±0.2 

vs 3.9±0.3pmol/L, P<0.05)]. The findings in this study at low-intensity exercise and 

those of Tozzi-Cianarelli et al (2002) at moderate-intensity exercise did not observe a 

reduction in LH levels which was found by Lovlin et al (1987). The difference in 

exercise-induced oxidant stress findings between studies may be explained by 

methodological differences. For example factors such as training status, age and 

gender of subjects and different exercise protocols could all play a role (Cooper et al., 

2002). High-intensity exercise appears to be most consistent factor in provoking 

increases in free-radical production that overwhelms antioxidant defences (Poulsen et 

al., 1996). However if oxidative reactions are not elevated directly after exercise, the 

absence of signs of oxidative stress does not necessarily imply that oxidative damage 

has not occurred because oxidative reactions may occur hours (Koyama et al., 1999) 

or even days (Hartmann et al., 1998) after the end of exercise. 

In this study, mean TAS values increased significantly following low-intensity exercise 

(P<0.05) and also decreased slightly following high-intensity exercise but this did not 

achieve significance. This suggests that a greater oxidant production and antioxidant 

usage occurred during high-intensity exercise, as the high-intensity exercise group had 

lower TAS levels post-exercise compared with the low-intensity exercise group 
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(P>0.05). Similarly Tozzi-Ciancarelli et al (2002) also demonstrated that strenuous 

exercise (maximal exercise test on a cycle ergometer), but not moderate exercise (30 

minutes at 60% VO2max on a cycle) resulted in decreased levels of TAS [rest vs post- 

exercise (TAS: moderate, 1.35±0.04 vs 1.47±0.05U/mL, P>0.05 and strenuous, 

1.45±0.03 vs 1.05±0.03U/mL, P<0.05)]. However, Ashton et al (1998) found that an 

exhaustive cycling test increased TAS levels post-exercise (P>0.05) which were similar 

to the findings of Maxwell et al (1993), who showed an increase in plasma TAS levels 

following 60-minutes of box-stepping exercise. This highlights that the significance of 

exercise-induced changes in levels of antioxidants post-exercise in relation to oxidant 

stress is difficult to determine. Oxidant stress could cause a primary decrease in 

antioxidants, whilst mobilization from secondary sources elsewhere in the body might 

result in an apparent increase in TAS (Cooper et al., 2002). It has been shown fairly 

consistently that the GSH: GSSG ratio in the blood decreases with exercise (Dufaux et 

a/., 1997; Viguie et al., 1993), whereas plasma levels of vitamins C and E tend to 

increase (Gleeson et al., 1987; Duthie et al., 1990; Pincemail et al., 1988). Mobilization 

of vitamin E has been suggested as a mechanism to explain the changes in vitamin E 

secondary to oxidative stress; for example, Elsayed et al (1990) suggested that vitamin 

E is mobilized from other tissues to the lungs in response to ozone exposure. In 

addition, exercise-associated oxidant stress (Ji, 1995b) has shown changes in the 

distribution of vitamin E, which suggests that some tissues deliver vitamin E. Therefore 

although changes in oxidation state or concentration of antioxidants can point to 

impaired antioxidant defences, they do not necessarily indicate tissue damage (Packer, 

1997) and it is unclear to what extent they influence oxidant stress. A rise in 

antioxidant levels might enhance the antioxidant defences in blood, but could possibly 

impair defences at the sites from which they are mobilized (Cooper at al., 2002). 

High-intensity exercise could increase LH in several ways, but the primary source is the 

mitochondria. As 02 consumption increases with exercise intensity, the rate of ROS 
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production increases (Jackson, 1998; Halliwell and Gutteridge, 1999), particularly if the 

increased production of radicals is not balanced by the antioxidant capacity. 

Secondary sources of free-radical production include autoxidation of catecholamines, 

radical generation by phagocytic white cells and radical formation due to the disruption 

of iron-containing proteins (Jackson, 1998; Halliwell and Gutteridge, 1999). Exercise- 

induced neutrophilia is another possible source of oxidant stress post aerobic exercise. 

Neutrophils generate 02 reduced plasma vitamin C and uric acid and create oxidant 

stress (Quindry et al., 2003). Elevations in inflammatory cytokines such as tumor- 

necrosis factor-a also occur after aerobic exercise (Sen, 1999), which initiate a rapid 

rise in endogenous oxidants as an essential step in postreceptor signal transduction 

(Reid and Li, 2001). An alternative mechanism by which exercise may promote free- 

radical production involves ischaemia-reperfusion. Strenuous exercise is associated 

with transient tissue hypoxia in several organs as blood is shunted away to cover the 

increased blood supply required in active skeletal muscles and the skin (Cooper et al., 

2002). Strenuous exercise can also cause muscle fibres to undergo relative hypoxia 

as oxygen supply cannot match the energy requirements (Koyama et al., 1999). Re- 

oxygenation post-exercise, can also be associated with the production of ROS (Packer, 

1997; Koyama et al., 1999). 

7.4 CONCLUSION 

This study found that thirty-minutes of high-intensity exercise and not low-intensity 

exercise produced a significant increase in LH levels in healthy subjects. With regards 

to total antioxidant status, levels increased following thirty-minutes low-intensity 

exercise, but decreased following thirty-minutes high-intensity exercise. This suggests 

that a greater oxidation production and antioxidant usage during high-intensity aerobic 

exercise predisposes subjects to increased oxidant stress. 
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PART TWO - Study 4 

7.5 INTRODUCTION 

Obese subjects are prone to increased oxidant stress levels at rest (Yesilbursa at al., 

2005; Mohn at al., 2005; Keany at al., 2003; Ozata at al., 2002; Davi at al., 2002; 

Dandona at al., 2001; Präznjr at aL, 1999) and four reports of exercise-induced oxidant 

stress in obesity suggest increase susceptibility to oxidant damage following high- 

intensity exercise (Saiki at aL, 2001; Vincent et al., 2004; Vincent at al., 2005a; Vincent 

et aL, 2005b). Possible mechanisms for the increased exercise-induced oxidant stress 

include enhanced oxygen metabolism, anoxia-reoxygenation, mechanical damage to 

tissues and increased inhalation of environmental pollutants (NO2, ozone etc) (Vincent 

et al., 2004). This could have long-term implications as increased oxidant stress is 

associated with reduced contractile function, arrhythmias and muscle fatigue (Kukreja 

and Hess, 1992; Vincent et al., 1999; Yu, 1994) and is implicated in pathologies such 

as diabetes, atherosclerosis and obesity (Bouloumie at al., 1999; Gackowksi et al., 

2001; Johnson, 2002; Kennedy and Lyons, 1997; Vincent et al., 1999). 

Following an acute exercise session, platelet aggregation may also be increased, 

which potentially increases the risk of developing atherothrombotic vascular disease 

(Grundy et al., 2002; McGill et al., 2002). Previous studies have shown that a single 

bout of moderate-intensity exercise does not cause platelet activation (Chicarro et al., 

1994) or tends to desensitize platelets (Wang et al., 1994) and that strenuous-intensity 

exercise may favour (Kestin et al., 1993) platelet aggregation. Although it has been 

shown that obesity increases platelet aggregation (Davi et al., 2002), it is unknown if 

obesity also increases exercise-induced platelet aggregation. It could be speculated 

that platelet aggregation during exercise should be enhanced in obesity when 
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compared to normal-weight subjects. Furthermore, exercise-induced oxidant stress in 

obesity may be a pivotal cause for increased exercise-induced platelet aggregation. 

For example, evidence suggests that not only does exogenously derived ROS affect 

the regulation of platelet activation, but platelets themselves also generate ROS (Krotz 

et al., 2004). 

This study investigated the effect of acute high-intensity aerobic exercise on LH, TAS, 

SOD, GSH and percentage ADP-induced platelet aggregation in normal-weight and 

overweight subjects. The association between LH, TAS and ADP-induced platelet 

aggregation during acute high-intensity aerobic exercise was also studied. 

7.6 METHODOLOGY 

Subject Characteristics 

The study group consisted of 20 subjects who were sex-matched between groups [10 

normal-weight (BMI: 23.6±0.53kg/m2) and 10 overweight (BMI: 28.4±0.71 kg/m2) 

healthy male and females (n=10/10)] (see table 7.1 for subject characteristics). 

Volunteers were invited to take part in the study by local advertisement. An inclusion 

criterion was age between 18 and 50 years old and BMI between 20 and 35kg/m2. 

Subjects with a history of diabetes, cardiovascular or cerebrovascular disease, hepatic 

or renal disease, tobacco abuse, or those on hormone replacement therapy were 

excluded. In addition subjects were excluded if they were hypertensive (with or without 

treatment), taking treatment for dyslipidaemia, taking any antioxidant supplementations 

or a smoker. Written informed consent was obtained from all the subjects after they 

had been given a full explanation of the study. The research was given ethical 

approval by Bedfordshire Local Research Ethics Committee. 
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Table 7.1. Subject characteristics 

Characteristic 

P-Value 

Normal Weight Overweight NW 

NW (n=10) OW (n=10) vs 

(m/f; 5/5) (m/f; 5/5) OW 

Age, yr 27.90 t 2.19 31.40t 1.98 . 251 

Body mass, kg 67.78: t 3.03 82.50 t 3.86 <. 01 

BMI, kg/m 23.55t 0.53 28.40: t 0.71 <. 001 

Body fat, kg 17.93: t 1.33 28.50: t 3.08 <. 01 

Waist, cm 77.89 ± 1.99 93.50 ± 2.94 <. 001 

Systolic BP, mmHg 117.70: L 3.06 126.70: L 3.94 . 088 

Diastolic BP, mmHg 73.10 t 1.43 82.80 ± 1.28 <. 001 

Fasting glucose, mmol/L 6.51 t 0.45 5.87: t 0.44 . 327 

Fructosamine, mmo/L 182 ± 8.25 195 ± 7.52 . 28 

Total cholesterol, mmo/L 4.60: t 0.54 4.24: t 0.28 . 856 

HDL-cholesterol, mmol/L 1.40 ± 0.13 1.23 ± 0.10 . 322 

LDL-cholesterol, mmoVL 2.09 ± 0.19 2.28 ± 0.21 <. 05 

Triglycerides, mmoVL 2.10 : t. 0.83 2.39: t 0.56 . 466 

Values expressed as the mean±SEM. BMI, body mass index; BP, blood pressure; LDL, 

low-density lipoprotein; HDL, high-density lipoprotein. Results were compared using a 

One-way ANOVA and P values are given in the Table. P values < 0.05 were 

considered significant. For further details see text. 

Experimental design 

Subjects visited the Centre for Obesity Research on two separate occasions between 

9-11 am over a 2-week period and were instructed to fast for 10-12 hours and refrain 

from exercise, caffeine and alcohol for 48 hours before the study visits. Subjects were 

also asked to maintain their usual dietary pattern. 
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During week 1 anthropometric measures, a venous blood sample and V02max test were 

completed. 

During week 2, following a 15-minute supine rest a venous blood sample was taken. 

Subjects were then asked to exercise on a motorised treadmill. The exercise session 

adopted the following protocol 

  5-minutes warm up (40% VO2max) 

  The subject was then required to perform a constant workload 
corresponding to 70% VO2max for 30-minutes. 

Heart rate was monitored throughout the exercise sessions. A venous blood sample 

was taken, immediately post and 30-minutes post-exercise. 

Anthropometric and cardiovascular measurements and venous blood sampling 

Height, weight and waist measurements are described in detail in the methodology 

chapter (section 3.2.1,3.2.2,3.2.3). Body composition was assessed using the 

BodPod, which is outlined in the methodology chapter (section 3.2.4.2). 

Cardiovascular measurements are described in the methodology chapter (section 3.3). 

Venous blood samples were collected as described in the methodology chapter 

(section 3.1.1 and 3.2.2). 

Maximal aerobic exercise test 

The maximal exercise test incorporated the Bruce Protocol (Bruce, 1972). 02 uptake 

was assessed using the MetaMax 3B®. Maximal aerobic capacity was determined 

when the subject met two of the following criteria: 

  Within 10 beats of maximal age predicted heart rate (220 -age) 

  Respiratory quotient greater than 1.1 

  Rating of perceived exertion >17 
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Biochemical measurements 

LH, TAS, SOD and GSH were performed as described in the methodology chapter 

(section 3.1.12.1,3.1.14.1,3.1.14.2 and 3.1.14.3). Other biochemical measures 

included, fasting plasma glucose, plasma fructosamine, plasma cholesterol, plasma 

LDL, plasma HDL and plasma triglycerides as described in methodology chapter 

(section 3.1.6,3.1.7,3.1.8,3.1.9,3.1.10 and 3.1.11). Percentage ADP-induced platelet 

aggregation was measured using PlateletWorks®, which is outlined in the methodology 

chapter (section 3.1.14.2). Final concentrations of ADP used for platelet aggregation 

were 10 and 20 NM. Haematocrit and haemoglobin was also measured using 

PlateletWorks® which is also outlined in the methodology chapter (section 3.1.4.1 and 

3.1.5.1). Haematocrit and haemoglobin were measured to calculate the change in 

plasma volume (Dill and Costill, 1974). 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value or the mean change or improvement). 

The Kolmogorov-Smirno test confirmed that the data was normally distributed. The 

data was analyzed using analysis of variance (ANOVA) with repeated measures, which 

is appropriate for detecting differences between groups, time effects and interactions. 

A two-way (AxB) mixed ANOVA was used which incorporated one between (exercise 

intensity: low intensity vs high intensity) and one within (time: rest vs post-exercise) 

subjects factor. When significant F values were noted paired t-tests were used to 

detect specific differences within groups at certain time points during the study. To 

detect differences between groups, one-way ANOVA was incorporated with one within 

(time: rest vs post-exercise) subject factor. Associations between parameters were 

assessed using the Pearson correlation test. Differences were considered statistically 
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significant at P<0.05. Statistical analysis was carried out using a computer software 

package (SPSS for Windows, Version 13.0). 

7.7 RESULTS 

Subject characteristics for the normal-weight and overweight groups are shown in table 

7.1. Body mass, BMI, body fat and waist circumference, DBP and LDL concentration 

were all significantly higher in the overweight group compared to the normal-weight 

group (P<0.001, P<O. 01, P<O. 001, P<O. 001, P<0.05, respectively). All subjects had 

similar SBP, fasting glucose, fructosamine, cholesterol, HDL and fasting triglycerides. 

Figures 7.2 and 7.3 demonstrate LH and TAS levels pre- and post-exercise in the 

normal-weight and overweight groups, respectively. At rest there was no difference in 

LH between the groups [normal-weight vs overweight (0.64±0.06 vs 0.77±0.09pmol/L, 

P>0.05). However following high-intensity aerobic exercise, LH levels increased 

significantly in the overweight group (P<0.05) compared to the normal-weight group 

(P>0.05) (percentage increase in LH levels post high-intensity exercise, overweight vs 

normal-weight, +24.6% vs +12.5%). Thus the LH level in the overweight group was 

significantly higher than the normal-weight group post-exercise [overweight vs normal- 

weight (0.96±0.09 vs 0.72±0.06pmol/L, P<0.05)]. Although thirty-minutes post-exercise 

LH levels had declined, they were not as significantly different from both pre and post 

LH levels. No significant differences in TAS levels were noted between the normal- 

weight and overweight group pre- and post-exercise, and pre- and post-exercise within 

each group. 
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Figure 7.2. LH levels (pmol/L) pre and post high-intensity exercise in normal-weight 

and overweight subjects. Results (mean±SEM) were analyzed using one-way ANOVA 

and paired t-tests (', P<0.05). For further details see text. 
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Figure 7.3. TAS levels (mmol/L) pre and post high-intensity exercise in normal-weight 

and overweight subjects. Results (meantSEM) were analyzed using one-way ANOVA. 

For further details see text. 

SOD and GSH levels pre- and post-high-intensity aerobic exercise in normal-weight 

and overweight subjects are given in table 7.2. SOD and GSH levels were not 

significantly different in the normal-weight and overweight group at rest or post- 

exercise. In addition, no interaction effect was identified between the normal-weight 

and overweight group and pre- and post-high-intensity aerobic exercise. 
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Table 7.2. SOD and GSH levels pre and post high-intensity exercise in normal-weight 

and overweight subjects. 

Variable Pre-exercise Post-exercise 30 minutes post-exercise 

SOD U/g Hb 

Normal-weight 3965.90±306.23 3967.47±336.23 4013.28±325.31 

Overweight 4076±453.37 5018.71±621.52 3912.39±422.46 

GSH umol/g Hb 

Normal-weight 20.86±3.00 12.85±2.43 18.15±3.15 

Overweight 16.62±1.78 16.74±5.14 27.6±8.98 

Values expressed as the mean±SEM. SOD, superoxide dismutase; GSH, reduced 

glutathione. Results were analyzed using a one-way ANOVA. For further details see text. 

Percentage ADP-induced platelet aggregation pre- and post-high-intensity exercise in 

normal-weight and overweight subjects are given in figure 7.4. No significant 

differences in percentage ADP-induced platelet aggregation levels were identified in 

the normal-weight and overweight group at rest or post-exercise. In addition no 

interaction effect was identified between the normal-weight and overweight group and 

pre- and post-high-intensity aerobic exercise. 

The association between LH and percentage ADP-induced platelet aggregation pre- 

and post-exercise is shown in figure 7.5. For both ADP-induced platelet aggregation 

concentrations (10 and 20pM) an increase in LH level was associated with decreased 

percentage platelet aggregation, indicating enhanced in vivo platelet reactivity. 

Pearson correlation found that at 20pM, percentage ADP-induced platelet aggregation 

with LH was r=-0.329, P<0.01 and at 10pM, the percentage ADP-induced platelet 

aggregation with LH was r=-0.240, P=0.065. 
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Figure 7.4. Percentage ADP-induced platelet aggregation (20pM and 10pM) pre and 

post high-intensity exercise in normal-weight and overweight subjects. Results 

(mean±SEM) were analyzed using one-way ANOVA and paired t-tests. (`, P<0.02). 

For further details see text. 
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7.8 DISCUSSION 

This study investigated the effect of acute high-intensity aerobic exercise on LH, TAS, 

SOD, GSH and percentage ADP-induced platelet aggregation in normal-weight and 

overweight subjects. The association between LH and ADP-induced platelet 

aggregation pre- and post-high-intensity acute aerobic exercise was also studied. 

Overweight subjects were used in this study to exclude high-risk exercising patients 

and to exclude many con-founding factors associated with obesity such as diabetes, 

hypertriglyceridaemia and hyperlipidaemia. Acute high-intensity exercise significantly 

increased LH levels in the overweight group, which returned to pre-exercise levels 

thirty-minutes post-exercise. No significant changes in LH were identified following 

high-intensity exercise in the normal-weight group. Interestingly, although no 

significant difference was identified in LH levels pre-exercise between the normal- 

weight and overweight group, post-exercise there was a significant difference in LH 

levels between the two groups. No other significant changes were identified in TAS, 

SOD, GSH and percentage ADP-induced platelet aggregation in and between the 

normal-weight and overweight group, pre- and immediately post-exercise. 

In support of the above findings, several other studies found increased susceptibility to 

oxidant damage following exercise in obese subjects (Saiki at al., 2001; Vincent et al., 

2004; Vincent et al., 2005a; Vincent at al., 2005b). Saiki et a/ (2001) studied 7 obese 

and 16 normal-weight subjects and observed changes in serum hypoxanthine following 

aerobic exercise on a treadmill (15 minutes at 70% heart rate reserve). Baseline 

hypoxanthine levels were significantly higher in the obese group compared to the 

normal-weight group [obese vs normal-weight (3.4613.70 vs 1.23t1.16mmoVL, 

P<0.05)]. Exercise-induced a pronounced increase in serum hypoxanthine level in the 

obese group compared with the normal-weight group [obese vs normal-weight 
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(43.86±4.56 vs 10.65±6.81 mmol/L, P<0.01)]. Vincent et al (2004) assessed LH levels 

in normal-weight (n=14) and obese (n=14) subjects, pre and post aerobic exercise. At 

rest LH levels were not significantly different between the normal-weight and obese 

group, but post-exercise LH levels increased by 70% and 62% in the obese and 

normal-weight, respectively, which was significantly different to pre-exercise LH levels 

and significantly different between the normal-weight and obese group. Vincent at al 

(2005a) also found significantly increased post-exercise LH levels following a maximal 

graded exercise stress test on a treadmill in obese women compared to normal-weight 

women [obese vs normal-weight (0.13 vs 0.02 (nmol/mL) (O2/kg/min)]. This occurred 

despite a 20% shorter exercise time for the obese women than for the normal-weight 

women. After controlling for body fat percentage and baseline LH, the major 

contributors of the change in LH levels during exercise were age, peak heart rate and 

exercise duration. However, when exercise loads were matched by relative intensity, 

LH responses still remained higher in obese than normal-weight persons [obese vs 

normal-weight (0.289 vs 0.054 (nmoVmL) (02/kg min)] (Vincent et a/., 2005b). All 

studies have shown that compared to normal-weight, obese subjects have a 300-600% 

greater increase in LH lipid peroxidation markers, post high-intensity exercise. In this 

study the overweight group had a 133% greater increase in LH post high-intensity 

exercise when compared to the normal-weight group. The lower increase in LH values 

may be due to using subjects with lower BMI values compared to the above studies. 

For example, in this study the mean BMI of the overweight group was 28.40kg/m2 

compared to 33.3kg/m2 and 30.6kg/m2 in the obese group of Vincent at als (2005) and 

Saiki et als study. In addition other factors which affect differences in LH responses 

post high-intensity exercise include exercise intensity and exercise duration (Poulsen et 

al., 1996). 

Despite matching for oxygen uptake during exercise in the normal-weight and 

overweight groups, LH levels post-exercise were still greater in the overweight group. 
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The exacerbated exercise-induced lipid peroxidation in the overweight group may be 

due to several factors including an insufficient antioxidant defence. Several studies 

suggest that obesity is associated with lower plasma antioxidant concentration 

(Reitman et al., 2002; Strauss et al., 1999; Decsi et al., 1997; Kuno et aL, 1998; Moor 

De Burgos et aL, 1992) and decreased activities of erythrocyte cytoprotective enzymes 

(Olusi, 2002; Ozata et al., 2002; Beltowski et aL, 2000). A lowered antioxidant defence 

leaves the tissues susceptible to free-radical attack during exercise (Ashton et al., 

1998). Higher tissue lipid levels in the obese may also provide a larger target for 

oxidative damage by free-radicals (Vincent et al., 2001). In the obesity exercise- 

induced study by Vincent et al 2004, elevated dietary fat intakes and plasma 

triglycerides were present in the obese group compared to the non-obese group, which 

was shown to be positively correlated with exercise-induced change in LH levels. 

Despite the increase in consumption of dietary fats in the obese group compared to the 

non-obese group, this did not enhance consumption of antioxidants, which suggests 

that the obese group may not have taken in antioxidant amounts necessary to prevent 

oxidant stress. High cell respiration and 02 consumption may also have been 

exacerbated in muscle tissue during physical activity in the overweight group due to the 

additive mechanical load of carrying excessive body weight (Vincent et al., 2004) and 

mechanical inefficiency (Vincent and Taylor, 2006). For example during the same 

absolute load-bearing walking activity, obese persons have 38% higher VO2 (oxygen 

consumption) values than non-obese persons and these values are correlated with 

post-exercise LH values (Vincent et al., 2004). Lastly, increased body weight, may 

cause oxidant stress via endothelial enzymatic sources within tissues (i. e. increased 

NADH oxidase activity and H202) (Rajagopalan et al., 1996; Kaminski et al., 2002) or 

by pro-oxidant complications of increased body weight such as hypertension that 

increase vascular 02 and LH levels (Frisbee et al., 2002). 

In addition to this study, other research has also found no change in TAS levels pre- 
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and post-aerobic exercise in and between normal-weight and obese subjects (Vincent 

et a12004). SOD and GSH also showed no significant difference in and between the 

normal-weight and obese group, pre- and post-high intensity exercise. Likewise, 

Vincent et al (2005b) observed no difference in antioxidant thiol profiles (total thiols, 

protein thiols, and nonprotein thiols (glutathione) before and after exercise between 

normal-weight and obese groups. It was anticipated that in this study the overweight 

group would have lower antioxidant enzymes pre- and post-exercise compared to their 

normal-weight counterparts, because of the evidence for reduced antioxidant status at 

rest in obesity (Vincent et al., 2001). It is possible that the lack of reduction in TAS post 

high-intensity exercise may be a result of mobilization of secondary sources of 

antioxidants (Cooper et al., 2002). For example mobilization of vitamin E has been 

suggested as a mechanism to explain the changes in increased vitamin E, levels 

secondary to oxidative stress (Elsayed et al., 1990). However mobilization of 

secondary sources of antioxidants might rise antioxidant defences in the blood, but 

impair defences at the site from which the antioxidants were mobilized (Cooper et al., 

2002). 

This study aimed to identify the link between oxidant stress and percentage ADP- 

induced platelet aggregation during acute aerobic high-intensity exercise. Results from 

chapter five concluded that at rest oxidant stress in obesity was not a source of 

increased platelet aggregation in obesity. However Davi et a/ (2002) demonstrated a 

linear relationship between 8-iso PGF2a and 11-dehydro-TxB2 (r=0.61, P<0.001) 

concluding that the association between lipid peroxidation and platelet activation may 

be a novel mechanism, through which obesity may affect cardiovascular morbidity and 

mortality (Grundy et al., 2002; McGill at al., 2002). Furthermore oxidant stress- 

mediated platelet aggregation has also been found in several settings of risk factors for 

atherosclerosis and cardiovascular thrombosis, including diabetes mellitus, 
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hypertension and hypercholesterolemia (Davi et al., 2003; Minuz et al., 2002; Davi et 

al., 1997). This study is the first to identify whether there is a possibility of 'oxidant 

stress-mediated platelet aggregation' during and post acute aerobic high-intensity 

exercise in normal-weight and overweight subjects. Tozzi-Ciancarelli et al (2002) 

demonstrated that oxidant stress induced by strenuous exercise interfered with platelet 

responsiveness. This was evident by adding LDL-Ox to PRP obtained from blood 

samples collected from 6 subjects immediately after strenuous exercise as ADP- 

induced platelet aggregation increased and intra-platelet NO content decreased. 

However the speculation by Tozzi-Ciancarelli et al (2002) that strenuous exercise 

interfered with platelet responsiveness by promoting LDL-Ox mediated platelet 

activation did not necessarily prove that the exercise-associated increase in platelet 

aggregation was mediated by LDL-Ox formation. In this study, following correlation 

coefficient analysis for platelet aggregation and LH responses, pre and post acute 

aerobic high-intensity exercise in normal-weight and overweight subjects, it was found 

that LH demonstrated a significant negative association with platelet aggregation at 

high ADP-induced platelet aggregation (20pM: r=-0.0.329, P<0.01) and a negative 

trend towards being associated with platelet aggregation at low ADP-induced platelet 

aggregation (10pM: r=-0.240, P=0.065). This confirms the suggestion that increased 

LH may decrease percentage ADP-induced platelet aggregation (which is an 

expression of enhanced in vivo platelet reactivity). However this finding, despite 

increased LH post-exercise did not cause decreases in ADP-induced platelet 

aggregation in both normal-weight and overweight subjects following high-intensity 

acute aerobic exercise. It is proposed that high-intensity exercise was not strenuous 

enough to induce platelet aggregation because both Tozzi-Ciancarelli et al (2002) and 

Wang et al (1994) demonstrated increased platelet aggregation following strenuous 

exercise. 

198 



7.9 CONCLUSION 

In conclusion, exercise-induced oxidant stress is enhanced in overweight subjects, 

compared to normal-weight subjects, despite controlling and matching V02 usage 

during high-intensity exercise. A combination of obesity related factors including 

elevated body fat and triglyceride levels, decreased antioxidant status, and increased 

V02 during exercise have been implicated in this process. During high-intensity 

aerobic exercise, LH levels may be associated with decreased platelet aggregation 

(expression of enhanced in vivo platelet reactivity) but decreased platelet aggregation 

(expression of enhanced in vivo platelet reactivity) was not observed in either the 

normal-weight group and overweight group. 
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Chapter EIGHT 

Study 5 

The effect of selenium supplementation on lipid peroxidation, 

total antioxidant status and platelet responsiveness at rest and 

post high-intensity acute exercise in normal-weight and 

overweight subjects 



8.0 INTRODUCTION 

Given that both obesity and acute high-intensity exercise induces oxidant stress, it is 

crucial that therapies are developed to reduce this exacerbated response. Oxidant 

stress is associated with reduced contractile function, arrhythmias and muscle fatigue 

during acute exercise (Kukreja and Hess, 1992; Vincent et aL, 1999; Yu, 1994) and is 

implicated in pathologies such as diabetes, atherosclerosis and obesity (Bouloumie et 

aL, 1999; Gackowksi et al., 2001; Johnson, 2002; Kennedy and Lyons, 1997; Vincent 

et al., 1999). Potential treatment therapies to reduce oxidant stress include calorie 

restriction (Velthuis-te Wierik et al., 1996), increased antioxidant intake (diet 

composition) (Armstrong and Doll, 1975; Rimm et al., 1996), exercise training (Fukai et 

al., 2000) and antioxidant supplementation (Skrha of al., 1999; Manning of al., 2004; 

Anderson et al., 1999). 

Several researchers have demonstrated that antioxidant therapy may reduce oxidant 

stress levels at rest in obesity. For example both Skrha et al (1999) and Manning et al 

(2004) observed decreased MDA levels at 3-months and reduced LH levels at 3- 

months and 6-months following vitamin E supplementation in obese subjects, 

respectively. In addition, Anderson et al (1999) indicated protection against formation 

of oxidative biomarkers with an 8-week antioxidant treatment [ß-carotene (24mg), 

vitamin C (1000mg) and vitamin E (8001U)]. Antioxidant therapy has also been 

investigated as a therapy to reduce the exercise-induced oxidant stress during high- 

intensity exercise. For example, Sumida et al (1989) demonstrated that 4-weeks of 

vitamin E supplementation prevented a rise in plasma MDA levels following maximal- 

intensity cycle exercise. Ashton et al (1999) demonstrated that acute ascorbic acid 

supplementation prevented exercise-induced oxidant stress in healthy subjects. In 

contrast to these findings, daily supplementation with an antioxidant mixture (30 mg ß- 

200 



carotene, 592 mg vitamin E and 1000 mg vitamin C) did not prevent the exercise- 

induced rise in plasma MDA after moderate- to high-intensity treadmill running (Kanter 

et al., 1993). The effects of antioxidant supplementation on oxidant stress levels in 

overweight and obese subjects has not been studied following acute exercise. 

Alternatively, selenium (Se) supplementation may be a suitable candidate to reduce the 

obesity-associated oxidant stress and exercise-induced oxidant stress. Se is an 

essential component of the GSH-Px system (Ladenstein et al., 1979), which functions 

as part of an antioxidant system to protect PUFAs and proteins from the damaging 

effects of peroxides and LH (Richter, 1987; Del Maestro et al., 1980). In humans, Se 

deficiency has been implicated in the etiology of CVD and other conditions in which 

oxidant stress and inflammation are prominent features, but there is still only limited 

evidence from epidemiological studies for this and the therapeutic benefit of Se 

administration in the prevention and treatment of CVD remains insufficiently 

documented (Alissa at al., 2003). 

Epidemiological studies have indicated an association between a low Se status and an 

increased risk for ischaemic heart disease (Huttunen, 1986). However these results 

are not consistent with the findings of Miettinen et a/ (1983) and Kok et a/ (1987) who 

found no association between blood Se levels and the risk of CVD. In addition, no 

differences in tissue Se were apparent in patients who died, with or without myocardial 

infarction (Ringdal et aL, 1986). However Kiem and Feinendegen (1984) did observe 

diminished activities of GSH-Px and decreased Se levels in platelets from patients with 

acute myocardial infarction exhibiting a greater tendency to aggregation. Neve (1996) 

supported the proposed protective effect of Se against CVD by the ability of GSH-Px to 

combat the oxidative modification of lipids and to reduce platelet aggregation. The 

prevention of LH build-up promotes the production of vasodilatory prostacylin by the 
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endothelium which in turn reduces the production of thromboxane, thus reducing 

vasoconstriction and platelet aggregation (Neve, 1996). 

Considering potential consequences of low Se intake, it is no surprise that current UK 

Se intake is a cause for concern (Rayman, 2002). UK daily intakes of So have reduced 

from 60-63 ug/d to the current level of 34-39pg/d (Barclay et a/., 1995; Ministry of 

Agriculture Fisheries and Food, 1997,1999) which does not meet the reference 

nutrient intake for males and females (75 and 60pg/d respectively) (Department of 

Health, 1991). In addition, current plasma or serum Se concentrations may not allow 

maximal expression of plasma GSH-Px (Duffield et al., 1999). Consequently Se 

supplementation in all individuals may be of benefit but specific population groups may 

need to be targeted first. For example obese subjects are prone to both enhanced 

oxidant stress (Yesilbursa et aL, 2005; Mohn et al., 2005; Keany et al., 2003; Ozata et 

aL, 2002; Davi et aL, 2002; Dandona et al., 2001; Präzny et al., 1999) and platelet 

hyperactivity (Anfossi et aL, 2004) and furthermore have been shown to have reduced 

GSH-Px levels (Olusi et al., 2002). 

Although the effect of Se supplementation in overweight or obese subjects on oxidant 

stress levels at rest or following exercise is unknown, it can be speculated that Se 

supplementation will reduce both the obesity-associated oxidant stress and exercise- 

induced oxidant stress. Several studies support that Se supplementation has the 

potential to reduce oxidant stress. For example Sarada et al (2002) noted that Se 

supplementation reduced lipid peroxidation in male albino rats during exposure to 

hypoxia-induced oxidant stress. Bortoli et al (1991) and Wilke et al (1992) observed 

reduced MDA levels following Se supplementation in elderly women and 

phenylketonuric (PKU) children (at risk of Se deficiencies), respectively. However a 
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double-blind, cross-over study demonstrated no beneficial effect of Se supplementation 

on reducing organic hydroperoxide levels in cystic fibrosis children (Portal et al., 1995). 

This study investigated the effect of Se supplementation on LH, TAS, GSH, SOD and 

ADP-induced platelet aggregation in healthy normal-weight and overweight subjects at 

rest and following acute aerobic high-intensity exercise. The study aimed to evaluate 

the potential Se supplementation may have on reducing both obesity-associated 

oxidant stress and exercise-induced oxidant stress and associated impact on platelet 

aggregation, which may determine whether Se supplementation is a potential 

therapeutic tool for reducing the risk of CVD. 

8.1 METHODOLOGY 

Subject Characteristics 

The study group included 20 subjects [10 normal-weight (BMI: 23.4±0.46kg/m2) and 10 

overweight (26.6±0.36kg/m2) healthy males and females (normal-weight (n=4/6), 

overweight (n=4/6)] (see table 8.0 for subject characteristics). Volunteers were invited 

to take part in the study by local advertisement. An inclusion criterion was age 

between 18 and 50 years old and BMI between 20 and 35kg/m2. Subjects with a 

history of diabetes, cardiovascular or cerebrovascular disease, hepatic or renal 

disease, tobacco abuse, or those on hormone replacement therapy were excluded. In 

addition subjects were excluded if they were hypertensive (with or without treatment), 

taking treatment for dyslipidaemia, taking any antioxidant supplementations or a 

smoker. Written informed consent was obtained from all the subjects after they had 

been given a full explanation of the study. The research was given ethical approval by 

Bedfordshire Local Research Ethics Committee. 
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Table 8.0. Subject characteristics 

P Value 

Characteristic Normal-weight Overweight NW 

NW (n=10) OW (n=10) vs 

m/f (5/5) m/f (5/5) OW 

Age, yr 27.9 ±2.19 31.4±1.98 . 251 

Body mass, kg 67.72: t 2.98 82.82 t 3.73 <. 01 

Body mass index, kg/m 23.55 t 0.53 28.4210.73 <. 001 

Body fat, kg 16.64±1.53 28.01±3.17 <. 01 

Waist, cm 77.95±1.94 92.58±3.02 <. 001 

Systolic BP, mmHg 116.3013.19 128.3013.37 . 08 

Diastolic BP, mmHg 73.60±2.00 83.10±1.49 <. 001 

Fasting glucose, mmoVL 6.5110.45 5.8710.44 . 327 

Fructosamine, mmol/L 188±8.34 201.33±7.30 . 38 

Total cholesterol, mmo/L 4.60±0.53 4.77±0.18 . 856 

HDL-cholesterol, mmol/L 1.66±0.11 1.52±0.13 . 32 

LDL-cholesterol, mmol/L 2.58±0.45 2.72±0.22 <. 05 

Triglycerides, mmoUL 0.79t0.07 1.14t0.27 . 47 

Values expressed as the mean±SEM. BMI, body mass index; BP, blood pressure; LDL, 

low-density lipoprotein; HDL, high-density lipoprotein. Results were compared using a 

one-way ANOVA and P values are given in the Table. P values < 0.05 were 

considered significant. For further details see text. 
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Experimental design 

Subjects visited the Centre for Obesity Research, Luton and Dunstable Hospital on four 

separate occasions between 9-11 am over a 14-week period and were instructed to fast 

for 10-12 hours and refrain from exercise, caffeine and alcohol for 48 hours before the 

study visits. Subjects were also asked to maintain their usual dietary pattern. 

A placebo-controlled, double-blind, cross-over study was performed, with a wash-out 

period before crossing over. Each subject received 200µg Se (sodium selenite) for 3- 

weeks and placebo during another 3-week period. Ten subjects underwent the 

treatment in the following order: Se/placebo and the other 10 subjects in the reverse 

order: placebo/Se. The wash-out period was observed for 2-months after the first 

treatment period. A general scheme of the intervention is presented in figure 8.0. 

Selenium/Placebo Supplementation (3 weeks) 

Week 

Anthropometric measures, blood sample 
and cardiorespiratory fitness test. 

Week 3 

'jr 

Selenium/Placebo Supplementation (3 weeks) 

I 

Week 11 

Anthropometric measures, blood sample 
and cardiorespiratory fitness test. 

Week 14 

I I resting blood sample 
t bout of aerobic physical activity (30 minutes at 70% VO2max) 
Blood sample immediately post-exercise and thirty minutes post-exercise 

Figure 8.0. General schema of the selenium supplementation intervention 

At visit 1 and 3, prior to each treatment, all subjects underwent anthropometric 

measures, a venous blood sample and an incremental exercise test to exhaustion for 

assessment of cardio-respiratory fitness. 

Wash-out 
period (8 
weeks) 

205 



Following each 3 week treatment, subjects completed an exercise session which 

adopted the following protocol (visit 2 and 4): 

 5 min warm up (40% VO2max) 

  The subject was then required to perform a constant workload 

corresponding to 70% VO2max for 30 minutes. 

Heart rate was monitored throughout the exercise sessions. Prior to, immediately post- 

exercise and 30 minutes post exercise, a venous blood sample was collected. 

Anthropometric and cardiovascular measurements and venous blood sampling 

Height, weight and waist measurements are described in detail in the methodology 

chapter (section 3.2.1,3.2.2,3.2.3). Body composition was assessed using the 

BodPod, which is outlined in the methodology chapter (section 3.2.4.2). 

Cardiovascular measurements are described in the methodology chapter (section 3.3). 

Venous blood samples were collected as described in the methodology chapter 

(section 3.1.1 and 3.2.2). 

Maximal aerobic exercise test 

The maximal exercise test incorporated the Bruce Protocol (Bruce, 1972). 02 uptake 

was assessed using the MetaMax 3B®. Maximal aerobic capacity was determined 

when the subject met two of the following criteria: 

  Within 10 beats of maximal age predicted heart rate (220 - age) 

  Respiratory quotient greater than 1.1 

" Rating of perceived exertion >17 
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Biochemical measurements 

LH, TAS, SOD, GSH and Se were performed as described in methodology chapter 

(section 3.1.12.1,3.1.14.1,3.1.14.2,3.1.14.3 and 3.1.14.4). Other biochemical 

measures included, fasting plasma glucose, plasma fructosamine, plasma cholesterol, 

plasma LDL, plasma HDL and plasma triglycerides as described in methodology 

chapter (section 3.1.6,3.1.7,3.1.8,3.1.9,3.1.10 and 3.1.11). ADP-induced percentage 

platelet aggregation was measured using PlateletWorks®, which is outlined in the 

methodology chapter (section 3.1.14.2). Final concentrations of ADP used for platelet 

aggregation were 10 and 20pM. Haematocrit and Haemoglobin was also measured 

using PlateletWorks® which is also outlined in the methodology chapter (section 3.1.4.1 

and 3.1.5.1). Haematocrit and Haemoglobin were measured to calculate the change in 

plasma volume (Dill and Costill, 1974). 

Statistical Analysis 

Values reported as mean±SEM. SEM was appropriate because it demonstrates how 

liable to error the mean is (e. g. the mean value or the mean change or improvement). 

The Kolmogorov-Smirno test confirmed that the data was normally distributed. The 

data was analyzed using analysis of variance (ANOVA) with repeated measures, which 

is appropriate for detecting differences between groups, time effects and interactions. 

A three-way (AxBxC) mixed ANOVA was used which incorporated two between 

(groups: normal-weight vs overweight and placebo vs selenium supplementation) and 

one within (time: rest vs post-exercise vs thirty minutes post-exercise) subject factor. 

When significant F values were noted paired t-tests were used to detect specific 

differences within groups at certain time points during the study. To detect differences 

between groups, one-way ANOVA was incorporated with one within (time: rest vs post- 

exercise) subject factor. Differences were considered statistically significant at P<0.05. 
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Statistical analysis was carried out using a computer software package (SPSS for 

Windows, Version 13.0). 

8.2 RESULTS 

Subject characteristics at week 1 for the normal-weight and overweight groups are 

shown in table 8.0. Body mass, BMI, body fat and waist circumference, DBP and LDL 

cholesterol were all significantly higher in the overweight group compared to the 

normal-weight group (P<0.01, P<0.001, P<0.01, P<0.001, P<0.001 and P<0.05, 

respectively). All subjects demonstrated similar systolic blood pressure, cholesterol, 

HDL, triglycerides, fasting glucose and fructosamine levels. At week 12, following the 

wash-out period, the subject characteristic differences between the normal-weight and 

overweight group remained the same, indicating there was no change in physiological 

and biochemical measurements over the duration of the study. 

LH, TAS, SOD and GSH values in the normal-weight and overweight groups at week 0 

and 12 (following wash-out period) are given in table 8.1. No significant differences 

were found in LH, TAS, SOD and GSH between week 0 and 12 in the normal-weight 

and overweight group. However when comparing between the normal-weight and 

overweight group, at weeks 0 and 12, several differences were noted. For example, at 

week 0, LH levels in the overweight group were significantly higher than the normal- 

weight group [overweight vs normal-weight (0.61±0.06 vs 0.74±0.06pmoVL, P<0.05)] 

and at week 12, LH levels demonstrated a non-significant increased trend in the 

overweight group compared to the normal-weight group [overweight vs normal-weight 

(0.60±0.06 vs 0.73±0.06pmol/L, P=0.06)]. No significant differences in TAS, SOD and 
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GSH levels were observed between the normal-weight and overweight group at week 0 

and 12. 

Table 8.1. LH, TAS, SOD and GSH values in the normal-weight and overweight group 

at week 0 and 12 (following wash-out period). 

Normal-weight (n=10) Overweight (n=10) 

Wk O Wk 12 Wk 0 Wk 12 

LH, pmol/L 0.61±0.06 0.60±0.06 0.74±0.06 " 0.73±0.06 

TAS, mmol/L 686.10±32.16 755.07±66.61 831.20±46.35 797.60±64.83 

SOD, U/g Hb 3735.14±264.16 3947.29±291.86 3265.75±3565.44 3565.44±222.97 

GSH, pmol/g Hb 18.03±1.41 18.47±2.31 16.33±1.55 17.69±2.31 

Values expressed as the mean±SEM. LH, lipid hydroperoxide; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione. Results were analyzed 

using repeated measures, a one-way ANOVA and paired t-test. (*, P<0.05, compared 

to normal-weight group). P values < 0.05 were considered significant. For further 

details see text. 

Plasma Se levels in the normal-weight and overweight group at week 0,12 (following 

wash-out period) and immediately following 3 weeks placebo and Se treatment are 

shown in table 8.2. Plasma Se levels in both the normal-weight and overweight group 

remained similar at week 0, week 12 and following placebo treatment. However, 

compared to week 0, plasma Se levels significantly increased following 3-weeks Se 

supplementation in both the normal-weight and overweight group [wk 0 vs post Se 

treatment (normal weight, 68.44±6.91 vs 97.38±6.08pg/L, P=0.028 and overweight, 

46.40±1.55 vs 81.72±6.71pg/L, P=0.003). Interestingly, plasma Se levels were 
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significantly lower in the overweight group when compared to the normal-weight group 

at wk 0,12 and following placebo treatment [overweight vs normal-weight (wk 0, 

68.44±6.91 vs 46.40±1.55pg/L, P=0.014, Wk 12,65.46±5.45 vs 46.46±1.68pg/L, 

P=0.010, post placebo treatment, 71.46±7.06 vs 45.20±2.28pg/L, P=0.008)], but 

following Se supplementation this significant difference disappeared as plasma Se 

levels in the overweight group increased to a level similar to the normal-weight group 

[normal-weight vs overweight (97.38±6.08 vs 81.72±6.71 pg/L, P=0.122) 

Table 8.2. Plasma Se levels in the normal-weight and overweight group at wk 0, wk 

12 (following wash-out period), following 3 weeks placebo treatment and following 3 

weeks Se treatment. 

Selenium (pg/L) WkO Wk 12 
(post wash-out) 

Post placebo 
treatment 

Post selenium 
treatment 

Normal-weight 68.44±6.91A 65.46±5.45^^ 71.46±7.06^^ 97.38±6.08 0° 

Overweight 46.40±1.55 46.46±1.68 45.20±2.28 81.72±6.71" 00 00 

Values expressed as the mean±SEM. WkO, baseline visit; Wk 12, visit after wash-out 

period. Results were analyzed using repeated measures, one-way ANOVA and paired 

t-test (^, P<0.05, compared to overweight, ", P<0.01, compared to overweight, *, 

P<0.05, compared to wk 0, **, P<0.01, compared to wk 0,0, P<0.02, compared to 

wk12,00, P<0.01, compared to wk12, °, P<0.05, compared to placebo, °°, P<0.01, 

compared to placebo. P values < 0.05 were considered significant. For further details 

see text. 
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Table 8.3 and 8.4 and figure 8.1 and 8.2 show LH levels in the normal-weight and 

overweight groups, pre- and post-acute aerobic high-intensity exercise following 

placebo and Se supplementation. During placebo treatment in the normal-weight 

group, an acute high-intensity exercise session did not significantly increase LH levels 

post-exercise [rest vs post exercise (0.64±0.06 vs 0.72±0.06pmol/L, P>0.05)]. Se 

supplementation in the normal-weight group also did not have any beneficial effect on 

LH levels at rest, post-exercise and 30-minutes post-exercise when compared to the 

placebo supplementation [Se vs placebo, pre vs post vs 30-minutes post (0.60±0.07 vs 

0.64±0.06pmol/L, P>0.05; 0.70±0.05 vs 0.72±0.06pmol/L, P>0.05 and 66±0.05 vs 

0.65±0.06pmol/L, P>0.05)]. During placebo treatment in the overweight group, LH 

levels increased significantly following the high-intensity acute exercise session [rest vs 

post (0.77±0.09 vs 0.96±0.09pmol/L, P<0.02)] and following 30-minutes recovery LH 

levels returned to near resting levels (0.78±0.12pmoVL, P<0.05). Following Se 

supplementation in the overweight group, LH was reduced immediately post acute 

exercise when compared to the placebo supplementation [Se vs placebo (0.71±0.08 vs 

0.96±0.09pmol/L, P<0.02)] and LH levels did not significantly increase following high- 

intensity acute exercise (as seen following placebo treatment). When comparing the 

normal-weight and overweight group, LH levels were significantly higher in the 

overweight group immediately post-exercise and 30-minutes post-exercise in the 

placebo group [normal-weight vs overweight, post vs 30-minutes post-exercise 

(0.72±0.06 vs 0.96±0.09pmoVL, P<0.05 and 0.65±0.06 vs 0.78±0.12pmol/L, P<0.05)] 

but this significance disappeared post-exercise and 30-minutes post-exercise following 

Se supplementation in the overweight group [normal-weight vs overweight, post vs 30- 

minutes post-exercise (0.70±0.05 vs 0.71±0.08pmoVL, P>0.05 and 0.66±0.05 vs 

0.69±0.07pmol/L, P>0.05)]. 
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Table 8.3. LH, TAS, SOD and GSH values in the normal-weight group, pre and post 

high-intensity acute exercise, following placebo and Se supplementation. 

Placebo 
Pre Post 30mins post 

LH, pmol/L 0.64±0.06 0.72±0.06 0.65±0.06 

TAS, mmol/L 748.84±46.81 724.20±29.68 770.13±31.73 

SOD, U/g Hb 3965.90±306.02 4005.28±347.22 3770.49±279.54 

GSH, pmoVg Hb 20.86±3.00 15.16±3.10 17.45±3.00 

Se supplementation 
Pre Post 30mins post 

LH, pmol/L 0.60±0.07 0.70±0.05 0.66±0.05 

TAS, mmol/L 646.04±10.800 779.17±53.61 * 778.32±39.36** 

SOD, U/g Hb 3473.80±430.77 3727.88±370.77 2931.48±232.12# 

GSH, pmol/g Hb 20.43±3.76 21.65±4.97 19.32±5.03 

Values expressed as the mean±SEM. LH, lipid hydroperoxide; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione. Results were analyzed 

using repeated measures, a one-way ANOVA and paired t-test. (*, P<0.05, compared 

to pre-values, **, P<0.02, compared to pre-values, 0, P<0.05, compared to placebo 

values). P values < 0.05 were considered significant. For further details see text. 
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Table 8.4. LH, TAS, SOD and GSH values in the overweight group, pre and post high- 

intensity acute exercise, following placebo and Se supplementation. 

Placebo 
Pre Post 30mins post 

LH, pmoVL 0.77±0.09 0.96±0.09** ° 0.78±0.12 * 

TAS, mmol/L 853.88±52.33 836.08±70.27 851.10±50.0 

SOD, U/g Hb 4212.07±422.36 3908.85±262.58 3237.41±259.73*^ 

GSH, pmol/g Hb 16.39±2.39 17.36±2.72 19.12±3.41 

Se supplementation 

Pre Post 30mins post 
LH, pmol/L 0.67±0.08 0.71±0.08$$ 0.69±0.07 

TAS, mmoVL 902.95±77.72 00 931.51±72.83 895.10±57.99 

SOD, U/g Hb 3298.30±236.32# 3674.96±315.66 3644.49±321.59 

GSH, pmol/g Hb 14.61±2.57 13.55±3.00 12.05±3.02 

Values expressed as the meantSEM. LH, lipid hydroperoxide; TAS, total antioxidant 

status; SOD, superoxide dismutase; GSH, reduced glutathione. Results were analyzed 

using repeated measures, a one-way ANOVA and paired t-test. (*, P<0.05, compared 

to pre-values, **, P<0.02, compared to pre-values, ^, P<0.02, compared to post-values, 

0, P<0.05, compared to placebo values, 00, P<0.02, compared to placebo values, °, 

P<0.05, compared to normal-weight group, °°, P<0.02, compared to normal-weight 

group. P values < 0.05 were considered significant. For further details see text. 
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Figure 8.1. LH values (pmol/L) in the normal-weight group, pre and post high-intensity 

acute exercise, following placebo and Se supplementation. Results (mean±SEM) were 

analyzed using repeated measures, one-way ANOVA and paired t-tests. For further 

details see text. 

1.2 

11 
. 

0.8 

0.6I 
"a 

ý 0.4 

0.2 

o" 
rest 

I 

** ** 

I 

i 

post-ex 

i I Q placebo 
Q selenium 

30-post 

0 

Condition 

Figure 8.2. LH values (pmol/L) in the overweight group, pre and post high-intensity 

acute exercise, following placebo and Se supplementation. Results (mean±SEM) were 

analyzed using repeated measures, one-way ANOVA and paired t-tests (", P<0.02, °, 

P<0.05 compared to normal-weight group). P values < 0.05 were considered 

significant. For further details see text. 
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No consistent changes in TAS, SOD and GSH levels (see table 8.2 and 8.3) were 

observed in the normal-weight and overweight group following placebo or Se 

supplementation, pre-, post- or 30-minutes-post acute exercise. No changes in ADP- 

induced platelet aggregation (ADP dose 10 and 20pM) were noted following placebo or 

Se supplementation in or between the normal-weight or overweight group, pre-, post- 

and 30-minutes-post-acute exercise (see figure 8.3 and 8.4) 
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Figure 8.3. Percentage ADP-induced platelet aggregation (10pM) in the normal-weight 

and overweight group, pre and post high-intensity acute exercise, following placebo 

and Se supplementation. Results (mean±SEM) were analyzed using repeated 

measures and one-way ANOVA. For further details see text. 
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Figure 8.4. Percentage ADP-induced platelet aggregation (20pM) in the normal-weight 

and overweight group, pre and post high-intensity acute exercise, following placebo 

and Se supplementation. Results (meantSEM) were analyzed using repeated 

measures and one-way ANOVA. For further details see text. 

8.3 Discussion 

In a double-blind cross-over study, the short term effects of Se supplementation were 

investigated on LH, TAS, SOD, GSH and ADP-induced platelet aggregation at rest and 

following an acute high-intensity aerobic exercise in both normal-weight (n=10) and 

overweight (n=10) subjects. This is the first study to assess the impact of Se 

supplementation on the obesity-associated oxidant stress at rest, the exercise-induced 

oxidant stress response and ADP-induced platelet aggregation. 

Very few studies have assessed the independent role of Se supplementation on 

reducing both LH, TAS, SOD, GSH levels and platelet aggregation, but the general 

consensus is that Se supplementation may reduce oxidant stress levels (Wilke et al., 
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1992; Bortoli et al., 1991; Sarada et al., 2002). However, the effects of Se 

supplementation on platelet aggregation are conflicting, indicating a possible beneficial 

effect (Kiem and Feinendegen., 1984) or no effect (Van Dokkum et aL, 1992). 

Research suggests that Se supplementation provides a more efficient antioxidant 

system by enhancing GSH-Px activity (Bortoli et al., 1991; Wilke et aL, 1992) which 

catalyses the decomposition of H202 and organic peroxides (Halliwell and Gutteridge, 

1999). Neve (1996) proposed that GSH-Px has the ability to combat the oxidative 

modification of lipids and reduce platelet aggregation. The prevention of LH build-up 

promotes the production of vasodilatory prostacyclin by the endothelium which in turn 

reduces the production of thromboxane, thus reducing vasoconstriction and platelet 

aggregation (Neve, 1996). Alternatively, reduced oxidant stress levels as a result of Se 

supplementation may indirectly affect platelet aggregation as research suggests that 

oxidant stress participates in the regulation of platelet activation (Krotz at al., 2004) (as 

discussed in chapter 5 and 7). The impact of GSH-Px on reducing both oxidant stress 

and platelet aggregation is of particular relevance to obese subjects as Olusi et al 

(2002) demonstrated reduced GSH-Px levels in this subject group compared to a non- 

obese group (84.3±6.7 vs 98.4±3.3U/g Hb, P<0.001). Since Se is an essential metal 

cofactor for the activity of GSH-Px (Rotruck et al., 1973), Se supplementation in the 

obese group may increase GSH-Px activity (Bortoli at aL, 1991; Wilke et al., 1992). 

To date few researchers have investigated the effect of Se supplementation on oxidant 

stress levels and platelet aggregation which are discussed below. Wilke et a/ (1992) 

noted improvements in oxidant stress status in PKU children (n=15) (at risk of Se 

deficiencies) who were given a daily sodium selenite (0.13pmol Se/kg/day) supply for 6 

months. Compared to control values, PKU children had significantly lower plasma and 

erythrocyte Se, significantly lower plasma and erythrocyte GSH-Px activity and 

significantly higher plasma MDA. Following Se supplementation, compared to control 
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levels, plasma Se, and GSH-Px values normalised after 1 month, erythrocyte Se after 2 

months, and erythrocyte GSH-Px and plasma MDA after 4 months. Bortoli et al (1991) 

studied the effects of 30 days Se supplementation (4 x 16.5pg inorganic Se and 5.0mg 

Vitamin E) in twenty elderly women. MDA levels showed insignificant changes during 

the Se supplementation period but 30-days post-Se supplementation, MDA decreased 

to a level lower than pre-Se supplementation [baseline vs 30-days post Se 

supplementation (4.3±0.6 vs 3.3±0.3pmol/L, P<0.05)]. Sarada et al (2002) found a 

reduction in hypoxia-induced oxidant stress in male Sprague-Dawley rats. Compared 

to the hypoxia only group, hypoxia plus Se supplementation demonstrated a significant 

decrease in MDA [hypoxia vs hypoxia + Se (4.0±0.4 vs 1.7±0.7nmol/mL, P<0.05)] and 

subsequent increase in plasma GSH levels [hypoxia vs hypoxia + Se (11.9±1.0 vs 

25.8±9.7nmoVmL, P<0.05)]. Similarly, blood GSH-Px, plasma protein and plasma Se 

content also increased (P<0.05, P<0.05, P<0.05, respectively) in the Se supplemented 

hypoxia group compared with hypoxia alone. However, no beneficial effect of Se 

supplementation was found by Portal et al (1995) who performed a double-blind cross- 

over Se supplementation study on lipid peroxidation markers in cystic fibrosis patients. 

Similar to obese patients, cystic fibrosis patients have been shown to have increased 

lipid peroxidation markers (Wilke et al., 1990), as a result of increased production of 

ROS mediated by infections or a defect in antioxidant defences (Portal et al., 1995). 

Portal et al (1995) assessed twenty seven cystic fibrosis children who were given 2.8pg 

of sodium selenite per kg per day for 5-months and 5-months with a placebo control 

and inversion of treatment periods. Simultaneously, 17 healthy children were also 

investigated as control subjects. Although Se status was similar in both the control 

(n=17) and cystic fibrosis children (n=27), cystic fibrosis children had significantly 

higher lipid peroxidation markers (organic hydroperoxides) (122.6±23.3 vs 

171.5±54.4pmol/L, P<0.05). However organic hydroperoxides were normalized at 12- 

months on either Se or placebo treatment. After the initial treatment, Se 
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supplementation increased plasma Se concentration and increased GSH-Px- activity 

whilst the placebo group demonstrated a reduction in plasma Se concentration and no 

significant changes in GSH-Px activity [baseline vs first treatment: Se concentration 

(Se group, 0.83±0.17 vs 1.11±0.18pmol/L, P<0.05 and placebo group, 0.78±0.14 vs 

0.67±0.13pmoVL, P<0.05), GSH-Px concentration (Se group, 269.8±40 vs 

340.4±77pmol/L, P<0.05 and placebo group, 260±45 vs 291.4±67pmo1/L, P>0.05)]. 

However compared to month 5, following the second treatment period, Se 

supplementation increased plasma Se concentration (P<0.05) but decreased GSH-Px 

activity (P>0.05) whilst in the placebo group plasma Se concentration decreased 

(P<0.05) and GSH-Px activity decreased (P>0.05). These results indicated that 

improvement of lipid peroxidation markers in cystic fibrosis was not related to the Se 

supplementation. The decrease in organic hydroperoxide levels observed following Se 

treatment may be linked to the improvement of the biological indices of Se status as 

reported in studies by Bortoli et al (1991) and Wilke et al (1990). However this 

relationship is inconsistent with data observed in the placebo group since organic 

hydroperoxide levels normalized in spite of a reduced plasma selenium concentration. 

It may be possible that the variable organic hydroperoxide levels in healthy subjects 

was a result of seasonal variations or the interpretation of the data may have been 

limited as a result of inferences in the organic hydroperoxide marker, despite complying 

with the criteria of good analytical practice. Alternatively, the reduced organic 

hydroperoxide levels in the placebo group may be a placebo effect which may have 

been influenced by change in patient behaviour due to inclusion in the clinical protocol 

(Portal et al., 1995). 

With regards to the effect of Se supplementation on platelet aggregation, research is 

limited but Kiem and Feinendegen (1984) did observe diminished activities of GSH-Px 

and decreased Se levels in platelets from patients with acute myocardial infarction 
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exhibiting a greater tendency to aggregation. But Van Dokkum et al (1992) concluded 

that dietary Se supplementation (200pg Se as Se-rich bread for six weeks (Se-wheat)) 

did not improve platelet aggregation in healthy young men (n=6) despite showing 

significantly increased GSH-Px activity. However in a pilot study (Van der Torre et at, 

1989), platelet aggregation was monitored in four subjects after supplementation with 

Se-rich yeast tablets which observed an increased platelet GSH-Px activity and 

decreased platelet aggregation. Levander et al (1983) suggested that the Se 

compounds in yeast differed from those in wheat so Van Dokkum at al (1992) 

confirmed that it may be conceivable that another Se compound in yeast could be of 

importance to platelet aggregation. 

In this study the effects of 3 weeks Se supplementation (200µg sodium selenite) versus 

placebo in a double blind manner (with wash-out period) was investigated on LH. TAS, 

SOD and GSH and ADP-induced platelet aggregation at rest and following acute high- 

intensity aerobic exercise in both normal-weight (n=10) and overweight (n=10) 

subjects. For the duration of the study, no changes in physiological and biochemical 

measurements were observed which could have had an impact on oxidant stress 

levels. The effect of Se supplementation in plasma was clearly identified in both the 

normal-weight and overweight groups. Compared to week 0, Se levels significantly 

increased following 3-weeks Se supplementation in both the normal-weight and 

overweight groups [wk 0 vs post Se treatment (normal weight, 6.84±0.69 vs 

9.7410.61 pg/L, P=0.028 and overweight, 4.64±0.15 vs 8.17±0.67pg/L, P=0.003)]. 

Interestingly, plasma Se levels were significantly lower in the overweight group when 

compared to the normal-weight group at wk 0,12 and following placebo treatment 

[overweight vs normal-weight (wk 0,6.84±0.69 vs 4.64±0.15pg/L, P=0.014, Wk 12, 

6.54±0.54 vs 4.64±0.17pg/L, P=0.010, post placebo treatment, 7.15±0.71 vs 
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4.52±0.23pg/L, P=0.008)], but following Se supplementation this significant difference 

disappeared as Se levels in the overweight group increased to a level similar to the 

normal-weight group [normal-weight vs overweight (9.74±0.61 vs 8.17±0.67pg/L, 

P=0.122). At time-points other than following Se supplementation, such as Wk 0, Wk 

12 (following wash-out period) and following placebo treatment, plasma Se levels were 

all similar in both the normal-weight and overweight groups which highlights that the 

wash-out period was effective at clearing the body of Se as a result of Se 

supplementation. 

LH levels at rest in week 0,12 and following placebo treatment demonstrated either a 

significant or a non-significant increased level in the overweight group compared to the 

normal-weight group. Following Se supplementation, LH levels decreased in both the 

normal-weight and overweight groups but this was not significant. In addition, following 

Se supplementation LH levels were not significantly different between the normal- 

weight and overweight groups. TAS levels significantly decreased in the normal-weight 

group and SOD levels significantly decreased in the overweight group compared to 

placebo treatment. Both of these changes cannot be explained. Se supplementation 

demonstrated no affect on GSH and percentage ADP-induced platelet aggregation 

levels compared to placebo treatment in both the normal-weight and overweight 

groups. 

LH responses immediately post and 30 minutes post high-intensity exercise in the 

normal-weight group following placebo treatment did not demonstrate any significant 

changes but in the overweight group LH levels significantly increased immediately 

post-exercise, which returned to resting levels 30-minutes post exercise. This confirms 

an exercise-induced oxidant stress response following high-intensity exercise in the 

overweight group. Furthermore compared to the normal-weight group, LH levels were 
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significantly higher in the overweight group at both immediately post and 30-minutes 

post high-intensity exercise time-points. Se supplementation in the normal-weight 

group demonstrated no positive effect on LH levels immediately post-exercise and 30 

minutes post-exercise. However in the overweight group, Se supplementation 

prevented a significant increase in LH levels immediately post-exercise. As a result, 

following Se supplementation, LH levels between the normal-weight and overweight 

groups were not significantly different immediately post and 30-minutes post exercise. 

No significant changes in TAS, SOD, GSH and platelet aggregation levels were 

observed in the normal-weight and overweight groups following placebo or Se 

supplementation, immediately post or 30 minutes post high-intensity exercise. 

This study found that 3 weeks Se supplementation (200pg/d sodium selnite) was 

affective at increasing plasma Se levels in both the normal-weight and overweight 

groups. Furthermore Se supplementation in the overweight group reduced the 

exercise induced oxidant stress response observed following placebo treatment. This 

is particularly important for overweight or obese individuals who exercise sporadically 

because they may be at greater risk of exercise-induced oxidant stress since the lack 

of regular training would not permit an enhancement of the defence mechanisms. This 

is perhaps even more relevant in the overweight / obese patient because obese people 

have been shown to have lower antioxidant concentration (Reitman et al., 2002; 

Strauss et al., 1999; Decsi et al., 1997; Kuno et al., 1998; Moor De Burgos et al., 1992) 

and decreased activities of erythrocyte cytoprotective enzymes (Olusi, 2002; Ozata et 

al., 2002; Beltowski et al., 2000). Furthermore in this study, overweight subjects were 

shown to have lower plasma Se levels [normal-weight vs overweight (6.84±0.69 vs 

4.64±0.15pg/L, P<0.05) which may lead to a more ineffective antioxidant system by 

reducing GSH-Px activity (Bortoli et al., 1991; Wilke et al., 1992). 
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The findings of this study have been compared to other antioxidant therapy studies in 

obesity aimed at reducing oxidant stress levels. It is difficult to make comparable 

conclusions between this study and others with regards to the effectiveness of Se 

supplementation on reducing oxidant stress levels because studies have all used 

various oxidant stress markers. At rest, this study demonstrated a reduction in LH 

levels of 13% in the overweight group and a 6.25% reduction in the normal-weight 

group following 3-weeks Se supplementation [placebo vs Se (overweight, 0.77±0.09 vs 

0.67±0.08pmoVL, P>0.05, normal-weight, 0.64±0.06 vs 0.60±0.07pmol/L, P>0.05)]. In 

comparison, Skrha et al (1999) found that vitamin E (600mg daily) administration in 

obese diabetic patients for 3 months decreased plasma MDA from 3.13±0.68 to 

2.87±0.97pmoVL which is an 8% reduction in MDA levels. Similarly Manning et al 

(2004) found reduced LH levels in obese subjects following 6-months of vitamin E 

supplementation (3 months 8001U vitamin E/day, 3 months 1200lU vitamin E/day). LH 

was decreased by 27% at 3-months and by 29% at 6-months following vitamin E 

supplementation and the decrease in LH was positively correlated with plasma vitamin 

E concentrations at the 6-month time point (r = 0.40, P=0.01, n=39). Another study 

also indicated protection against formation of oxidative biomarkers with antioxidant 

treatment, for example in overweight type II diabetic versus non diabetic contols 

(Anderson et al., 1999). Twenty diabetics completed an 8-week control period, 8 week 

treatment period (ß-carotene (24mg), vitamin C (1000mg) and vitamin E (8001U) 

followed by an 8-week control period (subjects were on a weight maintaining diet). 

Following the treatment period in the diabetic group, TBARS formation decreased by 

30% (pre vs post: 101.5±10.70 vs 70.6±9.75nmoVmg, P<0.001). 

The effect of antioxidant therapy on reducing exercise-induced oxidant stress has not 

been undertaken in the obese setting but research has been completed in normal- 

weight subjects. In this study, compared to placebo, Se supplementation reduced LH 
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production immediately post high intensity exercise by 2.7% in the normal-weight group 

[placebo vs Se (0.72±0.06 vs 0.70t0.05pmol/L, P>0.05)] and by 26% in the overweight 

group [placebo vs Se (0.96±0.09 vs 0.71±0.08pmol/L, P<0.02)]. In comparison, 

Sumida et al (1989) demonstrated that 4-weeks of vitamin E supplementation 

prevented a rise in plasma MDA levels following maximal-intensity cycle exercise. 

Ashton et al (1999) demonstrated that acute ascorbic acid supplementation prevented 

exercise-induced oxidant stress in healthy subjects. For example in the control phase, 

strenuous exercise caused a significant increase in LH levels [pre-exercise vs post- 

exercise (1.14±0.06 vs 1.62±0.19pmol/L, P=0.005)] and after acute ascorbic acid 

supplementation no change in LH levels were found post strenuous exercise [pre- 

exercise vs post-exercise (1.12±0.21 vs 1.12±0.08pmol/L)]. In contrast to these 

findings, daily supplementation with an antioxidant mixture (30 mg B-carotene, 592 mg 

vitamin E and 1000 mg vitamin C) did not prevent the exercise-induced rise in plasma 

MDA after moderate- to high-intensity treadmill running (Kanter et al., 1993). This 

study found that the normal-weight group did not benefit from reduced LH levels 

following high-intensity exercise, which might be because the normal-weight subjects 

did not have reduced GSH-Px activity (Olusi et al., 2002) suggesting that Se levels 

prior to Se supplementation may have been at a level which allowed for maximal 

expression of GSH-Px activity (Pearson et al., 1990). Alternatively, in all Se 

supplementation studies, variability in results may be associated with differences in 

study protocol. For example, the form of Se ingested affects the response of the 

selenoenzymes (Brown et aL, 2000), the concentration of some selenoenzymes is 

affected more than others by scarce selenium supply owing to the hierarchy of 

selenoprotein expression (Behne et al., 2000). In addition there is considerable 

variation between individuals in the extent of the response of the selenoenzymes to Se 

supplementation so Se requirements between individuals in the same population may 
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differ (Institute of Medicine, 2000) and adaptation to low Se intake can occur by sparing 

excretion (Thomson et al., 1993). 

This study attempted to elucidate if oxidant stress mediates platelet aggregation by 

examining the effect of reduced oxidant stress following So supplementation on platelet 

aggregation levels. Several research studies suggest that oxidant stress participates in 

the regulation of platelet activation (Krotz et al., 2004) and oxidant stress-mediated 

platelet aggregation has been found in several settings of risk factors for 

atherosclerosis and cardiovascular thrombosis, including diabetes mellitus, 

hypertension and hypercholesterolemia (Davi et al., 2003; Minuz of al., 2002; Davi et 

al., 1997). Similarly, Tozzi-Ciancarelli et al (2002) demonstrated that oxidant stress 

induced by strenuous exercise interfered with platelet responsiveness. This was 

evident by adding LDL-Ox to PRP obtained from blood samples collected from 6 

individuals immediately after strenuous exercise as ADP-induced platelet aggregation 

increased and intra-platelet NO content decreased. Several in vitro experimental 

approaches have also been used to investigate the specific role for distinct ROS on 

platelets. Briefly, platelets exposed directly to H202 have enhanced collagen- 

dependent platelet activation and enhanced arachidonic acid (AA)-dependent platelet 

activation (Practio of al., 1992). Platelets exposed to 02 have shown a reduction in 

the threshold for platelet activation to thrombin, collagen, ADP or AA and induced 

spontaneous aggregation (Handin et al., 1977; Krotz et al., 2002; Salvemini of al., 

1989; De la Cruz of al., 1992). 02 - also degrades NO which is a potent inhibitor of 

platelet activation. In addition to exogenously derived ROS affecting the regulation of 

platelet activation, recent data also suggests that the platelets themselves generate 

ROS (Marcus, 1977). 
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This study does not support the association that oxidant stress mediates platelet 

aggregation. At rest and post-high intensity exercise, compared to placebo treatment, 

Se supplementation had no affect on reducing in vivo platelet reactivity In both the 

normal-weight and overweight groups. These findings are similar to that of Van 

Dokkum et al (1992) who concluded that dietary Se supplementation did not improve 

platelet aggregation in healthy young men despite showing significantly increased 

GSH-Px activity. However Kiem and Feinendegen (1984) found that platelets that 

aggregated have significantly lower concentrations of Se (P=0.02) and that platelets 

with higher Se concentrations were less prone to aggregate. The lack of an 

association between Se supplementation and reduced platelet aggregation in this study 

may be because sodium selenite is not important in the role of platelet aggregation. 

For example Levander et al (1983) suggested that the increased platelet GSH-Px 

activity and decreased platelet aggregation in a pilot study following Se-rich yeast 

tablets suggests that particular Se compounds may be importance to platelet 

aggregation because Van Dokkum et al (1992) observed no beneficial effect of wheat 

Se supplementation on platelet aggregation levels. However the increased platelet 

aggregation and TxB2 levels in diabetic rates was shown to reverse following sodium 

selenite supplementation (Ersöz et at, 2003). Another possibility for the lack of 

association between Se supplementation and reduced platelet aggregation may be 

because 3 weeks sodium selenite supplementation is too short a term to establish lipid 

peroxidation-mediated changes in platelet function (Salonen et at, 1991). Stampfer et 

al (1988) observed no significant effects on either in vitro platelet aggregation ability or 

serum thromboxane B2 concentration in 20 healthy university staff member who were 

supplemented with 727mg vitamin E/d for 5 weeks. Salonen et al (1991) attributed the 

lack of changes to the short term supplementation period. Salonen et al (1991) found 

that antioxidant supplementation daily for 5 months (600mg ascorbic acid, 300mg a- 

tocpherol, 27mg B-carotene, and 75pg selenium in yeast) in men (39 controls and 39 
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supplemented) with low antioxidant status and high fat intake, reduced lipid 

peroxidation, the capacity of platelets to aggregate and to produce thromboxane A2 and 

in vivo platelet activation. Furthermore, Salonen et al (1991) found that the presence of 

the associations between antioxidant changes and change in lipid peroxides was in 

accordance with the hypothesis that antioxidants reduce platelet activity through the 

elimination of circulating lipid peroxides. The discrepancy in the different findings 

between Stampfer et al (1988) and Salonen et al (1991) may also be attributed to the 

difference in baseline antioxidant status and dietary fat intake between the two study 

populations. 

This study provided an insight into the potential role Se could play as an antioxidant 

therapy to reduce oxidant stress at rest and following high-intensity exercise in 'high 

risk' population groups. Although the study benefits from being a double-blind cross- 

over study, questions still remain unanswered regarding the use of Se supplementation 

in everyday practice. For example, the type of supplement, dosage and length of 

consumption must be investigated. It is important to be aware of the reduced Se intake 

in the UK (Rayman et al., 20002) and a Se type and dosage should be selected on the 

basis of normalizing plasma selenium levels in individuals. Normalization of plasma Se 

levels may in turn optimize GSH-Px activity (Duffield et al., 1999), and reduce oxidant 

stress levels. 

8.4 CONCLUSION 

Three-weeks Se supplementation in overweight subjects has the potential to decrease 

LH levels at rest and normalize LH levels immediately post high-intensity exercise. 

However the improvements in LH levels did not extend to reducing in vivo platelet 

reactivity, suggesting that oxidant stress may not be a pivotal determinant of platelet 

aggregation. 
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Chapter NINE 

General discussion 



9.0 Integration and summary of research findings 

Oxidant stress is an imbalance between the formation of reactive oxygen / nitrogen 

species and antioxidants (Powers et al., 2004). The level of redox signalling is 

elevated in conditions such as hypertension, hyperinsulinemia, hyperlipidaemia and 

obesity (Vincent and Taylor, 2006). In addition, high fat (Slim et al., 1996) and high 

sugar diets (Faure at al., 1997) and moderate unaccustomed exercise all pose an 

acute oxidant stress (Alessio et al., 2000). Paradoxically though, regular endurance 

exercise is associated with increased intracellular antioxidants and antioxidant 

enzymes and decreased ROS production during exercise (Fukai et aL, 2000). 

Similarly alternative strategies such as dietary modifications (Velthuis-te Wierik et al., 

1996), weight loss (Davi et al., 2002) and antioxidant therapy (Skrha et al., 1999; 

Manning et al., 2004) may improve oxidant stress levels, leading to long-term 

vascular protection, or protection against several diseases associated with oxidant 

stress such as premature aging, diabetes mellitus, arthritis and cancer (Niki, 2001). 

The present research was conducted to investigate whether (1) both overweight and 

obese individuals are susceptible to increased oxidant stress (2) a short-term low 

carbohydrate diet in overweight subjects may generate oxidant stress (3) overweight 

individuals are more susceptible to exercise-induced oxidant stress (4) selenium 

supplementation may attenuate oxidant stress in overweight subjects at rest and 

following aerobic exercise (5) oxidant stress may play a pivotal role in platelet 

aggregation. 

Figure 9.0 integrates and summarises the research findings of all the studies 

conducted as part of this thesis. Where a question mark is presented, this indicates 

that the finding or mechanism is open to discussion since it was not sufficiently 

elucidated in this work. 
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Figure 9.0. Chain of events for oxidant stress and platelet aggregation in 

overweight/obese individuals, following acute high-intensity exercise 

and short-term low carbohydrate diets and the effect of selenium 

supplementation. 

LIFESTYLE STRATEGIES UNDERTAKEN BY 
OVERWEIGHT INDIVIDUALS 

r1 
v 
T 02 uptake 

t 
T mitochondrial 
electron leakage 

Ll 

II- 

I 

i 
I 

1 

1 

I 

1 

1 

i 

Short-term low 
carbohydrate diet 

ý 
T pre-formed II 
hydroperoxides 

T fat 
consumption 

1.......... 

ischemia-reperfusion 

T 

-Y 
T neutrophils and 
inflammatory cytokines 

cathecholamines 

enhanced in 
vivo platelet 
reactivity ? 

I 

I 

I 

I 

0 
I 

I 
I 

I 
I 

I 
I 

I 

x"? S 
S 

S 
S 

S 
S 

I 
S 

S 

0 

enhanced in 
vivo platelet 
reactivity ? 

f 

acids 

T Lipid and peroxyl radicals 
f 

T lipid hydroperoxides 

I 

1T 02 uptake 
II __j 
. . _. _. _. _. _ 

T protein 
consumption 

4 
homocysteine 

levels 

. ý` 

T primary 02 
radical species 

ýR. 

hypertension ? 

I IT 

T inflammation 

"1 

1 

I 

I 

T fat deposition 

hyperleptinaemia 

antioxidant status ? 

I 

II hyperglycaemia ? 

I- I 
1 

I 

I 

I 

1 

Obesity 

, , J" 

enhanced in 
vivo platelet 

I 

I 

I 

reactivity 

SELENIUM 
SUPPLEMENTATION 

I 
1 

T Peroxidation of fatty T GSH-Px 

229 



9.1 BMI and oxidant stress 

Study 1 demonstrated significantly elevated levels of oxidant stress levels in obese 

individuals when compared to normal-weight and overweight individuals as 

evidenced by increases in LH levels. This may be associated with an increase in 

oxygen consumption, implicating the mitochondria as a potential source of primary 

oxygen-centred free radical species. Other possibilities include reduced antioxidant 

status, cell injury/inflammation and increased fat deposition (Vincent et al., 2001), 

hyperglycaemia, hypertension and hyperleptinaemia (Vincent and Taylor, 2006). 

Although this study did not set out to identify potential causes of increased oxidant 

stress in obesity, lowered antioxidant status, hypertension and hyperglycamia were 

found not to be factors contributing to increased oxidant stress in obesity because (1) 

antioxidant status was not shown to be lower in obesity and (2) obese individuals 

with either hypertension or hyperglycaemia were excluded from the study. 

Despite overweight individuals not being predisposed to enhanced oxidant stress, 

studies 3 and 4 found that lifestyle habits such as short-term low carbohydrate diets 

and/or acute exercise can increase oxidant stress levels in overweight individuals. It 

can therefore be speculated that obese individuals would also respond to the above 

strategies with increased oxidant stress levels. It was appropriate to study the effect 

of these strategies in overweight subjects because overweight/obese individuals 

often attempt to lose with weight by exercising and changing dietary habits 

(Goldbeter, 2006). 
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9.2 Short-term low carbohydrate diets and oxidant stress 

Study 3 investigated the impact of commercial diets for weight loss in a real-life 

setting on oxidant stress parameters. Compared to a conventional and control diet, a 

low carbohydrate diet caused an increase in LH levels during the first two weeks 

which decreased at week 4 whilst total antioxidant status levels increased gradually 

to week 4. This occurred despite the low carbohydrate diet achieving the greatest 

weight loss compared to the conventional and control diet (which can be a potential 

mechanism to reduce oxidant stress). The change in oxidant stress levels are likely 

to reflect initial increased susceptibility to oxidants possibly caused by changes in 

macro-nutrient intake (Slim et aL, 1996; Velthuis-te Wierik et al., 1996) versus 

baseline [e. g. increased fat (total or saturated fat content) and or protein intake], 

followed by compensatory elevations in antioxidant enzyme levels to help protect 

tissues against further tissue damage. For example SFAs have been shown to be 

susceptible to oxidation (Mata et al., 1996) and MUFAs lower LDL oxidation (Berry et 

al., 1991; Reaven et al., 1991) whilst lipoproteins isolated from individuals consuming 

diets rich in PUFAs and MUFAs demonstrate greater pre-disposition to peroxidation 

than lipoproteins from individuals given SFAs (Kleinveld et al., 1993). Changes in the 

consumption of lard and compound cooking fat (such as baking and frying 

margarines) which contain high levels of pre-formed hydroperoxides (Wolff and 

Nourooz-Zadeh, 1996) may explain changes in LH levels on the LowCD or explain 

the diverse results in lipid peroxidation responses in studies investigating the impact 

of composition of dietary fat on oxidant stress levels (largely dependent upon the 

intake of food containing hydroperoxides generated by pyrolysis such as fatty fried 

foods). Increased protein intake on the LowCD may also promote oxidant stress 

(Fang et al., 2002). High protein diets increase homocysteine levels, which can 

increase endothelial 02' production and induce oxidant stress in the vasculature (Wu 
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and Meininger, 2002). In addition, increased protein intake has also been shown to 

stimulate generation of ROS and lipid peroxidation in human polymorphonuclear 

leukocytes and mononuclear cells (Mohanty et al., 2002) and increase whole-body 

NO production by constitutive and inducible NOS in rats (Wu et al., 1999). It is 

important to note that the above changes in oxidant stress may have increased 

further if subjects adhering to the low carbohydrate diet were not taking a daily multi- 

vitamin. It would be interesting to determine the number of individuals in the public 

who consume low carbohydrate diets without a daily multivitamin. The conventional 

diet and control diet had no significant effect on oxidant stress levels in overweight 

women over a 4-week period, which demonstrates that a diet promoting low-fat 

consumption (consisting of MUFAs and PUFAs) and low-glycaemic index foods are 

favourable for lower oxidant stress levels. It is important to highlight that although the 

low-carbohydrate diet achieved the greatest weight loss compared to the 

conventional and control diet, oxidant stress levels still increased on the low- 

carbohydrate diet. 

9.3 Acute exercise and oxidant stress 

In study 4, despite matching oxygen consumption during exercise between the 

normal-weight and overweight groups, it was shown that overweight individuals are 

still predisposed to a greater increase in oxidant stress levels post high-intensity 

exercise compared to normal-weight individuals. Post-high intensity exercise, LH 

levels significantly increased in the overweight group (+19.8 %) but not in the normal- 

weight group (+10.3 %). Although differences in resting LH levels between the 

normal-weight and overweight were not significantly different, they were immediately 

post-exercise. At 30-minutes post-exercise these levels reduced to pre-exercise 

levels. No consistent changes were identified within or between the normal-weight 
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and overweight groups for TAS, GSH and SOD pre-exercise, post-exercise and 

thirty-minutes post-exercise. The exacerbated exercise-induced oxidant stress in the 

overweight group is likely to be due to the factors which are associated with the 

obesity-associated oxidant stress e. g. reduced antioxidant status, cell 

injury/inflammation and increased fat deposition (Vincent of al., 2001), 

hyperglycaemia, hypertension and hyperleptinaemia (Vincent and Taylor, 2006). As 

a result of exercise-induced oxidant stress, overweight/obese individuals who are 

repeatedly undertaking infrequent bouts of exercise (high-intensity) to lose weight 

may be frequently enhancing oxidant stress and placing themselves at greater risk of 

physiological complications such as cardiac arrthymias, fibrinolysis and angina 

(Alessio, 1994). However this risk may be lessened by exercising at moderate 

exercise intensities (Tozzi-Ciancarelli et al., 2002). In addition continuous exercise 

training (Fukai of al., 2000) and antioxidant therapy (Skrha et al., 1999; Manning et 

a/., 2004; Anderson et al., 1999) may be useful strategies to reduce oxidant stress in 

obesity at rest and during exercise. 

Due to obesity and lifestyle habits such as short-term low carbohydrate diets and 

acute high-intensity exercise increasing oxidant stress, study 5 was designed to 

determine the effect of antioxidant supplementation on oxidant stress in overweight 

individuals at rest and following high-intensity exercise. It was speculated that any 

significant benefits found may extend into the obese population. Selenium 

supplementation was chosen as the antioxidant of choice because it is an essential 

component of the GSH-PX system (Ladenstein et al., 1979), which functions as part 

of an antioxidant system to protect PUFAs and proteins from the damaging effects of 

peroxides and LH (Richter, 1987; Del Maestro et al., 1980). Also given that current 

UK daily intakes of Se are so low (Department of Health, 1991) that they do not allow 

maximal expression of plasma GSH-PX (Duffield et al., 1999) and evidence that 
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obese individuals have reduced GSH-PX levels (Olusi et al., 2002) selenium 

supplementation seemed a good antioxidant choice. 

9.4 Selenium supplementation and oxidant stress 

The results of study 5 provided an insight into the potential role Se could play as an 

antioxidant therapy to reduce oxidant stress at rest and following high-intensity 

exercise in normal-weight and overweight individuals. At rest, although not 

significant, Se supplementation produced a trend for decreased LH levels in both the 

normal-weight and overweight group but the greatest effect was observed in the 

overweight group. Immediately following and 30 minutes post-exercise, compared to 

placebo, Se supplementation also reduced LH levels in the overweight weight but 

this did not occur in the normal-weight group. Interestingly, although LH levels 

between the normal-weight and overweight groups were significantly different post 

and 30 minutes post exercise on placebo, this was not the case following Se 

supplementation. These results suggest that Se supplementation in overweight 

individuals has the potential to reduce LH levels at rest and normalize LH levels 

during acute aerobic high-intensity exercise. The minimal changes in TAS, SOD and 

GSH do not explain why Se supplementation may have reduced LH levels in 

overweight subjects. However, it can be speculated that the improvements in LH in 

the overweight group may be due to a significant increase in plasma selenium levels 

which in turn maximised GSH-PX activity (since it was shown that overweight 

individuals compared to normal-weight individuals in the placebo group had 

significantly lower plasma selenium levels). 
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9.5 Oxidant stress-mediated platelet aggregation 

Since platelets play a central role in the process of thrombus formation (Hoak, 1988), 

as well as playing an important role in atherogenesis (Rabbani and Loscalzo, 1994) 

and the progression of atherosclerotic lesions (Kamath et al., 2001) it seemed 

significant to investigate whether increased oxidant stress (due to obesity or 

unhealthy lifestyles) contributes to persistent platelet aggregation. It has already 

been shown that oxidant stress mediates platelet aggregation in several settings 

such as diabetes mellitus, hypertension and hypercholesterolemia (Davi et al., 2003; 

Minuz et al., 2002; Davi at al., 1997) which suggests that increased oxidant stress in 

obesity may contribute to persistent platelet aggregation. Several in vitro 

experimental studies have identified specific effects of ROS on platelet activity. For 

example (1) H202 has been shown to enhance collagen-dependent platelet activation 

and enhance arachidonic acid (AA)-dependent platelet activation (Practio at al., 

1992) (2) O2 have been shown to reduce the threshold for platelet activation to 

thrombin, collagen, ADP or AA and induced spontaneous aggregation (Handin at al., 

1977; Krotz at al., 2002; Salvemini et al., 1989; De la Cruz at al., 1992) and also 

reacts with NO to form OONO which decreases bioavailability of NO, a potent 

inhibitor of platelet activation (Krotz et al., 2004). In addition to exogenously derived 

ROS affecting the regulation of platelet activation, recent data also suggests that the 

platelets themselves generate ROS (Krotz et al., 2002). 

In this study, oxidant stress-mediated platelet aggregation was investigated using 

correlation analysis between oxidant stress parameters measured as LH and platelet 

aggregation measured as ADP-induced platelet aggregation using PlateletWorks. 

Although percentage ADP-induced platelet aggregation levels progressively 

decreased (expression of enhanced in vivo platelet reactivity) and LH levels 

progressively increased with increasing BMI levels, no association was found 
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between LH and ADP-induced platelet aggregation in healthy individuals (including a 

range of BMIs). In addition no association was found between TAS and ADP- 

induced platelet aggregation. However correlation coefficient analysis from data 

obtained prior to and post high-intensity acute exercise demonstrated that LH has a 

significant negative association with platelet aggregation at high ADP-induced 

platelet aggregation (20pM) (r=-. 0.329, P<0.01) and a negative trend towards being 

associated with platelet aggregation at low ADP-induced platelet aggregation (10pM) 

(r=-. 240, P=0.065). This suggests that increased LH could decrease the sensitivity of 

platelet activity to ADP (which is an expression of enhanced in vivo platelet 

reactivity). However this association is not entirely clear because this study failed to 

observe reduced platelet aggregation post high-intensity exercise despite observing 

significantly increased LH levels. 

To gain a clearer picture of the potential oxidant stress may have on mediating 

platelet aggregation, the impact of Se supplementation on platelet aggregation (since 

Se supplementation reduces LH levels) was examined in both normal-weight and 

overweight individuals, pre and post high-intensity acute exercise. At rest and post- 

high intensity exercise, compared to placebo treatment, Se supplementation had no 

effect on reducing in vivo platelet reactivity in both the normal-weight and overweight 

groups. The lack of an association between Se supplementation and reduced 

platelet aggregation in this study may be because sodium selenite is not important in 

the role of platelet aggregation. For example Levander et a/ (1983) suggested that 

the increased platelet GSH-Px activity and decreased platelet aggregation in a pilot 

study following Se-rich yeast tablets suggests that particular Se compounds may be 

importance to platelet aggregation because Van Dokkum et a/ (1992) observed no 

beneficial effect of wheat Se supplementation on platelet aggregation levels. 

However the increased platelet aggregation and TxB2 levels in diabetic rats was 
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shown to reverse following sodium selenite supplementation (Ersöz et aL, 2003). 

Another possibility for the lack of association between Se supplementation and 

reduced platelet aggregation may be because 3 weeks sodium selenite 

supplementation is too short a term to establish lipid peroxidation-mediated changes 

in platelet function (Salonen et al., 1991). 

9.5 Conclusion 

It is well established that obesity enhances oxidant stress but whether this is a cause 

and effect relationship or a result of obesity-related diseases or a combination of the 

two remains unclear. Overweight individuals were not predisposed to enhanced 

oxidant stress but lifestyle habits such as short-term low carbohydrate diets and/or 

acute exercise were shown to increase oxidant stress levels in overweight 

individuals. Interestingly this exacerbated exercise induced response in overweight 

individuals was ameliorated by three-weeks selenium supplementation which is 

particularly important for overweight or obese individuals who exercise sporadically 

because they may be at greater risk of exercise-induced oxidant stress since the lack 

of regular training would not permit an enhancement of the defence mechanisms. In 

addition to oxidant stress, it seemed significant to identify if increased oxidant stress 

(due to obesity or unhealthy lifestyles) contributes to persistent platelet aggregation 

(since platelets play a central role in the process of thrombus formation, 

atherogenesis and atherosclerotic lesions). Overall, it appeared that oxidant stress 

does not mediate platelet responsiveness. Although a possible association between 

oxidant stress and platelet responsiveness pre- and post-high-intensity exercise in 

both normal-weight and overweight subjects was found, the nature of the association 

between oxidant stress and platelet aggregation remained unresolved as no 

association was found between lipid hydroperoxide levels and percentage ADP- 

induced platelet aggregation at rest across normal-weight, overweight and obese 
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groups and selenium supplementation did not improve platelet responsiveness in 

overweight individuals, despite ameliorating oxidant stress levels. 

As evident from the following section, much work is still required in the domain of 

obesity, exercise, diet and oxidant stress in both health and disease. It is therefore 

hoped that the work contained in this thesis provides an induction into the area of 

free radical research and platelet aggregation in overweight/obesity, exercise, diet 

and pathology, and helps to generate future research ideas. 

9.6 Future Work 

The present study provided evidence that obesity may mediate oxidant stress as 

shown by elevated lipid hydroperoxide levels. It was also shown that oxidant stress 

is exacerbated in overweight individuals who were undertaking short-term LowCD, 

and high-intensity acute exercise. However caution should be taken when employing 

biomarkers for oxidant stress to examine these concepts as their measurement and 

interpretation are hampered by several factors. For example, oxidant stress assays 

(such as TBARS, MDA and LH) lack specificity, sensitivity and definition (in defining 

commonly accepted normal reference intervals). Precise analytical methods for 

oxidant stress need to be introduced for application in routing clinical laboratories 

which allow more precise interpretations of laboratory results to be made. Similarly, 

the impact of oxidant stress on platelet aggregation should be analysed using a wide 

range of biomarkers which reflect different aspects of platelet activation and may 

differ in terms of sensitivity. 

To investigate further the effects of obesity and obesity-related diseases on oxidant 

stress, it would be useful to compare various groups of body mass index and 

existence of co-morbidities on oxidant stress levels. Future obesity studies into 
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oxidant stress should also include an assessment of GSH-Px which was not included 

in the present studies. Olusi et a! (2002) observed that GSH-Px was lower in obese 

compared to a non-obese individuals, so it would be interesting to further define its 

role in the pro-oxidant/antioxidant balance. 

Having shown that short-term adherence to LowCD in overweight individuals 

increased susceptibility to oxidant stress, an investigation is needed of longer 

duration. In addition, assessment of the effect of the LowCD on oxidant stress in 

obese individuals is needed. Future research should also be performed to identify 

the independent effects of dietary consumption and calorie restriction on the pro- 

oxidant / antioxidant balance. 

The present studies have clearly demonstrated that exercise-induced oxidant stress 

was increased in overweight individuals compared to normal-weight individuals, 

following high-intensity exercise. Therefore exercise-induced oxidant stress 

response in obesity could also be examined following both moderate- and high- 

intensity exercise to identify an exercise intensity which is of lowest risk to the obese 

individual. Future research could study the effects of an incremental graded exercise 

stress on oxidant stress to identify if there is a 'oxidant stress threshold' (point at 

which LH levels significantly increase) during exercise. Exercising below the 

`threshold' may potentially put individuals at less risk of the exercise-induced oxidant 

stress. 

Short term Se supplementation may be advantageously used in overweight subjects 

completing a high intensity aerobic exercise session. However long-term intervention 

studies are needed to evaluate the efficacy of this new therapeutic approach to the 

prevention and treatment of exercise-induced oxidant stress following high-intensity 

exercise in overweight individuals. In addition, the type of Se supplement, dosage 

239 



and length of consumption should also be investigated. The application of Se 

supplementation at rest, pre and post exercise should also be studied in the obese 

population. 

Further research should also examine the effects of long term adherence to weight 

management (including dietary changes and exercise training) on the pro- 

oxidant/antioxidant balance, which may provide greater insight into the importance of 

weight loss or cardio-respiratory fitness. 

Finally, the impact of obesity-related oxidant stress should be examined in relation to 

its impact on clinical outcomes measures and physiological complications such as 

cardiac arrthymias, fibrinolysis and angina in the short-time and premature aging, 

inflammation, diabetes, CVD and cancer in the long-term (Alessio, 1994). This could 

further highlight the importance of oxidant stress measures in health and disease. 
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