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Abstract

Evolutionary optimization algorithms, a meta-heuristic approach, often encounter

considerable challenges in many-objective optimization problems (MaOPs). The

Pareto-based dominance loses its effectiveness in MaOPs, which are defined as

having more than three objectives. Therefore, a more valid selection method

is proposed to balance convergence and distribution. This paper proposes an

algorithm using rotary grid technology to solve MaOPs (denoted by RGridEA).

The algorithm uses the rotating grid to partition the objective space. Instead

of using the Pareto non-dominated sorting strategy to layer the population a

novel stratified method is used to enhance convergence effectively and make

use of the grid to improve distribution and uniformity. Finally, with the other

seven algorithm was tested on the test function DTLZ series analysis, confirming

RGridEA is effective in resolving MaOPs.
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1. Introduction

Many optimization problems in the real world are usually involved in many

objectives. Generally, a MaOPs can be formulated as:

min
x∈D

F(x) = (f1(x), f2(x), . . . , fM (x))T (1)

where D ⊆ Rn is the decision space, x = (x1, x2, . . . , xn) ∈ D is the deci-

sion variable and M ≥ 2 is the number of the objectives. For MaOPs , M

is generally greater than three [1]. Examples of many-objective optimization

problems include: time table problem [2] [8], radar optimization problem [3],5

water resource optimization problem [4], ground water monitoring problem [5],

air traffic control problem [6], wing design problem [7], gearbox design problem

[8], storm drainage system problem [9], vehicle design problem [10] and vehicle

crash safety problem [11]. Most of those problems are NP-hard problems and

many-objective optimization problems [2]. Due to high complexity and non-10

linearity, those problems are difficult to be solved by traditional optimization

methods.

Multi-objective evolutionary algorithms (MOEAs) have characteristics of

global random search and ability of dealing with highly-complex nonlinear prob-

lems. Currently, it has been proved that the multi-objective problems with 215

and 3 objectives can be solved well by traditional MOEAs, however they are less

effective and less efficient to cope with MaOPs. The main reason why MOEAs

can deal with multi-objective problems well is that most MOEAs use the Pareto

dominance relationship as the primary method to distinguish the mutual rela-

tionship between the individuals, which defines a partially ordered relation to20

sort all of the individuals [11] [12] so as to prompt convergence. Meanwhile,

MOEAs also utilize distribution information as the secondary method to eval-

uate the fitness of individuals. Thus, traditional evolutionary multi-objective

(EMO) algorithms can ensure convergence and obtain good distribution as far as

possible. However, with the increase of number of objectives, the non-dominated25

solutions increase exponentially [11] [13], thereby, the fitness based Pareto dom-
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inance relationship will be difficult to distinguish the mutual relationship be-

tween the individuals, which could lead to greatly weaken the searching ability

of the algorithms [14] [15] [16] [17].

In order to overcome these difficulties many evolutionary algorithms have30

been proposed to deal with MaOPs, and they can be divided into three classes.

• Based on traditional Pareto dominance relationship. Due to the

Pareto relationship failing to prompt the convergence pressure in solving

MaOPs, many efforts have been put into relaxing the Pareto dominance

relationship. Drechsler et al. [18] put forward the winning relationship35

[40]-[43] method to determine the priority of the individuals in the non-

dominated solution set. To some extent, the method has reduced the

strength of the pareto dominance relationship, but it has no transitivity

in the solution set. Ikeda et al. [19] put forward the α-dominance, which

is designed to strengthen or weaken the Pareto dominance relationship by40

adjusting the α parameter, but it is difficult to find a suitable α in the op-

timization. Laumanns et al. [20] proposed the ε-dominance relationship.

Although this relationship can enhance the selection pressure and main-

tain the distribution of the solution set to some extent, but it is difficult

to determine appropriate parameters to various problems. In addition,45

David Hadka et al. [21] put forward a diagnostic evaluation framework

which can assess the effectiveness, reliability, efficiency and controllability

of MOEA. Salem et al. [22] put forward two kinds of diversity maintaining

mechanisms and investigated their influence on algorithm convergence.

• Based on Non-Pareto dominance relationship. Non-Pareto meth-50

ods mainly include indicators- or index-based methods and the methods

based on decomposition [53]. Zitzler and Künzli [22] put forward the

indicator-based evolutionary algorithms, namely, IBEA. Then several ver-

sions of improved IBEAs came out [23]. Literature [24] points out that

the convergence of IBEA is better than that of the MOEAs based on55

the Pareto dominance relationship in solving the MaOPs with 3 to 6 ob-
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jectives, but the computational cost is too much and selecting reference

points is difficult. Zhang and Li [26] put forward the MOEA/D, and

Hughes [27] proposed the MSOPS. Both of these divide a MaOP into

many sub-problems and then optimize the sub-problems simultaneously.60

They can solve the MaOPs,but need prior knowledge well.

• Dimension reduction. In order to reduce complexity and redundant ob-

jectives for solving MaOPs, Deb et al. [28] [29] [30] applied the Principal

Component Analysis (PCA) method to MOEAs and achieved good re-

sults. In addition, some scholars put forward the feature selection method65

[32] and subset covering method [31] [34] to reduce redundant objectives.

These kind of methods have two shortcomings. One is the loss of some

important information after the reduction, and the other is the setting of

parameters, increasing the complexity of the problem.

Although these three classes of methods have provided new ideas for solving70

MaOPs, great improvements are still needed before EMO algorithms can be

considered to be as effective for solving many-objective problems as they are for

2- and 3-objective problems. Existing algorithms, such as ε-MOEA, that have

achieved good performance in solving MaOPs still have significant drawbacks

like the difficulty in parameter setting. As highlighted by Purshouseet et al.75

[33] Research into evolutionary many-objective optimizations still in its infancy,

and the need for efficient methodologies is pressing.

Thus, this paper proposes an algorithm using rotary grid technology to solve

MaOPs (denoted by RGridEA). The algorithm uses the rotating grid to parti-

tion the objective space. It no longer uses the Pareto non-dominated sorting80

strategy to layer the population but proposes a novel stratified method so as to

enhance the convergence effectively and use of the grid to improve distribution

and uniformity.

4



2. Motivation

For EMO problems [1], with the increase of the number of objectives, the85

Pareto dominance relationship tends to be weakened in the optimization. The

reason is that with the increasing of the number of objectives, the Pareto domi-

nance relationship is invalid since most individuals are mutually non-dominated,

thereby reducing selection pressure and search ability [14] [17]. Purshouse et

al. [61] point out when the number of objectives increases to 4 or more, the90

performance of the EMO algorithms based on Pareto dominance relationship

greatly decrease. Hughes [35] has shown that MOEAs based on Pareto dom-

inance ranking are very effective in solving problems with few goals (2 or 3).

However, their performance will be worse than that of the non-Pareto domi-

nance based methods in dealing with the MaOPs [57] [58]. In addition, some95

recent research shows that when the number of objectives increases to 10 or

more, the MOEAs based on Pareto dominance perform even worse than the

random search based algorithms [36]-[38].

As shown in Figure 1(a), convergence and diversity can be controlled through

adjusting the value of the angle which control the dominated region in the100

optimization. Sato et al. [62] put a similar idea into the frame of NSGA-II [44],

which enhances performance in many-objective optimization. In Figure 1(a),

individuals (A, B, C) are non-dominated in the Pareto dominance relationship

(the region above the black solid line indicates the dominated area of a solution).

After relaxing the dominance relationship, the region above the red dotted line105

indicates the dominated area of a solution so that individuals A and C are

dominated by C in this situation.

In Figure 1(c), Laumanns et al. [38] put forward the ε-dominance relationship.

Its main idea is to enlarge the dominated region by 1+ ε times (ε > 0). As

shown in Figure 1(c), after the modification of the dominance relationship, the110

relationships between the four mutual non-dominated four points (A, B, C and

D) in the Pareto dominance sense are changed, so that A and C are dominated

by B, because A and C are included in the dominated region above the red
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Figure 1: Illustration of different kinds of dominance relationships.
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dashed line of B.

As Figure 1(e) shows, S. Yang et al. [14] introduced the concept of grid-115

based dominance. By dividing the objective space into many small grids, then

controlling the distribution of individuals in these small grids so as to enhance

diversity. But the essence of the idea is still to relax the Pareto dominance

relationship. In Figure 1(e), the points (A, B and C) are non-dominated in

the Pareto dominance sense. After the amplification dominance relationship,120

B dominates A. In the same grid, the individual close to the left corner of the

gird will be preferred in comparison with other individuals in the same grid.

Therefore, the dominated region of a solution is changed much as shown in

Figure 1(e).

These algorithms that relax the Pareto dominance relationship are able to125

solve MaOPs to some extent with some advantages. First, they have the

characteristic of guiding the individuals to converge to the Pareto Objective

Front(POF). As shown in Figure 1(a), 1(c), 1(e), the blue dashed lines show the

direction of evolution or direction of convergence. Second, at the same time,

these algorithms also keep the distribution [14].130

On the other hand, these algorithms have some drawbacks. First, a common

problem for the algorithms that relax the Pareto dominance relationship is that

it is hard to control the degree of relaxation. For example, ε-MOEA has to adjust

the parameter repeatedly to determine the best value for different problems.

As from Table 1, it is specifically tests the influence of influence ε value in135

ε-MOEA algorithm , the experimental results has be great influenced by the

value of ε. Second, relaxing the dominated relation will cause the missing of

boundary individuals to a certain extent, as shown in Figure 1(b), 1(d), 1(f)

that the boundary individual A is dominated by individual B in all situations.

Furthermore it is known that the boundary individuals are very important in140

keeping the spread or diversity of the solutions in the evolutionary process.

Third, some relaxation-based algorithms may destroy the partial order relation.

For example, in Figure 1(c), the nondominated solutions C and D are in the

same grid in the Pareto dominance sense. After the relaxation, C
′

can dominate
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Table 1: The settings of the ε value in ε-MOEA.

Objective numberProblem 3 4 5 6 8 10

DTLZ1 0.033 0.06 0.06 0.06 0.0227 0.048

DTLZ2 0.052 0.1312 0.1385 0.1312 0.12 0.105

DTLZ3 0.059 0.1927 0.2 0.1927 0.3552 0.158

DTLZ4 0.0554 0.234 0.227 0.234 0.75 0.15

DTLZ6 0.0549 0.29 0.1567 0.29 1.15 0.225

DTLZ7 0.0565 0.308 0.85 0.308 1.45 0.46

D, and D
′

can dominate C. Thus, C and D are non-ε-dominated.145

Therefore, this is a really crucial challenge to guide the the population evolv-

ing fast toward the optimal front while simultaneously maintaining the individ-

uals’s diversity during the evolutionary process. To handle these drawbacks and

challenge, a many-objective evolutionary algorithm based on a rotation of grid

(RGridEA) has put forward in this paper. On the one hand, the algorithm will150

adopt the idea of grids to maintain diversity. On the other hand, it will con-

sider convergence and diversity separately and add the evolutionary direction

to guide optimization. Although the RGridEA has a parameter that denote the

number of grids, the parameter R can be adjusted dynamically by the size of

objective space determined by the individuals, so the parameter R setting is155

relatively simple, and a constant value can be set for any problems with any

dimensions, like R=10.

3. Rotation Grid based algorithm (RGridEA)

3.1. Rotation grid

Considering that the increase non-dominated individuals will result in the160

EMO algorithms hard-converging to the Pareto Front(PF) and that relaxing

the Pareto dominance relations makes it difficult to determine the parameter

and may cause the loss of boundary points. We use the grid partition method

to keep the distribution. Then, the grid is redesigned and a rotating grid is

proposed that redefines the stratification mechanism using the rotary grids.165
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f2
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f2'

Figure 2: A two-dimensional example of rotating grid.

Definition 3.1 Rotating Grid: In n-dimensional objective space, the num-

ber of individuals is m. Then the largest objective value the M is obtained:

M =
m
max
j=1
{ n
max
i=1
{tij}} (2)

where tij is the tth objective value of the jth individual. Then M is divided

into R equal divisions and the length of each is M /R, namely, a = M/R.

We will divide each objective into R equal length with a, and construct a

hyper-plane (f 1, f 2, · · · , f i−1, f i+1, · · · , f n) parallel to the coordinate system

through f i=ka, where k = (1, 2, · · · , R). After M turns, the objective space170

will be divided into R×R× ...×R hyper-grids.

The rotation grid is to rotate the original coordinate system and the grids to-

gether in 45o and make sure that one axis coincides with the vector ~c=(1,1,· · · ,1),

which is called the rotating grids(RGrid).

Figure 2 shows a two-dimensional example of a rotating rigid. The black solid175
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f2' A(4.6,2.6)
(4,2)

B(2.5,-0.7)
(2,-1)

C(5.4,-0.5)
(5,-1)

(4.5,4.4)D
(4,4)

Figure 3: A two-dimensional example for the rotating grid coordinates.

lines represent the grids in the first quartile in a 2-D objective space, and the

red dotted lines present the rotating grids.

Definition 3.2 rotating grid coordinates:

Algorithm 1 presents the framework of rotating grid coordinates. In the n-

dimensional objective space by rotating method, we use the position of the

rotating grid to represent the coordinate of the rotation grid. Given an indi-

vidual ~f=(f 1, f 2, · · · , f n)T , its coordinate in the rotating coordinate system is

~f' = (f'1, f
'
2, · · · , f

'
n)T in step 1. Then its rotation grid coordinate can be defined

as follows:

~π = (π1, π2, · · · , πn) = (bf'1/ac, bf
'
2/ac, · · · , bf

'
n/ac)T (3)

In Figure 3, if a = 1, f'A = (4.6, 2.6), then πA = (b4.6/1c, b2.6/1c) = (4, 2). In

the same way, πB = (2,−1), πC = (5,−1), πB = (4, 4).180

Generally, in the n-dimensional objective space with m individuals, MAX =
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m
max
j=1
{ n
max
i=1
{fij}} and MIX =

m
min
j=1
{

n
min
i=1
{fij}} will be obtained, where fij is the

jth objective value of the ith individual. Then it is to divide ‖MAX −MIN‖

into R equal parts, and the length of each part is ‖MAX −MIN‖/R, namely,185

a = ‖MAX−MIN‖/R in step 2.2. Thus, each coordinate can be divided into R

equal parts, and a hyper-plane will be constructed by parallelling to the coordi-

nate system (f1, f2, · · · , fi−1, fi+1, · · · , fn) using fi = ka, where k = (1, 2, · · · , R).

Therefore, the objective space is divided into R × R × ...× R hypercube grids.

After that, the orthogonal matrix P = (~p1, ~p2, · · · , ~pn) is constructed, where190

~p1, ~p2, · · · , ~pn are pairwise orthogonal, and ~pi represents the ith rotated coor-

dinate with 45o, providing that the first coordinate axis is rotated to coincide

with the unit vector (1, 1, · · · , 1).

In objective space, after the rotation, the individual ~f = (~f1, ~f2, · · · , ~fn)T is

transferred to ~f' = (~f'1,
~f'2, · · · ,

~f'n)T in the rotating coordinate system. Its ro-195

tation grid coordinates are ~π = ( ~π1, ~π2, · · · , ~πn) = (bf'1/ac, bf
'
2/ac, · · · , bf

'
n/ac)T

. Obviously, ~f' = P−1 · ~f , because ~p1, ~p2, · · · , ~pn are pairwise orthogonal, and

~f' = P−1 · ~f = PT · ~f in step 2.3.

Algorithm 1 how to calculate the rotation grid coordinate of an individual.
200

1: Input: The number of objectives: n;

2: Population size: m;

3: Population S = (~s1, ~s2, · · · , ~sm);

4: Convergence direction vector ~c = (1, 1, · · · , 1)T ;

5: Number of grids in each dimension: R.205

6: Output: Rotation grid coordinates of population S: { ~π1, ~π2, · · · , ~πn, }, where

~πi is a n-dimensional vector.

7: The coordinate of population S = {~s1, ~s2, · · · , ~sn} is f = {~f1, ~f2, · · · , ~fm}

after translation to the first quadrant.

8: Step 1) calculate rotating coordinate matrix through orthogonal matrix.210

9: Step 1.1) set a coordinate matrix: ~a1, ~a2, · · · , ~an are all linearly indepen-

dent, and then
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10: A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...

an1 an2 . . . ann

 where one ~ai must be the identity matrix.

11: Step 1.2) Transfer the matrixA into the orthogonal matrix B = {~b1, ~b2, · · · , ~bn}.


~b1 = ~a1

~b2 = ~a2 − [~b1, ~a2]

[~b1, ~b1]
~b1

~bn = ~an − [~b1, ~an]

[~b1, ~b1]
~b1 − [~b2, ~an]

[~b2, ~b2]
~b2 − · · · − [ ~bn−1, ~an]

[ ~bn−1, ~bn−1]
~bn−1

(4)

12: Step 1.3) Unitize matrix B and get rotation coordinate matrix P .

P = (~p1, ~p2, · · · , ~pn) =
1

‖~b1‖
~b1,

1

‖~b2‖
~b2, · · · ,

1

‖ ~bn‖
~bn (5)

Step 2) calculate the rotation grid coordinates of population S { ~π1, ~π1, · · · , ~π1}.

13: Step 2.1) translate the population S={~s1, ~s2, · · · , ~sm} to the first quadrant215

to obtain f = {~f1, ~f2, · · · , ~fm}.

14: Step 2.2) calculate the length of grid a.

15: For(i = 1; i <= m; i+ +)

16: {

17: For(j = 1; j <= n; j + +)220

18: {

19: MAX =
m
max
j=1
{ n
max
i=1
{tij}}

20: MIN =
m
min
j=1
{ n
max
i=1
{tij}}

21: }

22: }225

23: a = (MAX −MIN)/R

24: Step 2.3) calculate the ~π.

25: For(i = 1; i <= m; i+ +)

26: {

27: ~fi = ~pT · ~fi230

28: ~π = b~fi/ac

12



29: }

30: where the rotation grid coordinate of the jth individual in population A is

~πj .

3.2. Rotating grid layer and the rotating grid cluster235

This chapter makes the stratified individual layered again according to the

rotating grid layer.

Definition 3.3 rotating grid layer: In the n-dimension grid coordinates

system, if the first dimensions of two points are the same, then the two points

are defined in the same rotating grid layer. As shown in Fig.3, points A and D240

are in the same rotating grid layer.

Definition 3.4 rotating grid cluster: In the n-dimension grid coordinates

system, if the first dimensions coordinates of two points are not the same, but

the other n− 1 dimensional coordinates are the same, the two points are defined

at the same rotating grid cluster. As shown in Fig.2, points B and C are in the245

same rotating grid cluster.

Algorithm 2 shows how to determine whether two individuals are in the same

rotating grid layer in step 1, the same rotating grid cluster in step 2 or the same

rotation grid in step 3.

Algorithm 2 how to determine two individuals whether are in the same250

rotating grid layer, the same rotating grid cluster or the same rotation grid.

1: Input: Rotating grid coordinates of two individuals ~πi={πi1,πi2,...,πin }

and ~πj={ πj1,πj2,...,πjn};

2: Output: Whether they are in the same rotation grid layer SL(πi,πj), or255

in the same rotation grid cluster SC(πi,πj), or in the same rotation grid

SG(πi,πj).

3: Step 1) judging whether two individuals are in the same rotating network

layer.

4: Function SL(πi,πj)260

5: {

6: If πi1==πj1 then
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7: return 1 //two individuals are in the same rotating network layer.

8: Else return 0

9: }265

10: Step 2) judging whether two individuals are in the same rotation network

cluster.

11: Function SC(πi,πj)

12: {

13: If πi1 6=πj1 then270

14: {

15: S=0;

16: for (k=2;k<=n;k++)

17: {

18: If πik 6=πjk then275

19: {

20: return 0; break;

21: }

22: Else s=1;

23: }280

24: If s==1 then

25: ruturn 1; //two individuals are in the same rotation network

cluster.

26: }

27: Else ruturn 0;285

28: }

29: Step 3) judging whether two individuals are in the same rotating network.

30: Function SG(πi,πj)

31: {

32: S=0;290

33: for (k=1;k<=n;k++)

34: {

35: If πik 6=πjk then

14



36: { return 0; break; }

37: Else s=1;295

38: }

39: If s==1 then return 1; //two individuals are in the same rotating net-

work.

40: }

3.3. The environmental selection in RGridEA300

Algorithm 3 illustrates how to choose the individuals in the critical layer

during environmental selection.

Algorithm 3 how to choose the individuals in the critical layer during

environmental selection.
305

1: Input: Population S = −→s1 ,
−→s2 , · · · ,−→sm;

2: The transferred population f =
−→
f1,
−→
f2, · · · ,

−→
fm; the rotating grid coordinate

of f is: w = −→π1,
−→π2, · · · ,−→πm;

3: Individuals in the archive set G = {−→g1 ,
−→g2 , · · · ,−→gr};

4: The transferred population of G: fg = {
−→
fg1,
−→
fg2, · · · ,

−→
fgr};310

5: The rotating grid coordinate of population G: {−→πg1,
−→πg2, · · · ,−→πgr};

6: The number of individuals which need to be chosen in the archive concen-

tration: K.

7: Output: The chosen individuals:

8: Step 1) Select individuals in the critical layer by means of grid selection.315

9: Step 1.1) Sort all individuals in the critical layer by means of the rotating

grid layer sorting,
−−−→
ssorti is the rotation grid coordinate of the individuals

in the ith layer,
−−−→
ssorti is the corresponding translation of coordinate.

Ssort = {−−−−→ssort1,
−−−−→
ssort2, · · · ,

−−−−→
ssortm} //Sorted by rotating grid layer

10: Step 1.2) select individuals in each layer320

11: For (i = 1; i <= t; i+ +)

12: {

13: if(N + Ni <= K) //Ni represents the number of individuals in the

ith layer.

15



14: {325

15: If (SG(πk, πj)) //For any two individuals in the ith layer if they are

in the same grid.

16: {

17: compare the corresponding fk and fj and select the individual with smaller

value and add it into SE and archive set; Then add other individuals in the330

same grid into the candidate set BX = {
−→
πb1,
−→
πb2, · · · ,

−→
πbs}, then

18: N = N + 1; r = r + 1;

19: }

20: Else

21: {335

22: add other individuals in this layer to the SE and archive set, then

23: N = N + 1; r = r + 1;

24: }

25: }

26: Else(the number of individuals in the ith layer is more than the required340

number of individuals)

27: {

28: While(j <= Ni) //For each individual in ith layer.

29: {

30: for(p = 1; p <= r; p+ +)345

31: //compute the number of individuals in the same rotation grid cluster as

the selected individual in the archive set.

32: {

33: if (SC(πgp, πj))

34: Wj = Wj + 1;350

35: //Wj represents the number of individuals in the same rotating grid clus-

ter as the jth individual in the archive set.

36: }

37: sort(Wj);

38: While(N <= K)355
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39: {

40: Select individuals according to the value of Wj in ascending order;

41: N = N + 1; r = r + 1;

42: }

43: } End While360

44: } End Else

45: } End For

46: Step 2) When the number of individuals selected from the rotation grid

layers still cannot reach the required number of solutions in the archive set,

then select individuals from the candidate set according to the rotary grid365

cluster.

47: While(j <= s)

48: //For each individual in the candidate set

49: {

50: for(p = 1; p <= r; p+ +)370

51: //For each individual selected into the archive set

52: {

53: if (SL(πgp, πbj))

54: Wj = Wj + 1;

55: //Wj represents the number of individuals in the same rotary grid cluster375

with the ith individual in the archive set.

56: }

57: sort(Wj);

58: While(N <= K)

59: { Select individuals according to the value of Wj in ascending order380

into SE and archive set;

60: N = N + 1; r = r + 1;

61: } End While

62: } End While

17



Start

Initialization

t > gmax  ?

Make a new population by evolving

Rt = Pt + Qt

P0: Population Set,
t=0,N=size(P0)

Q0=OffspringSet(P0)

End
Yes

F = FastNondominateSort(Rt )
i=0

Maximum generations:gmax

No

Non-domination levels(F1 ,F2  and so on)

Pt+1=Pt+1+Fi

|Pt+1|+|Fi|<N ?

Yes

No
Pt+1=Pt+1+RGridEA(Fi+1)

Qt+1=OffspringSet(Pt+1)
t=t+1

Figure 4: The flow chart of RGridEA .

4. The framework of RGridEA and time complexity analysis385

4.1. The framework of RGridEA

The basic framework of RGridEA is the same with NSGA-II [44], but the ro-

tation based grid selection is proposed for the individual selection in the critical

layer. Specifically, the population must be randomly initialized. Then for each

generation, matching selection, crossover, and mutation must be done to pro-390

duce a new generation. After the fast non-dominated sorting, for the individuals

in the critical layer, the rotating grid coordinates of the individuals must be cal-

culated according to Algorithm 1; then individuals are selected from the critical

layer according to Algorithm 3. Figure 4 gives the overall flowchart of RGridEA.
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As shown, RGridEA is applied to critical layer during the evolutionary process.395

The framework of the algorithm is shown in Algorithm 4.

Algorithm 4 the framework of RGridEA and time complexity analysis

1: Input: the number of objectives: n, population size: l, maximum genera-

tions: gmax.400

2: Output: population Q = {i1, i2, · · · , il}

3: Randomly initiate population P0 = i1, i2, · · · , il and t→ 0.

4: Q0 = MakeNewPop(P0) //Do the genetical operations including mating

selection, crossover, mutation to produce the new generation, where the

individual selection adopts the binary tournament selection.405

5: While(t ≤ gmax)

6: {

7: Rt = Pt
⋃
Qt;

8: F = FastNondominateSort(Rt);

9: //The challenge competition method [13] is used in the sort.410

10: i = 1;

11: While (| Pt+2 | + | Fi |≤ l)

12: //Put the individuals from the ith layer into the archive set.

13: {

14: Pt+1 = Pt+1

⋃
Fi;415

15: i = i+ 1;

16: }

17: S = Pop(Fi+1);

18: //output the individuals from the critical layer to the archive set S

19: Mt+1 = RGridISEA(S < l− | Pt+1 |, n,R)420

20: //select individuals from the archive set according to Algorithm 1 and

Algorithm 3.

21: Pt+1 = Pt+1

⋃
Mt+1;

22: Qt+1 = MakeNewPop(Pt+1);

23: //Do the operation of crossover, mutation and selection on the individ-425
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uals and generate a new population, where the selection adopts the binary

tournament selection.

24: t = t+ 1

25: }

4.2. Time complexity analysis430

The time complexity of RGridEA mainly comes from three aspects: mating

selection, non-dominated sorting, and individual selection of RGridEA. Pro-

viding that the population size is m, and the number of objectives is n, then

the analysis of the time complexity of these three aspects can be presented as

follows.435

Selection operation: this paper uses binary tournament selection. Two ran-

dom shuffle costs is O(m) since it is to select m individuals from m parent

individuals; The time complexity of selecting one individual by comparing two

parent individuals (comparing the dominance relationship and the convergence

information) is O(n). So the time complexity of the selection operation is440

O(mn).

The non-dominated sorting: literature [13] point out costs of non-dominated

sorting is O(m2n).

Individual selection of RGridEA: it includes two parts. The first one is to

rotate the coordinate and calculate the rotation coordinate and rotating grid445

coordinate of individuals. The worst case of this part is that all individuals are

in the critical layer. Thus, the number of individuals involved in coordinate

conversion is m, and it will conduct m times by matrix multiplication between

the n × n matrix and n × 1 matrix, so the worst time complexity is O(mn2).

Another part is the individual selection. The worst case is that the rotating450

grid layer divides the critical layer into R layers, and all individuals are in the

critical layer. The average number of individuals in each layer is m/R. The

time complexity of step 1.2 in Algorithm 3 is O(R× (m/R)×m×n) = O(m2n);

and the time complexity of step 2 in Algorithm 3 is O(m2n) .

Thus,the worst time complexity of RGridEA is O(m2n+m2n+m2n+ nm).455
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Due to n�m in general, so the worst time complexity is O(m2n).

5. Comparative experiments and analysis

In order to test the performance of RGridEA, proposed algorithm was com-

pared with the other 7 evolutionary algorithms. The mentioned multi-objective

evolutionary methods, genetic algorithm, have the ability of achieving a Pareto460

approximation set of multiobjective optimization problems in this paper. For

completeness, we present a brief description of the 7 evolutionary algorithms.

1) Nondominated Sorting Genetic Algorithm II (NSGA-II). In NSGA-II [44].

a nondominated sorting approach is used to for each individual to create

Pareto rank, and a crowding distance assign method is applied to implement465

density estimation. Currently, the NSGA-II is supposed to be the best known

and most frequently applied EMOA.

2) SPEA2 [50].It is a general modification of the fitness assignment scheme that

could make the SPEA2 better than its predecessor. The main differences of

SPEA2 in comparison to SPEA are a fine-grained fitness assignment strategy,470

a density estimation technique, and an enhanced archive truncation method.

3) ε-MOEA. This approach was proposed in [45], it consists of a steady-state

GA which maintains an archive of nondominated individual. The objective

space is divided into a grid of boxes, whose size can be adjusted by the choice

of ε. Note however, that this algorithm does not use the Pareto dominance475

relation when updating the archive. Instead, it uses the ε-dominance to

update the archive at each generation. It has been found to be a very com-

petitive MOEA. The parameter ε can control the degree of Pareto dominance

relationship when comparing two individuals.

4) AR+CD
′
. AR+CD

′
was proposed in [47]. AR+CD

′
adopts the CD

′
into AR480

to improve the convergence of the algorithm on MaOPs. Numerical studies

have demonstrated the efficiency of the algorithm.

5) AR+DMO. DMO [63] employs a diversity management operator to control

or promote the diversity requirement. If the diversity indicator is smaller
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Table 2: The DTLZ test suite.

Problem Defination Decision space

DTLZ1 fl(
−→x ) =

1+d1(−→xd)
2 s1(−→xp) n = m− 1 + 5

DTLZ2 fl(
−→x ) = (1 + d2(−→xd))s2(−→xp)

n = m− 1 + 10

DTLZ3 fl(
−→x ) = (1 + d1(−→xd))s2(−→xp)

DTLZ4 fl(
−→x ) = (1 + d2(−→xd))s2(t1(−→xp, α))

DTLZ6
d = d3(−→xd)

fl(
−→x ) = (1 + d)s2(t2(−→xp, d, 1))

DTLZ7

d = 2 + 9× d4(−→xd)

n = m− 1 + 20h(
−−→
x, d) = m−

m−1∑
t=1

[
xt
d (1 + sin(3πxt))]

ft(
−→x ) =

xt l = 1, 2 · · · ,m− 1

d× h(−→x , d) l = m

Distance function

d1(−→xd) = 100

(
|−→xd|+

∑
xl∈
−→xd

[(xt − 0.5)2 − cos(20π(Xt − 0.5))]

)
d2(−→xd) =

∑
xl∈
−→xd

(xl − 0.5)2

d3(−→xd) =
∑

xt∈
−→xd

xl
0.1

d4(−→xd) = 1
|−→xd|

∑
xl∈xd

xl

Shape function
s1l(
−→xp) =


m−1∏
∅=1

x∅ l = 1

(1− xm−l+1)
m−1∏
∅=1

x∅ l = 2, 3, · · ·m

s2l(
−→xp) =


m−1∏
∅=1

cos(π2 x∅) l = 1

sin(π2 xm−l+1)
m−1∏
∅=1

cos(π2 x∅) l = 2, 3, · · · ,m

Conversion function
t1(−→xp, α) = xαl

t2(−→xp, d, k) =

xl l = 1, 2, · · · , k
0.5+x∅d

1+d l = k + 1, k + 2, · · · , |−→xp|, k ≥ 1

Decision vector

−→xp = (x1, x2, · · · , xm−1)T

−→xp = (x1, x2, · · · , xm−1)T

−→xd = (xm, xm+1, · · · , xn)T
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than 1 according to test, the diversity promotion mechanism is activated,485

conversely deactivated.

6) HypE [48]. It is a new hypervolume-based evolutionary algorithm for many-

objective optimization, which adopts Monte Carlo simulation to approximate

the exact hypervolume values. In HypE, the nondominated solutions are

compared according to their hypervolume-based fitness values. The exper-490

imental results showed that HypE outperforms in some problems to some

MOEAs.

7) Preference ordering genetic algorithm (POGA) [49]. It uses the prefer-

ence order-based approach as an optimality criterion in the ranking stage

of MOEAs. POGA exerts the higher selection pressure over objective spaces495

of different dimensionality compared with the traditional Pareto dominance-

based ranking scheme.

Additionally, another experiment is conducted to compare the time cost be-

tween NSGA-II and RGridEA. RGridEA and AR+DMO were implemented

by C++. The source code of NSGA-II and ε-MOEA can be found in www.500

iitk.ac.in/kangal/index.shtml. The source code of HypE, AR+CD and

POGA are presented in http://www.tik.ee.ethz.ch/sop/pisa/. AR+DMO

and SPEA2 were adopted in jMetal 3.1. All experiments were conducted on the

Inspur server (NF5280M3), and the computer with INTER XEON E3-1230 v2

CPU, 8G RAM. The OS was CentOS 6.4 x86 64. The compile system of C and505

C++ was GCC 4.4.7 and GCC 4.6.4. respectively, and the JAVA adopts the

OpenJDK 1.7.0. In addition, we applied the Octave 3.6.3 to run the MATLAB

codes.

5.1. The test suite and indicators

In order to compare the performance of the algorithms, the DTLZ test suit510

[51] is chosen as the test problems. Providing that the number of objectives

is m, and the number of decision variables is n, the DTLZ test suite can be

defined as Table 2 shows according to [60], where the decision vector is divided

into two parts (distance vector −→xd, and position vector −→xp).
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In order to compare the performance of the algorithms, we adopted three515

widely-used indicators to evaluate the final obtained solution sets such as the

Generational Distance [53], Inverted Generational Distance [54].

Generational Distance(GD) was used to evaluate the convergence perfor-

mance, and it is defined as follows:

GD =

√ ∑
−→
i ∈P

d−→
i

2

n
(6)

where n is the number of individuals in the obtained solution set, and d−→
i

=520

min−→
j ∈PF∗ |

−→
i −−→j | shows the minimum Euclidean distance of individual

−→
i to

the PF. Thus, the smaller the value of GD, the better the convergence.

Inverted Generational Distance(IGD)evaluates the comprehensive performance

of an algorithm since it can also evaluate the convergence and the distribution

of the obtained solution set, which is defined as follows:525

IGD =

∑
−→
j ∈PF∗

d
′
−→
j

n
(7)

IGD is a reverse mapping of GD. Specifically, d
′
−→
j

= min−→
i ∈P |

−→
j −−→i | shows

the minimum Euclidean distance of an individual to the PF, so the smaller the

value of IGD, the better.

5.2. The settings of experimental parameters

We applied the real code in the experiments. The distribution parameter of530

crossover operator (Simulated binary crossover) was ηc = 20, and the crossover

rate was Pc = 1. Also, the distribution parameter of mutation operator (Polyno-

mial mutation) was ηm = 20 and the mutation rate Pm = 1
n where n is the num-

ber of decision variables. All experiments were conducted with 30 independent

runs on the DTLZ test suite with 3, 4, 5, 6, 8 and 10 objectives. The population535

size was 100. The maximum generations for DTLZ1,DTLZ2,DTLZ4,DTLZ6 and

DTLZ7 was 300, and of DTLZ3 was 1000 (because the DTLZ3 is designed hard

to converge).
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5.3. The experimental statistical results

In order to compare the performance of algorithms, the mean and standard540

deviation of the GD and IGD values was applied in this paper. Furthermore,

multiple comparisons on analysis of variance (ANOVA) and the sample mean

were used, for the reason that an evolutionary algorithm is a kind of stochastic

algorithm which may produce the sampling error caused by limited samples.

Hypothesis H0 and alternative hypothesis H1 are given follows:545

H0 µISEA = µOther

H1 µISEA 6= µOther

(8)

According to the central limit theorem, the final obtained solutions obey

the normal distribution after independent repeated trials, while this paper

uses experiment which are independent repeated experiments. Therefore the

Tamhane’s T2[56] method was chosen to handle the statistical data. The vari-

ance analysis uses the significance with P value, and P = 0.05 in this paper. The550

bigger P value indicates that the original assumption is available with bigger

probability.

The statistical results of the algorithm performance sample are given below

in Table 3 and Table 4. The first and second lines of the table are the sample

mean and standard deviation, and respectively show the best algorithm in the555

corresponding index with dark mark. At the same time,the P value given was

calculated by the Levene method, if the value is less than it. It is worth noting

that the P value is the result of Tamhane’s T2 method.

5.4. IGD Values and their analysis

In this section, we compare the proposed RGridEA with all 7 algorithms.560

Table 3 presents the IGD values obtained by 8 algorithms on the DTLZ test

suite.

Table 3: IGD test results

DTLZ1

objective RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2
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3
Mean 0.028561 0.136277 0.060633 0.019981 0.159646 0.045719 0.03552 0.021524

Std 0.023996 0.034575 0.070813 0.001236 0.170258 0.061777 0.029733 0.001448

4
Mean 0.069613 0.117693 0.091457 0.04669 0.121595 0.084358 0.082788 0.573365

Std 0.025114 0.009775 0.043402 0.000831 0.032629 0.031982 0.046602 0.983423

5
Mean 0.079775 17.67496 10.02853 0.075874 0.170082 5.980304 1.48549 37.51033

Std 0.008694 9.329063 14.35102 0.005329 0.05802 6.057428 1.329665 11.87926

6
Mean 0.131885 94.1526 19.24484 0.086961 0.288835 22.59211 5.047828 92.74009

Std 0.02347 20.40155 19.18083 0.00253 0.201418 30.66529 9.445533 28.99593

8
Mean 0.199832 145.2141 29.88714 0.140228 0.611608 33.19503 6.9883 168.9068

Std 0.036367 13.27861 25.59748 0.057017 0.63875 34.70939 8.050367 33.05956

10
Mean 0.247352 148.0565 41.33891 0.265236 0.724545 46.77505 7.888394 231.4319

Std 0.087187 14.73328 32.24075 0.095664 0.69791 53.81618 9.548837 22.53637

DTLZ2

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.266874 0.31967 0.068084 0.063061 0.136618 0.068415 0.068729 0.054097

Std 0.00776 0.056111 0.002689 0.00113 0.037203 0.002798 0.003411 0.001101

4
Mean 0.193631 0.417326 0.148501 0.134808 0.271268 0.14937 0.149676 0.133904

Std 0.017642 0.04772 0.007576 0.002792 0.069403 0.007996 0.006698 0.006417

5
Mean 0.236568 0.509975 0.324514 0.193873 0.377519 0.341617 0.277904 0.342738

Std 0.04441 0.043164 0.03401 0.014452 0.120056 0.035205 0.023277 0.043852

6
Mean 0.456282 0.346475 0.905958 0.298814 0.478796 1.057213 0.588598 1.289585

Std 0.073984 0.02584 0.130757 0.010768 0.051488 0.171513 0.061792 0.203818

8
Mean 0.546411 1.541229 1.755973 0.411955 0.606467 1.793006 1.044553 2.329808

Std 0.109702 0.116008 0.162437 0.018439 0.072319 0.192869 0.089803 0.043087

10
Mean 0.656709 1.872853 1.959931 0.459939 0.729899 1.975268 1.149311 2.452692

Std 0.085033 0.092566 0.165439 0.017792 0.065009 0.157347 0.08072 0.037093

DTLZ3

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.12843 0.648356 0.066753 0.062297 0.226699 0.066923 0.067037 0.052759

Std 0.008129 0.029778 0.002991 0.002008 0.092496 0.003646 0.002994 0.000947

4
Mean 0.138521 0.783609 16.63191 0.129448 0.46331 14.46677 1.572408 10.95491

Std 0.028352 0.042428 10.02766 0.006541 0.229766 10.56839 1.850401 5.910645

5
Mean 0.234526 92.45527 92.94022 0.230989 0.961029 83.69353 9.993877 201.7944

Std 0.102498 35.51437 48.76644 0.046033 0.824167 60.00005 5.050345 46.55174

6
Mean 0.525172 439.573 154.0831 0.354267 1.616495 112.0992 10.16518 624.8617

Std 0.051103 80.35887 83.65063 0.115132 1.997067 98.95917 4.958986 127.1297

8
Mean 0.744913 955.8956 277.8197 0.281041 2.874511 162.7794 7.963566 1244.775

Std 0.085053 108.6427 142.3164 0.164069 3.205131 95.22757 4.619181 197.4352

10
Mean 0.874502 1167.792 340.5586 0.919162 3.800173 210.3699 4.95662 1601.777

Std 0.062536 124.7224 149.6129 0.065131 4.960813 109.6 3.035206 113.7412

DTLZ4

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.501215 0.501026 0.065458 0.299122 0.561451 0.065573 0.065505 0.181259

Std 0.339054 0.359753 0.002553 0.28968 0.374712 0.00279 0.002664 0.261986

4
Mean 0.4235591 0.439872 0.143648 0.449114 0.545436 0.144268 0.14022 0.247719

Std 0.27139 0.295403 0.007974 0.298494 0.309637 0.008533 0.006991 0.182765

5
Mean 0.306022 0.464845 0.948132 0.563729 0.6163 0.937738 0.381403 0.480924

Std 0.224765 0.324729 0.134746 0.337503 0.256051 0.145107 0.087956 0.112237

6
Mean 0.471886 0.480859 1.859712 0.616535 0.698521 1.888705 0.927523 1.303985

Std 0.048473 0.070907 0.104961 0.192454 0.10358 0.086146 0.148874 0.18296

8
Mean 0.611476 1.945896 2.260167 0.76917 0.909404 2.252227 1.080573 2.333698

Std 0.033233 0.081767 0.069026 0.153821 0.069214 0.059757 0.238366 0.041921

10
Mean 0.673568 2.154221 2.3982 0.815702 1.04744 2.404948 0.857476 2.433122

Std 0.022879 0.057134 0.0519 0.136822 0.075767 0.054379 0.253267 0.04483

DTLZ5

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.017083 0.305364 0.005418 0.007006 0.026538 0.005493 0.005577 0.00427

Std 0.000003 0.032535 0.000325 0.000321 0.010683 0.000349 0.000379 0.000339
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4
Mean 0.065259 0.176109 0.045718 0.047931 0.120164 0.049265 0.051853 0.12173

Std 0.000253 0.078117 0.007958 0.004642 0.050161 0.009717 0.009498 0.024092

5
Mean 0.05385 0.084114 0.097881 0.094312 0.139484 0.099434 0.738656 0.348947

Std 0.00012 0.05759 0.024854 0.012725 0.061614 0.029989 0.052058 0.09314

6
Mean 0.065109 0.154423 0.153414 0.247657 0.148626 0.169318 0.747462 1.0417

Std 0.000128 0.260939 0.050725 0.001675 0.061322 0.070015 0.002388 0.221492

8
Mean 0.088096 1.239604 0.536217 0.27205 0.171581 0.681896 0.747986 2.013876

Std 0.000257 0.656465 0.436929 0.003696 0.070986 0.467365 0.002348 0.552711

10
0.673568 0.20524 2.013417 1.316349 0.2781 0.158126 1.47854 1.406243 2.075518

Std 0.00065 0.330493 0.495115 0.002077 0.050372 0.448959 0.877847 0.589816

DTLZ6

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.212404 0.443041 0.067521 0.074357 0.198109 0.066307 0.085423 0.05691

Std 0.000368 0.037243 0.027026 0.026102 0.055989 0.021351 0.104091 0.023367

4
Mean 0.150125 1.817027 3.18071 0.462374 4.062924 3.247756 2.177313 1.936187

Std 0.000877 0.409872 0.348075 0.034892 0.663313 0.370642 0.268199 0.157603

5
Mean 1.139011 4.90684 6.199361 1.664344 5.559299 6.595872 1.811516 9.074081

Std 0.053717 0.235547 0.516051 0.173907 0.641651 0.517941 0.466277 0.214398

6
Mean 1.514755 6.115559 7.79062 2.455103 5.873688 7.920667 2.283867 9.86346

Std 0.105779 0.255439 0.406192 7.059253 0.682043 0.424299 0.724811 0.049215

8
Mean 1.097396 7.819625 8.783086 2.021616 6.139422 8.839023 5.524955 9.984556

Std 0.02754 0.307759 0.486317 5.99442 0.572013 0.382728 3.926093 0.021291

10
Mean 1.705394 8.726099 9.220922 2.962116 6.253106 9.247631 8.920017 10.02354

Std 0.093294 0.239605 0.410501 8.534891 0.579737 0.393165 0.166094 0.025091

DTLZ7

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.061654 0.417182 0.092618 0.075752 0.209989 0.076936 0.076942 0.084658

Std 0.000001 0.319255 0.085512 0.081425 0.112611 0.004712 0.003661 0.077641

4
Mean 0.233596 0.780904 0.234705 0.335609 0.485283 0.217204 0.215036 0.194494

Std 0.004616 0.355797 0.055939 0.184456 0.177111 0.009399 0.009806 0.053076

5
Mean 0.474869 1.67758 0.456191 0.587288 0.871072 0.440482 0.406589 0.41971

Std 0.00893 0.342107 0.024718 0.242301 0.204519 0.026684 0.018096 0.050711

6
Mean 0.617735 2.814414 0.763256 0.752538 0.943261 0.725357 0.666424 0.788131

Std 0.015139 0.521839 0.041993 0.042622 0.130556 0.033909 0.029422 0.061987

8
Mean 1.04787 8.731296 2.415582 1.590351 1.052776 1.697227 2.356592 2.250059

Std 0.009583 0.862194 0.659491 0.221246 0.07353 0.453913 0.51562 0.728682

10
Mean 1.922929 18.63377 8.4124 7.771367 1.230667 5.692742 4.331883 4.671672

Std 0.342148 1.92115 2.322535 15.889629 0.087323 1.746011 0.852336 1.559201

It can be seen from Table 3 that IGD values of RGridEA are better than the

other algorithms in most test instances, especially on DTLZ4, DTLZ5, DTLZ6

and DTLZ7 problems as well as on 8-dimensional DTLZ3. Therefor, RGridEA565

has the best performance than all others in solving many-objective problems.

Furthermore, in bias problem DTLZ4, RGridEA performs much better than

other algorithms. Among all 7 test instances, it wins 4 competitions. Finally, in

degenerate problems,(e.g , DTLZ5, DTLZ7) and disconnected problems (e.g.,

DTLZ6), RGridEA wins 15 out of 18 instances. Relatively speaking, RGridEA570

does not show such outstanding performance on DTLZ1-3 problems. From

Table 3 we can see that the RGridEA does not perform better than ε-MOEA

27



on DTLZ2, but the parameter setting for ε-MOEA is a big difficulty. RGridEA

outperforms ε-MOEA in other test problems. For DTLZ3 problems, RGridEA

shows an interesting search behavior, it remains competitive on 6-, 8- and 10-575

objective instances, but performs worst on 3-, 4- and 5-objective instances.

ε-MOEA is very competitive on DTLZ1, DTLZ2 and DTLZ3 instances. How-

ever, it does not show advantage over the other algorithms on the other prob-

lems. SPEA2 performs well on DTLZ2 problem instance. AR+CD
′
, NSGA2

and AR+DMO are not competitive on DTLZ instances, which is reflected in580

Table 3. HypE generally has the medium-high performance on most of problems

among the compared algorithms. It is worth noting, for DTLZ1 and DTLZ7

problems, HypE performs best on 3- and 10-objective instances.

5.5. GD value and its analysis

Table 4 shows the GD values from algorithms on different test instances. It585

can be seen from Table 4 that the convergence of RGridEA is superior than the

others in most test instances, especially on DTLZ1, DTLZ3,DTLZ4, DTLZ5,

DTLZ6 and DTLZ7. However the convergence of RGridEA is not better than

ε-MOEA from Table 4.

Table 4: GD test results

DTLZ1

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.030854 0.00059 0.067513 0.000383 0.190403 0.033901 0.041237 0.078273

Std 0.344712 0.002906 0.232025 0.000225 0.285561 0.097641 0.127367 0.159874

4
Mean 0.001276 0.000333 0.425695 0.000045 0.185012 0.539174 0.359071 1.750147

Std 0.002543 0.000782 0.568917 0.000045 0.325465 0.953105 0.72236 1.454311

5
Mean 0.000065 4.20213 10.82189 0.000107 0.242483 12.4375 8.503816 12.07769

Std 0.000090 1.3166 1.298344 0.000075 0.448208 1.099128 2.28895 1.116022

6
Mean 0.000271 12.88878 15.21538 0.000174 0.220776 16.24124 12.34922 18.20003

Std 0.000374 1.199853 0.810218 0.000122 0.534051 0.753615 2.569634 0.644595

8
Mean 0.000291 15.75474 16.27444 0.000372 0.259593 16.83331 14.52076 18.46974

Std 0.000096 0.428023 0.493381 0.000705 0.562437 0.364554 2.081399 0.204585

10
Mean 0.049369 15.00267 15.31595 0.00112 0.20704 15.63227 13.25829 17.06005

Std 0.156281 0.349063 0.367733 0.002984 0.408467 0.243538 3.667486 0.116552

DTLZ2

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.000253 0.000922 0.001199 0.000739 0.000433 0.001213 0.001126 0.001108

Std 0.000259 0.000155 0.000223 0.0000603 0.000209 0.000278 0.000214 0.000277

4
Mean 0.000858 0.002649 0.005239 0.002097 0.001093 0.005087 0.004827 0.005079

Std 0.000145 0.000334 0.002023 0.000152 0.001105 0.002042 0.001958 0.002032

5
Mean 0.001280 0.005171 0.048727 0.004249 0.003634 0.055324 0.033539 0.051932

Std 0.000871 0.000852 0.010025 0.00077 0.003114 0.010409 0.007955 0.009203
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6
Mean 0.045080 0.018537 0.139435 0.005306 0.006671 0.155373 0.094484 0.19547

Std 0.018512 0.005186 0.011659 0.000564 0.00371 0.012325 0.014103 0.00867

8
Mean 0.014615 0.165888 0.209846 0.006583 0.013679 0.214143 0.15554 0.229102

Std 0.037376 0.011154 0.005981 0.000936 0.004434 0.005376 0.011185 0.003109

10
Mean 0.019431 0.192701 0.22182 0.005523 0.016008 0.223654 0.167559 0.233946

Std 0.011771 0.007221 0.004246 0.000658 0.005195 0.003601 0.012938 0.002886

DTLZ3

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.000559 0.000131 0.066048 0.000763 1.361116 0.039381 0.126899 0.070506

Std 0.001439 0.000148 0.240774 0.00029 1.121367 0.182463 0.420816 0.251423

4
Mean 0.002108 0.000368 15.30629 0.003144 2.342108 16.31539 6.494867 20.98231

Std 0.011045 0.000268 7.344312 0.000885 1.543308 8.907722 4.449479 5.48934

5
Mean 0.004746 30.1842 75.9899 0.00739 2.84328 81.47112 56.33622 81.4967

Std 0.004290 6.904862 7.931629 0.00488 2.10862 7.259454 7.566403 7.438709

6
Mean 0.003261 85.97242 113.6477 0.01117 2.348787 117.4415 86.42885 154.2659

Std 0.002037 6.684272 7.564625 0.008345 1.723368 8.546709 11.29582 7.292337

8
Mean 0.189075 141.5063 154.9687 0.002462 2.505086 160.1957 123.0878 196.226

Std 0.438505 6.481064 7.565673 0.003838 1.889052 7.095127 15.29846 3.056798

10
Mean 0.003525 164.1845 174.352 0.000129 1.931424 179.6997 141.6373 203.5969

Std 0.003110 5.1712 5.818044 0.000488 1.628887 5.254885 16.50758 2.468717

DTLZ4

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.004183 0.001054 0.001116 0.00085 0.000772 0.001136 0.001057 0.000926

Std 0.003453 0.002198 0.000201 0.000306 0.002149 0.000206 0.000289 0.000537

4
Mean 0.013804 0.001914 0.005406 0.002396 0.001403 0.006254 0.00429 0.007046

Std 0.004698 0.001039 0.002917 0.000729 0.002135 0.003415 0.001999 0.004534

5
Mean 0.002176 0.005486 0.136959 0.005012 0.002372 0.138232 0.056784 0.081445

Std 0.001906 0.002732 0.012362 0.001834 0.002798 0.013311 0.015594 0.031806

6
Mean 0.002905 0.042832 0.205886 0.008224 0.005802 0.207122 0.133861 0.193519

Std 0.001974 0.012217 0.005864 0.003432 0.006051 0.004882 0.017106 0.01228

8
Mean 0.003614 0.202547 0.229406 0.015422 0.033844 0.229339 0.154709 0.228639

Std 0.001023 0.006159 0.003439 0.010278 0.015024 0.003142 0.051504 0.002981

10
Mean 0.009610 0.215772 0.235464 0.015052 0.065244 0.23567 0.06412 0.231757

Std 0.002975 0.003852 0.002811 0.010897 0.008801 0.002736 0.067834 0.003274

DTLZ5

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.000763 0.00004 0.000179 0.000061 0.00012 0.00018 0.000186 0.000181

Std 0.000001 0.00002 0.00008 0.000007 0.000057 0.000048 0.000052 0.000084

4
Mean 0.005841 0.000917 0.10273 0.051263 0.018704 0.113235 0.111263 0.133341

Std 0.000021 0.001617 0.008053 0.00364 0.005793 0.007096 0.005873 0.004463

5
Mean 0.021565 0.009267 0.145011 0.052457 0.030852 0.149483 0.10895 0.153507

Std 0.000085 0.007563 0.005088 0.003056 0.006616 0.005115 0.012744 0.004446

6
Mean 0.018888 0.052371 0.167373 0.058544 0.036697 0.17358 0.108655 0.199055

Std 0.000026 0.022146 0.005799 0.003821 0.006763 0.005549 0.016567 0.007036

8
Mean 0.018869 0.152377 0.202504 0.05497 0.043513 0.210284 0.118365 0.235357

Std 0.000025 0.043918 0.010433 0.003893 0.007991 0.009325 0.005622 0.003549

10
Mean 0.022983 0.202966 0.225852 0.0598 0.046156 0.230392 0.211908 0.239001

Std 0.000019 0.01982 0.007958 0.005899 0.007116 0.006212 0.026824 0.002641

DTLZ6

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.035041 0.00708 0.007266 0.006738 0.010529 0.007656 0.008519 0.009306

Std 0.000246 0.002651 0.00245 0.001817 0.010278 0.002835 0.003879 0.005824

4
Mean 0.047863 0.250693 0.586745 0.116747 0.53661 0.596643 0.54047 0.392198

Std 0.000013 0.038615 0.032237 0.012994 0.049948 0.033058 0.032756 0.018429

5
Mean 0.152053 0.55521 0.849487 0.149331 0.665707 0.876296 0.490861 0.936825

Std 0.000662 0.021162 0.025509 0.006949 0.050654 0.023267 0.051736 0.012547

6
Mean 0.208499 0.667045 0.942097 0.255084 0.700554 0.95011 0.505441 0.985175

Std 0.000989 0.023026 0.013748 0.019101 0.053282 0.012643 0.064176 0.003258
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8
Mean 0.143077 0.825261 0.980546 0.295246 0.726071 0.980224 0.789494 0.992084

Std 0.000201 0.022617 0.007871 0.189665 0.047154 0.007953 0.197722 0.001455

10
Mean 0.230326 0.897908 0.989435 0.279693 0.739013 0.989548 0.930619 0.993127

Std 0.001612 0.018887 0.004975 0.245624 0.045049 0.004777 0.014717 0.001236

DTLZ7

RGridEA AR+CD’ AR+DMO ε-MOEA HypE NSGA2 POGA SPEA2

3
Mean 0.001531 0.001669 0.003615 0.000695 0.027896 0.00348 0.0036 0.003663

Std 0.000001 0.000741 0.001124 0.0000443 0.046424 0.000908 0.000976 0.001306

4
Mean 0.046261 0.005303 0.01444 0.002246 0.311993 0.014399 0.01348 0.01162

Std 0.000553 0.001192 0.003307 0.000525 0.244159 0.002898 0.00243 0.002915

5
Mean 0.011798 0.014157 0.063083 0.003575 0.907918 0.062591 0.032238 0.152918

Std 0.000010 0.003925 0.024677 0.001718 0.194478 0 .023447 0.012821 0.042896

6
Mean 0.080284 0.050964 0.222384 0.004428 1.344934 0.215552 0.056611 0.520783

Std 0.010190 0.020149 0.05441 0.001672 0.135003 0.055761 0.016864 0.108406

8
Mean 0.037093 0.642556 1.207679 0.012123 1.662746 1.124849 0.083018 2.170381

Std 0.000021 0.105221 0.185632 0.00737 0.205173 0.194847 0.015639 0.243441

10
Mean 0.045678 1.831763 2.756529 0.018053 1.826922 2.493053 0.14593 3.630855

Std 0.000098 0.23219 0.315025 0.014618 0.222988 0.257691 0.034992 0.28017

For DTLZ1, DTLZ2 and DTLZ3 problems, ε-MOEA performs better than590

RGridEA, but in 5- and 8-objective problems, RGridEA performs better. AR+CD
′
,

AR+DMO, SPEA2 and NSGA2 consistently does not perform well in all higher

dimensions of the problem. This is mainly due to its ineffectiveness of selec-

tion pressure in both mating selection and environmental selection in a high-

dimensional space. POGA cannot obtain very satisfying results on DTLZ test595

suit. HypE has the medium-high performance on the most of the considered

problems among the compared algorithm.

For bias DTLZ4 problem, the difference in the performances between RGridEA

and ε-MOEA is clear from Table 4. RGridEA outperformed better than ε-

MOEA on 6-, 8- and 10-objectives in terms of GD metric. HypE is very com-600

petitive on 3- and 4-objectives instances, which is reflected in Table 4. However,

it does not show advantage over the other algorithms on problems having more

than three objectives.

Similar observation is made for the DTLZ5, DTLZ6 and DTLZ7 problem.

The proposed RGridEA works well on all the considered instances except for605

4-objective DTLZ7 instances. Indeed, RGridEA is significantly outperformed

by other seven algorithms on 17 out of 18 scaled problem instances, verifying

the effectiveness of the Rotated Grid mechanism.
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(a) RGridEA (b) ε-MOEA (c) HypE

(d) NSGA2 (e) POGA (f) SPEA2

(g) AR+CD (h) AR+DMO

Figure 5: Parallel coordinate plots on DTLZ3 with 8 objectives.

5.6. Experimental results of the parallel coordinates

In order to give a more intuitive description of the performance, the parallel610

coordinate system is designed to show the convergence and distribution of the

obtained solutions in high dimensional space. Each line in parallel coordinate

represents a point or an individual in high-dimensional objective space. The

x-coordinate shows the sequence of objectives, and the y-coordinate shows the

value of each objective. If all objective values of the obtained solutions are615

between [0, 1], then the convergence of the algorithm is good. If the lines can be

evenly distributed in the space of [0, 1], the distribution of the algorithm would

be better.
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(a) RGridEA (b) ε-MOEA (c) HypE

(d) NSGA2 (e) POGA (f) SPEA2

(g) AR+CD (h) AR+DMO

Figure 6: Parallel coordinate plots on DTLZ4 with 8 objectives.

Figure 5 shows the parallel coordinate plots of 8 algorithms in DTLZ3 with 8

objectives. DTLZ3 is a test instance designed to be difficult to converge. From620

the convergence perspective, only RGridEA and ε-MOEA can converge to the

PF. The solutions of RGridEA are distributed poorly on the first objective,

namely f1, but evenly on the other objectives. Overall, RGridEA and ε-MOEA

both perform well.

Figure 6 shows the parallel coordinate plots of 8 algorithms in DTLZ4 with 8625

objectives. Both RGridEA and ε-MOEA have better convergence than the other

algorithms. The solutions of RGridEA have completely converged in the POF.

The distribution of RGridEA is also good in comparison with other algorithms.
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Thus, RGridEA has competitive convergence and distribution on DTLZ4.

6. Conclusion630

This paper has proposed a novel many-objective evolutionary algorithm based

on rotating grids, which are denoted by RGridEA. The algorithm has three ad-

vantages. First, it uses rotating grids to partition the objective space, which can

enhance the distribution. Second, it rotates the coordinate and grids to separate

the convergence information and distribution information, thereby, avoiding the635

interaction effect between the convergence and diversity in the original coordi-

nate system. Third, it redefines the stratification mechanism which prevents

the elimination of the boundary points in the optimization when relaxing the

Pareto dominance relationship.

To demonstrate the strong competitiveness, we have made an extensive exper-640

imental comparison of RGridEA with seven algorithms. A number of well-know

benchmark problems are chosen to challenge different abilities of the algorithms.

In comparison with the other 7 algorithms, it can be concluded that the pro-

posed RGridEA can generally maintain a good balance between convergence

and diversity on most problems instances considered in this paper. In the fu-645

ture research, this advanced mechanism of rotated grid will be further extended

in solving constrained and dynamic many-objective optimization problems.
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