
1	
	

Instantaneous fai lure  mode remaining useful  l i fe  est imation using non-
uniformly sampled measurements  from a reciprocating compressor  valve  fai lure  
	

Panagiotis  Loukopoulos  a,  George Zolkiewski  b,  Ian Bennett  b,  Suresh Sampath a,  
Pericles  Pil idis  a,  X .  Li c,  and David Mba c 

a School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, United Kingdom 
Email addresses: loukopoulospn@gmail.com, s.sampath@cranfield.ac.uk, p.pilidis@cranfield.ac.uk 
b Shell Global Solutions, Royal Dutch Shell, Rijswijk, Netherlands 
Email addresses: george.zolkiewski@hotmail.com, Ian.Bennett@shell.com 
c Faculty of Technology, De Montfort University, Leicester, United Kingdom 
Email address: david.mba@dmu.ac.uk, xiaochuan.li@dmu.ac.uk	

	

Abstract  
One of the major targets in industry is minimisation of downtime and cost, and maximisation of 
availability and safety, with maintenance considered a key aspect in achieving this objective. The 
concept of Condition Based Maintenance and Prognostics and Health Management (CBM/PHM) 
, which is founded on the principles of diagnostics, and prognostics, is a step towards this 
direction as it offers a proactive means for scheduling maintenance. Reciprocating compressors 
are vital components in oil and gas industry, though their maintenance cost is known to be 
relatively high. Compressor valves are the weakest part, being the most frequent failing 
component, accounting for almost half maintenance cost. To date, there has been limited 
information on estimating Remaining Useful Life (RUL) of reciprocating compressor in the open 
literature. This paper compares the prognostic performance of several methods (multiple linear 
regression, polynomial regression, Self-Organising Map (SOM), K-Nearest Neighbours 
Regression (KNNR)), in relation to their accuracy and precision, using actual valve failure data 
captured from an operating industrial compressor. The SOM technique is employed for the first 
time as a standalone tool for RUL estimation. Furthermore, two variations on estimating RUL 
based on SOM and KNNR respectively are proposed. Finally, an ensemble method by combining 
the output of all aforementioned algorithms is proposed and tested. Principal components 
analysis and statistical process control were implemented to create 𝑇! and 𝑄 metrics, which were 
proposed to be used as health indicators reflecting degradation processes and were employed for 
direct RUL estimation for the first time. It was shown that even when RUL is relatively short 
due to instantaneous nature of failure mode, it is feasible to perform good RUL estimates using 
the proposed techniques. 

Key words: reciprocating compressor, valve, prognostics, remaining useful life, multiple linear 
regression, polynomial regression, self-organising map, K-nearest neighbours, instantaneous 
failure, principal components analysis, statistical process control. 

 

1 .  Introduction 
Reciprocating compressors are of the most essential components in oil and gas industry, 

being a key element in refining sector as one of most commonly used type of equipment, requiring 
high reliability and availability [1], [2]. They are widely used, being powerful, flexible, efficient 
and dependable in many compression applications. Despite their popularity, their maintenance 
cost can be several times higher than that of other compressor types [3], since the number of 
moving parts is greater [4], thus they are expected to experience more failures. Bloch and Heinz 
[1] note that valves are the most common failing part (36%), making them the weakest 
component, accounting for half the maintenance cost [4]. 
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Valves are an essential part of the reciprocating compressor as they have a significant 
impact on its performance from both efficiency and reliability perspectives [2]. Their smooth 
operation is integral since they regulate the gas flow for compression. Valves suffer numerous 
hardships during their operation as they may come in contact with liquids, foreign particles or 
debris, corrosive gases or materials depending on application [2]. Furthermore, pulsations, 
tension, compression and impact created either by the compressor or the valve motion itself can 
affect proper valve function [2].  

In order to decrease downtime and cost, while increasing availability and safety, 
efficient maintenance is essential [1], [2] since reciprocating failures can cause from production 
loss to human casualties [3], [5]. Condition Based Maintenance (CBM) [6]–[10] is a method 
founded on the diagnostics principle and has been increasingly popular over the years, 
advocating that maintenance should be made only when actually needed depending on unit’s 
health state; it is an effective tool that moves towards this direction [1], with diagnostics being an 
established area for valve failures [3], [11]–[15]. The equipment of interest is mounted with 
sensors collecting Condition Monitoring (CM) measurements which are analysed for diagnostics 
purposes – determine whether healthy or a faulty, and in case of fault identify failure mode – 
and suggest actions to be taken accordingly.  

An extension of CBM is Prognostics and Health Management (PHM) [6]–[9], [16]–[19] 
which has been gaining traction during recent years and is founded on prognostics principle [6]–
[10], [16]–[20]. It predicts the time to failure, known as Remaining Useful Life (RUL), after a 
fault has occurred, enabling the user to schedule maintenance in advance. PHM’s proactive 
nature can assist optimising maintenance by avoiding any unnecessary action. Since PHM can 
be employed after a fault has been detected, diagnostics is required and thus its coupling with 
CBM would be unavoidable, leading to CBM/PHM [6]. To the authors’ knowledge, there is 
limited information about prognostics on reciprocating compressors in open literature. 
Consequently, the purpose of this project is comparison of several prognostics methods in order to 
identify most suitable ones based on accuracy and variability.  

Prognostics techniques can be divided into two groups [6], [7], [9], [16]–[21]: 

i. Data-driven. They model the degradation process using historical information, and are 
suitable when there is limited physical understanding of system under study. They 
struggle in cases for which they have not been trained like novel events, while their 
accuracy depends on amount and quality of available data. 

ii. Physics based. They create a mathematical representation of system’s or failure’s 
physical aspect. They are computationally expensive and tend to be application specific 
though they can outperform data-driven. 

Similarly, there are two ways for calculating RUL [7], [21], [22]: 

i. Direct estimation. Relationship between information and RUL is modelled. It requires 
knowledge of historical and current information, with data being the input and RUL 
being the output. It is useful in cases lacking failure threshold. 

ii. Indirect estimation. Relationship between information and a Health Indicator (HI), 
reflecting machine’s health status, is modelled. In some cases HI can be modelled as 
function of time. HI is extrapolated until a failure threshold is reached. RUL is estimated 
as difference between current and failure time. It requires knowledge of historical, 
current, and future information. 

This project focused on data-driven prognostics and direct RUL estimation due to availability of 
CM measurements accompanied by historical failures. The techniques employed were: 
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i. Multiple Linear Regression (MLR) and Polynomial Regression (PR) which belong to 
trend extrapolation, one of the simplest methods and most commonly used one in 
industry  [17], [23]–[25] 

ii. Self-Organising Map (SOM) which belongs to Neural Networks (NN) family, one of the 
most favoured methods in academia [17]. To the authors’ knowledge, SOM has yet to be 
applied for prognostics as a standalone technique. Also, a RUL estimation variation 
based on SOM was proposed. 

iii. K-Nearest Neighbours Regression (KNNR) which belongs to similarity-based 
prognostics, an emerging trend with great potential [26], [27]. Moreover, a RUL 
estimation variation based on KNNR was proposed. 

iv. An ensemble method averaging each of the aforementioned algorithms’ output was 
proposed. 

These methods were applied to non-uniformly sampled historical valve failure data from 
an industrial reciprocating compressor, retrieved from a server rather than raw sensor 
measurements commonly used. Use of actual information addressed a major prognostics 
challenge: limited works utilising real-life data [7], [16]–[21], demonstrating PHM’s applicability 
and benefits in industry, and its implementation to failure modes that are instantaneous in 
contrast to slowly time varying ones usually examined.  

Principal Components Analysis (PCA) and Statistical Process Control (SPC) were 
employed to create Hotelling 𝑇! and 𝑄 residuals metrics which, to the authors’ knowledge, are 
used for the first time to reflect degradation process of compressor and employed for RUL 
estimation. PCA/SPC has found limited application in reciprocating compressors as diagnostics 
tool. Ahmed et al. [28] used experimental raw sensor data, extracted features, fused them with 
PCA and performed detection of various faults via SPC. They further enhanced their 
methodology in [29] by extracting more features and utilising contribution plot of Q metric to 
identify features associated with faults that can assist identification. Prognostics algorithms were 
benchmarked while utilising these metrics. 

The rest of the paper is organised as follows.  Section 2 reviews literature of prognostics 
methods employed. Section 3 analyses HI creation process and overviews prognostics methods. 
Section 4 describes data acquisition procedure and evaluation metrics used. Section 5 presents 
results followed by a discussion. Section 6 contains concluding remarks. 

2 .  Prognostics  methods l i terature review 
Trend extrapolation is one of the most preferred prognostics method in industry, being 

the simplest one, though there are limited published works in literature [17]. Zhao et al. [30] used 
S-transform, Gaussian pyramid, local binary pattern, PCA and linear discriminant analysis for 
pre-processing along with MLR for RUL estimation for bearings. Li and Nilkitsaranont [31] 
employed MLR for prognostics of gas turbine engine during early degradation stage while 
quadratic regression was used when degradation deteriorated. Alamaniotis et al. [32] applied 
fuzzy sets and MLR for prognostics of power plant turbine blade. Proposed methodology was 
superior to simple MLR. MLR has also been used extensively as a benchmarking tool, along with 
PR. In such works, MLR/PR were used either to compare performance of proposed methodology, 
usually found inferior [33]–[35], or to compare performance of several algorithms [36], [37]. 
These works used either experimental [30], [33], [34], [36], [37]or simulated [31], [35] or actual 
[32] raw sensor data. 

SOM has yet to be applied for RUL estimation, though it has been used for data fusion 
creating a HI, namely the Mean Quantisation Error (MQE), for prognostics purposes [38]–[42], 
where all works used experimental raw sensor measurements. 



4	
	

Inspiration of implementing SOM for direct RUL estimation was taken by its missing 
data imputation capabilities and similarity based prognostics. Arima et al. [43] trained several 
SOMs with missing values being imputed as average of their corresponding weights from their 
best matching units in each map. Fessant and Midenet [44] used SOM to detect outliers as well as 
to impute missing data in a real transport survey with artificially inserted missing values. 
Rustum and Adeloye [45] compared imputation performance of SOM, MLR, and 
backpropagation NN on water treatment time series, with SOM being superior. Folguera et al. 
[46] applied SOM to impute artificially inserted missing values in water sample dataset.  

In similarity based prognostics, a reference data base is created with historical failures 
which are compared with an ongoing case via distance analysis. Wang et al. [22], used MLR for 
fusion, curve fitting for smoothing, and segmented failure trajectories. RUL was estimated based 
on similar reference RULs by measuring distance of ongoing failure trajectory section with 
historical ones. Zio and Maio [24] segmented and normalised failure signals. During normal 
operation, RUL was estimated as Mean Time to Failure (MTTF). After fault detection, RUL was 
calculated as weighted sum of historical RULs based on fuzzy similarity of current segment and 
reference ones. They further enhanced their methodology in [47] where RUL was calculated 
continuously and new estimate was compared with previous ones under assumption of 
stationarity. In case of no significant change healthy state was considered and RUL was replaced 
by MTTF. Maio and Zio [25] compared Zio and Maio’s technique [24] with Monte Carlo based 
particle filter where it was shown computationally cheaper. Mosallam et al. [23] implemented 
symmetrical uncertainty method, PCA and EMD for pre-processing and segmented failure 
signals. RUL was estimated as most similar historical RUL based on K-nearest neighbour 
analysis of ongoing segment and reference ones, with discrete Bayesian filter used for 
uncertainty quantification. They also applied the same methodology in [48], and further 
enhanced it in [49] by adding GPR in RUL estimation process. Zhang et al. [50] used phase space 
reconstruction trajectory for pre-processing and segmented failure trajectories. RUL was 
estimated using weighted average of most similar historical RULs, based on distance analysis of 
ongoing segment and reference ones. Wang et al. [51] applied MLR for fusion, RVM for offline 
sparse training, estimated RUL as weighted average of historical RULs based on similarity 
analysis of ongoing trajectory with reference ones, and quantified uncertainty with uncertainty 
propagation map. Khelif et al. [52] used MLR for fusion and curve fitting for smoothing. RUL 
was estimated as weighted sum of most similar historical RULs based on distance analysis of 
current trajectory and reference ones, with most similar cases being favoured and dissimilar ones 
being penalised. Li et al. [27] used wavelet packet analysis for pre-processing and applied Zio and 
Maio’s methodology [24] where they compared two membership functions which displayed 
similar performance. You and Meng [26] segmented historical failures. RUL of current segment 
was estimated based on weighted RUL of similar historical ones. During similarity analysis, 
more recent measurements within segment had greater importance. Xue et al. [53] estimated RUL 
by applying local regression on most similar historical RULs based on fuzzy instance modelling 
of ongoing failure and reference ones, optimised using evolutionary analysis. Lam et al. [54] 
applied empirical signal to noise ratio method for pre-processing, PCA for fusion, and kernel 
regression for smoothing. Similarity of ongoing failure with historical ones was computed using 
various metrics, while RUL was estimated in several ways according to similarity results. Point 
estimated RUL via Pearson correlation similarity metric outperformed the rest. These works used 
either experimental [23], [25]–[27], [50], [51], [53] or simulated [22], [24], [47]–[52], [54] raw 
sensor data. Similarity based prognostics has been implemented on turbofan engines [22], [48], 
[49], [51]–[54], fission reactor [24], [47], crack propagation [25], lithium-ion batteries [23], [48], 
bearings [50], contact resistances of electromagnetic relays [27], and ball grid array solder joints 
of printed circuit boards [26]. 

Despite its simplicity, KNNR has found limited applications regarding prognostics. 
Rezgui et al. [55] combined support vector regression with KNNR for diagnostics and prognostics 



5	
	

of reverse polarity fault. Hu et al. [56] extracted features and used KNNR, optimised by particle 
swarm optimisation and k-fold cross validation, for RUL estimation of lithium-ion battery. Zhao 
et al. [57] extracted features, and used KNNR with Dempster-Shafer belief theory for RUL 
estimation local oscillator from an analogue circuit of a high frequency receiver. The method 
outperformed NN, fuzzy NN, and particle filtering. These works used either experimental [56] or 
simulated [55], [57] data. On the other hand, KNNR has found popularity in other fields like 
forestry [58]–[60]  or traffic forecasting [61]–[63]. 

3 .  Prognostics  methods overview 
3 .1  Health indicator  creation 

In data-driven prognostics, data quality is of paramount importance, affecting RUL 
estimation accuracy [6], [9]. Hence, it is essential data used reflect degradation process 
adequately. This can be achieved via HIs that can be either features extracted from signals 
(mean, skewness, kurtosis, etc.), or one-dimensional metrics created by data fusion requiring all 
useful information be considered [6], [9]. In this work, PCA with SPC were implemented to 
construct Hotelling 𝑇! and 𝑄 residuals metrics describing compressor’s valve degradation, used 
for the first time as HIs and RUL estimation inputs. 

3 .1 .1  Principal  Components  Analysis  (PCA) 
PCA is a dimensionality reduction technique that projects a number of correlated 

variables in a lower space via a linear transformation, while preserving maximum possible 
variance within original set, creating a new group of uncorrelated, and orthogonal latent 
variables [64]. Let 𝑋  be a 𝑛×𝑝  data matrix (𝑛 : number of measurements, 𝑝 : number of 
variables), its PCA transformation is [64]: 

𝑋 = 𝑃!𝑇 + 𝑅, Equation 1 

Where 𝑇 , the 𝑛×𝑘  score matrix, is the projection of 𝑋  from 𝑝 -dimensional space to 𝑘 -
dimensional, with 𝑘 ≤ 𝑝. 𝑃, the 𝑝×𝑘 component matrix, is the linear mapping of 𝑋 to 𝑇. 𝑅 is the 
𝑛×𝑝 reconstruction error matrix. Calculation of principal components can be done with use of 
singular value decomposition [64].  

Selection of appropriate 𝑘 was done employing Cumulative Percentage of Variance 
(CPV) [64], where k first components leading to a model capturing a predefined variance 
percentage are kept. A typical value is 90% [64].  

3 .1 .2  Statist ical  Process  Control  (SPC) 
SPC is used to monitor a process for diagnostics purposes. A univariate process is 

considered to be healthy when its value lies within some statistical limits decided by control chart 
used [65]. For multivariate process, SPC assumptions of variable independency are inadequate. 
Hence, Multivariate Statistical Process Control (MSPC) is introduced, where a single control 
chart is created using information from all variables. A common tool used to facilitate MSPC is 
PCA by reducing number of monitored variables and decorrelating them. Some good reviews 
describing application of PCA and MSPC can be found in [66]–[69]. 

After PCA model has been created, its scores and residuals can be used for SPC. Control 
charts employed in this work are Hotelling 𝑇! and 𝑄 residuals, most widely used ones regarding 
PCA/SPC [66]–[69]. Hotelling metric for score matrix 𝑇 is [66], [69], [70]: 

𝑇! = !!
!!
!

!
!!! , Equation 2 

With 𝑡!  𝑖th principal component scores, 𝑠!! its variance, and control limit [66]–[69]: 
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𝑇!! =
! !!!!
! !!!

𝐹!(𝑘, 𝑛 − 𝑘), Equation 3 

With 𝐹!(𝑘, 𝑛 − 𝑘) the 100 − 1 𝑎% upper critical point of 𝐹  distribution with 𝑘  and 𝑛 − 𝑘 
numbers of freedom. 

𝑄 metric for residual matrix 𝑅 is [66], [67], [69]: 

𝑄 = (𝑥! − 𝑥!)!!
!!! , Equation 4 

With 𝑥!  reconstructed values of 𝑥! , and control limit [66], [67]: 

𝑄! = 𝑔𝑥!,!! , Equation 5 

Where 𝑔 = !"#(!)
!!"#$(!)

 , ℎ = !(!"#(!))!

!"#(!)
, and 𝑥!,!!  the 100 − 1 𝑎%  upper critical point of 𝑥! 

distribution with ℎ numbers of freedom. 

Metrics created by PCA/SPC were used as HIs for prognostics purpose. Procedure of 
employing PCA/SPC to create HIs is described in a compact form as follows. In phase I healthy 
data are centred and scaled to unit variance, and PCA model is created, along with control limits 
for 𝑇! and 𝑄. In phase II new data are centred and scaled using healthy means and variances, 
projected on healthy PCA model calculating their scores and residuals, and their metrics are 
estimated creating HIs. 

3 .2  Prognostics  methods 
As already mentioned, there is lack of literature about prognostics on reciprocating 

compressors. Ergo, several prognostics methods were compared on valve failure data from an 
operation industrial compressor.  

3 .2 .1  Multiple  Linear Regression (MLR) 
MLR belongs to trend extrapolation family being its simplest representation. Let 𝑌 be a 

𝑛×1 response vector and 𝑋 a 𝑛×𝑝 regressor matrix. MLR  is used to predict the dependent 
variable as linear combination of independent ones [71]: 

𝑦! = 𝛽! + 𝛽!𝑥!! +⋯+ 𝛽!𝑥!" + 𝜀!, Equation 6 

With 𝛽!,𝛽!,… ,𝛽!  regression coefficients to be estimated, 𝜀  the residuals assumed to be 
uncorrelated and normally distributed, and 𝑖 = 1,… , 𝑛. Parameters are calculated utilising least 
squares algorithm [71]: 

𝛽 = 𝑋!𝑋 !!𝑋!𝑌, Equation 7 

Fit of model on data can be assessed using coefficient of determination 𝑅! that measures 
amount of variability captured [71]: 

𝑅! = 1 − !!!
!!!

, Equation 8 

with 𝑆𝑆! = 𝐸! [71], and 𝑆𝑆! = 𝑌 − 𝑌 ! [71]. Another criterion is the adjusted coefficient of 
determination 𝑅!"#$%&'"!  [71]: 

𝑅!"#$%&'"! = 1 − !!! (!!!)
!!! (!!!)

, Equation 9 

Both metrics range from zero indicating bad fit to one indicating perfect fit.  

MLR was trained using historical failures and applied for direct RUL estimation, with 
HIs being independent variables and RUL dependent one.  
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3.2 .2  Polynomial  Regression (PR) 
PR also belongs to trend extrapolation class. It can be seen as an extension to MLR where 

predictors are also included in power form. Polynomial order depends on desired power. A second 
order polynomial for two regressors is [71]: 

𝑦! = 𝛽! + 𝛽!𝑥!! + 𝛽!!𝑥!!! + 𝛽!𝑥!! + 𝛽!!𝑥!!! + 𝛽!"𝑥!!𝑥!! + 𝜀, Equation 10 

Estimation of coefficients is done as in 3.2.1. 

Depending on polynomial order, number of parameters can be significantly large leading 
to overfitting. Stepwise regression is most widely used selection process  for including an 
optimum number of regressors	 [71]. It is an iterative procedure where terms are included or 
removed from the model based on a partial F-test. Considering that 𝑓!" is F-value for including a 
term and  𝑓!"#  for removing one, for a variable to be included it should be 𝑓 ≥ 𝑓!" and to be 
excluded 𝑓 ≤ 𝑓!"#  [71]. During the initial step, a model is constructed using only most correlated 
regressor with the dependent variable as it will have highest 𝑓 value. The process concludes 
when no variables can be included or excluded [71], leading to polynomial stepwise regression 
(PSR). Adequacy of model can be examined using 𝑅!  and 𝑅!"#$%&'"!  metrics. Prognostics 
application of this method is the same as for MLR. 

3 .2 .3  Self-Organising Map (SOM) 
SOM is a form of NN used for unsupervised learning, introduced by Kohonen [72]. It is 

employed for clustering, and dimensionality reduction, used to project multidimensional data on 
a two-dimensional structure resembling a map [38], [41], [42], [44]–[46], [72]–[79]. SOM consists 
of multidimensional input and competitive output. Let 𝑋 be a 𝑛×𝑑 data matrix. The output 
represents a grid of 𝑀 neurons, each with a weight vector 𝑊! = 𝑤!!,… ,𝑤!" , interconnected 
via a neighbourhood relation. 𝑀 can be determined as [42], [45], [72], [75]: 𝑀 = 5 𝑛. Dimensions 
𝑑! and 𝑑! can be found using two largest eigenvalues of covariance matrix [42], [45], [72], [75]: 
𝑑! 𝑑! = 𝑒! 𝑒!.  

Training is an iterative process. 𝑋 is centred and scaled to unit variance, and weight 
vectors are initialised given random values limited within subspace of 𝑒! and 𝑒! [42], [72], [75]. A 
random sample is presented to the map, and its similarity to every neuron is calculated to 
identify the Best Matching Unit (BMU) [38], [41], [42], [44]–[46], [72]–[79].  A common 
similarity metric is Euclidean distance [38], [41], [42], [44]–[46], [72]–[79]: 

𝐷!" = 𝑋! −𝑊! 𝑥!" − 𝑤!"
!!

!!! , Equation 11 

With 𝑘 = 1,… , 𝑛, 𝑖 = 1,… ,𝑀, 𝑗 = 1,… ,𝑑, 𝑋!  the 𝑘th sample, 𝑊!  weight vector of 𝑖th neuron,  
and 𝐷!"  their distance. BMU’s and its neighbours’ weight vectors are adjusted to better resemble 
input sample [38], [41], [42], [44]–[46], [72]–[79]: 

𝑊! 𝑡 + 1 = 𝑊! 𝑡 + 𝛼 𝑡 ℎ!"#$ 𝑡 𝐷!"(𝑡), Equation 12 

With 𝑡 current time step, ℎ!"#$ 𝑡  neighbourhood function centred at BMU, and 𝛼(𝑡) learning 
rate. A typical neighbourhood function is Gaussian [75]: ℎ!"#$(𝑡) = 𝑒!!!"#$

! !!(!)!  with 𝜎(𝑡) 
neighbourhood radius and 𝑑!"#$  Euclidean distance between BMU and neuron 𝑖 on the map lay 
out. Learning rate is [75]: 𝛼(𝑡) = 𝛼!(0,005 𝛼!)! ! , with 𝛼! initial rate and 𝑇 training length. 
Both ℎ!"#$(𝑡) and 𝛼(𝑡) are monotonically decreasing functions as iterations increase. 

Fit of map on data can be evaluated using Mean Quantisation Error (MQE) [42], [45], 
[75]: 
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𝑞! =
!
!

𝑋! −𝑊!"#$
!
!!! , Equation 13 

Which is average of Euclidean distance of all input data and their BMUs. Its range is [0, ∞) with 
zero indicating perfect fit. Another metric used is Topographic Error (TE) [42], [45], [75]: 

𝑡! =
!
!

𝑢 𝑋!!
!!! , Equation 14 

With 𝑢 a binary variable yielding one if first and second BMUs of 𝑋!  are not bordering and zero 
if they are. Its range is [0, n] with zero indicating perfect fit. 

After SOM construction, each neuron is able to recognise inputs that are similar to itself, 
earning the name of self-organising map. Data with similar patterns are associated with same 
neurons or their neighbours, preserving topology and relations of measurements.  

Although SOM is a form of NN, one of the most favoured prognostics methods in 
academia [17], it has yet to be used for RUL estimation. Inspiration of utilising SOM in such way 
was drawn from its imputation capability along with similarity based prognostics. When used 
for imputation, SOM is constructed using observed measurements. The sample containing 
missing data is presented to the map and its BMU is determined using distances of its observed 
values and their corresponding neuron weights. Missing values are imputed as their equivalent 
BMU weight values. Similarity based prognostics [26], [27] is an emerging trend over recent 
years. For an ongoing fault, RUL is estimated as sum of historical RULs, weighted based on 
similarity analysis between current information and historical failures [22], [23], [26], [27], [47]–
[49], [51], [52], [80]–[82]. It is noted that as time passes, estimated RUL converges with actual one 
[26], [47]. Its requirements are [22], [23], [26], [27], [48], [52], [81]: sufficient amount of historical 
failures, continuous monitoring of information, and information reflecting system degradation 
through time. It is a simple method as there is no complex algorithm used, making it generic, 
though is highly affected by data quality [26], [27], [49], [80], [82]. 

Based on above, an offline SOM is constructed using historical 𝑇! and 𝑄 measurements 
and their corresponding RUL values. In an online step, new 𝑇! and 𝑄 statistics are presented to 
the map, and their similarity to every neuron is calculated to identify the BMU. Then RUL is 
calculated as its equivalent BMU weight values. As with similarity based prognostics, the 
purpose is to identify similar degradation patterns with historical cases utilising SOM’s 
structure. RUL estimation in this study was carried out by performing pointwise similarity 
analysis on the 𝑇! and 𝑄 statistics rather than similarity analysis between segments as usually 
done (section 2). In pointwise similarity analysis, only the latest information was compared with 
historical samples, since more recent samples contain richer information about degradation [26], 
[27], [52]. Moreover, RUL is calculated solely based on most similar case. This method shall be 
denoted as SOM 1. 

3 .2 .4  Proposed variation of  SOM based RUL estimation 
A variation of RUL estimation process based on SOM is also proposed. Instead of 

creating a single map from all historical failures, an individual map is trained for each case. For 
an ongoing fault, its information is presented to each SOM and RUL is calculated as average of 
imputation result of all maps. This variation shall be denoted as SOM 2. 

3 .2 .5  K-Nearest  Neighbours  Regression (KNNR) 
KNNR is a form of similarity based prognostics, belonging in nonparametric regression 

family. It estimates the regression function without making any assumptions about underlying 
relationship of dependent and independent variables [59], [62], [83], [84] by utilising similarities 
of current sample to historical points for prediction [63]. KKNR is a distribution free, 
multivariate method that preserves variable relations and local structure within data, easy to 



9	
	

use, fast and computationally cheap [85], but highly affected by amount of historical data 
available [56]. 

Let 𝑋  be a 𝑛×𝑞  regressor matrix, 𝑌  its 𝑛×1  response vector and 𝑢  a new sample. 
Resemblance of new sample’s predictors and historical ones is calculated via similarity analysis. 
Euclidean distance [55], [58], [61]–[63], [85]–[88] is most commonly used similarity metric [56], 
[59], [85]: 

𝑑 𝑢, 𝑥! = 𝑢 − 𝑥! = 𝑢! − 𝑥!"
!!

!!! , Equation 15 

with 𝑖 = 1,… , 𝑛. 𝑢’s response value is [56], [59], [85]: 

𝑦! =
!!!!!

!!!
!!!

!!!
, Equation 16 

With 𝐾 number of most similar historical points to current sample according to 𝑑 𝑢, 𝑥! , 𝑤!  and 
𝑦!  weight and response value of 𝑙th neighbour. Hence, response value is weighted sum of 
response values of K closest historical samples based on their predictor similarities. About 
weighting there is no straightforward formula and can be done in various ways [84]. 
Formulation used here was: 

𝑤! = 1 − 𝑑! 𝑑!!
!!! . Equation 17 

Optimum K can be found via k-fold cross validation [58], [83]–[87]. Historical data are 
partitioned into k new sets of approximately equal length. For a range of Ks, a model is trained 
with k-1 sets, leaving one out for validation estimating an error criterion. This is repeated until 
all subsets are left out once creating k new models. Mean error for each K is calculated and 
smallest one yields optimum K [56], [83], [89].  

As with SOM, pointwise similarity was used instead of segmented. Furthermore, RUL 
was estimated using K most similar samples from all historical data, meaning that one failure 
might have more than one common points with current sample while another might have none. 
This method shall be denoted as KNNR 1. 

3 .2 .6  Proposed variation of  KNNR based RUL estimation 
A variation of RUL estimation process based on KNNR is also proposed. As with SOM 2, 

instead of applying KNNR on all historical data, it is implemented on each historical case. RUL is 
weighted sum of RULs from each case based on similarity results. In this variation, instead of 
using K most similar points from each case only most similar one was used. This variation shall 
be denoted as KNNR 2. 

3 .2 .7  Ensemble  method 
Output of each prognostics algorithm was also combined via averaging leading to an 

ensemble method: 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = (𝑀𝑆𝑅 + 𝑃𝑅 + 𝑆𝑂𝑀1 + 𝑆𝑂𝑀2 + 𝐾𝑁𝑁𝑅1 + 𝐾𝑁𝑁𝑅2)/6, Equation 18 

The purpose is to improve prognostics results by combining strengths of multiple techniques, 
refining their results. 
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4.  Data acquisit ion 
4 .1  Data preparation 

Information employed in this work came from an operational industrial two-stage, four-
cylinder, double-acting reciprocating compressor that has been used in various applications 
(compressing different gasses). The machine is instrumented with sensors collecting both process 
(temperature, pressure, speed, etc.) and mechanically (bearing vibration, bearing temperature, 
seal pressure etc.) related measurements, that stream continuously, via internet, to a central 
location. They are stored, pre-processed, and analysed for CBM purposes. Considering each 
sensor’s sampling frequency, a large volume of data is created every second thus a huge amount 
of storage is required. To mitigate this issue, a rule set was created deciding which values should 
be stored, creating non-uniformly sampled sets. Linear interpolation was utilized in the data 
retrieval tool kit to resample non-uniformly sampled data.  The fault mode under study was a 
valve failure. A ring valve was the defective component with cause of failure: broken valve plate 
leading to leakage. There were 13 defective cases available that all took place in the same cylinder 
within a period of one and a half years. Depending on case, the failing valve was either Head End 
(HE) or Crank End (CE) discharge valve. In all failures, valves were of same type, model, and 
manufacturer. Failure was denoted as the point when it was deemed as incapable of performing 
its intended function.  

 Historical information of 16 temperature measurements, one for each valve (two suction 
(HE/CE) and two discharge (HE/CE) per cylinder, four cylinders), was extracted from a server 
with sampling period 𝑇! = 1𝑠 (𝑓! = 1𝐻𝑧). Each case contained roughly two and a half days’ 
worth of data, consisting of both healthy and failing states. Table 1 summaries fault duration of 
each case (moment of detection until moment of failure). The instantaneous nature is evident as 
failure occurs in a matter of minutes. Prior to proceeding with analysis, data were scanned for 
missing values, a common phenomenon in industry, utilising SOM for imputation. 

Table 1 Data set specifications 

Failure Case 1 2 3 4 5 6 7 8 9 10 11 12 13 
Fault Duration (s) 333 119 280 245 125 242 114 233 494 131 246 73 254 

In order to mitigate the impact of external factors such as air temperature or rotational 
speed on the temperature measurements, their ratios were employed for the calculation of HIs. 
Temperature ratios were calculated for suction and discharge of each cylinder, as follows 
𝑇! = 𝑇!" 𝑇!" . Healthy data from each case were centred and scaled to unit variance, and used 
to create a PCA model of 3 components (𝐶𝑃𝑉 = 95%) while calculating 𝑇! and 𝑄 control limits. 
Failure data, after centring and scaling, were projected on the model calculating their 𝑇! and 𝑄 
metrics creating HIs (Figure 1). Both metrics were divided with their respective statistical limits 
in order to be comparable.   
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Figure 1 𝑇! and 𝑄 health indicators 

An appropriate HI, needs to be monotonic and encapsulate degradation evolution 
through time [21], [23], [30], [34], [48], [49]. If this is satisfied, estimated RUL is expected to be 
accurate [82]. Furthermore, it is desired that HI is of low variability [30], [34], present roughly 
same value during failure under same failure mode and operating conditions, and have 
resembling pattern [21], [30]. Figure 1 confirms suitability of both metrics by fulfilling 
aforementioned perquisites, adequately reflecting fault propagation.  

4 .2  Prognostics  metrics  
In order to quantitatively benchmark performance of methods several criteria were used, 

as there is no universal criterion available yet [36]. The metrics can be separated into two 
categories: a) accuracy (NMSE, MAPER, CRA) measuring distance between estimated and actual 
RUL with higher accuracy desired, and b) precision (MAD) measuring error variability with low 
volatility desired. Let 𝑅𝑈𝐿(𝑡) be actual RUL at time 𝑡, 𝑡 = 1,… ,𝑁 number of available samples, 
𝑅𝑈𝐿(𝑡) be estimated RUL, and 𝛥𝑅𝑈𝐿 𝑡 = 𝑅𝑈𝐿 𝑡 − 𝑅𝑈𝐿(𝑡) be difference of actual and 
estimated RUL. Employed metrics are: 

i. Normalised Mean Square Error (NMSE) [90]: 

𝑁𝑀𝑆𝐸 = 1 − !
!

!"#$(!)!

!"# ! !!"# !
!
!!! , Equation 19 

With 𝑅𝑈𝐿 the mean value of 𝑅𝑈𝐿.  

ii. Mean Absolute Percentage Error (MAPER) [36]: 

𝑀𝐴𝑃𝐸𝑅 = !
!

!""!"#$(!)
!"#(!)

!
!!! , Equation 20 

iii. Cumulative Relative Accuracy (CRA) [36]: 

𝐶𝑅𝐴 = !
!

𝑅𝐴(𝑖)!
!!! , Equation 21 

With 𝑅𝐴(𝑖) the Relative Accuracy at each time instance [36], [91]:  

𝑅𝐴 𝑖 = 1 − !"#$ !
!"#(!)

, Equation 22 

Fault initiation 
Failure points 
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iv. Mean absolute deviation [36]: 

𝑀𝐴𝐷 = !
!

𝛥𝑅𝑈𝐿 𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝛥𝑅𝑈𝐿 𝑖 )!
!!! , Equation 23 

 NMSE and CRA range in (-∞, 1] with 1 indicating perfect score, while MAPER and MAD 
range in [0, ∞) with 0 indicating perfect score. 

5 .  Prognostics  results  
5 .1  Application of  prognostics  methods 

RUL was estimated directly with 𝑇!  and 𝑄  being independent variables and RUL 
dependent one. Prognostics methods attempted to model this relationship so that RUL could be 
calculated accurately. RUL was logarithmically transformed to improve the fit of the models 
described in section 3. During training, 12 cases were used for model building while the 13th was 
kept for testing. Results for representative cases 8 and 11 are presented. Training outcome of each 
method can be found below. All methods were implemented in Matlab [92]–[94]. 

 

5 .1 .1  Multiple  l inear/  polynomial  regression 
For PR, third order was maximum order examined. Table  2  contains 𝑅! and 𝑅!"#$%&'"!   

metrics. Both methods have an adequate fit with PR being superior having greater values.  

Table 2 MLR/PR  𝑅! and 𝑅!"#$%&'"!  metrics 

Algorithm MLR PR 
Failure case 8 11 8 11 

𝑅! 0,68 0,67 0,76 0.77 
𝑅!"#$%&'"!  0,67 0,67 0,76 0,77 

 
5 .1 .2  Self-organising map 

Data were centred and scaled to unity. Maps were constructed using Gaussian 
neighbourhood function with starting radius 𝜎 = max 𝑑!,𝑑! /4, an initial learning rate 
𝛼! = 0.5, and Euclidean distance. Table 3 and  

Table 4 contain MQE and TE metrics for SOM 1 and SOM 2. Both methods yield high 
accuracy having low metric values. 

Table 3 Mean quantisation and topological errors for SOM 1 

Failure case 8 11 
MQE 0,13 0,12 

TE 0,02 0,04 
 

Table 4 Mean quantisation and topological errors for SOM 2 

Failure case 1 2 3 4 5 6 7 8 9 10 11 12 13 
MQE 0.04 0,09 0,05 0,05 0,06 0,06 0,06 0,04 0,04 0,06 0,05 0,10 0,06 
TE 0.31 0,27 0,40 0,29 0,22 0,43 0,16 0,20 0,27 0,21 0,40 0,18 0,19 

 
5 .1 .3  K-nearest  neighbours  regression 

Data were centred and scaled to unity, and Euclidean distance was used. Table 5 
contains optimum K for KNNR 1, selected via 10-fold cross validation ranging from 1 to 200, 
while for KNNR 2 optimum K was decided a priori as K=1. 
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Table 5 Optimum K for KNNR 1 

Failure case  8  11 
k 15 14 

 
5 .2  Results  

Figure 2 and Figure 3 contain prognostics results for both historical failures, giving a 
qualitative perspective of each method’s performance. X-axis indicates time while y-axis RUL at 
each time stamp, with 𝑡 = 0 the moment fault was detected (RUL=233 case 8 and 246 case 11, 
Table 1) and 𝑡 = 233 , or 𝑡 = 246, the moment of failure (RUL=0). Graphs consist of a number 
of lines. Black indicates actual RUL through time, as observed in-situ, and rest correspond to each 
algorithm’s estimations. All methods perform comparably well with best performing being the 
ensemble technique (magenta line) as it tracks closely RUL evolution in both cases, followed by 
polynomial regression (continuous blue line), while worst performing seems to be SOM 1 (dashed 
red line) which demonstrates great variation. KNNR 1 (dashed green line) performs adequately, 
while KKNR 2 (continuous green line) and SOM 2 (continuous red line) consistently 
underestimate RUL. It can be noted that all methods converge to actual RUL as time passes.  

 

Figure 2 RUL estimation for failure case 8 
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Figure 3 RUL estimation for failure case 11 

 

Quantitative inspection of methods’ performance can be done via metrics found in Table 
6. The prognostics horizon for all metrics is from moment of fault detection until failure, meaning 
all available samples were considered in calculation. From results it is evident that ensemble 
method consistently outperforms the rest being superior in most metrics for both failures, while 
in case where another technique prevails, ensemble follows closely. Although PR performs well in 
case 8, in 11 it is outperformed by others. KNNR 2 displays, lowest variability, an attribute 
highly desired, followed closely by ensemble one. SOM 1 has lowest accuracy and highest 
volatility. Overall, quantitative results are in accordance with qualitative ones. Furthermore, 
results confirmed the claim of lack of universal metrics since the same method might be suitable 
or not depending on metric used. This calls for more effort to be put towards this direction. 

 

Table 6 Evaluation metrics 

Performance 
metrics 

NMSE MAPER CRA MAD 

Failure case 8 11 8 11 8 11 8 11 
Method         

MLR 0.77 0.86 30.50 29.39 0.70 0.71 26.10 16.90 
PR 0.96 0.66 14 .17  40.14 0 .86 0.60 11.3 35.61 

SOM 1 0.35 -0.39 40.45 51.88 0.60 0.48 41.85 62.05 
SOM 2 0.73 0.09 31.43 61.21 0.69 0.39 14.73 26.41 

KNNR 1 0.90 0.71 16.94 35.53 0.83 0.65 16.43 33.53 
KNNR 2 0.83 0.46 27.96 49.13 0.72 0.51 9 .33  14 .36 

ENSEMBLE 0.96 0.92 16.14 25 .17  0.84 0.75  9.35 15.21 
 

Based on prognostics results presented in this section, there are some comments that can 
be made: 

• PSR and MLR performed similarly well with PSR being superior based on both 
qualitative and quantitative results, as it could better reflect the complex relationship 
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between RUL and HIs by including interaction and higher order terms of HIs, 
overcoming MLR’s rigidness. 

• SOM and KNNR displayed similar performance, both belonging to similarity based 
prognostics family and using the same distance metric (Euclidean) for similarity 
analysis.  

• SOM 1 performed poorly from both accuracy and variability perspective due to 
considering only most similar case for estimation lacking versatility. SOM 2, KNNR 1, 
and KNNR 2 performed better since they considered more information during RUL 
calculation.  

• The difference between SOM 2 and both KNNR versions can be attributed to the pooling 
procedure where SOM 2 averaged RULs while the rest weighted them being more 
flexible. 

• KNNR 1 tended to outperform KNNR 2 indicating that even when considering more than 
one similar case from the same failure during RUL estimation can increase accuracy. On 
the other hand, KNNR 2 displayed lower variation hinting that considering each case 
separately can reduce volatility. 

• Ensemble method’s performance is highly dependable on individual performance of 
compromising methods. Its components performed well thus it displayed the best overall 
performance based on both qualitative and quantitative results. Its output could be seen 
as refinement of prognostics estimations of its elements. 

Importance of HI quality should be noted, as performance of algorithms is also heavily 
dependent on quality of HIs used since they reflect degradation process. The HIs that were used 
(𝑇! and 𝑄) encapsulated adequately failure evolution confirmed by good results, tracking closely 
fault propagation through time. 

6 .  Conclusions  
In this project, four prognostics techniques (MLR, PR, SOM 1, and KNNR 1), along with 

two RUL estimation variations (SOM 2 and KNNR 2), and an ensemble method combining 
aforementioned algorithms’ output, were benchmarked using valve failure data from an 
operational industrial reciprocating compressor. To the authors’ knowledge this was the first 
attempt of RUL estimation on reciprocating compressor valves. Furthermore, use of actual data 
addressed lack of works regarding implementation of prognostics in industrial applications 
demonstrating PHM’s potency. Moreover, it was the first known implementation of SOM in RUL 
estimation as standalone prognostics method, and the first time that 𝑇! and 𝑄 metrics were used 
as HIs and utilised in direct RUL estimation process.  

Analysis showed that all methods performed comparably well both in qualitative 
(graphs) and quantitative (metrics) analysis, with ensemble outperforming the rest by better 
tracking RUL evolution and having high metric values. SOM 1 performed poorly being less 
accurate and highly volatile considering only most similar case, while SOM 2, KNNR 1, and 
KNNR 2 performed closely being all similarity based methods using the same distance metric, 
with KNNR 1 performing the best. Also, quality of HIs used was deemed satisfactory given good 
results of techniques, confirming suitability of 𝑇! and 𝑄 metrics to be used as such. Moreover, 
results demonstrated that all methods were able to cope with instantaneous nature of failure 
mode under study.  
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